

Expert Second Opinion: Investigators Discuss the Optimal Management of HER2-Positive Gastrointestinal Cancers

A CME Symposium Held Adjunct to the 2026 ASCO® Gastrointestinal Cancers Symposium

Thursday, January 8, 2026
7:15 PM – 8:45 PM PT

Faculty

Haley Ellis, MD
Eric Van Cutsem, MD, PhD
Zev Wainberg, MD, MSc

Moderator

Lionel A Kankeu Fonkoua, MD

Faculty

Haley Ellis, MD
Medical Oncologist
Mass General Brigham Cancer Institute
Harvard Medical School
Boston, Massachusetts

Zev Wainberg, MD, MSc
Co-Director, GI Oncology Program
Director of Early Phase Clinical Research
Jonsson Comprehensive Cancer Center
UCLA School of Medicine
Los Angeles, California

Eric Van Cutsem, MD, PhD
Professor of Medicine
Digestive Oncology
University Hospitals Leuven
Leuven, Belgium

Moderator
Lionel A Kankeu Fonkoua, MD
Senior Associate Consultant
Assistant Professor of Oncology
Division of Medical Oncology
GI Cancer Program
Mayo Clinic
Rochester, Minnesota

Dr Ellis — Disclosures

Faculty

Advisory Committees	AstraZeneca Pharmaceuticals LP, Cogent Biosciences, Jazz Pharmaceuticals Inc
Honoraria	Incyte Corporation, Jazz Pharmaceuticals Inc
Nonrelevant Financial Relationships	Medscape, OncLive, The Jackson Laboratory

Prof Van Cutsem — Disclosures

Faculty

Consulting Agreements	AbbVie Inc, Agenus Inc, ALX Oncology, Amgen Inc, Arcus Biosciences, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, BeOne, BioNTech SE, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Cantargia, Daiichi Sankyo Inc, Debiopharm, Eisai Inc, ElmediX, Fosun Pharma, Galapagos NV, GSK, Incyte Corporation, Ipsen Biopharmaceuticals Inc, iTeos Therapeutics, Jazz Pharmaceuticals Inc, Johnson & Johnson, Lilly, Merck KGaA, Microbial Machines, Mirati Therapeutics Inc, MSD, Nordic Pharma, Novartis, Novocure Inc, Pfizer Inc, Pierre Fabre, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, Simcere, Taiho Oncology Inc, Takeda Pharmaceutical Company Limited, Trishula Therapeutics, Zymeworks Inc
------------------------------	--

Dr Wainberg — Disclosures

Faculty

Consulting Agreements	AbbVie Inc, Amgen Inc, AstraZeneca Pharmaceuticals LP, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Daiichi Sankyo Inc, EMD Serono Inc, Gilead Sciences Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Jazz Pharmaceuticals Inc, Lilly, Merck, Novartis, Novocure Inc, Pfizer Inc, Regeneron Pharmaceuticals Inc, Takeda Pharmaceuticals USA Inc
Contracted Research	Arcus Biosciences, Bristol Myers Squibb
Data and Safety Monitoring Boards/Committees	AstraZeneca Pharmaceuticals LP, Pfizer Inc

Dr Kankeu Fonkoua — Disclosures Moderator

No relevant conflicts of interest to disclose.

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP and Daiichi Sankyo Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

This educational activity contains discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.

Expert Second Opinion: Current and Future Roles of Immunotherapy and Targeted Therapy in the Management of Advanced Gastroesophageal Cancers

A CME Symposium Held Adjunct to the 2026 ASCO® Gastrointestinal Cancers Symposium

Friday, January 9, 2026
6:00 PM – 8:00 PM PT

Faculty

Jaffer A Ajani, MD
David H Ilson, MD, PhD
Rutika Mehta, MD, MPH

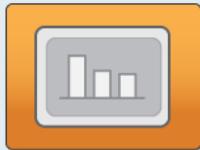
Moderator

Samuel J Klempner, MD

Save The Date

Fifth Annual National General Medical Oncology Summit

*A Multitumor CME/MOC-, NCPD- and ACPE-Accredited
Educational Conference Developed in Partnership with
Florida Cancer Specialists & Research Institute*


Friday to Sunday, April 24 to 26, 2026

The Ritz-Carlton Orlando, Grande Lakes | Orlando, Florida

Moderated by Neil Love, MD

Clinicians in the Meeting Room

Please refer to the printed handout provided with your meeting syllabus, and scan the corresponding QR code to

Review and Download Program Slides.

Answer Survey Questions: Complete the pre- and postmeeting surveys.

Ask a Question: We will aim to address as many questions as possible during the program.

Get CME Credit: Complete the course evaluation.

Expert Second Opinion
Investigators Discuss the Optimal Management of HER2-Positive Gastrointestinal Cancers

QUICK GUIDE TO IMPORTANT LINKS

Ask the faculty — Submit cases and questions

Complete the 1-minute premeeting survey

Complete the 1-minute postmeeting survey

Complete the evaluation and receive CME credit

ACCESS PROGRAM SLIDES

Dr Ellis — Biliary Tract Cancers

Dr Wainberg — Gastroesophageal Cancers

Prof Van Cutsem — Colorectal Cancer

Clinicians Attending via Zoom

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the pre- and postmeeting surveys.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME Credit: A credit link will be provided in the chat room at the conclusion of the program.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based program.
An email will be sent to all attendees when the activity is available.
- To learn more about our education programs, visit our website, www.ResearchToPractice.com

Expert Second Opinion: Investigators Discuss the Optimal Management of HER2-Positive Gastrointestinal Cancers

A CME Symposium Held Adjunct to the 2026 ASCO® Gastrointestinal Cancers Symposium

Thursday, January 8, 2026
7:15 PM – 8:45 PM PT

Faculty

Haley Ellis, MD
Eric Van Cutsem, MD, PhD
Zev Wainberg, MD, MSc

Moderator

Lionel A Kankeu Fonkoua, MD

Agenda

Module 1: Biliary Tract Cancers — Dr Ellis

Module 2: Gastroesophageal Cancers — Dr Wainberg

Module 3: Colorectal Cancer — Prof Van Cutsem

Survey of 50 Community-Based General Medical Oncologists

December 22, 2025 – January 7, 2026

Agenda

Module 1: Biliary Tract Cancers — Dr Ellis

Module 2: Gastroesophageal Cancers — Dr Wainberg

Module 3: Colorectal Cancer — Prof Van Cutsem

Research To Practice®

HER2-Positive Biliary Tract Cancers

Dr. Haley Ellis

Mass General Brigham Cancer Institute, Attending Physician | Harvard Medical School, Instructor of Medicine
Tucker Gosnell Center for GI Cancers | Termeer Center for Targeted Therapies & Investigational Cancer Therapeutics

Mass General Brigham
Cancer Institute

HARVARD
MEDICAL SCHOOL

Overview

Biliary tract cancer (BTC) therapeutic landscape and prevalence of HER2

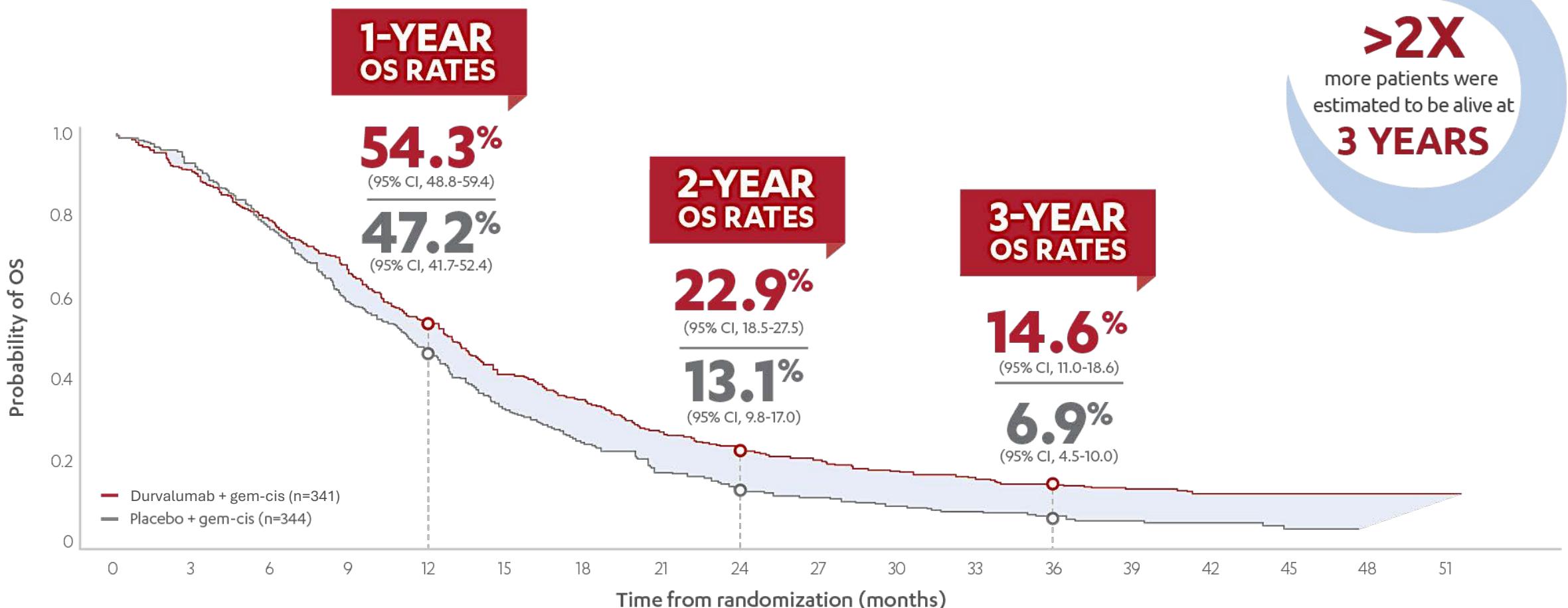
Clinical indications and methods for HER2 testing

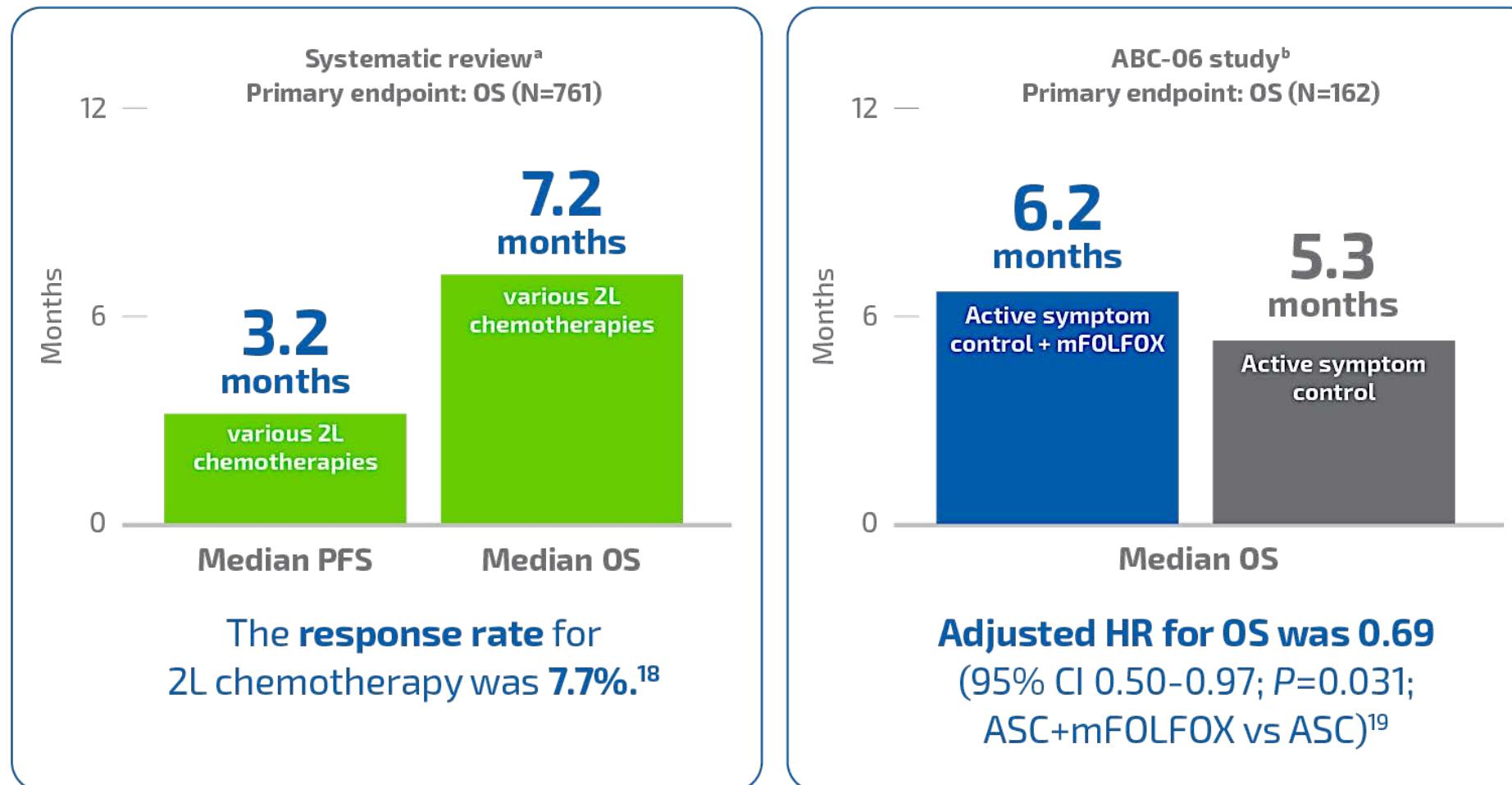
Efficacy and safety of HER2-targeted therapies in BTC

- Trastuzumab deruxtecan (DESTINY-PanTumor02 and HERB trials)
- Zanidatamab (HERIZON-BTC-01 trial)
- Ongoing phase 3 trials for treatment-naïve patients

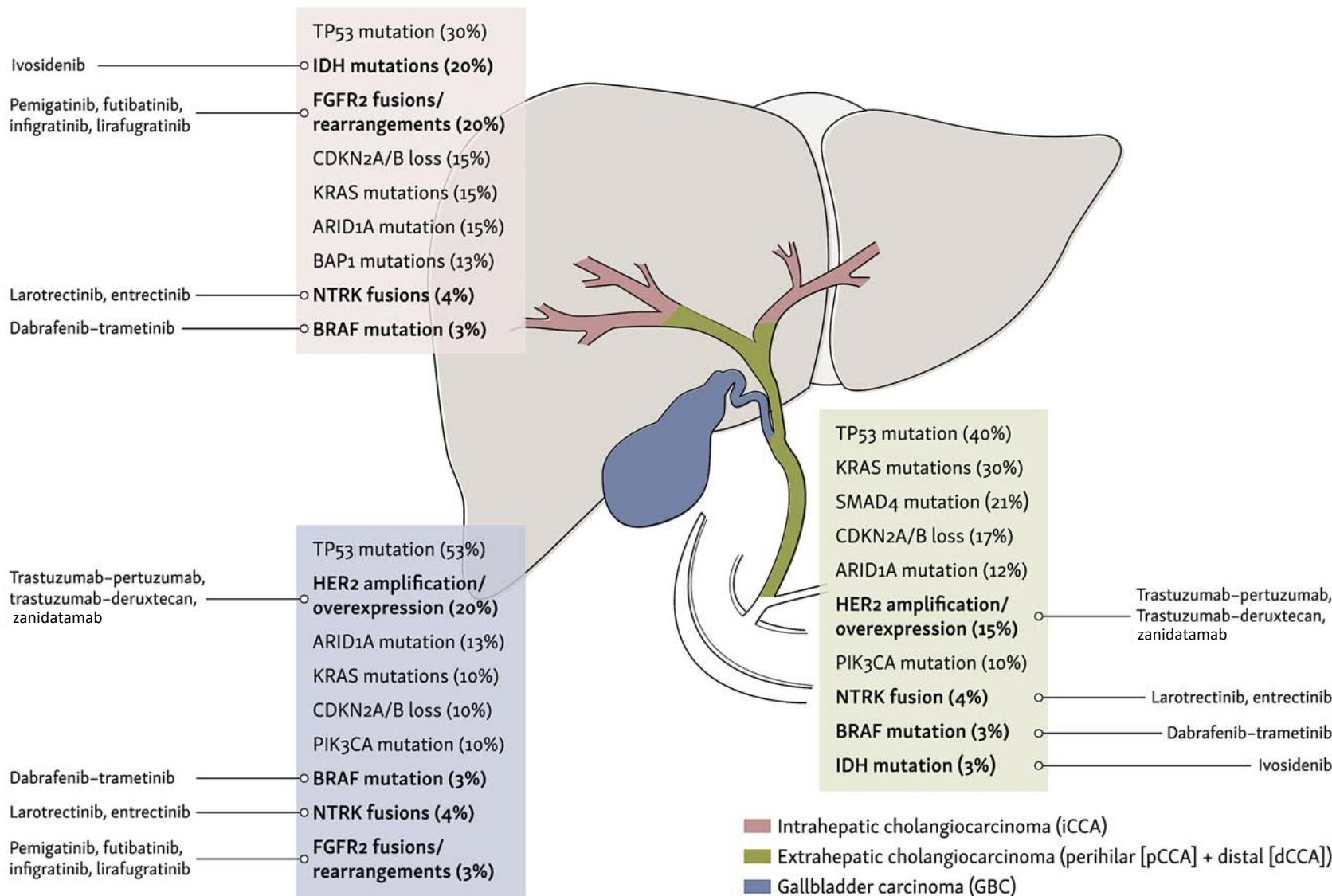
Overview

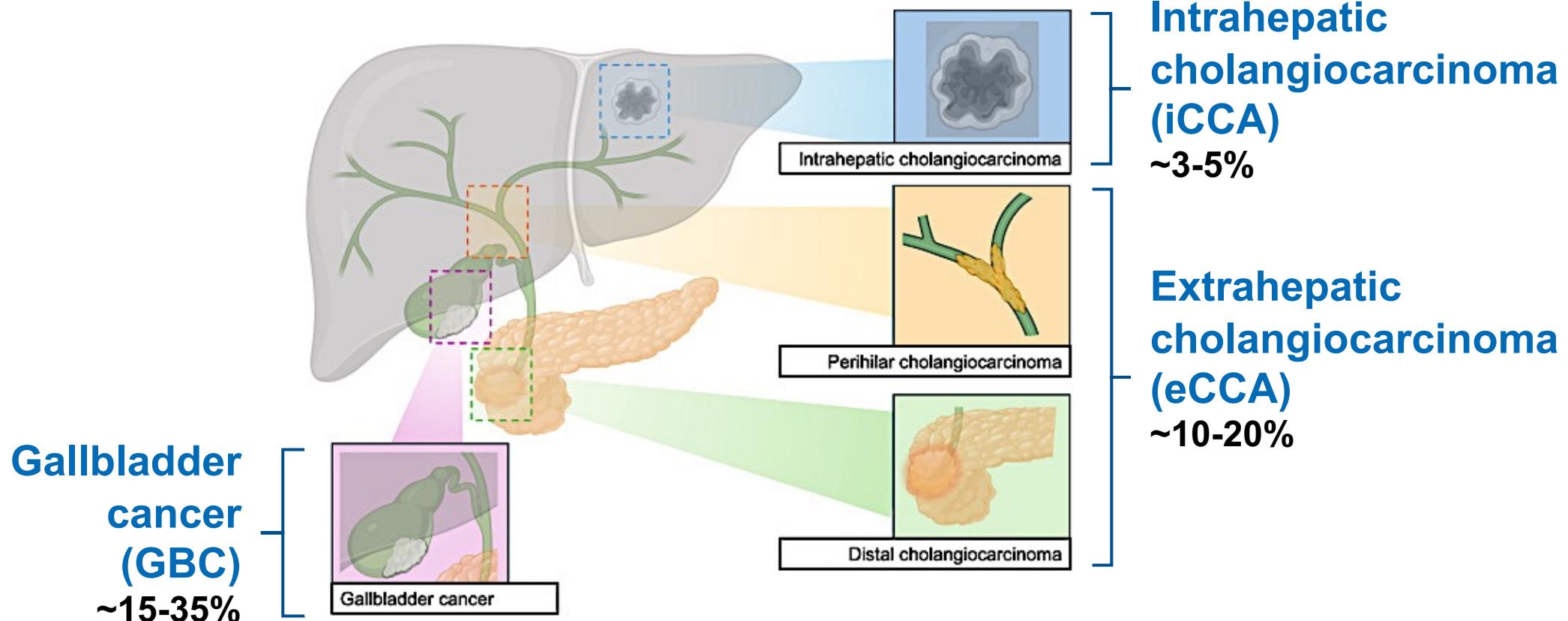
Biliary tract cancer (BTC) therapeutic landscape and prevalence of HER2


Clinical indications and methods for HER2 testing


Efficacy and safety of HER2-targeted therapies in BTC

- Trastuzumab deruxtecan (DESTINY-PanTumor02 and HERB trials)
- Zanidatamab (HERIZON-BTC-01 trial)
- Ongoing phase 3 trials for treatment-naïve patients


Chemotherapy plus immunotherapy is the first-line standard in advanced BTC


Limited benefit with second-line chemotherapy in BTC

BTC has multiple actionable genomic targets

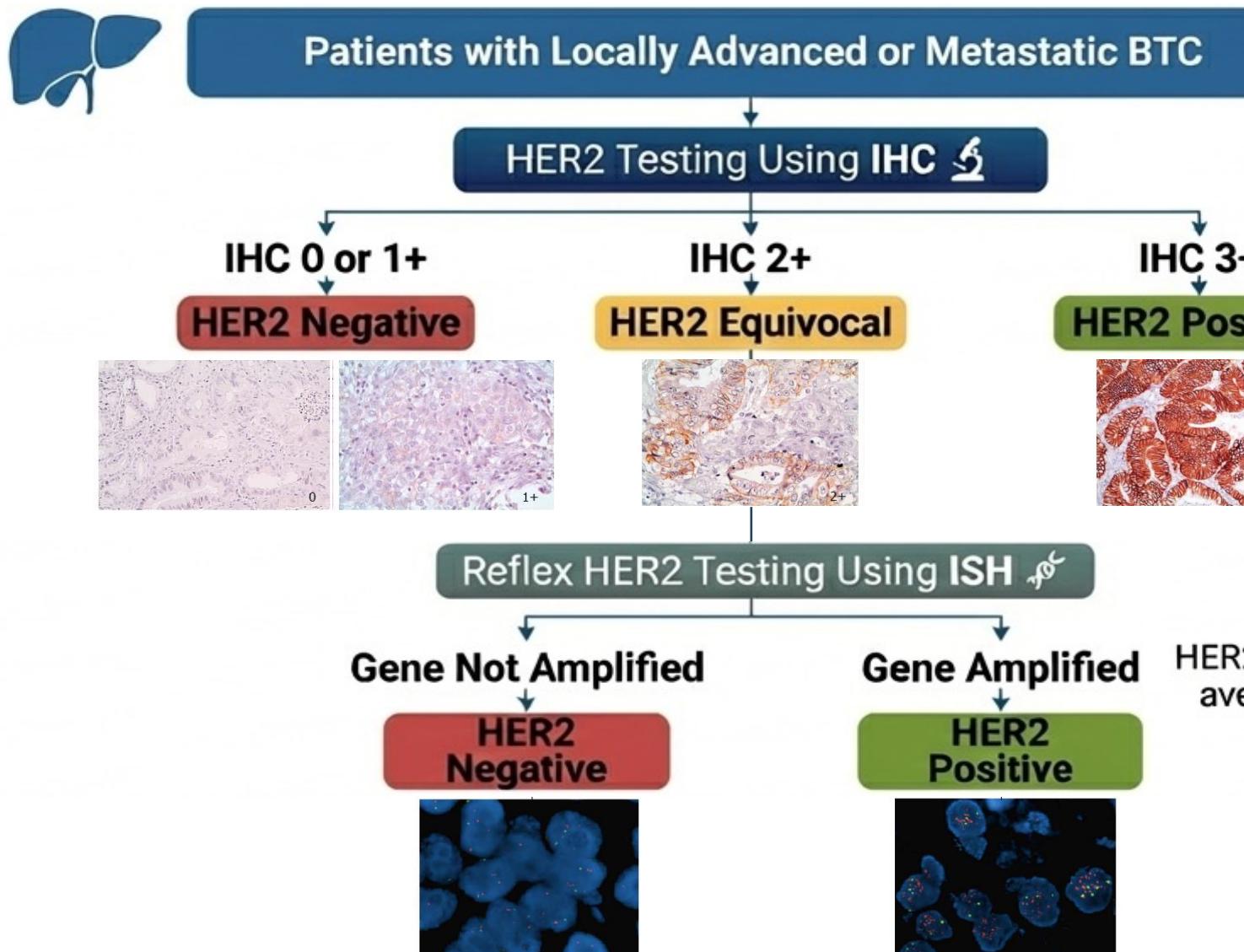
HER2 amplification/overexpression spans BTC subtypes

Overview

Biliary tract cancer (BTC) therapeutic landscape and prevalence of HER2

Clinical indications and methods for HER2 testing

Efficacy and safety of HER2-targeted therapies in BTC


- Trastuzumab deruxtecan (DESTINY-PanTumor02 and HERB trials)
- Zanidatamab (HERIZON-BTC-01 trial)
- Ongoing phase 3 trials for treatment-naïve patients

HER2 testing in BTC: who, when, and how

- ▶ **WHO:** All patients with unresectable or metastatic BTC, across subtypes
- ▶ **WHEN:** At diagnosis and/or repeat at progression
- ▶ **HOW:**

	Immunohistochemistry (IHC) 🔍	In Situ Hybridization (ISH) 🧫	Next-Generation Sequencing (NGS) ⚙️
Target	HER2 Protein	<i>ERBB2</i> DNA	<i>ERBB2</i> DNA
Alteration	HER2 Overexpression	<i>ERBB2</i> Amplification	<i>ERBB2</i> Amplification + Mutations
Sample Type			

Defining HER2 positivity in BTC using gastric cancer scoring

HER2 testing in BTC: use both IHC and NGS

Correlation of HER2 grading using NGS and IHC		
IHC score	NGS result	
	HER2 not amplified* (n=182)	HER2 amplified* (n=19)
0	30%	0%
1+	25%	11%
2+	40%	58%
3+	5%	32%
HER2 IHC classification		
HER2 negative	85%	16%
HER2 positive	15%	68%
N/A (2+, ISH not done)	0%	21%

~15% discordance between IHC and NGS in BTC

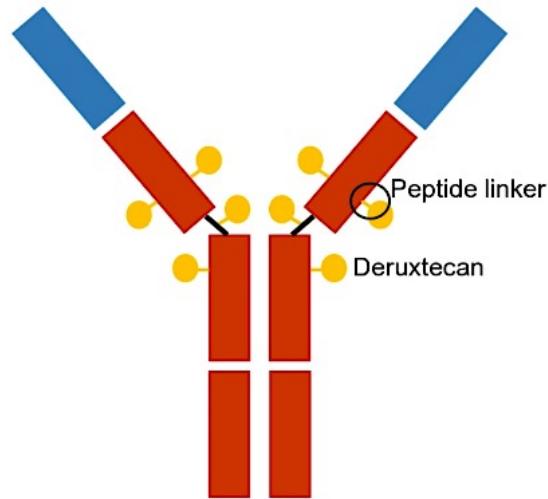
Overview

Biliary tract cancer (BTC) therapeutic landscape and prevalence of HER2

Clinical indications and methods for HER2 testing

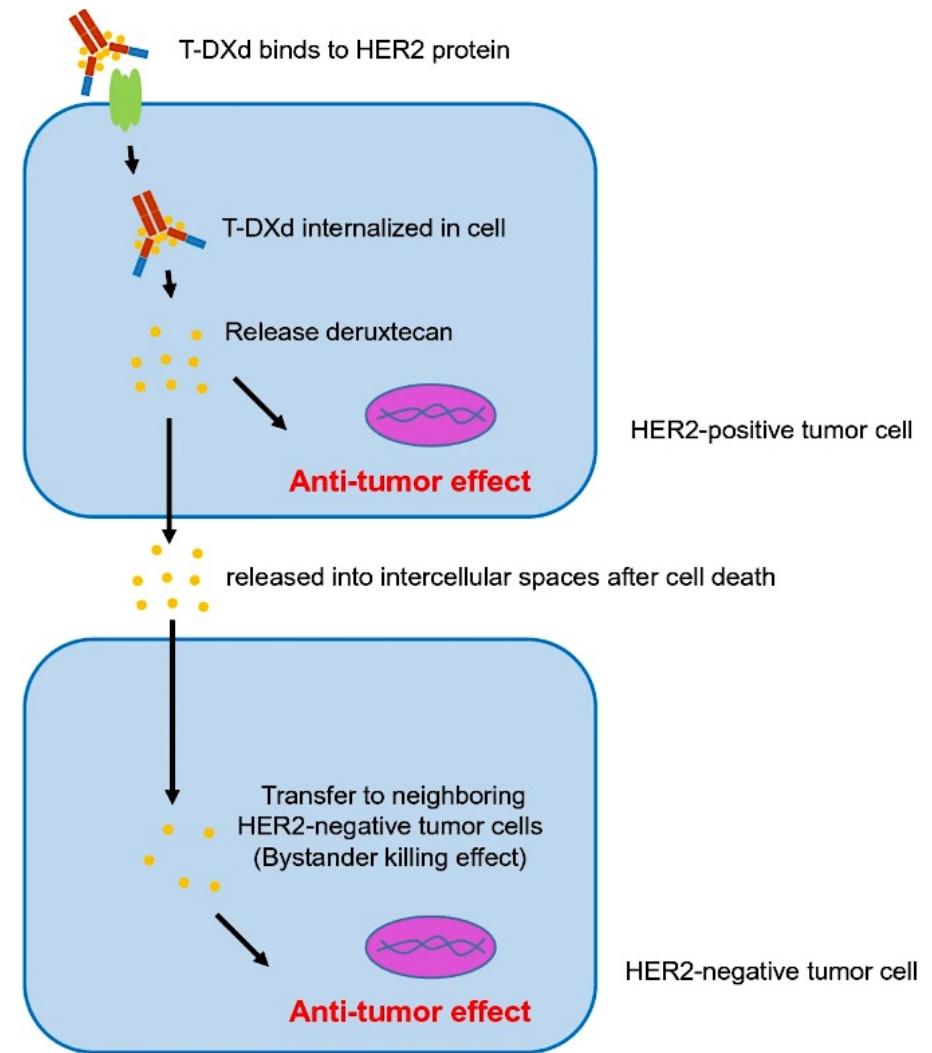
Efficacy and safety of HER2-targeted therapies in BTC

- Trastuzumab deruxtecan (DESTINY-PanTumor02 and HERB trials)
- Zanidatamab (HERIZON-BTC-01 trial)
- Ongoing phase 3 trials for treatment-naïve patients


Second-line HER2-targeted therapy landscape in BTC

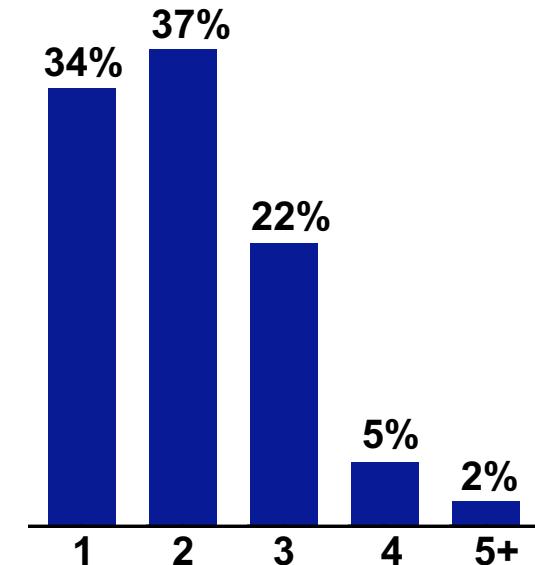
Trial	Treatment	Design	# BTC Pts	Prior HER2 Tx	HER2 Status	ORR	DCR	mDOR (mo)	mPFS (mo)	mOS (mo)
ABC-06 ¹ 2021	FOLFOX	Phase 3 UK	162	--	--	5%	33%	--	4.0	6.2
MyPathway ² 2021	Trastuzumab + Pertuzumab	Phase 2 Basket, US	39	No	IHC 3+, ISH+, or NGS Amp	23%	51%	10.8	4.0	10.9
KCSG-HB19-14 ³ 2023	Trastuzumab + FOLFOX	Phase 2 Korea	34	No	IHC 3+ (68%), IHC 2+/ISH+ (32%), or NGS Amp	29%	79%	4.9	5.1	10.7
SGNTUC-019 ⁴ 2023	Trastuzumab + Tucatinib	Phase 2 Basket	30	No	IHC 3+, ISH+, or NGS Amp	47%	77%	6.0	5.5	15.5
HERIZON- BTC-01 ⁵ 2023	Zanidatamab	Phase 2 Global	62 80 18	No	IHC 3+ IHC 3+ or IHC 2+/ISH+ IHC 2+/ISH+	52% 41% 6%	79% 69% 33%	14.9 14.9 NE	7.2 5.5 1.7	18.1 15.5 5.2
DESTINY- PanTumor02 ⁶ 2024	Trastuzumab Deruxtecan	Phase 2 Basket, Global	16 41 14	Yes (17%)	IHC 3+ IHC 3+ or 2+ IHC 2+	56% 22% 0%	-- 78% --	-- 8.6 --	7.4 4.6 4.2	12.4 7.0 6.0
HERB ⁷ 2024	Trastuzumab Deruxtecan	Phase 2 Japan	22 8	Yes (n = 0)	IHC 3+ IHC 3+ or IHC 2+/ISH+ IHC 2+/ISH-, IHC 1+/ISH-, IHC 0/ISH+	40% 36% 13%	-- 82% 75%	-- 7.4 --	-- 5.1 3.5	-- 7.1 8.9
SUMMIT ⁸ 2023	Neratinib	Phase 2 Basket	25	No	HER2 mutant	16%	28%	3.7	2.8	5.4

¹Lamarca et al. Lancet Oncol 2021 | ²Javle et al. Lancet Oncol 2021 | ³Lee et al. Lancet Gastroenterol Hepatol 2023 | ⁴Nakamura et al. J Clin Oncol 2023 |


⁵Harding, Fan et al. Lancet Oncol 2023 | ⁶Meric-Bernstam et al. J Clin Oncol 2024 | ⁷Ohba et al. J Clin Oncol 2024 | ⁸Harding et al. Nat Comm 2023

Trastuzumab deruxtecan (T-DXd): *HER2 antibody-drug conjugate*

FDA approved for previously treated, unresectable or metastatic HER2 IHC 3+ solid tumors

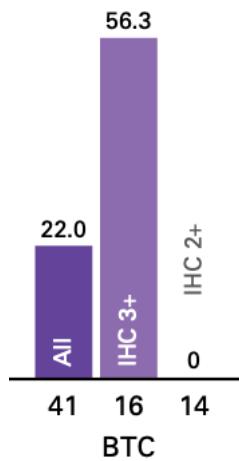

Trastuzumab deruxtecan (T-DXd)

DESTINY-PanTumor02 trial of T-DXd: *eligibility and baseline*

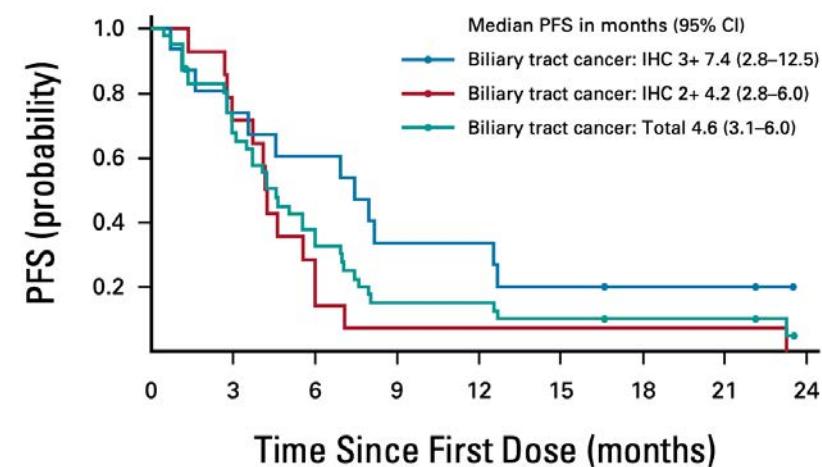
- Locally advanced, unresectable, or metastatic HER2-expressing BTC, including AOV
- Progressed after ≥ 1 systemic therapy or without alternative treatment options, including HER2 therapy
- **HER2 IHC 3+ or 2+ by central (17%) or local (83%) testing**

Prior Lines of Therapy (Median 2)

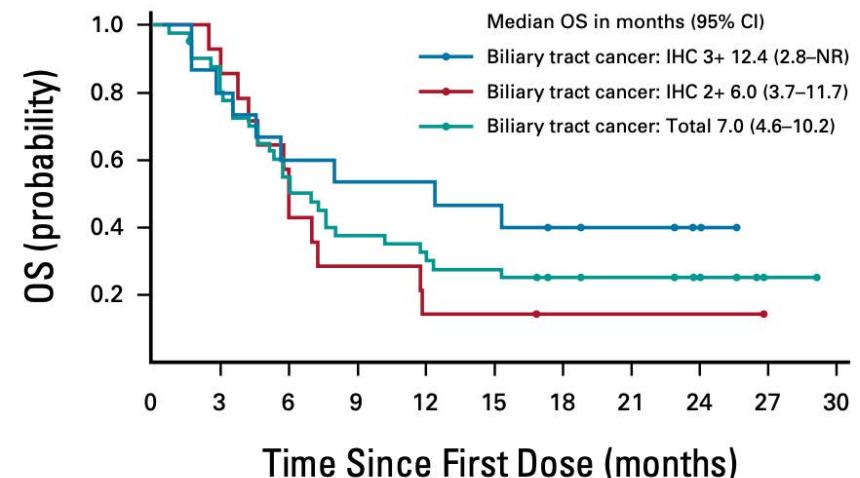
Prior HER2 Therapy (17%)


- Trastuzumab ($n = 6$)
- Pertuzumab ($n = 1$)
- Zanidatamab ($n = 1$)

DESTINY-PanTumor02 trial of T-DXd: efficacy

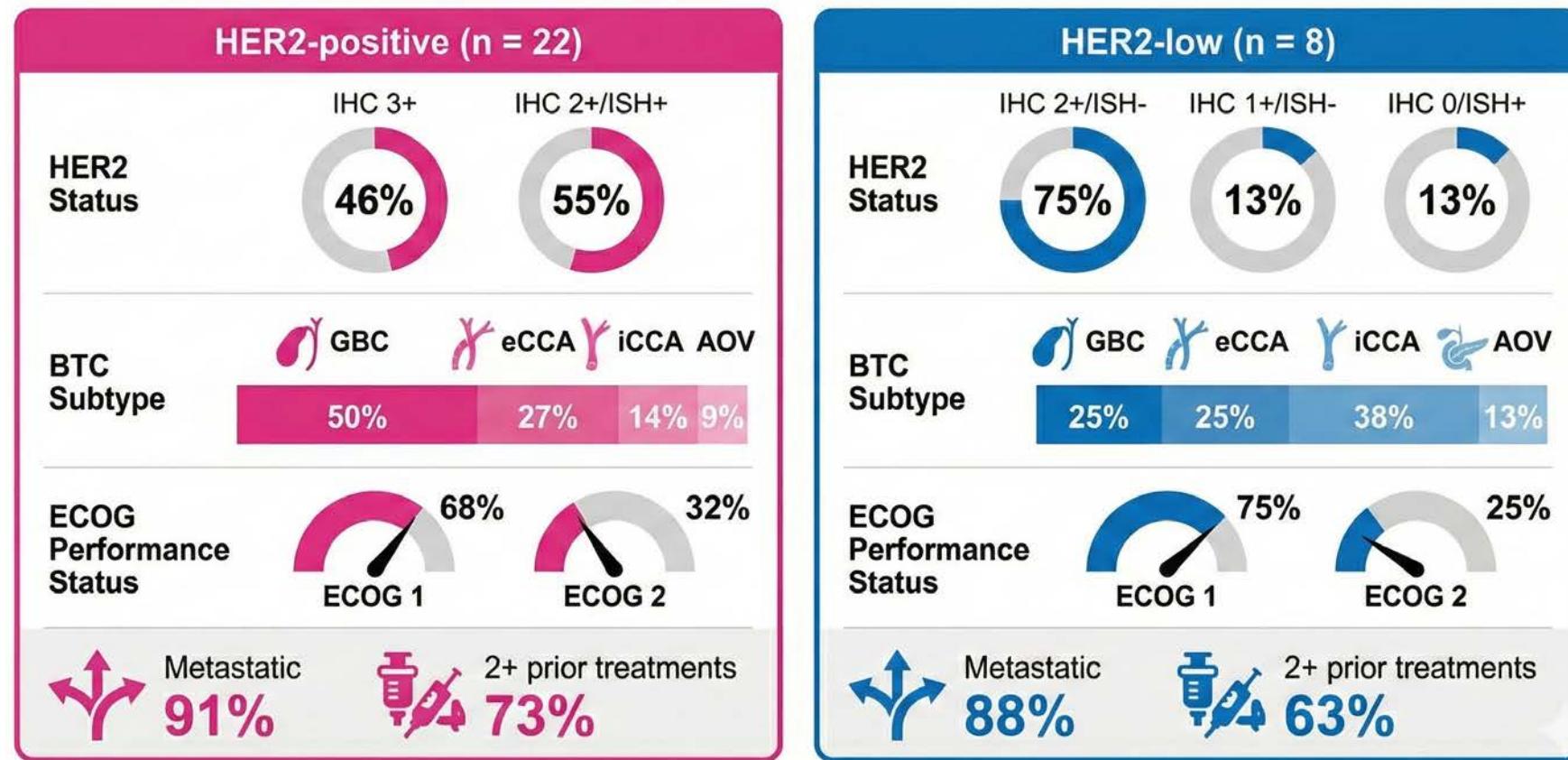

Design	# BTC Pts	Prior HER2 Tx	HER2 Status	ORR	DCR	mDOR (mo)	mPFS (mo)	mOS (mo)
Phase 2 <i>Basket, Global</i>	16	Yes (17%)	IHC 3+	56%	--	--	7.4	12.4
	41		IHC 3+ or 2+	22%	78%	8.6	4.6	7.0
	14		IHC 2+	0%	--	--	4.2	6.0

IHC 3+ Outcomes

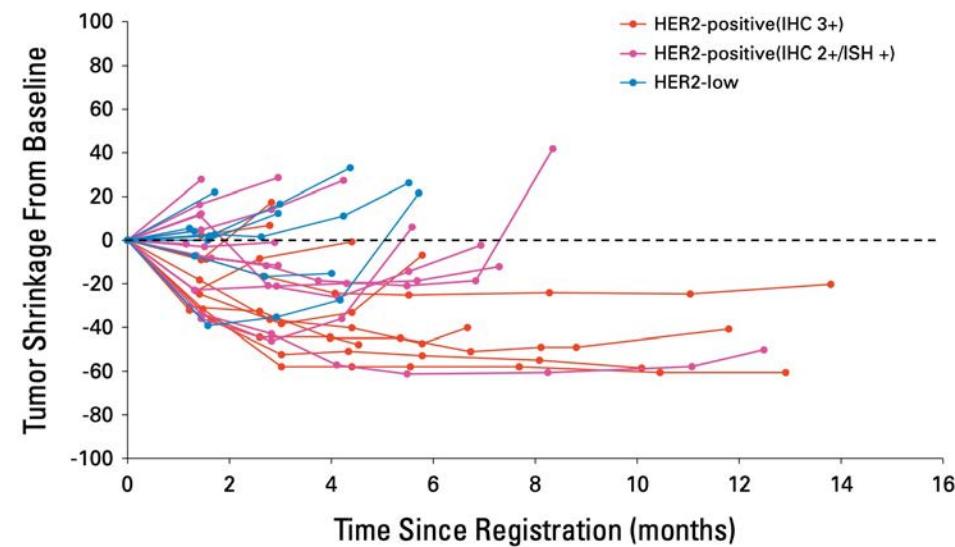
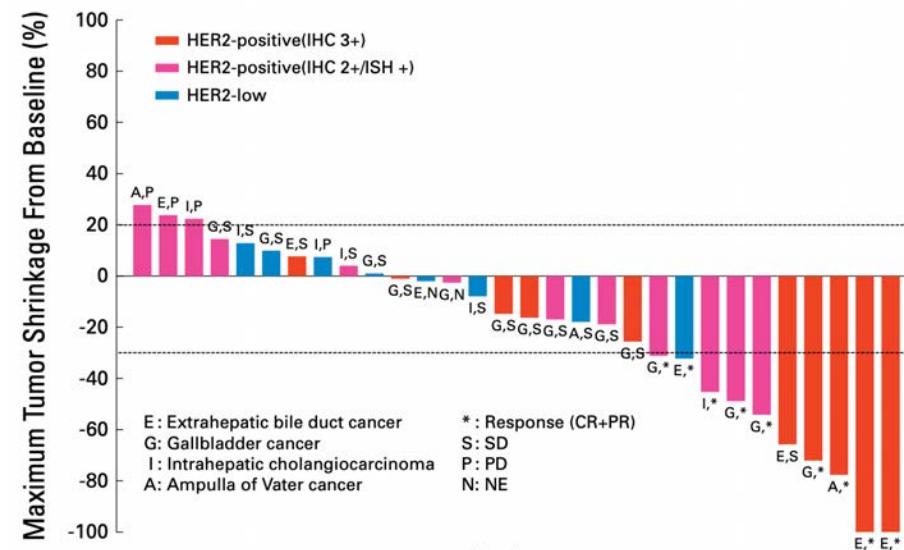

ORR: 56%

mPFS: 7.4 months

mOS: 12.4 months


DESTINY-PanTumor02 trial of T-DXd: safety

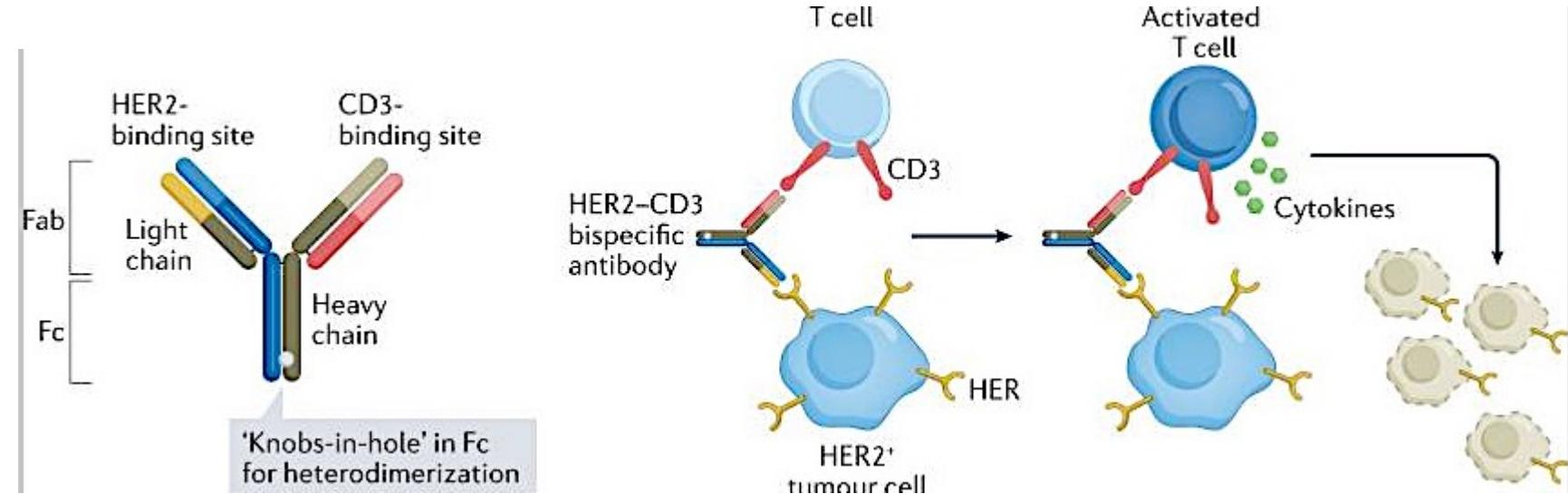
- Treatment-Related Adverse Events (TRAEs)
 - 39% Grade 3+
 - 12% Discontinued
 - 32% Dose reduced
- Common TRAEs
 - **Nausea** (46%), **Vomiting** (22%), **Diarrhea** (20%)
 - **Anemia** (24%), **Neutropenia** (22%), **Fatigue** (22%)
- **ILD/Pneumonitis** (11%) – across 267 patients in 7 cancer cohorts
 - **9.0%** Grade 1-2
 - **0.4%** Grade 3
 - **1.1%** Grade 5 (1/3 patients with BTC)



HERB trial of T-DXd: *eligibility and baseline characteristics*

- Unresectable or recurrent HER2-expressing BTC
- Refractory or intolerant to gemcitabine-containing regimen
 - Prior HER2 therapy ($n = 0$)
- HER2 status centrally confirmed

HERB trial of T-DXd: efficacy

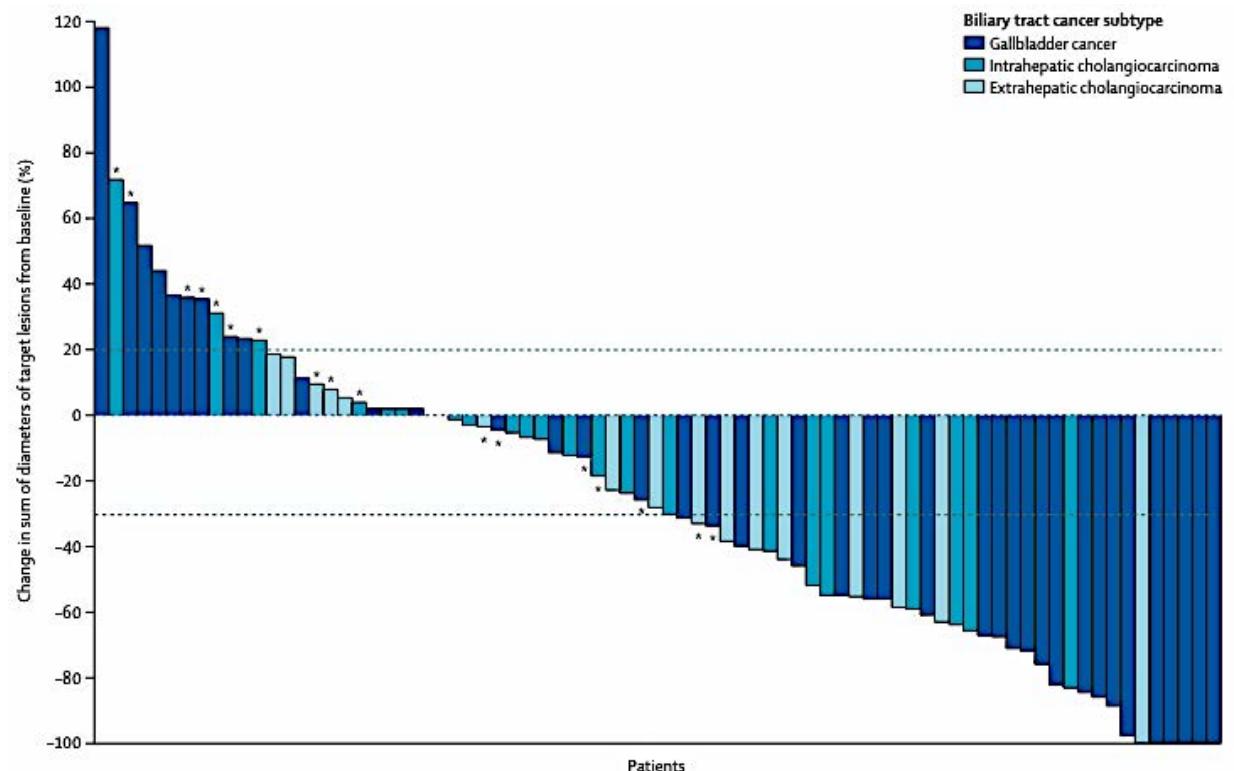
Design	# BTC Pts	Prior HER2 Tx	HER2 Status	ORR	DCR	mDOR (mo)	mPFS (mo)	mOS (mo)
Phase 2 Japan	22	Yes (n = 0)	HER2 positive	36%	82%	7.4	5.1	7.1
	10		IHC 3+/ISH+	40%				
	12		IHC 2+/ISH+	33%				
	8		HER2 low	13%	75%	--	3.5	8.9
	6		IHC 2+/ISH-					
	1		IHC 1+/ISH-					
	1		IHC 0/ISH+					


HERB trial of T-DXd: *safety*

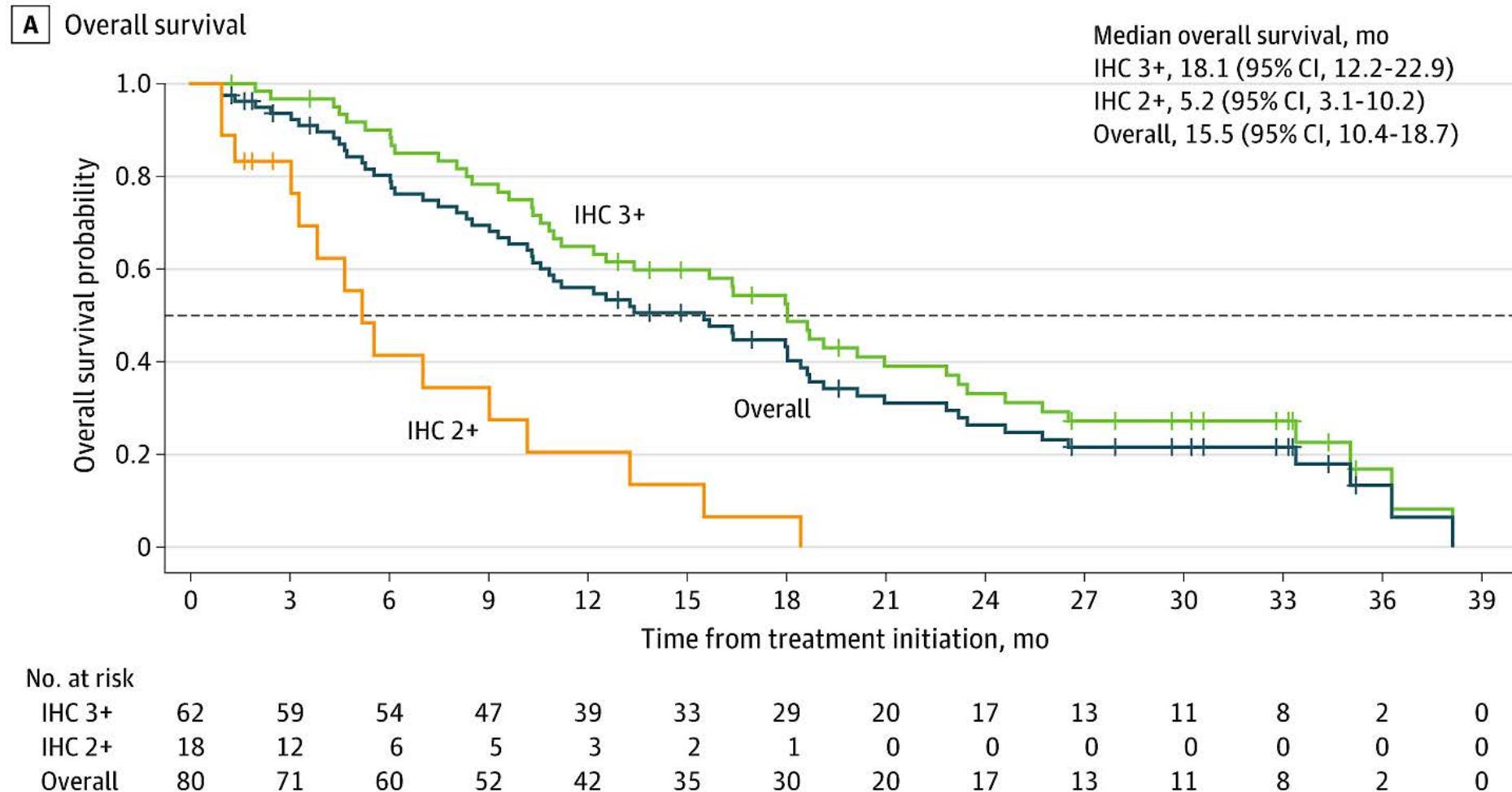
- **Treatment-Related Adverse Events (TRAEs)**
 - 82% Grade 3+
 - 25% Discontinued
 - 19% Dose reduced
- **Common Grade 3+ TRAEs**
 - **Anemia** (53%), **Neutropenia** (31%), **Leukopenia** (31%), **Lymphopenia** (22%)
- **ILD/Pneumonitis** (25%)
 - 13% Grade 3+
 - 6% Grade 5 (1/3 patients with BTC)

Zanidatamab: *HER2 bispecific antibody*

- **Simultaneously binds 2 distinct sites on HER2, facilitating unique mechanisms of action:**
 - Enhanced cross-linking and receptor clustering
 - Increased receptor internalization and downregulation
 - Inhibition of downstream signaling pathways
 - Activation of ADCC, ADCP, CDC

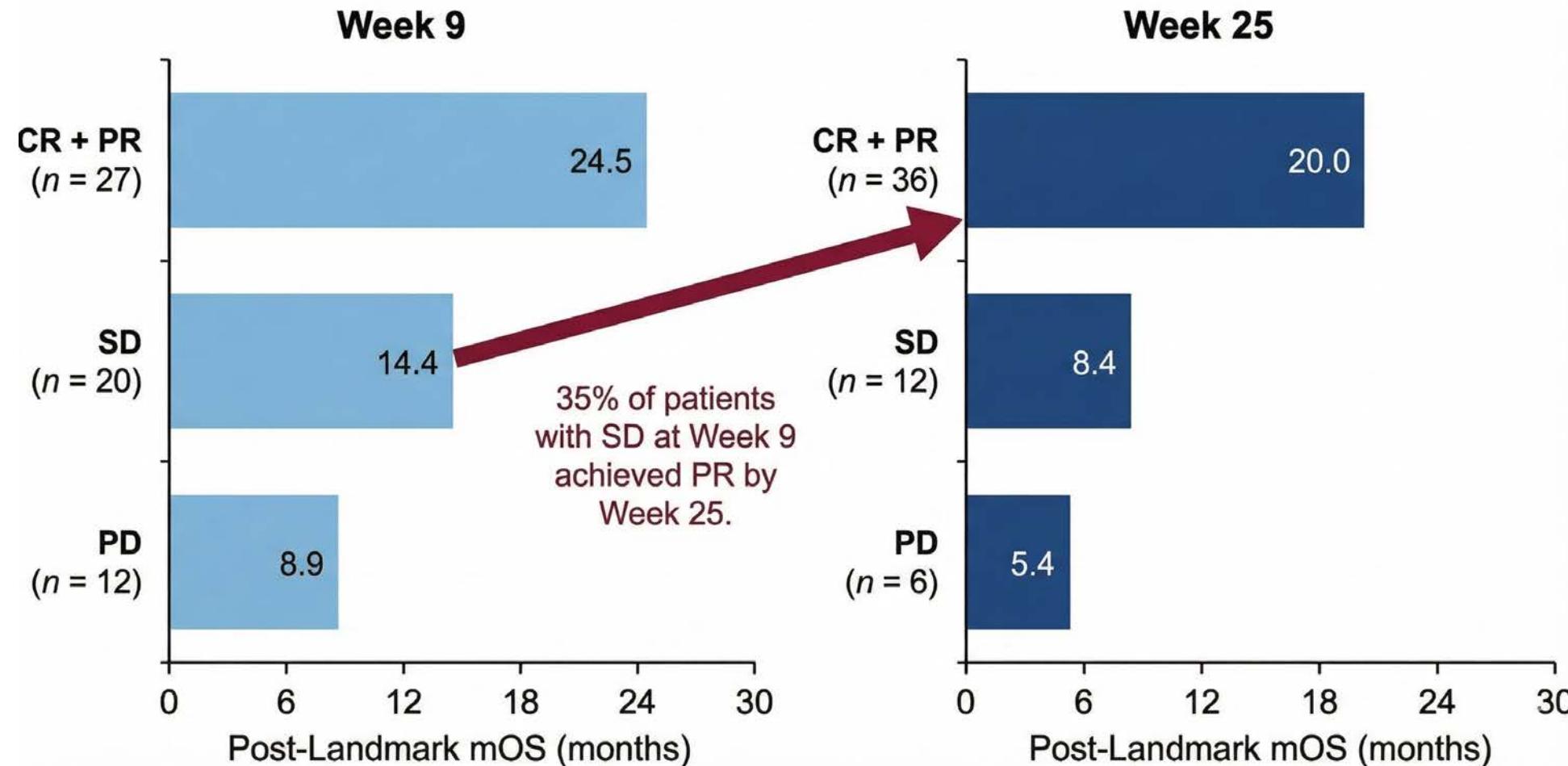


FDA approved for previously treated, unresectable or metastatic HER2 IHC 3+ BTC


HERIZON-BTC-01 trial of zanidatamab: efficacy

Design	# BTC Pts	Prior HER2 Tx	HER2 Status	ORR	DCR	mDOR (mo)	mPFS (mo)	mOS (mo)
Phase 2b <i>Global</i>	62	No	IHC 3+	52%	79%	14.9	7.2	18.1
	80		IHC 3+ or IHC 2+/ISH+	41%	69%	14.9	5.5	15.5
	18		IHC 2+/ISH+	6%	33%	NE	1.7	5.2

- Previously treated unresectable, locally advanced, or metastatic BTC
- HER2 amplification confirmed by ISH per central testing
- **51% GBC, 29% iCCA, 20% eCCA**


HERIZON-BTC-01 trial of zanidatamab: *long-term follow-up*

33-month follow-up

HERIZON-BTC-01 trial of zanidatamab: *post hoc* analysis

HER2 IHC 3+ patients ($n = 62$)

HERIZON-BTC-01 trial of zanidatamab: safety

Diarrhea (50%) – *mostly grade 1-2*

- Supportive care with antidiarrheals and hydration
- Grade 1-2: resume at same dose or consider dose reduction
- Grade 3: hold until grade ≤ 1 , then resume at reduced dose (15 mg/kg)

Infusion-related reactions (35%) – *mostly grade 1-2*

- Premedicate 30-60 min prior (acetaminophen, antihistamine, corticosteroid)
- Shorten infusion duration from 120-150 min to 60 min, if well-tolerated
- *Permanent discontinuation* (0.4%)

Left ventricular dysfunction (4%) → *resolved* (70%); *permanent discontinuation* (0.9%)

No cytokine release syndrome – *not a T-cell engager*

Ongoing phase 3 studies of HER2 therapies for *treatment-naïve* HER2+ advanced BTC

	DESTINY-BTC-01 NCT06467357	HERIZON-BTC-302 NCT06282575
Trial Design	Global, randomized phase 3 trial	Global, randomized phase 3 trial
Target # Pts	620	286
HER2 Status	IHC 3+ or IHC 2+	IHC 3+ or IHC 2+/ISH+
Treatments	T-DXd + Rilvegostomig (PD-1/TIGIT bispecific) vs T-DXd vs Gem/Cis/Durva (SOC)	Gem/Cis +/- PD-(L)1 inhibitor + Zanidatamab vs Gem/Cis +/- PD-(L)1 inhibitor (SOC)
Prior Tx		May have received \leq 2 cycles of chemo +/- ICI
1° Endpoint	OS in IHC 3+ with T-DXd + Rilve vs SOC	PFS in IHC 3+
2° Endpoints	OS in IHC 3+/2+ T-DXd + Rilve vs SOC OS in IHC 3+ and 3+/2+ T-DXd vs SOC PFS in IHC 3+ and 3+/2+ T-DXd +/- Rilve vs SOC ORR, DOR Safety, tolerability	OS in IHC 3+ and overall population PFS in overall population ORR Adverse events PROs

Take Home Messages

- 📌 HER2 amplification/overexpression occurs across all BTC subtypes (~5-35%)
- 📌 Early, comprehensive HER2 testing using **NGS and IHC** recommended for all patients with locally advanced or metastatic BTC, when feasible
- 📌 HER2-targeted treatments are rapidly advancing in BTC
 - **T-DXd and Zanidatamab** are approved and effective for previously treated HER2 IHC 3+ BTC
 - Consider first-line trials in HER2-driven BTC
 - Therapy sequencing should be individualized, taking into account comorbidities, side effect profile, mechanism of action, prior treatments, etc.

Questions from General Medical Oncologists — Biliary Tract Cancers

78-year-old woman with HER2-amplified BTC s/p gemcitabine + cisplatin + pembrolizumab now with PD in the liver and rising TBili = 3.7, unstentable. Approach to HER2-positive disease in the setting of elevated TBili?

72 yo F with HER2-positive metastatic biliary cancer, history of CHF with EF 40%. Role of T-DXd or zanidatamab in patients with reduced EF? How to manage the toxicity of zanidatamab?

Questions from General Medical Oncologists — Biliary Tract Cancers

62 yo male with node-positive gallbladder cancer, HER2-positive. He was treated per BILCAP trial with capecitabine adjuvantly and a year later developed liver mets. He wants to be aggressive. Would you give trastuzumab deruxtecan or zanidatamab first line and skip cis/gem/durva since he has had “a previous chemotherapy”?

93 yr old female diagnosed with Stage IV gallbladder cancer with HER2 IHC 3+. Baseline ECOG 2 due to generalized frailty. Would you consider treating an elderly frail pt with anti-HER2 therapy in the front line, and if so, what would be your preferred treatment?

Questions from General Medical Oncologists — Biliary Tract Cancers

70 yo man with advanced BTC post 1st-line chemoimmunotherapy. Progressing now, HER2-positive and FGFR fusion. How to choose between anti-HER2 and anti-FGFR therapy? Is there a better sequence?

81 yo with CKD and metastatic cholangiocarcinoma, NGS noted IDH2 mutation, HER2 IHC 2+. Disease progressed on durva/carbo/gem. Would you target HER2 or IDH2 in the 2nd line?

Questions from General Medical Oncologists — Biliary Tract Cancers

61 yo male with HER2 IHC 3+ cholangiocarcinoma with h/o kidney transplantation 3 yrs prior. Would you plan to give anti-HER2 tx up front? In such a case, can I use either T-DXd or zanidatamab first to bypass using front-line gemcitabine + cisplatin chemo alone?

67 yo male with HER2 IHC 3+ cholangiocarcinoma treated with cis/gem/durva and developed Grade 2 pneumonitis on durva, which resolved quickly with steroids. Now has disease progression 11 months later. Would you give trastuzumab deruxtecan to this patient with previous pneumonitis, although completely and quickly resolved, on durva?

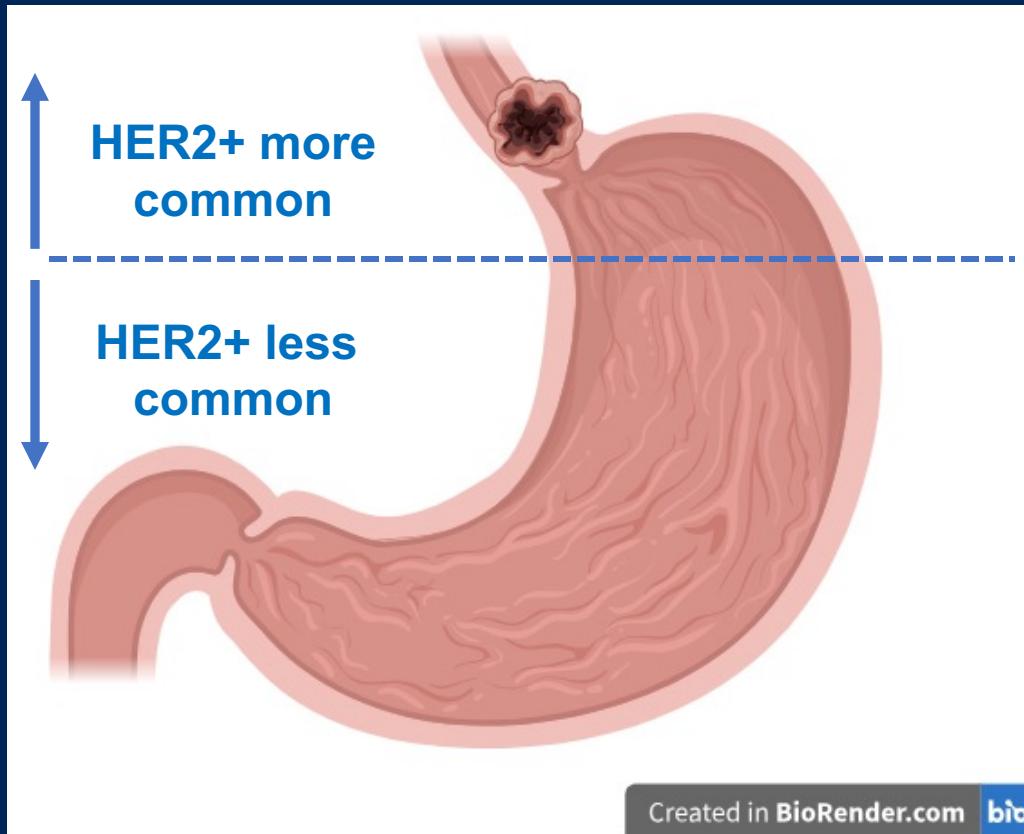
Agenda

Module 1: Biliary Tract Cancers — Dr Ellis

Module 2: Gastroesophageal Cancers — Dr Wainberg

Module 3: Colorectal Cancer — Prof Van Cutsem

HER 2+ Gastric/GEJ Cancers


Zev Wainberg, MD

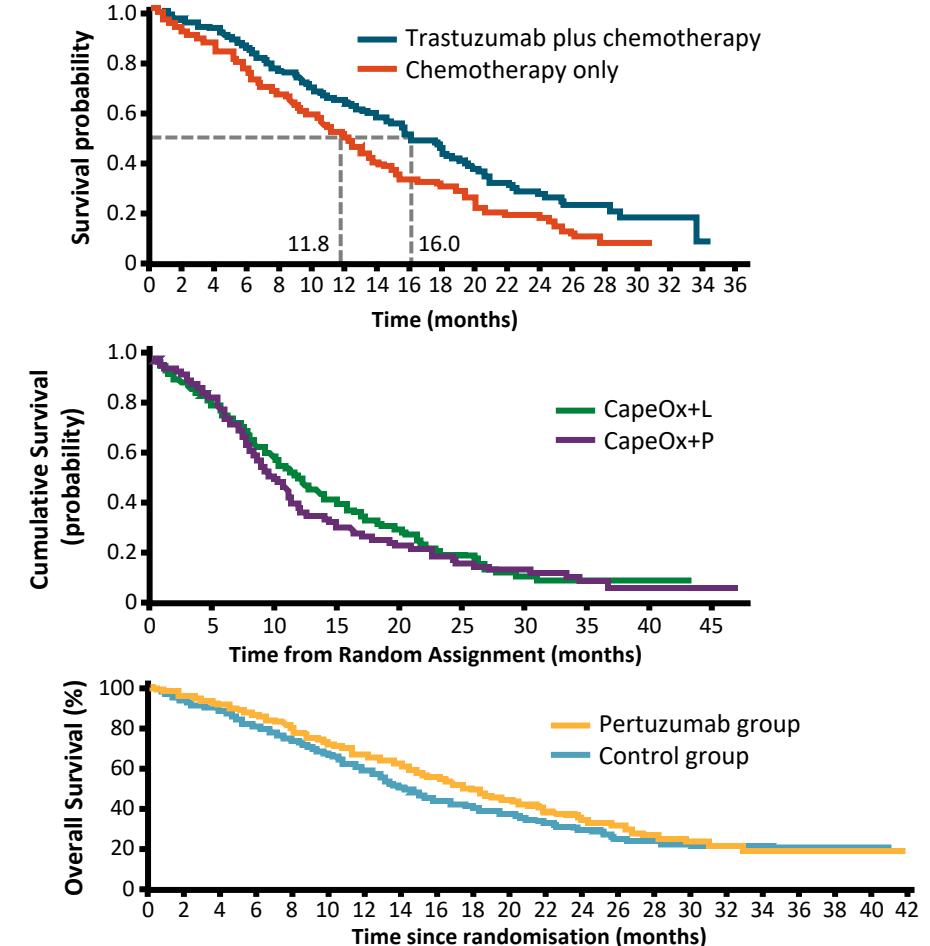
Co-Director, UCLA Gastrointestinal Oncology Program

Director, Early Phase Clinical Research Program, Jonsson Comprehensive Cancer Center

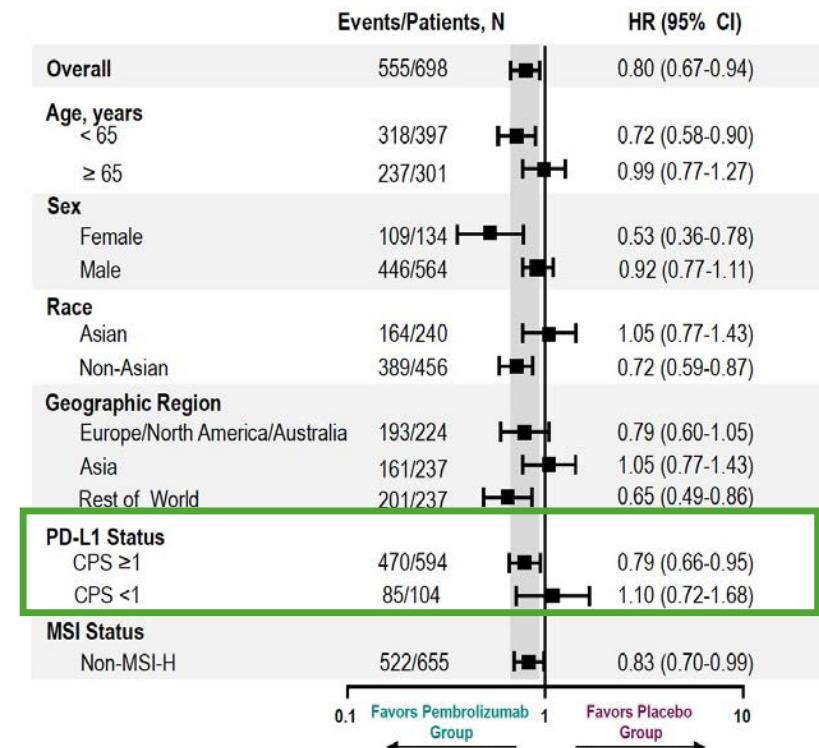
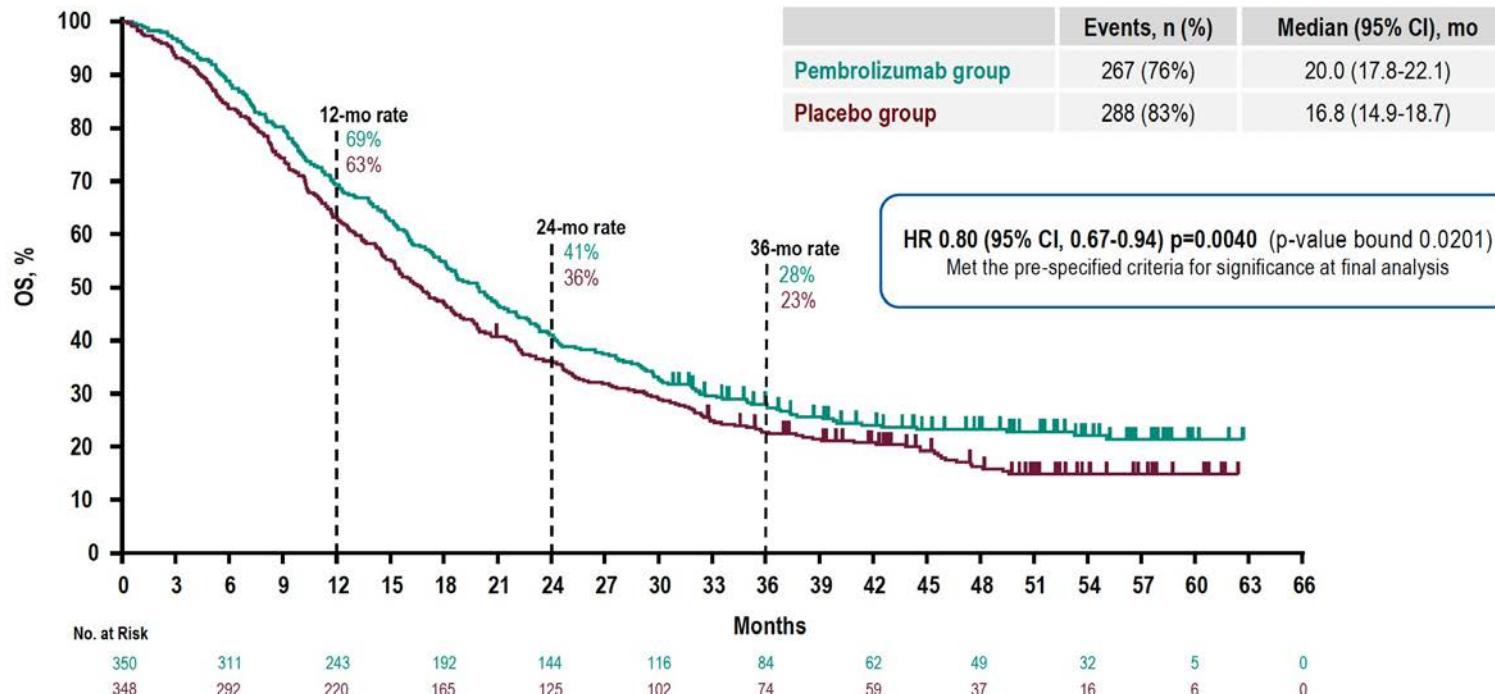
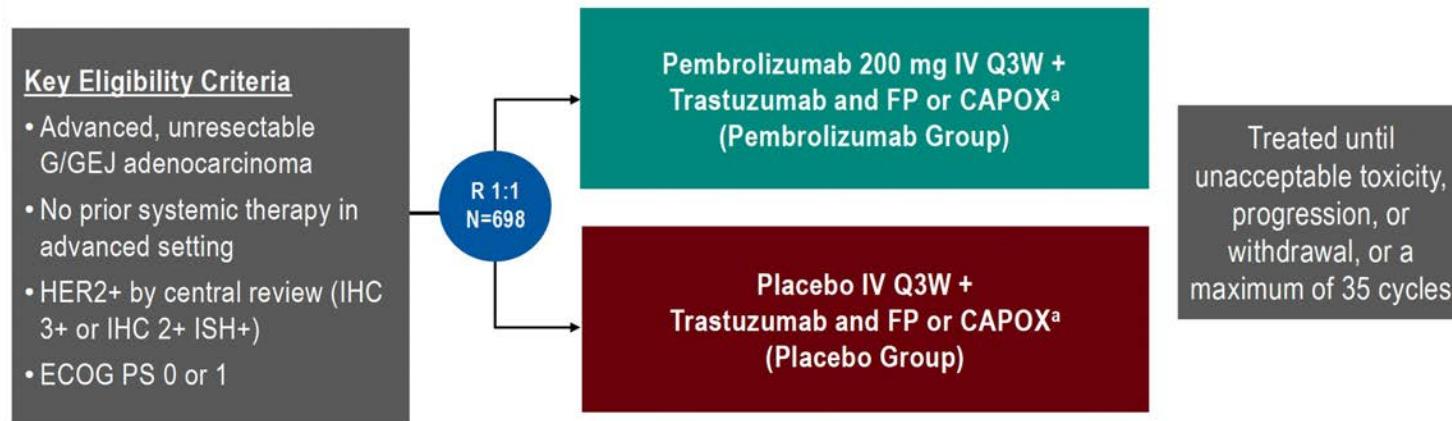
Professor of Medicine and Surgery, David Geffen School of Medicine at UCLA

HER2 biology in gastroesophageal adenocarcinoma

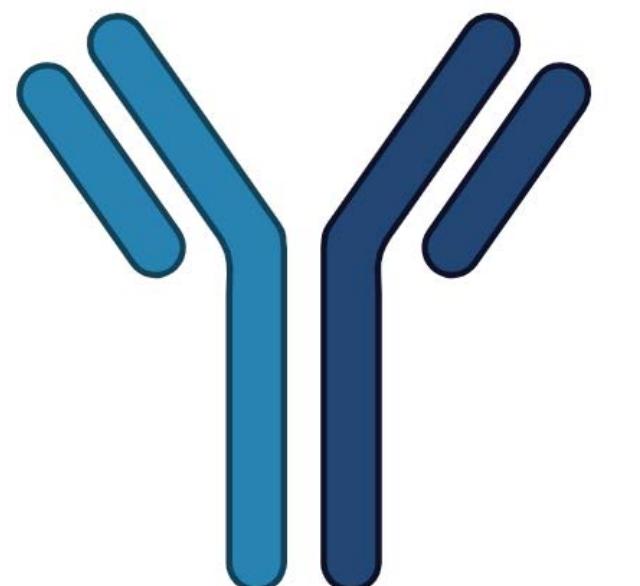
- ~15-20% of gastric/ GE adenocarcinoma
- Member of the HER family of receptors (HER1/EGFR, HER3, HER4)
- HER2 heterodimerization activates downstream RAS/MAPK and PI3K signaling pathways
- Intestinal type > diffuse type
- Typical anatomical location: GE jxn/ esophagus
- Associated with PDL1 co-expression and a favorable tumor immune microenvironment


HER2 testing: IHC +/- FISH is the gold standard, but there are other options

Diagnostic test	Diagnostic Criteria for Positive Result	Advantages	Disadvantages
IHC +/- FISH*	<ul style="list-style-type: none"> IHC 3+ OR IHC 2+ <u>and</u> FISH+ 	<ul style="list-style-type: none"> GOLD STANDARD Cost effective Rapid 	<ul style="list-style-type: none"> Requires tissue Intra- and inter-lesional heterogeneity
Tissue NGS	<ul style="list-style-type: none"> copy number ≥ 5 with $>80\%$ of exons amplified ≥ 2.5-fold change in copy number 	<ul style="list-style-type: none"> High concordance with IHC/FISH Multiple targets tested simultaneously 	<ul style="list-style-type: none"> Cost Longer turn around time
Blood NGS	<ul style="list-style-type: none"> “Amplification” Variable copy number cutoffs 	<ul style="list-style-type: none"> Speed Convenience Detects intra-and inter-lesional heterogeneity 	<ul style="list-style-type: none"> Cost Requires high shedding Lower sensitivity




* Immunohistochemistry (IHC) score of 3+ (showing strong complete or basolateral membranous staining in $> 10\%$ of the tumor cells [surgical specimen] or in a tumor cell cluster [≥ 5 cells] irrespective of percentage of tumor cells stained [biopsy]) or IHC score of 2+ (moderate/weak complete basolateral or lateral membranous reactivity in $> 10\%$ of the neoplastic cells [surgical specimen] or in a tumor cluster [≥ 5 tumor cells {biopsy}]). Gene amplification by *in situ* hybridization (ISH+) (chromosome enumeration probe [CEP] 17 ratio ≥ 2 or average HER2 copy number ≥ 6 signals/cell).

HER2-Targeting Agents as First-Line Treatment: Esophagogastric Cancer is Not Breast Cancer


- **Trastuzumab approved first line**
 - ToGA: Cape-Cis + trastuzumab improved RR, PFS, OS
 - mOS in IHC2+/FISH or IHC3+ for trastuzumab + CT vs CT: 16.0 vs 11.8; HR (95% CI): 0.65 (0.51-0.83)
- **First-line lapatinib + cape/oxaliplatin**
 - No difference in OS
 - mOs for lapatinib + cape/oxaliplatin vs cape/oxaliplatin: 12.2 vs 10.5 (HR: 0.91: 0.73-1.12; $P = .3492$)
- **First-line pertuzumab + trastuzumab/Cis+ FU**
 - No difference in OS
 - mOS for pertuzumab vs control: 17.5 vs 14.2 mos (HR (95% CI): 0.84 (0.71-1.00), $P = .057$)

KEYNOTE-811: Final OS Analysis

Emerging 1L option for HER2+ GEA: Zanidatamab

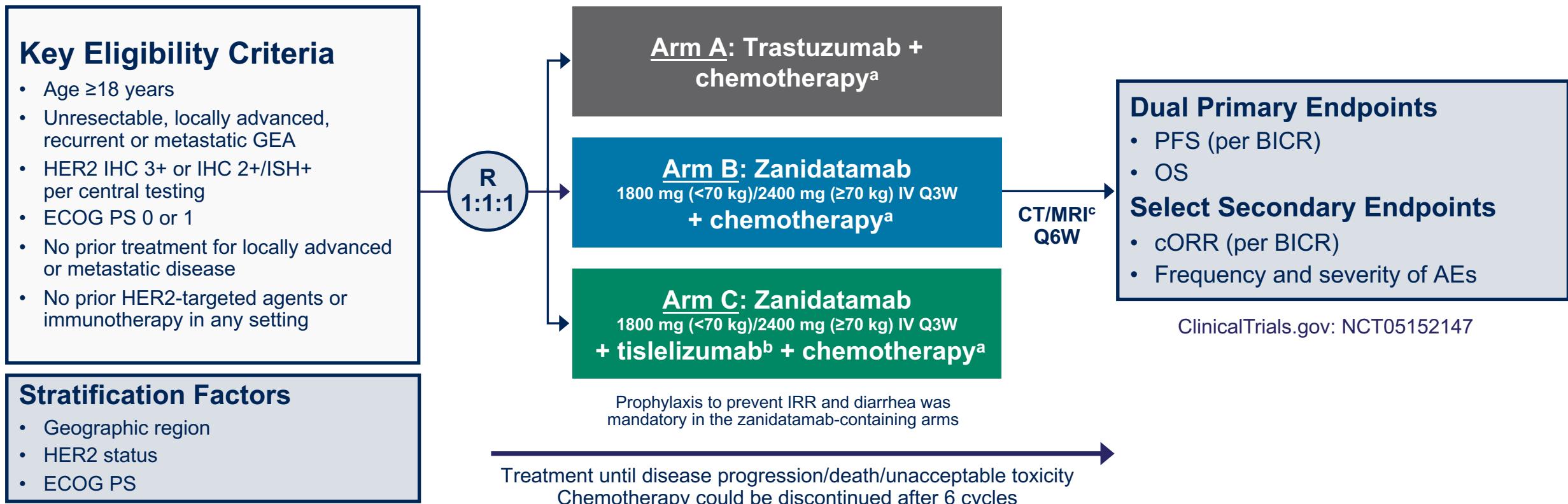
Created in BioRender.com [bio](#)

- HER2-targeted, humanized, bispecific monoclonal antibody
- Binds to the HER2 juxtamembrane domain (ECD4) and dimerization domain (ECD2)
- FDA-approved for HER2+ BTC (IHC=3+, previously treated)

Study design

- Phase 2, multi-center, open-label, two-part study
- Enrolled patients with previous untreated metastatic/ advanced HER2+ GEA (HER2 IHC 3+ or 2+/FISH+)
- Treatment with zanidatamab + chemotherapy (CAPOX, mFOLFOX6, or 5FU/cis)

Key outcomes

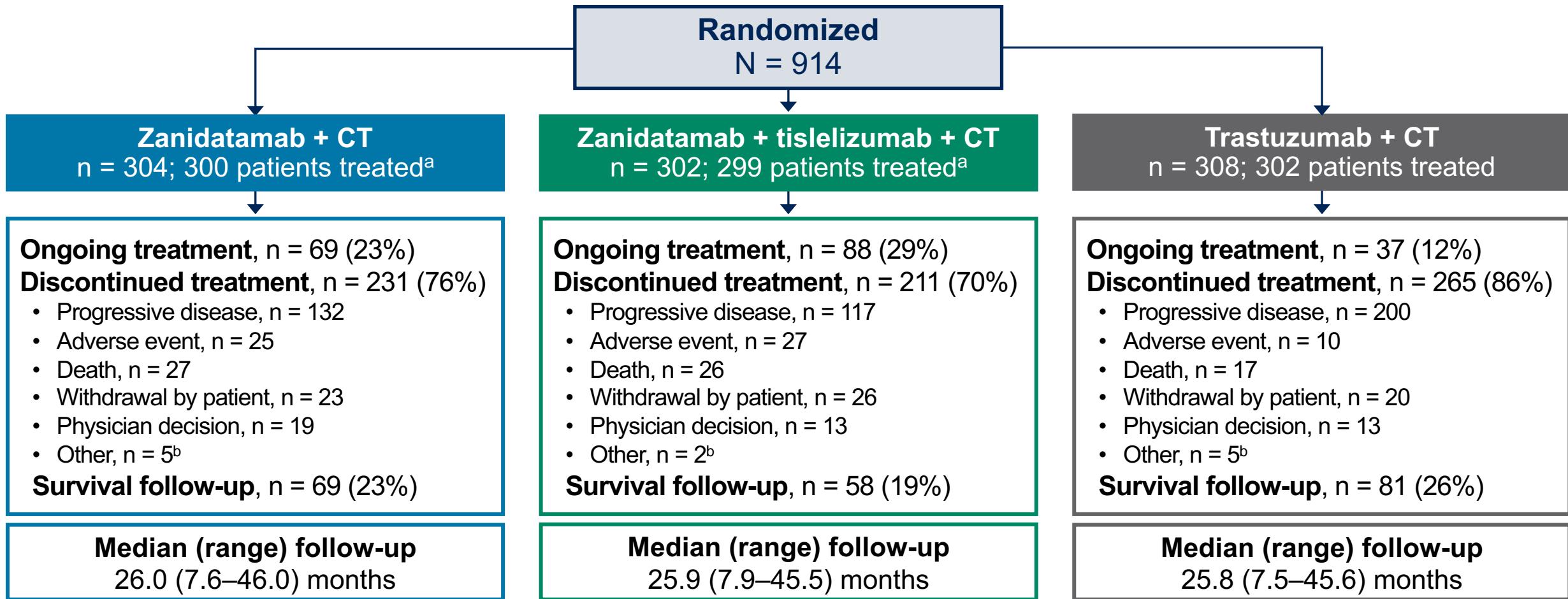

- ORR= 76%, median DOR= 18.7 months (N= 42)
- Median PFS= 12.5 months (N=46)
- Median OS= 36.5 months

Toxicity management

- 24/25 patients (96%) experienced diarrhea
- Protocol amendment: Mandatory anti-diarrheal prophylaxis and omission of 5FU bolus (part 2)
- Post-implementation ORR= 95%

HERIZON-GEA-01 Study Design

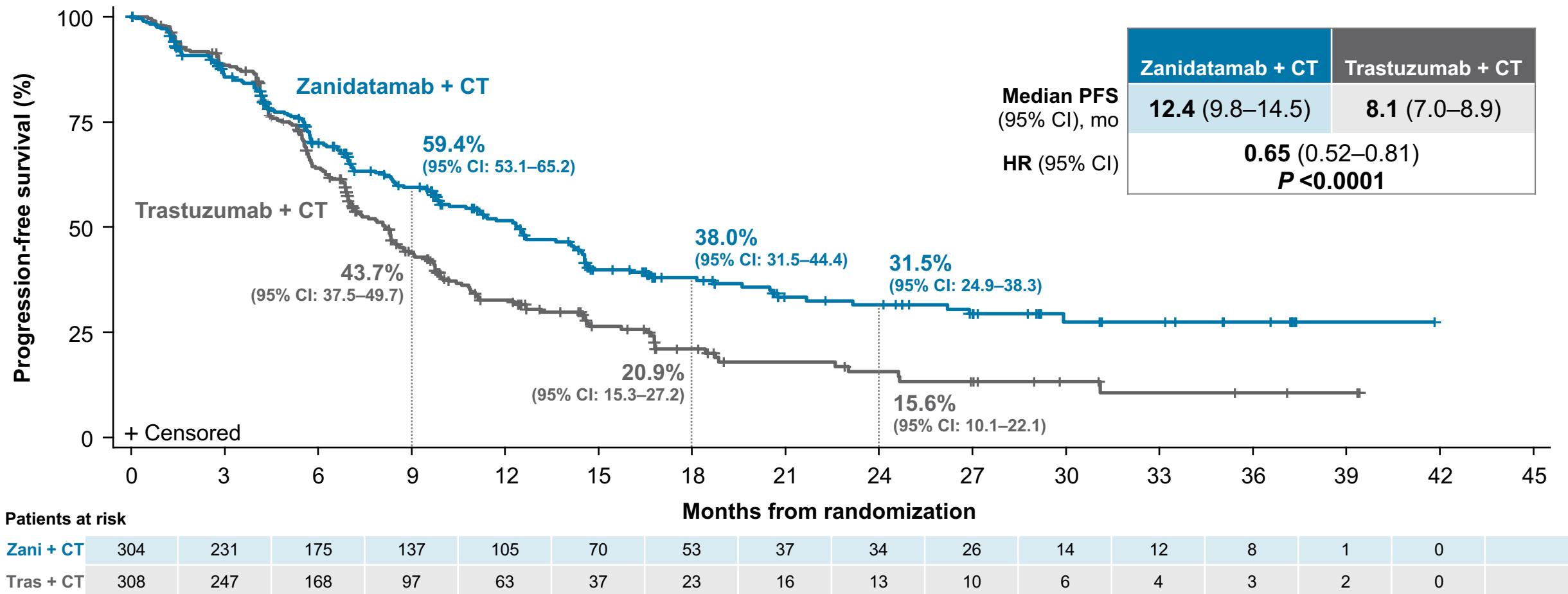
Global phase 3 trial of zanidatamab + chemotherapy \pm tislelizumab vs trastuzumab + chemotherapy in previously untreated patients with HER2+ mGEA


^aPhysician's choice of capecitabine plus oxaliplatin or 5-fluorouracil plus cisplatin. Chemotherapy was administered for at least 6 cycles or until disease progression, unacceptable toxicity, or another criterion for treatment discontinuation was met.

^bTislelizumab 200 mg was administered IV Q3W. ^cCT/MRI scans were performed every 6 weeks for the first 54 weeks, then every 9 weeks.

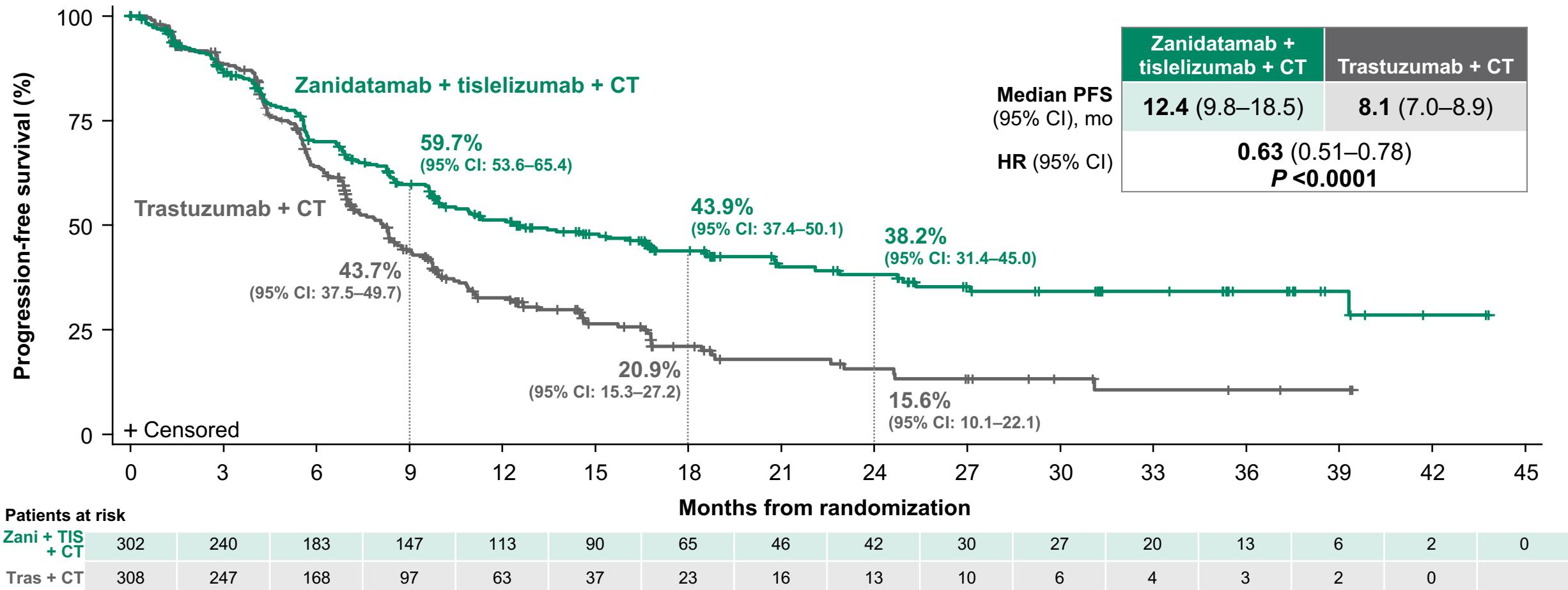
AE, adverse event; BICR, blinded independent central review; cORR, confirmed objective response rate; CT, computed tomography; ECOG PS, Eastern Cooperative Oncology Group performance status; GEA, gastroesophageal adenocarcinoma; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; IRR, infusion-related reaction; ISH, in situ hybridization; IV, intravenously; mGEA, advanced or metastatic GEA; MRI, magnetic resonance imaging; OS, overall survival; PFS, progression-free survival; Q3W, every 3 weeks; Q6W, every 6 weeks; R, randomization.

Patient Disposition


A total of 914 patients were randomized, and median follow-up was >2 years

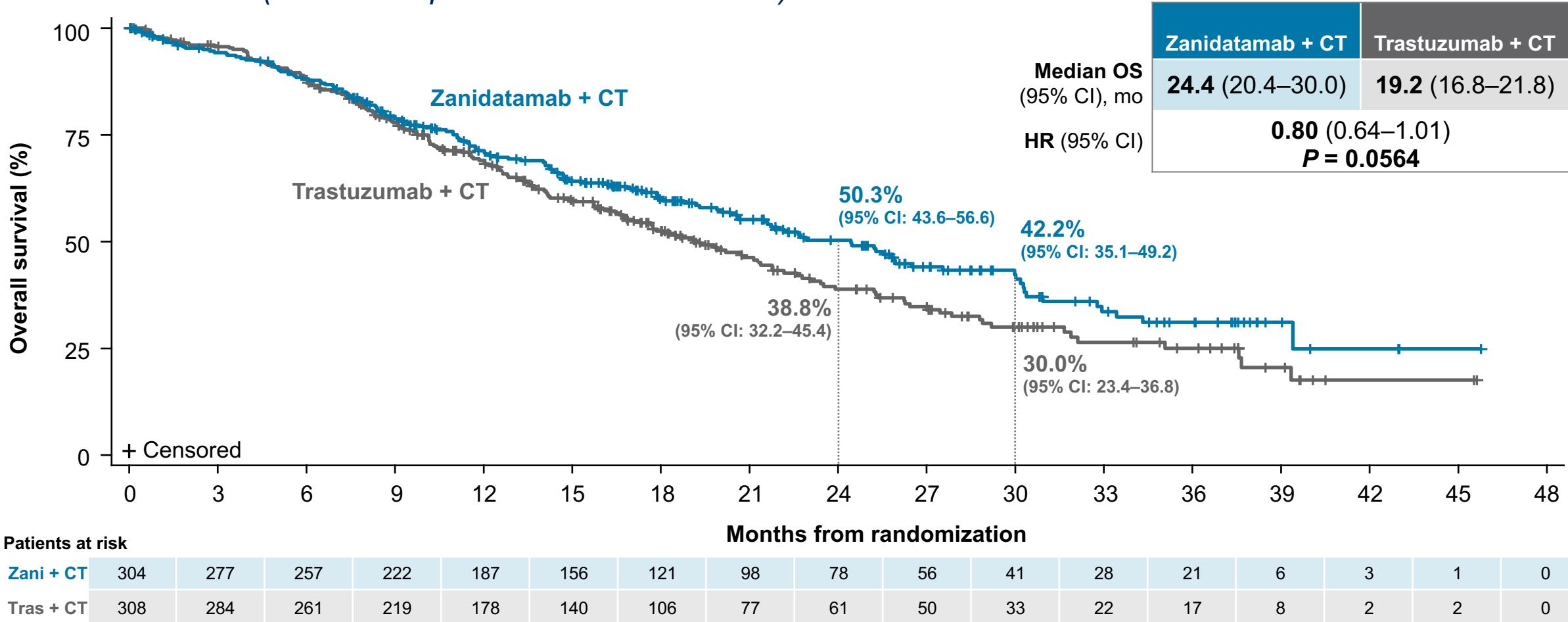
^aTreated includes all randomized patients who received any amount of any study treatment and does not necessarily reflect the safety analysis set. Five patients assigned to the zanidatamab-tislelizumab-chemotherapy arm did not receive tislelizumab and are included in the safety analysis set for the zanidatamab-chemotherapy arm. ^bIncludes protocol violations and “other” reasons.

Primary Endpoint: PFS per BICR


Statistically significant and clinically meaningful improvement in PFS with zanidatamab + CT vs trastuzumab + CT (>4-month prolongation in median PFS)

BICR, blinded independent central review; CT, chemotherapy; HR, hazard ratio; PFS, progression-free survival; Tras, trastuzumab; Zani, zanidatamab.

Primary Endpoint: PFS per BICR


Statistically significant and clinically meaningful improvement in PFS with zanidatamab + tislelizumab + CT vs trastuzumab + CT (>4-month prolongation in median PFS)

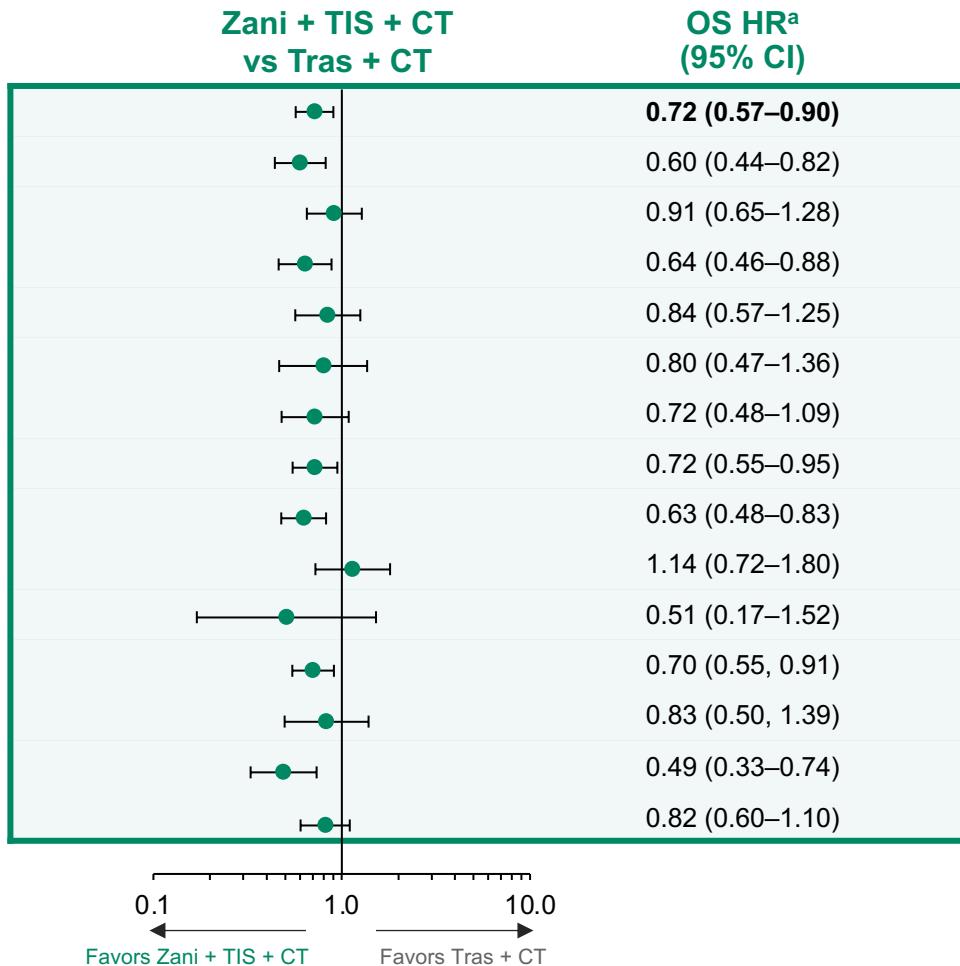
BICR, blinded independent central review; CT, chemotherapy; HR, hazard ratio; PFS, progression-free survival; Tras, trastuzumab; Zani, zanidatamab.

Primary Endpoint: Overall Survival

At this interim analysis, there was a strong trend toward significance for OS favoring zanidatamab + CT vs trastuzumab + CT (5-month improvement in median OS)

Primary Endpoint: Overall Survival

Zanidatamab + tislelizumab + CT demonstrated a statistically significant and clinically meaningful OS benefit with a >7-month improvement in median OS vs trastuzumab + CT

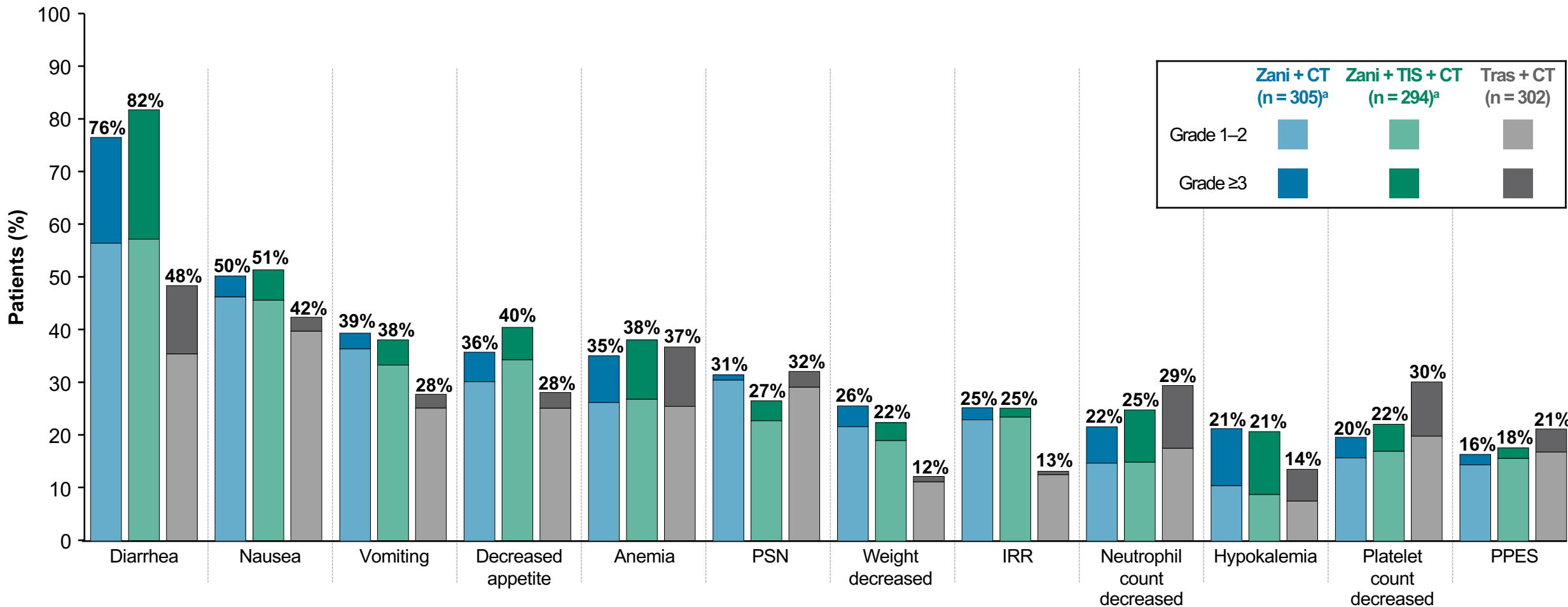


CT, chemotherapy; HR, hazard ratio; OS, overall survival; TIS, tislelizumab; Tras, trastuzumab; Zani, zanidatamab.

OS in Key Prespecified Subgroups

Improvements in OS occurred across major prespecified subgroups, including regions and PD-L1 TAP scores

Subgroup	Category	Events/patients	
		Zanidatamab + tislelizumab + CT	Trastuzumab + CT
All patients		134/302	170/308
Age, years	<65	68/163	99/162
	≥65	66/139	71/146
Geographic region	Asia	63/159	89/165
	EU/NA	46/95	52/93
	ROW	25/48	29/50
ECOG PS	0	41/121	52/120
	1	92/180	118/188
Anatomical subtype	Gastric	87/208	127/226
	GEJ	42/74	33/60
	Esophageal	5/20	10/22
HER2 status	IHC 3+	106/251	138/255
	IHC 2+/ISH+	28/51	31/52
PD-L1 status	TAP <1%	38/90	65/98
	TAP ≥1%	79/187	92/188

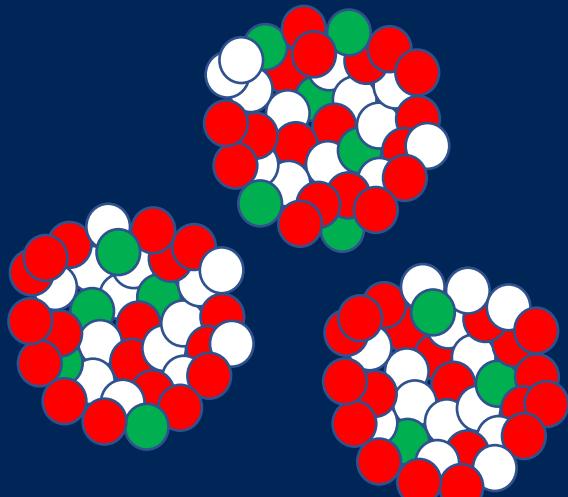


^aThe widths of the confidence intervals were not adjusted for multiplicity and cannot be used to infer treatment effects.

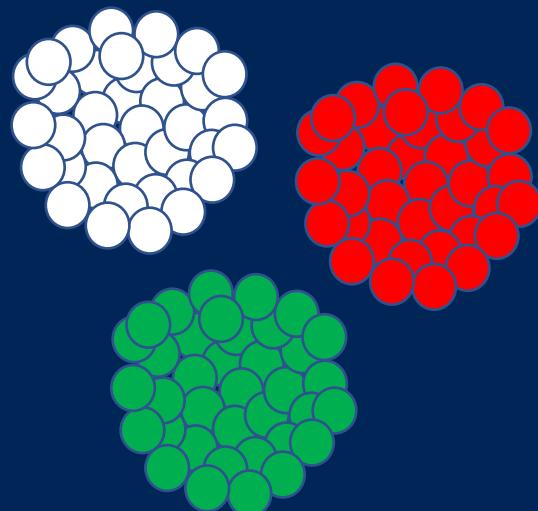
CT, chemotherapy; ECOG PS, Eastern Cooperative Oncology Group performance status; EU, European Union; GEJ, gastroesophageal junction; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; IHC, immunohistochemistry; ISH, in situ hybridization; NA, North America; OS, overall survival; PD-L1, programmed death-ligand 1; ROW, rest of world; TAP, tumor area positivity; TIS, tislelizumab; Tras, trastuzumab; Zani, zanidatamab.

Common TRAEs ($\geq 20\%$ of Patients in Any Arm)

Diarrhea was the most common TRAE in all treatment arms

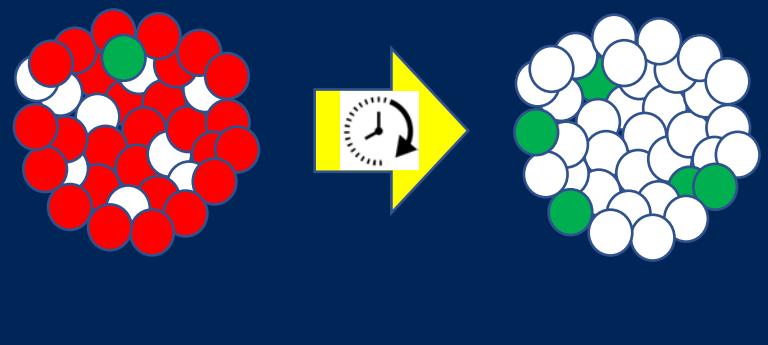


^aFive patients who were assigned to the zanidatamab-tislelizumab-chemotherapy arm did not receive tislelizumab. Data from these patients are summarized in the zanidatamab-chemotherapy arm.


CT, chemotherapy; IRR, infusion-related reaction; PPES, palmar-plantar erythrodysesthesia syndrome; PSN, peripheral sensory neuropathy; TIS, tislelizumab; TRAE, treatment-related adverse event; Tras, trastuzumab; Zani, zanidatamab.

Heterogeneity may drive loss of HER2 expression

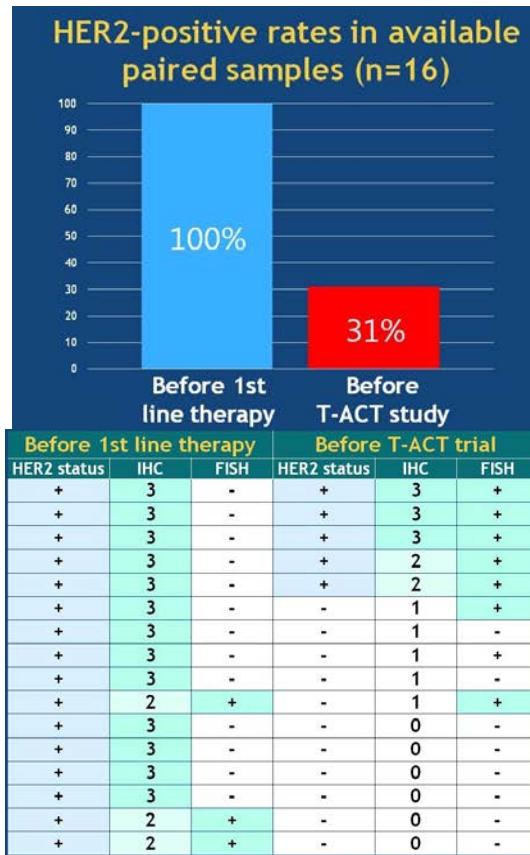
Spatial heterogeneity



Intralesional
heterogeneity

Interlesional
heterogeneity

● HER2 negative
● HER2 positive
● Other variant

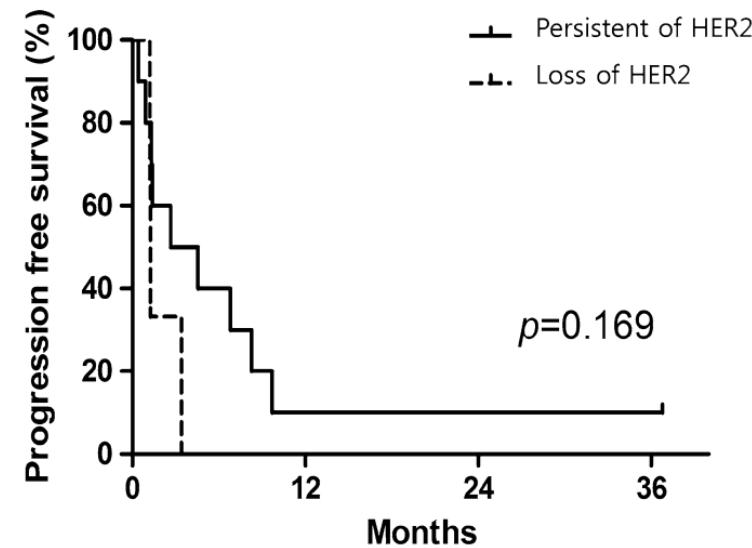


Temporal
heterogeneity

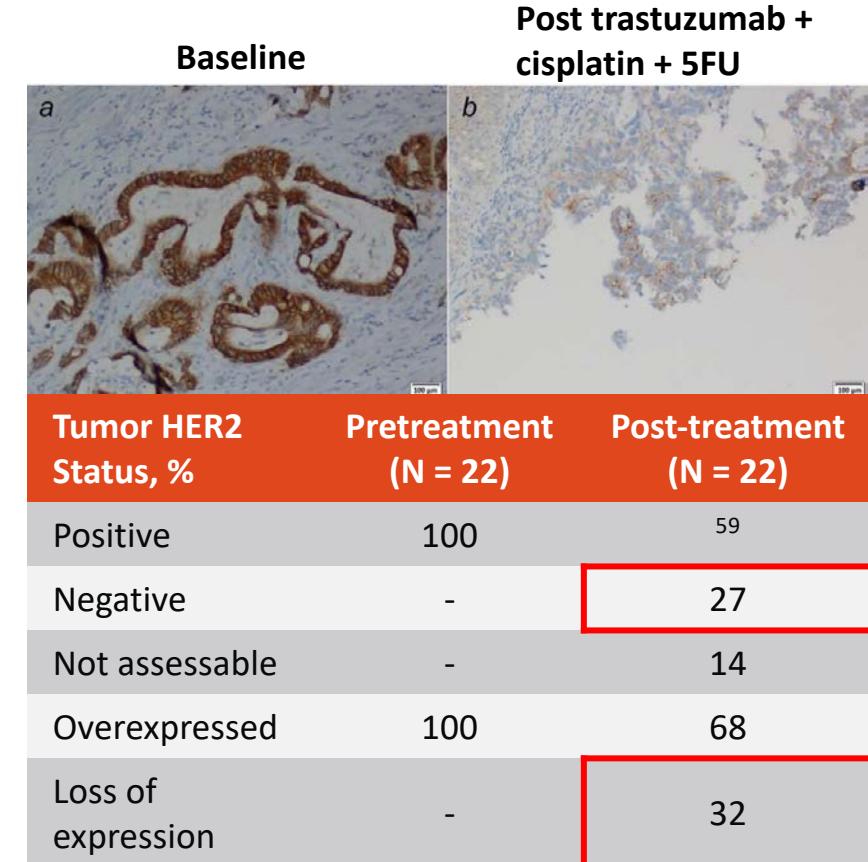
- Heterogeneous protein expression found in ~30% of HER2+ GEA cases
- Loss of HER2 expression reported in ~30-70% of cases post-progression on trastuzumab-based therapy

“Loss” of HER2 Expression After Trastuzumab

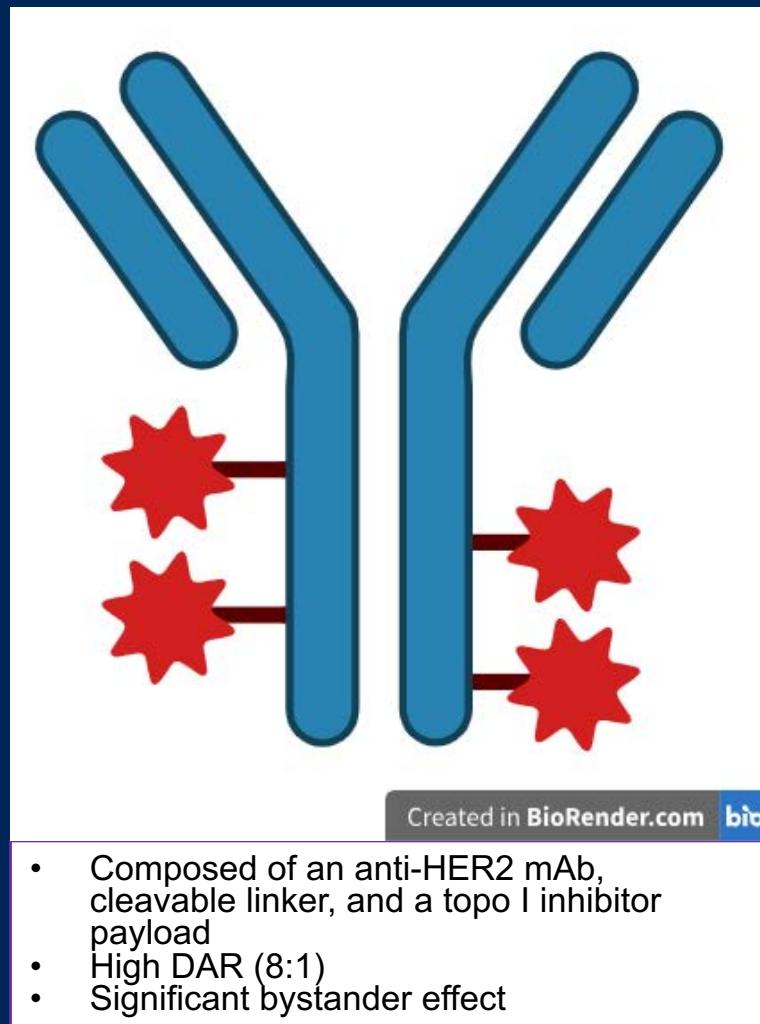
T-ACT Trial



HER2 positivity defined as IHC3+ or IHC2+ with FISH positive


GASTHER3

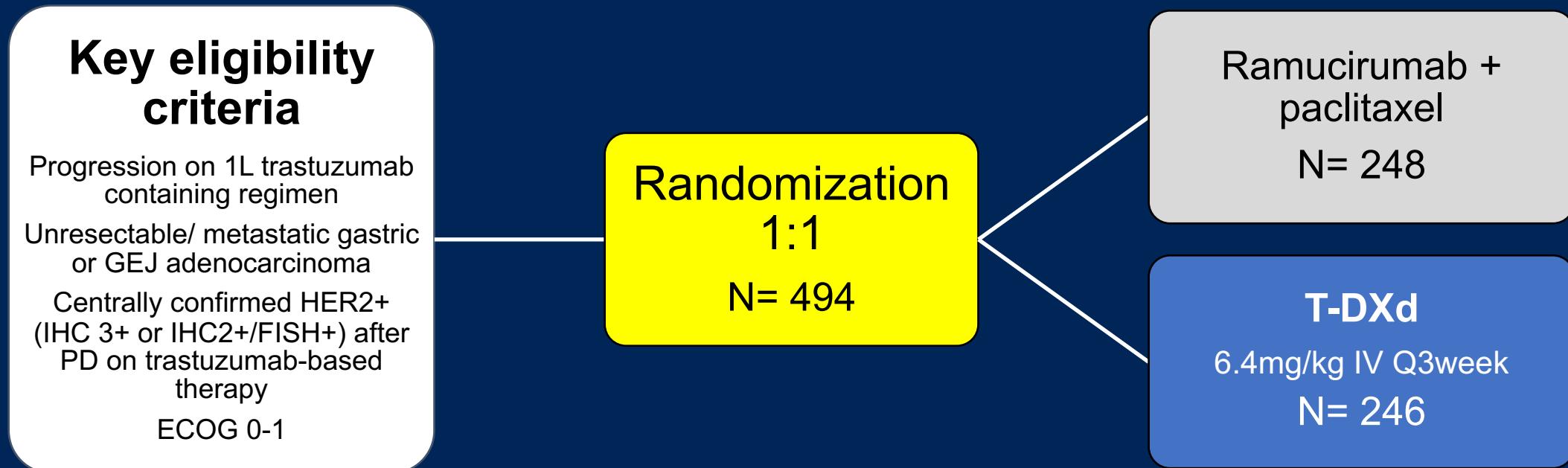
14/43 patients with loss of HER2 expression after trastuzumab


Impact of HER2 status on PFS

HER2 Expression Post Trastuzumab

Trastuzumab deruxtecan (T-DXd): Know your DESTINY

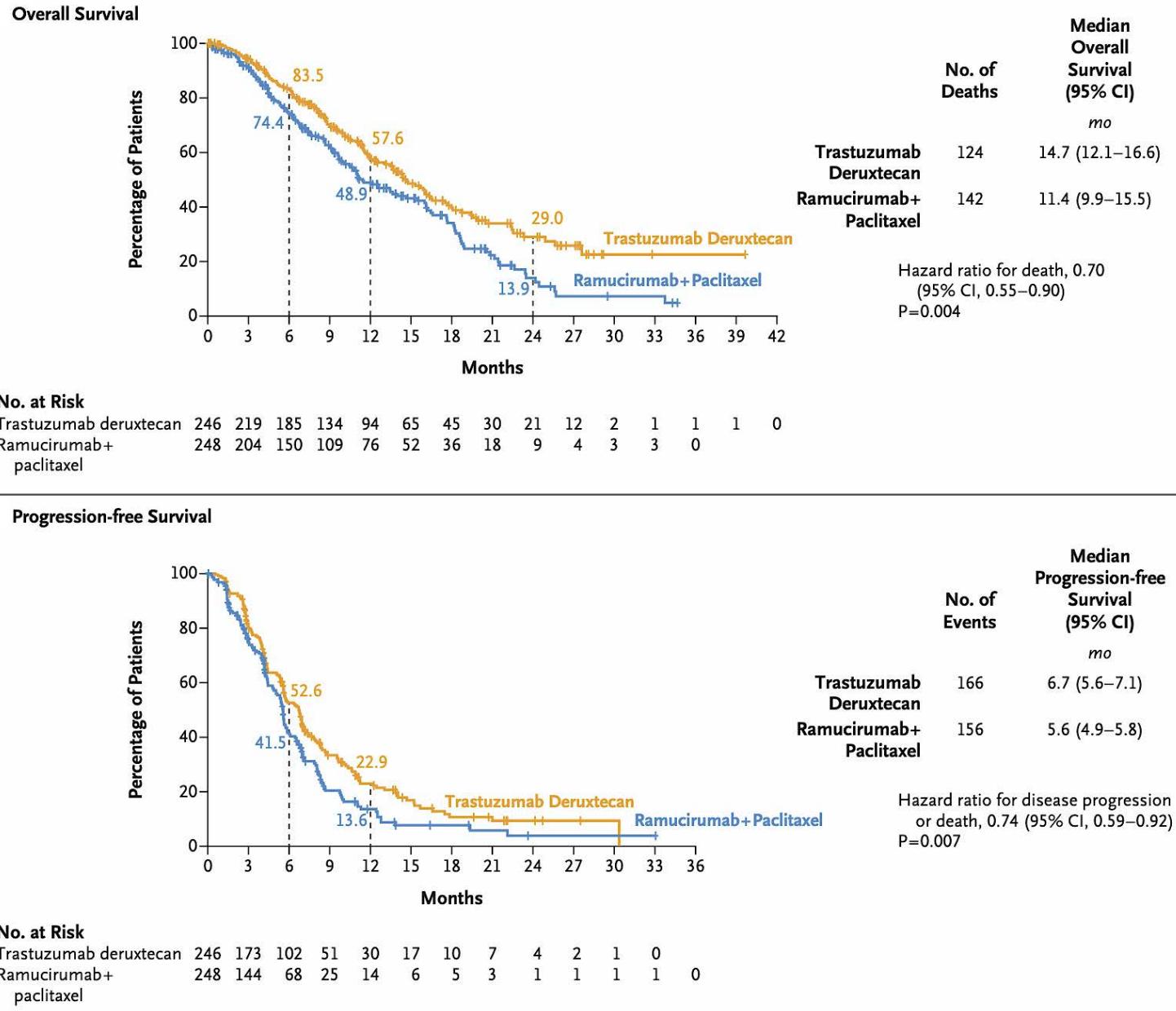
	Phase	Line	Regimen	Key Outcomes
DESTINY-Gastric01 (HER2+)	2	≥3L	T-DXd vs Investigator's choice Conducted in Japan and South Korea	ORR: 51% vs 14% p<0.001 PFS: 5.6 vs 3.5 mo HR= 0.47; 95% CI, 0.31–0.71 OS: 12.5 vs 8.4 mo HR= 0.59; 95% CI, 0.39–0.88
DESTINY-Gastric02	2	≥2L	T-DXd Conducted in US and EU	ORR= 42% 95% CI 30.8–53.4 PFS: 5.6 mo 95% CI 4.2–8.3 OS: 12.1 mo 95% CI 9.4–15.4


Blood-based biomarkers predict benefit from T-DXd

Exploratory biomarker analysis of the randomized, phase 2 DESTINY-Gastric01 trial

	Subgroup	N	ORR, % (95% CI)
Plasma HER2 amplification	No amplification	38	34.2 (19.6–51.4)
	Amplification	71	60.6 (48.3–72.0)
Plasma HER2 copy number	Low/ below median	53	39.6 (26.5–54.0)
	High/ above median	56	62.5 (48.5–75.1)
HER2 apCN	Low or no amp. (<median)	52	30.8 (18.7–45.1)
	High (\geq median)	57	70.2 (56.8–81.6)
Serum HER2 ECD	Low (<median)	56	42.9 (29.7–56.8)
	High (\geq median)	62	59.7 (46.4–71.9)

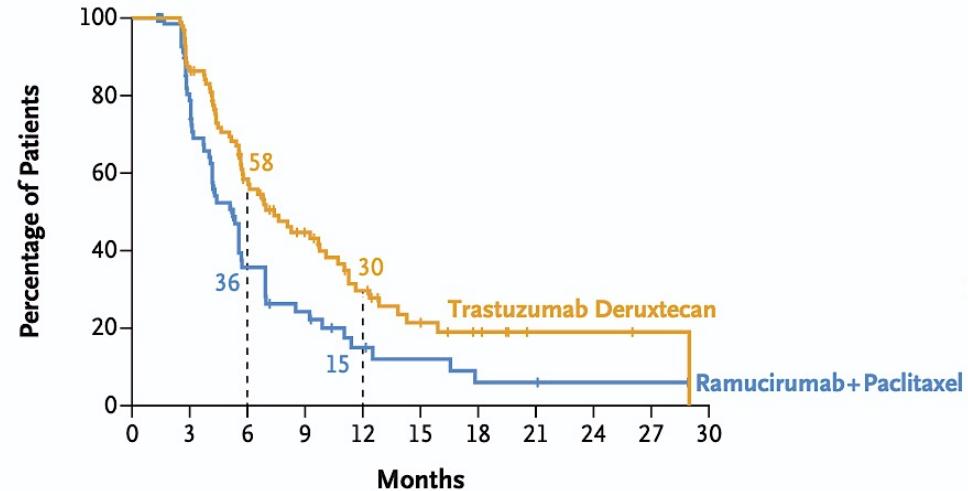
DESTINY-Gastric04: 2L T-DXd versus ramucirumab + paclitaxel


Phase 3, randomized, open-label, global multicenter study for 2L treatment of unresectable/ metastatic HER2+ GEA

Stratification factors: HER2 status (IHC3+ vs IHC2+/FISH+), region (Asia vs EU vs China vs ROW), 1L TTP (< 6 mo vs >6mo)

Primary endpoint: Overall survival
Secondary endpoints: PFS, ORR, DOR, DCR

Overall Survival and Progression-free Survival



	T-DXd	Ram + paclitaxel	HR
OS, months (95% CI)	14.7 (12.1-16.6)	11.4 (9.9-15.5)	0.70 (0.55-0.9) P= 0.004
PFS, months (95% CI)	6.7 (5.6-7.1)	5.6 (4.9-6.8)	0.74 (0.59-0.92) P= 0.007

Duration of Response

C Duration of Response

No. at Risk

	0	3	6	9	12	15	18	21	24	27	30
Trastuzumab deruxtecan	104	81	45	29	17	10	6	2	2	1	0
Ramucirumab + paclitaxel	69	50	19	12	6	4	2	2	1	1	0

	No. of Events	Median Duration of Response (95% CI) mo
Trastuzumab Deruxtecan	62	7.4 (5.7–10.1)
Ramucirumab + Paclitaxel	52	5.3 (4.1–5.7)

	T-DXd	Ram + paclitaxel
ORR (95% CI)	44.3% (37.8-50.9)	29.1% (23.4-35.3)

What is the Right Dose?

Safety

	T-DXd	Ramucirumab + paclitaxel
TRAEs	93.0%	91.4%
Treatment related SAEs	18.4%	17.6%
Grade \geq 3 TRAEs	50.0%	54.1%
TRAE leading to discontinuation	11.5%	13.3%
Drug-related ILD/ Pneumonitis	13.9%	1.3%

-Destiny CRC02 showed no efficacy advantage of T-DXd 6.4 mg/kg > 5.4 mg/kg
-5.4 mg/kg had much less toxicity

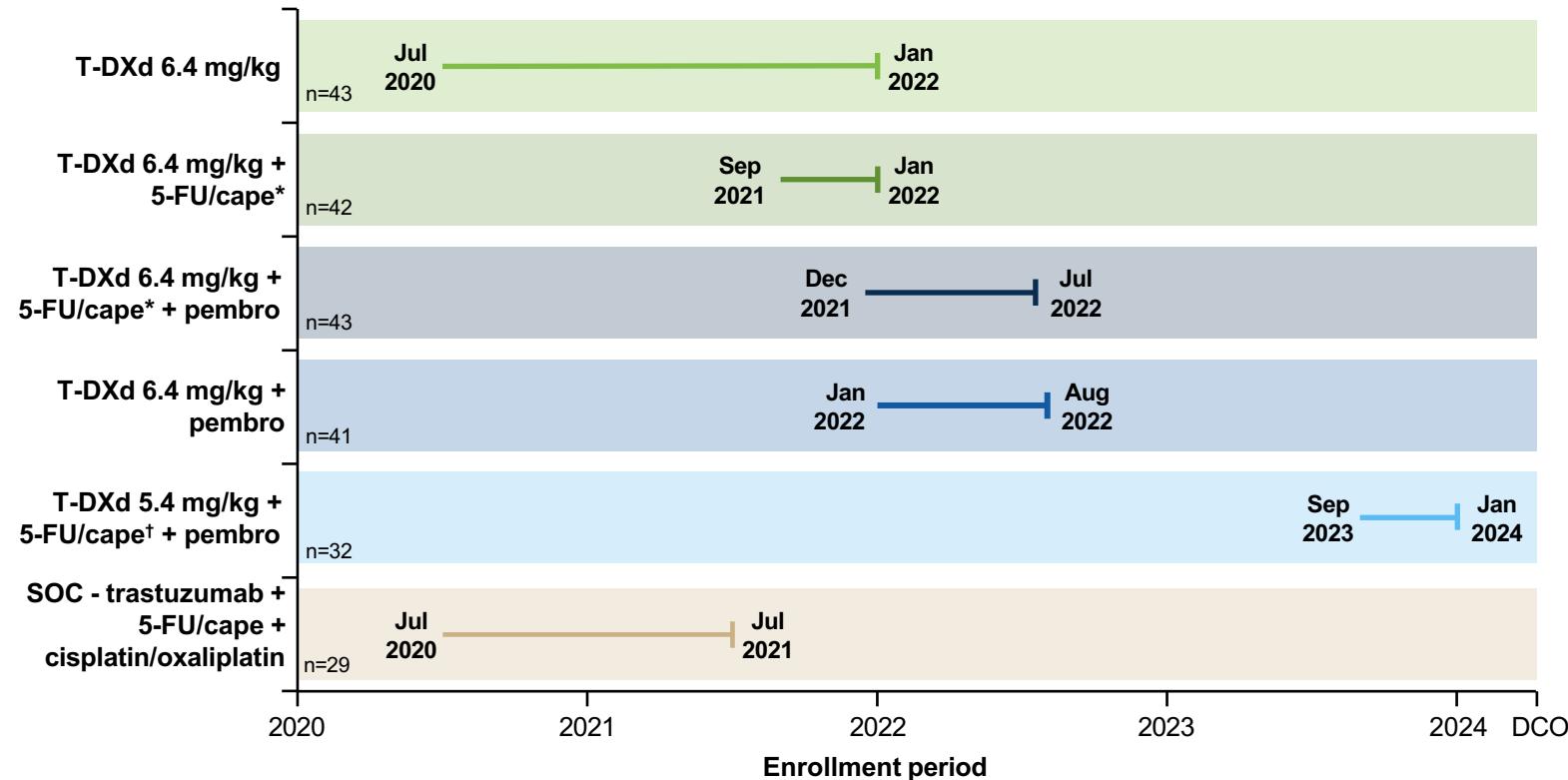
How to optimize real world efficacy and tolerability of T-DXd

- Retrospective, observational, study of 101 patients with metastatic GEA treated with T-DXd
- Single institution study in Japan
- All patients had HER2+ disease (IHC 3+ or IHC 2+ /ISH-positive)
- All patients had prior treatment with trastuzumab-containing regimen
 - HER2 status assessable in 33 pts
 - HER2 status converted to negative in 39% of patients

Question	Findings
What is the impact on efficacy when HER2 converts to negative?	ORR lower in pts who lose HER2 prior to treatment (31% vs 56%)
What is the impact of using a lower dose (5.4mg/kg) on efficacy?	No apparent loss of efficacy, possible improved tolerability in frail patients
What features might predict ILD/pneumonitis?	ILD more frequent in patients treated at 6.4mg/kg, primary tumor removed, lower tumor burden

- HER2 retesting advised if safe/ feasible
- Consider a lower dose of T-DXd in elderly/ frail patients

Is there a role for T-DXd for HER2-intermediate or HER2-low metastatic GEA?


DESTINY-Gastric01 Exploratory Cohorts

	<u>Cohort 1: Intermediate</u> IHC2+ and FISH- N= 21	<u>Cohort 2: Low</u> IHC 1+ N= 24
ORR (95% CI)	26.3% (9.1-51.2)	9.5% (1.2 to 30.4)
PFS (95% CI)	4.4 months (2.7-7.1)	2.8 months (1.5-4.3)
Overall survival (95% CI)	7.8 months (4.7-NE)	8.5 months (4.3-10.9)

- T-DXd appears active in patients with HER2 intermediate/ low disease
 - But... additional randomized controlled trials vs SOC needed

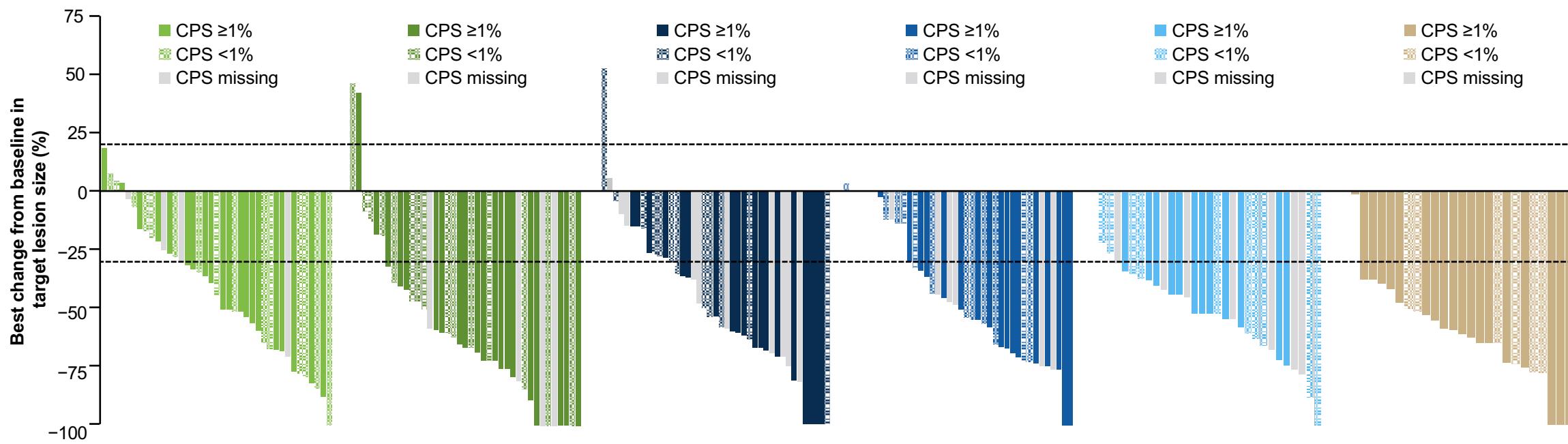
DESTINY Gastric-03 (T-Dxd combinations)

Part 2 of DESTINY-Gastric03, a Phase 1b/2 trial (NCT04379596), with **non-contemporaneous and non-randomized arms**

Patient population

- Adults ≥ 18 years
- Unresectable, locally advanced or metastatic esophageal adenocarcinoma/GC/GEJA
- HER2+ (IHC 3+ or IHC 2+/ISH+ per local assessment)
- Treatment naïve for metastatic disease
- ECOG PS of 0 or 1

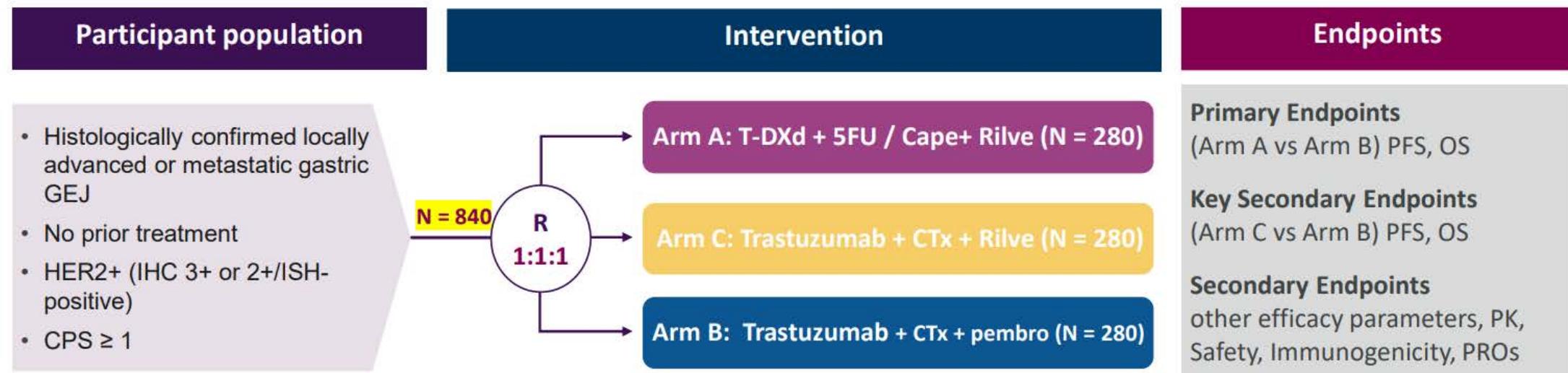
Part 2 endpoints


Primary	Secondary	Exploratory
Confirmed ORR by investigator assessment	<ul style="list-style-type: none"> • ORR, DOR, and PFS by investigator assessment, and OS • Safety and tolerability 	<ul style="list-style-type: none"> Antitumor activity by PD-L1 status

At DCO of **May 6, 2024**, median follow up: T-DXd 6.4 mg/kg = 17 months, T-DXd 6.4 mg/kg + 5-FU/cape = 21 months, T-DXd 6.4 mg/kg + 5-FU/cape + pembro = 17 months, T-DXd 6.4 mg/kg + pembro = 15 months, T-DXd 5.4 mg/kg + 5-FU/cape + pembro = 5 months, and SOC = 18 months

T-DXd: IV Q3W. Pembro: 200 mg IV Q3W. SOC: trastuzumab 6 mg/kg IV Q3W, investigator choice of 5-FU 800 mg/m² CIV infusion or cape 1000 mg/kg² BD, and investigator choice of cisplatin 80 mg/m² IV or oxaliplatin 130 mg/m² IV at SOC dose. *Investigator choice of 5-FU 600 mg/m² CIV infusion or cape 1000 mg/m² BD at dose established in Part 1; †investigator choice of 5-FU 600 mg/m² CIV infusion or cape 750 mg/m² BD

Objective response rate and best percentage change from baseline in target lesion size


	T-DXd 6.4 mg/kg n=43	T-DXd 6.4 mg/kg + 5-FU/cape 1000 mg/m ² n=41	T-DXd 6.4 mg/kg + 5-FU/cape 1000 mg/m ² + pembro n=43	T-DXd 6.4 mg/kg + pembro n=41	T-DXd 5.4 mg/kg + 5-FU/cape 750 mg/m ² + pembro n=32	SOC - trastuzumab + 5-FU/cape + cisplatin/oxaliplatin n=29
mFollow up, months	17	21	17	15	5	18
mDOR, months (95% CI)	18 (6, 30)	20 (12, 28)	17 (8, NE)	18 (5, 21)	NE (2, NE)	14 (5, 20)
Confirmed ORR, % (95% CI)	49 (33, 65)	78 (62, 90)	58 (42, 73)	63 (46, 78)	59 (40, 77)	76 (56, 90)
CPS ≥1%	57	77	70	78	62	85
CPS <1%	53	73	39	44	46	71

Assessments were by Investigator using RECIST 1.1. Best percentage change is the maximum reduction or minimum increase from baseline in the target lesion size; the dashed lines at -30% and 20% change in target lesion size indicate the thresholds for partial response and progressive disease, respectively.

ARTEMIDE-Gastric01 Study

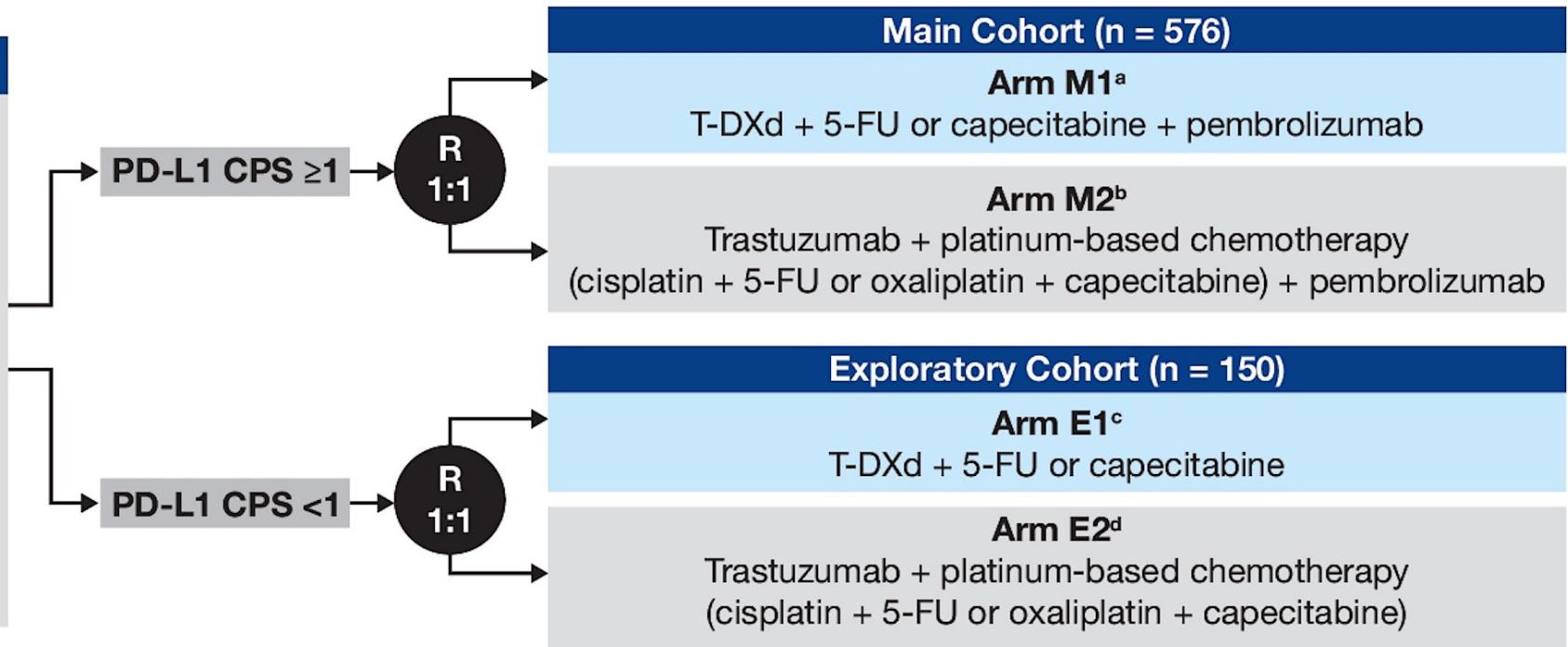
Study Design

Stratification Factors

- HER2 status (IHC 3+ vs IHC 2+ plus ISH-positive)
- Geographic region (Japan/South Korea vs Rest of Asia [including China] vs North America/EU/ROW)
- PD L1 expression (CPS \geq 10 vs CPS < 10).

Treatment arms

Arm A (treatment arm): T-DXd (dosed at 5.4 mg/kg), fluoropyrimidine (capecitabine [Investigators Choice of 750 mg/m² twice-daily (BD) for 14 days] or 5-FU [600 mg/m²/day over 5 days]), and Rilvecostomig (dosed at 750 mg);


Arm B (control arm): Trastuzumab (8 mg/kg loading dose, followed by 6 mg/kg for subsequent cycles), with Investigators Choice of either cisplatin/5-FU (cisplatin dosed at 80 mg/m² and 5-FU dosed at 800 mg/m²/day over 5 days) or CapeOx (capecitabine dosed at 1000 mg/m² BD for 14 days and oxaliplatin dosed at 130 mg/m²) and pembrolizumab (dosed at 200 mg).

Arm C (CoC arm): Trastuzumab and chemotherapy the same as control arm, Rilvecostomig (dosed at 750mg)

DESTINY-Gastric05 (Open)

Patient population (N = 726)

- Locally advanced or metastatic gastric or GEJ cancer
- No systemic therapy in the unresectable, locally advanced or metastatic setting or relapse ≥ 6 months after the last dose of perioperative or neoadjuvant therapy
- Centrally assessed HER2+ (IHC 3+ or IHC 2+/ISH+)
- ECOG PS 0 or 1

^aT-DXd 5.4 mg/kg IV Q3W on day 1 plus 5-FU 600 mg/m²/day IV on days 1 to 5 or capecitabine 750 mg/m² PO BID on days 1 to 14 plus pembrolizumab 200 mg IV Q3W on day 1.

^bTrastuzumab loading dose of 8 mg/kg IV followed by 6 mg/kg IV Q3W plus platinum-based chemotherapy (cisplatin 80 mg/m²/day IV on day 1 plus 5-FU 800 mg/m²/day IV on days 1 to 5 or oxaliplatin 130 mg/m²/day IV on day 1 plus capecitabine 1000 mg/m² PO BID on days 1 to 14) plus pembrolizumab 200 mg IV Q3W on day 1.

^cT-DXd 5.4 mg/kg IV Q3W on day 1 plus 5-FU 600 mg/m²/day IV on days 1 to 5 or capecitabine 750 mg/m² PO BID on days 1 to 14.

^dTrastuzumab loading dose of 8 mg/kg IV followed by 6 mg/kg IV Q3W plus platinum-based chemotherapy (cisplatin 80 mg/m²/day IV on day 1 plus 5-FU 800 mg/m²/day IV on days 1 to 5 or oxaliplatin 130 mg/m²/day IV on day 1 plus capecitabine 1000 mg/m² PO BID on days 1 to 14).

Questions from General Medical Oncologists — Gastroesophageal Cancers

69 yr old male with a hx of Stage II GE cancer treated with the CROSS regimen. Had local recurrence at the GE junction 15 months post-esophagectomy. Tumor was PD-L1-positive (CPS 10) and HER2-positive. Local recurrence resolved after treatment with FOLFOX/trastuzumab/pembrolizumab. However, he then developed an isolated brain met, which has been resected. Would you give “adjuvant” T-DXd and for how long?

58 yo male with a HER2+ GE junction tumor treated with FOLFOX6, trastuzumab and nivolumab, progressed with supraclavicular adenopathy and brain mets. Now on second-line treatment with T-DXd. Is there a role for zanidatamab third line?

Questions from General Medical Oncologists — Gastroesophageal Cancers

56 yo male with Stage IV GEJ cancer with liver mets, PD-L1 CPS 1, HER2 IHC 3+. Quickly progressed on pembrolizumab + trastuzumab + FOLFOX. We planned to give T-DXd as 2nd-line tx. Unfortunately, the repeat bx shows HER2 IHC 2+, FISH-negative, but NGS is positive for an ERBB2 activating mutation. Can I now proceed with T-DXd? What anticipated ORR and PFS should be conveyed to this pt and their family?

53 yo M with HER2-amplified metastatic GEJ adenocarcinoma, PD-L1-positive. Progressed on FOLFOX + pembro + trastuzumab. Before considering HER2-targeted options in the 2nd line, how important is it to rebiopsy? Is there any role for HER2-targeted therapy in HER2 IHC 1+ or 2+ disease?

Questions from General Medical Oncologists — Gastroesophageal Cancers

73-year-old female with 6-month history of dysphagia, found on endoscopy to have semi-obstructive GEJ adenocarcinoma, HER2+ by IHC and FISH, no nodal or distant spread on imaging. What neoadjuvant approach would you recommend?

Questions from General Medical Oncologists — Gastroesophageal Cancers

56 yo male w/metastatic GEJ cancer. Progressed on FLOT + nivolumab. New liver lesion noted. Biopsy is HER2-positive, PD-L1 CPS >1. Should I consider 5-FU + oxaliplatin + trastuzumab + pembrolizumab? Is durvalumab better? What about T-DXd for this patient?

Agenda

Module 1: Biliary Tract Cancers — Dr Ellis

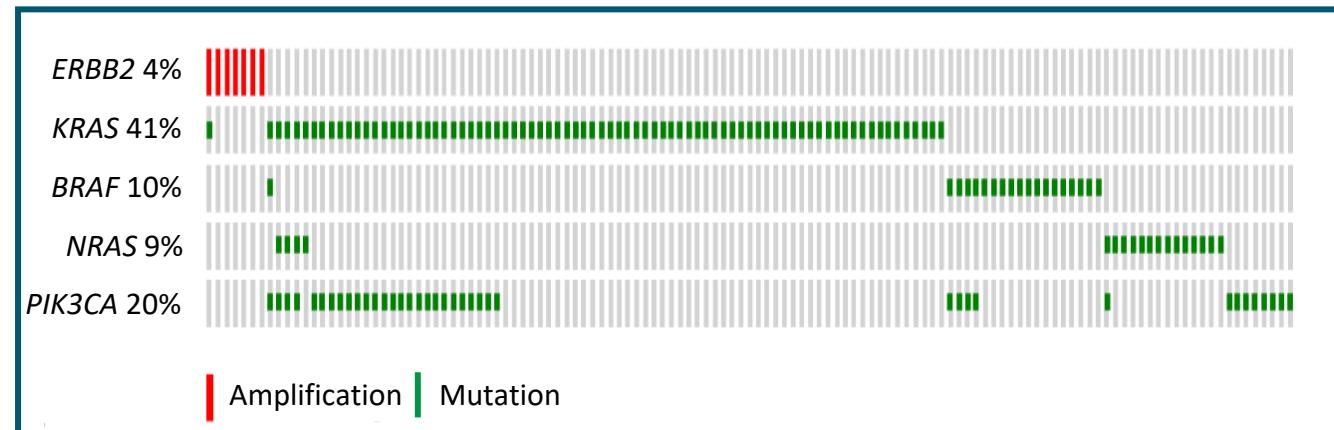
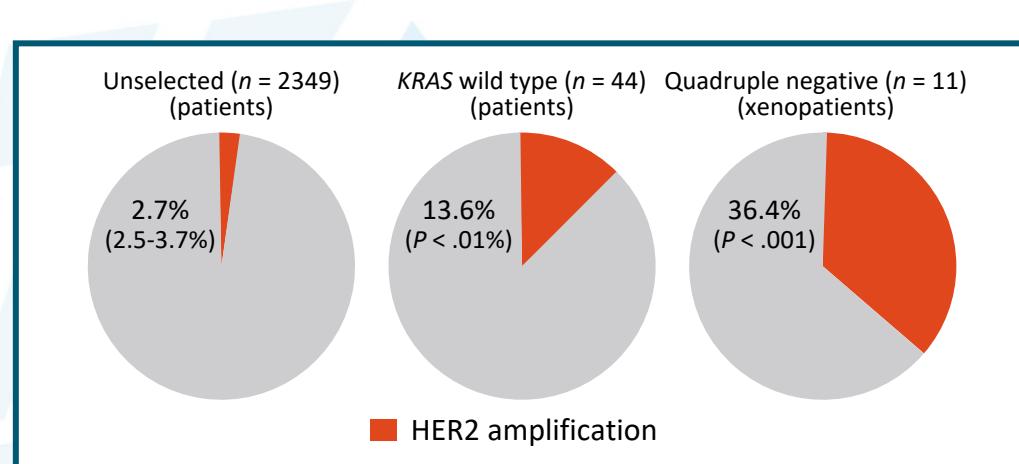
Module 2: Gastroesophageal Cancers — Dr Wainberg

Module 3: Colorectal Cancer — Prof Van Cutsem

**UZ
LEUVEN**

Herestraat 49
B - 3000 Leuven

www.uzleuven.be
tel. +32 16 33 22 11

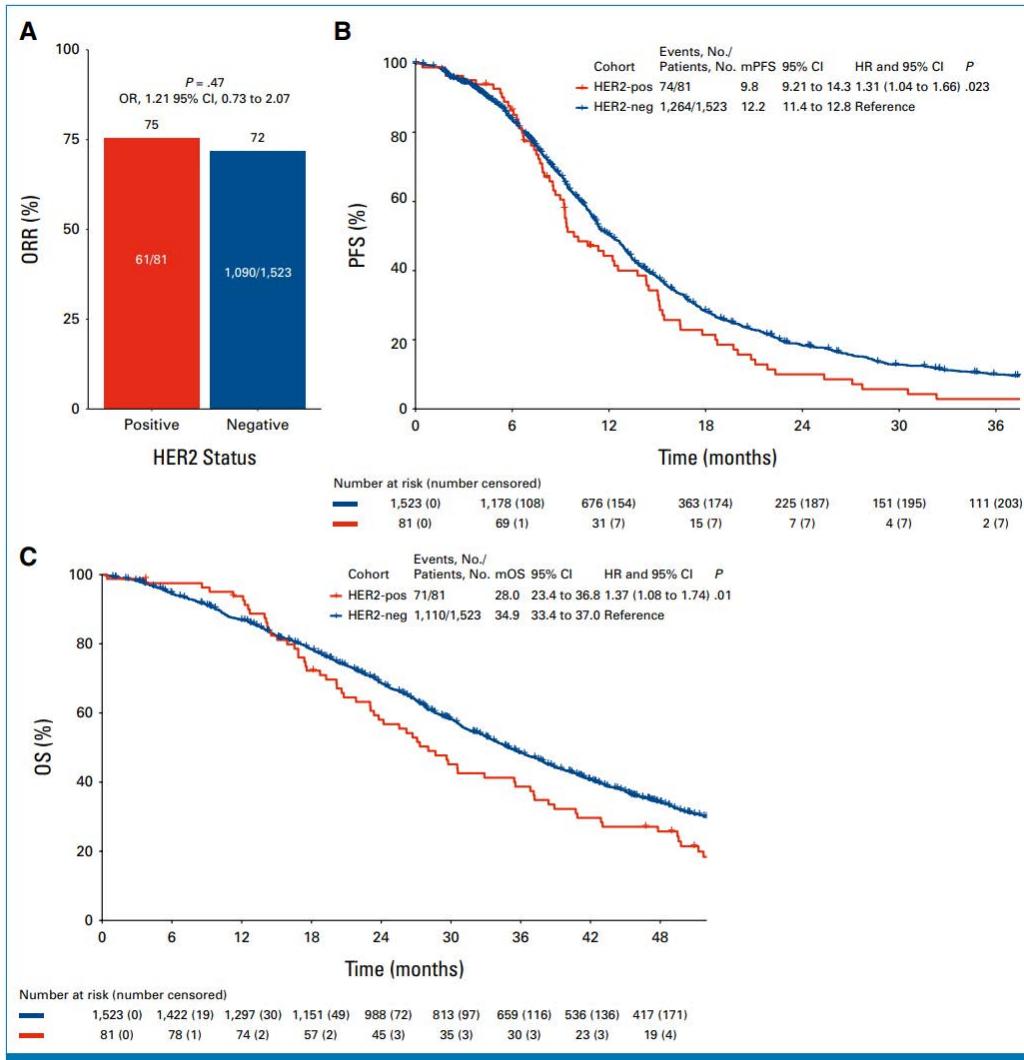


Integrating Therapies Targeting HER2 in mCRC

Prof Eric Van Cutsem, MD, PhD
Digestive Oncology
Leuven, Belgium
Eric.VanCutsem@kuleuven.be

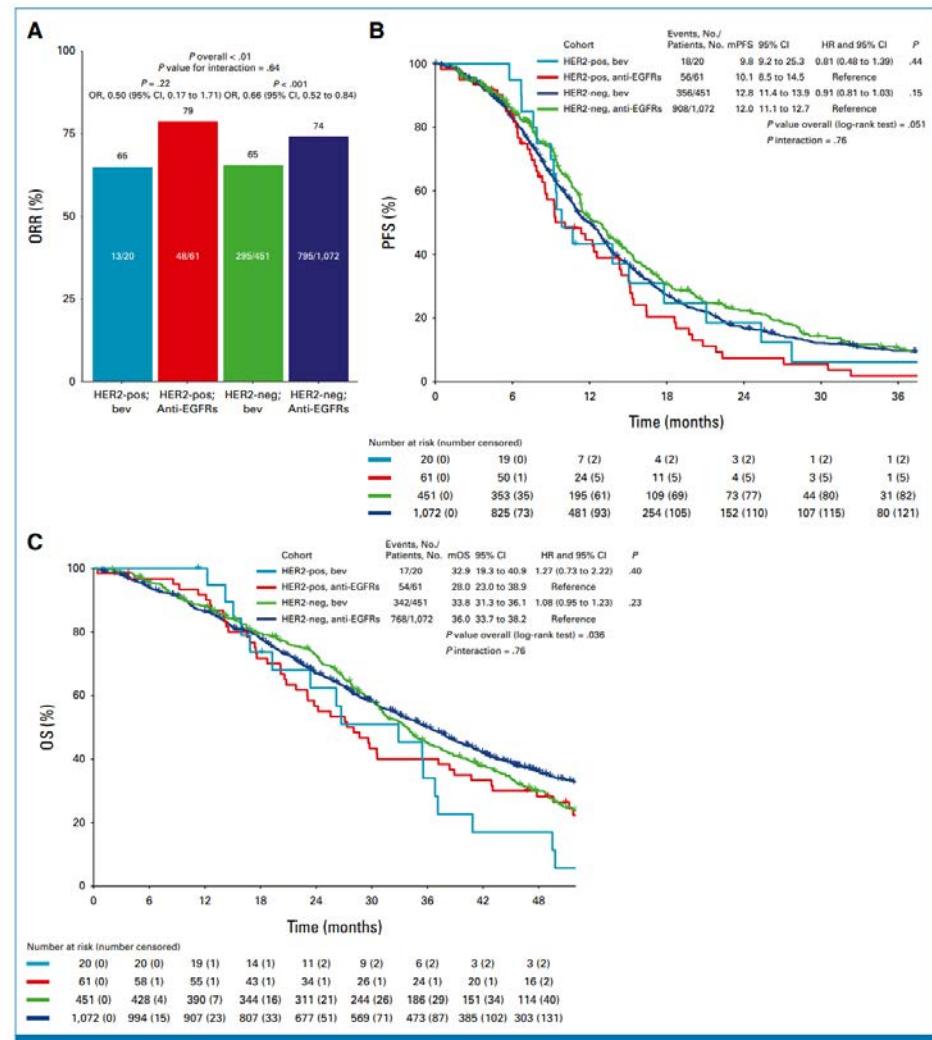
UNIVERSITY HOSPITALS LEUVEN

- **NCCN & ESMO Living guidelines** recommend HER2 testing according to the HERACLES criteria or through next-generation sequencing (NGS) in mCRC
 - ✓ HER2 positivity is defined by intense circumferential, basolateral, or lateral immunohistochemical staining (IHC 3+) in $\geq 50\%$ of tumor cells. If the staining is observed in $> 10\%$ but $< 50\%$ of cells, a positive in situ hybridization (ISH) result (HER2/CEP17 ratio ≥ 2 in $\geq 50\%$ of cells) is required to confirm HER2 positivity
 - ✓ moderate circumferential, basolateral, or lateral staining (IHC 2+) in $\geq 50\%$ of cells also require a positive ISH result to be considered HER2 positive
- **Unlike in breast and gastric cancer, HER2 positivity in CRC lacks a standardized definition.**
 - ✓ compared with breast and gastric cancer, the HERACLES classification demands a higher proportion of tumor cells to exhibit staining ($\geq 50\%$ versus $\geq 10\%$) and it allows a broader range of staining patterns.
- A key challenge in HER2 detection in **mCRC is intratumoral heterogeneity**
- **SO: multiple methodologies** can be used for HER2 assessment in mCRC.
Notably, **gene-based approaches** may offer advantages overcoming intratumoral heterogeneity and **ctDNA** can potentially overcome heterogeneity between primary and metastasis and increase detection rates.
As a result, **incorporating NGS and liquid biopsy** into diagnostic workflows could further refine patient selection for HER2- targeted therapies

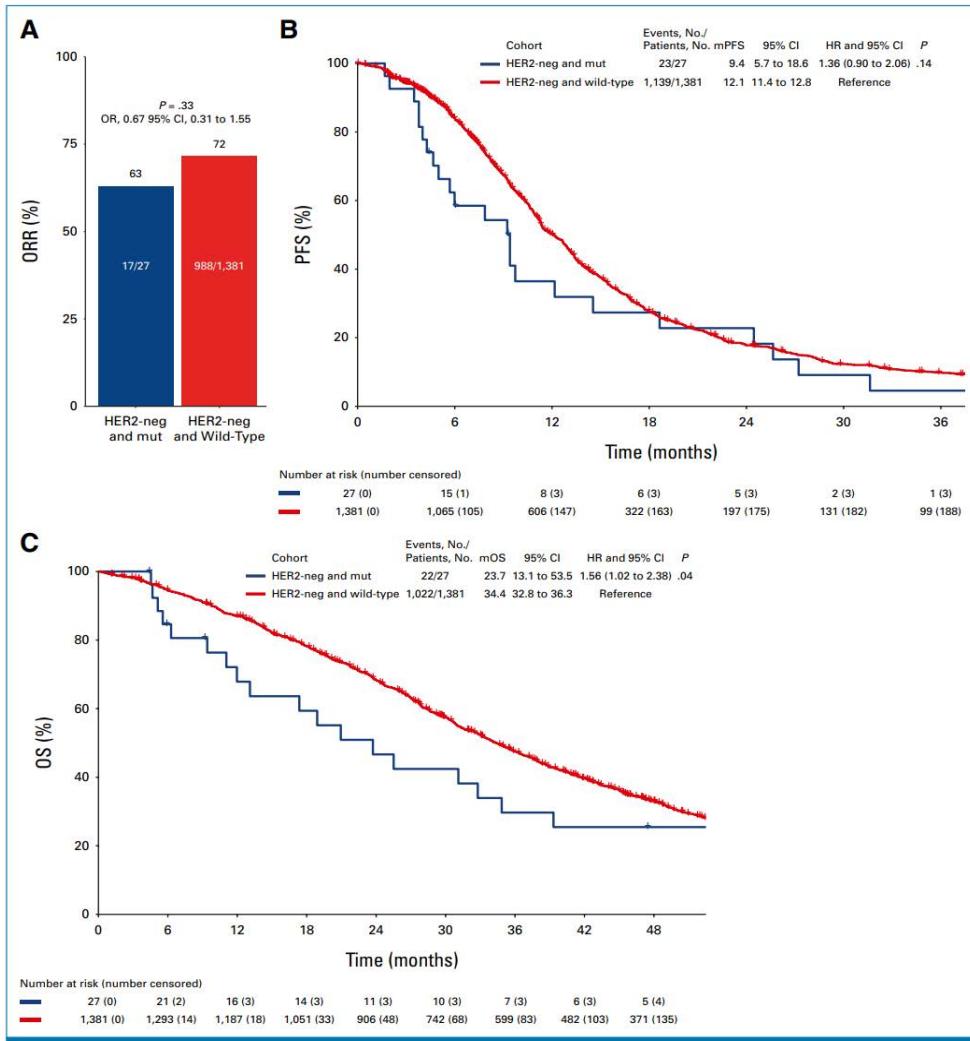
Study	N	Positive Rate	IHC 2+ (Borderline)	IHC 3+ (Positive)	IHC/FISH Concordance
Nathanson ¹	139	IHC: 5 (3.6%) FISH: 4 (2.4%)	2	3	K = 0.89
Ooi ²	244	IHC: 8 (3%) FISH: 8 (3%)	2	6	100%
Marx ³	1439	IHC: 39 (3%) FISH: 36 (3%)	12	27	100%
Summary	1822		16	36	Good


- 5% HER2 amplification seen in HERACLES Study (screened = 914)⁴
- HER2 amplification enriched in KRAS, NRAS, BRAF, and PIK3CA WT tumors and in left sided tumors^{5,6}

1. Nathanson et al. Int J Cancer. 2003; 105:796. 2. Ooi et al. Mod Pathol. 2004;17:895 3. Marx A et al. Human Path. 2010;41:1577.


4. Sartore-Bianchi A...Siena S . Lancet Oncol 2016. 5. Bertott A et al, Cancer Discovery 2011;1:508. 6. Kuwada et al . Int J Cancer.

2004;109:291.


- HER2 overexpression/amplification:
 - ✓ 3% (unselected) to 5% (RAS and BRAF wild-type molecular profiles) of mCRCs
 - ✓ predominantly in left-sided colon and rectal adenocarcinomas
 - ✓ associated with metastases in the central nervous system.
- HER2 mutations: 1-2% of CRC
- Prognostic impact of HER2 amplification: controversial results
However the largest combined analysis of 1604 patients in 8 trials: TRIBE2, TRIPLETE, VALENTINO, ATEZOTRIBE, PANDA, PANAMA, PARADIGM, CALGB/SWOG80405
 - ✓ HER2-positivity and mutation
 - negative prognostic factors in pMMR/MSS, RAS/BRAF wild-type mCRC
 - do not predict benefit from bev/anti-EGFRs in pMMR/MSS, RAS/BRAF wild-type mCRC

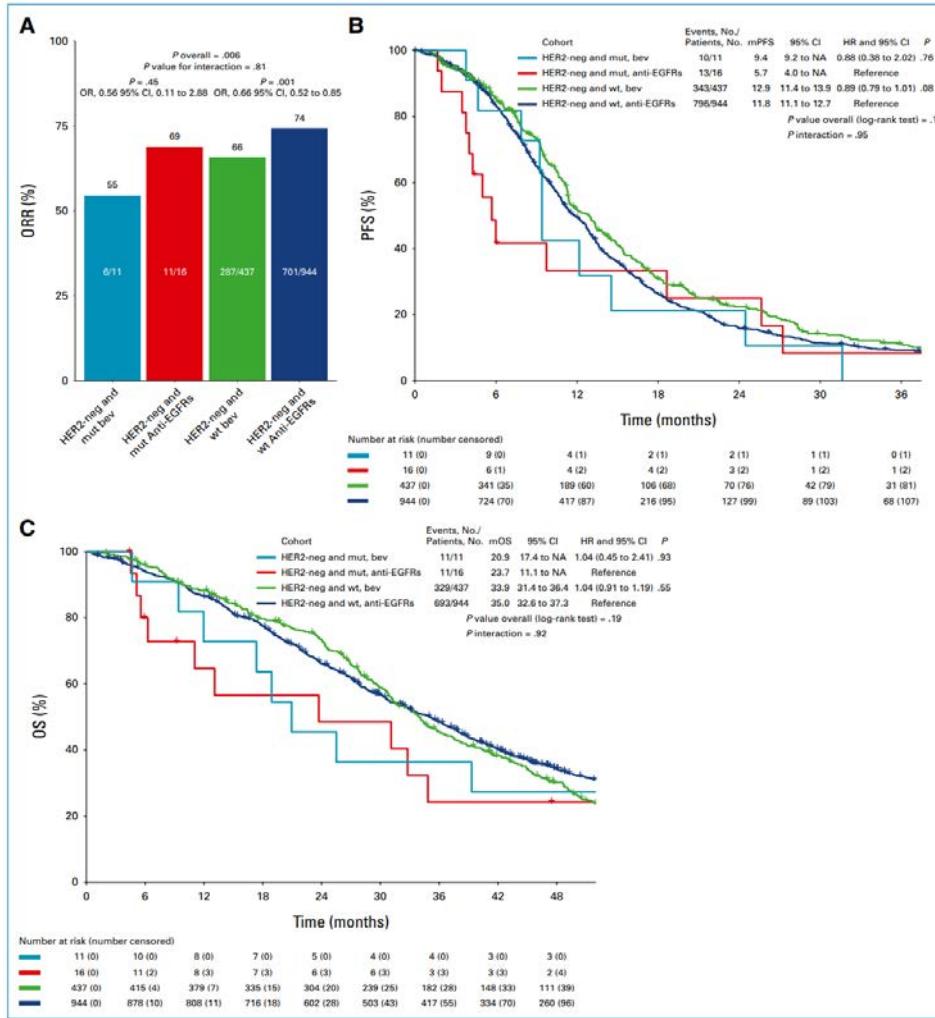

FIG 2. (A) ORR, (B) PFS, and (C) OS according to HER2 expression/amplification status. HER2-neg, human epidermal growth factor receptor 2-negative; HER2-pos, human epidermal growth factor receptor 2-positive; HR, hazard ratio; (m)OS, (median) overall survival; (m)PFS, (median) progression-free survival; OR, odds ratio; ORR, objective response rate; pop, population.

FIG 3. (A) ORR, (B) PFS, and (C) OS according to HER2 expression/amplification status and monoclonal antibody received. Anti-EGFRs, anti-epidermal growth factor receptors; bev, bevacizumab; HER2-neg, human epidermal growth factor receptor 2-negative; HER2-pos, human epidermal growth factor receptor 2-positive; HR, hazard ratio; (m)OS, (median) overall survival; (m)PFS, (median) progression-free survival; OR, odds ratio; ORR, objective response rate; pop, population.

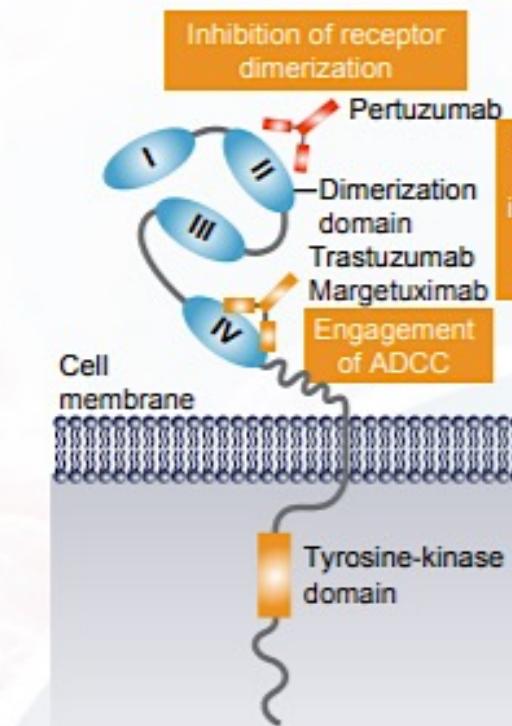


FIG 4. (A) ORR, (B) PFS, and (C) OS according to HER2 mutational status in HER2-negative tumors. HER2-neg, human epidermal growth factor receptor 2-negative; HR, hazard ratio; (m)OS, (median) overall survival; (m)PFS, (median) progression-free survival; mut, mutant; OR, odds ratio; ORR, objective response rate; pop, population.

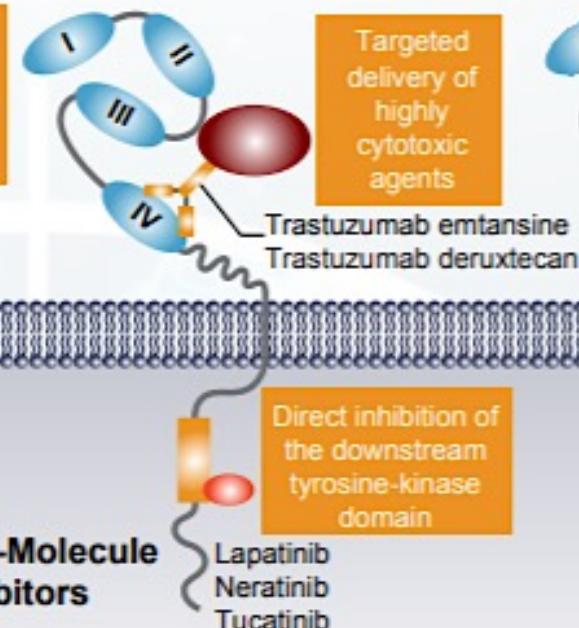
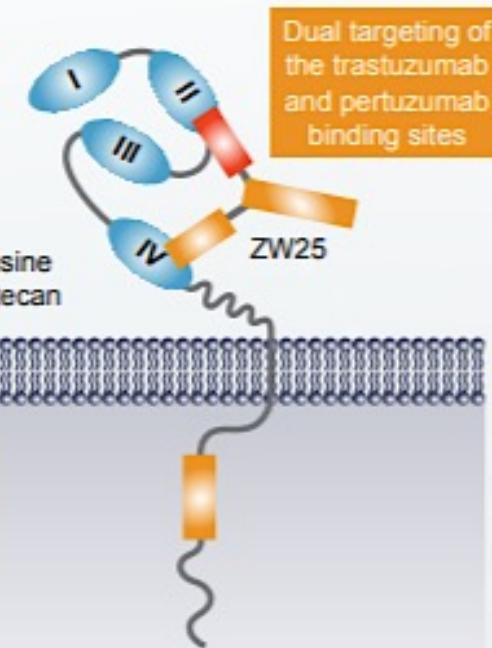


FIG 5. (A) ORR, (B) PFS, and (C) OS according to HER2 mutational status in HER2-negative tumors and monoclonal antibody received. Anti-EGFRs, anti-epidermal growth factor receptors; bev, bevacizumab; HER2-neg, human epidermal growth factor receptor 2-negative; HR, hazard ratio; (m)OS, (median) overall survival; (m)PFS, (median) progression-free survival; mut, mutant; NA, not assessable; OR, odds ratio; ORR, objective response rate; pop, population; wt, wild-type.


a. Single-Epitope mAbs

b. ADCs

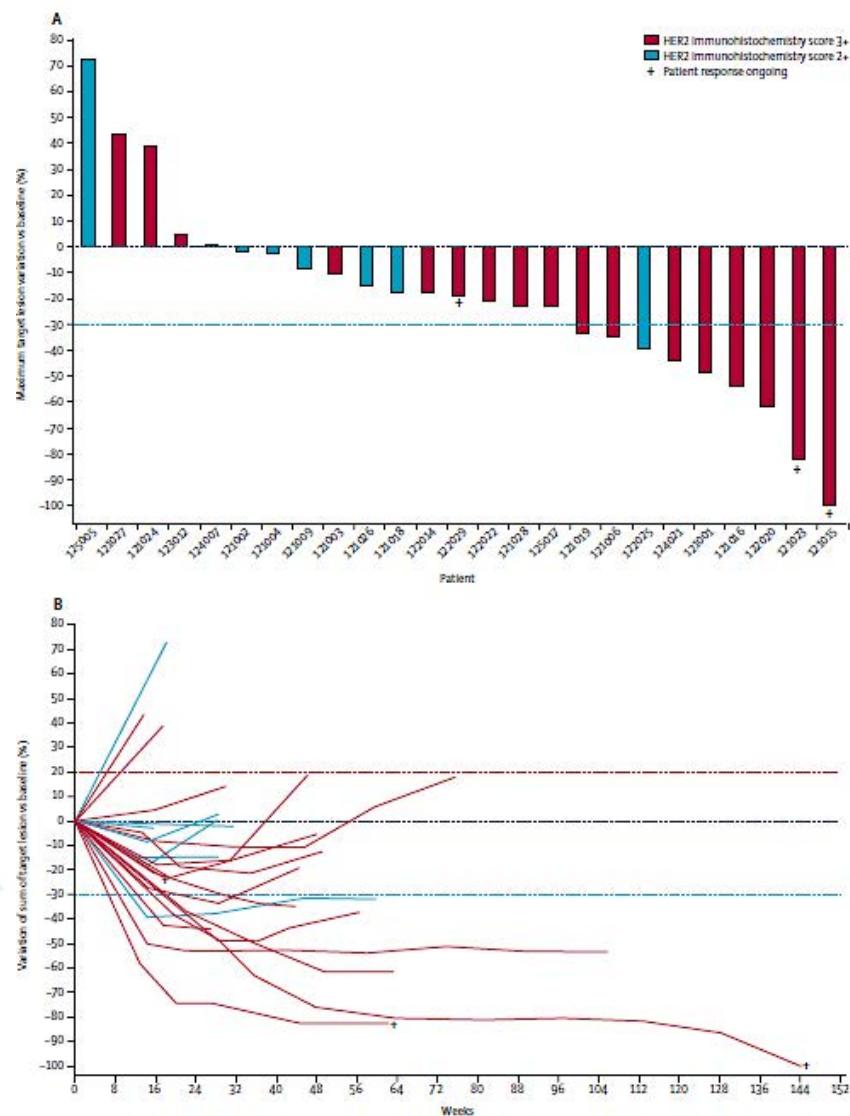
c. Bispecific Antibodies

d. Small-Molecule Inhibitors

Inhibition of PI3-kinase signalling
promoting cell-cycle arrest

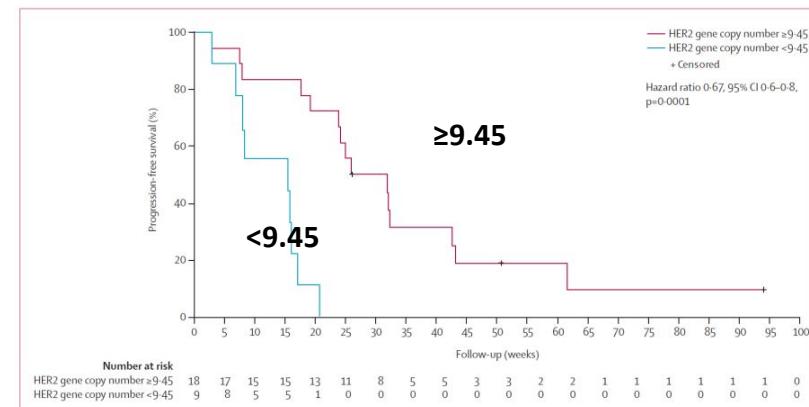
Table 1. HER2-targeted therapies in HER2+ mCRC.

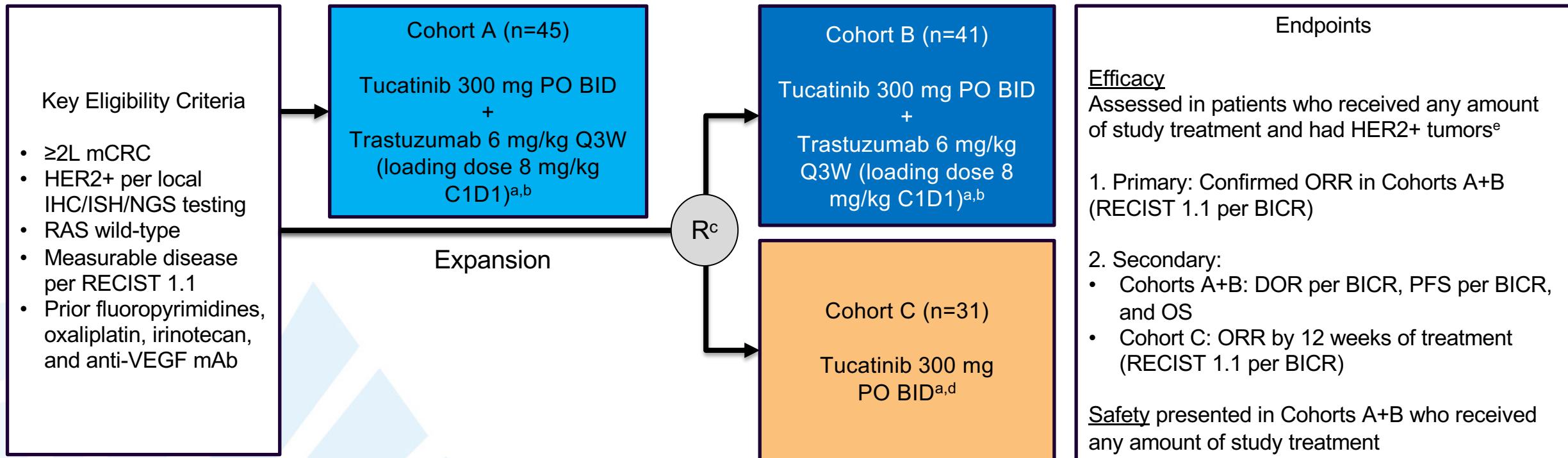
Clinical trial	Therapies	Patients, N	ORR, % (95% CI)	PFS, months
HERACLES-A [17]	Lapatinib + trastuzumab	32 (response evaluable)	28	4.7
MyPathway [18]	Pertuzumab + trastuzumab	57 [†] (all patients)	32 [†] (20–45)	2.9
		43 (HER2+, KRAS WT)	40 (25–56)	5.3
		13 (HER2+, KRAS mutated)	8 (0.2–36)	1.4
HERACLES-B [19]	Pertuzumab + T-DM1	31	9.7	4.1
TAPUR [20]	Trastuzumab + pertuzumab	38	25	17.2 weeks
TRIUMPH [21]	Pertuzumab + trastuzumab	30	30 (14–50) in tissue-positive patients 28 (12–49) in ctDNA-positive patients	4.0 in tissue-positive patients 3.1 in ctDNA-positive patients
DESTINY-CRC01 [22]	Trastuzumab deruxtecan	53	45.3 [‡]	6.9
MOUNTAINEER [23]	Tucatinib + trastuzumab	84 (HER2+, RAS WT)	38.1 [‡] (27.7–49.3) [§]	8.2
HER2-FUSCC-G [24]	Trastuzumab + pyrotinib	11 (ongoing)	45.5	7.8


[†]Confirmation was not required; 56/57 patients were tested for KRAS status.

[‡]Confirmed ORR.

[§]Two-sided 95% exact CI, computed using the Clopper – Pearson method (1934).


CI: confidence interval; ctDNA: circulating tumor DNA; HER2: human epidermal growth factor receptor 2; ORR: objective response rate; PFS: progression-free survival; T-DM1: ado-trastuzumab emtansine; WT: wild type.

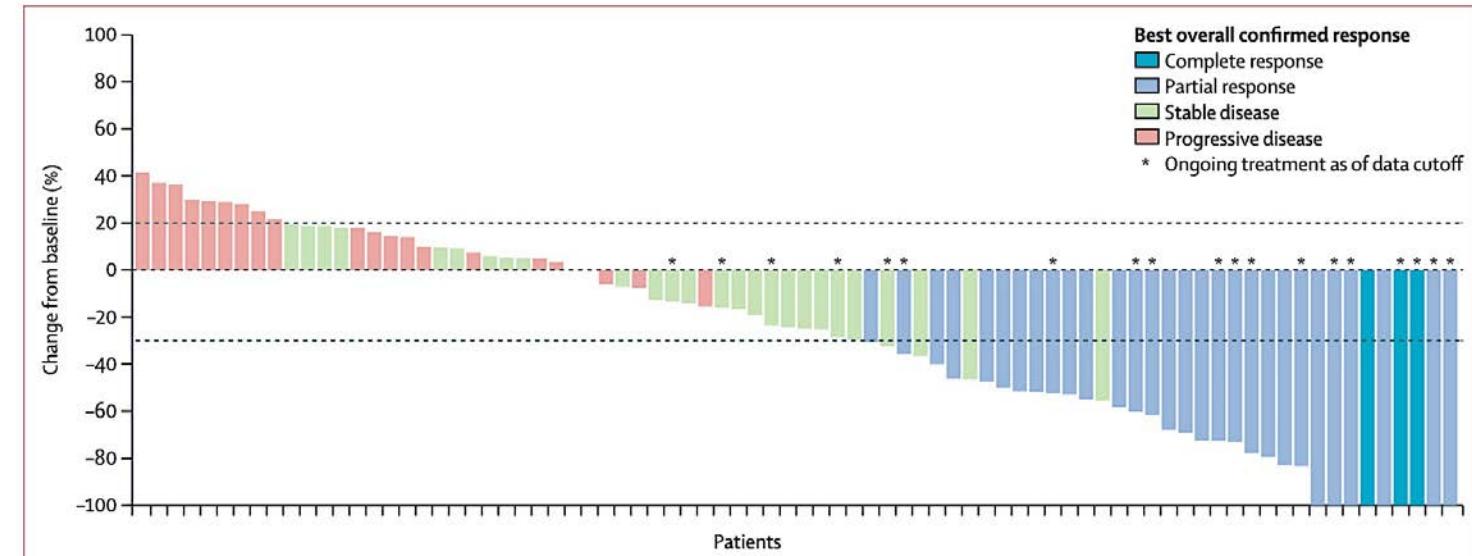

Patients given trastuzumab and lapatinib (n=27)	
Age (years)	62 (50-68)
Sex	
Men	23 (85%)
Women	4 (15%)
ECOG performance status 0-1	27 (100%)
HER2 expression by immunohistochemistry score	
3+	20 (74%)
2+	7 (26%)
Site of primary tumour	
Rectum	7 (26%)
Colon	20 (74%)
Proximal*	4 (20%)
Distal†	16 (80%)
Metastatic disease in multiple sites	26 (96%)
Number of previous lines of therapy	5 (4-6)
Patients with ≥4 previous lines of therapy	20 (74%)
Previous anti-angiogenesis treatment	20 (74%)
Previous therapy with panitumumab or cetuximab	27 (100%)
Patients eligible to be assessed for sensitivity to panitumumab or cetuximab‡	15 (56%)
Previous response to panitumumab or cetuximab	0
Time on previous treatment (total; months)§	20 (16-24)
By primary site	
Proximal	15 (13-19)
Distal	19 (15-24)
Rectum	23 (20-25)

Complete response	1 (4%, -3 to 11)
Partial response	7 (26%, 9 to 43)
Objective response	8 (30%, 14 to 50)
Disease control†	16 (59%, 39 to 78)
Duration of response (weeks)	38 (24 to 94+)

PFS according to HER2 GCN

MOUNTAINEER began as a US Investigator-Sponsored Trial and initially consisted of a single cohort (Cohort A) and was expanded globally to include patients randomised to receive tucatinib + trastuzumab (Cohort B) or tucatinib monotherapy (Cohort C)

Data cut-off for current analysis, March 28, 2022


a Each treatment cycle is 21 days; b Patients remained on therapy until evidence of radiographic or clinical progression, unacceptable toxicity, withdrawal of consent, or study closure; c Stratification: Left sided tumor primary vs other; d Patients were allowed to cross over and receive tucatinib and trastuzumab if they experienced radiographic progression at any time point or if they had not achieved a PR or CR by week 12; e Patients had HER2+ tumors as defined by one or more protocol required local tests: IHC 3+ (n=46), amplification by ISH (n=36), or amplification by NGS (n=69)

<https://clinicaltrials.gov/ct2/show/NCT03043313>

Tucatinib plus trastuzumab (cohorts A and B; n=84)	
Confirmed objective response rate (95% CI)*	38.1% (27.7-49.3)
Complete response†	3 (4%)
Partial response†	29 (35%)
Stable disease†‡	28 (33%)
Progressive disease†	22 (26%)
Not available§	2 (2%)
Disease control rate (post hoc)¶	60 (71%)
Median duration of response, months (IQR)	12.4 (8.3-25.5)

Data are n (%) unless specified otherwise. Percentages might not total 100 due to rounding. *Confirmed disease response and progression were assessed according to Response Evaluation Criteria in Solid Tumours, version 1.1, by blinded independent central review. †Best overall response. ‡Includes stable disease and non-complete response or non-progressive disease. §Includes patients with no post-baseline response assessment and patients whose disease assessments are not evaluable. ¶Defined as the sum of the complete response, partial response, and stable disease.

Table 2: Response to treatment in patients treated with tucatinib plus trastuzumab (n=84)

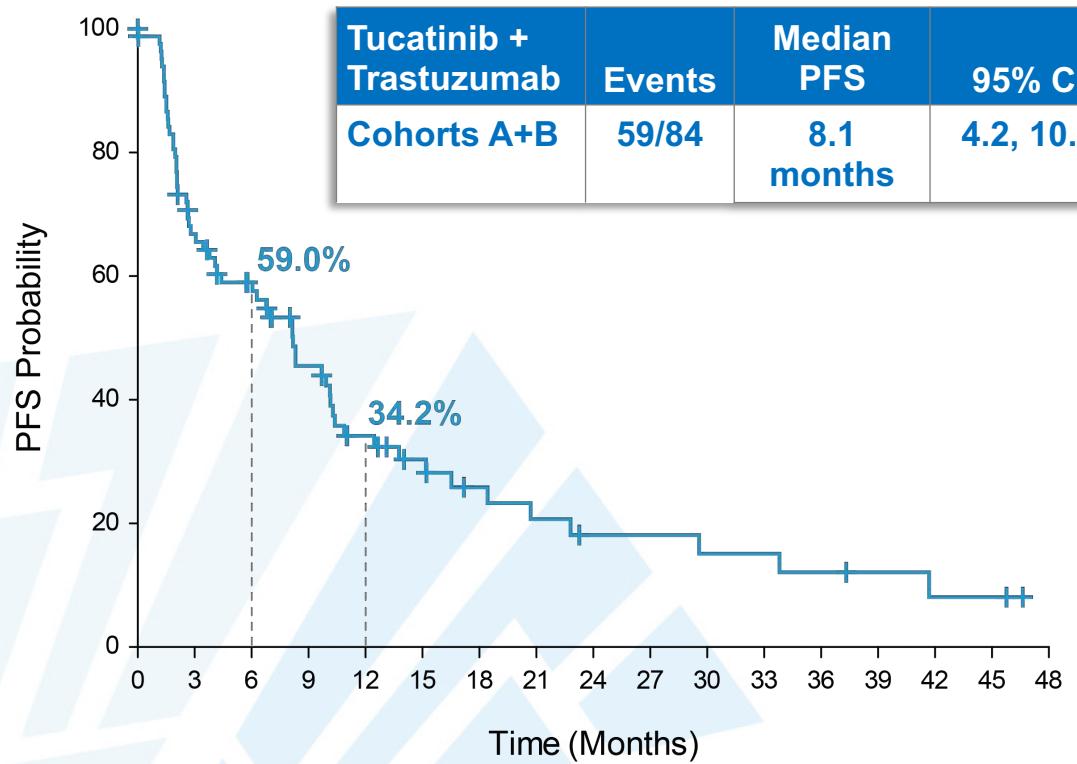
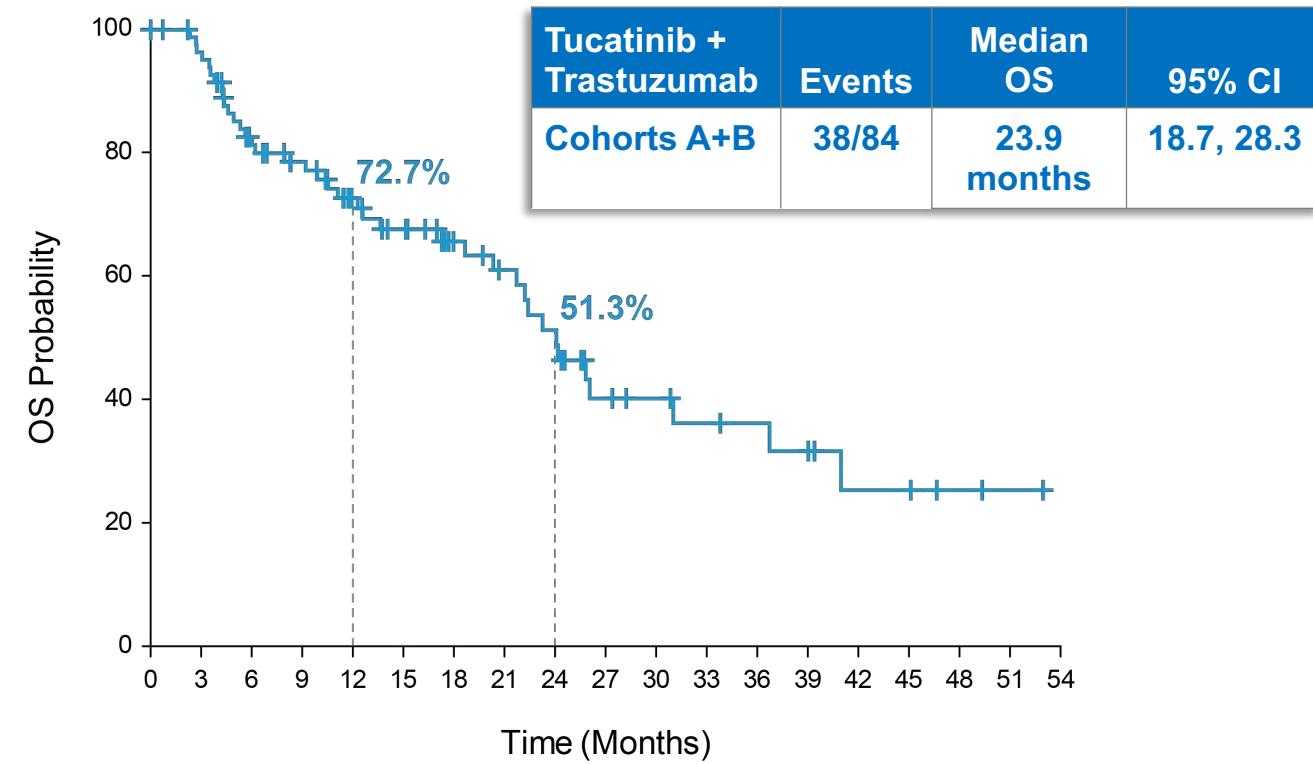


Figure 2: Anti-tumour activity in patients treated with tucatinib plus trastuzumab with available baseline and post-baseline lesion measurements (n=80)
 Shown are the maximum percentage changes in the sum of the diameters of target lesions per blinded independent central review for all patients treated with combination therapy who had baseline and post-baseline target lesion measurements. Four patients who did not have these measurements were excluded. Six patients had 100% reductions and a best overall confirmed response of partial response due to non-target lesions that had not completely resolved. Similarly, four patients with greater than 30% reduction were classified as having stable disease on the basis of failure to confirm the response due to progression. The upper dashed horizontal line indicates a 20% increase in tumour size, and the lower dashed line indicates a 30% decrease in tumour size (corresponding to the RECIST definitions for progressive disease and partial response).


Post-hoc subgroup analysis by HER2 status according to immunohistochemistry: confirmed ORR by BICR

- ✓ 46.7% (95% CI 31.7-62.1; 21 of 45 patients) in those with IHC 3+ tumours,
- ✓ 20.0% (4.3-48.1; three of 15 patients) in those with IHC 2+ and in-situ hybridisation-positive tumours
- ✓ 10.0% (0.3-44.5; one of ten patients) in those with HER2-negative tumours

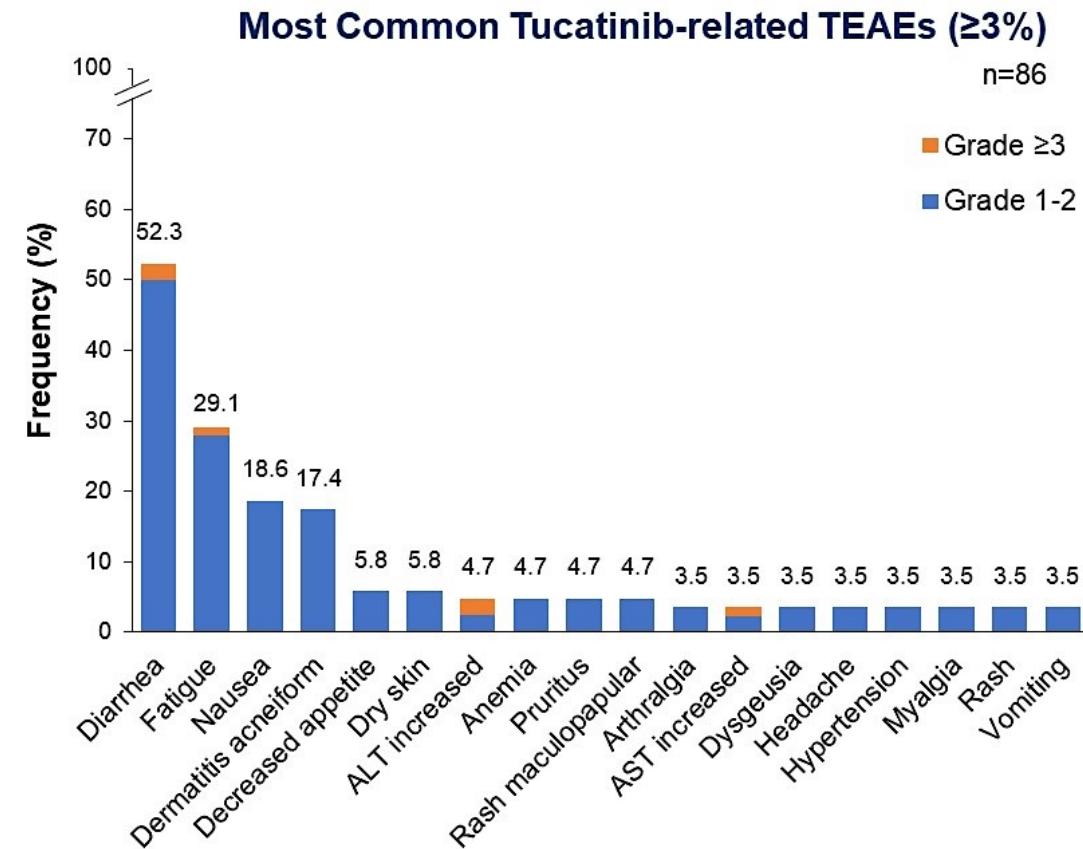
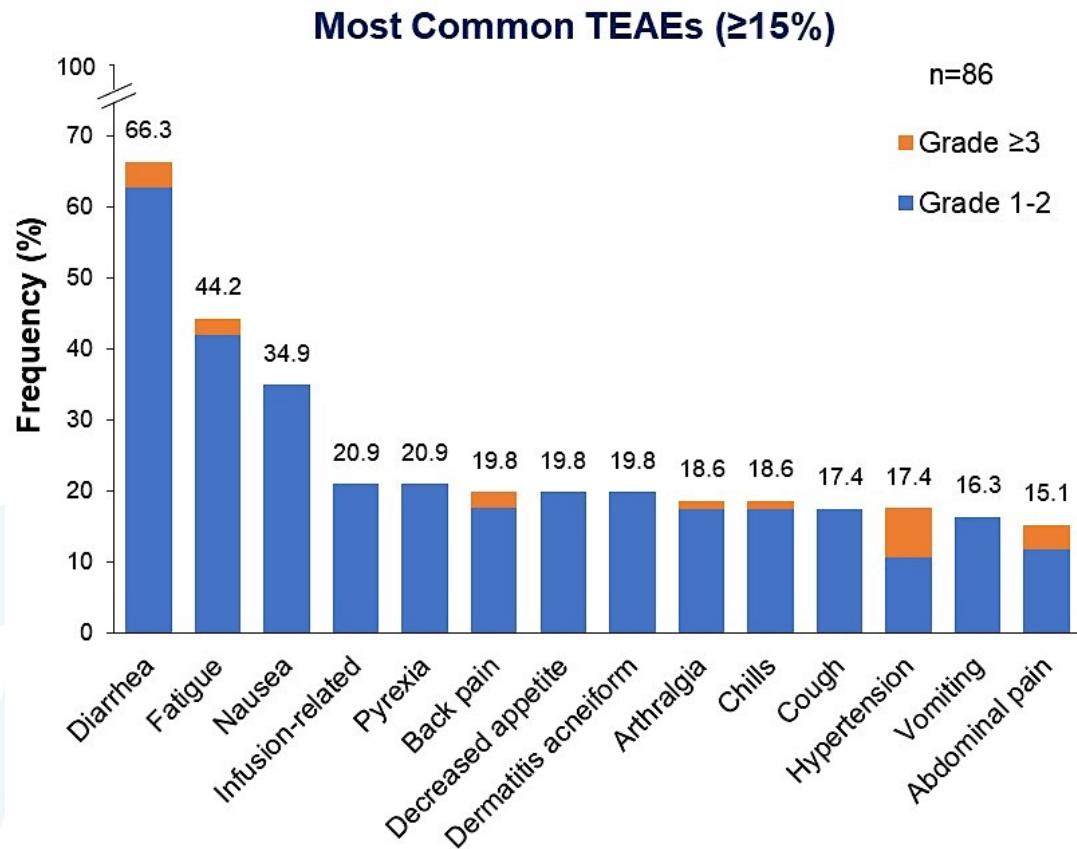
Progression-free Survival per BICR

Overall Survival

Median follow-up for Cohorts A+B in final analysis was 32.4 months.

BICR, blinded independent central review; IQR, interquartile range; OS, overall survival; PFS, progressive-free survival.

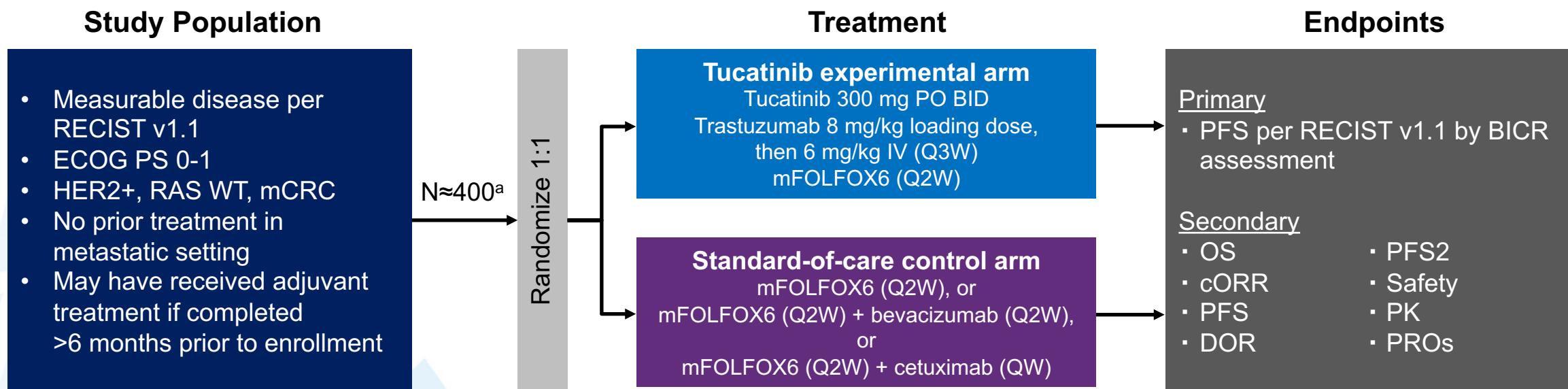
Data cutoff: 28 Mar 2022



Strickler JH...Van Cutsem E et al. *Lancet Oncol.* 2023; Strickler JH...Van Cutsem E et al. *ASCO 2024; Abstract 3509.*

- Clinical efficacy was similar across all 3 central HER2 testing methods

HER2 results	Tissue IHC/FISH		Tissue NGS (PGDx)		Blood NGS (G360)	
	+(n=60)	-(n=10)	+(n=44)	-(n=6)	+(n=59)	ND(n=16)
cORR, % (95% CI)	41.7 (29.1–55.1)	10.0 (0.3–44.5)	50.0 (34.6–65.4)	0 (0–45.9)	42.4 (29.6–55.9)	25.0 (7.3–52.4)
Median DOR, mo (95% CI)	16.6 (11.4–25.5)	–	16.6 (10.6–18.8)	–	16.6 (8.3–18.8)	15.2 (11.4–NE)
Median PFS, mo (95% CI)	10.1 (4.2–14.5)	2.8 (1.2–6.3)	10.9 (6.8–20.0)	2.1 (1.3–NE)	8.1 (3.1–10.3)	6.3 (2.0–25.5)

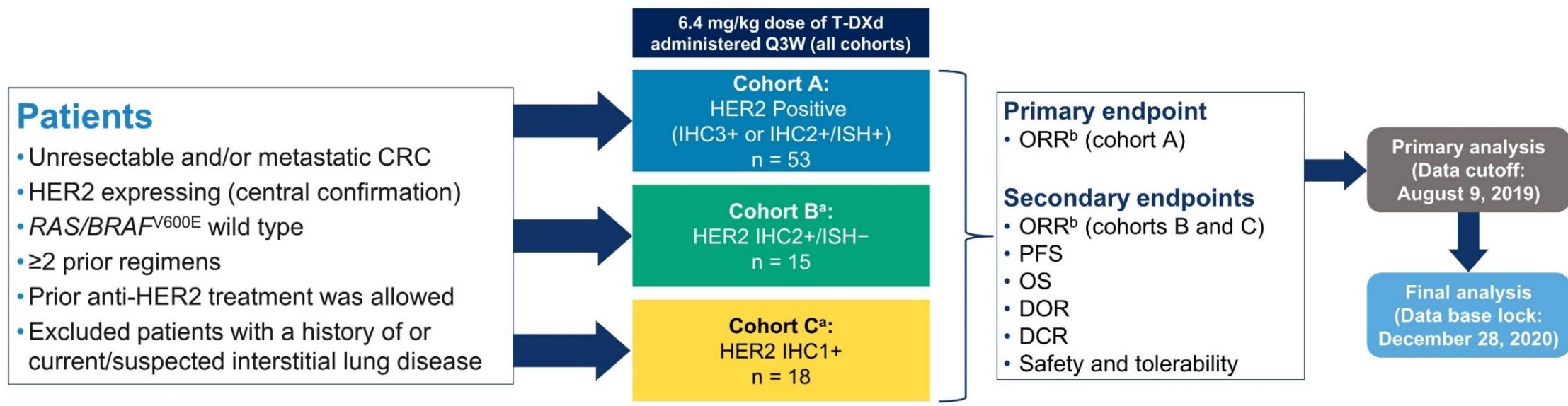
Note: To be included in this analysis, a patient had to have a local HER2+ test and ≥ 1 central HER2+ test from IHC/FISH, tissue-based NGS, and/or blood-based NGS.


CI, confidence interval; cORR, confirmed objective response rate; DOR, duration of response; FISH, fluorescent in situ hybridization; G360, Guardant360[®] CDx test; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; mo, months; ND, not detected; NE, not estimable; NGS, next-generation sequencing; PFS, progression-free survival; PGDx, PGDx elio tissue complete.

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TEAE, treatment-emergent adverse event.

- Most common tucatinib-related AEs: diarrhoea (52.3%), fatigue (29.1%), nausea (18.6%), and dermatitis acneiform (17.4%)
 - Grade ≥ 3 tucatinib-related AEs ($\geq 3\%$): alanine aminotransferase increase (2.3%) and diarrhoea (2.3%)

- MOUNTAINEER-03 (NCT05253651) is a global, open-label, randomized, phase 3 study of tucatinib with trastuzumab and mFOLFOX6 versus standard of care for the first-line treatment of HER2+ and RAS wild-type mCRC



a Stratification by both primary tumor location (left-sided versus all other) and liver metastases (presence or absence)

BICR, blinded independent central review; BID, twice a day; cORR, confirmed objective response rate; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group Performance Status; HER2, human epidermal growth factor receptor 2; IV, intravenously; mCRC, metastatic colorectal cancer; mFOLFOX6, modified 5-fluorouracil, leucovorin, and oxaliplatin; OS, overall survival; PFS, progression-free survival; PFS2, time from randomization to disease progression on next-line treatment or death from any cause; PK, pharmacokinetics; PO, by mouth; PROs, patient-reported outcomes; Q, each; RAS, rat sarcoma virus; RECIST, Response Evaluation Criteria in Solid Tumors; W, week; WT, wild-type.

DESTINY-CRC01 Study Design

An open-label, multicenter, phase 2 study (NCT03384940)

Primary analysis of cohort A¹

- Results yielded promising antitumor activity and a manageable safety profile
- The median follow-up was 27.1 weeks at data cutoff

Patient disposition at final analysis^c

- No patients remain on treatment
- At the end of the study, median follow-up was 62.4 weeks for cohort A, 27.0 weeks for cohort B and 16.9 weeks for cohort C

CRC, colorectal cancer; DCR, disease control rate; DOR, duration of response; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; q3w, every three weeks; RECIST, Response Evaluation Criteria in Solid Tumors; T-DXd, trastuzumab deruxtecan.

^aA futility monitoring analysis was done after ≥20 patients in Cohort A had 12 weeks of follow-up to inform opening of Cohorts B and C. ^bORR was based on RECIST version 1.1 in all cohorts. ^cData presented are from the full analysis set.

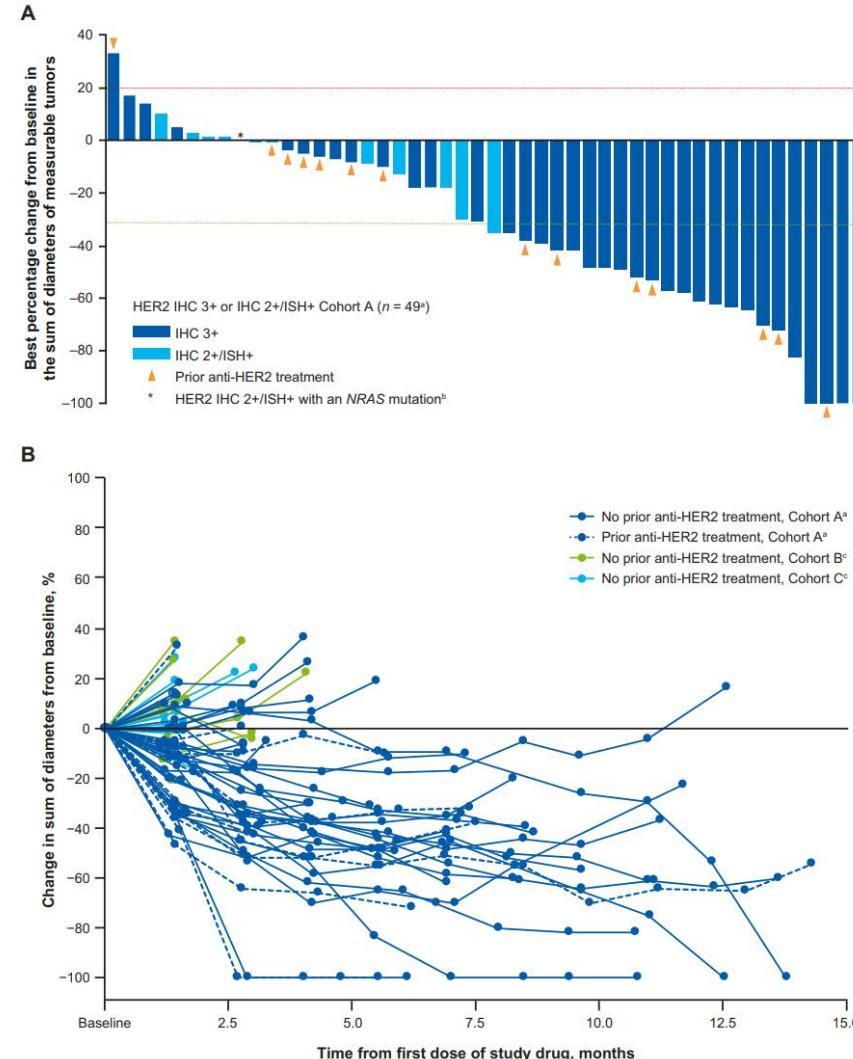
1. Siena S et al. *Lancet Oncol*. 2021;S1470-2045(21)00086-3.

Presented By: **Takayuki Yoshino**

#ASCO21

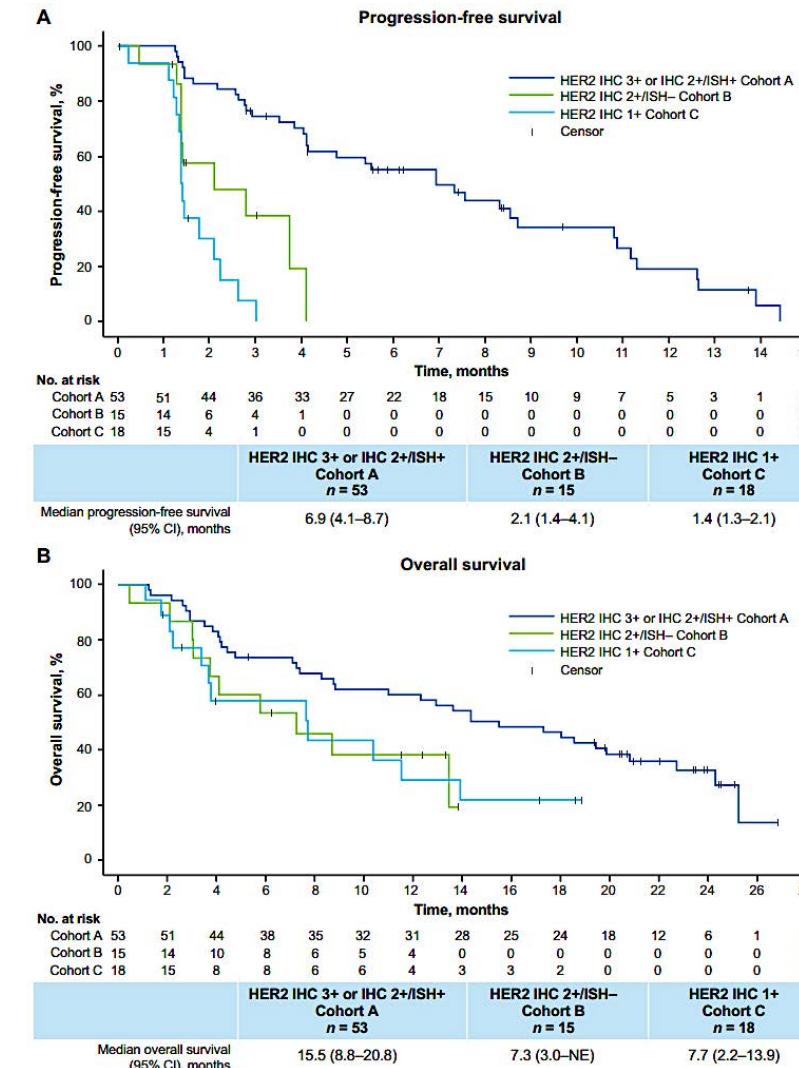
2021 ASCO[®]
ANNUAL MEETING

Siena S et al, *Lancet Oncol* 2021
Yoshino T et al, *Nat Comm* 2023


Table 3 | Key efficacy endpoints

	HER2 IHC 3+ or IHC 2+/ISH+ Cohort A n=53	HER2 IHC 2+/ISH- Cohort B n=15	HER2 IHC 1+ Cohort C n=18
Confirmed ORR by ICR	24 (45.3) [95% CI, 31.6–59.6]	0 [95% CI, 0.0–21.8]	0 [95% CI, 0.0–18.5]
Complete response	0	0	0
Partial response	24 (45.3)	0	0
Stable disease	20 (37.7)	9 (60.0)	4 (22.2)
Progressive disease	5 (9.4)	5 (33.3)	10 (55.6)
Not evaluable ^a	4 (7.5)	1 (6.7)	4 (22.2)
DCR	83.0 (70.2–91.9)	60.0 (32.3–83.7)	22.2 (6.4–47.6)
Median DoR, months	7.0 (5.8–9.5)	NE (NE–NE)	NE (NE–NE)
Median treatment duration, months	5.1 (3.9–7.6)	2.1 (1.4–2.6)	1.4 (1.3–1.5)

Data are presented as n (%), % (95% CI), or medians (95% CI).


DCR disease control rate, DoR duration of response, ICR independent central review, IHC immunohistochemistry, ISH in situ hybridization, NE not evaluable, ORR objective response rate.

^aPatients were missing postbaseline scans.

Fig. 1 | Antitumor activity of trastuzumab deruxtecan. A Waterfall plot showing the greatest percentage change from baseline in the sum of diameters of measurable tumors in patients with HER2-positive mCRC (cohort A). Each bar represents a patient. The line at 20% indicates progressive disease. The line at -30% indicates partial response. B Spider plot showing change over time from baseline in the sum of diameters of measurable tumors in cohorts A, B, and C. ^aFour patients from the

full analysis set were excluded; 1 patient had no measurable target lesion and 3 patients had no postbaseline data.^bBy local assessment. ^cOne patient from cohort B and 5 patients from cohort C had missing postbaseline data. HER2 human epidermal growth factor receptor 2, IHC immunohistochemistry, ISH in situ hybridization.

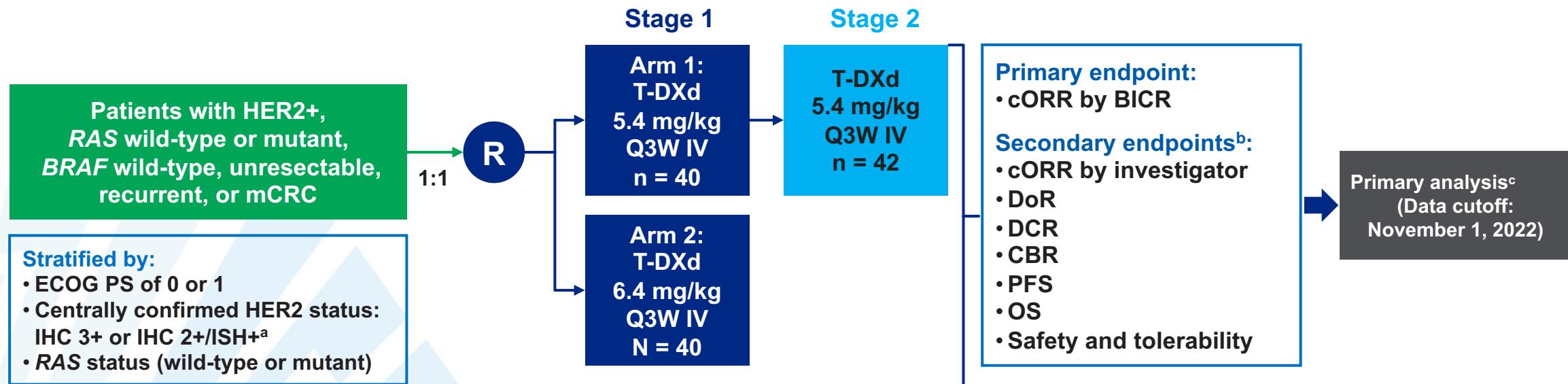
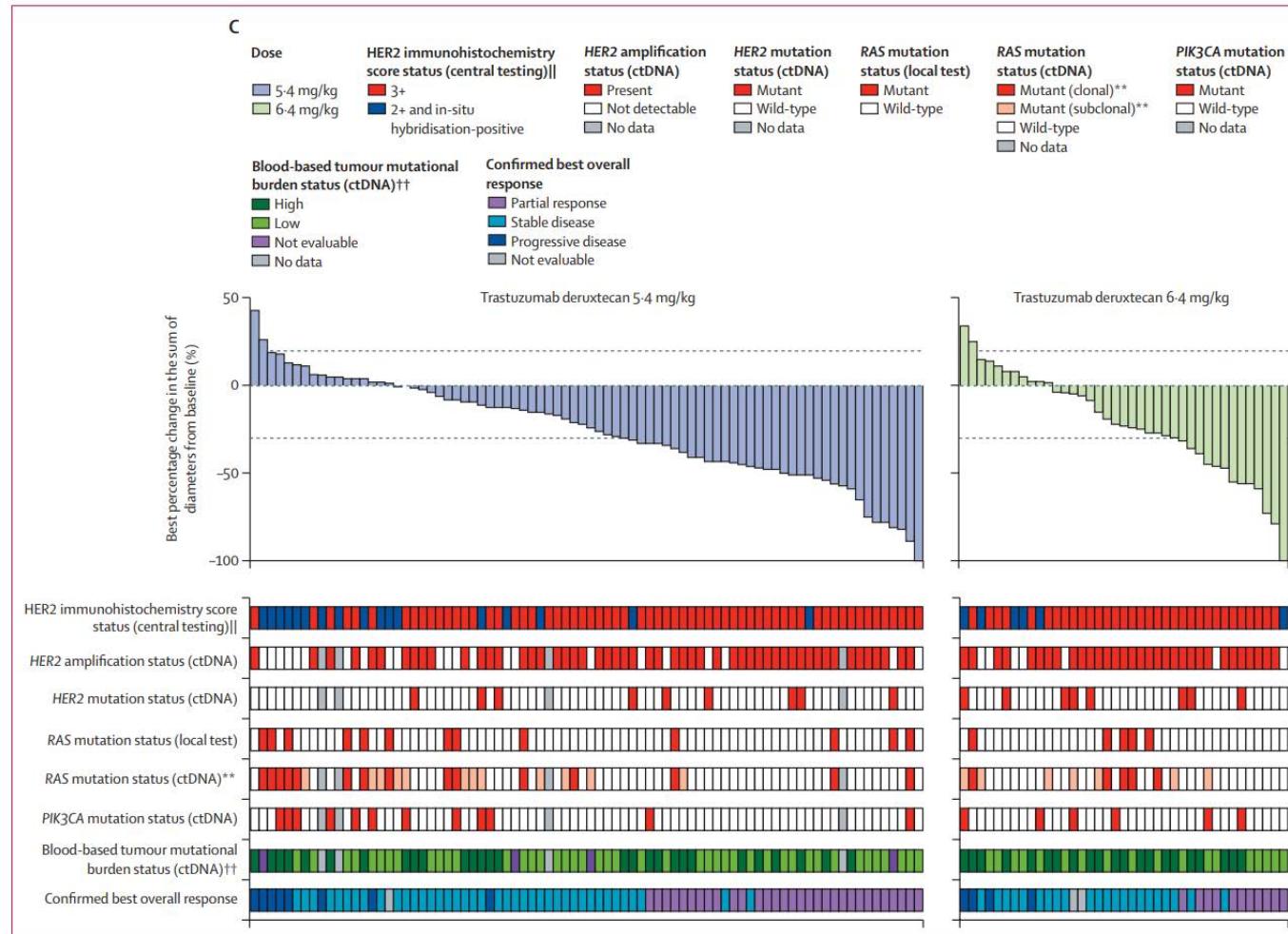


Fig. 2 | Progression-free survival and overall survival in patients with HER2-positive and HER2-low mCRC receiving trastuzumab deruxtecan. Kaplan-Meier curves representing (A) progression-free survival and (B) overall survival. Marks

indicate where data were censored. HER2 human epidermal growth factor receptor 2, IHC immunohistochemistry, ISH in situ hybridization, NE not evaluable.

A randomized, blinded, 2-stage, 2-arm, multicenter, global, phase 2 study (NCT04744831)

- Stage 1 (randomized) was followed by Stage 2 (nonrandomized), which enrolled an additional 42 patients


This study was not powered to statistically compare the two arms.

BICR, blinded independent central review; BRAF, v-raf murine sarcoma viral oncogene homolog B1; CBR, clinical benefit rate; cORR, confirmed objective response rate; DCR, disease control rate; DoR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; IV, intravenously; mCRC, metastatic colorectal cancer; OS, overall survival; PFS, progression-free survival; Q3W, every 3 weeks; R, randomization; RAS, rat sarcoma; T-DXd, trastuzumab deruxtecan. Both investigators and patients were blind to treatments.

^aHER2 status was assessed with the Roche VENTANA HER2 Dual ISH DNA probe cocktail assay (IUO). ^bExploratory endpoints included best percent change in the sum of diameters of measurable tumors based on BICR and investigator. ^cPrimary analysis occurred ≥6 months after the last patient had been enrolled or when all patients discontinued from the study, whichever was earlier.

	T-DXd 5.4 mg/kg Q3W			T-DXd 6.4 mg/kg Q3W
	Stage 1 n = 40	Stage 2 n = 42	Total N = 82	Stage 1 N = 40
cORR, n (%) [95% CI]	18 (45.0) [29.3-61.5]	13 (31.0) [17.6-47.1]	31 (37.8) [27.3-49.2]	11 (27.5) [14.6-43.9]
CR	0	0	0	0
PR	18 (45.0)	13 (31.0)	31 (37.8)	11 (27.5)
SD	20 (50.0)	20 (47.6)	40 (48.8)	23 (57.5)
PD	2 (5.0)	6 (14.3)	8 (9.8)	4 (10.0)
NE	0	3 (7.1)	3 (3.7)	2 (5.0)
Confirmed DCR, n (%) [95% CI]	38 (95.0) [83.1-99.4]	33 (78.6) [63.2-89.7]	71 (86.6) [77.3-93.1]	34 (85.0) [70.2-94.3]
Median DoR, mo (95% CI)	8.1 (4.2-NE)	4.6 (4.1-7.0)	5.5 (4.2-8.1)	5.5 (3.7-NE)
Median follow-up, mo (range)	10.6 (2.9-17.1)	7.7 (0.5-10.3)	8.9 (0.5-17.1)	10.3 (0.7-16.4)
Median treatment duration, mo (range)	5.5 (1.4-13.2)	4.8 (0.7-10.8)	5.5 (0.7-13.2)	4.9 (0.7-13.8)
Median total dose, mg/kg (range)	39.6 (10.5-96.8)	37.4 (5.4-81.3)	37.8 (5.4-96.8)	40.8 (6.4-128.4)
Median number of cycles initiated (range)	8.0 (2-19)	7.0 (1-15)	7.0 (1-19)	7.0 (1-20)

cORR, confirmed objective response rate; CR, complete response; DCR, disease control rate; DoR, duration of response; mo, month; NE, not evaluable; PD, progressive disease; PR, partial response; Q3W, every 3 weeks; SD, stable disease; T-DXd, trastuzumab deruxtecan.

Figure 2: Subgroup analyses of confirmed objective response rate and best percentage change in the sum of the diameters of all target lesions

(A) Subgroup analyses of confirmed objective response rate in patients in the trastuzumab deruxtecan 5.4 mg/kg group. (B) Subgroup analyses of confirmed objective response rate in patients in the trastuzumab deruxtecan 6.4 mg/kg group. (C) Percentage change in the sum of diameters by blinded independent central review. Only patients with measurable disease at baseline and at least one post-baseline tumour assessment were included in the figure. Three patients with evaluable ctDNA were not evaluable per Response Evaluation Criteria in Solid Tumours version 1.1 and are not included in the figure. The dashed line at 20% denotes progressive disease and the dashed line at -30% denotes partial response, per Response Evaluation Criteria in Solid Tumours version 1.1. ctDNA=circulating tumour DNA. ECOG=Eastern Cooperative Oncology Group. NA=not applicable. *Based on the exact Clopper-Pearson method for binomial distribution. †Subgroups with fewer than ten patients are reported as NA. #Includes rectum, sigmoid, and descending. \$Includes caecum, ascending, and transverse. ¶All RAS-mutant responders were immunohistochemistry score 3+. ||HER2 status was assessed by central laboratory. **RAS mutations were considered clonal if clonality score was ≥ 0.3 and subclonal if clonality score was < 0.3 . ††Blood-based tumour mutational burden cutoff was 20 mutations per Mb.

	Trastuzumab deruxtecan 5.4 mg/kg group (n=83*)				Trastuzumab deruxtecan 6.4 mg/kg group (n=39)			
	Grade 1-2	Grade 3	Grade 4	Grade 5	Grade 1-2	Grade 3	Grade 4	Grade 5
Any drug-related treatment-emergent adverse events	42 (51%)	29 (35%)	4 (5%)	1 (1%)	18 (46%)	13 (33%)	6 (15%)	0
Nausea	39 (47%)	6 (7%)	0	0	22 (56%)	0	0	0
Alopecia	18 (22%)	NA	NA	NA	11 (28%)	NA	NA	NA
Decreased appetite	16 (19%)	2 (2%)	0	0	6 (15%)	0	0	0
Diarrhoea	14 (17%)	2 (2%)	0	0	8 (21%)	0	0	0
Asthenia	14 (17%)	2 (2%)	0	0	3 (8%)	2 (5%)	0	0
Fatigue	12 (14%)	4 (5%)	0	0	7 (18%)	0	0	0
Platelet count decreased	11 (13%)	3 (4%)	1 (1%)	0	7 (18%)	2 (5%)	2 (5%)	0
Anaemia	11 (13%)	6 (7%)	0	0	6 (15%)	8 (21%)	0	0
Vomiting	11 (13%)	3 (4%)	0	0	3 (8%)	0	0	0
Stomatitis	9 (11%)	0	0	0	5 (13%)	1 (3%)	0	0
Constipation	9 (11%)	0	0	0	1 (3%)	0	0	0
Aspartate aminotransferase increased	7 (8%)	0	0	0	5 (13%)	0	0	0
Neutropenia	6 (7%)	1 (1%)	0	0	0	1 (3%)	0	0
Neutrophil count decreased	5 (6%)	11 (13%)	2 (2%)	0	6 (15%)	6 (15%)	4 (10%)	0
White blood cell count decreased	4 (5%)	5 (6%)	0	0	2 (5%)	4 (10%)	0	0
Pneumonitis	4 (5%)	0	0	0	4 (10%)	0	0	0
Malaise	3 (4%)	1 (1%)	0	0	4 (10%)	0	0	0
Epistaxis	3 (4%)	1 (1%)	0	0	2 (5%)	0	0	0
Lymphocyte count decreased	3 (4%)	0	0	0	1 (3%)	1 (3%)	1 (3%)	0
Thrombocytopenia	3 (4%)	0	0	0	1 (3%)	0	1 (3%)	0
Hypoalbuminaemia	1 (1%)	1 (1%)	0	0	0	0	0	0
Candida infection	0	1 (1%)	0	0	0	0	0	0
Pneumonia bacterial infection	0	1 (1%)	0	0	0	0	0	0
Dizziness	0	1 (1%)	0	0	0	0	0	0
Febrile neutropenia	0	1 (1%)	0	0	0	0	1 (3%)	0
Pancytopenia	0	0	1 (1%)	0	0	0	0	0
Sepsis	0	0	1 (1%)	0	0	0	0	0
Hepatic failure	0	0	0	1 (1%)	0	1 (3%)	0	0
Hypokalaemia	0	0	0	0	0	2 (5%)	0	0
Hepatic encephalopathy	0	0	0	0	0	0	1 (3%)	0

Data are n (%). Data are from the total population treated with trastuzumab deruxtecan (safety analysis set). For treatment-emergent adverse events of grade 1 or 2, any occurring in $\geq 10\%$ of patients are reported here. All grade 3, 4, and 5 events are reported. NA=not applicable. *One patient randomly assigned to receive trastuzumab deruxtecan 6.4 mg/kg was mistakenly given trastuzumab deruxtecan 5.4 mg/kg and counted in the 5.4 mg/kg group safety analysis set.

Table 3: Drug-related treatment-emergent adverse events

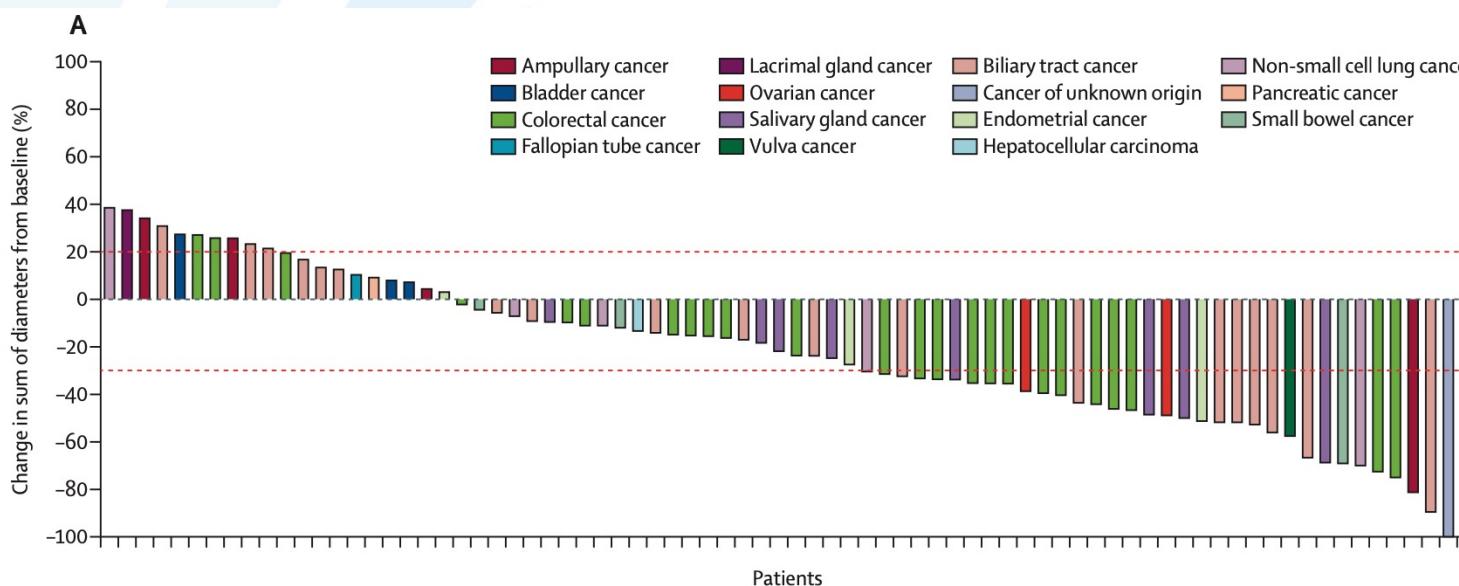
Adjudicated drug-related interstitial lung disease or pneumonitis

☐ **Destiny CRC-02: n=7 (8%) in 5.4 mg/kg
n=5 (13%) in 6.4 mg/kg
all grade 1 or 2**

☐ **Destiny CRC-01:**

Table 6 | Drug-related adjudicated interstitial lung disease/pneumonitis events

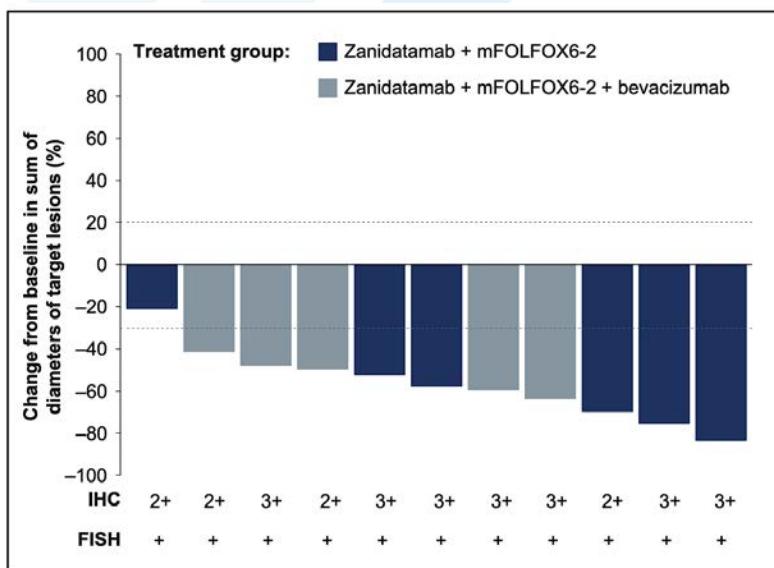
	HER2 IHC 3 + or IHC 2 +/ISH + Cohort A n = 53	HER2 IHC 2 + / ISH - Cohort B n = 15	HER2 IHC 1 + Cohort C n = 18	All Patients N = 86
Grade 1	0	0	0	0
Grade 2	2 (3.8)	2 (13.3)	0	4 (4.7)
Grade 3	0	0	1 (5.6)	1 (1.2)
Grade 4	0	0	0	0
Grade 5	2 (3.8)	1 (6.7)	0	3 (3.5)
Any grade/ total	4 (7.5)	3 (20.0)	1 (5.6)	8 (9.3) ^a


Data are presented as n (%).

HER2 human epidermal growth factor receptor 2, IHC immunohistochemistry, ILD interstitial lung disease, ISH *in situ* hybridization.

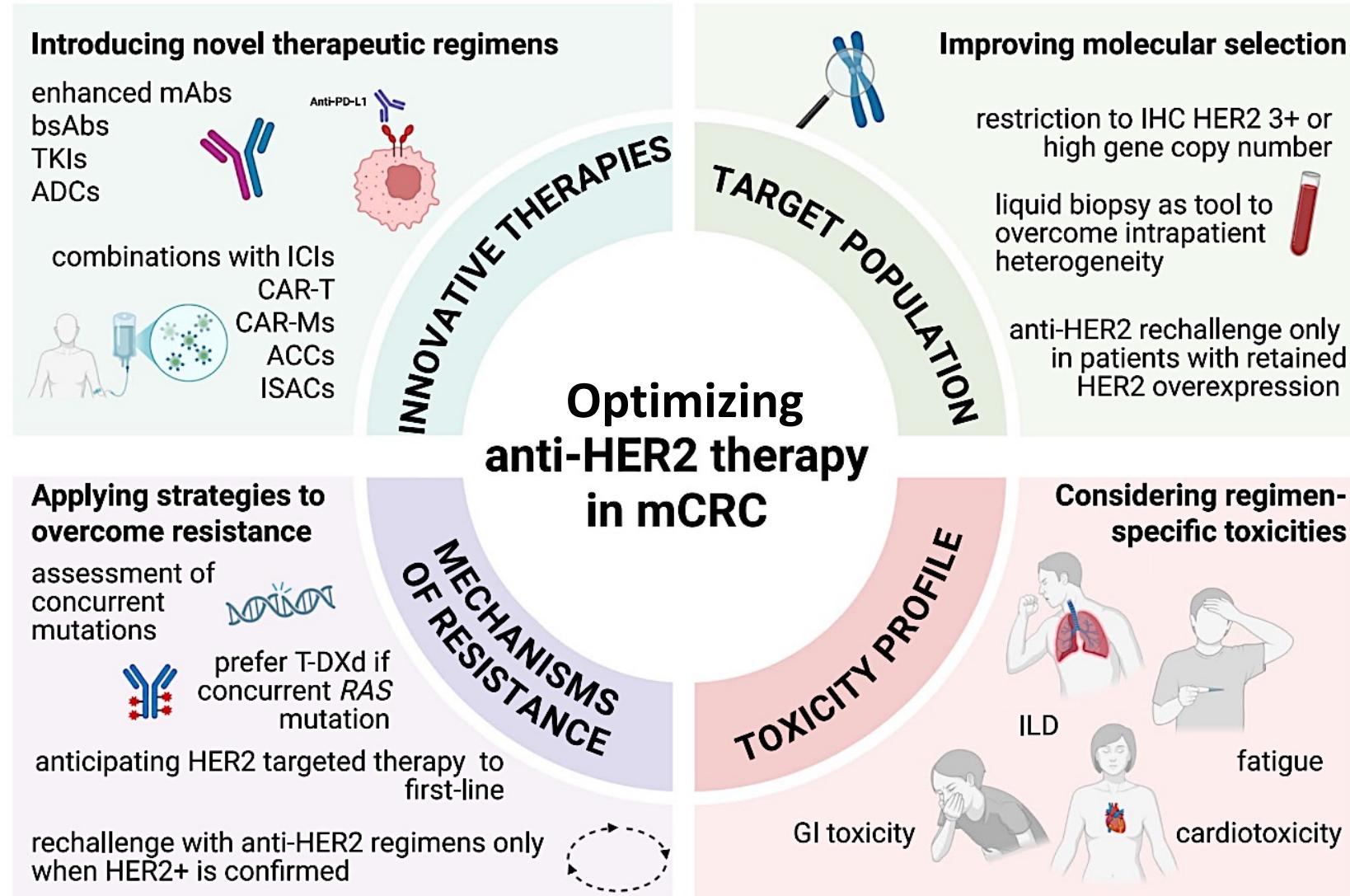
^aILD grades are the highest/most severe grade recorded in a patient.

	Biliary tract cancer (n=21)	Colorectal cancer (n=26)	Other cancer types (n=36)	Total (n=83)
Confirmed objective response, n (%) [95% CI]	8 (38% [18 to 62])	10 (38% [20 to 59])	13 (36% [21 to 54])	31 (37% [27 to 49])
Partial response, n (%)	8 (38%)	10 (38%)	13 (36%)	31 (37%)
Stable disease, n (%)	5 (24%)	10 (38%)	16 (44%)	31 (37%)
Progressive disease, n (%)	8 (38%)	6 (23%)	7 (19%)	21 (25%)
Clinical benefit rate*	38% (18 to 62)	58% (37 to 77)	53% (35 to 70)	51% (39 to 62)
Disease control rate†	62% (38 to 82)	77% (56 to 91)	81% (64 to 92)	75% (64 to 84)
Median duration of response, months‡	8.5 (3.2 to not estimable)	5.6 (2.8 to 16.7)	9.7 (3.7 to not estimable)	6.9 (5.6 to 16.7)
Had event, n/n (%)	6/8 (75%)	9/10 (90%)	7/13 (54%)	22/31 (71%)
Censored, n/n (%)	2/8 (25%)	1/10 (10%)	6/13 (46%)	9/31 (29%)
Progression-free survival, months§	3.5 (1.8 to 6.7)	6.8 (3.5 to 7.8)	5.5 (3.6 to 8.3)	5.4 (3.7 to 7.3)
Had event, n (%)	19/22 (86%)	24/28 (86%)	28/36 (78%)	71/86 (83%)
Censored, n (%)	3/22 (14%)	4/28 (14%)	8/36 (22%)	15/86 (17%)


	Part 1: dose escalation (n=46)		Part 2: dose expansion (n=86)	
	Grade 1–2	Grade 3	Grade 1–2	Grade 3
Diarrhoea	24 (52%)	0	36 (42%)	1 (1%)
Infusion reaction	20 (43%)	0	29 (34%)	0
Nausea	9 (20%)	0	8 (9%)	0
Fatigue	8 (17%)	1 (2%)	8 (9%)	0
Vomiting	5 (11%)	0	6 (7%)	0
Decreased appetite	2 (4%)	1 (2%)	2 (2%)	0
Arthralgia	1 (2%)	1 (2%)	0	0
Hypertension	0	1 (2%)	0	0
Hypophosphataemia	0	1 (2%)	0	0

First-Line Zanidatamab + Chemotherapy for HER2-positive mCRC

	Zanidatamab + mFOLFOX6-2 (n=6)	Zanidatamab + mFOLFOX6-2 + bevacizumab (n=5)	Total (N=11)
cORR			
n (%)	5 (83.3)	5 (100)	10 (90.9)
95% CI	35.9, 99.6	47.8, 100	58.7, 99.8
cBOR, n (%)			
CR	0 (0)	0 (0)	0 (0)
PR	5 (83.3)	5 (100)	10 (90.9)
SD	1 (16.7)	0 (0)	1 (9.1)
PD	0 (0)	0 (0)	0 (0)
DCR^b			
n (%)	6 (100)	5 (100)	11 (100)
95% CI	54.1, 100	47.8, 100	71.5, 100


Median (range) duration of response:
Not reached (2.9+–16.7+) months

	Zanidatamab + mFOLFOX6-2 (n=6)	Zanidatamab + mFOLFOX6-2 + bevacizumab (n=7) ^a	Total (N=13)			
Any TEAE, n (%)	6 (100)	7 (100)	13 (100)			
Any TRAE,^b n (%)	6 (100)	7 (100)	13 (100)			
Grade 1-2	4 (66.7)	4 (57.1)	8 (61.5)			
Grade 3-4	2 (33.3)	3 (42.9)	5 (38.5)			
Grade 5	0 (0)	0 (0)	0 (0)			
Serious TRAE,^b n (%)	1 (16.7)	1 (14.3)	2 (15.4)			
TRAEs leading to zanidatamab discontinuation, n (%)	0 (0)	0 (0)	0 (0)			
Most common TRAEs,^{b,c} n (%)	Any grade	Grade 3-4	Any grade	Grade 3-4	Any grade	Grade 3-4
Diarrhoea	4 (66.7)	1 (16.7)	7 (100)	2 (28.6)	11 (84.6)	3 (23.1)
Nausea	4 (66.7)	0 (0)	5 (71.4)	1 (14.3)	9 (69.2)	1 (7.7)
Peripheral sensory neuropathy	4 (66.7)	0 (0)	3 (42.9)	1 (14.3)	7 (53.8)	1 (7.7)
Fatigue	1 (16.7)	0 (0)	3 (42.9)	1 (14.3)	4 (30.8)	1 (7.7)
Infusion-related reaction	2 (33.3)	0 (0)	2 (28.6)	0 (0)	4 (30.8)	0 (0)
Stomatitis	3 (50.0)	0 (0)	1 (14.3)	0 (0)	4 (30.8)	0 (0)
Ejection fraction decreased	2 (33.3)	0 (0)	1 (14.3)	1 (14.3)	3 (23.1)	1 (7.7)
Vomiting	1 (16.7)	0 (0)	2 (28.6)	1 (14.3)	3 (23.1)	1 (7.7)

Two of 12 DLT-evaluable patients had DLTs (diarrhoea) – 1 in each regimen

- ✓ Diarrhoea resolved with concomitant medication
- Three serious TRAEs in 2 patients
 - ✓ One patient experienced dehydration
 - ✓ One patient experienced colitis and acute kidney injury
- No discontinuations of zanidatamab due to TRAEs and no treatment-related deaths

Table 3 Anti-HER2 therapies under investigation

Trial NCT identifier (name), phase	Treatment regimen	Patient eligibility criteria	Status
ADCs			
NCT05578287 (DETECT) phase II	Disitamab vedotin-tislelizumab, low dose capecitabine, and celecoxib	HER2+ (HERACLES diagnostic criteria) pretreated mCRC	Recruiting
NCT05493683 phase II	Disitamab vedotin-tislelizumab	HER2+ (HERACLES diagnostic criteria) pretreated mCRC	Recruiting
NCT0530917 phase II	Disitamab vedotin-tislelizumab, pyrotinib	HER2+ (at least one tumor cell HER2 IHC 3+ or 2+/FISH+ or NGS confirmed amplification or mutation) progressed or intolerant to first-line therapy	Not yet recruiting
NCT05333809 phase II	Disitamab vedotin-pembrolizumab	HER2+ (HERACLES diagnostic criteria) pretreated mCRC	Unknown
NCT05785325 phase II	Disitamab vedotin-bevacizumab	HER2+ (IHC 3+ or 2+) pretreated mCRC	Unknown
NCT05661357 (HCCSC-C03) phase II	Disitamab vedotin-fruquintinib	HER2+ (IHC 1-3+ or amplification or mutation by NGS) pretreated mCRC	Active, not recruiting
NCT04704661 (DASH) phase I/Ib	T-DXd-ceralasertib	HER2+ (IHC 1-3+ or amplification by FISH or NGS) progressed to at least first-line therapy	Recruiting
NCT06500052 phase I	BL-M17D1	HER2 positive or low expressing pretreated advanced solid tumors	Recruiting
NCT06015048 phase I/Ib	Trastuzumab rezetecan-pyrotinib	HER2+ (overexpression or mutated) pretreated advanced solid tumors	Recruiting
bsAbs			
NCT06695845 (DiscovHER PAN-206) phase II	Zanidatamab	HER2 IHC 3+ pretreated advanced solid tumors	Recruiting
NCT03929666 phase II	Zanidatamab-mFOLFOX6, bevacizumab	HER2+ (IHC 3+ or amplification), RAS/BRAF-WT, pretreated mCRC (CRC cohort)	Active, not recruiting
Combinations with ICI			
NCT05985707 phase II	KN026 (anti-HER2 bsAb)-chemotherapy +/- KN46 (anti-PD-L1/CTLA-4 bsAb)	HER2+ (IHC 3+ or 2+ and HER2/CEP17 > 2 or HER copy number > 6), RAS/BRAF-WT, untreated mCRC (cohort A and B)	Active, not yet recruiting
NCT05193292 phase II	Trastuzumab-camrelizumab, chemotherapy	HER2+ (HERACLES diagnostic criteria or NGS sequencing of tumor tissue/blood HER2 amplification) untreated mCRC	Unknown
TKIs			
NCT05253651 (MOUNTAINEER-03) phase III	Tucatinib-trastuzumab, mFOLFOX6	HER2+, RAS-WT previously untreated mCRC	Recruiting
NCT04227041 phase I/II	Pyrotinib-capecitabine	HER2+ pretreated mCRC	Unknown
NCT06581432 (Beamion PANTUMOR-1) phase II	Zongertinib	HER2-mutated or amplified pretreated advanced solid tumors	Recruiting
NCT06328738 phase I/II	ELVN-002-trastuzumab, and mFOLFOX6	HER2+ (IHC3+ or 2+/ISH+ or amplification by NGS on tissue), RAS/BRAF-WT, pretreated mCRC (CRC cohort)	Recruiting

Table 3 (continued)

Trial NCT identifier (name), phase	Treatment regimen	Patient eligibility criteria	Status
NCT03457896 phase II	Neratinib-trastuzumab or neratinib-cetuximab	HER2-amplified, KRAS/NRAS/BRAF/PIK3CA- WT, pretreated mCRC	Unknown
NCT06434597 phase II	SPH5030 (selective, potent, and irreversible anti-HER2 TKI)	HER2+ (overexpression or mutated) pretreated mCRC or advanced biliary tract carcinoma	Recruiting
NCT06253871 phase I/Ib	IAM1363 (selective and brain-penetrant anti-HER2 TKI)	HER2 altered, pretreated advanced solid tumors	Recruiting
Other drugs or combinations			
NCT05673512 phase II/III	IAH0968 (afucosylated anti-HER mAb)-CAPOX	HER2+ (3+ or 2+/FISH+), RAS/BRAF-WT, previously untreated mCRC	Recruiting
NCT04831528 phase II	Trastuzumab-lapatinib or trastuzumab-pertuzumab (as second-line therapy in case of emergence of HER2 amplification)	HER2-amplified mCRC at PD to first-line therapy	Not yet recruiting
NCT05786716 (DETERMINE-treatment arm 04) phase II	Trastuzumab-pertuzumab	HER2+ (amplified or mutated) pretreated advanced solid tumors	Recruiting
Adoptive cell therapies			
<i>CAR-T</i>			
NCT03740256 (VISTA) phase I	HER2-specific CAR T-cells, with intra-tumor injection of an oncolytic adenovirus CAdVEC	HER2+ (IHC \geq 2+ in > 10% tumor cells) pretreated advanced solid tumors	Recruiting
<i>CAR-Ms</i>			
NCT04660929 phase I	Adenovirally transduced autologous macrophages engineered to contain an anti-HER2 chimeric antigen receptor	HER2+ pretreated advanced solid tumors	Not yet recruiting
<i>ACCs</i>			
NCT04319757 phase I	ACE1702 (anti-HER2 oNK cells)	HER2-expressing pretreated advanced solid tumors	Completed
<i>ISACs</i>			
NCT05514717 phase I	XMT-2056 (HT-19 conjugated to a STING agonist)	HER2 3+ or IHC 2+/ISH+ pretreated advanced solid tumors	Recruiting
NCT04278144 phase II	BDC-1001 (anti-HER2 mAb conjugated to a TLR 7/8 dual agonist) +/- nivolumab	HER2+ or amplified pretreated advanced solid tumors	Terminated
NCT05091528 phase I/II	pertuzumab zuvotolimod (pertuzumab conjugated to TLR8 agonist) +/- T-DXd or tucatinib-capecitabine	HER2+ or amplified pretreated advanced solid tumors	Terminated

ACCs antibody-cell conjugates, ADCs antibody-drug conjugates, bsAbs bispecific antibodies, CAR-T chimeric antigen receptor T-cells therapy, CAR-Ms chimeric antigen receptor macrophages, FISH fluorescent in situ hybridization, ICIs immune checkpoint inhibitors, IHC immunohistochemistry, ISH in situ hybridization, ISACs immune-stimulating antibody conjugates, mAb monoclonal antibody, mCRC metastatic colorectal cancer, NCT National Clinical Trial number (ClinicalTrials.org), NGS next-generation sequencing, PD progressive disease, T-DXd trastuzumab deruxtecan, TLR toll like receptor, TKIs tyrosine kinase inhibitors, WT wild-type

- **MOUNTAINEER study**

Tucatinib and trastuzumab works well in *RAS* WT cases with IHC 3+, but also active in IHC2+/ISH+

- **DESTINY-CRC02 Study**

Recommended dose of T-DXd for mCRC is 5.4 mg/kg
T-DXd works well in IHC 3+ cases regardless of RAS status
Regardless of prior anti-HER2 therapy

- Studies in earlier disease are ongoing (e.g. MOUNTAINEER-03)
- Studies with new agents are ongoing (e.g. zanidatamab)

Questions from General Medical Oncologists — Colorectal Cancer

74 yr old male initially diagnosed with Stage III colon cancer treated with 12 cycles of FOLFOX. 14 months later he developed multiple liver mets, HER2 IHC 3+, KRAS/BRAF WT. Would you skip FOLFIRI/bev and treat with the MOUNTAINEER regimen or T-DXd?

62 y/o male, advanced CRC that progressed on FOLFOX6 and bev. Liver lesion is HER2-amplified and RAS/BRAF WT. Choice between trastuzumab + tucatinib vs T-DXd?

Questions from General Medical Oncologists — Colorectal Cancer

72-year-old man with metastatic colon cancer, HER2 mutation detected on NGS. Are HER2 mutations approached the same way as HER2 overexpression? What is the overall incidence of HER2 mutations in mCRC? Is the likelihood high enough to justify repeat tissue biopsy vs liquid biopsy at progression? What about lung TKIs — zongertinib and sevabertinib?

77 yr old male with metastatic colon cancer and multiple liver and peritoneal mets progressed on treatment with FOLFOX/bev and FOLFIRI/bev and now has brain mets. Tumor is KRAS/BRAF WT but HER2 IHC 3+. Is your preferred regimen tucatinib/trastuzumab or T-DXd?

Questions from General Medical Oncologists — Colorectal Cancer

62 yo F with HER2+ mCRC, also has KRAS mutation, progressed after 12 months of T-DXd. What is the impact of KRAS mutation on response to anti-HER2 therapy? What is the likelihood of response if changing therapy from T-DXd to tucatinib/trastuzumab?

54-year-old M with L-sided colon cancer with numerous hepatic mets, HER2 IHC 3+, RAS/BRAF WT, MSS. Treated 1L with FOLFOX + panitumumab. PD after 3 months with RP adenopathy and rising CEA, transitioned to tucatinib + trastuzumab. Has PR, then PD after 8 months with increasing hepatic mets. Biopsy shows persistent HER2 IHC 3+, newly acquired KRAS G12D mutation, new EGFR amplification. Would one consider T-DXd or target other pathways after patient has progressed through double HER2 blockade?

Questions from General Medical Oncologists — Colorectal Cancer

Patient with HER2+ mCRC, BRAF mutation-positive, KRAS wild-type, progressed after 18 months of T-DXd. What is the next line of therapy? Continue anti-HER2 agent and add a BRAF inhibitor? Or stop anti-HER2 therapy and change therapy to FOLFIRI/cetuximab/encorafenib?

I have a 60 yo man with no comorbidities with liver-only CRC, potentially resectable, KRAS G12D mutated, HER2 IHC 3+. As first-line therapy, would there be any role for HER2-targeted therapy in addition to FOLFOX/bev to shrink tumor for possible resection later?

45 yo with screening colonoscopy reveals sigmoid HER2+ colon cancer, T4 high-risk Stage II. What adjuvant tx do you offer?

Questions from General Medical Oncologists — Colorectal Cancer

72 yo w/ ASHD, HTN and DM, ejection fraction 39%. Progressed on FOLFOX6 and bev. Tumor is HER2-amplified. Is it safe to give T-DXd? What about tucatinib/trastuzumab? Is diarrhea a major problem with tucatinib? What is your recommended HER2 testing workflow in CRC (IHC/ISH vs NGS), and how do you handle equivocal or heterogeneous HER2 findings?

70 yr old female with colon cancer widely metastatic to the liver s/p treatment with FOLFOX + bev and FOLFIRI + bev and on regorafenib for the past 4 years. Now with progression. Patient has HER2-positive disease. Comorbidities: HTN, DM, diabetic neuropathy, CKD, chronic back issues with pain pump. I am thinking about T-DXd next as she is NRAS mutated, and I will obtain repeat NGS as her NGS testing was 10 year ago. Thoughts?

Expert Second Opinion: Current and Future Roles of Immunotherapy and Targeted Therapy in the Management of Advanced Gastroesophageal Cancers

A CME Symposium Held Adjunct to the 2026 ASCO® Gastrointestinal Cancers Symposium

Friday, January 9, 2026
6:00 PM – 8:00 PM PT

Faculty

Jaffer A Ajani, MD
David H Ilson, MD, PhD
Rutika Mehta, MD, MPH

Moderator

Samuel J Klempner, MD

**Thank you for joining us!
Your feedback is very important to us.**

Please complete the premeeting survey currently available via the corresponding QR code on the printed handout for attendees in the room and on Zoom for those attending virtually. The survey will remain open up to 5 minutes after the meeting ends.

How to Obtain CME Credit

In-person attendees: Please refer to the program syllabus for the CME credit link or QR code. Online/Zoom attendees: The CME credit link is posted in the chat room.