Cancer Conference Update: 2025 ESMO Annual Meeting — Breast Cancer Highlights

CME/MOC-Accredited Live Webinar

Thursday, November 13, 2025 5:00 PM - 6:30 PM ET

Faculty

Professor Giuseppe Curigliano, MD, PhD
Priyanka Sharma, MD

Faculty

Professor Giuseppe Curigliano, MD, PhD
Clinical Director
Division of Early Drug Development for
Innovative Therapy
Co-Chair, Cancer Experimental
Therapeutics Program
Department of Oncology and Hemato-Oncology
University of Milano
European Institute of Oncology
Milano, Italy

MODERATOR
Neil Love, MD
Research To Practice
Miami, Florida

Priyanka Sharma, MD

Frank B Tyler Professor in Cancer Research
Division of Medical Oncology
Department of Internal Medicine
Co-Program Leader
Drug Discovery, Delivery and Experimental Therapeutics Program
The University of Kansas Cancer Center
Westwood, Kansas

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, and Lilly.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: Aadi Bioscience, AbbVie Inc, ADC Therapeutics, Agendia Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Arvinas, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeOne, Black Diamond Therapeutics Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celcuity, Clovis Oncology, Coherus BioSciences, Corcept Therapeutics Inc, CTI BioPharma, a Sobi Company, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, Exact Sciences Corporation, Exelixis Inc, Genentech, a member of the Roche Group, Genmab US Inc, Geron Corporation, Gilead Sciences Inc, GSK, Helsinn Therapeutics (US) Inc, Hologic Inc, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Jazz Pharmaceuticals Inc, Johnson & Johnson, Karyopharm Therapeutics, Kite, A Gilead Company, Kura Oncology, Legend Biotech, Lilly, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Mural Oncology Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Nuvalent, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Rigel Pharmaceuticals Inc, R-Pharm US, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Pharma America, Syndax Pharmaceuticals, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, and Tesaro, A GSK Company.

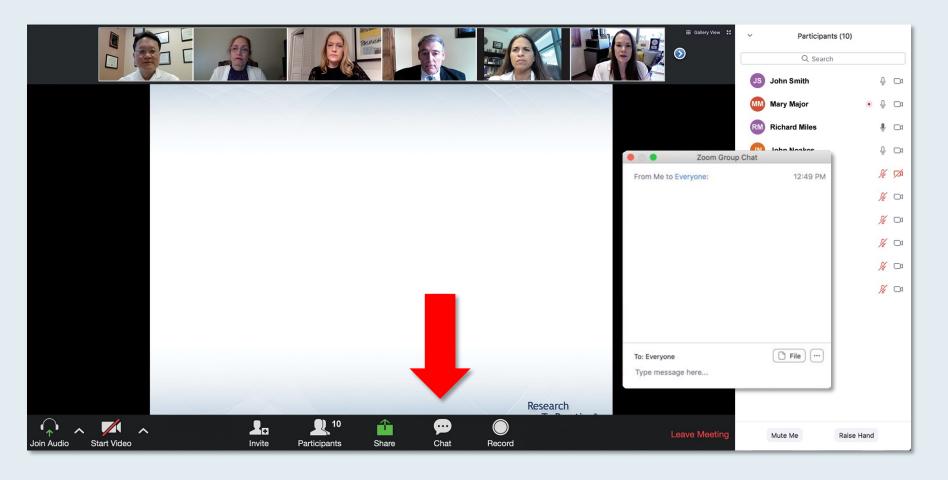
Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Prof Curigliano — **Disclosures**

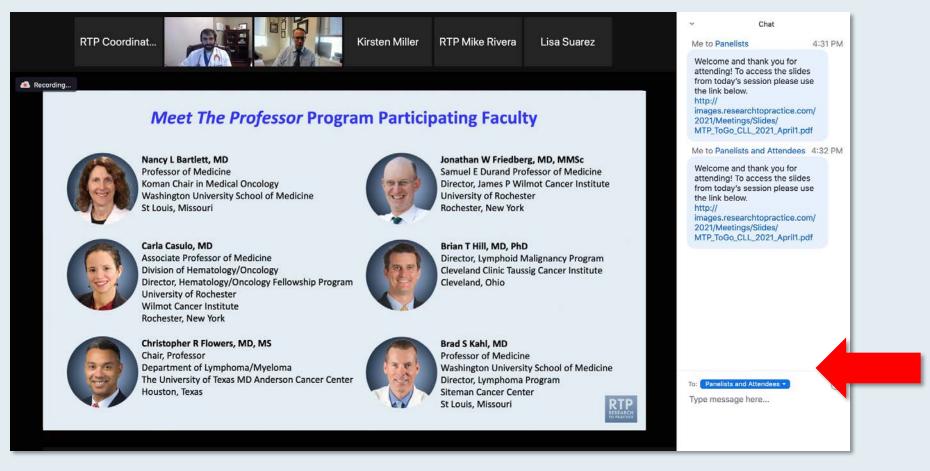
Advisory Committees, Consulting Agreements and Speakers Bureaus	AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Gilead Sciences Inc, Lilly, Menarini Group, Novartis, Pfizer Inc
Data and Safety Monitoring Boards/Committees	Roche Laboratories Inc

Dr Sharma — **Disclosures**


Advisory Committees	AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Gilead Sciences Inc, Menarini Group, Merck, Novartis, Pfizer Inc, Stemline Therapeutics Inc
Contracted Research	Bristol Myers Squibb, Gilead Sciences Inc, Novartis
Data and Safety Monitoring Boards/Committees	Jazz Pharmaceuticals Inc

This educational activity contains discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.

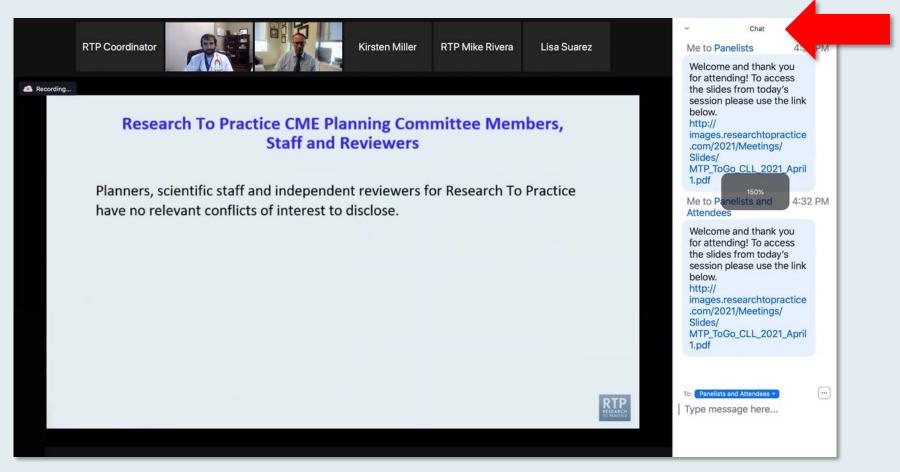
We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box



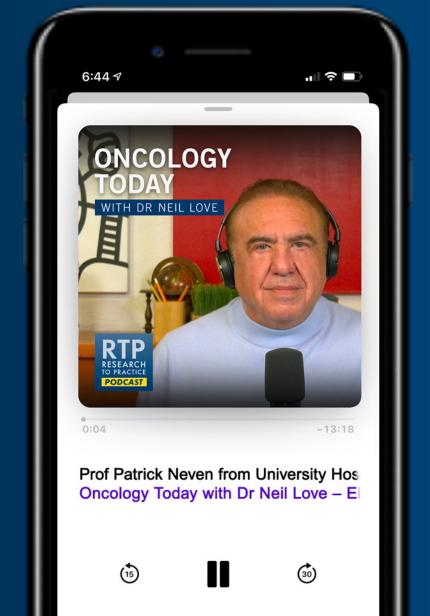
Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys


ER-Positive Metastatic Breast Cancer — An Interview with Prof Patrick Neven on the Role of Oral Selective Estrogen Receptor Degraders

Practical Perspectives: Clinical Investigators Review Actual Cases of Patients with Advanced Gastroesophageal Cancers

A CME/MOC-Accredited Live Webinar

Tuesday, November 18, 2025 5:00 PM - 6:00 PM ET

Faculty
Yelena Y Janjigian, MD

Preventing and Managing Toxicities Associated with Antibody-Drug Conjugates in the Management of Metastatic Breast Cancer

A CME/MOC-Accredited Live Webinar

Wednesday, November 19, 2025 5:00 PM – 6:00 PM ET

Faculty

Lisa A Carey, MD, ScM, FASCO Rita Nanda, MD

Cancer Conference Update: ESMO Congress 2025 — Urothelial Bladder Cancer and Prostate Cancer

A CME/MOC-Accredited Live Webinar

Thursday, November 20, 2025 5:00 PM - 6:00 PM ET

Faculty

Terence Friedlander, MD Rana R McKay, MD

Exciting CME Events You Do Not Want to Miss

A Friday Satellite Symposium Series Preceding the 67th ASH Annual Meeting

Friday, December 5, 2025

Acute Myeloid Leukemia 7:30 AM – 9:30 AM ET Myelofibrosis and Systemic Mastocytosis 3:15 PM – 5:15 PM ET

Chronic Lymphocytic Leukemia 11:30 AM – 1:30 PM ET Follicular Lymphoma and Diffuse Large B-Cell Lymphoma 7:00 PM – 9:00 PM ET

Cases from the Community: Investigators Discuss the Optimal Management of Breast Cancer

A 3-Part CME Satellite Symposium Series

Antibody-Drug Conjugates for Metastatic Breast Cancer Tuesday, December 9, 2025 7:00 PM – 8:30 PM CT

HER2-Positive Breast Cancer Wednesday, December 10, 2025 7:00 PM – 9:00 PM CT

Endocrine-Based Therapy Thursday, December 11, 2025 7:00 PM – 9:00 PM CT

Grand Rounds

CME/MOC-Accredited Interactive Series

November 2025 to April 2026

Two Series

Optimizing Treatment for Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia

Optimizing the Use of Novel Therapies for Patients with Diffuse Large B-Cell Lymphoma

Host a 1-hour session at your institution: Email Meetings@ResearchToPractice.com or call (800) 233-6153

Save The Date

Fifth Annual National General Medical Oncology Summit

A Multitumor CME/MOC-, NCPD- and ACPE-Accredited Educational Conference Developed in Partnership with Florida Cancer Specialists & Research Institute

Friday to Sunday, April 24 to 26, 2026

The Ritz-Carlton Orlando, Grande Lakes | Orlando, Florida

Moderated by Neil Love, MD

Thank you for joining us! Please take a moment to complete the survey currently up on Zoom. Your feedback is very important to us.

Information on how to obtain CME, ABIM MOC and ABS credit will be provided at the conclusion of the activity in the Zoom chat room. Attendees will also receive an email in 1 to 3 business days with these instructions.

Cancer Conference Update: 2025 ESMO Annual Meeting — Breast Cancer Highlights

CME/MOC-Accredited Live Webinar

Thursday, November 13, 2025 5:00 PM - 6:30 PM ET

Faculty

Professor Giuseppe Curigliano, MD, PhD
Priyanka Sharma, MD

Faculty

Professor Giuseppe Curigliano, MD, PhD
Clinical Director
Division of Early Drug Development for
Innovative Therapy
Co-Chair, Cancer Experimental
Therapeutics Program
Department of Oncology and Hemato-Oncology
University of Milano
European Institute of Oncology
Milano, Italy

MODERATOR
Neil Love, MD
Research To Practice
Miami, Florida

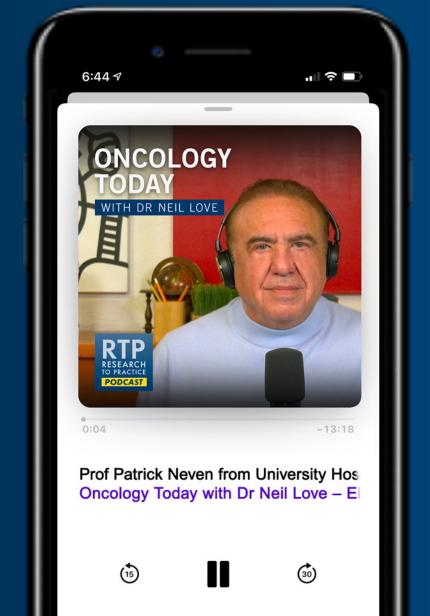
Priyanka Sharma, MD

Frank B Tyler Professor in Cancer Research
Division of Medical Oncology
Department of Internal Medicine
Co-Program Leader
Drug Discovery, Delivery and Experimental Therapeutics Program
The University of Kansas Cancer Center
Westwood, Kansas

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys


ER-Positive Metastatic Breast Cancer — An Interview with Prof Patrick Neven on the Role of Oral Selective Estrogen Receptor Degraders

Practical Perspectives: Clinical Investigators Review Actual Cases of Patients with Advanced Gastroesophageal Cancers

A CME/MOC-Accredited Live Webinar

Tuesday, November 18, 2025 5:00 PM - 6:00 PM ET

Faculty
Yelena Y Janjigian, MD

Preventing and Managing Toxicities Associated with Antibody-Drug Conjugates in the Management of Metastatic Breast Cancer

A CME/MOC-Accredited Live Webinar

Wednesday, November 19, 2025 5:00 PM – 6:00 PM ET

Faculty

Lisa A Carey, MD, ScM, FASCO Rita Nanda, MD

Cancer Conference Update: ESMO Congress 2025 — Urothelial Bladder Cancer and Prostate Cancer

A CME/MOC-Accredited Live Webinar

Thursday, November 20, 2025 5:00 PM - 6:00 PM ET

Faculty

Terence Friedlander, MD Rana R McKay, MD

Exciting CME Events You Do Not Want to Miss

A Friday Satellite Symposium Series Preceding the 67th ASH Annual Meeting

Friday, December 5, 2025

Acute Myeloid Leukemia 7:30 AM – 9:30 AM ET Myelofibrosis and Systemic Mastocytosis 3:15 PM – 5:15 PM ET

Chronic Lymphocytic Leukemia 11:30 AM – 1:30 PM ET Follicular Lymphoma and Diffuse Large B-Cell Lymphoma 7:00 PM – 9:00 PM ET

Cases from the Community: Investigators Discuss the Optimal Management of Breast Cancer

A 3-Part CME Satellite Symposium Series

Antibody-Drug Conjugates for Metastatic Breast Cancer Tuesday, December 9, 2025 7:00 PM – 8:30 PM CT

HER2-Positive Breast Cancer Wednesday, December 10, 2025 7:00 PM – 9:00 PM CT

Endocrine-Based Therapy Thursday, December 11, 2025 7:00 PM – 9:00 PM CT

Grand Rounds

CME/MOC-Accredited Interactive Series

November 2025 to April 2026

Two Series

Optimizing Treatment for Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia

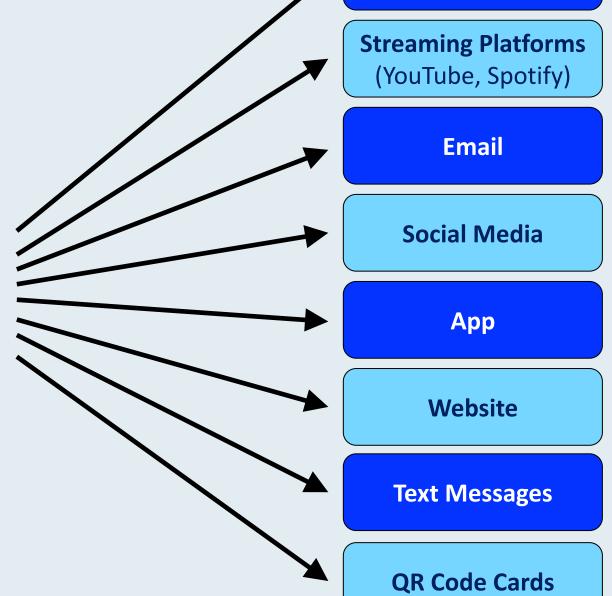
Optimizing the Use of Novel Therapies for Patients with Diffuse Large B-Cell Lymphoma

Host a 1-hour session at your institution: Email Meetings@ResearchToPractice.com or call (800) 233-6153

Save The Date

Fifth Annual National General Medical Oncology Summit

A Multitumor CME/MOC-, NCPD- and ACPE-Accredited Educational Conference Developed in Partnership with Florida Cancer Specialists & Research Institute


Friday to Sunday, April 24 to 26, 2026

The Ritz-Carlton Orlando, Grande Lakes | Orlando, Florida

Moderated by Neil Love, MD

RTP Content Distribution Platform 9-28-24 to 9-28-25

	Year	Month
Total (hours)	280	24
Recordings	93	7
Webinars	41	4
Cases	62	5
Meetings	84	7
Final	218	18

Podcast

Cancer Conference Update: 2025 ESMO Annual Meeting — Breast Cancer Highlights

CME/MOC-Accredited Live Webinar

Thursday, November 13, 2025 5:00 PM - 6:30 PM ET

Faculty

Professor Giuseppe Curigliano, MD, PhD
Priyanka Sharma, MD

Prof Curigliano — **Disclosures**

Advisory Committees, Consulting Agreements and Speakers Bureaus	AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Gilead Sciences Inc, Lilly, Menarini Group, Novartis, Pfizer Inc
Data and Safety Monitoring Boards/Committees	Roche Laboratories Inc

Dr Sharma — **Disclosures**

Advisory Committees	AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Gilead Sciences Inc, Menarini Group, Merck, Novartis, Pfizer Inc, Stemline Therapeutics Inc
Contracted Research	Bristol Myers Squibb, Gilead Sciences Inc, Novartis
Data and Safety Monitoring Boards/Committees	Jazz Pharmaceuticals Inc

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: Aadi Bioscience, AbbVie Inc, ADC Therapeutics, Agendia Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Arvinas, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeOne, Black Diamond Therapeutics Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celcuity, Clovis Oncology, Coherus BioSciences, Corcept Therapeutics Inc, CTI BioPharma, a Sobi Company, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, Exact Sciences Corporation, Exelixis Inc, Genentech, a member of the Roche Group, Genmab US Inc, Geron Corporation, Gilead Sciences Inc, GSK, Helsinn Therapeutics (US) Inc, Hologic Inc, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Jazz Pharmaceuticals Inc, Johnson & Johnson, Karyopharm Therapeutics, Kite, A Gilead Company, Kura Oncology, Legend Biotech, Lilly, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Mural Oncology Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Nuvalent, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Rigel Pharmaceuticals Inc, R-Pharm US, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Pharma America, Syndax Pharmaceuticals, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, and Tesaro, A GSK Company.

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, and Lilly.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

This educational activity contains discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.

Agenda

Module 1: HER2-Positive Breast Cancer

Module 2: HR-Positive Breast Cancer

Module 3: Triple-Negative Breast Cancer

Agenda

Module 1: HER2-Positive Breast Cancer

Module 2: HR-Positive Breast Cancer

Module 3: Triple-Negative Breast Cancer

DESTINY-Breast09

Loibl S et al. Trastuzumab deruxtecan (T-DXd) + pertuzumab (P) vs taxane
 + trastuzumab + pertuzumab (THP) for patients (pts) with HER2+
 advanced/metastatic breast cancer (a/mBC): Additional analyses of
 DESTINY-Breast09 in key subgroups of interest. ESMO 2025; Abstract LBA18.

Abstract LBA18

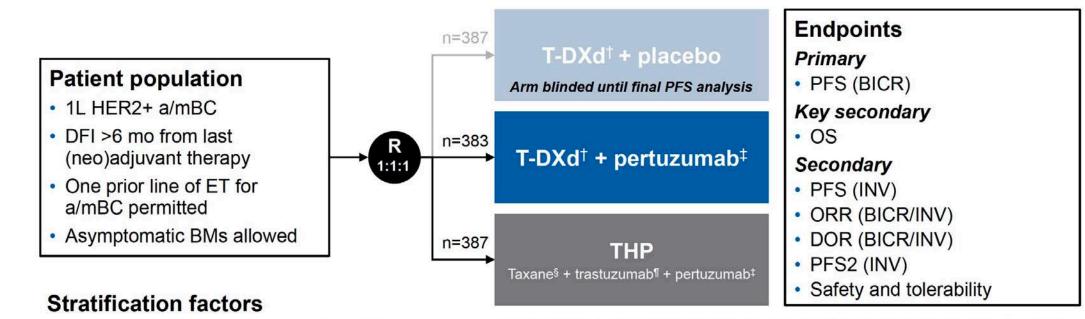
Trastuzumab deruxtecan (T-DXd) + pertuzumab vs taxane + trastuzumab + pertuzumab (THP) for patients with HER2+ advanced/metastatic breast cancer: additional analyses of DESTINY-Breast09 in key subgroups of interest

Sibylle Loibl, MD, PhD

University Hospital Goethe, University Frankfurt/M, GBG Neu-Isenburg, Germany

Co-authors: Zefei Jiang, Romualdo Barroso-Sousa, Yeon Hee Park, Cristina Saura, Mothaffar F Rimawi, Andreas Schneeweiss, Masakazu Toi, Seock-Ah Im, Zhongsheng Tong, Umut Demirci, Cynthia Villarreal-Garza, Chiun-Sheng Huang, Toshimi Takano, Valentina Guarneri, Shoubhik Mondal, Doudou Huang, Angela Zeng, Sara M Tolaney

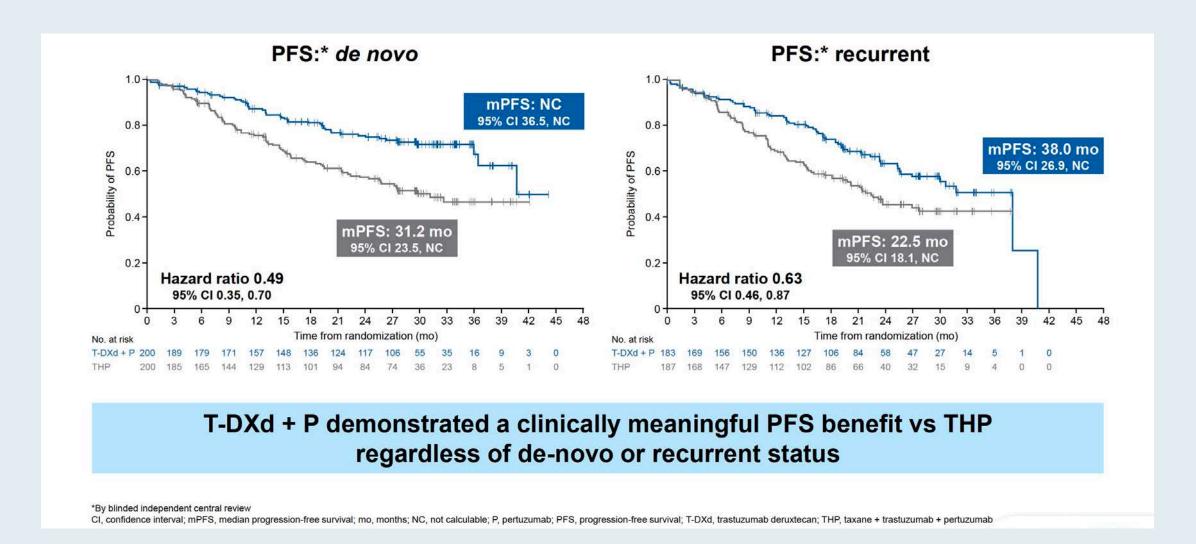
On behalf of the DESTINY-Breast09 investigators


Sunday, October 19, 2025 Presentation LBA18

Phase III DESTINY-Breast09 Study Design

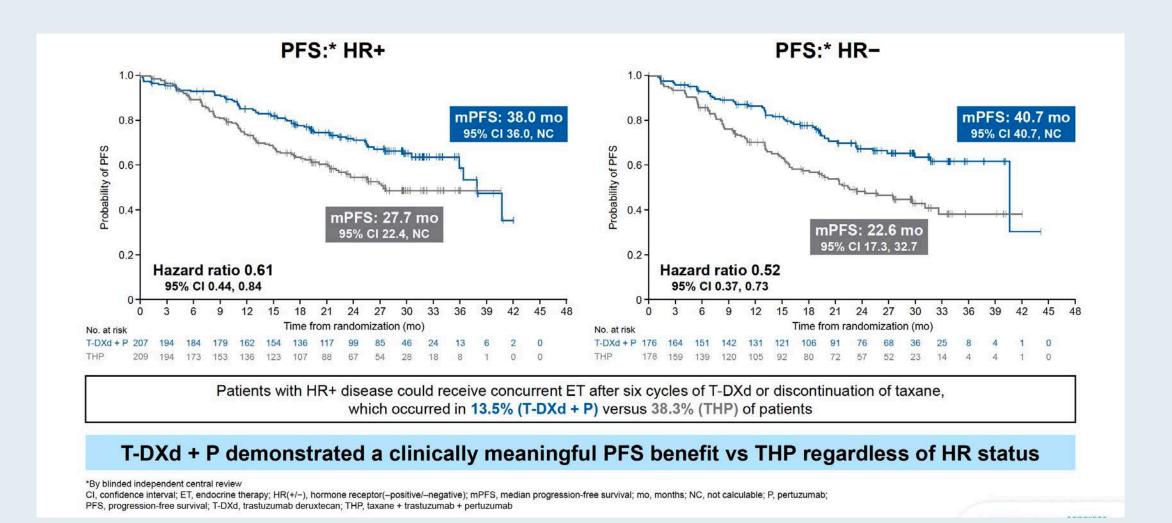
- If T-DXd was discontinued owing to AEs (except Grade >2 ILD), patients could switch to trastuzumab
- Concurrent use of ET (aromatase inhibitor or tamoxifen) was allowed for those with HR+ disease after six cycles of T-DXd or discontinuation of taxane

De-novo (~52%) vs recurrent a/mBC

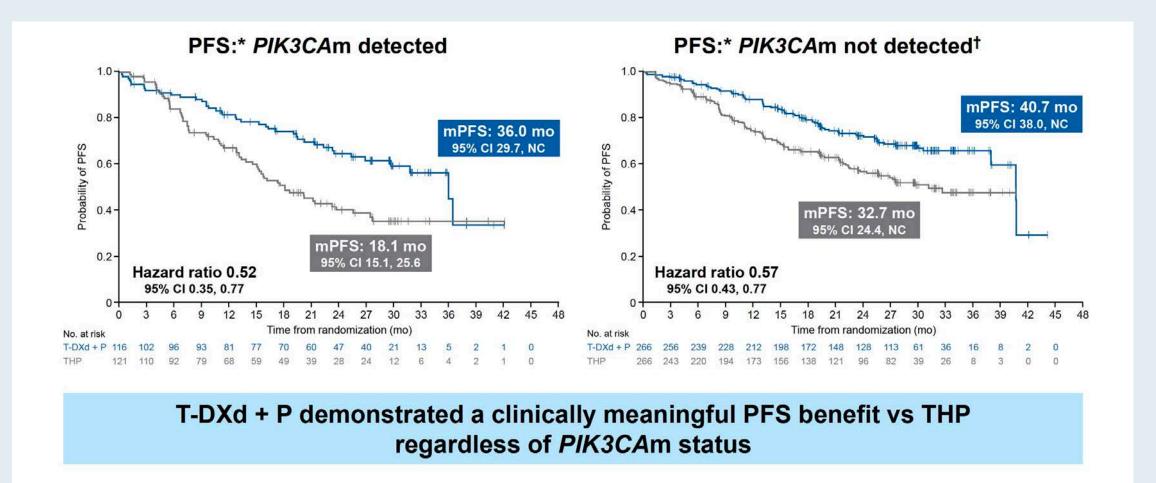

PIK3CAm detected (~31%) vs not detected

HR+ (~54%) or HR-

^{*}Open label for THP arm, double blinded for pertuzumab in experimental arms; 15.4 mg/kg Q3W; 1840 mg loading dose, then 420 mg Q3W; Spaclitaxel 80 mg/m² QW or 175 mg/m² Q3W, or docetaxel 75 mg/m² Q3W for a minimum of six cycles or until intolerable toxicity; 8 mg/kg loading dose, then 6 mg/kg Q3W; Without loading dose


¹L, first-line; AE, adverse event; a/mBC, advanced/metastatic breast cancer; BICR, blinded independent central review; BM, brain metastasis; DFI, disease-free interval; DOR, duration of response; ET, endocrine therapy; HER2+, human epidermal growth factor receptor 2–positive; HR+/-, hormone receptor—positive/—negative; ILD, interstitial lung disease; INV, investigator; mo, months; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PFS2, second progression-free survival; PIK3CAm, PIK3CA mutation; Q3W, every 3 weeks; QW, once weekly; R, randomization; T-DXd, trastuzumab deruxtecan; THP, taxane + trastuzumab + pertuzumab 1. Tolaney SM, et al. Oral presentation at ASCO 2025 (Abstract LBA1008); 2. NCT04784715, Updated, August 1, 2025, Available from: https://clinicaltrials.gov/study/NCT04784715 (Accessed October 15, 2025)

Phase III DESTINY-Breast09: PFS by Treatment Status



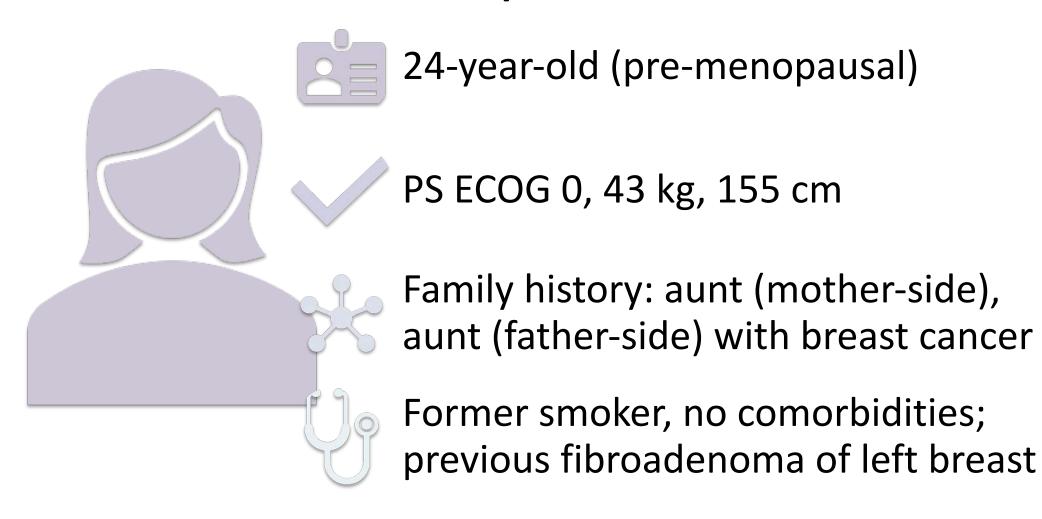
Phase III DESTINY-Breast09: PFS by HR Status

Phase III DESTINY-Breast09: PFS by PIK3CAm Status

Cl, confidence interval; mo, months; mPFS, median progression-free survival; NC, not calculable; P, pertuzumab; PFS, progression-free survival; PIK3CAm, PIK3CA mutation; T-DXd, trastuzumab deruxtecan; THP, taxane + trastuzumab + pertuzumab

Phase III DESTINY-Breast09: Authors' Conclusions

- In this subgroup analysis of DESTINY-Breast09, 1L treatment with T-DXd + P demonstrated a clinically meaningful PFS benefit vs THP regardless of prior treatment, HR, or PIK3CAm status, reflecting results in the overall population
- DOR consistently favored T-DXd + P (median of ~3 years), and CR rates were higher with T-DXd + P (13.7–16.5%) than THP (4.1–10.7%) in all subgroups
- No new safety signals were identified for T-DXd + P; safety outcomes for each arm were broadly similar across subgroups and in line with the overall population


T-DXd + P represents an effective 1L treatment for patients with HER2+ a/mBC, regardless of prior treatment, HR, or *PIK3CA*m status

1L, first-line; a/mBC, advanced/metastatic breast cancer; CR, complete response; DOR, duration of response; HER2+, human epidermal growth factor receptor 2–positive; HR, hormone receptor; P, pertuzumab; PFS, progression-free survival; PIK3CAm, PIK3CAm, PIK3CAm, PIK3CAm, trastuzumab deruxtecan; THP, taxane + trastuzumab + pertuzumab

Prof Curigliano: Case Presentation #1

The patient

Prof Curigliano: Case Presentation #1 (Continued)

Diagnosis

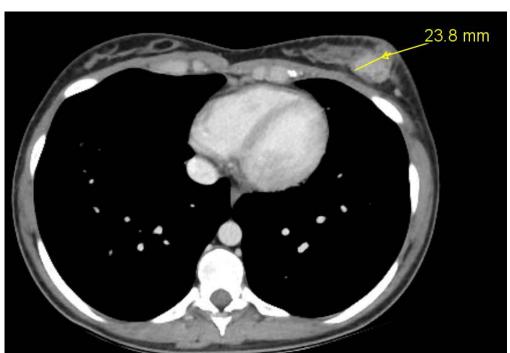
March 2024
Self
examination
of left breast:
lump
detected

21.03.24
Core biopsy
of left breast:
 ductal
 infiltrating
 carcinoma,
 multifocal,
ER: 70%; PgR:
 40%;
Ki67:30%;
HER2+: 3+

29.03.24 breast
MRI:
Left breast: 20 and
15 mm with many
foci;
left axilla: multiple
nodes of 33 mm
and 25 mm

Genetic counselling: BRCA1-2 WT, TP53 WT, PALB2 WT

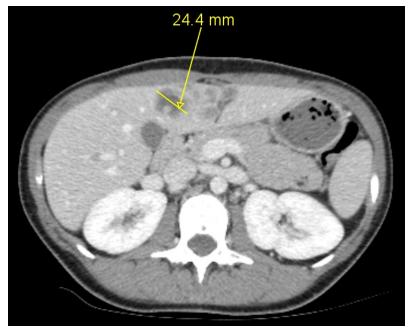
01.03.24 Mammography + ultrasonography: lump of 13 mm 26.03.24: CT scan: bilateral lung lesions; nodes in the left axilla (30 mm); multiple hepatic lesions (max 20 mm) 31.03.24 PET FDG: uptake in left breast, left axilla, internal mammary nodes, liver lesions

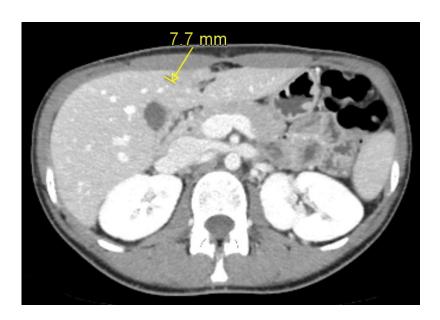

Prof Curigliano: Case Presentation #1 (Continued)


First line

- 22.04.24 Core biopsy left breast: ductal infiltrating carcinoma, ER: 90%; PgR: 0%; HER2: 3+
- 11.05.24 start triptorelin 3.75 mg q4w
- 10.05.24 start trastuzumab deruxtecan and pertuzumab

20.04.24 27.07.24







20.04.24 27.07.24

Prof Curigliano: Case Presentation #1 (Continued)

Evaluation of response

The patient is currently on treatment, with partial response by RECIST 1.1 criteria

T-DXd and pertuzumab was well tolerated with only G1 AEs (anemia, leukopenia, neutropenia, alopecia)

July 2025: Asymptomatic brain metastases, appearance of a new liver lesion

Stable and asymptomatic brain metastases

Prof Curigliano: Case Presentation #1 (Continued)

What's next?

T-DXd + pertuzumab is well tolerated with only G1 AEs (anemia, leukopenia, neutropenia, alopecia)

July 2025: Asymptomatic brain metastases, appearance of a new liver lesion

Proceed same therapy after RT

Tucatinib, trastuzumab and capecitabine?

DESTINY-Breast11

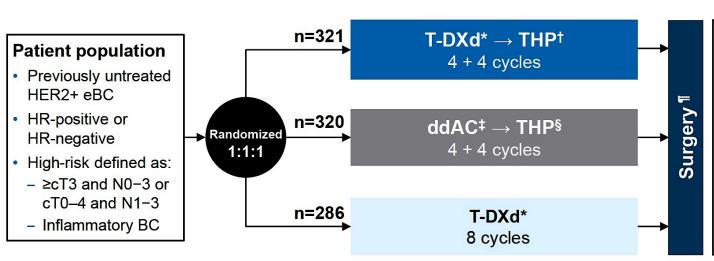
• Harbeck N et al. **DESTINY-Breast11: Neoadjuvant trastuzumab deruxtecan** alone (T-DXd) or followed by paclitaxel + trastuzumab + pertuzumab (T-DXd-THP) vs SOC for **high-risk HER2+ early breast cancer (eBC)**. ESMO 2025;Abstract 291O.

Abstract 2910

DESTINY-Breast11: neoadjuvant trastuzumab deruxtecan alone or followed by paclitaxel + trastuzumab + pertuzumab vs ddAC-THP for high-risk HER2+ early breast cancer

Nadia Harbeck

Breast Center, Department of OB&GYN and CCC Munich, LMU University Hospital, Munich, Germany


Co-authors: Shanu Modi, Lajos Pusztai, Shinji Ohno, Jiong Wu, Sung-Bae Kim, Alessandra Fabi, Xuchen Cao, Rona Joseph, Rubi Li, Bogdan Żurawski, Santiago Escrivá-de-Romaní, Shin-Cheh Chen, Catherine Kelly, Giuseppe Curigliano, William Fraser Symmans, Shoubhik Mondal, Shahana Safdar, Pia Herbolsheimer, Jean-François Boileau On behalf of the DESTINY-Breast11 investigators

Saturday October 18, 2025 Presentation 2910

Phase III DESTINY-Breast11 Study Design

Recommended post-neoadjuvant treatment per study protocol

pCR: radiotherapy and
concomitant trastuzumab ±
pertuzumab for up to 1 year

No pCR: radiotherapy and T-DM1 for up to 14 cycles

HR-positive: endocrine therapy

EFSSafety

 Pharmacokinetics and immunogenicity

Primary endpoint

Secondary endpoints

central review

central review

Invasive disease-free survival

Data cutoff: March 12, 2025

pCR (ypT0/is ypN0) by blinded

pCR (ypT0 ypN0) by blinded

- Overall survival
- · Health-related quality of life

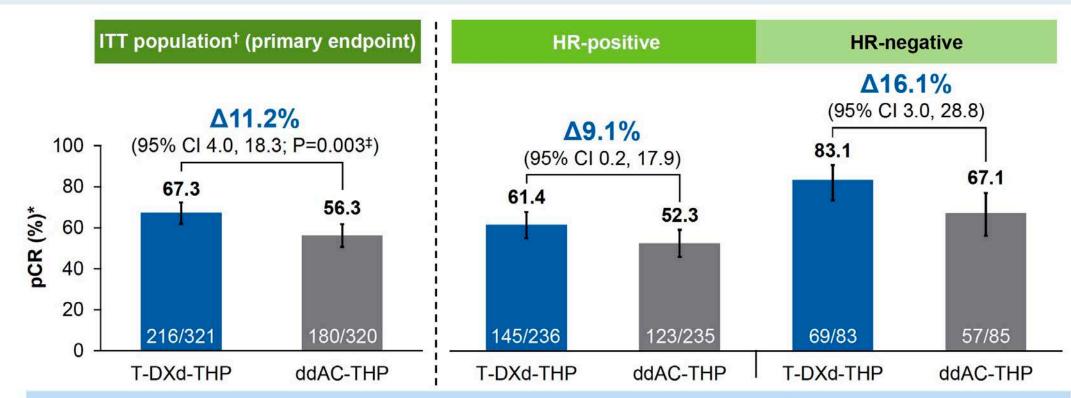
Additional outcome measures

Residual cancer burden (RCB)

Stratification factors

- HR status: ER and/or PR-positive or negative
- HER2 status: (IHC 3+ or ISH+ in the absence of IHC 3+ status)

The T-DXd alone arm closed on March 13 2024, following Independent Data Monitoring Committee recommendation

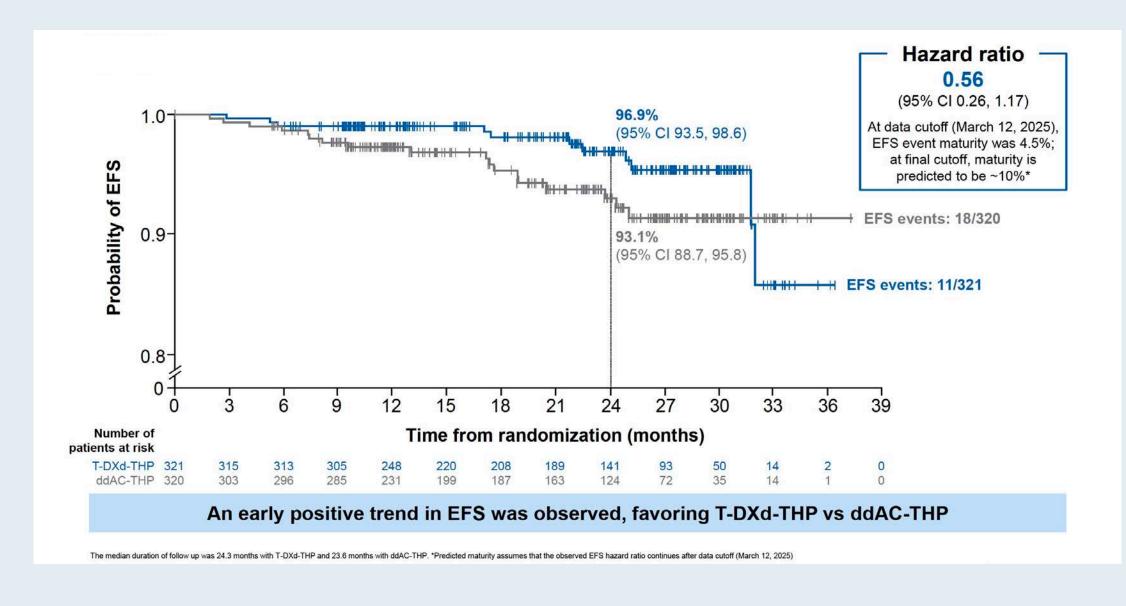

The reasons were multifactorial, including a lower pCR rate, low likelihood that T-DXd alone would be superior to ddAC-THP, and the timing of surgery

High-resolution computed tomography chest scans were performed every 6 weeks during treatment; if ILD/pneumonitis was suspected while receiving T-DXd, treatment was interrupted and a full investigation completed. Echocardiograms or multigated acquisition scans were performed during screening (-28 days prior to randomization), during treatment (-3 days before Cycle 5), and at end of treatment to assess left ventricular ejection fraction. *5.4 mg/kg Q3W); †paclitaxel (80 mg/m² QW) + treatment (60 mg/m² Q2W); *paclitaxel (80 mg/m² Q3W); *paclitaxel (80 mg/m²

ddAC = dose-dense doxorubicin and cyclophosphamide; THP = paclitaxel, trastuzumab and pertuzumab

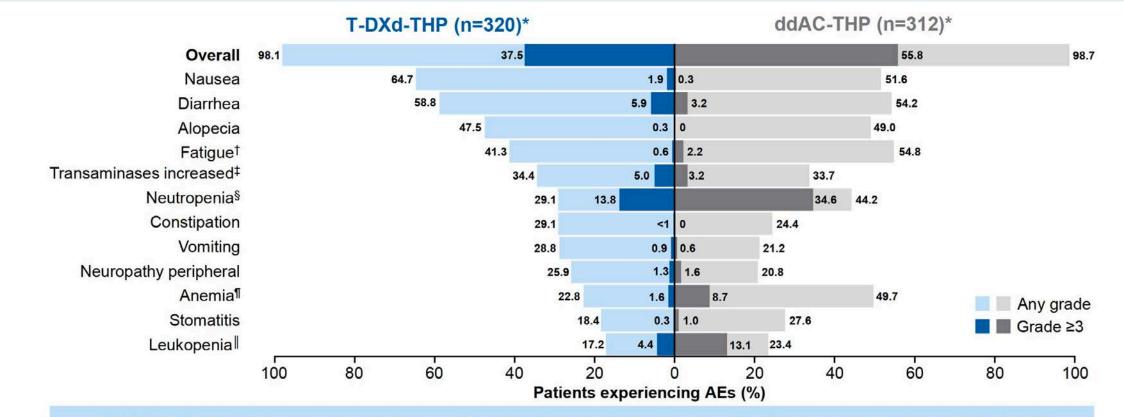
Phase III DESTINY-Breast11: Primary Endpoint (pCR)

Neoadjuvant T-DXd-THP demonstrated a statistically significant and clinically meaningful improvement in pCR vs ddAC-THP Improvement was observed in both the HR-positive and HR-negative subgroups


For the ITT population, treatment effects were estimated by the difference in pCR with 95% CIs and P-values based on the stratified Miettinen and Nurminen's method, with strata weighting by sample size (ie Mantel—Haenszel weights)

Patients with no valid records regarding pCR status for any reason were considered to be non-responders (including but not limited to withdrawal from the study, progression of disease or death before surgery, lack of surgical specimen, or defined as not evaluable by the central pathologist). Subgroup analyses were unstratified. "By blinded central review; ¹pCR responders were defined as patients who only received randomized study treatment (at least one dose) and had pCR; ¹two-sided P-value crossed the 0.03 prespecified boundary. ITT, intent-to-treat

pCR = pathologic complete response; ITT = intention-to-treat



Phase III DESTINY-Breast11: Event-Free Survival (EFS)

Phase III DESTINY-Breast11: Common Adverse Events (AEs)

T-DXd-THP had fewer any-grade and Grade ≥3 hematological and fatigue events than ddAC-THP Aside from nausea, gastrointestinal toxicity was comparable between arms

*Safety analyses included all patients who received at least one dose of any study treatment; †grouped term: fatigue, asthenia, malaise, and lethargy; ‡grouped term: transaminases increased, alanine transaminase increased, alanine transaminase increased, gamma-glutamyl transferase increased, liver function test abnormal, hypertransaminasemia, hepatic function abnormal, and liver function test increased; †grouped term: hemoglobin decreased, red blood cell count decreased, and anemia and hematocrit decreased; †grouped term: white blood cell count decreased and leukopenia. TEAE, treatment-emergent adverse event

Phase III DESTINY-Breast11: Authors' Conclusions

- In DESTINY-Breast11, T-DXd-THP showed the highest reported pCR rate in HER2+ eBC for a registrational study in the neoadjuvant setting, despite a high prevalence of HR-positive disease and a high-risk population^{1-3*}
- T-DXd-THP showed a statistically significant and clinically meaningful improvement in pCR rate vs ddAC-THP: Δ11.2% (95% Cl 4.0, 18.3)
 - pCR benefit for T-DXd-THP vs ddAC-THP was independent of HR status and disease stage
- An early positive trend in EFS was observed, favoring T-DXd-THP vs ddAC-THP
 - Hazard ratio: 0.56 (95% CI 0.26, 1.17)
- The safety profile of T-DXd-THP was favorable vs ddAC-THP
 - Lower rates of Grade ≥3 AEs, serious AEs, and AEs leading to dose interruptions
 - Lower rates of hematological AEs, left-ventricular dysfunction, and fatigue
 - ILD rates were low and similar between arms

pCR rate -

67.3%

More than two thirds of patients in the T-DXd-THP arm had a pCR

HR-positive: **61.4**% HR-negative: **83.1**%

DESTINY-Breast11 results support T-DXd-THP as a more effective and less toxic neoadjuvant treatment compared with ddAC-THP, and it may become a preferred regimen for patients with high-risk HER2+ eBC

*Historical pCR rates (defined by ypT0/is ypN0) from other registrational studies for neoadjuvant SOC treatments in HER2+ eBC ranged from 39.3% to 62.7%, and HR-positive prevalence ranged from 46.7% to 62.4%¹⁻³ 1. Huober J, et al. J Clin Oncol. 2022;40:2946–2956; 2. Hurvitz SA, et al. Lancet Oncol. 2018;19:115–126; 3. Gianni L, et al. Lancet Oncol. 2012;13:25–32

DESTINY-Breast05 Trial

 Geyer CE et al. Trastuzumab deruxtecan (T-DXd) vs trastuzumab emtansine (T-DM1) in patients (pts) with high-risk human epidermal growth factor receptor 2-positive (HER2+) primary breast cancer (BC) with residual invasive disease after neoadjuvant therapy (tx): Interim analysis of DESTINY-Breast05. ESMO 2025; Abstract LBA1.

Abstract LBA1

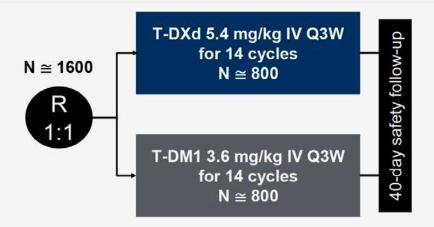
Trastuzumab deruxtecan (T-DXd) vs trastuzumab emtansine (T-DM1) in patients with high-risk human epidermal growth factor receptor 2-positive (HER2+) primary breast cancer with residual invasive disease after neoadjuvant therapy: Interim analysis of DESTINY-Breast05

<u>Charles E Geyer Jr</u>,^{a,b} Yeon Hee Park, Zhiming Shao, Chiun-Sheng Huang, Carlos Barrios, Jame Abraham, Aleix Prat, Naoki Niikura, Michael Untch, Seock-Ah Im, Wei Li, Huiping Li, Yongsheng Wang, Herui Yao, Sung-Bae Kim, Elton Mathias, Yuta Sato, Wenjing Lu, Hanan Abdel-Monem, Sibylle Loibl

On behalf of the DESTINY-Breast05 investigators

^aNSABP Foundation, Pittsburgh, PA, USA ^bUniversity of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA

Saturday, October 18, 2025 Presentation LBA1


Phase III DESTINY-Breast05 Study Design

Key Eligibility Criteria

- Residual invasive disease in the breast and/or axillary lymph nodes after neoadjuvant chemotherapy with HER2-directed therapy (NAT)^a
- · High-risk defined as presentation prior to NAT with:
 - Inoperable eBC (cT4,N0-3,M0 or cT1-3,N2-3,M0)
 OR
 - Operable eBC (cT1-3,N0-1,M0) with axillary node-positive disease (ypN1-3) after NAT
- Centrally confirmed HER2+ (IHC 3+ or ISH+) eBC
- · ECOG PS 0 or 1

Stratification factors

- Extent of disease at presentation (inoperable, operable)
- HER2-targeted NAT (single, dual)
- Hormone receptor status (positive, negative)
- Post-NAT pathologic nodal status (positive, negative)

Primary endpoint

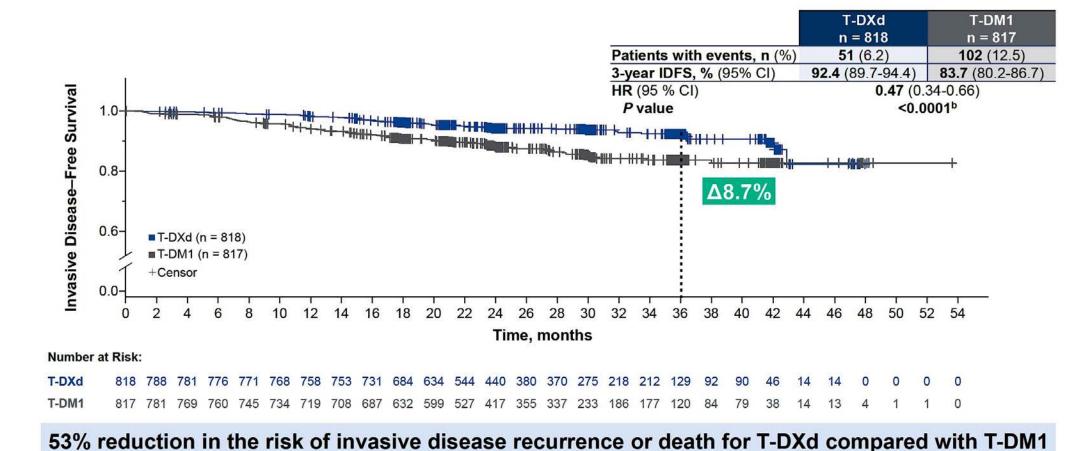
IDFS

Key secondary endpoint

DFS

Other secondary endpoints

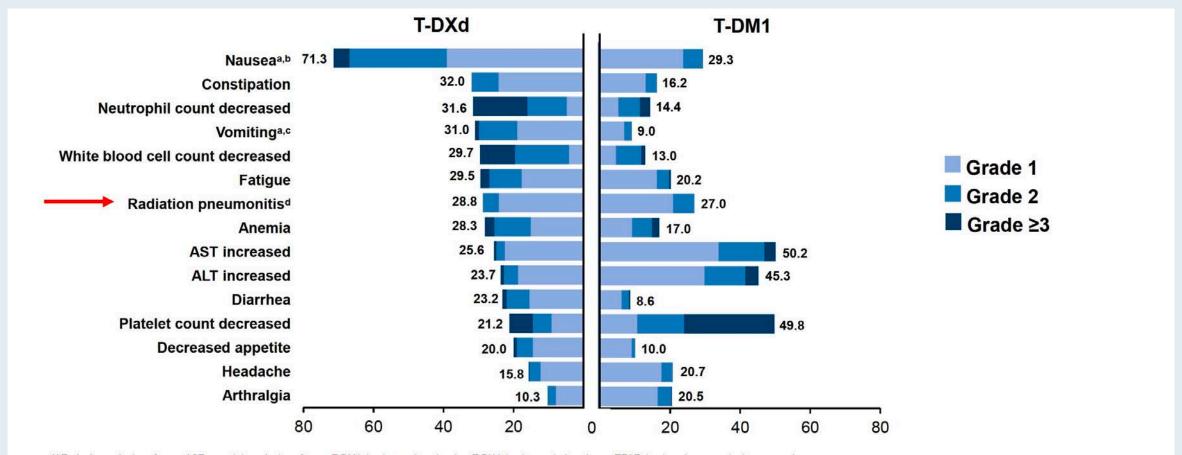
- OS
- BMFI
- DRFI
- Safety

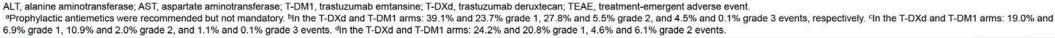

- · Concomitant adjuvant ET was allowed per local practices
- If administered, RT could be initiated <u>concurrent</u> with study therapy or completed prior to initiation of study therapy (<u>sequential</u>) per investigator
- ILD monitoring program for patients treated with RT
 - · All patients had baseline non-contrast, low dose (LD) chest CT during screening
 - All RT patients (concurrent and sequential) had LD chest CT 6 weeks after start of study therapy, then every 12 weeks while on therapy, and at 40-day follow-up
 - Sequential RT patients had additional LD chest CT after completion of RT prior to start of study therapy

BMFI, brain metastasis—free interval; CT, computed tomography; eBC, early breast cancer; DCO, data cutoff; DFS, disease-free survival; DRFI, distant recurrence—free interval; ECOG PS, Eastern Cooperative Oncology Group performance status; ET, endocrine therapy; HER2, human epidermal growth factor receptor 2; IDFS, invasive disease—free survival; IHC, immunohistochemistry; ILD, interstitial lung disease; ISH, in situ hybridization; IV, intravenous; NAT, neoadjuvant therapy; OS, overall survival; Q3W, every 3 weeks; R, randomization; RT, radiotherapy; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan.

aNAT is defined as ≥16 weeks' NAT with ≥9 weeks trastuzumab and ≥9 weeks taxane-based chemotherapy.

Phase III DESTINY-Breast05: Primary Endpoint (IDFS)




HR, hazard ratio; IDFS, invasive disease-free survival; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan. Efficacy stopping boundary, P = 0.0183.

PIDFS is defined as the time from randomization until the date of first occurrence of one of the following events: recurrence of ipsilateral invasive breast tumor, recurrence of ipsilateral locoregional invasive breast cancer, contralateral invasive breast cancer, a distant disease recurrence, or death from any cause. Two-sided P value from stratified log-rank test, Hazard ratio and 95% CI from stratified Cox proportional hazards model with stratification factor of operative status at disease presentation.

Phase III DESTINY-Breast05: Common Adverse Events

Phase III DESTINY-Breast05: Authors' Conclusions

- DESTINY-Breast05 demonstrated a statistically significant and clinically meaningful improvement in IDFS and DFS with T-DXd vs T-DM1 in highrisk^a patients with HER2+ eBC and residual invasive disease after NAT
- IDFS benefit was consistent across all prespecified subgroups
- Benefit in DRFI with T-DXd was also observed
- CNS metastases and deaths were numerically fewer with T-DXd vs T-DM1
- The overall safety profile of T-DXd was manageable with no new signals
 - >72% of patients completed treatment and was comparable in both arms
 - Adjudicated drug-related ILD was reported in 9.6% of patients receiving T-DXd, with the majority being grade 1 or 2 and reversible, suggesting that the risk is manageable with appropriate monitoring and timely intervention

IDFS Benefit T-DXd versus T-DM1

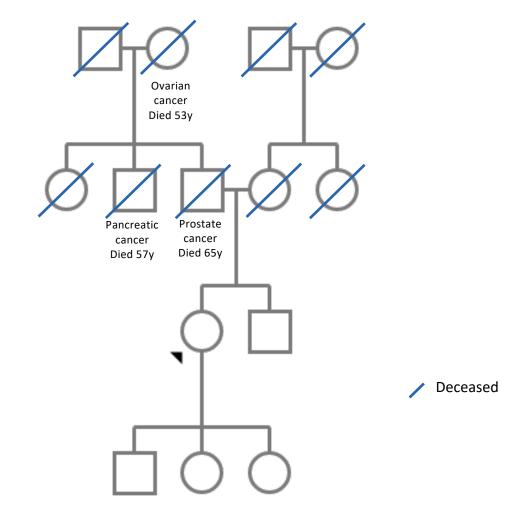
53% reduction in the risk of invasive disease recurrence or death

3-year IDFS rate 92.4% versus 83.7% HR 0.47 P value <0.0001

Adjuvant T-DXd demonstrated superior efficacy with manageable safety in patients with high-risk HER2+ eBC and residual invasive disease after NAT, representing a potential new standard of care in this post-neoadjuvant setting

DFS, disease-free survival; eBC, early breast cancer; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; IDFS, invasive disease-free survival; ILD, interstitial lung disease; NAT, neoadjuvant therapy; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxteean

Defined as cT4, N0-3, M0 or cT1-3, N2-3, M0 at presentation (before NAT) or cT1-3, N0-1, M0, with axillary node-positive disease (ypN1-3) following NAT.


Prof Curigliano: Case Presentation #2

Patient history

Patient profile

- 61-year-old woman
- Caucasian ethnicity
- BMI: 25,3 (overweight)
- G3P3, menopause at 47 y
- Non-smoker, drinks socially
- No relevant major comorbidities
- No allergies
- Family history of cancer:
 - Father deceased for prostate cancer (65 years old)
 - Paternal uncle deceased for pancreatic cancer (57 years old)
 - Paternal grandmother deceased for ovarian cancer (53 years old)

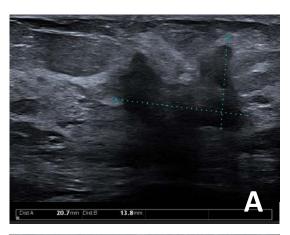
BMI: Body mass index; G: gravidity; P: parity; y: years

Prof Curigliano: Case Presentation #2 (Continued)

Diagnosis of HR+/HER2+ breast cancer

Aug 2023

Timeline



Diagnosis

Initial presentation

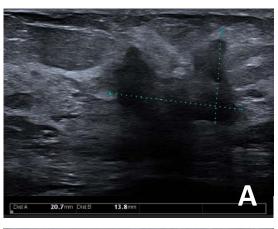
- Biannual screening mammography with evidence of new calcifications.
- Breast US: at left breast, two hypoechogenic nodules measuring 21x14 mm (A), in the left superoexternal quadrant, and 14x9 mm (B), in the superior parareolar site. No axillary lymphadenomegalies. BIRADS: 4c

BIRADS: Breast Imaging-Reporting and Data System; US: ultrasound

Diagnosis of HR+/HER2+ breast cancer

Aug 2023

Timeline


Diagnosis

Initial presentation

- Biannual screening mammography with evidence of new calcifications.
- Breast US: at left breast, two hypoechogenic nodules measuring 21x14 mm (A), in the left superoexternal quadrant, and 14x9 mm (B), in the superior parareolar site. Axillary lymphadenomegalies. BIRADS: 4c.

BIRADS: Breast Imaging-Reporting and Data System; ER: estrogen receptor; FNAC, fine-needle aspiration cytology; G: grade; HER2: human epidermal growth factor receptor 2; IDC: invasive ductal carcinoma; IHC: immunohistochemistry; ISH: in situ hybridization; NOS: not otherwise specified; PgR: progesterone receptor; TNM, tumour—node—metastasis; US: ultrasound

Core biopsy (A). Pathology report

- IDC NOS, G2.
- ER (IHC): 65%; PgR (IHC): 5%; Ki67: 40%; HER2 IHCscore: 2+
- ISH test: positive.

FNAC (B). Pathology report

• C5

Stage: cT2 (m) cN1 cM0 (II)

Diagnosis of HR+/HER2+ breast cancer

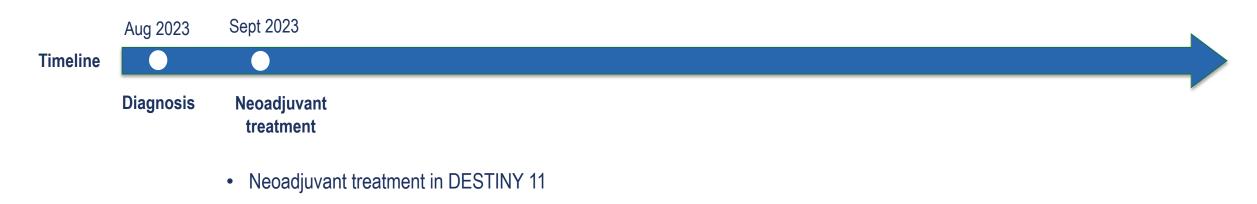
Aug 2023

Timeline

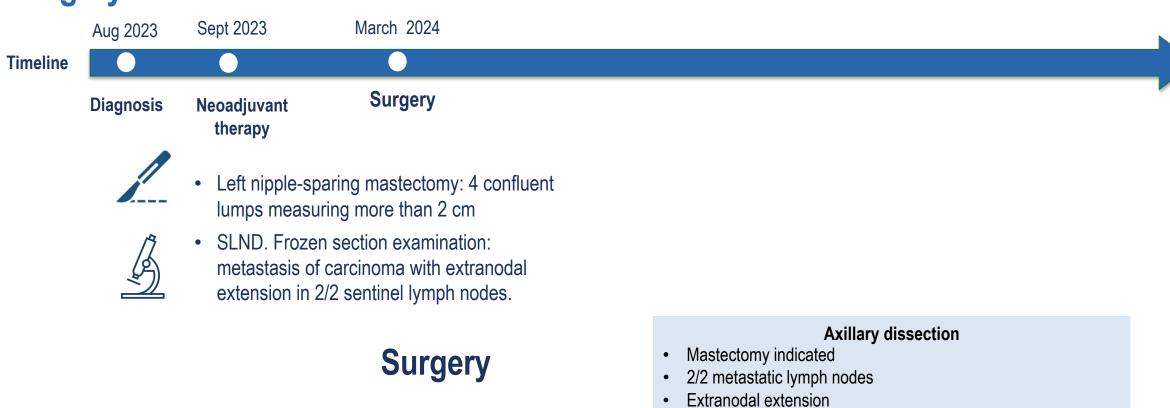
Diagnosis

Invasive ductal carcinoma G2 of the left breast

ER: 65%; PgR: 5%; Ki67: 40%; HER2-positive


Stage: cT2 (m) cN1 cM0 (II)

Neoadjuvant pertuzumab and trastuzumab deruxtecan followed by THP in **DESTINY 11 trial**


+ genetic counseling indicated

ER: estrogen receptor; G: grade; HER2: human epidermal growth factor receptor 2; PgR: progesterone receptor; TNM, tumour-node-metastasis

Radiotherapy

Surgery

ESMO Guidelines 2022; Donker, Lancet Oncol 2014; Sávolt, Eur J Surg Oncol 2017

MH and diagnosis Surgery Chemotherapy Radiotherapy ET + Treatment escalation

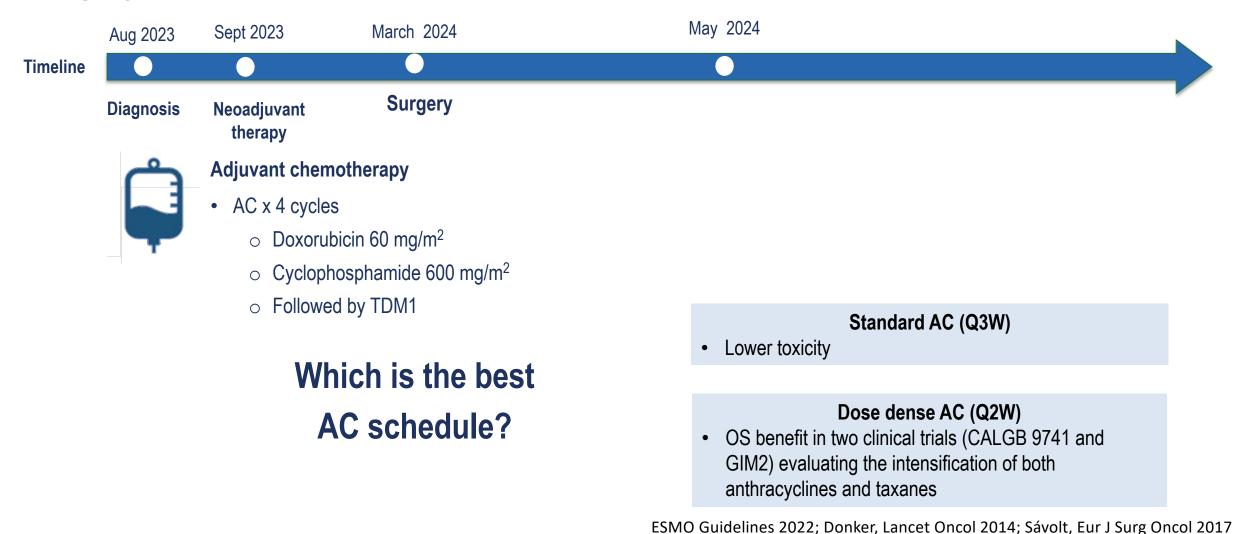
SOC for >2 N+

Surgery

Sept 2023 March 2024 Aug 2023 **Timeline** Surgery **Diagnosis Neoadjuvant** therapy Left nipple-sparing mastectomy: 4 confluent lumps measuring more than 4 cm Left axillary lymph node dissection Immediate breast reconstruction Histology • IDC NOS, G2. pLVI1 ER (IHC): 65%; PgR (IHC): 5%; Ki67: 40%; HER2 IHC score: 2+; ISH test: positive

Stage: pT2 (4.2 cm) pN2a (6/16) cM0

Genetic counseling


- Germline mutation of BRCA2: c.6313delA p.(Ile2105Tyrfs) class 5
- Bilateral prophylactic adnexectomy and right prophylactic mastectomy indicated
- First degree relatives counseling indicated

ESMO Guidelines 2022; Donker, Lancet Oncol 2014; Sávolt, Eur J Surg Oncol 2017

Surgery

ESMO Guidelines 2022; Donker, Lancet Oncol 2014; Sávolt, Eur J Surg Oncol 2017

ESIVIO Guidelines 2022, Donker, Lancet Oricoi 2014, Savoit, Lui 3 Surg Oricoi 2017

Agenda

Module 1: HER2-Positive Breast Cancer

Module 2: HR-Positive Breast Cancer

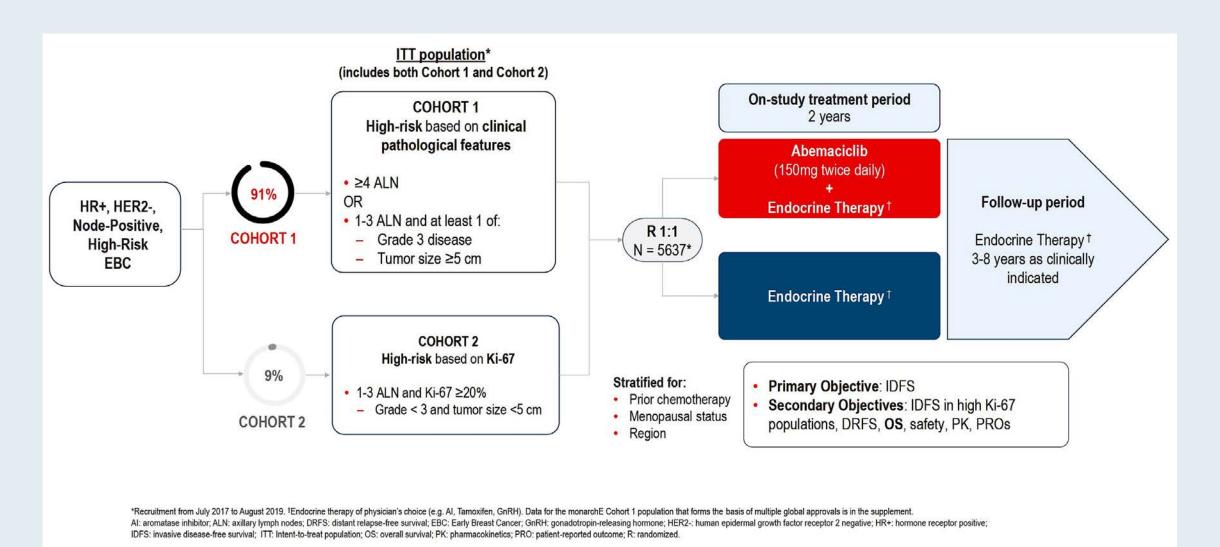
Module 3: Triple-Negative Breast Cancer

monarchE Trial

 Johnston SR et al. monarchE: Primary overall survival (OS) results of adjuvant abemaciclib + endocrine therapy (ET) for HR+, HER2-, high-risk early breast cancer (EBC). ESMO 2025; Abstract LBA13.

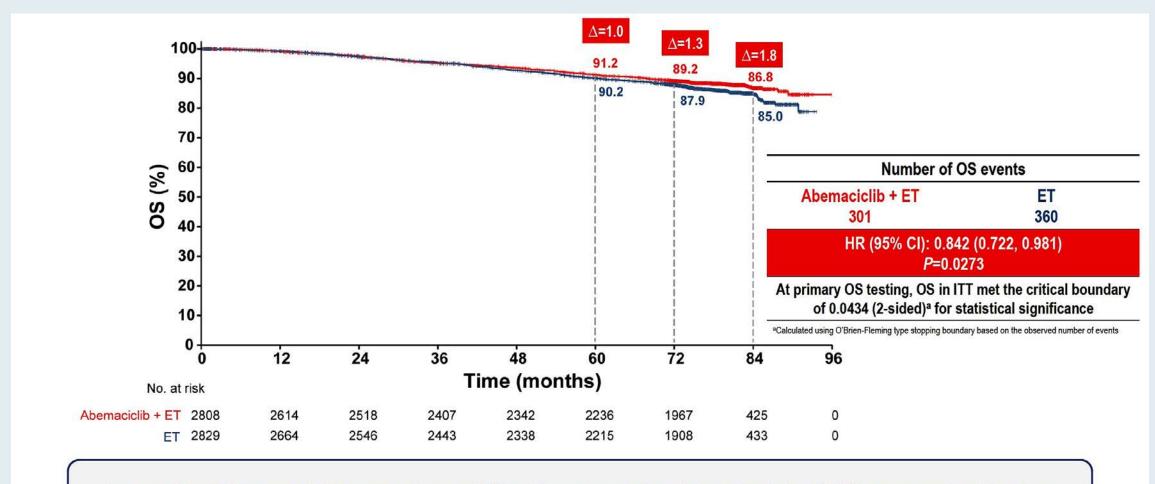
Abstract LBA13

monarchE: Primary overall survival results of adjuvant abemaciclib plus endocrine therapy for HR+, HER2-, high-risk early breast cancer


Stephen Johnston, Miguel Martin, Joyce O'Shaughnessy, Roberto Hegg, Sara M. Tolaney, Valentina Guarneri, Lucia Del Mastro, Mario Campone, Joohyuk Sohn, Frances Boyle, Javier Cortes, Hope S. Rugo, Matthew P. Goetz, Erika P. Hamilton, Chiun-Sheng Huang, Elzbieta Senkus, Irfan Cicin, Laura Testa, Patrick Neven, Jens Huober, Zhimin Shao, Ran Wei, Maria Munoz, Belen San Antonio, Ashwin Shahir, Priya Rastogi, Nadia Harbeck

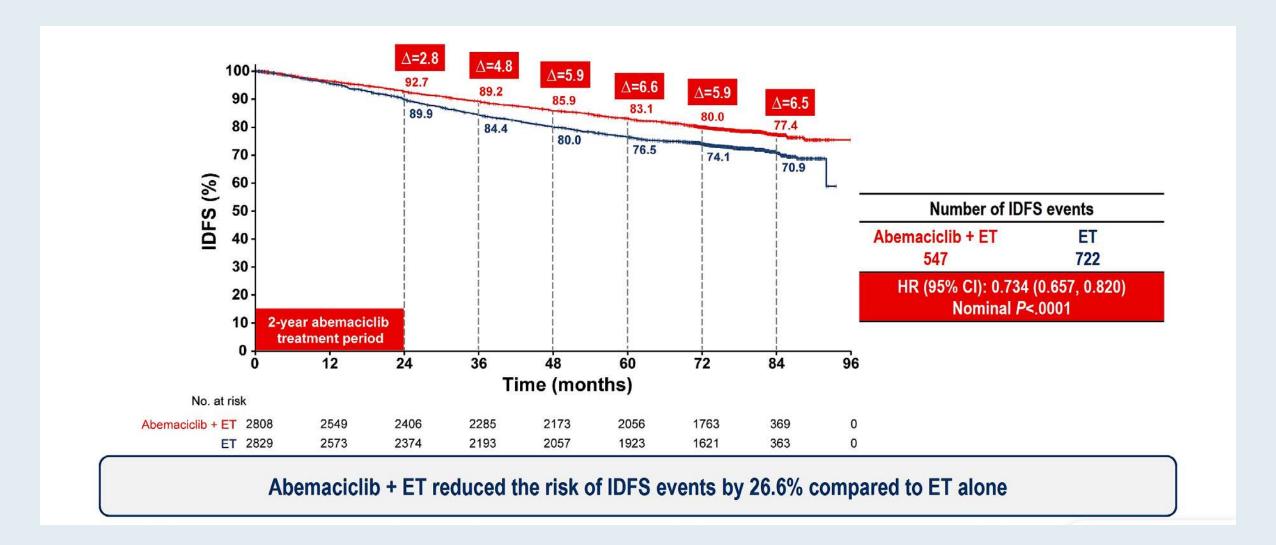
Stephen Johnston, MD, PhD

Breast Unit, The Royal Marsden, NHS Foundation Trust, London, UK



Phase III monarchE Study Design

Phase III monarchE: Long-Term Overall Survival



At a median follow-up of 6.3 years, abemaciclib + ET reduced the risk of death by 15.8% compared to ET alone

ET = endocrine therapy

Phase III monarchE: Long-Term IDFS

Phase III monarchE: Authors' Conclusions

- At the primary OS analysis, 2 years of abemaciclib + ET demonstrated a statistically significant and clinically meaningful improvement in OS in the ITT population
 - With a median follow-up of 76 months (6.3 years), abemaciclib + ET reduced the risk of death by 15.8% compared to ET in the ITT population
 - With ~30% fewer patients in the abemaciclib arm living with metastatic disease, this is expected to lead to larger
 OS benefit with longer follow-up
- At 7-year landmark analyses, abemaciclib + ET continued to demonstrate sustained benefit in IDFS and DRFS reinforcing the consistency and durability of the treatment effect across endpoints
- Consistent OS, IDFS, and DRFS benefits observed in the Cohort 1 population and in all prespecified subgroups
- Safety was consistent with prior reports, and no new signals related to delayed toxicities were identified

Abemaciclib is the first CDK4/6 inhibitor to achieve a statistically significant improvement in OS for patients with HR+ HER2-, node-positive, high-risk EBC

Adjuvant Ribociclib

 Crown J et al. Adjuvant ribociclib plus nonsteroidal aromatase inhibitor therapy in patients with HR+/HER2- early breast cancer: NATALEE 5-year outcomes.
 ESMO 2025; Abstract LBA14.

Abstract LBA14

Adjuvant Ribociclib Plus Nonsteroidal Aromatase Inhibitor Therapy in Patients With HR+/HER2- Early Breast Cancer: NATALEE 5-Year Outcomes

John Crown¹, Daniil Stroyakovskii², Denise A. Yardley³, Chiun-Sheng Huang⁴, Peter A. Fasching⁵, Aditya Bardia⁶, Stephen Chia⁷, Seock-Ah Im⁸, Miguel Martin⁹, Binghe Xu¹⁰, Carlos H. Barrios¹¹, Michael Untch¹², Rebecca Moroose¹³, Sara A. Hurvitz¹⁴, Gabriel N. Hortobagyi¹⁵, Dennis J. Slamon¹⁶, Frances Visco¹⁷, Gonzalo Spera¹⁸, Zheng Li¹⁹, Sherene Loi²⁰

1St. Vincent's University Hospital, Dublin, Ireland; 2Moscow City Oncology Hospital #62 of Moscow Healthcare Department, Moscow, Russia; 3Sarah Cannon Research Institute, Nashville, TN, USA; ⁴National Taiwan University Hospital, National Taiwan University College of Medicine, Taiwan; ⁵University Hospital Erlangen Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany; 6David Geffen School of Medicine at UCLA and the UCLA Health Jonsson Comprehensive Cancer Center; Los Angeles, CA, USA; 7BC Cancer, Vancouver, BC, Canada; [®]Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea; 9Instituto de Investigación Sanitaria Gregorio Marañon, Centro de Investigación Biomédica en Red de Cáncer, Grupo Español de Investigación en Cáncer de Mama, Universidad Complutense, Madrid, Spain; 10 National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; 11Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil; 12Interdisciplinary Breast Cancer Center, Helios Klinikum Berlin-Buch, Berlin, Germany; 13 Orlando Health Cancer Institute, Orlando, FL, USA; ¹⁴University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA; ¹⁵Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX: 16 David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; 17 National Breast Cancer Coalition (NBCC), Washington, DC, USA; 18Translational Research in Oncology (TRIO), Montevideo, Uruguay; 19Novartis Pharmaceuticals, East Hanover, NJ, USA; 20Peter MacCallum Cancer Centre, Melbourne, Australia

Speaker: John Crown, M.D.

Phase III NATALEE Study Design

Adult patients with stage II and III HR+/HER2- EBC

- · Prior ET allowed up to 12 months
- Anatomical stage IIA^a
 - N0 with:
 - Grade 2 and evidence of high risk:
 - Ki-67 ≥ 20%
 - Oncotype DX Breast Recurrence Score ≥ 26 or
 - · High risk via genomic risk profiling
 - Grade 3
 - N1
- Anatomical stage IIB^a
 - N0 or N1
- Anatomical stage III
 - N0, N1, N2, or N3

^a Enrollment of patients with stage II disease was capped at 40%. ^b Per investigator choice. ctDNA/RNA, circulating tumor DNA/RNA; DDFS, distant disease–free survival; DRFS, distant recurrence–free survival; EBC, early breast cancer; ET, endocrine therapy; HR, hazard ratio; iDFS, invasive disease–free survival; ITT, intention to treat; N, node; NSAI, nonsteroidal aromatase inhibitor; OS, overall survival; PK, pharmacokinetics; PRO, patient-reported outcomes; RIB, ribociclib; RFS, recurrence-free survival; STEEP, Standardized Definitions for Efficacy End Points.
1. ClinicalTrials.gov. Accessed November 8, 2023. https://clinicaltrials.gov/study/NCT03701334.
2. Slamon D et al. Ther Adv Med Oncol. 2023;15:1-16.

RIB

400 mg/day

3 weeks on/1 week off for 3 y

+

NSAI

Letrozole or anastrozole^b for ≥5 y
+ goserelin in men and premenopausal

women

NSAI

Letrozole or anastrozole^b for ≥5 y
+ goserelin in men and premenopausal

women

Efficacy outcomes for the 5-year analysis were estimated by the

Primary End Point

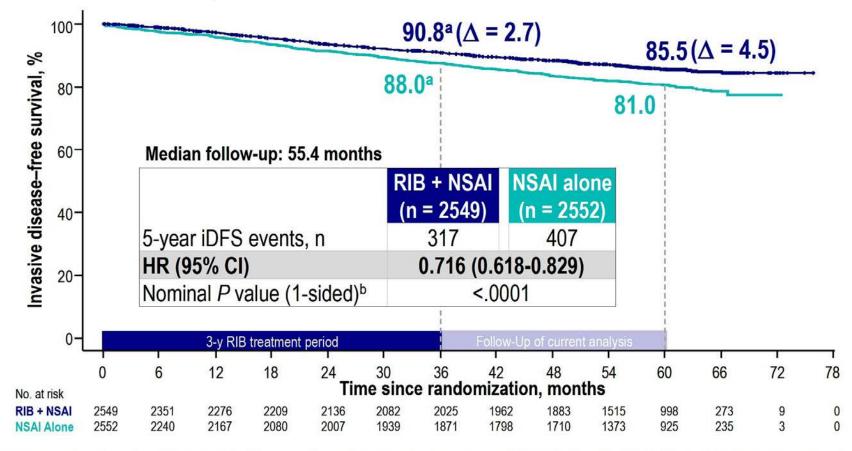
iDFS using STEEP criteria

Secondary End Points

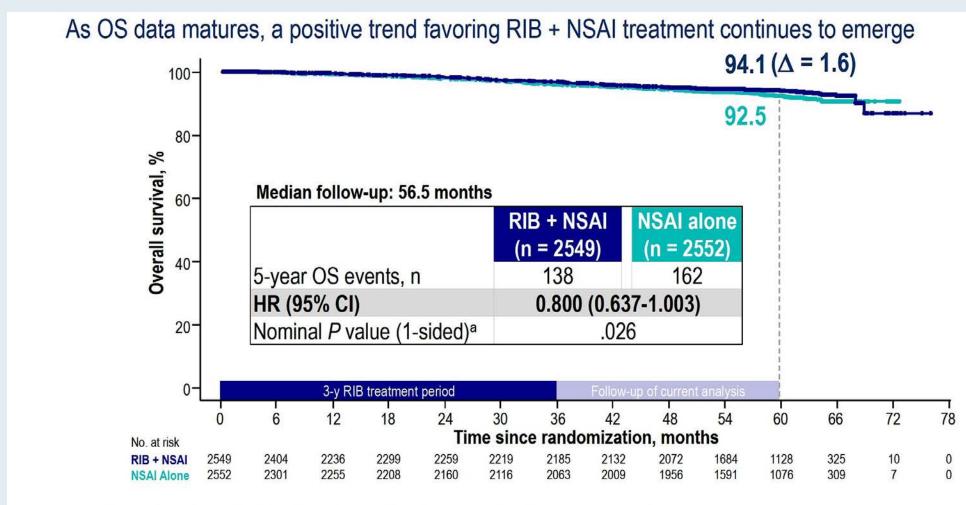
- RFS, DDFS, OS
- PROs
- Safety and tolerability
- PK

Exploratory End Points

- DRFS
- Gene expression and alterations in tumor ctDNA/ctRNA samples


Efficacy outcomes for the 5-year analysis were estimated by the Kaplan-Meier method, and results are descriptive. The Cox proportional hazards model was used to estimate the HRs and 95% CIs.

Phase III NATALEE: iDFS (ITT Population)



^a The difference between percentages does not equal 2.7 due to rounding. Comparison of survival between treatment arms was generated by stratified log-rank test (1-sided P value, informational and not preplanned). HR, hazard ratio; IDFS, invasive disease–free survival; ITT, intention to treat; NSAI, nonsteroidal aromatase inhibitor; RIB, ribociclib.

Phase III NATALEE: OS (ITT Population)

^a Comparison of survival between treatment arms was generated by stratified log-rank test (1-sided *P* value, informational and not preplanned). HR, hazard ratio; ITT, intention to treat; NSAI, nonsteroidal aromatase inhibitor; OS, overall survival; RIB, ribociclib.

Phase III NATALEE: Authors' Conclusions

- RIB + NSAI demonstrated durable iDFS benefit vs NSAI alone, with a 28% relative reduction in the risk of recurrence or death after a median of 2 years post RIB treatment
 - —Absolute iDFS improvement between treatment arms was $\Delta 4.5\%$ for 5-year rates
- Sustained iDFS benefit with RIB + NSAI was observed across subgroups, including those with high-risk N0 disease, with the upper boundary of the CI for N0 below 1 for the first time
- At the 5-year analysis, RIB + NSAI also demonstrated a clinically meaningful reduction in the risk of distant recurrence or death: 29.1% with DDFS and 30.1% for DRFS
- RIB + NSAI showed a continued numerical trend for improved OS, as data continue to mature
- No new safety signals were identified

At this 5-year follow-up of NATALEE, RIB + NSAI continues to reduce the risk of recurrence beyond the 3-year treatment window, supporting its use as adjuvant therapy in patients with HR+/HER2- EBC at high risk of recurrence, including those with high-risk N0 disease

DDFS, distant disease–free survival; DRFS, distant recurrence–free survival; DRFS, distant recurrence–free survival; EBC, early breast cancer; HR+/HER2-, hormone receptor positive, human epidermal growth factor receptor 2 negative; iDFS, invasive disease-free survival; N, node; NSAI, nonsteroidal aromatase inhibitor; OS, overall survival; RIB, ribociclib.

Dr Sharma: Case Presentation #1

62-year-old postmenopausal female with ER/PR-positive/HER2-negative right breast cancer. pT2N1 (3.5 cm grade II IDC, 1/4 positive sentinel LNs, ER = 100%, PR = 30%, HER2 IHC 1+, Ki-67 25%). S/p lumpectomy with SLNB. Oncotype DX® RS 28. Patient receives adjuvant chemotherapy with ddAC followed by weekly paclitaxel and then is started on adjuvant anastrozole along with adjuvant abemaciclib. She was enrolled on institutional protocol of adjuvant abemaciblib dose escalation with starting dose of 100 mg BID for two cycles followed by 150 mg BID. She has been tolerating abemaciclib well for the last 6 months but reports debilitating arthralgias related to anastrozole requiring endocrine therapy switch to tamoxifen.

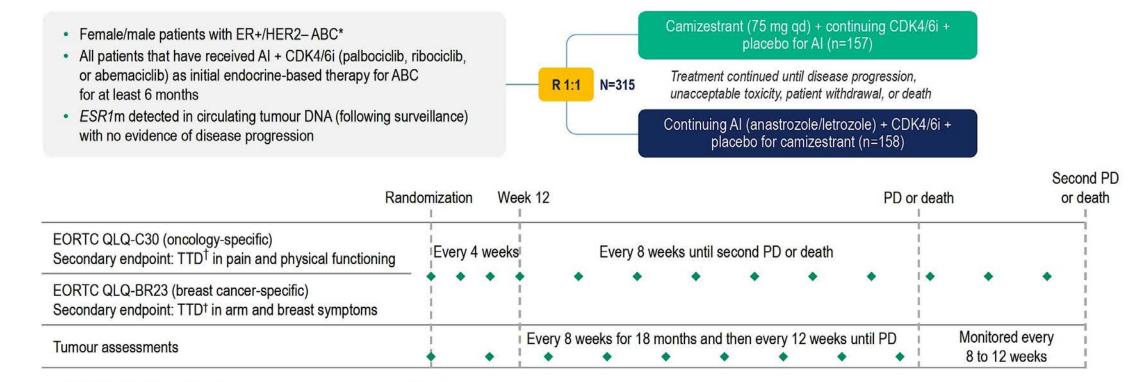
SERENA-6 Trial: Patient-Reported Outcomes

Mayer EL et al. Patient-reported outcomes (PROs) from the SERENA-6 trial of camizestrant (CAMI) + CDK4/6 inhibitor (CDK4/6i) for emergent ESR1m during first-line (1L) endocrine-based therapy and ahead of disease progression in patients (pts) with HR+/HER2- advanced breast cancer (ABC). ESMO 2025; Abstract 486MO.

Abstract 486MO

Patient-reported outcomes from the SERENA-6 trial of camizestrant + CDK4/6 inhibitor for emergent *ESR1*m during first-line endocrine-based therapy and ahead of disease progression in patients with HR+/HER2- advanced breast cancer

Erica L. Mayer,¹ François-Clément Bidard,² Yeon Hee Park,³ Wolfgang Janni,⁴ Cynthia Ma,⁵ Massimo Cristofanilli,⁶ Giampaolo Bianchini,⁷ Hiroji Iwata,⁶ Peter A. Fasching,⁶ Adam Brufsky,¹⁰ Zbigniew Nowecki,¹¹ Javier Pascual,¹² Lionel Moreau,¹³ Shin-Cheh Chen,¹⁴ Nuri Karadurmus,¹⁵ Cara Arizmendi,¹⁶ Steven Fox,¹⁷ Manuel Selvi Miralles,¹づ Cynthia Huang Bartlett,¹⁶ Nicholas Turner ¹९


Dana-Farber Cancer Institute, Boston, MA, USA; ²Institut Curie, Paris, France; ³Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; ⁴Universitátsklinikum Ulm, Ulm, Germany; ⁵Washington University School of Medicine, Saint Louis, MO, USA; ⁶Weill-Cornell Medicine / New York-Presbyterian Hospital, New York, NY, USA; ⁷IRCCS Ospedale San Raffaele, Milan, Italy, ⁸Nagoya City University, Nagoya, Japan; ⁹University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany; ¹⁰UMPC Magee-Womens Hospital, Pittsburgh, PA, USA; ¹¹Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie, Warsaw, Poland; ¹²Hospital Universitario Virgen de la Victoria, Målaga, Spain; ¹³Pôle Santé République, Clermont-Ferrand, France; ¹⁴Chang Gung Medical Foundation Linkou Branch, Taoyuan City, Taiwan; ¹⁵Gülhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey; ¹⁸Evinova, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA; ¹⁷Late Development, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA; ¹⁸Royal Marsden Hospital, London, UK

Presented by Erica L. Mayer

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use

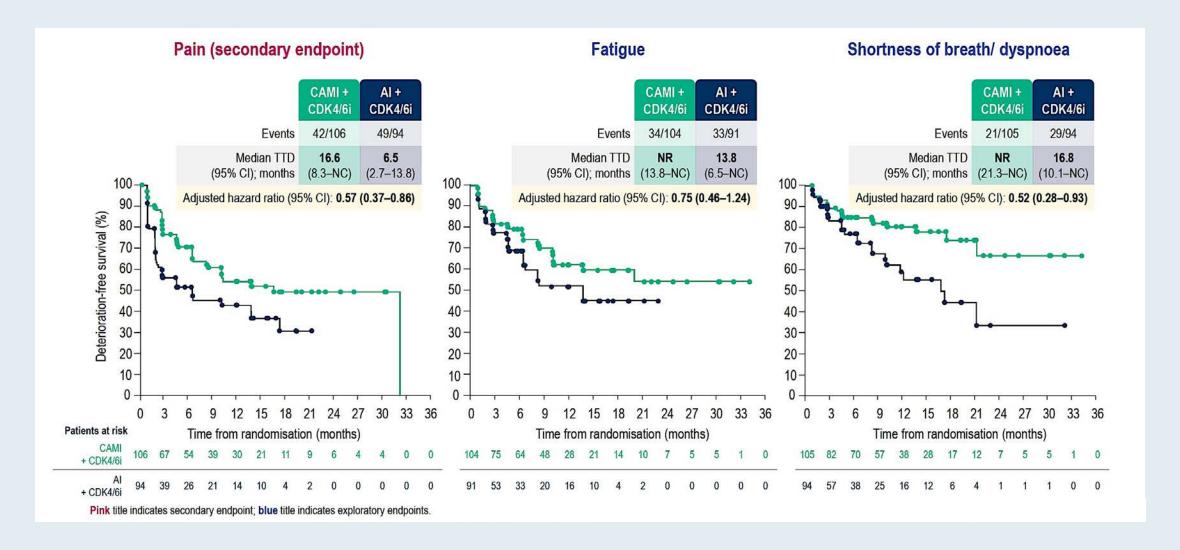
Phase III SERENA-6 Study Design and Patient-Reported Outcomes Assessments

- EORTC QLQ-C30 and BR23 assessments were more frequent than tumor assessments
- Overall, compliance rates for the EORTC QLQ-C30 and EORTC QLQ-BR23 were similar between treatment arms

†TTD: time from randomization until first clinically meaningful deterioration confirmed at a subsequent timepoint using study-specific meaningful change thresholds for selected scales (primary analysis). Data cutoff for analyses reported here: Nov 28, 2024. PD, progressive disease; qd, once daily dose; R, randomized.

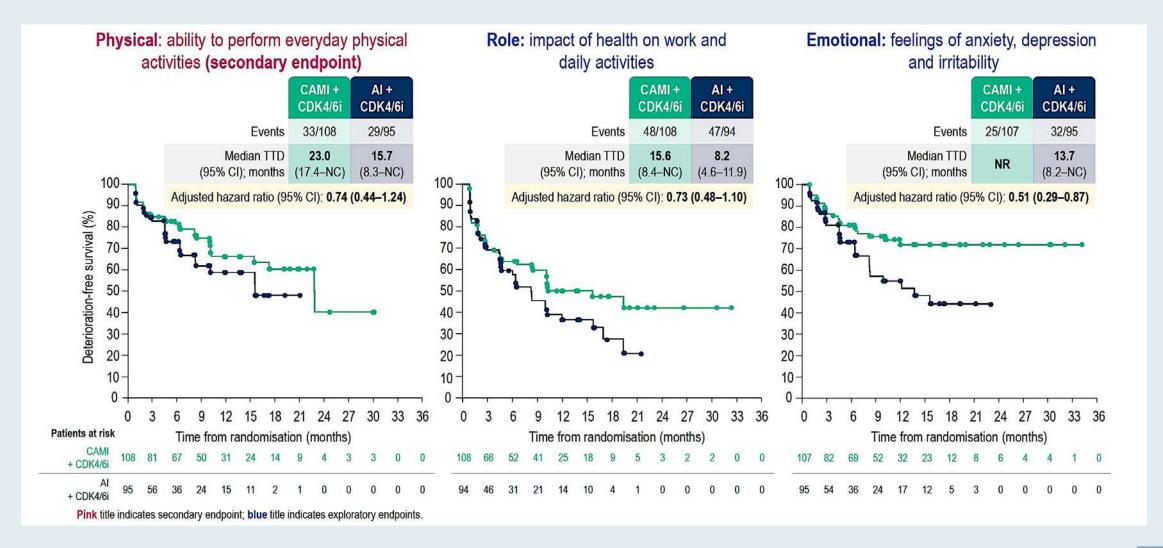
^{*}Pre- or perimenopausal women and men received a luteinizing hormone—releasing hormone agonist per clinical guidelines. Overall, compliance rates for the EORTC QLQ-C30 and EORTC QLQ-BR23 were similar between the camizestrant + CDK4/6 inhibitor arm and the AI + CDK4/6 inhibitor arm.

Phase III SERENA-6: Time to Deterioration (TTD)


		Deterioration events, n/N		Median TTD* (months)		111
		CAMI + CDK4/6i	AI + CDK4/6i	CAMI + CDK4/6i	AI + CDK4/6i	Hazard ratio (95% CI)
EORTC QLQ-C30	GHS/QOL	37/107	49/95	21.0	6.4	0.54 (0.34–0.84
	Physical functioning**	33/108	29/95	23.0	15.7	0.74 (0.44–1.24
	Role functioning	48/108	47/94	15.6	8.2	0.73 (0.48–1.10
	Cognitive functioning	38/107	31/95	23.0	NR	0.92 (0.57–1.50
	Emotional functioning	25/107	32/95	NR	13.7	0.51 (0.29–0.87
	Social functioning	39/107	35/95	34.1	15.9	0.80 (0.50–1.28
	Pain**	42/106	49/94	16.6	6.5	0.57 (0.37–0.86
	Shortness of breath/ dyspnoea	21/105	29/94	NR	16.8	0.52 (0.28–0.93
	Fatigue	34/104	33/91	NR	13.8	0.75 (0.46–1.24
EORTC QLQ-BR23	Breast symptoms**	13/102	16/92	NR	NR	0.59 (0.28–1.24
	Arm symptoms**	15/100	18/90	NR	NR	0.69 (0.34–1.39

^{*}Time to deterioration defined as time from randomisation to deterioration based on meaningful change thresholds (16.6 for GHS/QoL, role, emotional, cognitive, social functioning, pain and breast symptoms, 22.2 for fatigue and arm symptoms, 13.3 for physical functioning, and 10 for dyspnoea). **Time to deterioration in pain, physical functioning, breast symptoms, and arm symptoms were pre-defined secondary endpoints. Hazard ratios less than 1 favouring CAMI + CDK4/6i. NR, not reached.

CAMI = camizestrant; AI = aromatase inhibitor



Phase III SERENA-6: TTD — Patient-Reported Cancer Symptoms

Phase III SERENA-6: TTD — Patient-Reported Functioning

Phase III SERENA-6: Authors' Conclusions

- First-line camizestrant with continuation of CDK4/6 inhibitor in patients with emergence of ESR1m during Al+CDK4/6 inhibitor therapy, demonstrated consistent benefit in delaying TTD and reducing the risk of deterioration in patient-reported cancer symptoms and functioning
 - These findings support the delay in TTD and reduced risk of deterioration in GHS/QoL reported previously

PRO results further support camizestrant + CDK4/6 inhibitor as a potential new treatment strategy to optimize and improve outcomes in patients with HR+/HER2- ABC and emergence of ESR1m, ahead of disease progression, during first-line AI + CDK4/6 inhibitor

GHS = global health status; QoL = quality of life

Survey of 50 General Medical Oncologists: Breast Cancer

Survey Dates: 7/22/25 to 7/25/25

Clinical Investigator Survey Participants

Francois-Clement Bidard, MD, PhD Kevin Kalinsky, MD, MS, FASCO

Virginia F Borges, MD, MMSc Ian E Krop, MD, PhD

Harold J Burstein, MD, PhD Kathy D Miller, MD

Lisa A Carey, MD, ScM, FASCO Shanu Modi, MD

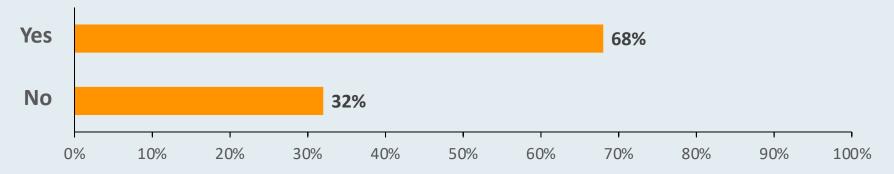
Professor Giuseppe Curigliano, MD, PhD Ruth O'Regan, MD

Angela DeMichele, MD, MSCE

Joyce O'Shaughnessy, MD

Matthew P Goetz, MD Hope S Rugo, MD

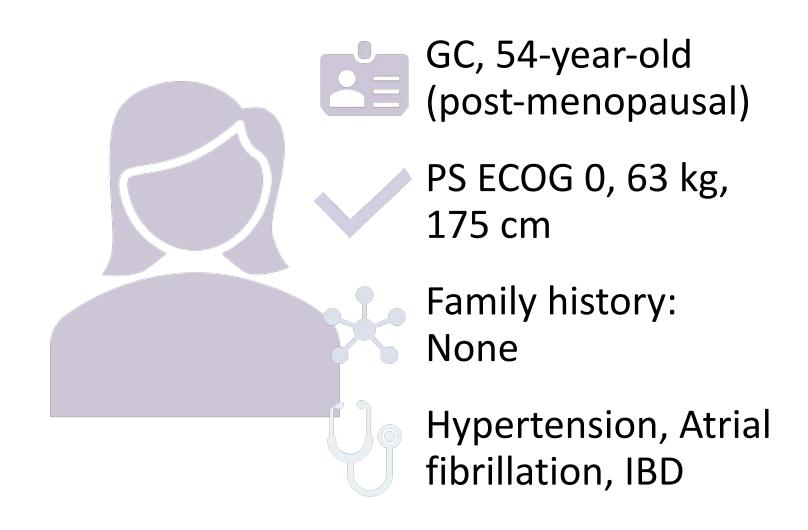
Stephanie L Graff, MD, FACP Priyanka Sharma, MD


Sara A Hurvitz, MD, FACP Rebecca Shatsky, MD

Virginia Kaklamani, MD, DSc Seth Wander, MD, PhD

Regulatory and reimbursement issues aside, do you believe that the results from the SERENA-6 study justify the routine use of serial ctDNA monitoring for early detection of ESR1 mutations in patients with ER-positive, HER2-negative mBC receiving first-line therapy?

General Medical Oncologists


Clinical Investigators

Prof Curigliano: Case Presentation #3

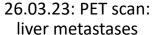
The patient

Diagnosis

March 2023 Self examination of left breast: lump detected 21.03.23
Core biopsy
of left breast:
 ductal
 infiltrating
 carcinoma,
 multifocal,
ER: 80%; PgR:
 80%; Ki67:
40%; HER2+:
 3+

29.03.23 Liver biopsy: Breast cancer metastases. ER: 80%, PgR 10%; HER2: 0

SERENA 6



01.03.23
Mammography +
ultrasonography:
lump of 43 mm,
axillary nodes of 5
cm

31.03.23 Al plus palbociclib

Diagnosis

March 2023 Self examination of left breast: lump detected

21.03.24 ctDNA testing ESR1 negatve

Switch to camizestrant

October 2025 same treatment

31.03.23 Al plus Palbociclib With responsive disease 21.09.24 ctDNA testing ESR1 mutations No radiological progression March 2025
Camizestrant
plus
palbociclib

EMBER-3 Trial: Indirect Comparison

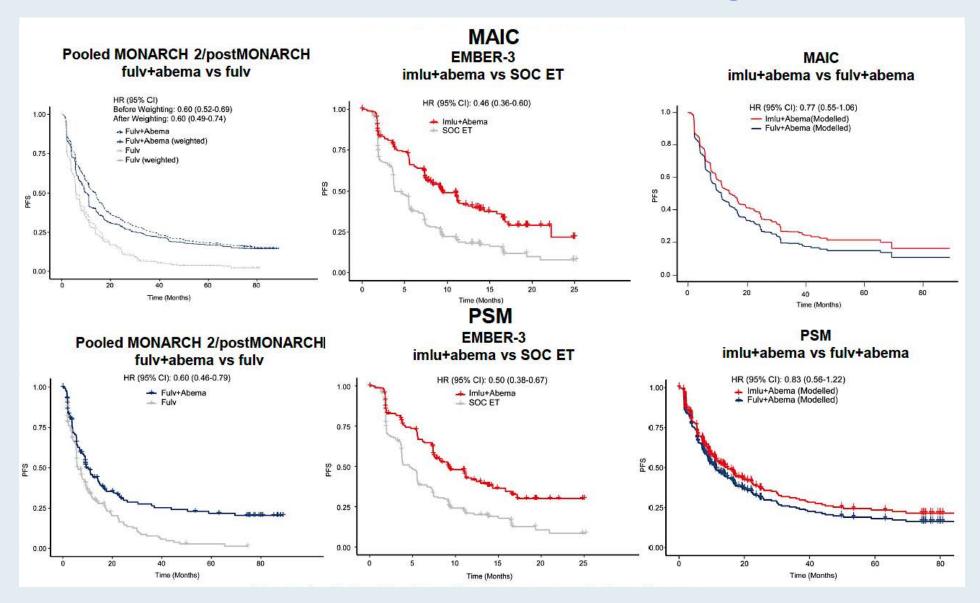
• Bidard FC et al. Imlunestrant plus abemaciclib versus fulvestrant plus abemaciclib in estrogen receptor positive (ER+), human epidermal growth factor receptor 2 negative (HER2-) advanced breast cancer (ABC): An indirect treatment comparison (ITC) of three phase 3 trials. ESMO 2025; Abstract 496P.

Imlunestrant (Imlu) Plus Abemaciclib (Abema) Versus Fulvestrant (Fulv) Plus Abema In Estrogen Receptor-Positive (ER+), Human Epidermal **Growth Factor Receptor 2– Negative (HER2-) Advanced Breast Cancer (ABC): An Indirect Treatment Comparison (ITC) of Three** Phase 3 Trials

OBJECTIVES

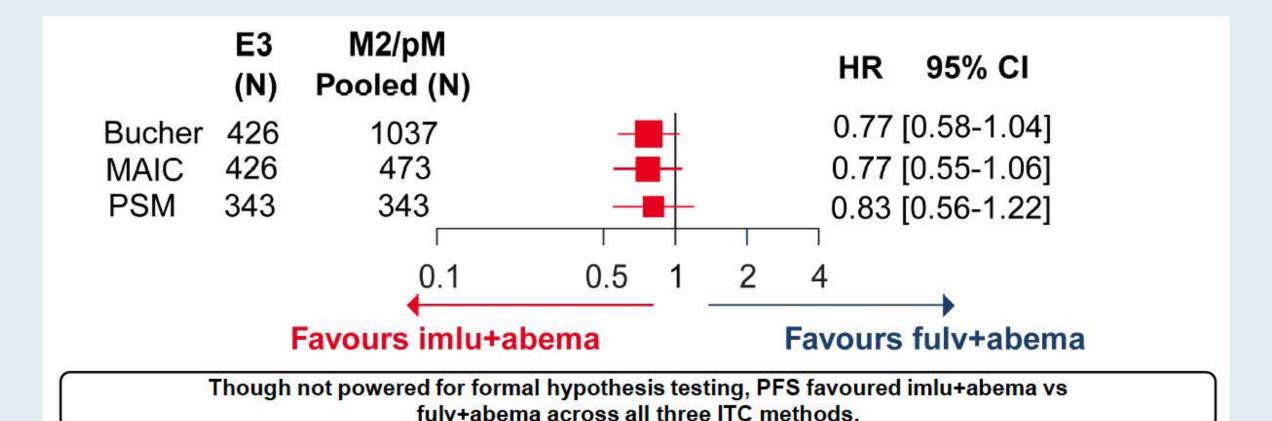
This study aimed to determine the relative efficacy of imlunestrant+abemaciclib versus fulvestrant+abemaciclib through an ITC of the EMBER-3, MONARCH 2, and postMONARCH trials.

Komal Jhaveri¹, <u>Francois-Clement Bidard</u>², Kevin Kalinsky³, Patrick Neven⁴, Hope S. Rugo⁵, Sara M. Tolaney⁶, Lacey M. Litchfield⁷, Christoph Cramer von Laue⁷, Sory Traore⁷, Francisco Sapunar⁷, Yujia Li⁷, Joyce O'Shaughnessy⁸


Indirect Treatment Comparison: Phase III Trials Included (HR-Positive, HER2-Negative Advanced Breast Cancer)

	EMBER-3	MONARCH 2	postMONARCH		
Design	Open Label	Double Blind	Double Blind		
Randomization	1:1:1	2:1	1:1		
Enrolment	874+	669	368		
	Postmenopausal status due to surgical/natural menopause or OFS with a GnRH agonist				
Key Inclusion	Disease progression on/after ET in the adjuvant or metastatic setting				
Criteria	Prior CDK4/6i allowed	No prior CDK4/6i	Prior CDK4/6i required		
	ECOG PS 0-1				
Experimental Arm	lmlu+/-Abema	Fulv+Abema	Fulv+Abema		
Comparator Arm	Fulv or Exemestane*	Fulv+Placebo	Fulv+Placebo		
Primary Endpoint	Investigator-assessed PFS				
Follow-up Duration (months)	14 [¥]	48 ¥	13 ¥		

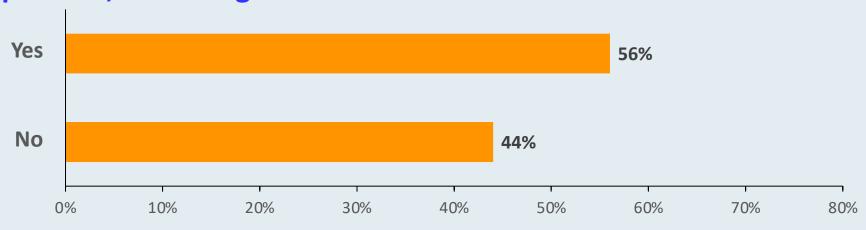
^{†213} patients treated with imlu+abema and 330 patients treated with SOC ET (213 patients were concurrently enrolled). An additional arm of 331 patients treated with imlu monotherapy was not relevant to this analysis; *Investigator choice SOC ET (88% fulv); *While not exactly comparable, the proportional hazards assumption was met.



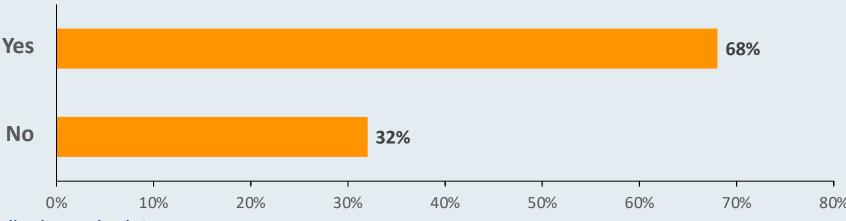
Kaplan-Meier Plots and Survival Curves for Investigator-Assessed PFS

Forest Plot of Imlunestrant with Abemaciclib versus Fulvestrant with Abemaciclib

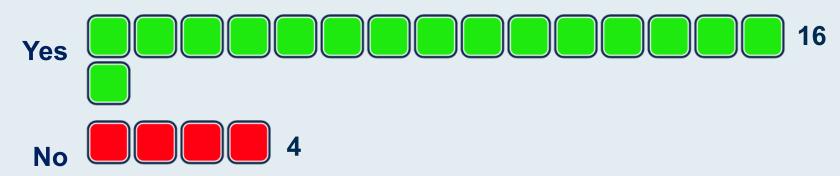
Patient characteristics adjusted for age, race, region, ECOG PS, number of metastatic sites, visceral metastasis, measurable disease, menopausal status, prior CDK4/6i in any setting, and prior ET in the advanced setting.


Authors' Conclusions

CONCLUSIONS


- ❖ In this exploratory ITC analysis of patient-level data from three Phase 3 trials, undertaking various approaches, imlunestrant+abemaciclib suggested consistent numerical PFS benefit compared with fulvestrant+abemaciclib in patients with ER+, HER2- ABC previously treated with ET +/- CDK4/6i.
- ❖ These results support imlunestrant as a highly effective endocrine partner in combination with abemaciclib, offering patients with endocrine-resistant ER+, HER2− ABC an all-oral targeted combination therapy option.

Regulatory and reimbursement issues aside, are there situations in which you would employ the combination of imlunestrant/abemaciclib as <u>first-line</u> <u>treatment</u> for ER-positive, HER2-negative mBC?



Regulatory and reimbursement issues aside, are there situations in which you would employ the combination of imlunestrant/abemaciclib as <u>second- or later-line treatment</u> for ER-positive, HER2-negative mBC?

Regulatory and reimbursement issues aside, are there situations in which you would employ the combination of imlunestrant/abemaciclib as <u>first-line</u> <u>treatment</u> for ER-positive, HER2-negative mBC?

Regulatory and reimbursement issues aside, are there situations in which you would employ the combination of imlunestrant/abemaciclib as <u>second-or</u> <u>later-line treatment</u> for ER-positive, HER2-negative mBC?

Giredestrant

- Mayer EL et al. Giredestrant (GIRE), an oral selective oestrogen receptor (ER) antagonist and degrader, + everolimus (E) in patients (pts) with ER-positive, HER2-negative advanced breast cancer (ER+, HER2- aBC) previously treated with a CDK4/6 inhibitor (i): Primary results of the phase III evERA BC trial. ESMO 2025; Abstract LBA16.
- Llombart-Cussac A et al. Preoperative window-of-opportunity study with giredestrant or tamoxifen (tam) in premenopausal women with estrogen receptor-positive (ER+)/human epidermal growth factor receptor 2-negative (HER2-) and Ki67≥10% early breast cancer (EBC): The EMPRESS study. ESMO 2025;Abstract 294MO.

Abstract LBA16

Giredestrant (GIRE), an oral selective oestrogen receptor (ER) antagonist and degrader, + everolimus (E) in patients (pts) with ER-positive, HER2-negative advanced breast cancer (ER+, HER2- aBC) previously treated with a CDK4/6 inhibitor (i): Primary results of the Phase III evERA BC trial

Erica L. Mayer, Sara M. Tolaney, Miguel Martin, Gregory A. Vidal, Luca Moscetti, Komal L. Jhaveri, Adam Brufsky, William J. Gradishar, Andreas Schneeweiss, Naoki Niikura, Anne Favret, Margarita Alfie, Keun Seok Lee, Sarah Khan, Merilin B. Feldman, Bann-mo Day, Lisa Lam, Walter C. Darbonne, Pablo Perez-Moreno, Hope S. Rugo

Presenting author: Erica L. Mayer, MD, MPH Dana-Farber Cancer Institute, Boston, MA, USA

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use

Abstract 294MO

Preoperative window-of-opportunity study with giredestrant or tamoxifen in premenopausal women with estrogen receptor-positive/human epidermal growth factor receptor 2-negative and Ki67≥10% early breast cancer: the EMPRESS study

Antonio Llombart-Cussac, Giuseppe Viale,
Manuel Ruiz-Borrego, Vicente Carañana, Elena
López-Miranda, Maria Isabel Blancas, Laia
Garrigós, Maria Gión, Mariana Lopez, Ángel
Guerrero, Cristina Saavedra, Juan Miguel
Cejalvo, Juan de la Haba, Cinta Albacar,
Meritxell Aguiló, José Antonio Guerrero, Pari
Skamnioti, Jacques Medioni, José Manuel
Pérez-García, Javier Cortés

October, 2025

Phase III evERA Breast Cancer Study Design

N = 373*

Key eligibility criteria*

- ER+, HER2– aBC (1–3L of therapy)
- ≤ 2 prior lines of ET in the aBC setting
- PD or relapse during/post-CDK4/6i + ET
- No prior chemotherapy in the aBC setting
- Measurable disease per RECIST v1.1 or evaluable bone metastases

Stratification factors

- Prior treatment with fulvestrant (yes vs no)
- ESR1m (yes vs no/indeterminate)
- Site of disease (visceral [lung and/or liver involvement] vs non-visceral)

Enrolment period: August 2022 to October 2024

Giredestrant (30 mg) + everolimus (10 mg)[†]

SOC ET[‡] + everolimus (10 mg)[†]

*Exemestane/fulvestrant/tamoxifen

† Dexamethasone mouthwash prophylaxis and treatment was

Until PD or unacceptable toxicity

Co-primary endpoints (RECIST v1.1)

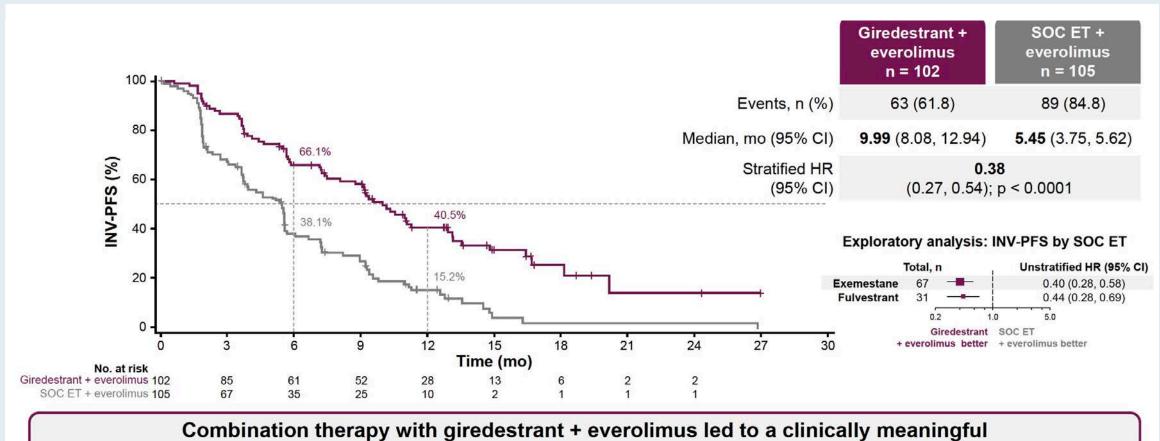
- INV-PFS in patients whose tumours had ESR1m
- INV-PFS in the ITT population

strongly recommended per SWISH trial protocol1

Key secondary endpoints

- OS
- INV-assessed ORR, DoR

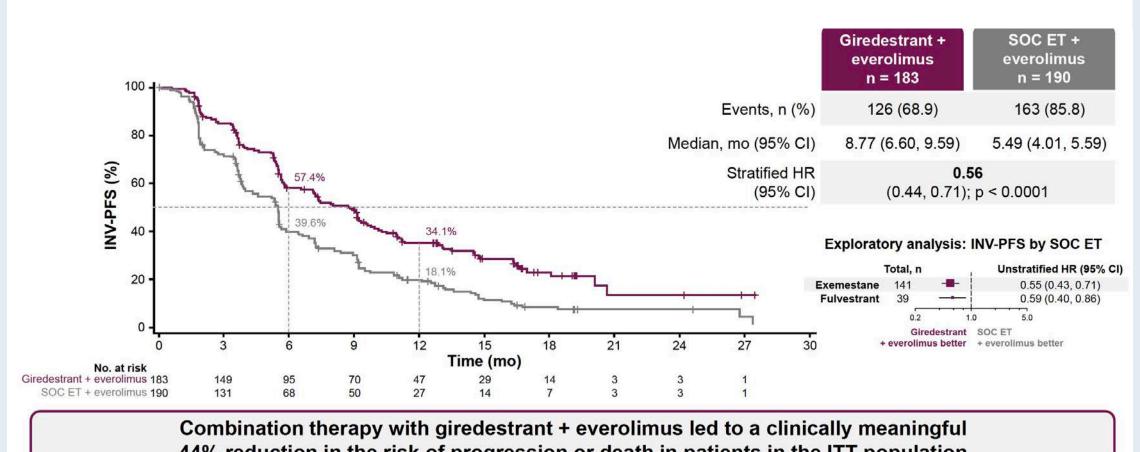
ClinicalTrials.gov number, NCT05306340. Adapted from Mayer EL, et al. SABCS 2022 (poster OT2-01-07) with permission.


1–3L, first to third line; aBC, advanced breast cancer; CDK4/6i, cyclin-dependent kinase 4/6 inhibitor; DoR, duration of response; ER+, oestrogen receptor-positive; ESR1m, ESR1 mutation; ET, endocrine therapy; HER2-, HER2-negative; INV, investigator-assessed; ITT, intention to treat; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; R, randomisation; RECIST, Response Evaluation Criteria in Solid Tumours; SOC ET, standard of care endocrine therapy.

1. Rugo HS, et al. Lancet Oncology 2017; 18:654-662.

^{*} Trial was enriched to 55% of patients with ESR1m at baseline (centrally tested via circulating tumour DNA)

Phase III evERA Breast Cancer Coprimary Endpoint: INV-PFS in the ESR1m Population

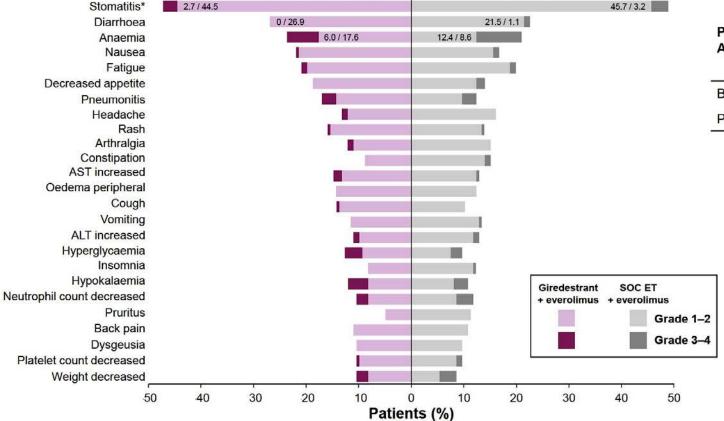


Combination therapy with giredestrant + everolimus led to a clinically meaningful 62% reduction in the risk of progression or death in patients with ESR1m

Data cutoff: 16 July 2025. PFS by blinded independent radiologist was similar to INV-PFS: Median PFS was 11.14 mo (giredestrant + everolimus) and 5.68 mo (SOC ET + everolimus); stratified HR, 0.49; 95% CI: 0.34, 0.71. CI, confidence interval; ESR1m, ESR1 mutation; HR, hazard ratio; INV, investigator-assessed; mo, months; PFS, progression-free survival; SOC ET, standard of care endocrine therapy.

Phase III evERA Breast Cancer Coprimary Endpoint: INV-PFS in the ITT Population

44% reduction in the risk of progression or death in patients in the ITT population


Data cutoff: 16 July 2025. PFS by blinded independent radiologist was similar to INV-PFS: Median PFS was 10.32 mo (giredestrant + everolimus); and 7.26 mo (SOC ET + everolimus); stratified HR, 0.66; 95% CI: 0.50, 0.87. CI, confidence interval; HR, hazard ratio; INV, investigator-assessed; ITT, intention to treat; mo, months; PFS, progression-free survival; SOC ET, standard of care endocrine therapy.

Phase III evERA Breast Cancer: Safety Overview

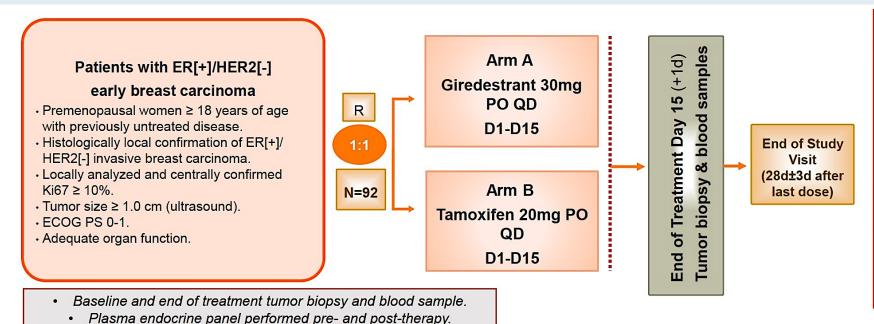
Common TEAEs (≥ 10% of patients in either arm)

Selected AEs

Patients with AE, n	Giredestrant + everolimus n = 182		SOC ET + everolimus n = 186	
	Grade 1–2	Grade 3–4	Grade 1–2	Grade 3–4
Bradycardia†	7 (3.8)	0	1 (0.5)	0
Photopsia	0	0	0	0

Data cutoff; 16 July 2025. * Dexamethasone mouthwash prophylaxis and treatment was strongly recommended per SWISH trial protocol (Rugo HS, et al. Lancet Oncology 2017; 18:654–662).
† Assessed as a medical concept using grouped terms; all events were Grade 1, non-serious and no treatment interruptions/interventions were needed. All events had resolved by data cutoff.
AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; SOC ET, standard of care endocrine therapy; TEAE, treatment-emergent adverse event.

Phase III evERA Breast Cancer: Authors' Conclusions


- The next-generation oral SERD giredestrant, in combination with everolimus, showed statistically significant and clinically meaningful improvements in INV-PFS vs SOC ET + everolimus in ER+, HER2- aBC post-CDK4/6i
 - ESR1m: 62% reduction in the risk of progression or death (HR 0.38; median INV-PFS 9.99 vs 5.45 mo)
 - ITT: 44% reduction in the risk of progression or death (HR 0.56; median INV-PFS, 8.77 vs 5.49 mo)
- Consistent benefit with giredestrant + everolimus was seen across key subgroups; ORR and DoR benefits were observed irrespective of ESR1m status; OS analyses were immature and favourable
- The safety profile of giredestrant + everolimus was manageable and consistent with the known safety profiles of the individual drugs; there were no unexpected safety findings

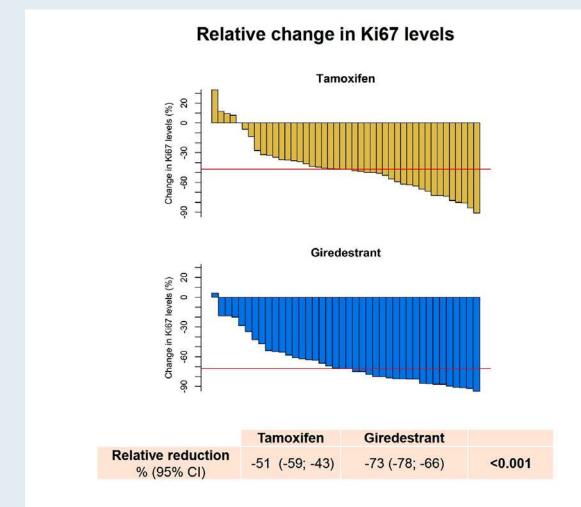
Giredestrant + everolimus may represent a new effective all-oral treatment option in the post-CDK4/6i setting for patients with ER+, HER2- aBC

aBC, advanced breast cancer; CDK4/6i, cyclin-dependent kinase 4/6 inhibitor; DoR, duration of response; ER+, oestrogen receptor-positive; ESR1m, ESR1 mutation; HER2-, HER2-negative; HR, hazard ratio; INV-PFS, investigator-assessed progression-free survival; ITT, intention to treat; mo, months; ORR, objective response rate; OS, overall survival; SERD, selective oestrogen receptor antagonist and degrader; SOC ET, standard of care endocrine therapy.

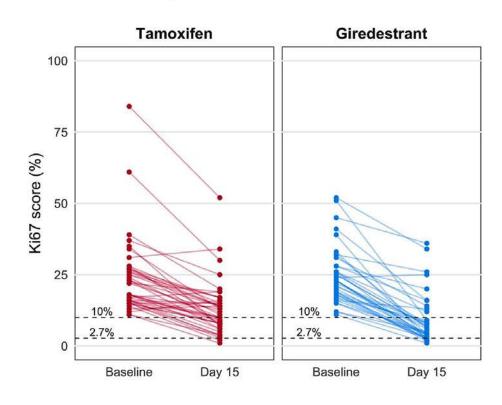
Phase II EMPRESS Study Design

Primary endpoint

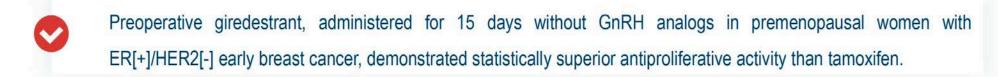
 Changes in tumor cell proliferation as measured by Ki67 expression between baseline and post-treatment tumor biopsy samples by central assessment in patients with centrally confirmed Ki67
 ≥ 10% (Arm A vs Arm B).


Secondary endpoints

- Cell cycle arrest rate (Ki67 ≤2.7%) in both arms.
- Changes in ER and PgR protein levels and molecular profiling using HTG (PAM-like molecular test).
- Incidence and severity of adverse events according to NCI-CTCAE v.5.0.


Abbreviations: d: days; ER: Estrogen receptor; PgR: Progesterone receptor; PO: orally; QD: daily

Phase II EMPRESS: Primary Endpoint


Change in Ki67 levels between baseline and post-treatment

^{*}Efficacy analyses are performed in the modified ITT population, including 44 in the tamoxifen group and 40 patients in the giredestrant group.

Phase II EMPRESS: Authors' Conclusions

- Giredestrant exerts robust ER antagonism at the tumor level, as reflected by significant post-treatment reductions in Ki67, ER, and PgR expression.
- The toxicity profile was as expected according to each treatment strategy.
- The EMPRESS study demonstrates a robust biological activity for giredestrant in premenopausal women, with short-term antiproliferative effects comparable to those observed in postmenopausal patients in the Coopera study.

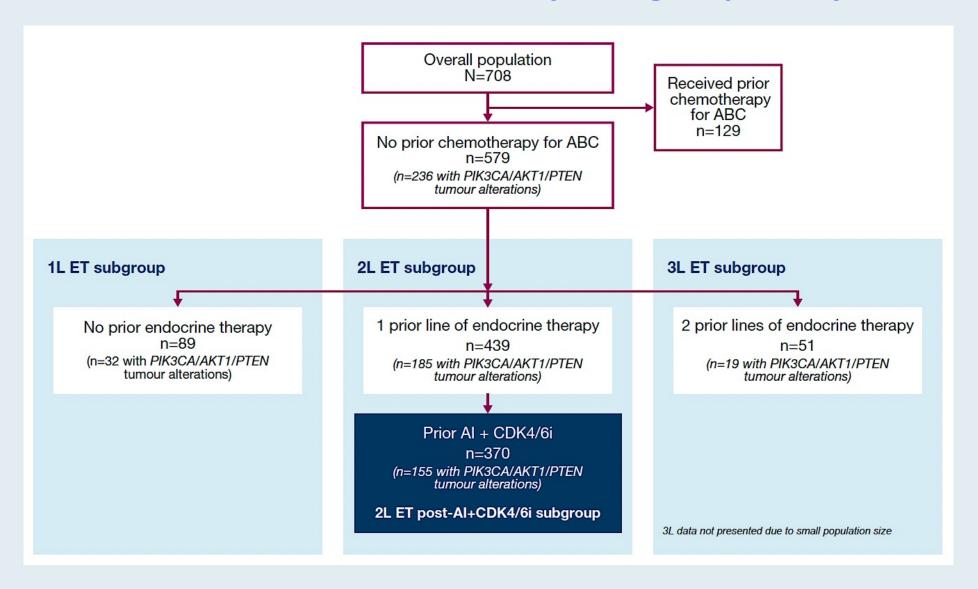
Antonio Llombart-Cussac, MD, PhD

Dr Sharma: Case Presentation #2

- 59-year-old postmenopausal female presents with HR+ *de novo* stage IV breast cancer. She has a 4 cm right breast mass, palpable axillary lymph nodes, 4 osseous lesions and right pleural disease on scans. Biopsy of the breast mass and pleural disease shows invasive breast cancer, ER = 100%, PR = 50%, HER2 IHC 1+.
- She starts on first line treatment with letrozole and ribociclib along with monthly denosumab. This regimen controls her disease for 3 years. Now there is disease progression in the right pleural disease/effusion, and she has two new pulmonary nodules.
- ctDNA testing shows no ESR1 mutation, no PI3K mutation and no other targetable alteration. She enrolls on a clinical trial as part of which she receives everolimus and giredestrant oral therapy. Prophylactic steroid mouth wash is started along with treatment to prevent mucositis. Scans done after 8 weeks of treatment show reduction in the size of two lung lesions. Despite steroid mouthwash, patient has symptomatic mucositis which resolves with one dose level reduction of everolimus. Patient continues on this therapy for 13 months, at which time she is noted to have new liver lesions.

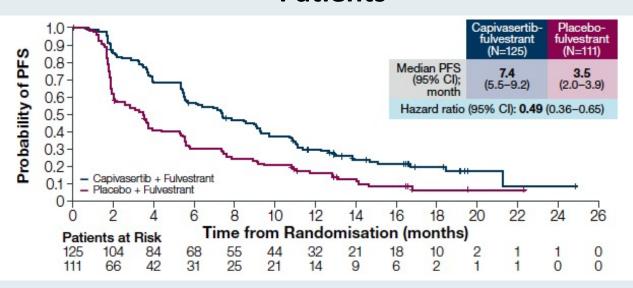
CAPItello-291

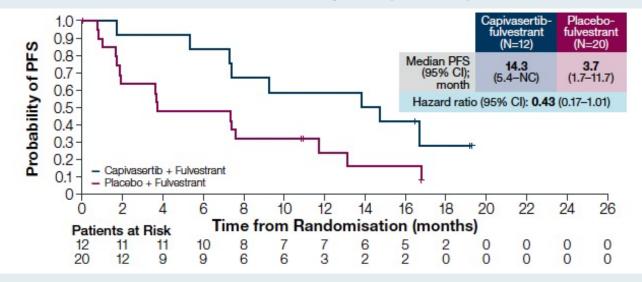
• Rugo HS et al. Capivasertib plus fulvestrant as first and second-line endocrine-based therapy in *PIK3CA/AKT1/PTEN*-altered hormone receptor-positive advanced breast cancer: Subgroup analysis from the phase 3 CAPItello-291 trial. ESMO 2025;Abstract 526P.


Poster number: 526P

Capivasertib plus fulvestrant as first- and second-line endocrine-based therapy in PIK3CA/AKT1/PTEN-altered hormone receptor-positive advanced breast cancer: Subgroup analysis from the Phase 3 CAPItello-291 trial

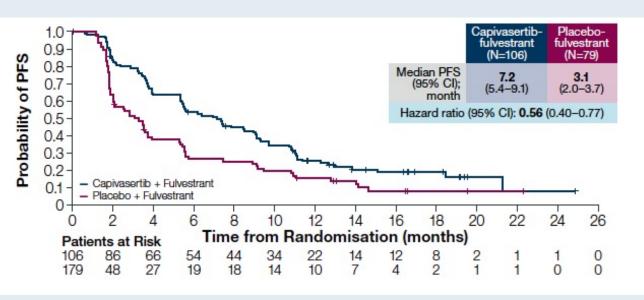
Hope S Rugo,^{1*} Sibylle Loibl,^{2,3} Mafalda Oliveira,^{4,5} Sacha J Howell,⁶ Florence Dalenc,⁷ Javier Cortés,^{8,9,10,11,12} Henry L Gomez,^{13,14} Xichun Hu,¹⁵ Komal Jhaveri,^{10,17} Serafin Morales Murillo,¹⁸ Zbigniew Nowecki,¹⁹ Meena Okera,²⁰ Yeon Hee Park,²¹ Masakazu Toi,²² Lyudmila Zhukova,²³ Kamal S Saini,²⁴ Ian Wadsworth,²⁵ Marta Fulford,²⁰ Vijay Bhagawati Prasad,²⁵ Nicholas C Turner²⁷

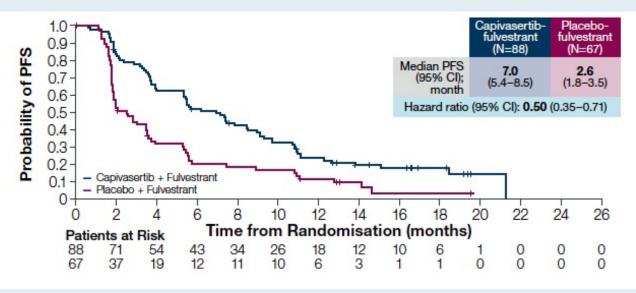

Phase III CAPItello-291 Study: Subgroup Analysis



Phase III CAPItello-291: PFS — Chemotherapy Naïve, PIK3CA/AKT1/PTEN Altered

Patients


First-line ET subgroup (no prior ET)



Phase III CAPItello-291: PFS — Chemotherapy Naïve, PIK3CA/AKT1/PTEN Altered (Continued)

Second-line ET subgroup (1 prior ET)

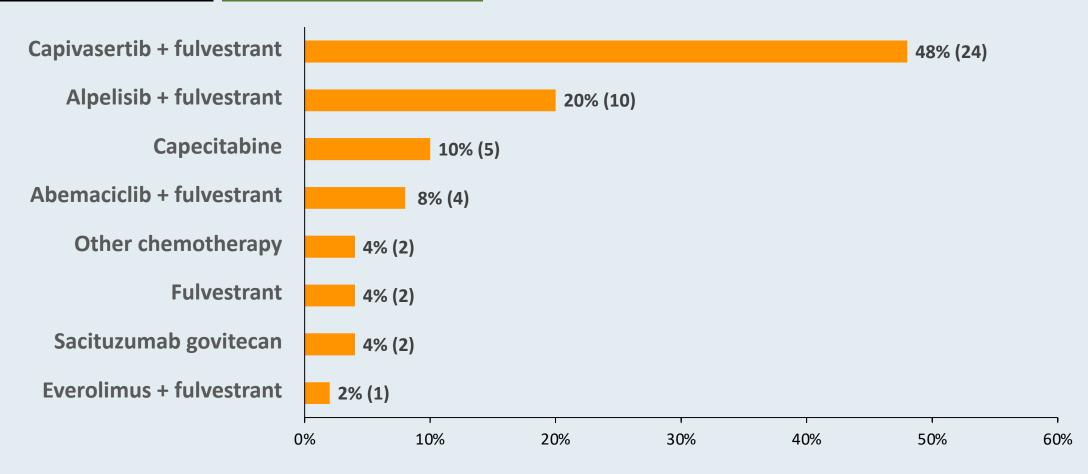
Second-line ET (after AI and CDK4/6i) subgroup

AI = aromatase inhibitor; CDK4/6i = CDK4/6 inhibitor

Phase III CAPItello-291: Author's Conclusions

Objective

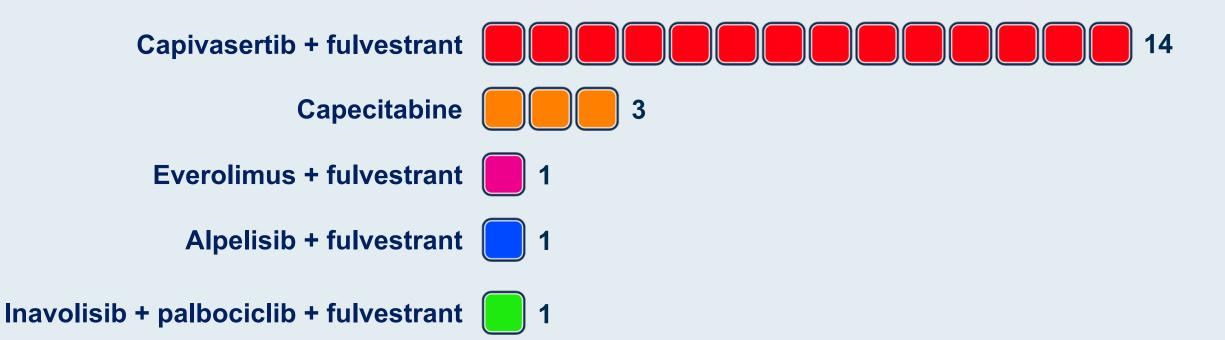
 To assess the efficacy and safety of capivasertib + fulvestrant in chemotherapy-naive patients with ABC, by the number of prior lines of ET-based therapy


Conclusions

- When used as either 1L (PD <12 months after adjuvant ET) or as 2L treatment, capivasertib + fulvestrant demonstrated a consistent PFS benefit versus placebo + fulvestrant in patients with chemotherapy-naive HR+ ABC harbouring PIK3CA/AKT1/PTEN alterations
- Capivasertib + fulvestrant had a generally consistent safety profile across ET lines, with fewer events in select categories of the small 1L subgroup
- Overall, the risk-benefit with capivasertib + fulvestrant appears consistent regardless of treatment line

A 65-year-old woman (PS 0) with ER-positive, HER2-negative (IHC 0/null) de novo mBC receives ribociclib + letrozole for 2.5 years followed by disease progression with multiple symptomatic visceral metastases and normal LFTs

ESR1 wild type PIK3CA mutation



A 65-year-old woman (PS 0) with ER-positive, HER2-negative (IHC 0/null) de novo mBC receives ribociclib + letrozole for 2.5 years followed by disease progression with multiple symptomatic visceral metastases and normal LFTs

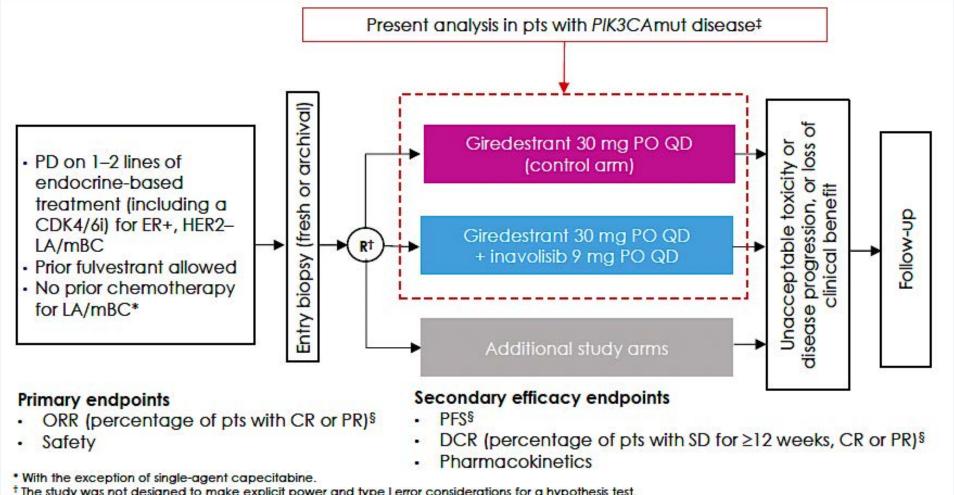
ESR1 wild type

PIK3CA mutation

Interim analysis of giredestrant (GIRE) + inavolisib* (INAVO) in MORPHEUS Breast Cancer (BC): A Phase IB/II study of GIRE treatment (rx) combinations in patients (pts) with estrogen receptor-positive (ER+), HER2-negative, locally advanced/metastatic BC (LA/mBC)

Hope S. Rugo¹, Cristina Saavedra², Kyung Hae Jung³, Melinda L. Telli⁴, Amir Sonnenblick⁵, Einav Gal-Yam⁶, Jing Zhu⁷, Annie Collier⁷, Aleeza Sheikh⁷, Uwe Bader⁸, Huy Ngo⁷, Richard Schwab⁷, Begoña Bermejo De Las Heras⁹

University of California San Francisco, San Francisco, CA, USA; ²Hospital Universitario Ramón y Cajal, Madrid, Spain; ³Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ⁴Stanford University, Stanford, CA, USA; ⁵Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; ⁶Institute of Breast Oncology, Oncology Institute, Sheba Medical Center, Ramat Gan, Israel; ⁷Genentech, Inc., South San Francisco, CA, USA; ⁶F. Hoffmann-La Roche Ltd. Basel, Switzerland; ⁹Hospital Clínico Universitario de Valencia, Universidad de Valencia, Valencia, Spain


508P

Phase Ib/II MORPHEUS BC Study Design

[†] The study was not designed to make explicit power and type I error considerations for a hypothesis test.

Eligible pts in the giredestrant + inavolisib arm had HbA_{1c} <5.7% or FSG <126 mg/dl.</p>

[§] Investigator assessed by RECIST v1.1.

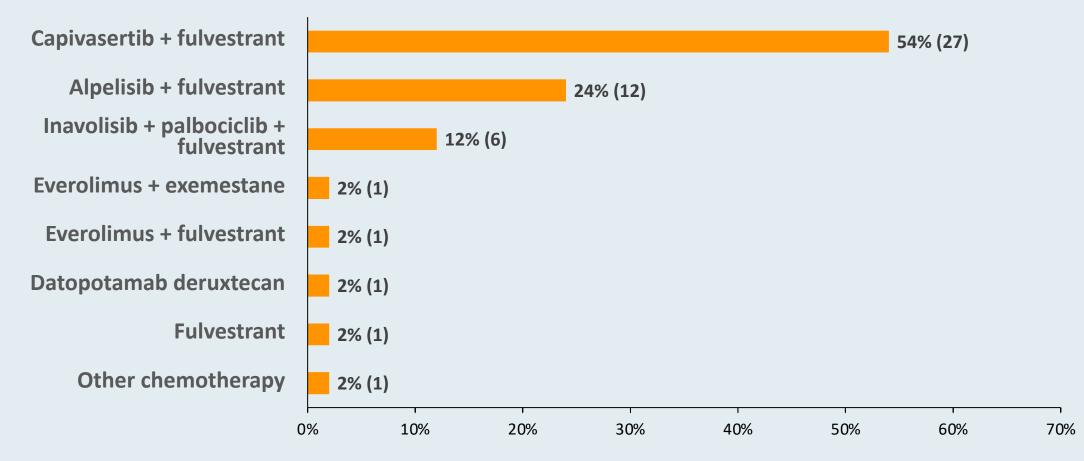
CDK4/6i, cyclin-dependent kinase 4/6 inhibitor; CR, complete response; DCR, disease control rate; ER, oestrogen receptor; FSG, fasting (serum or plasma) glucose; HbA_{1c}, glycated haemoglobin; LA, locally advanced; mBC, metastatic breast cancer; ORR, overall response rate; PD, progressive disease; PFS, progression-free survival; PIK3CAmut, PIK3CA-mutated; PO, orally; PR, partial response; pts, patients; QD, once daily; R, randomisation; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease.

Phase Ib/II MORPHEUS BC: Best Confirmed ORRs

Patients, n (%) (95% CI)	Giredestrant + inavolisib (n = 40)	Giredestrant + inavolisib (ESR1mut) (n = 13/38)*,†
Responders (OR)	16 (40.0) (24.9, 56.7)	10 (77.0) (46.2, 95.0)
Complete response	3 (7.5) (1.6, 20.4)	2 (15.4) (1.9, 45.5)
Partial response	13 (32.5) (18.6, 49.1)	8 (61.5) (31.6, 86.1)
Stable disease	22 (55.0) (38.5, 70.7)	2 (15.4) (1.9, 45.5)
Progressive disease	2 (5.0) (0.6, 16.9)	1 (7.7) (0.2, 36.0)
Disease control rate	32 (80.0) (64.4, 91.0)	12 (92.3) (64.0, 99.8)
Clinical benefit rate	28 (70.0) (53.5, 83.4)	11 (84.6) (54.6, 98.1)

^{*} Reported ESR1 mut response results are limited to F1LCDx liquid biopsy-determined cases; two pts were not evaluable for ESR1 mutations.
† Notably, these cases carry co-mutations (PIK3CA and ESR1).

CI, confidence interval; F1LCDx, FoundationOne® Liquid CDx; ESR1mut, ESR1-mutated; OR, overall response; RECIST, Response Evaluation Criteria in Solid Tumors.


Phase Ib/II MORPHEUS BC: Authors' Conclusions

- Giredestrant + inavolisib showed impressive efficacy in pts with PIK3CAmut, ER+, HER2- mBC and prior CDK4/6i treatment, particularly those who also had an ESR1 mutation, for whom high ORR, DCR and clinical benefit rate were reported.
- The ORR in MORPHEUS BC compares favourably with historical data from BYLieve (alpelisib + fulvestrant; ORR: 23% for pts with measurable disease [PMID: 33794206]), despite BYLieve excluding prior fulvestrant.¹⁸
- The safety profile of giredestrant + inavolisib was consistent with the known profiles of each agent. Overlapping toxicities (diarrhoea, nausea, vomiting) were manageable.
 No new safety signals were observed.¹⁹
- These results support further exploration of giredestrant + inavolisib; the study has been expanded to continue evaluating this combination.

A 65-year-old woman (PS 0) with ER-positive, <u>HER2-negative (IHC 0/null)</u> breast cancer receives <u>adjuvant abemaciclib + anastrozole for 2 years</u> followed by development of biopsy-confirmed ER-positive, HER2-negative (IHC 0/null) metastatic disease with multiple minimally symptomatic bone metastases

ESR1 wild type PIK3CA mutation

A 65-year-old woman (PS 0) with ER-positive, <u>HER2-negative</u> (IHC 0/null) breast cancer receives <u>adjuvant abemaciclib + anastrozole for 2 years</u> followed by development of biopsyconfirmed ER-positive, HER2-negative (IHC 0/null) metastatic disease with <u>multiple minimally symptomatic bone metastases</u>

ESR1 wild type

PIK3CA mutation

Inavolisib + palbociclib + fulvestrant

Capivasertib + fulvestrant

Ribociclib + fulvestrant 1

Everolimus + fulvestrant 1

Dr Sharma: Case Presentation #3

65-year-old with pT2N2 HR+ breast cancer. S/p lumpectomy and ALND which showed 2.8 cm grade II IDC with 4/9 involved axillary lymph nodes. ER = 70%, PR = 30%, HER2 IHC 0, Ki-67 38%. Receives adjuvant chemotherapy with ddAC followed by paclitaxel. This is followed by chest wall and RNI irradiation. She starts on adjuvant letrozole but declines adjuvant abemaciclib or ribociclib due to concerns about side effects impacting quality of life and "treatment fatigue".

18 months after initiating letrozole she complains of abdominal pain. CT scans show 7 liver lesions and osseous disease. Biopsy of the liver lesion confirms metastatic breast cancer, ER = 80%, PR = 20%, HER2 IHC 0. Genomic testing on the liver biopsy shows the only abnormality is a PIK3CA mutation (E545K). Labs, including liver function tests, are normal and HbA1c is 5.8.

She starts first-line treatment with inavolisib/palbociclib/fulvestrant. Two weeks after starting the treatment she develops rash on arms and legs (grade 1). She is instructed to start lorated lorated every day which leads to improvement in the rash. Scans done after 12 weeks show improvement in the liver disease and sclerosis of the osseous lesions. Fasting blood sugar is now 120 and HbA1c is 6.9. She is started on metformin 500 mg every day for hyperglycemia.

VIKTORIA-1

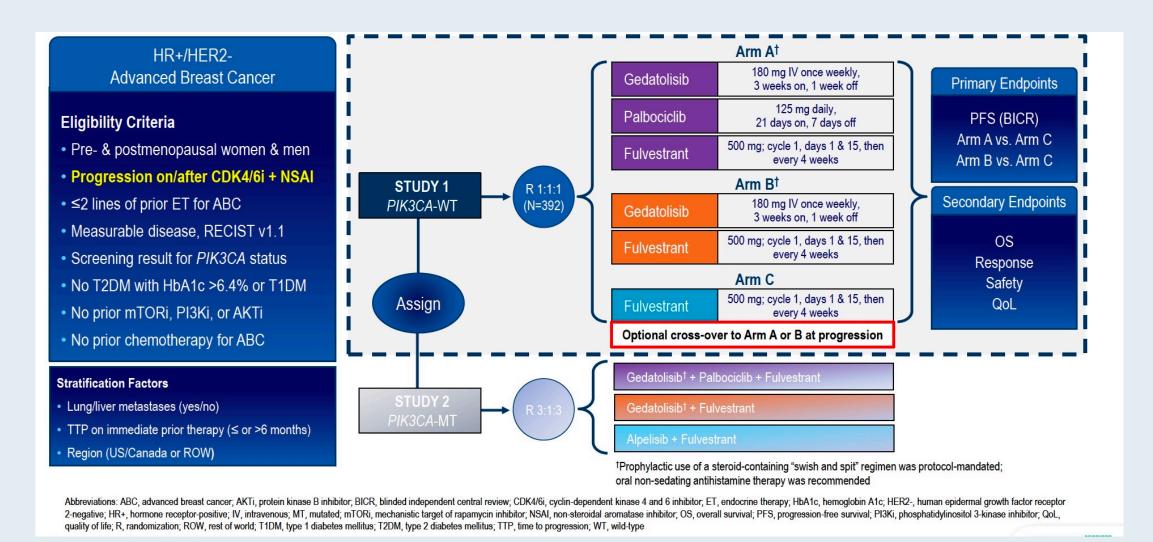
 Hurvitz SA et al. Gedatolisib (geda) + fulvestrant ± palbociclib (palbo) vs fulvestrant in patients (pts) with HR+/ HER2-/PIK3CA wild-type (WT) advanced breast cancer (ABC): First results from VIKTORIA-1. ESMO 2025; Abstract LBA17.

Abstract LBA17

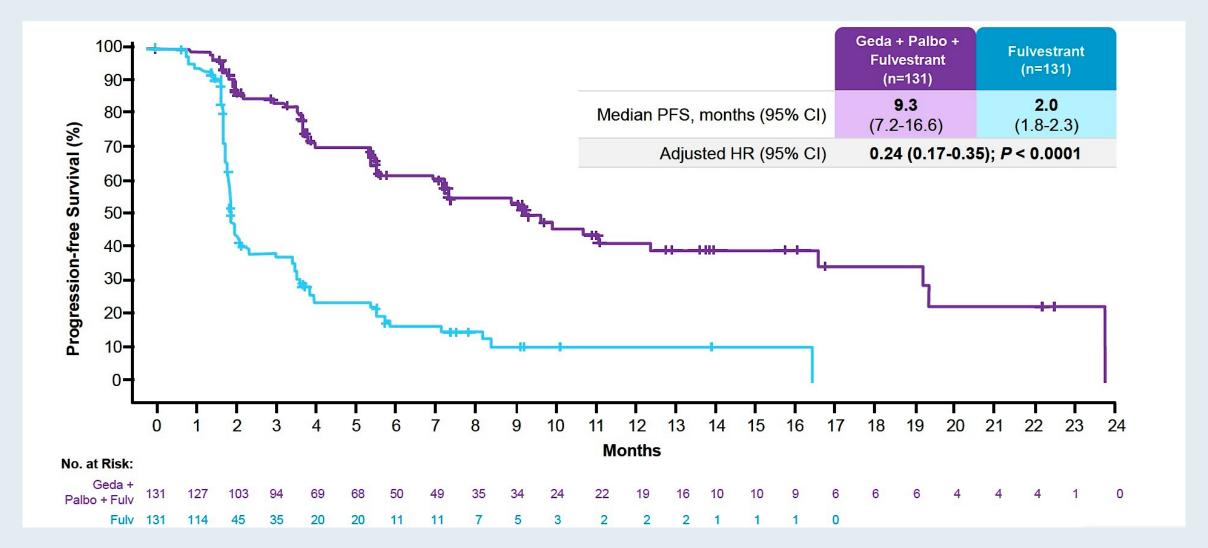
Gedatolisib Plus Fulvestrant, With & Without Palbociclib, vs Fulvestrant in Patients With HR+/HER2-/*PIK3CA* Wild-Type Advanced Breast Cancer: First Results from VIKTORIA-1

Sara A. Hurvitz, Rachel M. Layman, Giuseppe Curigliano, Fabrice André, Massimo Cristofanilli, Sung-Bae Kim, Martin Richardet, Jorge Luis Martínez Rodríguez, Jorge Carlos Nadal, Gun Min Kim, George Emile, Robert Wesolowski, Miguel Martin, Alistair Ring, Sarah C. Mutka, Samuel Suzuki,

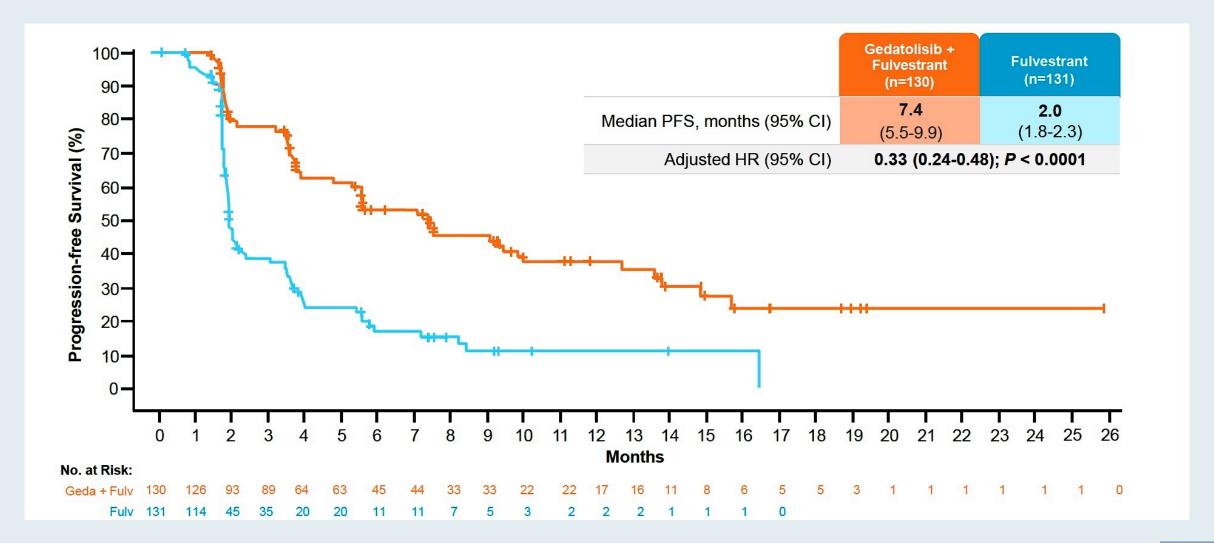
Brian Sullivan, Igor Gorbatchevsky, Barbara Pistilli


Sara A. Hurvitz Fred Hutchinson Cancer Center Seattle, WA, USA

18 October 2025

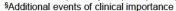


Phase III VIKTORIA-1 Study Design



Phase III VIKTORIA-1: PFS with Gedatolisib Triplet versus Fulvestrant

Phase III VIKTORIA-1: PFS with Gedatolisib Doublet versus Fulvestrant



Phase III VIKTORIA-1: Safety

SAE and discontinuation, n (%)	Gedatolisib + palbociclib + fulvestrant (n=130)			Gedatolisib + fulvestrant (n=130)			Fulvestrant (n=123)		
Pts with ≥1 SAE	14 (10.8)			12 (9.2)			1 (0.8)		
Study treatment D/C due to TRAE	3 (2.3)			4 (3.1)			0		
Deaths due to TRAE†	2 (1.5)			0			0		
Adverse events, n (%)	Gedatolisib + palbociclib + fulvestrant (n=130)			Gedatolisib + fulvestrant (n=130)			Fulvestrant (n=123)		
	Any Grade	Grade 3	Grade 4	Any Grade	Grade 3	Grade 4	Any Grade	Grade 3	Grade 4
Stomatitis [‡]	90 (69.2)	25 (19.2)	0	74 (56.9)	16 (12.3)	0	0	0	0
Neutropenia [‡]	85 (65.4)	68 (52.3)	13 (10.0)	2 (1.5)	0	1 (0.8)	1 (0.8)	1 (0.8)	0
Nausea	57 (43.8)	5 (3.8)	0	56 (43.1)	1 (0.8)	0	4 (3.3)	0	0
Rash [‡]	36 (27.7)	6 (4.6)	0	42 (32.3)	7 (5.4)	0	0	0	0
Vomiting	36 (27.7)	2 (1.5)	0	30 (23.1)	0	0	1 (0.8)	0	0
Fatigue	29 (22.3)	2 (1.5)	0	27 (20.8)	1 (0.8)	0	5 (4.1)	0	0
Diarrhea [§]	22 (16.9)	2 (1.5)	0	16 (12.3)	1 (0.8)	0	0	0	0
Hyperglycemia ^{‡,§}	12 (9.2)	3 (2.3)	0	15 (11.5)	3 (2.3)	0	0	0	0

Abbreviations: D/C, discontinued; Pts, patients; SAE, serious adverse event; TRAE, treatment-related adverse event (per investigator)

[‡]For stomatitis, neutropenia, rash, and hyperglycemia, combined preferred terms shown; if a patient experienced multiple terms, it was counted once for the highest grade.

^{*}Shown are adverse events of any grade that occurred in at least 20% of the patients in any trial group unless otherwise noted

[†]Grade 5 events include one considered related to palbociclib (pneumonia) and one due to hepatic failure in a patient with multiple liver metastases considered related to all three drugs (and likely associated with disease)

Phase III VIKTORIA-1: Authors' Conclusions

- VIKTORIA-1 is the first study to demonstrate a statistically significant and clinically meaningful improvement in PFS with PAM inhibition in patients with PIK3CA-WT disease, all of whom received prior CDK4/6i
 - Gedatolisib triplet, mPFS 9.3 months (HR, 0.24; 95% CI, 0.17-0.35; P < 0.0001)
 - Gedatolisib doublet, mPFS 7.4 months (HR, 0.33; 95% CI, 0.24-0.48; P < 0.0001)
- Efficacy of gedatolisib-based therapy was comparable regardless of which prior CDK4/6i was used
- Adverse events associated with gedatolisib in VIKTORIA-1 were mainly Grade 1 or 2 in severity
 - Hyperglycemia was low (9.2% for triplet, 11.5% for doublet), as was diarrhea (16.9% and 12.3%, respectively),
 which is unexpected for a drug targeting the PAM pathway
 - Study treatment discontinuation due to TRAEs was reported in 2.3% (triplet) and 3.1% (doublet) of patients
- These results validate the PAM pathway as a molecular driver in *PIK3CA*-WT disease

Gedatolisib plus fulvestrant, with or without palbociclib, represents a potential new standard of care for patients with HR+, HER2-negative, *PIK3CA*-WT ABC whose disease progressed on or after treatment with a CDK4/6 inhibitor

WT = wild type

Sacituzumab Tirumotecan

Li M et al. Sacituzumab tirumotecan (sac-TMT) vs investigator's choice of chemotherapy (ICC) in previously treated locally advanced or metastatic hormone receptor-positive, HER2-negative (HR+/HER2-) breast cancer (BC): Results from the randomized, multi-center phase 3 OptiTROP-Breast02 study. ESMO 2025; Abstract LBA23.

Abstract LBA23

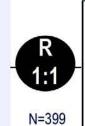
Sacituzumab tirumotecan (sac-TMT) vs investigator's choice of chemotherapy in previously treated locally advanced or metastatic hormone receptor-positive, HER2-negative (HR+/HER2-) breast cancer: results from the randomized, multi-center phase 3 OptiTROP-Breast02 study

Ying Fan¹, Huihui Li², Hao Wang³, Shusen Wang⁴, Haijun Yu⁵, Zhongsheng Tong⁶, Zhengkui Sun⁷, **Man Li⁸**, Xiying Shao⁹, Yongmei Yin¹⁰, Quchang Ouyang¹¹, Jian Liu¹², Wenhui Wang¹³, Jiuwei Cui¹⁴, Xinhong Wu¹⁵, Gesha Liu¹⁶, Yina Diao¹⁶, Xiaoping Jin¹⁶, Junyou Ge^{16, 17}, Binghe Xu¹

¹ National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; ² Cancer Hospital of Shandong First Medical University (Shandong Cancer Institute, Shandong Cancer Hospital), Jinan, China; ³ Sichuan Cancer Hospital, Chengdu, China; ⁴ Sun Yat-Sen University Cancer Center, Guangzhou, China; ⁵ Zhongnan Hospital of Wuhan University, Wuhan, China; ⁶ Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; ⁷ Jiangxi Provincial Cancer Hospital, Nanchang, China; ⁸ The Second Affiliated Hospital of Dalian Medical University, Dalian, China; ⁹ Zhejiang Cancer Hospital, Hangzhou, China; ¹⁰ Jiangsu Province Hospital/The First Affiliated Hospital with Nanjing Medical University, Nanjing, China; ¹¹ Hunan Cancer Hospital, Changsha, China; ¹² Fujian Cancer Hospital, Fuzhou, China; ¹³ Weifang People's Hospital, Weifang, China; ¹⁴ The First Hospital of Jilin University, Changchun, China; ¹⁶ Hubei Cancer Hospital, Wuhan, China; ¹⁶ Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd., Chengdu, China; ¹⁷ National Engineering Research Center of Targeted Biologics, Chengdu, China.

Presenter: Professor Man Li

The Second Affiliated Hospital of Dalian Medical University, Dalian, China


Sat. 18.10.2025

Phase III OptiTROP-Breast02 Study Design

Key Eligibility

- HR+/HER2- BC*
- Prior 1 4 lines of chemotherapy
- At least one endocrine therapy, CDK 4/6 inhibitor, and taxane in any setting

Sac-TMT 5 mg/kg IV, Q2W

Investigator choice chemo (eribulin, capecitabine, gemcitabine or vinorelbine)

Primary endpoints

PFS by BICR per RECIST v1.1

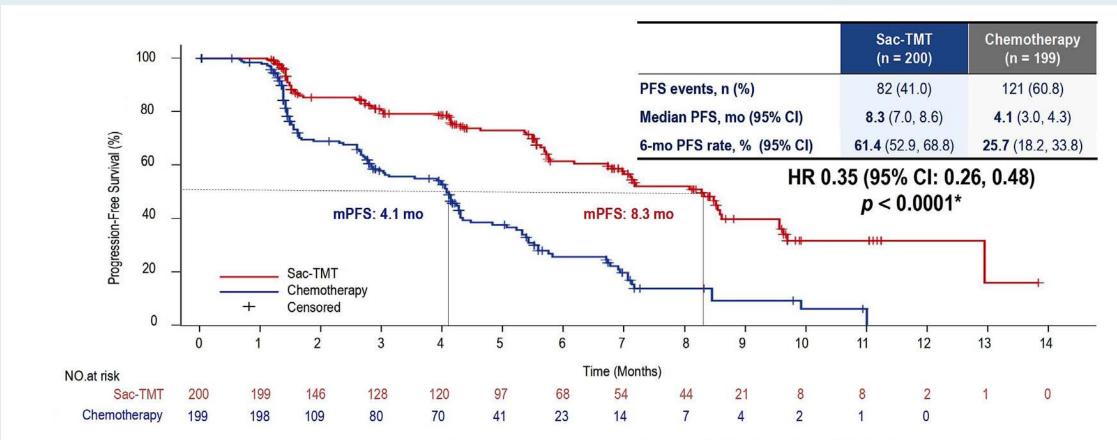
Secondary endpoints

- PFS (investigator assessed)
- · OS
- · ORR, DCR and DoR

Stratification Factors:

- 1. Lines of chemotherapy (1 vs >1)
- 2. HER2 status (zero vs low) *
- 3. Endocrine therapy ≥ 6 months (yes vs no) †

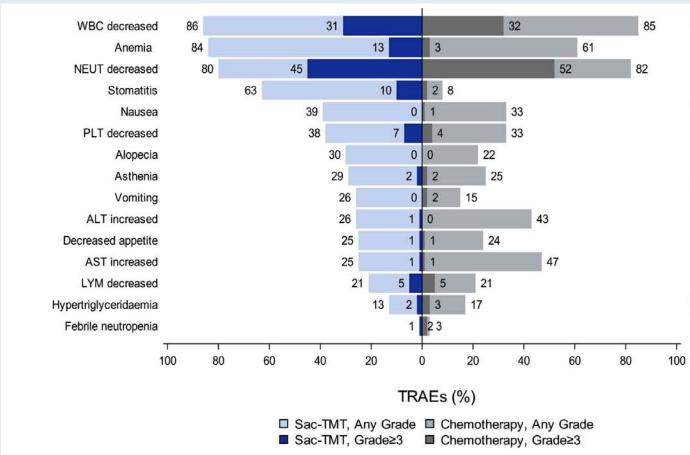
Statistical considerations:


- Pre-specified IA for PFS was performed when all patients had the opportunity to have 1 post-baseline scan and at least 188 PFS events were occurred
- Pre-specified IA for OS: approximately 165 OS events occurred
- Lan-DeMets O'Brien-Fleming α-spending function for both PFS and OS IA

*HER2- BC includes two subtypes: HER2-zero and HER2-low. HER2-zero: No staining, or barely perceptible staining with a proportion > 0% but ≤ 10%; HER2-low defined as IHC1+, or IHC2+/ISH-negative. † If no prior endocrine therapy in advanced setting, assess if (neo)adjuvant endocrine therapy duration ≥ 2 years.

BC, breast cancer; BICR, blinded independent central review; CDK 4/6, cyclin dependent kinase 4/6; DCR, disease control rate; DoR, duration of response; IA, interim analysis; OS, overall survival; Q2W, every 2 weeks; RECIST, Response Evaluation Criteria in Solid Tumors.

Phase III OptiTROP-Breast02: PFS by BICR


The investigator-assessed PFS was consistent with BICR: HR 0.39 (95% CI: 0.30, 0.52)

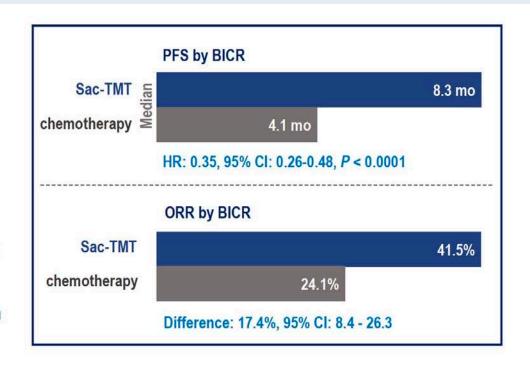
BICR = blinded independent central review

^{*} Based on pre-specified PFS IA, one-sided *P* value was less than the pre-specified efficacy boundary to achieve statistically significant improvement (one-sided alpha level of 0.010 determined by the O'Brien-Fleming alpha spending function).

Phase III OptiTROP-Breast02: Safety

- The most common TRAEs for both sac-TMT and chemotherapy were hematologic toxicities.
- Grade ≥ 3 diarrhea occurred in 1.0% of patients in the sac-TMT group.
- Low ocular surface toxicity (11.5% dry eyes, 4.0% corneal disease, all grade 1-2) observed in the sac-TMT group.
- ILD/pneumonitis occurred in 1.5% and 1.0% of patients (all grade 1-2) in the sac-TMT and chemotherapy groups.

^{*} Summary of TRAEs that occurred in either treatment group at an incidence of ≥ 20% for any grade or ≥ 2% for grade ≥ 3.


ALT, alanine aminotransferase; AST, aspartate aminotransferase; ILD, interstitial lung disease; LYM, lymphocyte count; NEUT, neutrophil count; PLT, platelet count; WBC, white blood cell.

Phase III OptiTROP-Breast02: Authors' Conclusions

- Sac-TMT demonstrated statistically significant and clinically meaningful improvement in PFS compared to chemotherapy.
 - PFS benefit was observed across all predefined subgroups.
 - PFS by BICR HR: 0.35 (95% CI: 0.26-0.48, P < 0.0001).
- Positive OS trend was observed with sac-TMT.
 - OS HR 0.33; (95% CI, 0.18, 0.61).
- Sac-TMT demonstrated a manageable safety profile, with no new safety signals.
- Phase 3 studies of sac-TMT (as monotherapy and/or in combination with pembrolizumab) in chemotherapy naïve HR+/HER2- breast cancer are ongoing globally (NCT06312176) and in China (NCT07071337).

The OptiTROP-Breast02 study supports sac-TMT as a new treatment option for patients with HR+/HER2- breast cancer following endocrine-based therapy and chemotherapy

ER-Positive, HER2 (0 or low), mBC: Sequencing of Systemic Therapies Post Endocrine Treatment

ER-positive, HER2-low

- T-DXd versus TROP2-targeted ADC (sacituzumab govitecan, datopotamab deruxtecan)
- Capecitabine
- Other chemotherapy

ER-positive, **HER2-negative**

- Sacituzumab govitecan versus datopotamab deruxtecan
- Capecitabine
- Other chemotherapy

Clinical factors:

- PS, comorbidities
- Tumor-related symptoms
- Visceral, CNS disease
- Prior systemic treatment

Agenda

Module 1: HER2-Positive Breast Cancer

Module 2: HR-Positive Breast Cancer

Module 3: Triple-Negative Breast Cancer

Neoadjuvant Durvalumab for TNBC

• Loibl S et al. **Durvalumab** in combination with neoadjuvant chemotherapy in **early triple-negative breast cancer (TNBC) – Long-term analysis** from the **GeparNuevo trial**. ESMO 2025;Abstract 292MO.

Abstract 292MO

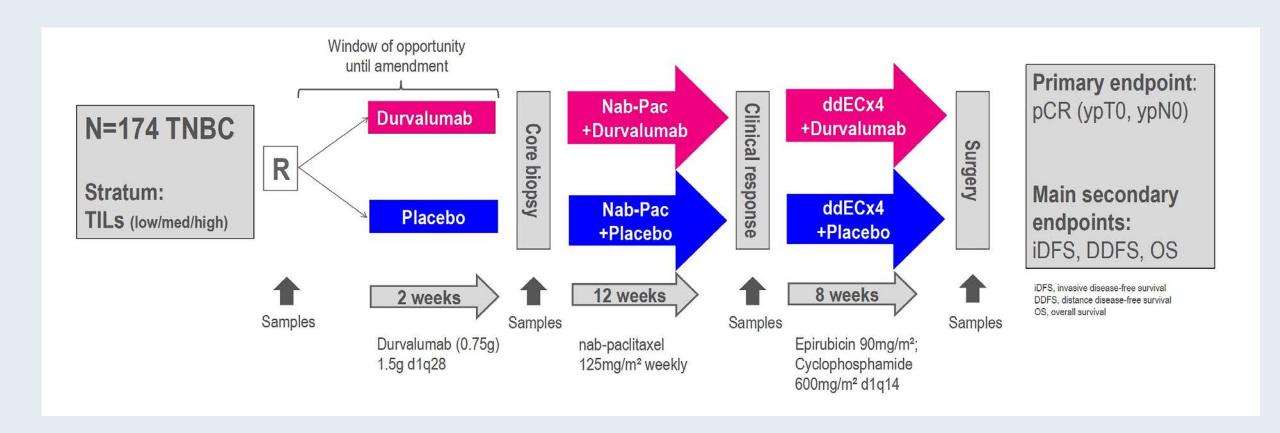
GBG GERMAN BREAST GROUP

Durvalumab in Combination with Neoadjuvant Chemotherapy in Early Triple-Negative Breast Cancer (TNBC) – Long-term Analysis from the GeparNuevo Trial

-This is a joint study by GBG and AGO-B-

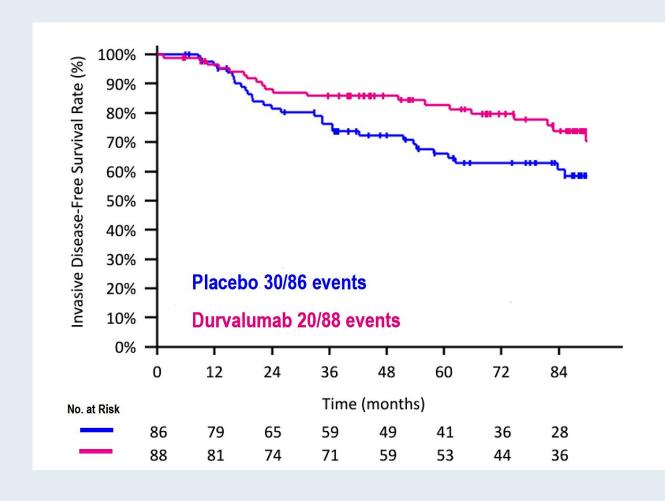
MAGO-B

Sibylle Loibl, Michael Untch, Jens Huober, Vanessa Schaser, Michael Braun, Carsten Denkert, Andreas Hartkopf, Jens-Uwe Blohmer, Claus Hanusch, Theresa Link, Mattea Reinisch, Dirk-Michael Zahm, Rudolf Weide, Vesna Bjelic-Radisic, Peter Staib, Hans Tesch, Kerstin Rhiem, Ralf Lorenz, Julia Rey, Andreas Schneeweiss


GBG Forschungs GmbH; Neu-Isenburg, Germany Goethe University Frankfurt

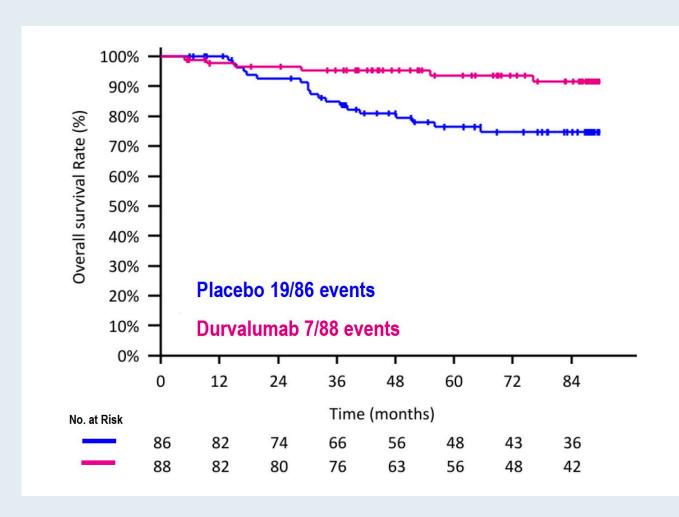
ESVO SCENCE OF THE MENOCINE SECT PRACTICE

EUROPEAN SOCIETY FOR



Phase II GeparNuevo Study Design

Phase II GeparNuevo: Updated IDFS



Median follow-up 86.4 (range 4.9-103) months

	Placebo	Durvalumab		
6-year iDFS	62.8%	79.6%		
(95% CI)	(50.7%, 72.8%)	(68.7%, 87.1%)		
7-year iDFS	60.7%	73.7%		
(95% CI)	(48.2%, 71.0%)	(61.4%, 82.6%)		

Phase II GeparNuevo: 7-Year Overall Survival

Median follow-up 86.4 (range 4.9-103) months

	Placebo	Durvalumab		
6-year IDFS	74.7%	93.6%		
(95% CI)	(63.0%, 83.1%)	(85.2%, 97.3%)		
7-year IDFS	74.7%	91.6%		
(95% CI)	(63.0%, 83.1%)	(81.8%, 96.2%)		
	HR 0.33 (0.14-0.79) Log-rank <i>p</i> =0.009			

Phase II GeparNuevo: Authors' Conclusions

- The addition of the checkpoint inhibitor (CPI) durvalumab to carboplatinum-free, but dose-dense NACT in patients with early TNBC resulted in statistically significant improvement of iDFS, DDFS, and OS despite no administration of adjuvant CPI.
- 7-year follow-up data confirm earlier results:
 - Survival benefit observed irrespective of pCR
 - Patients with TILs in the residual tumor have an excellent outcome.
- As in the NSABP-B58/GeparDouze study there is a significant interaction with the nodal status.
- GeparNuevo raises two questions:
 - Shall patients with cN0 receive a CPI?
 - Do patients need to continue after surgery with the CPI?
- GeparNuevo is the only trial to prove survival benefit in the presence of dose-dense NACT without carboplatinum and the only trial to report survival benefit for a PD-L1 inhibitor.

NACT = neoadjuvant chemotherapy; TIL = tumor-infiltrating lymphocyte

ASCENT-03

Cortés JC et al. Primary results from ASCENT-03: A randomized phase 3 study of sacituzumab govitecan (SG) vs chemotherapy (chemo) in patients (pts) with previously untreated advanced triple-negative breast cancer (TNBC) who are unable to receive PD-(L)1 inhibitors (PD-[L]1i). ESMO 2025; Abstract LBA20.

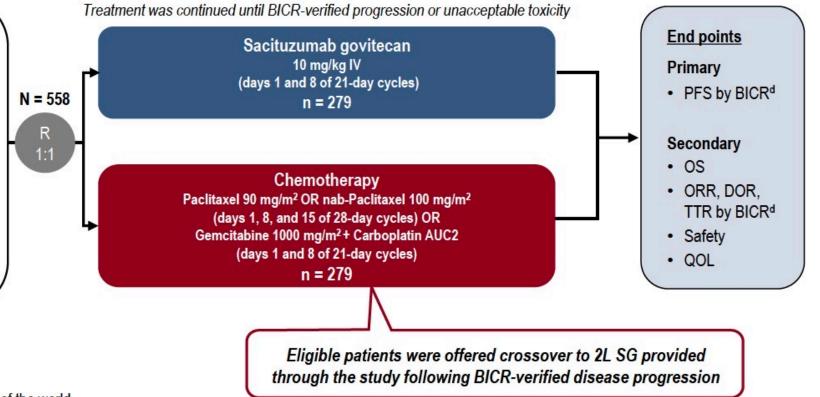
Abstract LBA20

Primary Results From ASCENT-03: A Randomized Phase 3
Study of Sacituzumab Govitecan vs Chemotherapy in Patients
With Previously Untreated Metastatic Triple-Negative Breast
Cancer Who Are Unable to Receive PD-(L)1 Inhibitors

Javier Cortés¹⁻⁵, Aditya Bardia⁶, Kevin Punie⁷, Carlos Barrios⁸, Sara Hurvitz⁹, Andreas Schneeweiss¹⁰, Joohyuk Sohn¹¹, Eriko Tokunaga¹², Adam Brufsky¹³, Yeon Hee Park¹⁴, Binghe Xu¹⁵, Roberto Hegg¹⁶, Mafalda Oliveira¹⁷, Alessandra Fabi¹⁸, Natalya Vaksman¹⁹, Theresa Valdez¹⁹, Xinrui Zhang¹⁹, Catherine Lai¹⁹, Sara M Tolaney²⁰

¹International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain; ²IOB Madrid, Institute of Oncology, Hospital Beata María Ana, Madrid, Spain; ³Oncology Department, Hospital Universitario Torrejón, Ribera Group, Madrid, Spain; ⁴Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain; ⁵Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain and Ridgewood, NJ, USA; ⁵David Geffen School of Medicine, University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA; ¹Ziekenhuis Aan de Stroom, Antwerp, Belgium; ⁵Latin American Cooperative Oncology Group (LACOG), Porto Alegre, Brazil; ³Department of Medicine, UW Medicine, Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA USA; ¹0+Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; ¹¹Yonsei Cancer Center, Seoul, Republic of Korea; ¹²National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan; ¹³Magee-Womens Hospital and the Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; ⁴Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; ¹³Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; ¹Guniversity of São Paulo, São Paulo, Brazil; ¹¹Vall d'Hebron University Hospital, Breast Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; ¹³Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy; ¹³Gilead Sciences Inc., Foster City, CA, USA; ²³Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

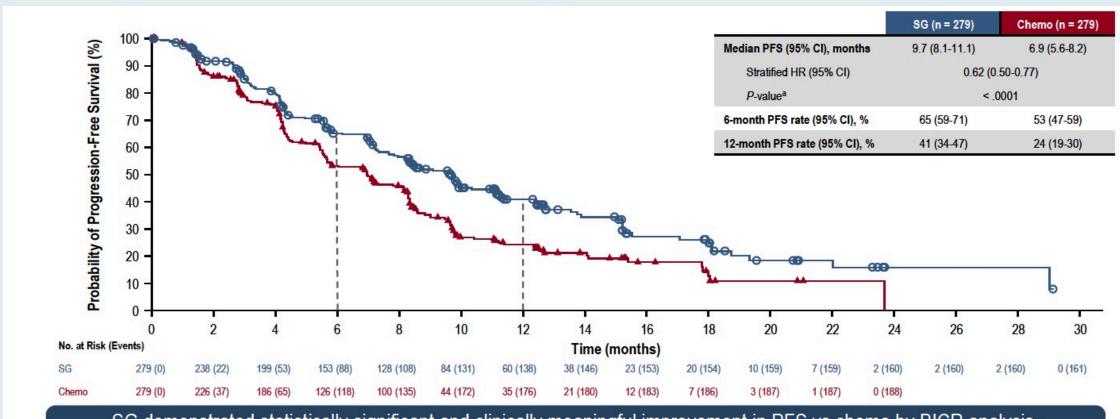
Sunday, October 19, 2025; 9:15-9:25 am LBA 20



Phase III ASCENT-03 Study Design

Patients with previously untreated, locally advanced inoperable or metastatic TNBCa:

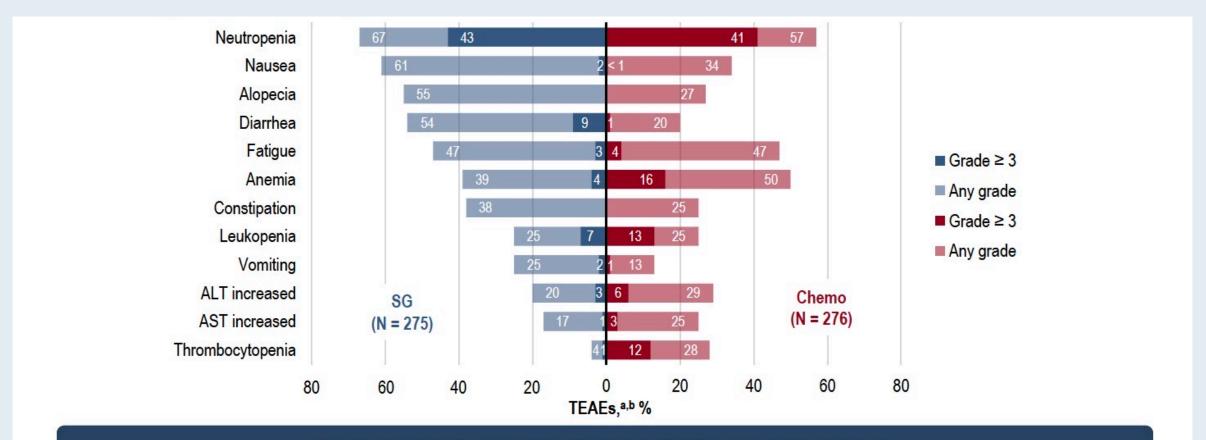
- Not candidates for PD-(L)1 inhibitors:
- PD-L1 negative^b tumors (CPS < 10)
- PD-L1 positive^b tumors (CPS ≥ 10) and previously treated with a PD-(L)1 inhibitor in curative setting
- Ineligible for a PD-(L)1 inhibitor due to a comorbidity
- ≥ 6 months since treatment in curative setting
- Previously treated, stable CNS metastases were allowed


Stratification factors:

- United States/Canada/Western Europe vs rest of the world
- De novo mTNBC^c vs recurrent within 6 to 12 months of treatment vs recurrent after > 12 months from treatment in curative setting

ClinicalTrials.gov identifier: NCT05382299. aTNBC status was centrally confirmed and defined using the PD-L1 IHC 22C3 assay (Dako, Agilent Technologies). aDR de novo mTNBC. Per Response Evaluation Criteria in Solid Tumors version 1.1. 2L, second line; AUC, area under the curve; BICR, blinded independent central review; CNS, central nervous system; CPS, combined positive score; DOR, duration of response; IV, intravenous; mTNBC, metastatic triple-negative breast cancer; ORR, objective response rate; OS, overall survival; PD-1, programmed cell death protein-1; PD-L1, programmed cell death protein-1; PD

Phase III ASCENT-03: PFS by BICR


SG demonstrated statistically significant and clinically meaningful improvement in PFS vs chemo by BICR analysis, with a 38% reduction in risk of disease progression or death

Data cutoff date: April 2, 2025. aTwo-sided P-value from stratified log-rank test.

BICR, blinded independent central review; chemo, chemotherapy; HR, hazard ratio; PFS, progression-free survival; SG, sacituzumab govitecan.

Phase III ASCENT-03: Common AEs

The AEs observed are consistent with the known safety profile of SG

Data cutoff date: April 2, 2025. aTEAEs were included if they occurred in ≥ 20% of patients in either group. bCombined preferred terms of Neutropenia includes neutrophil count decreased, Fatigue includes asthenia, Anemia includes hemoglobin decreased and red blood cell count decreased, Leukopenia includes white blood cell count decreased, Leukopenia includes white blood cell count decreased, Leukopenia includes white blood cell count decreased.

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; chemo, chemotherapy; SG, sacituzumab govitecan; TEAE, treatment-emergent adverse event.

Phase III ASCENT-03: Authors' Conclusions

- SG led to a statistically significant and clinically meaningful improvement in PFS vs chemo (median, 9.7 vs 6.9 months; HR, 0.62)
 - PFS benefit was observed across key prespecified subgroups
- ORR was similar between treatment groups; however, duration of response was longer with SG vs chemo
- OS was immature at the time of the analysis and PFS2 was improved with SG vs chemo
- Safety of SG was consistent with its known profile; use of prophylactic G-CSF is advised as appropriate
- Rates of treatment discontinuations (4% vs 12%) were lower with SG vs chemo

PFS by BICR

38% reduction in risk of progression or death

PFS2 per investigator

Median PFS2 was 4.2 months longer with SG vs chemo

Treatment Discontinuation

Lower rate of treatment discontinuation due to TEAEs with SG vs chemo

ASCENT-03 data support SG as a potential new standard of care for patients with previously untreated mTNBC who are not candidates for a PD-(L)1 inhibitor

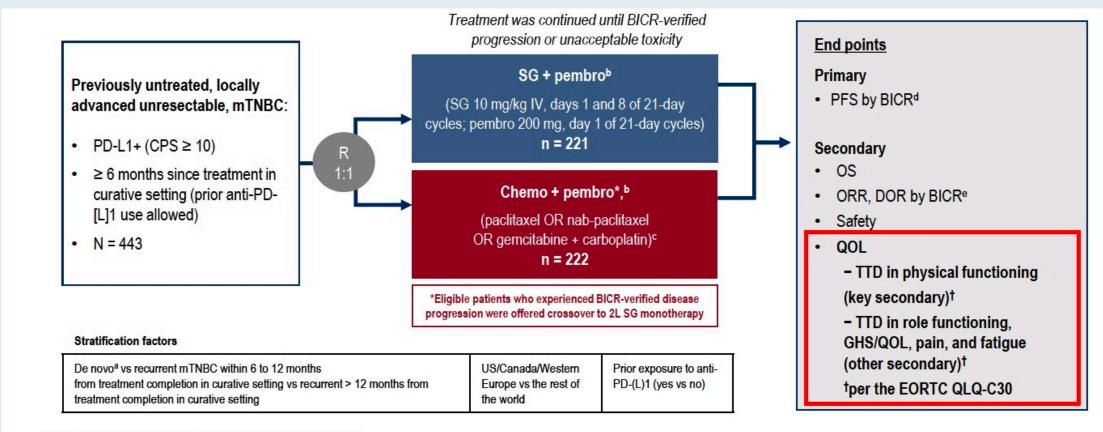
Data cutoff date: April 2, 2025. Chemo, chemotherapy; G-CSF, granulocyte-colony stimulation factor; HR, hazard ratio; mTNBC; metastatic triple-negative breast cancer; ORR, objective response rate; OS, overall survival; PD-1, programmed cell death protein-1; PD-L1, programmed cell death ligand 1; PD-L1; PFS, progression-free survival; SG, sacituzumab govitecan; TEAEs, treatment-emergent adverse events.

ASCENT-04 Patient Reported Outcomes

 de Azambuja E et al. Patient-reported outcomes (PROs) with sacituzumab govitecan (SG) + pembrolizumab (pembro) vs chemotherapy (chemo) + pembro in patients (pts) with previously untreated PD-L1+ metastatic triple-negative breast cancer (mTNBC) in the phase 3 ASCENT-04/KEYNOTE-D19 study. ESMO 2025; Abstract LBA22.

Abstract LBA22

Patient-Reported Outcomes With Sacituzumab Govitecan Plus Pembrolizumab vs Chemotherapy Plus Pembrolizumab in Patients With Previously Untreated PD-L1+ Metastatic Triple-Negative Breast Cancer in the Phase 3 ASCENT-04/KEYNOTE-D19 Study

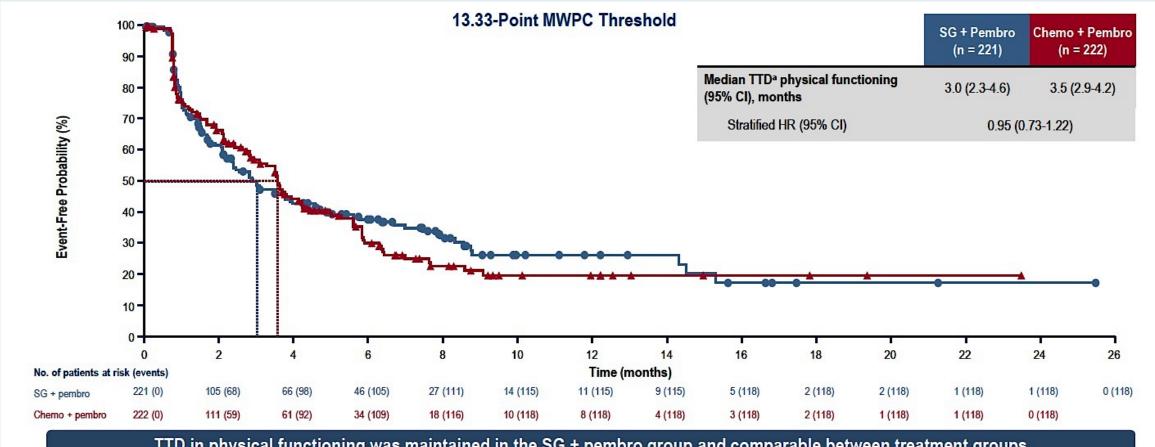

Evandro de Azambuja¹, Peter Schmid², Kevin Kalinsky³, Sherene Loi⁴, Sung-Bae Kim⁵, Clinton Yam⁶, Bernardo Rapoport^{7,8}, Seock-Ah Im⁹, Barbara Pistilli¹⁰, Wassim Mchayleh¹¹, David W Cescon¹², Junichiro Watanabe¹³, Manuel Alejandro Lara Bañuelas¹⁴, Ruffo Freitas-Junior¹⁵, Javier Salvador Bofill¹⁶, Xue Wang¹⁷, Yiran Zhang¹⁷, Ling Shi¹⁸, Ann Chen¹⁷, Sara M Tolaney¹⁹

Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B) and Université Libre de Bruxelles (ULB), Brussels, Belgium; ²Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, UK; ³Winship Cancer Institute, Emory University, Atlanta, GA, USA; ⁴Peter MacCallum Cancer Centre, Melbourne, Australia; ⁵Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ⁶The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁷The Medical Oncology Centre of Rosebank, Clinical and Translational Research Unit (CTRU), Saxonworld, South Africa; ⁸Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, Pretoria, South Africa; ⁹Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea; ¹⁰Department of Cancer Medicine, Gustave Roussy, Villejuif, France; ¹¹AdventHealth Cancer Institute, Orlando, FL, USA; ¹²Princess Margaret Cancer Centre, UHN, Toronto, ON, Canada; ¹³Juntendo University Graduate School of Medicine, Tokyo, Japan; ¹⁴SCIENTIA Investigación Clínica S.C., Chihuahua, Mexico; ¹⁵CORA – Advanced Center for Diagnosis of Breast Diseases, Federal University of Goiás, Goiánia, Brazil; ¹⁶Medical Oncology Department, Hospital Universitario Virgen del Rocio, Seville, Spain; ¹⁷Gilead Sciences, Inc., Foster City, CA, USA; ¹⁸Evidera Inc, Waltham, MA, USA; ¹⁹Dana-Farber Cancer Institute, Harvard Medical School. Boston. MA. USA

Monday, October 20, 2025; 10:15 – 10:20 AM LBA 22

Phase III ASCENT-04/KEYNOTE-D19 Study Design

ClinicalTrials.gov identifier: NCT05382286; Data cutoff was March 3, 2025


^aUp to 35% de novo mTNBC. ^bPembro was administered for a maximum of 35 cycles. ^cAdministered per country-specific prescribing information. ^dPer Response Evaluation Criteria in Solid Tumors, version 1.1.

2L, second-line; BICR, blinded independent central review; chemo, chemotherapy; CPS, combined positive score; DOR, duration of response; EORTC QLQ-C30, European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire C30; GHS, global health status; IV, intravenously; mTNBC, metastatic triple-negative breast cancer; ORR, objective response rate; OS, overall survival; PD-L1, programmed cell death-ligand 1; pembro, pembrolizumab; PFS, progression-free survival;

PRO, patient-reported outcome; QOL, quality of life; R, randomization; SG, sacituzumab govitecan; TTD, time to first deterioration.

Phase III ASCENT-04/KEYNOTE-D19: Time to First Deterioration in Physical Function

TTD in physical functioning was maintained in the SG + pembro group and comparable between treatment groups

aTTD defined as the time between randomization and the assessment at which a patient first experienced a worsening exceeding prespecified MWPC from BL or death.

BL, baseline; chemo, chemotherapy; Cl. confidence interval; HR, hazard ratio; MWPC, meaningful within-patient change; pembro, pembrolizumab; SG, sacituzumab govitecan; TTD, time to first deterioration.

Phase III ASCENT-04/KEYNOTE-D19: Authors' Conclusions

- Baseline QOL was generally maintained with SG + pembro, with benefits seen in several domains
- TTD in physical functioning was comparable between the groups, with emotional functioning and pain favoring SG + pembro vs chemo + pembro
- The sensitivity analyses to evaluate substantial and sustained changes showed that SG + pembro may delay the onset of
 decline in physical functioning, indicating a benefit in maintaining patients' ability to perform daily activities
- Mean changes from baseline favored SG + pembro for physical, role, and emotional functioning, as well as pain and insomnia
- There was worsening of symptoms such as nausea/vomiting and diarrhea, which are consistent with the safety profile of the SG + pembro group in the study, and can be managed by following established guidelines

SG + pembro maintained overall QOL, patients reported reduced symptom burden and improved functioning in multiple domains; these data complement the clinically meaningful improvement in PFS and support this treatment regimen as a potential new standard of care for patients with PD-L1+ mTNBC

Dr Sharma: Case Presentation #4

- 52-year-old African American female with left cT2N+ (3.8 cm mass on imaging and 3 abnormal level 1 lymph nodes) TNBC who receives neoadjuvant therapy with KN-522 regimen. Germline testing is negative for BRCA1/2 mutation. At time of surgery (mastectomy with SLNB) there is residual TNBC in breast measuring 1.2 cm and one of four sentinel lymph nodes with metastatic focus measuring 5 mm. She receives adjuvant capecitabine for 6 cycles along with adjuvant pembrolizumab and chest wall and regional nodal radiation.
- Two months after completion of adjuvant pembrolizumab she is noted to have left chest wall lesions. Biopsy of skin lesions confirms metastatic TNBC, PD-L1 CPS < 10. CT scans show three liver lesions. She is started on treatment with first-line sacituzumab govitecan. Scans after three cycles show decrease in liver lesions and improvement in chest wall disease.

TROPION-Breast02

 Dent RA et al. First-line (1L) datopotamab deruxtecan (Dato-DXd) vs chemotherapy in patients with locally recurrent inoperable or metastatic triplenegative breast cancer (mTNBC) for whom immunotherapy was not an option: Primary results from the randomised, phase 3 TROPION-Breast02 trial. ESMO 2025; Abstract LBA21.

Abstract LBA21

First-line datopotamab deruxtecan (Dato-DXd) vs chemotherapy in patients with locally recurrent inoperable or metastatic triple-negative breast cancer (TNBC) for whom immunotherapy was not an option: Primary results from the randomised, phase 3 TROPION-Breast02 trial

Rebecca A. Dent¹, Zhimin Shao², Peter Schmid³, Javier Cortés⁴, David W. Cescon⁵, Shigehira Saji⁶, Kyung Hae Jung⁷, Thomas Bachelot⁸, Shouman Wang⁹, Gul Basaran¹⁰, Yee Soo Chae¹¹, Rofhiwa Mathiba¹², Shin-Cheh Chen¹³, Agostina Stradella¹⁴, Nicola Battelli¹⁵, Naoki Niikura¹⁶, Kechen Zhao¹⁷, Petra Vuković¹⁸.

Micah J. Maxwell¹⁹. Tiffany A. Traina²⁰

¹National Cancer Center Singapore, Singapore; ²Fudan University Shanghai Cancer Center, Fudan, China; 3 Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, UK; 4International Breast Cancer Center (IBCC), Pangaea Oncology, Barcelona, Spain; 5Princess Margaret Cancer Centre, Toronto, ON, Canada; 6Fukushima Medical University, Fukushima, Japan; 7Asan Medical Center - University of Ulsan College of Medicine, Seoul, Republic of Korea; Centre Léon Bérard, Lyon, France; Xiangya Hospital of Central South University, Changsha, China; 10MAA Acibadem University, School of Medicine, Medical Oncology Department Istanbul, Türkiye; 11 Kyungpook National University Chilgok Hospital, Kyungpook National University School of Medicine, Kyungpook, Republic of Korea; 12 Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa; 13 Chang Gung Medical Foundation - Taipei Chang Gung Memorial Hospital, Taipei City, Taiwan; 14Institut Catala d'Oncologia - Hospital Duran i Reynals (ICO L'Hospitalet), Barcelona, Spain; 15Ospedale Generale Provinciale Macerata, Macerata, Italy; ¹⁶Tokai University School of Medicine, Kanagawa, Japan; ¹⁷Biometrics, Late-Stage Development, Oncology R&D, AstraZeneca, Wilmington, DE, USA; 18Clinical Development, Late-Stage Development, Oncology R&D, AstraZeneca, Cambridge, UK; 19 Clinical Development, Late-Stage Development, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA; 20 Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA

Phase III TROPION-Breast02 Study Design

Key inclusion criteria:

- Patients with histologically or cytologically documented locally recurrent inoperable or metastatic TNBC*
- No prior chemotherapy or targeted systemic therapy in the locally recurrent inoperable or metastatic setting
- Immunotherapy not an option[†]
- ECOG PS 0 or 1
- No minimum DFI[‡]

1:1 Inve

Dato-DXd

6 mg/kg IV Day 1 Q3W (n=323)

Investigator's choice of chemotherapy (ICC)#

Paclitaxel, nab-paclitaxel, capecitabine, eribulin mesylate/eribulin, carboplatin

(n=321)

Endpoints

Dual primary:

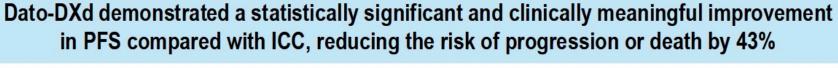
- OS
- PFS by BICR per RECIST v1.1

Secondary included:

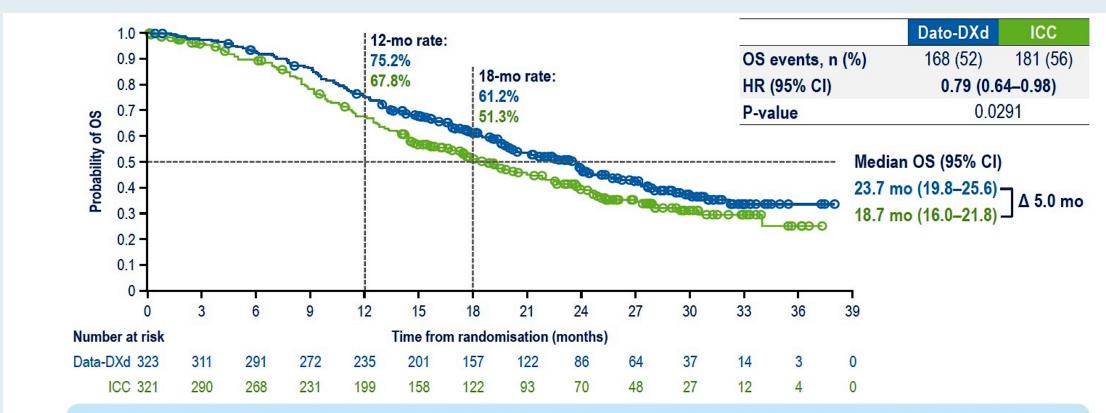
- PFS (investigator-assessed)
- ORR, DoR
- Safety

Randomisation stratified by:


- Geographic region (US/Canada/Europe vs other geographic regions)
- PD-L1 status (high [CPS ≥10] vs low [CPS <10])§
- DFI history (de novo vs prior DFI 0–12 months vs prior DFI >12 months)
- Treatment continued until investigator-assessed RECIST v1.1 progressive disease, unacceptable toxicity, or another discontinuation criterion was met
- Following progression or discontinuation of study treatment, patients could receive subsequent therapies, including approved ADCs or chemotherapy, at the investigator's discretion[∥]


*According to ASCO/CAP criteria. ¹Including patients with PD-L1-low tumours, or patients with PD-L1-low tumours, or patients with PD-L1-low tumours with (a) disease relapse after prior PD-(L)1 inhibitor therapy for early-stage breast cancer, (b) comorbidities precluding PD-(L)1 inhibitor therapy, or (c) no regulatory access to PD-(L)1 inhibitor therapy. ‡DFI defined as time between date of completion of treatment with curative intent and date of first documented local or distant disease recurrence. §Recruitment of patients with PD-L1-high tumours who would otherwise be eligible for pembrolizumab if regulatory access was available was capped at ~10% of randomised patients. ¶Recruitment of patients with DFI 0–12 months was capped at ~20% of randomised patients. #In prior taxane in the (neo)adjuvant setting and DFI >12 months: paclitaxel 80 mg/m² IV, D1, 8, 15, Q3W, or nab-paclitaxel 100 mg/m² IV, D1, 8, 15, Q4W; if prior taxane and DFI 0–12 months: capecitabine 1000 or 1250 mg/m² orally twice daily, D1–14, Q3W (dose determined by standard institutional practice), or eribulin mesylate 1.4 mg/m² / eribulin 1.23 mg/m² IV, Day 1, 8, Q3W, or carboplatin AUC6 IV, D1, Q3W. ¹In the Dato-DXd vs ICC arm, 65% vs 72% of patients received any subsequent therapy in any treatment line; 14% vs 30% received a subsequent ADC (sacituzumab govitecan, sacituzumab deruxtecan).

Dato-DXd = datopotamab deruxtecan


Phase III TROPION-Breast02: PFS by BICR

Phase III TROPION-Breast02: OS

Dato-DXd demonstrated a statistically significant and clinically meaningful improvement in OS compared with ICC, reducing the risk of death by 21%

Phase III TROPION-Breast02: AEs of Special Interest for Dato-DXd

AESI category, n (%)	Dato-DXd (n=319)			ICC (n=309)			
Preferred term*	Grade 1	Grade 2	Grade ≥3	Grade 1	Grade 2	Grade ≥3	
Oral mucositis/stomatitis†	78 (24)	87 (27)	27 (8)	22 (7)	8 (3)	0	
Stomatitis	72 (23)	83 (26)	27 (8)	19 (6)	8 (3)	0	
Ocular surface events ^{‡§}	76 (24)	50 (16)	23 (7)	9 (3)	5 (2)	1 (<1)	
Dry eye	51 (16)	21 (7)	4 (1)	6 (2)	3 (1)	0	
Keratitis	21 (7)	14 (4)	7 (2)	1 (<1)	0	0	
Conjunctivitis	7 (2)	13 (4)	1 (<1)	0	0	0	
Adjudicated drug-related ILD/pneumonitis¶	1 (<1)	7 (2)	1 (<1)#	1 (<1)	1 (<1)	0	

Treatment-related oral mucositis/stomatitis:

- In the Dato-DXd arm, events led to dose interruption, reduction, and discontinuation in 11 (3%), 36 (11%), and 0 patients, respectively
- Grade ≥2 events resolved to grade ≤1 in 103/114 patients (90%) at data cutoff

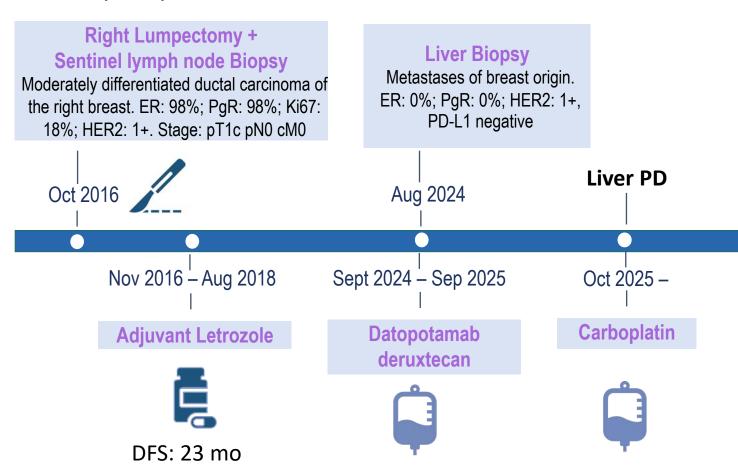
Treatment-related ocular surface events:

- In the Dato-DXd arm, events led to dose interruption, reduction, and discontinuation in 18 (6%), 14 (4%), and 3 (<1%) patients, respectively
- Grade ≥2 events resolved to grade ≤1 in 49/73 patients (67%) at data cutoff

^{*}Details for preferred terms included if reported in ≥20 patients in either arm. ¹Comprising the preferred terms of aphthous ulcer, mouth ulceration, oral pain, oropharyngeal pain, pharyngeal inflammation, and stomatitis. ¹Comprising the preferred terms of acquired corneal dystrophy, blepharitis, conjunctivitis, corneal disorder, corneal epithelium defect, corneal erosion, corneal exfoliation, corneal exfoliation, corneal exfoliation, dry eye, keratitis, keratopathy, lacrimation increased, limbal stem cell deficiency, meibomian gland dysfunction, photophobia, punctate keratitis, ulcerative keratitis, vision blurred, visual acuity reduced, visual impairment, and xerophthalmia. ⁵In the Dato-DXd arm only, ophthalmologic assessments were required every 3 cycles while on therapy; this was not required in the ICC arm. For all patients in both arms, ophthalmologic assessments were required at baseline, as clinically indicated, and at end of therapy. ¹Comprising the preferred terms of interstitial lung disease and pneumonitis, ²Comprising the preferred terms of interstitial lung disease and pneumonitis, with death assessed as related to breast cancer.

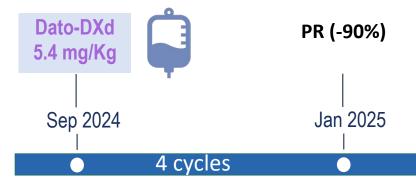
Phase III TROPION-Breast02: Authors' Conclusions

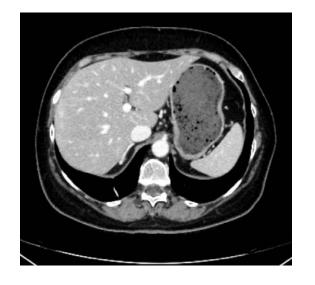
- TROPION-Breast02 met both dual primary endpoints: first-line Dato-DXd demonstrated statistically significant and clinically meaningful improvement in OS and PFS over ICC
 - OS HR 0.79 (95% CI 0.64–0.98); P=0.0291
 - PFS by BICR HR 0.57 (95% CI 0.47–0.69); P<0.0001
 - ≥5-month improvement in both median OS and PFS


- enrolled patients who are representative of the real-world TNBC population, including those often excluded from clinical trials (e.g. 15% had DFI 0–6 months)
- The Dato-DXd safety profile was manageable and generally consistent with the known profile
 - Despite more than double the median duration of treatment, rates of grade ≥3 and serious TRAEs were similar, and discontinuations were lower, with Dato-DXd vs ICC

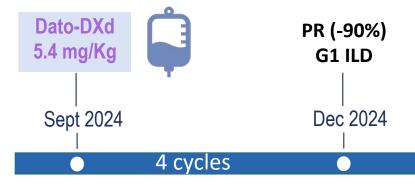
TROPION-Breast02 results support Dato-DXd as the new first-line standard of care for patients with locally recurrent inoperable or metastatic TNBC for whom immunotherapy is not an option

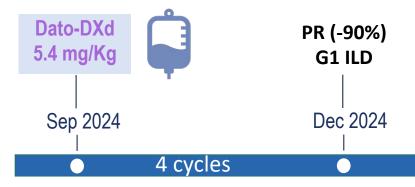
Prof Curigliano: Case Presentation #4 Clinical case


- 58 -year-old woman, Caucasian ethnicity
- BMI: 23, non-smoker, drinks socially, cephalosporins allergy, thalassemia minor
- Family history of cancer: mother with ovarian cancer







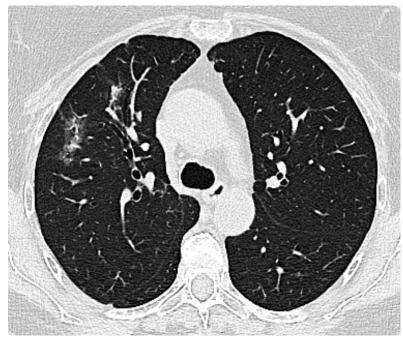


No symptoms. SpO2: 98%

Oct 2024

No symptoms. SpO2: 98%
Dato-DXd interruption
Pulmonary function test in the normal range
Pulmonologist consultation

Oct 2022


No symptoms. SpO2: 98%
Dato-DXd interruption
Pulmonary function test in the normal range
Pulmonologist consultation

- Dexamethasone 4.5 mg/die for 10 days followed by tapering
- Levofloxacin 750 mg/die for 10 days

Chest HRCT follow-up after 10 days, and every month

5 cycles

ER-Negative, HER2 (0 or low), PD-L1-positive mBC: Sequencing of Systemic Therapies

ER-negative, HER2-low, PD-L1-positive (immunotherapy)

- T-DXd versus TROP2-targeted ADC (sacituzumab govitecan, datopotamab deruxtecan)
- Capecitabine
- Other chemotherapy

ER-negative, HER2-negative, PD-L1-positive (immunotherapy)

- Sacituzumab govitecan versus datopotamab deruxtecan
- Capecitabine
- Other chemotherapy

Clinical factors:

- PS, comorbidities
- Tumor-related symptoms
- Visceral, CNS disease
- Prior systemic treatment

ER-Negative, HER2 (0 or low), PD-L1-negative mBC: Sequencing of Systemic Therapies

ER-negative, HER2-low, PD-L1-negative

- T-DXd versus TROP2-targeted ADC (sacituzumab govitecan, datopotamab deruxtecan)
- Capecitabine
- Other chemotherapy

ER-negative, HER2-negative, PD-L1-negative

- Sacituzumab govitecan versus datopotamab deruxtecan
- Capecitabine
- Other chemotherapy

Clinical factors:

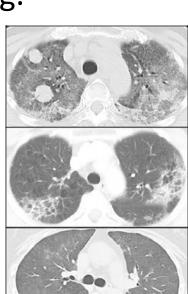
- PS, comorbidities
- Tumor-related symptoms
- Visceral, CNS disease
- Prior systemic treatment

ILD Grading per CTCAE v.5

• **Grade 1**: asymptomatic

• Grade 2: symptomatic

• Grade 3-4: severe symptoms, O2 indicated


ILD: CT patterns

 The most common radiologic findings include widespread patchy consolidations and/or ground-glass opacities, with or without intralobular reticular opacity and septal thickening.

Imaging pattern	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Total
Total	55 (42.3)	45 (34.6)	17 (13.1)	2 (1.5)	11 (8.5)	130 (100.0)
OP	43 (78.2)	28 (62.2)	7 (41.2)	1 (50.0)	3 (27.3) ^a	82 (63.1)
HP	9 (16.4)	12 (26.7)	1 (5.9)	0 (0.0)	0 (0.0)	22 (16.9)
DAD	0 (0.0)	1 (2.2)	9 (52.9)	1 (50.0)	8 (72.7)	19 (14.6)
NSIP	2 (3.6)	2 (4.4)	0 (0.0)	0 (0.0)	0 (0.0)	4 (3.1)
Otherb	1 (1.8)	2 (4.4)	0 (0.0)	0 (0.0)	0 (0.0)	3 (2.3)

Data are shown as n (%)

DAD diffuse alveolar damage, HP hypersensitivity pneumonitis, ILD/pneumonitis interstitial lung disease or pneumonitis, NSIP non-specific interstitial pneumonia, OP organizing pneumonia

DAD pattern

A female patient in her 70s with unresectable breast cancer. Pulmonary metastases were visible at the right upper lobe (a). Widespread ground glass opacities with consolidation, subtle reticular shadows, and traction bronchiectasis were visible in the whole lung on the CT scan 6 days after onset (b).

OP pattern

A female patient in her 40s with unresectable breast cancer. No abnormal findings in the lung at baseline CT scan (a). Patchy ground glass opacities/consolidation were visible in the peripheral zone of the upper lobe of the bilateral lung (b).

HP pattern

A female patient in her 50s with unresectable breast cancer. No abnormal findings in the lung at baseline CT scan (a). Widespread and inhomogeneous ground glass opacities without traction bronchiectasis were visible in the CT scan at onset (b).

NSIP pattern

A female patient in her 60s with unresectable breast cancer. No abnormal findings in the lung at baseline CT scan (a). Ground glass opacities with traction bronchiectasis in bilateral peripheral area were visible in a basal predominant distribution on the CT scan 84 days after onset. (b).

ILD risk factors

- T-DXd associated risk factors: age, enrollment in Japan, T-DXd dose, SpO2, moderate/severe renal impairment, presence of lung comorbidities (not including lung cancer), time since initial diagnosis
- Patients with severe lung comorbidities were not included in DESTINY trials
- Screen lung diseases (e.g., ILD, pneumonitis, pulmonary fibrosis, severe radiation pneumonitis, preexisting chronic lung condition requiring the use of corticosteroids within the past 6 months)
 - If the forced vital capacity or DLCO is ≤70% predicted and/or the HRCT findings are indicative of chronic lung conditions, the multidisciplinary team should be consulted

Subgroup Analysis

5 and 7 and							
Potential risk factor	Patients, <i>n</i> (N=1150)	Hazard ratio [*] (95% Cl)	Hazard Ratio [*] (95% Cl)				
Age Group <65 years ≥65 years	754 396	1.56 (1.02-2.38) Ref	_				
Country Japan Non-Japan	506 644	2.08 (1.45-2.98) Ref	14-1				
Lung comorbidities† Yes No	81 1069	1.75 (1.03-2.98) Ref					
Baseline renal function ^{‡,§} Normal Mild Decrease Moderate/Severe Decrease	470 458 196	Ref 1.24 (0.83-1.84) 2.73 (1.65-4.52)	 				
Time since disease diagnosis [‡] 0 to ≤4 years >4 years	624 403	Ref 1.82 (1.20-2.75)	l Ipper				
Dose 5.4 mg/kg q3w 6.4 mg/kg q3w >6.4 mg/kg q3w	315 808 27	Ref 1.30 (0.85-1.99) 2.92 (1.32-6.42)	↓ ↓ ↓ 				
Baseline SpO ₂ [‡] ≥95% <95%	1080 57	Ref 2.14 (1.11-4.13)	 				
		0.05	50.1 0.25 0.5 1 2 4 8 16 32 64				

Powell, ESMO Open 2022

Risk factors

• There was an apparent association between moderate renal impairment at baseline and higher rates of ILD/pneumonitis and earlier onset (Table 4)

Table 4. Adjudicated Drug-Related ILD/pneumonitis in the T-DXd Pooled Safety Group According to Renal Status at Baseline

	Pooled T-DXd (N = 1216) ^a		
Renal Function Status	Normal ^b (n = 665)	Mild ^c (n = 417)	Moderate ^{d,e} (n = 128)
Adjudicated highest CTCAE grade, n (%)			
Any grade	75 (11.3)	48 (11.5)	31 (24.2)
Grade 1	21 (3.2)	13 (3.1)	6 (4.7)
Grade 2	42 (6.3)	30 (7.2)	20 (15.6)
Grade 3	8 (1.2)	2 (0.5)	1 (0.8)
Grade 4	0	0	0
Grade 5	4 (0.6)	3 (0.7)	4 (3.1)
Time to first adjudicated drug-related ILD/pneumonitis onset, median (range), days	250.0 (26-960)	165.5 (41-630)	126.0 (33-632)
Adjudicated drug-related ILD/pneumonitis associated with drug discontinuation, n (%)	54 (8.1)	36 (8.6)	24 (18.8)

aln DESTINY-Breast04, a protocol deviation and an error concerning laboratory migration resulted in data from 6 patients not being included in the subgroup analysis by renal impairment at baseline. bCrCl. >90 mL/min.

[°]CrCl, 60-89 mL/min.

^dCrCl, 30-59 mL/min in accordance with guidelines.^{7,8}

Diagnosis

- No finding is pathognomonic for ILD, which makes it a diagnosis of exclusion
- HRCT
- Pulse Oximetry
- Lab test: CBC, liver and kidney function, electrolytes, CRP, ESR, PCT, LDH, additional infective analysis based on suspect (blood culture, expectorated sputum, urinary antigens, β-D glucan), tumor markers and autoimmune antibodies
- Pulmonologist consultation
- Additional tests:
 - Arterial blood gases
 - **Bronchoalveolar lavage**: lymphocytosis, eosinophilia, and/or neutrophilia, with the most frequent finding being lymphocytic alveolitis with the predominance of CD8+ cells.
 - Blood culture
 - Pulmonary function testing: restrictive pattern, with decreased total lung capacity, residual volume, vital capacity, and impaired diffusing capacity, based on the damage of the alveolar-capillary interface

Box. Other Causes of ILD Beyond Treatment With Anti-ERBB2 ADC

Progression of the underlying oncologic disease

Infective pneumonia (ie, bacterial, mycotic, and viral, including SARS-CoV-2)

Radiotherapy-induced pneumonitis

Other drug-induced lung toxic effect (ie, cancer drug or concomitant medication)

Smoking-related ILD

Cardiogenic pulmonary edema

Connective tissue disorders (eg, scleroderma, lupus, rheumatoid arthritis, Sjögren syndrome, dermatomyositis/polymyositis, ankylosing spondylitis, and mixed connective tissue disease)

Occupational/environmental (eg, pneumoconiosis, anthracosis, asbestosis, silicosis, and hypersensitivity pneumonitis)

Vasculitis

Sarcoidosis

Pulmonary hemorrhage syndromes

Idiopathic interstitial fibrosis

Alveolar proteinosis

Amyloidosis

Bronchiolitis obliterans

Chronic eosinophilic pneumonia

Lymphocytic infiltrative lung disease

Grade 1 ILD management

- The administration of T-DXd must be interrupted
- Consider starting systemic steroids (e.g. at least 0.5 mg/kg/day prednisone or equivalent) until improvement, followed by gradual taper over at least 4 weeks
- Monitor and weekly follow-up for onset of clinical symptoms and pulse oximetry
- Consider follow-up imaging in 1-2 weeks (or as clinically indicated)
- <u>T-DXd can be restarted in case of complete resolution of the event</u> (ILD recovery period for T-DXd retreatment is 18 weeks in recent studies, if no progression of disease)
 - Same dose if resolved in ≤ 28 days from day of onset
 - -1 level if resolved in >28 days

Grade 2-4 ILD management

Permanent discontinuation of T-DXd

G2	G3-4
 Prednisolone or equivalent (1 mg/kg/die) for at least 2 weeks, followed by gradual taper over at least 4 weeks In case of worsening or no improvement observed in 3 to 5 days, increase the dose (2 mg/kg/d) and/or switch to IV methylprednisolone (2 mg/kg/d) 	 Hospitalization Methylprednisolone or equivalent (0.5-1 g/die) for 3 days, followed by prednisolone (1 mg/kg/die), for at least 2 weeks, followed by gradual taper over at least 4 weeks

- Oxygen supplementation according to SpO2
- Broad-spectrum antibiotics when an underlying infection cannot be ruled out
- In, corticosteroid-refractory cases, consider alternative etiologies or additional immunosuppressive agents (infliximab, mycophenolate mofetil, intravenous immunoglobulin, or cyclophosphamide)
- Re-image as clinically indicated

Practical Perspectives: Clinical Investigators Review Actual Cases of Patients with Advanced Gastroesophageal Cancers

A CME/MOC-Accredited Live Webinar

Tuesday, November 18, 2025 5:00 PM - 6:00 PM ET

Faculty
Yelena Y Janjigian, MD

Moderator Neil Love, MD

Thank you for joining us!

Please take a moment to complete the survey currently up on Zoom. Your feedback is very important to us.

The survey will remain open for 5 minutes after the meeting ends.

Information on how to obtain CME, ABIM MOC and ABS credit is provided in the Zoom chat room. Attendees will also receive an email in 1 to 3 business days with these instructions.

