Understanding the Current Paradigm and New Approaches in the Care of Patients with Cancer

A Complimentary NCPD Hybrid Symposium Series Held During the 50th Annual ONS Congress

Antibody-Drug Conjugates

Wednesday, April 9, 2025 11:15 AM – 12:45 PM

Faculty

Marianne J Davies, DNP, ACNP, AOCNP, FAAN
Edward B Garon, MD, MS
Marissa Marti-Smith, DNP, APRN, AGNP-C, AOCNP
Tiffany A Traina, MD, FASCO

Moderator Neil Love, MD

Faculty

Marianne J Davies, DNP, ACNP, AOCNP, FAAN
Program Manager, Care Signature
Oncology Service Line, Yale New Haven Health
Oncology Nurse Practitioner-Senior APP II
Yale Cancer Center
Smilow Cancer Hospital at Yale New Haven
Associate Professor
Yale University School of Nursing
New Haven, Connecticut

Edward B Garon, MD, MS
Professor
Director, Thoracic Oncology Program
Director, Signal Transduction and Therapeutics
Research Program
David Geffen School of Medicine at UCLA
Jonsson Comprehensive Cancer Center
Los Angeles, California

Marissa Marti-Smith, DNP, APRN, AGNP-C, AOCNP
Nurse Practitioner
Texas Oncology-Baylor Charles A Sammons
Cancer Center
Dallas, Texas

Tiffany A Traina, MD, FASCO
Vice Chair, Department of Medicine
Section Head, Triple-Negative Breast Cancer
Clinical Research Program
Associate Attending Physician
Breast Medicine Service
Memorial Sloan Kettering Cancer Center
Associate Professor
Weill Cornell Medical College
New York, New York

Ms Davies — Disclosures

No relevant conflicts of interest to disclose

Dr Garon — **Disclosures**

Advisory Committees and Consulting Agreements	AbbVie Inc, Arcus Biosciences, ArriVent Biopharma, AstraZeneca Pharmaceuticals LP, Atreca, Black Diamond Therapeutics Inc, BridgeBio, Bristol Myers Squibb, EMD Serono Inc, Gilead Sciences Inc, Hookipa Pharma Inc, I-Mab Biopharma, LianBio, Lilly, Merck, Merus, Novartis, Nuvalent, Pfizer Inc, Regeneron Pharmaceuticals Inc, Sanofi, Seagen Inc, Sensei Biotherapeutics, Strata Oncology, Sumitomo Dainippon Pharma Oncology Inc, Summit Therapeutics, Synthekine
Contracted Research	ABL Bio, ArriVent Biopharma, AstraZeneca Pharmaceuticals LP, BridgeBio, Bristol Myers Squibb, Daiichi Sankyo Inc, EMD Serono Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, Iovance Biotherapeutics, Lilly, Merck, Mirati Therapeutics Inc, Novartis, Prelude Therapeutics, Regeneron Pharmaceuticals Inc, Synthekine, TILT Biotherapeutics
Sponsored Independent Medical Education	Daiichi Sankyo Inc
Travel	A2 Bio, Novartis

Ms Marti-Smith — Disclosures

Speakers Bureaus	Biotheranostics Inc, Stemline Therapeutics Inc
Nonrelevant Financial Relationships	ASCO Advantage, Clinical Education Alliance

Dr Traina — **Disclosures**

Advisory Committees and Consulting Agreements	Aktis Oncology, AstraZeneca Pharmaceuticals LP, BioNTech SE, Daiichi Sankyo Inc, Ellipses Pharma, Exact Sciences Corporation, Genentech, a member of the Roche Group, Gilead Sciences Inc, GSK, Merck, Pfizer Inc, Stemline Therapeutics Inc, TerSera Therapeutics LLC, Veracyte Inc
Contracted Research	Astellas, AstraZeneca Pharmaceuticals LP, BioNTech SE, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Pfizer Inc

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP and Daiichi Sankyo Inc.

Research To Practice NCPD Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

This educational activity contains discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the pre- and postmeeting surveys. Survey questions will be discussed throughout the meeting.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Clinicians Attending via Zoom

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the pre- and postmeeting surveys. Survey questions will be discussed throughout the meeting.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.



Get NCPD Credit: An NCPD credit link will be provided in the chat room at the conclusion of the program.

Clinicians, Please Complete the Pre- and Postmeeting Surveys

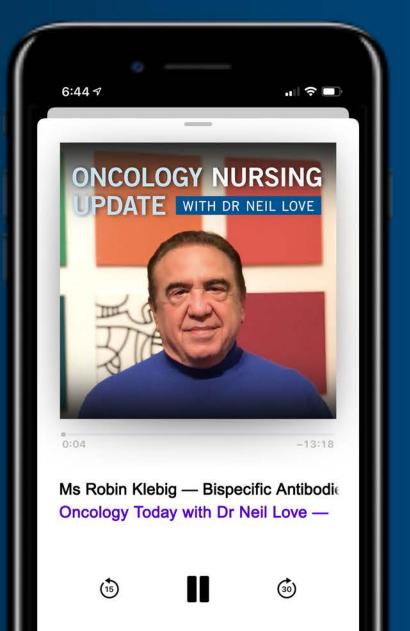
About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based program.
 An email will be sent to all attendees when the activity is available.

 To learn more about our education programs, visit our website, www.ResearchToPractice.com

ONCOLOGY NURSING UPDATE WITH DR NEIL LOVE

Bispecific Antibodies in Lymphoma Part 1 — An Interview with Ms Robin Klebig for Oncology Nurses



MS ROBIN KLEBIG

Welcome ONS Members!

"Understanding the Current Paradigm and New Approaches" Seventeenth Annual RTP-ONS NCPD Symposium Series

Wednesday April 9 Hormone Receptor-Positive Breast Cancer 6:00 PM - 8:00 PM MT Chronic Myeloid Leukemia 6:00 AM - 7:30 AM MT Prostate Cancer 12:15 PM - 1:45 PM MT Chronic Lymphocytic Leukemia 6:00 PM - 7:30 PM MT Bispecific T-Cell Engagers for Small Cell Lung Cancer
Chronic Myeloid Leukemia 6:00 AM - 7:30 AM MT Thursday April 10 Prostate Cancer 12:15 PM - 1:45 PM MT Chronic Lymphocytic Leukemia 6:00 PM - 7:30 PM MT Bispecific T-Cell Engagers for Small Cell Lung Cancer
Thursday April 10 Prostate Cancer 12:15 PM - 1:45 PM MT Chronic Lymphocytic Leukemia 6:00 PM - 7:30 PM MT Bispecific T-Cell Engagers for Small Cell Lung Cancer
April 10 12:15 PM - 1:45 PM MT Chronic Lymphocytic Leukemia 6:00 PM - 7:30 PM MT Bispecific T-Cell Engagers for Small Cell Lung Cancer
6:00 PM - 7:30 PM MT Bispecific T-Cell Engagers for Small Cell Lung Cancer
6:00 AM - 7:30 AM MT
Friday Ovarian Cancer April 11 12:15 PM - 1:45 PM MT
Pancreatic Cancer 6:00 PM - 7:30 PM MT
Endometrial Cancer 6:00 AM - 7:30 AM MT
Saturday Gastroesophageal Cancers April 12 12:15 PM - 1:45 PM MT
Non-Hodgkin Lymphoma 6:00 PM - 7:30 PM MT

Understanding the Current Paradigm and New Approaches RTP Faculty at ONS 2025

The Core Oncology Triad Developing an Individualized Oncology Strategy

Understanding the Current Paradigm and New Approaches Denver, Colorado

Symposia Themes

Personalized oncology: Implementing an individualized oncologic strategy

- Tumor factors (eg, biomarkers, numeracy)
- Biopsychosocial factors (eg, adherence, available family support, comorbidities, mood)

Novel agents and treatment strategies

The new-agents revolution (beginning of the end?)

The bond that heals (both ways)

How was it different to take care of this patient versus another patient in the same oncologic setting?

What unique biopsychosocial factors (eg, attitude, comorbidities, social support) were considered in the overall management of this case?

Understanding the Current Paradigm and New Approaches in the Care of Patients with Cancer

A Complimentary NCPD Hybrid Symposium Series Held During the 50th Annual ONS Congress

Antibody-Drug Conjugates

Wednesday, April 9, 2025 11:15 AM – 12:45 PM

Faculty

Marianne J Davies, DNP, ACNP, AOCNP, FAAN
Edward B Garon, MD, MS
Marissa Marti-Smith, DNP, APRN, AGNP-C, AOCNP
Tiffany A Traina, MD, FASCO

Moderator Neil Love, MD

Agenda

Module 1: Overview of Antibody-Drug Conjugates (ADCs)

Module 2: Trastuzumab Deruxtecan (T-DXd) in Patients with HER2-Positive Metastatic Breast Cancer (mBC) with and without Brain Metastases

Module 3: Role of ADCs for Patients with ER-Positive mBC

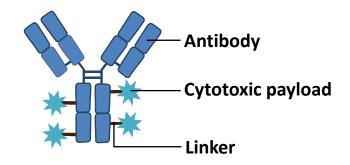
Module 4: T-DXd in Patients with Metastatic Non-Small Cell Lung Cancer (NSCLC) with HER2 Alterations

Module 5: Emerging Role of ADCs for Patients with Progressive EGFR-Mutant NSCLC

Agenda

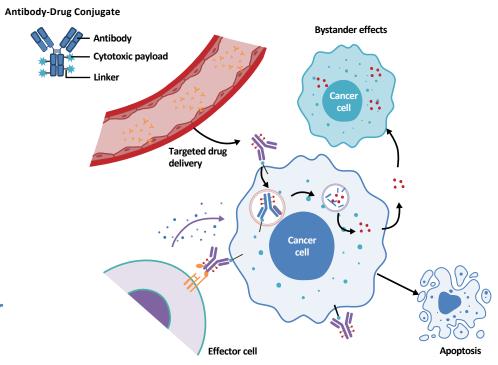
Module 1: Overview of Antibody-Drug Conjugates (ADCs)

Module 2: Trastuzumab Deruxtecan (T-DXd) in Patients with HER2-Positive Metastatic Breast Cancer (mBC) with and without Brain Metastases


Module 3: Role of ADCs for Patients with ER-Positive mBC

Module 4: T-DXd in Patients with Metastatic Non-Small Cell Lung Cancer (NSCLC) with HER2 Alterations

Module 5: Emerging Role of ADCs for Patients with Progressive EGFR-Mutant NSCLC



Mechanism of ADCs: Multi-step Process Teaching Point

ADC Components

- Antibody specific for target antigen on cancer cells
- High-potency cytotoxic payload
- Cleavable or non-cleavable linker between antibody and payload

Current Approved ADCs in Oncology

Name	Year approved	Tumor type
Trastuzumab emtansine (T-DM1)	Adjuvant: 2019 Metastatic: 2013	Breast
Sacituzumab govitecan	HR-positive: 2023 Triple-negative: 2021 (Traditional) Triple-negative: 2020 (Accelerated)	Breast
Datopotamab deruxtecan	2025	Breast
Trastuzumab deruxtecan	2025 2024 2022 2022 2021 2019 (Accelerated) 2022 (Traditional)	HER2-low/ultralow breast HER2-positive solid tumors HER2-mutant lung HER2-low breast HER2-positive gastric HER2-positive mBC

Current Approved ADCs in Oncology (Continued)

Name	Year approved	Tumor type
Mirvetuximab soravtansine	2024 (Traditional) 2022 (Accelerated)	Ovarian
Tisotumab vedotin	2021	Cervical
Enfortumab vedotin (monotherapy)	2021 (Traditional) 2019 (Accelerated)	Urothelial
Enfortumab vedotin (with pembrolizumab)	2023 (Accelerated/Traditional)	Urothelial
Gemtuzumab ozogamicin	2017 (Traditional) 2000 (Accelerated)	AML
Brentuximab vedotin	2025 (Traditional) 2015 (Traditional) 2011 (Accelerated)	DLBCL Hodgkin lymphoma
Inotuzumab ozogamicin	2017	ALL
Polatuzumab vedotin	2023 (Traditional) 2019 (Accelerated)	DLBCL
Loncastuximab tesirine	2021	LBCL

Select Promising Investigational ADCs in Oncology

Name	Biological target	Tumor types under investigation
Ifinatamab Deruxtecan	В7-Н3	SCLC, ESCC, CRPC, NSCLC
Raludotatug Deruxtecan	CDH6	Ovarian, RCC
Patritumab Deruxtecan	HER3	Breast, NSCLC, melanoma, SCCHN, gastric
Sacituzumab Tirumotecan	TROP2	Breast, NSCLC, cervical, endometrial, gastric, BTCs, CRC, pancreatic, malignant neoplasms
Telisotuzumab Vedotin	c-Met	NSCLC
Disitamab Vedotin	HER2	Bladder, breast, GI cancers

Agenda

Module 1: Overview of Antibody-Drug Conjugates (ADCs)

Module 2: Trastuzumab Deruxtecan (T-DXd) in Patients with HER2-Positive Metastatic Breast Cancer (mBC) with and without Brain Metastases

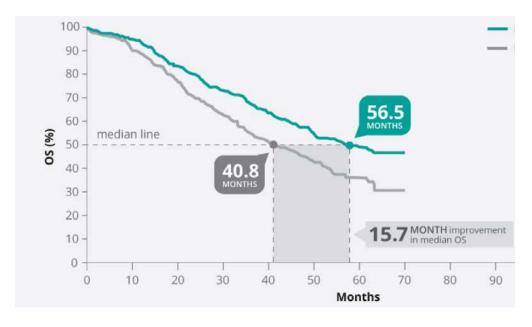
Module 3: Role of ADCs for Patients with ER-Positive mBC

Module 4: T-DXd in Patients with Metastatic Non-Small Cell Lung Cancer (NSCLC) with HER2 Alterations

Module 5: Emerging Role of ADCs for Patients with Progressive EGFR-Mutant NSCLC

Clinical Scenario

A patient with HER2-positive mBC experiences disease progression, including new brain metastases, on first-line THP (docetaxel/trastuzumab/pertuzumab) and is about to begin treatment with T-DXd


ADCs @ ONS

Tiffany A. Traina, MD FASCO Associate Attending, Breast Medicine Service Vice Chair, Department of Medicine Section Head, TNBC Clinical Research Program Memorial Sloan Kettering Cancer Center Associate Professor, Weill Cornell Medicine

1L HER2+ MBC

THP is Standard of Care

Significant ~16% absolute benefit in overall survival with docetaxel, trastuzumab and pertuzumab ("THP")

Median OS 56.5mo vs. 40.8mo (HR 0.68, p=0.0002)

Lingering Considerations

- Often discontinue chemotherapy and continue maintenance HP
 - Residual neuropathy from prolonged taxane
 - High QoL with dual antibodies alone
- Median Duration of Response ~ 2years on 1L therapy

Guidelines support 2L T-DXd in HER2+ MBC

NCCN 3.2025

Comprehensive NCCN Guidelines Version 3.2025 **Invasive Breast Cancer**

NCCN Guidelines Index

SYSTEMIC THERAPY FOR RECURRENT UNRESECTABLE (LOCAL OR REGIONAL) OR STAGE IV (M1) DISEASE^{a,i}

	HR-Positive or -Negative and HER2-Positive ^m
See BINV-Q (1)	for Considerations for systemic HER2-targeted therapy.
Setting	Regimen
First Line ⁿ	Pertuzumab + trastuzumab + docetaxel (category 1, preferred)
	renuzuman + trastuzuman + paulitaxet (preteneu)
Second Line ^o	Fam-trastuzumab deruxtecan-nxki ⁿ (category 1, preferred)
Third Line	Tucatinio + trastuzumao + capecitabine (category 1, preferreu)
Timu Line	Ado-trastuzumab emtansine (T-DM1) ^p
Fourth Line and Beyond	Trastuzumab + docetaxel or vinorelbine
	Trastuzumab + paclitaxel ± carboplatin
	Capecitabine + trastuzumab or lapatinib
	Trastuzumab + lapatinib (without cytotoxic therapy)
(optimal	Trastuzumab + other chemotherapy agents ^{r,s}
sequence is not known) ^q	Neratinib + capecitabine
	Margetuximab-cmkb + chemotherapy (capecitabine, eribulin, gemcitabine, or vinorelbine)
	Abemaciclib in combination with fulvestrant and trastuzumab (for HR+ only) (category 2B)
	Targeted Therapy and emerging biomarker Options BINV-Q (7) and BINV-Q (8)

- ^a For treatment of brain metastases, see NCCN Guidelines for Central Nenrous System Carcers.

 Assess for germline BRC41/2 mutations in all patients with recurrent or metastatic preast cancer to identify candidates for PARPI therapy. While claparib and talazoparib

 HER2-positive furnors, therefore category 2A for this setting.

 Maintenance trastizumab/pertuzymab after response (with concurrent endocrine therapy if ER+ and HER2+ metastatic breast cancer).

 Amount of the present cancer in the present of the present cancer in the present cancer i
- o Tucatinib + trastuzumab + capecitabine is preferred in patients with both systemic and CNS progression in the third-line setting and beyond; and it may be given in the
- Second-line setting and september is period in parents with both systemic and cross progression in the fund-line setting and septind, and it may be given in the PMAy be used as an option for third-line and beyond; the optimal sequence for third-line therapy and beyond is not known. If not a candidate fam-trastuzumab T-DM1 could be considered in the second-line.

 Alultiple lines of concurrent chemotherapy with anti-HER2 therapy (trastuzumab or a TKI) offer clinical benefit for recurrent unresectable HER2+ metastatic breast cancer and have been studied in phase 2 or 3 trials. Clinical experience suggests frequent clinical benefit for such treatment. However, there are no meaningful data for use of any of these regimens among patients previously treated with be prifuzumab-based chemotherapy, ado-trastuzumab entansinir, fam-trastuzumab defrustecan-nxki, or trastuzumab capecitabine/fucatinib regimens. Thus, the optimal sequence or true benefit of therapy is not known.

 Trastuzumab given in combination with an anthracycline is associated with significant cardiac toxic of the source of the second of the product of the second of the product of the second of the product of the prod

Note: All recommendations are category 2A unless otherwise indicated

Version 3.2025. 3/18/25 © 2025 National Comprehensive Cancer Network® (NCCN®). All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN

BINV-Q

ASCO

Second-line.

Recommendation 2.1.

If a patient's HER2-positive advanced breast cancer has progressed during or after firstline HER2-targeted therapy (and the patient has not received trastuzumab deruxtecan [T-Dxd]), clinicians should recommend T-Dxd as a second-line treatment (Type: Evidence based, benefits outweigh harms; Evidence quality: Moderate; Strength of recommendation: Strong). New/changed.

Trastuzumab Deruxtecan

An ADC composed of 3 components^{1,2}:

- A humanized anti-HER2 IgG1 mAb with the same amino acid sequence as trastuzumab, covalently linked to:
 - A topoisomerase I inhibitor, an exatecan derivative, via
 - A tetrapeptide-based cleavable linker

Humanized anti-HER2 IgG1 mAb¹⁻³ Cleavable TetrapeptideBased Linker Topoisomerase I Inhibitor (MAAA-1181a)

T-DM1 Attributes

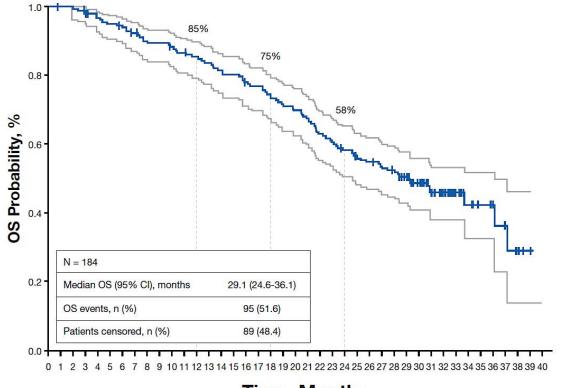
- Payload MOA: topoisomerase I inhibitor^{1,2,a}
- High potency of payload^{1,2,a}
- 3 High DAR≈8^{1,2,a}
- Payload with short systemic half-life^{1,2,a}
- 5 Stable linker-payload^{1,2,a}
- Tumor-selective cleavable linker^{1,2,a}
- 7 Membrane permeable payload^{1,4,a}

Microtubule inhibitor⁵

DAR≈3.53,6

Non-cleavable linker⁶

Less membrane permeable⁴



DESTINY-Breasto1:

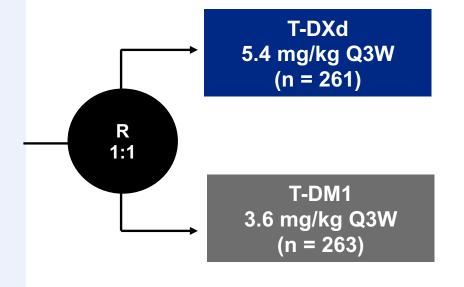
T-DXd is Highly Active in HER2+ MBC

Median Overall Survival = 29 months!

Modi et al Destiny Breast01; Saura C, et al. ESMO 2021. Abstract 279P; Saura C, et al. Ann Oncol 2024 35(3):302-307.

Time, Months

NO. 81 RSK 184 183 182 179 174 171 168 164 159 158 155 152 149 146 142 140 135 133 129 124 121 117 109 105 100 95 93 90 87 79 67 45 33 16 12 9 8 5 3 1


DESTINY-Breasto3: Phase 3 RCT

Patients

- Unresectable or metastatic HER2-positive^a breast cancer
- Previously treated with trastuzumab and taxane in advanced/metastatic setting^b
- Could have clinically stable, treated brain metastases

Stratification factors

- Hormone receptor status
- Prior treatment with pertuzumab
- History of visceral disease

Primary endpoint

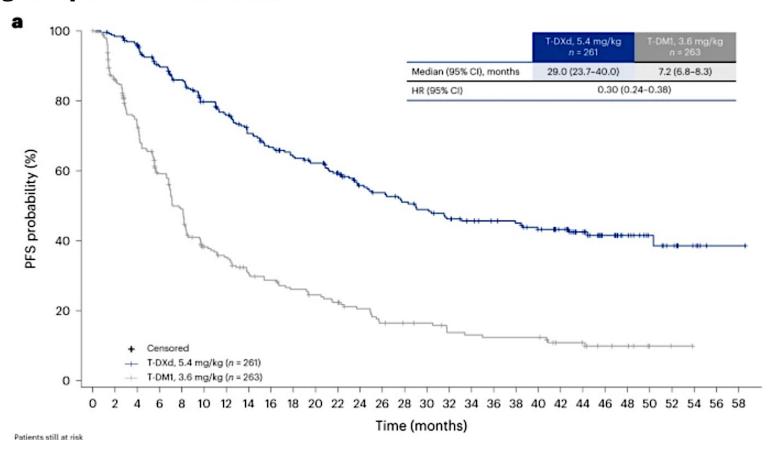
PFS (BICR)

Key secondary endpoint

OS

Secondary endpoints

- ORR (BICR and investigator)
- DOR (BICR)
- PFS (investigator)
- Safety


Key Characteristics:

- 100% received prior trastuzumab
- 60% received prior pertuzumab
- 16% received HER2 TKI
- 50% were treated in the 2L setting, ~50% were 3L+
- 22% had brain metastases

DESTINY-Breasto3: Primary Endpoint - PFS

Fig. 2: Kaplan-Meier estimates.

Median OS was 52.6 months (95% CI, 48.7 months to NE) with T-DXd vs. 42.7 months (95% CI, 35.4 months to NE) with T-DM1

(HR, 0.73; 95% CI, 0.56-0.94)

T-DXd Toxicity Considerations

<u>></u>Gr 3

- Nausea: 7% (all grade 77%)
- Vomiting 2% (all grade 52%)
- Thrombocytopenia 8% (25%)
- Alopecia <1% (40%)

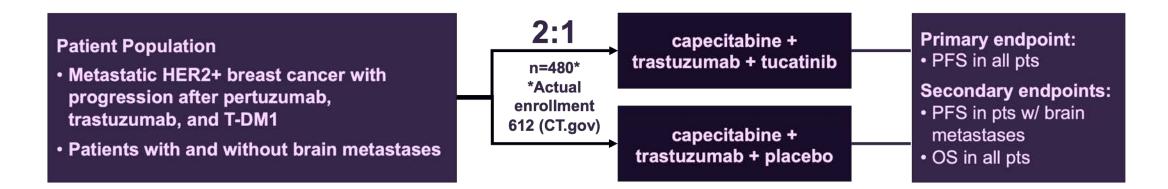
Don't forget cardiac monitoring

Treatment related discontinuation for T-DXd 20% vs T-DM1 6.5% Median duration of treatment was 18.2 mo. vs. 6.9 mo

Adjudicated drug-related ILD/pneumonitis events for the entire study period through	h
November 20, 2023 (DCO)	

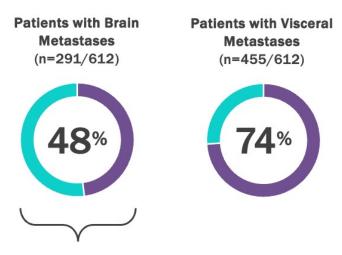
n (%) ^a	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any grade
T-DXd (n = 257)°	11 (4.3)	30 (11.7)	2 (0.8)	0	0	43 (16.7)
T-DM1 (n = 261) ^b	5 (1.9)	3 (1.1)	1 (0.4)	0	0	9 (3.4)

Potential risk factor	Patients, <i>n</i> (<i>N</i> = 1150)	Hazard ratio ^a (95% CI)	Hazard ratio ^a (95% CI)
Age group			1
<65 years	754	1.56 (1.02-2.38)	 -
≥65 years	396	Ref	1
Country			i i
Japan	506	2.08 (1.45-2.98)	⊢
Non-Japan	644	Ref	
Lung comorbidities ^b			
Yes	81	1.75 (1.03-2.98)	
No	1069	Ref	i
Baseline renal function ^{c,d}			I
Normal	470	Ref	1
Mild decrease	458	1.24 (0.83-1.84)	بها
Moderate/severe decrease	196	2.73 (1.65-4.52)	
Time since disease diagnosis ^c			
0 to ≤4 years	624	Ref	
>4 years	403	1.82 (1.20-2.75)	j⊷⊶
Dose			i
5.4 mg/kg q3w	315	Ref	1
6.4 mg/kg q3w	808	1.30 (0.85-1.99)	بسهار
>6.4 mg/kg q3w	27	2.92 (1.32-6.42)	!
Baseline SpO ₂ ^c			
≥95%	1080	Ref	:
<95%	57	2.14 (1.11-4.13)	j.——
			0.05 0.1 0.25 0.5 1 2 4 8


Hurvitz et al Lancet 2023; Powell et al ESMO Open 2022; Hamilton et al. ASCO 2024; Abstract 1025.

Brain metastases: unmet need

- 17 studies with 5,971 patients reported a pooled cumulative incidence of brain metastases of 31% over a median follow-up of approximately 31 months.
- Flatiron Health database ~17,000 patients: by 4L therapy the incidence of brain metastases is:
 - HR-/HER2+: 37.1%
 - HR+/HER2+: 26.1%
- Median Overall Survival when diagnosed with breast cancer brain metastases (BCBM) ~ 6-15 mo
- Important considerations include symptom management, palliative goals, loss of function and independence, impact of local therapies (ie, RT), social supports, proxy designation

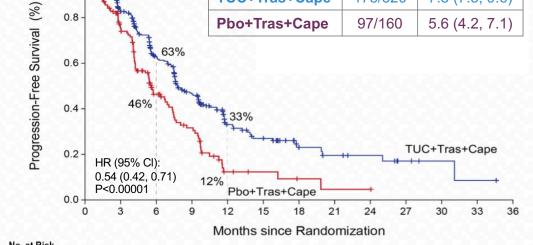

HER2CLIMB: Tucatinib, Trastuzumab and Capecitabine

Tucatinib is an oral, HER2 selective kinase inhibitor

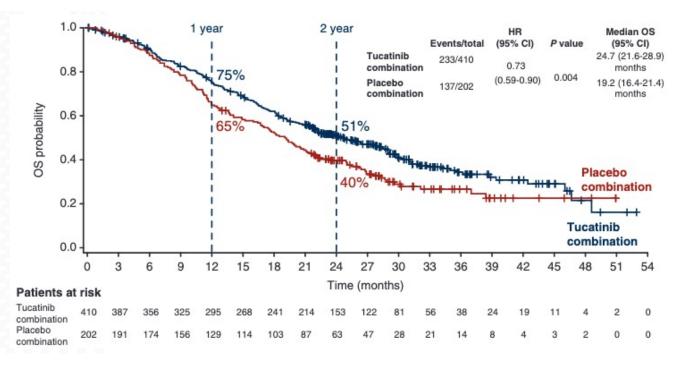
Key characteristics:

All had prior trastuzumab, pertuzumab, T-DM1 75% had visceral disease
Brain metastases enrollment robust...

- 40% had stable BM
- 60% had active BM
 - 23% had untreated progressing BM
 - 37% had treated but progressing BM


HER2CLIMB:

PFS and OS in Overall Population

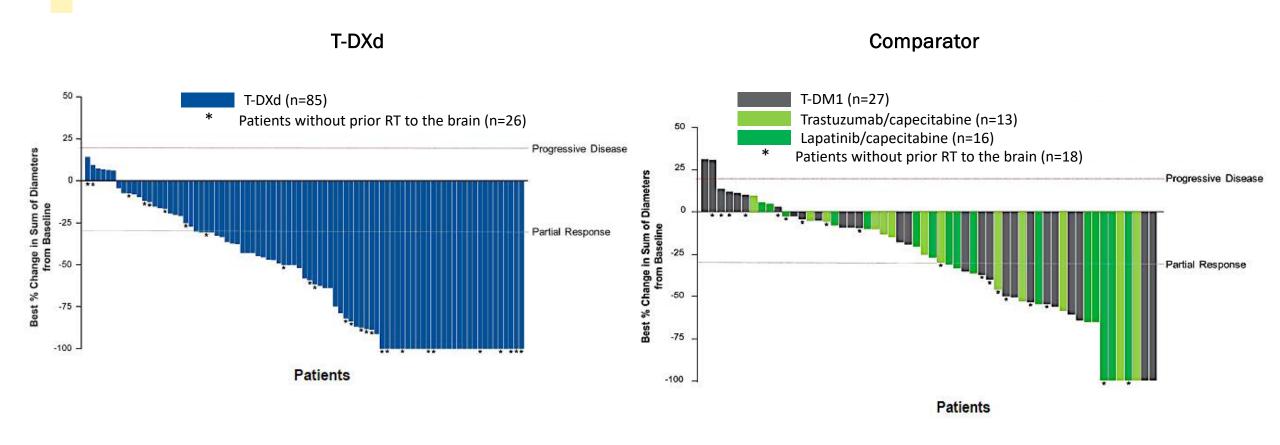

Indication - "...metastatic HER2-positive breast cancer, including patients with brain metastases, who have received one or more prior anti-HER2-based regimens in the metastatic setting".

Progression-Free Survival by BICR (N=480)

No. of Median **Events** (95% CI) **TUC+Tras+Cape** 178/320 7.8 (7.5, 9.6)

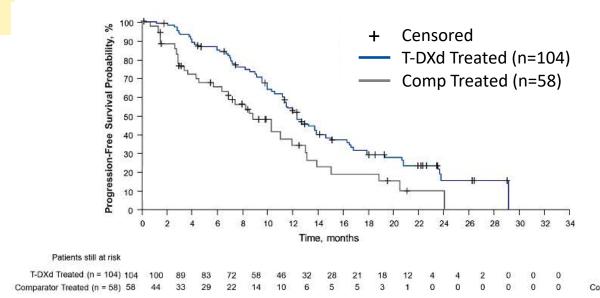
Overall Survival (N=612)

TUC+Tras+Cape 320

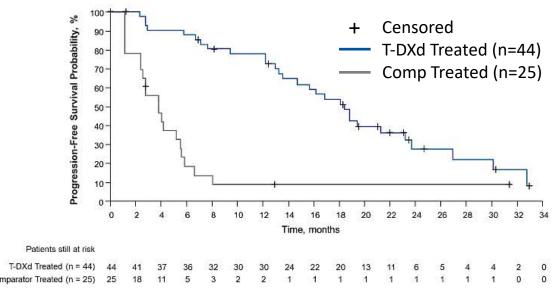

HER2CLIMB:

Key Safety Event is Diarrhea

- Most common AE in both arms (82% tucatinib arm vs 54% control arm);
 Grade ≥3: 13% vs 9%
- The median time to onset of any grade diarrhea was 12 days, and the median time to resolution was 8 days
- Treatment discontinuation of tucatinib due to diarrhea occurred in 1% of patients
- Antidiarrheal prophylaxis:
 - Antidiarrheals used in less than half of all cycles where diarrhea was reported
 - When used, duration of antidiarrheal treatment was short (median of 3 days/cycle) and the same in both arms


DESTINY-Breasto1, -02, and -03 Pooled Analysis: T-DXd in HER2+ MBC With Brain Metastases

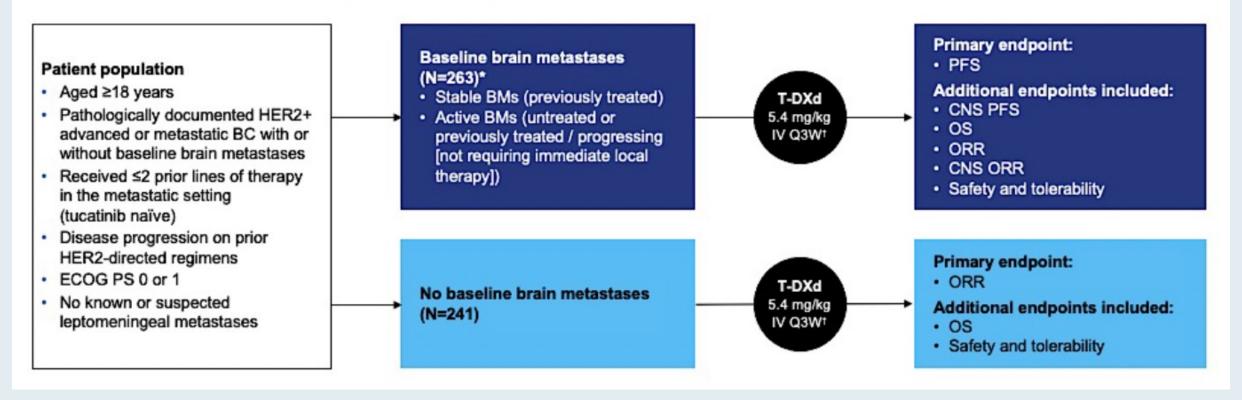
DESTINY-Breasto1, -02, and -03 Pooled Analysis Exploratory CNS-PFS


CNS-PFS in Treated/Stable BMs

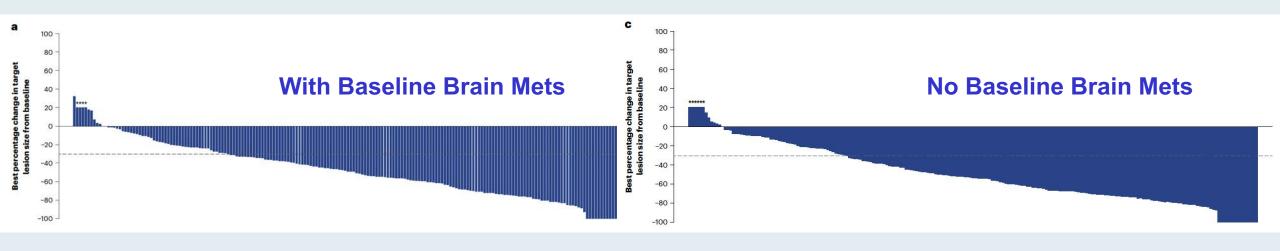
Treated/Stable BMs	T-DXd (n=104)	Comparator (n=58)
Median CNS-PFS, mo (95% CI)	12.3 (11.1-13.8)	8.7 (6.3-11.8)
HR (95% CI)	0.59 (0.39-0.89)	

Treated/stable BMs: Patients have received prior CNS-directed therapy for their BMs, and their CNS disease is stable

CNS-PFS in Untreated/Active BMs


Untreated/Active BMs	T-DXd (n=44)	Comparator (n=25)
Median CNS-PFS, mo (95% CI)	18.5 (13.6-23.3)	4.0 (2.7-5.7)
HR (95% CI)	0.19 (0.11-0.35)	

Untreated/active BMs: Patients have new BMs or progressive BMs that have not been subjected to CNS-directed therapy since documented progression


DESTINY-Breast12: T-DXd for HER2+ Brain Mets

Phase 3b/4, multicenter, single-arm, two-cohort, open-label study of T-DXd in previously treated HER2+ mBC with and without brain metastases (BMs); the largest prospective study of T-DXd in patients with stable or active BMs

DESTINY-Breast12: T-DXd for HER2+ Brain Mets

	Р	Patients with baseline BMs (N=263)		
	Overall (N=263)	Stable BMs (n=157)	Active BMs (n=106)	Overall (N=241)
12-month PFS, % (95% CI) ^a	61.6 (54.9–67.6)	62.9 (54.0-70.5)	59.6 (49.0-68.7)	-
12-month CNS PFS, % (95% CI) ^a	58.9 (51.9-65.3)	57.8 (48.2–66.1)	60.1 (49.2–69.4)	-
Median PFS, months (95% CI) ^b	17.3 (13.7–22.1)	NR	NR	-
12-month OS, % (95% CI)	90.3 (85.9–93.4)	93.2 (87.7–96.3)	86.1 (77.6–91.5)	90.6 (86.0-93.8)
Confirmed ORR, % (95% CI) ^{a,c}	51.7 (45.7–57.8)	49.7 (41.9–57.5)	54.7 (45.2-64.2)	62.7 (56.5–68.8)

How do I choose in 2L?

Shared decision making

	T-DXd	HER2Climb Regimen
PRO	 Superiority in PFS/OS compared to prior 2L Standard of care Does have non-Ph 3 signs of activity in BCBM Convenient q3 week schedule 	 Impressive OS and activity in patients with BCBM and ITT All oral regimen No alopecia
CON	 ILD risk is rare but non-trivial including Gr 5 events ~40% all grade alopecia with uncertain scalp cooling benefit IV therapy No randomized data for sequencing 	 Control arm not typical 2L SOC All oral regimen may be complicated for some Large pill burden Overlapping GI toxicity with cape and tucatinib Diarrhea No randomized data for sequencing

ER(-) HER2+ MBC

- 69 yo woman diagnosed with de novo MBC ER(-)
 HER2 3+ to brain, bone, liver in 3/2015
- 1L: weekly paclitaxel + HP x 6 mo with near CR → HP alone
- 3/2016 new brain lesions s/p WBXRT; continued HP
- 4/2024 LE weakness, spinal uptake on imaging,
 MRI concerning for LMD, LP cytology +
 - T-DXd → improved MRI, cleared cytology, improved function but increasing fatigue/nausea
 - Dose reduced x2 since

PET Feb 2025 NED

ER(-) HER2+ MBC

- 56 yo woman diagnosed with pT1No ER"+" HER2? in 2006. Declined therapy.
- 2008 Local recurrence s/p TM for ER+ HER2 3+ BC s/p ddAC-TH → Tam until self d/c in 2011
- 2012 Local rec s/p excision → OS/letrozole/H
 → pt self d/c'd 2012
- Reestablished care 2013 and resumed letrozole
- 2019 Diagnosed with cervical cancer s/p Cis/RT
- 3/2022 CT CAP for cervical ca = liver & bone lesions
 - Liver Bx metastatic breast ca ER+ HER2 3+

THP x4mo → HP + denosumab maintenance

NED by 8/2022

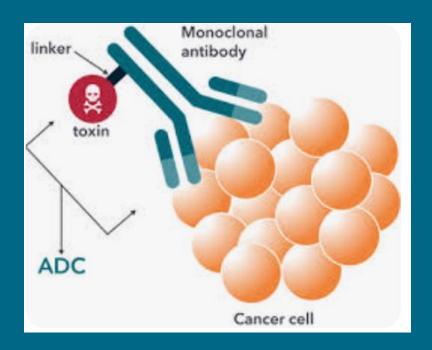
6/2023 POD in oligo bone RT to humerus

8/2023 POD in bone and liver Started T-DXd

8/2023 POD in bone and liver Started T-DXd

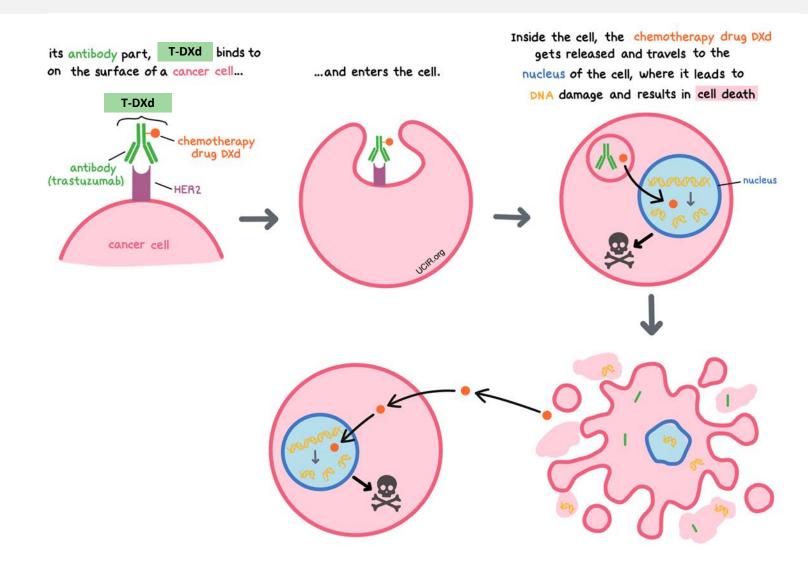
Excellent response

1/2025 Inc SOB/dry cough
GGO, Pulm, Steroids
Holding T-DXd for ?ILD

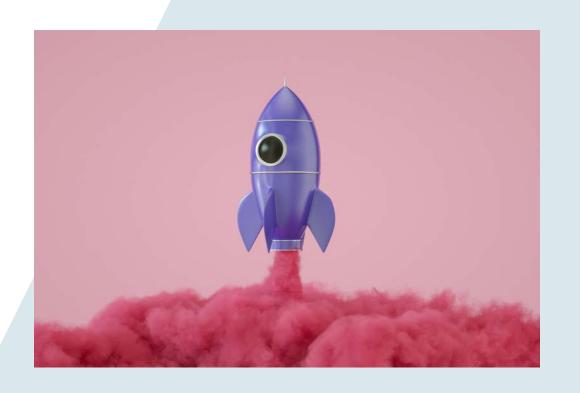

Roundtable Discussion

Antibody-Drug Conjugates

Marissa Marti-Smith
DNP, APRN, AGNP-C, AOCNP


Breast Oncology Nurse Practitioner

T-DXd (Trastuzumab deruxtecan)


Patient Education

1. Her2+ target

2. Guided missile analogy

- > Target > deliver > destroy
- Her2 antibody > linker > Deruxtecan
- > Bystander antitumor effect
- 3. Positive data on longer PFS

T-DXd toxicity monitoring

ILD

- ✓ Baseline O2 sats
- ✓ HRCT every 12 weeks (if higher risk q6-9 weeks)
- ✓ Consider PFTs

- ✓ Higher risk pts
 - Pts with lower O2 levels
 - Japanese ancestry
 - Poor renal function
 - Decreased lung function as baseline

Management of ILD

TABLE 1. T-DXd Prescribing Information and DESTINY-Breast03 and DESTINY-Breast04 Protocol-Recommended Dose Modifications for Pneumonitis/ILD^{4,7,9}

Severity	Treatment		
Asymptomatic pneumonitis/ILD (grade 1)	Interrupt T-DXd until resolved to grade 0, then If resolved in 28 days or less from date of onset, maintain dose If resolved in >28 days from date of onset, reduce dose 1 level per the recommendations below However, if the grade 1 pneumonitis/ILD event occurs beyond cycle day 22 and has not resolved within 49 days from the last infusion, the drug should be discontinued Consider corticosteroid treatment (eg, ≥0.5 mg/kg/d prednisolone or equivalent) as soon as pneumonitis/ILD is suspected		
	Dose reduction schedule	Breast cancer	
	Recommended starting dose	5.4 mg/kg	
	First dose reduction	4.4 mg/kg	
	Second dose reduction	3.2 mg/kg	
	Requirement for further dose reduction	Discontinue treatment	
Symptomatic pneumonitis/ILD (grade 2 or greater)	Permanently discontinue T-DXd Promptly initiate corticosteroid treatment (eg, ≥1 mg/kg/d prednisolone and continue for ≥14 days, followed by gradual taper for ≥4 weeks) pneumonitis/ILD is suspected		

Abbreviations: ILD, interstitial lung disease; T-DXd, trastuzumab deruxtecan.

TABLE 2. Recommended Guidance for Toxicity Management of T-DXd-Induced Pneumonitis/ILD From the DESTINY-Breast03 and DESTINY-Breast04 Protocols^{7,9}

Clinical Approach	Grade 1	Grade 2	Grades 3 and 4
Monitoring	Monitor and closely follow up in 2-7 days for onset of clinical symptoms and pulse oximetry	Monitor symptoms closely	Hospitalization required
Corticosteroid treatment	Consider starting systemic corticosteroids (eg, ≥0.5 mg/kg/d prednisone or equivalent) until improvement, followed by gradual taper over ≥4 weeks	Promptly start systemic corticosteroids (eg, ≥1 mg/kg/d prednisone or equivalent) for ≥14 days or until complete resolution of clinical and chest CT findings, followed by gradual taper over ≥4 weeks	Promptly initiate empiric high-dose methylprednisolone IV treatment (eg, 500-1,000 mg/d for 3 days), followed by ≥1 mg/kg/d of prednisone or equivalent for ≥14 days or until complete resolution of clinical and chest CT findings, followed by gradual taper over ≥4 weeks
Imaging	Consider follow-up imaging in 1-2 weeks (or as clinically indicated)	Reimage as cl	linically indicated
Worsening of or no improvement in pneumonitis/ILD	If worsening of diagnostic observations despite initiation of corticosteroids, then follow grade 2 guidelines (if the patient is asymptomatic, then they should still be considered as grade 1, even if corticosteroid treatment is given)	If worsening or no improvement in clinical or diagnostic observations in 5 days: Consider increasing dose of corticosteroids (eg, 2 mg/kg/d prednisone or equivalent) and administration may be switched to IV (eg, methylprednisolone) Reconsider additional workup for alternative etiologies, as described above Escalate care as clinically indicated	If still no improvement within 3-5 days: Reconsider additional workup for alternative etiologies, as described above Consider other immunosuppressants and/ or treat per local practice

T-DXd Patient Case Study

74-year-old female

4th line, mBC (bone), hx renal insufficiency

Cycle 4 (full dose 5.4 mg/kg)

AE: fatigue, nausea (x 8 days)

Routine CT chest showed ground glass changes upper lobes, pt asymptomatic

Prednisone taper, held treatment x 3-4 weeks, reimaged

Restarted, dose reduction 4.4 mg/kg

Continued until Cycle 21 (d/c'ed due to progressive disease)

Roundtable Discussion

Agenda

Module 1: Overview of Antibody-Drug Conjugates (ADCs)

Module 2: Trastuzumab Deruxtecan (T-DXd) in Patients with HER2-Positive Metastatic Breast Cancer (mBC) with and without Brain Metastases

Module 3: Role of ADCs for Patients with ER-Positive mBC

Module 4: T-DXd in Patients with Metastatic Non-Small Cell Lung Cancer (NSCLC) with HER2 Alterations

Module 5: Emerging Role of ADCs for Patients with Progressive EGFR-Mutant NSCLC

Clinical Scenario

A patient with ER-positive, HER2-low mBC who has received multiple lines of standard treatment, including endocrine therapy, capecitabine, T-DXd and sacituzumab govitecan, is about to start therapy with datopotamab deruxtecan

ADCs @ ONS

Tiffany A. Traina, MD FASCO Associate Attending, Breast Medicine Service Vice Chair, Department of Medicine Section Head, TNBC Clinical Research Program Memorial Sloan Kettering Cancer Center Associate Professor, Weill Cornell Medicine

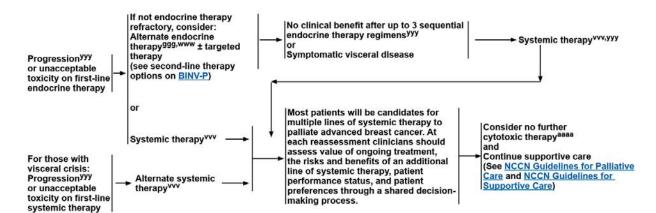
ADCs in ER+ MBC

	T-DXd	Sacituzumab Govitecan	Dato-DXd
Monoclonal antibody	Trastuzumab	Sacituzumab	Datopotamab
Target antigen	HER2	Trop2	Trop2
Payload	Deruxtecan	SN-38 (irinotecan metabolite)	Deruxtecan
Payload class	Topo-I inhibitor	Topo-I inhibitor	Topo-I inhibitor
Bystander effect	Yes	Yes	Yes
Linker subtype	Cleavable	Cleavable	Cleavable
Drug:Antibody Ratio	~8:1	~8:1	4:1
Half-life	~7 days	~15 hours	~5 days

ADCs in ER+ MBC

	T-DXd	Sacituzumab Govitecan	Dato-DXd	
	DB04, DB06	Tropics02	TROPION Breast01	
Need testing for target expression?	Yes, HER2 low (1+, 2+) or Ultralow	No	No	
FDA indication	 HER2 low or UL after 1 or more endocrine tx HER2 low after 1 prior chemo 	 Endocrine tx and at least two additional systemic therapies in the metastatic setting 	 Endocrine tx and chemotherapy for metastatic disease 	
Main toxicity	Nausea, alopecia, ILD, LVEF	Diarrhea, neutropenia	Stomatitis, rare ocular events, rare ILD	
Sequencing data	There are no prospective randomized sequencing data to guide decision-making			

Approach to ER+ MBC before ADCs


Printed by tiffany traina on 4/5/2025 12:43:05 PM. For personal use only. Not approved for distribution. Copyright © 2025 National Comprehensive Cancer Network, Inc., All Rights Reserved.

Cancer Invasive Breast Cancer

NCCN Guidelines Index Table of Contents Discussion

SYSTEMIC TREATMENT OF RECURRENT UNRESECTABLE (LOCAL OR REGIONAL) OR STAGE IV (M1) DISEASE: ER- AND/OR PR-POSITIVE; HER2-NEGATIVE^d (SEE <u>BINV-28</u> FOR PRINCIPLES OF SURVIVORSHIP)

d Principles of Biomarker Testing (BINV-A).

Note: All recommendations are category 2A unless otherwise indicated.

BINV-23

Serial sequential endocrine therapies beginning with CDK4/6i

Biomarker driven targeted options to overcome endocrine resistance:

- ESR1] elacestrant

PTEN

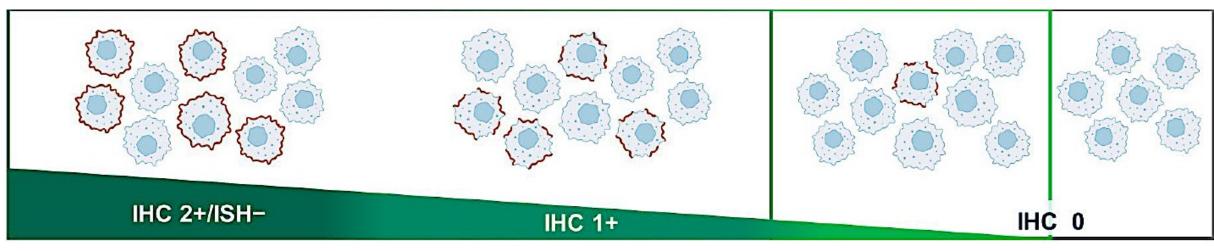
Generally exhaust endocrine options and transition to ADCs or chemotherapy upon endocrine resistance

⁹⁹⁹ False-negative ER and/or PR determinations occur, and there may be discordance between the ER and/or PR determination between the primary and metastatic tumor(s). Therefore, endocrine therapy with its low attendant toxicity may be considered in patients with non-visceral or asymptomatic visceral tumors, especially in patients with clinical characteristics predicting for a HR-positive tumor (eg. Inog lieases-free interval, limited sites of recurrence, indolent disease, older age).
W Systemic Therapy Regimens for Recurrent Unresectable (Local or Regional) or Stage IV (M1) Disease (BINV-Q).

WWW Systemic Therapy for ER- and/or PR-Positive Recurrent Unresectable (Local or Regional) or Stage IV (M1) Disease (BINV-P).

yyy Principles of Monitoring Metastatic Disease (BINV-R).

aaaa The potential side effects of additional lines of therapy may outweigh any clinical benefit in a patient who has a compromised performance status. Patient preference must be taken into account.


HER2 IHC Categories Within HR+/HER2-MBC

HER2-low

~60% to 65% of HR+/HER2- MBC

HER2-ultralow

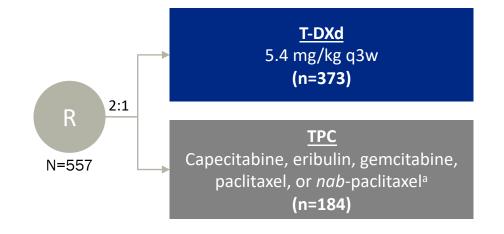
~20% to 25% of HR+/HER2- MBC

Weak-to-moderate complete membrane staining in >10% cells

Faint, incomplete membrane staining in >10% tumor cells

Faint, incomplete membrane staining in ≤10% tumor cells

Absent/no observable membrane staining



DESTINY-Breasto4: T-DXd in HER2 low MBC

30% improvement in OS!

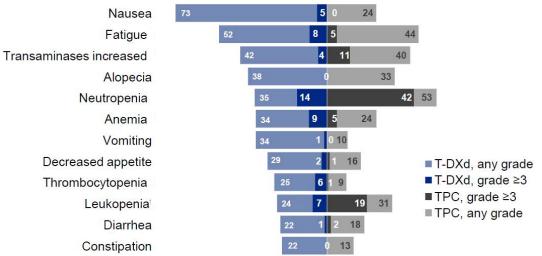
Key Eligibility Criteria

- HER2-low (IHC 1+ or IHC 2+/ISH-) unresectable and/or MBC
- ≥1 prior line of chemotherapy in the metastatic setting
- ≥1 line of ET if HR+ MBC

Primary endpoint: PFS by BICR (HR+)

Key characteristics:

~90% of population had HR+ disease Median 1 prior line of chemo 2% had 3 or more lines of chemo Median 2 prior ET


	PFS in HR+ Patients (by INV) T-DXd (n=331) TPC (n=163)		OS in HR+	Patients
			T-DXd (n=331)	TPC (n=163)
Median, months	9.6 (8.4-10.0)	4.2 (3.4-4.9)	23.9 (21.7-25.2)	17.6 (15.1-20.2)
HR (95% CI)	0.37 (0.30-0.46)		0.69 (0.5	5-0.87)

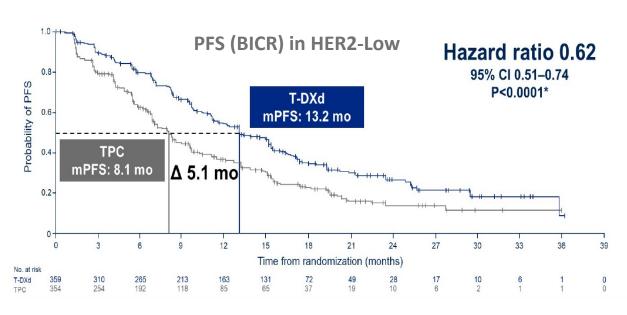
DESTINY-Breasto4: Safety

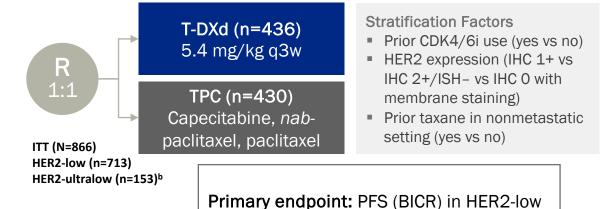
Is the risk/benefit balance different in ER+ MBC?

Drug-Related TEAEs in ≥20% of Patients

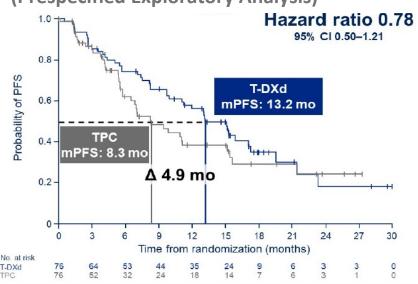
Percent of Patients Experiencing Drug-Related TEAE

Tx discontinuation 17%
54% Gr 3 or greater TEAEs
4% treatment related deaths (ILD)


AEs of Special Interest, n (%)		Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade
Adjudicated as	T-DXd (n=371)	13 (3.5)	24 (6.5)	4 (1.1) ^a	0	4 (1.1) ^a	45 (12.1)
drug-related ILD/pneumonitis	TPC (n=172)	1 (0.6)	0	0	0	0	1 (0.6)



DESTINY-Breasto6: T-DXd in HER2-Low/Ultralow MBC and in earlier line of therapy


Key Eligibility Criteria

- HR+/HER2-low (IHC 1+ or IHC 2+/ISH-) or HR+/HER2-ultralow (IHC 0 with membrane staining) MBC
- Chemotherapy-naive in the MBC setting
- ≥2 lines of ET ± targeted therapy for MBC OR
- 1 line for MBC AND
 - Progression ≤6 mo of starting 1L ET + CDK4/6i OR recurrence
 ≤24 mo of starting adjuvant ET

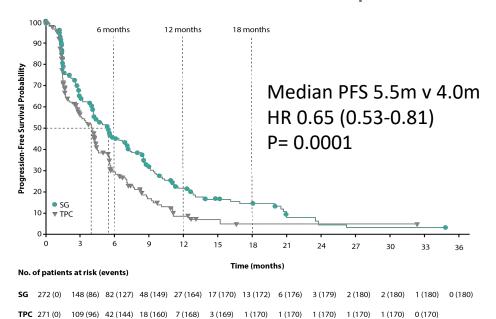
PFS (BICR) in HER2-Ultralow (Prespecified Exploratory Analysis)

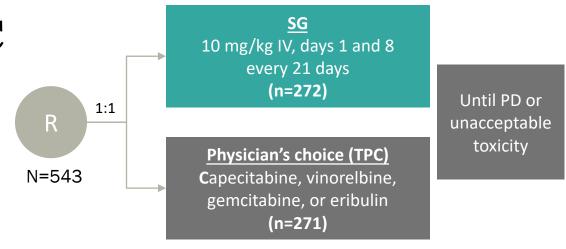
How do you weigh safety & efficacy?

AESI Adjudicated as Drug-Related ILD/Pneumonitis ^b								
n (%)	Any grade	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5		
T-DXd (n=434)	49 (11.3)	7 (1.6)	36 (8.3)	3 (0.7)	0	3 (0.7)		
TPC (n=417)	1 (0.2)	0	1 (0.2)	0	0	0		

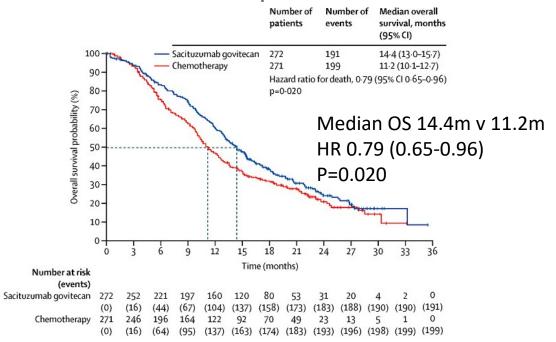
■ In the T-DXd vs TPC arms, 35 (8.1%) vs 12 (2.9%) patients experienced any grade ejection fraction decreased, and 0 vs 3 (0.7%) patients experienced any grade cardiac failure

- Sites of disease
- Burden of disease
- Underlying risks for ILD?
- KPS, frailty
- Cardiac comorbidities?
- Psychosocial factors: IV vs oral, alopecia, q3 week travel to infusion
- DB04 as salvage




TROPiCS-02: Sacituzumab in ER+ MBC

Key Eligibility Criteria

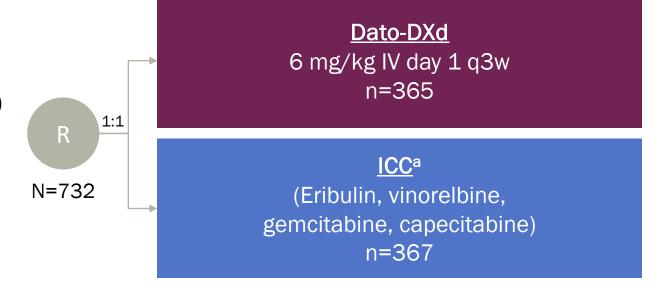

- HR+/HER2- MBC (or locally recurrent inoperable) with PD after:
 - ≥1 ET, taxane, and CDK4/6i in any setting
 - ≥2 to ≤4 lines of chemotherapy for metastatic disease
 - Measurable disease by RECIST v1:1

BICR-Assessed PFS in the ITT Population

Primary endpoint: PFS by BICR **OS in the ITT Population**

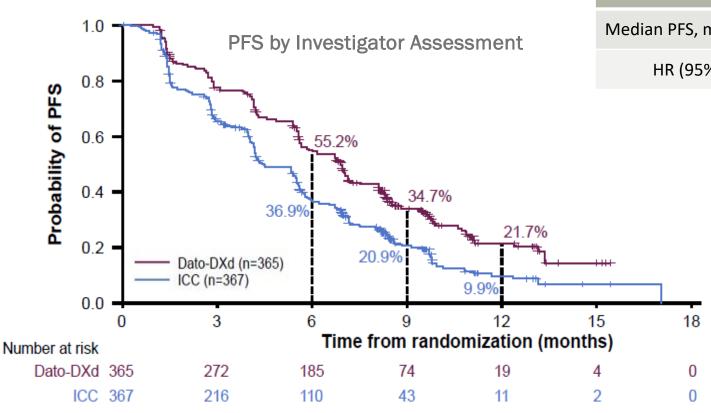
TROPiCS-02: Safety

TEAEs (All Grade >20%), n (%)		SG (n	=268)	TPC (n=249)	
		All grade	Grade ≥3	All grade	Grade ≥3
Hematologic	Neutropenia	189 (71)	140 (52)	136 (55)	97 (39)
	Anemia	98 (37)	20 (7)	69 (28)	8 (3)
GI	Diarrhea	166 (62)	27 (10)	57 (23)	3 (1)
	Nausea	157 (59)	3 (1)	87 (35)	7 (3)
	Constipation	93 (35)	1 (<1)	61 (24)	0
	Vomiting	64 (24)	3 (1)	39 (16)	4 (2)
	Abdominal pain	53 (20)	10 (4)	34 (14)	2 (1)
Other	Alopecia	128 (48)	0	46 (18)	0
	Fatigue	105 (39)	16 (6)	82 (33)	9 (4)
	Asthenia	62 (23)	6 (2)	50 (20)	5 (2)
	Decreased appetite	57 (21)	4 (1)	52 (21)	2 (1)


Treatment discontinuations due to AEs occurred in 17 patients (6%) receiving SG and 11 patients (4%) receiving TPC

TROPION-Breasto1: Dato-DXd in ER+ MBC

Key Eligibility Criteria


- HR+/HER2- MBC (HER2 IHC 0/1+/2+; ISH-)
- Progressed on and not suitable for ET
- 1-2 prior lines of Chemo in inoperable/metastatic setting
- ECOG PS 0-1

Dual primary endpoints: PFS by BICR per RECIST v1.1, OS

TROPION-Breasto1: Dato-DXd Efficacy

PFS by Investigator	Dato-DXd (n=365)	ICC (n=367)	
Median PFS, mo (95% CI)	6.9 (5.9-7.1)	4.5 (4.2-5.5)	
HR (95% CI)	0.64 (0.53-0.76)		

Median PFS by BICR (primary endpoint):

6.9 vs 4.9 mo;

HR=0.63 (95% CI: 0.52-0.76); P<0.0001

TROPION-Breasto1: Dato-DXd Safety

TRAEs (in ≥15%),	Dato-DXd (n=360)		ICC (n=351)	
n (%)	Any grade	Grade ≥3	Any grade	Grade ≥3
Anemia	40 (11)	4 (1)	69 (20)	7 (2)
Neutropenia	39 (11)	4 (1)	149 (42)	108 (31)
Dry eye	78 (22)	2 (1)	27 (8)	0
Nausea	184 (51)	5 (1)	83 (24)	2 (1)
Stomatitis	180 (50)	23 (6)	46 (13)	9 (3)
Vomiting	71 (20)	4 (1)	27 (8)	2 (1)
Constipation	65 (18)	0	32 (9)	0
Fatigue	85 (24)	6 (2)	64 (18)	7 (2)
Alopecia	131 (36)	0	72 (21)	0

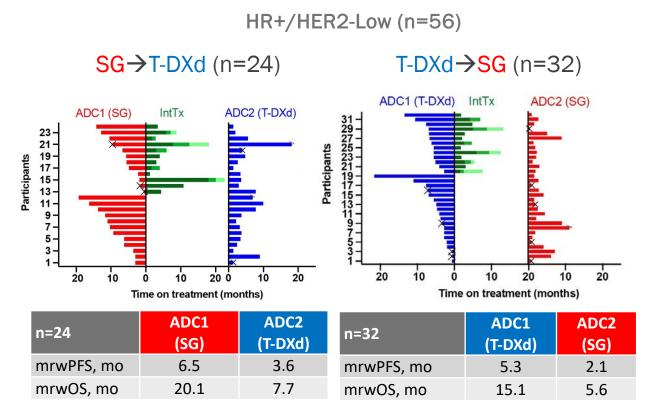
Favorable toxicity profile, unlike T-DXd

Stomatitis prophylaxis successful with steroid rinse

Only 1 patient d/c Dato due to stomatitis

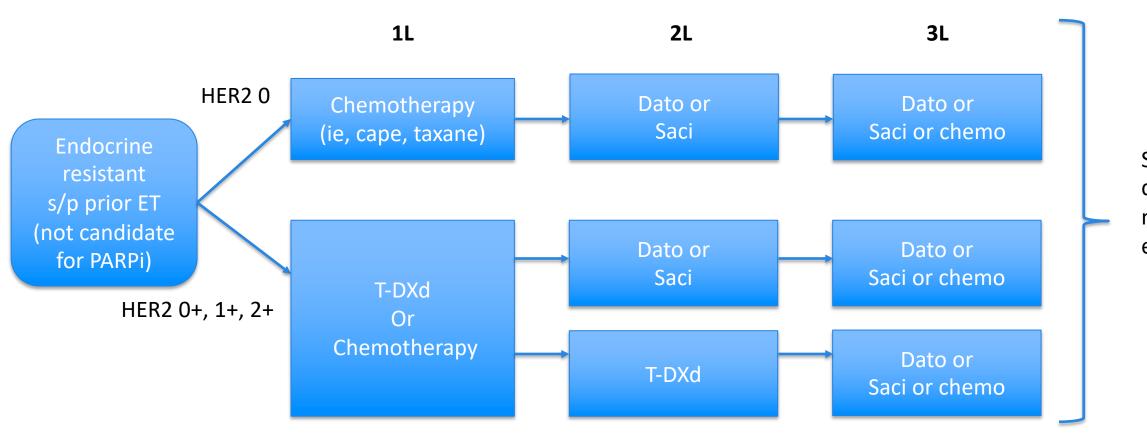
Most ocular events were dry eye and low grade

Only 1 patient d/c Dato due to ocular AE


ILD rare: 3% all grade

Sequential ADC Use?

No prospective data


- 1st ADC generally has longer time on tx
- Intervening cytotoxic chemotherapy "sandwich" approach does not appear to be an advantage
- What drives resistance?
 - Target?
 - Payload?
- Where does Dato-DXd fit in?

ADCs in ER+ MBC Bringing it together

	T-DXd	Sacituzumab Govitecan	Dato-DXd
FDA indication	 HER2 low or UL after 1 or more endocrine tx HER2 low after 1 prior chemo 	 Prior Endocrine tx and at least two additional systemic therapies in the metastatic setting 	 Prior Endocrine tx and chemotherapy for metastatic disease

Shared decision making essential!

ER(+) HER2 low MBC

- 71 yo pT1N2 ER >95% HER2 2+ FISH NA

 →PET/CT negative for MBC
 - ddAC started but c/b anemia (hgb 4.6)
 - Bone marrow bx = MBC ER+ HER2 3+ FISH amplified and low grade B cell lymphoma
- 1L anastrozole (9/2022) → added Palbociclib (11/2022) and HP w/ excellent clinical response and NED on scans
- 11/2024 Altered MS and seizure → MR w/ CNS metastases and LMD
- s/p WBXRT, pCSI → 1/2025 Began T-DXd

MRI Brain & Spine 3/24/25:

Numerous subcm brain mets
have contracted with a few
resolved. Dominant parietal
lesion decreased from ~2cm to
0.9cm. No new lesions.

Decreased conspicuity of cauda
equina lesions

PET 3/2025: No new lesions. Stable treated bone lesions.

ER low HER2 low MBC

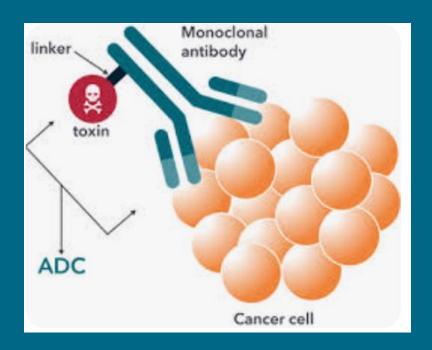
- 70 yo pT2No ER low HER2 o → ddAC-T; no ET (2014)
- 2018 Ipsilateral Ax recurrence ER 40% HER2 1+ s/p neo Gem/Carbo → AxD → RT → Anastrozole
- 2020 Unresectable Axillary and chest wall recurrence cw MBC ER 5-10% HER2 o PDL1 1%
 Capecitabine
- 2022 POD in chest wall, LN, ?lung → eribulin
- 3/2023 POD in lung; Bx MBC ER 5% HER2 o
 - Started sacituzumab govitecan

PET 11/2024:

Stable subcm pulm nodules.

Reactive marrow. No new sites

of disease


Roundtable Discussion

Antibody-Drug Conjugates

Marissa Marti-Smith
DNP, APRN, AGNP-C, AOCNP

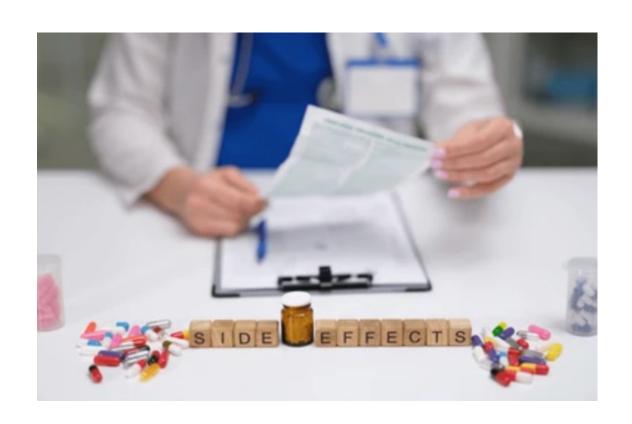
Breast Oncology Nurse Practitioner

Dato DXd (Datopotamab Deruxtecan)

 TROP2-directed ADC comprising a humanized anti-TROP2 immunoglobulin G1 monoclonal antibody covalently linked to a highly potent topoisomerase I (topo I) inhibitor, a derivative of exatecan, via a plasma-stable, tumor-selective, tetrapeptidebased cleavable linker, resulting in reduced systemic exposure and off-target adverse effects.

Patient Education

- Internalization of Dato-DXd into TROP2-expressing cells leads to death of target tumor cells and bystander killing of neighboring cells in the tumor microenvironment.
- Guided missile analogy
- Approved for mBC ER+ Her2-



Dato DXd side effects

- **Stomatitis** (59%; grades 3/4 7%)
- Dry eyes (27%), Keratitis (24%)
- Low blood counts (hgb, ANC, leukopenia)
- Fatigue (44%)
- Cough (15%)
- GI (poor appetite, constipation, diarrhea, nausea (56%), vomiting
- Decreased Ca+ (39%)
- Alopecia (38%)
- Rash (19%)
- ILD/pneumonitis
- Elevated LFTS (23%)

Dato-DXd Patient Case Study

68-year-old female

1st line, mBC (liver x 4 lesions, lymphatics, breast), Triple negative

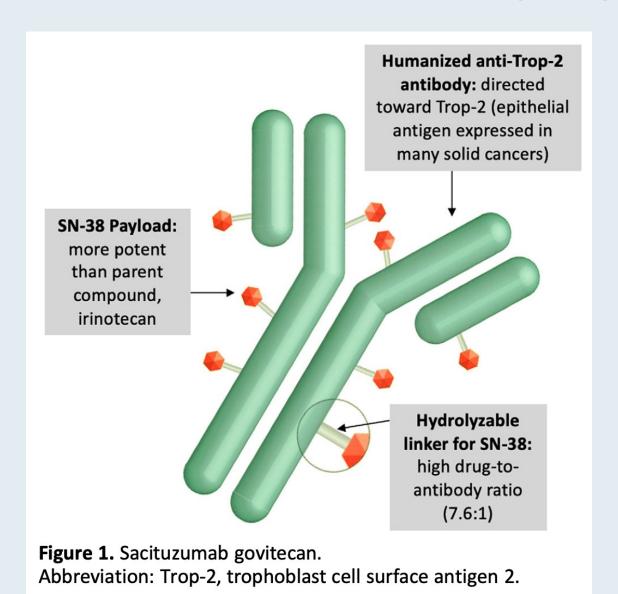
On Trial: Durvalumab + Dato-DXd IV Q21D initiated 5/17/2022

AE: fatigue, mouth sores & dry mouth, poor appetite, watery eyes

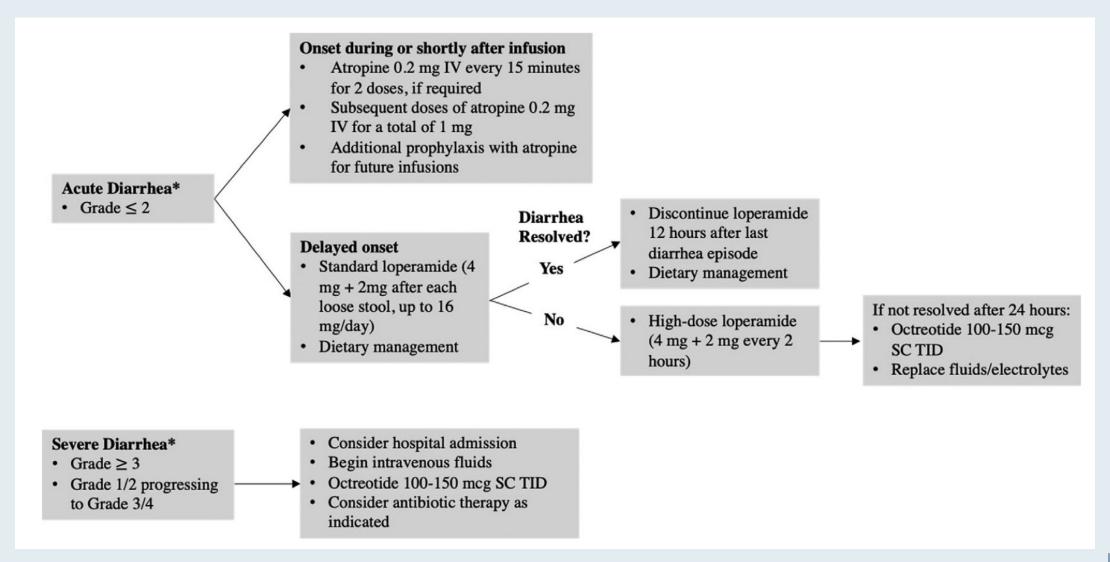
C7: dose reduction 4 mg/kg (Dato-DXd) due to mucositis

C18: worsening inflammatory arthritis (HELD durvalumab)

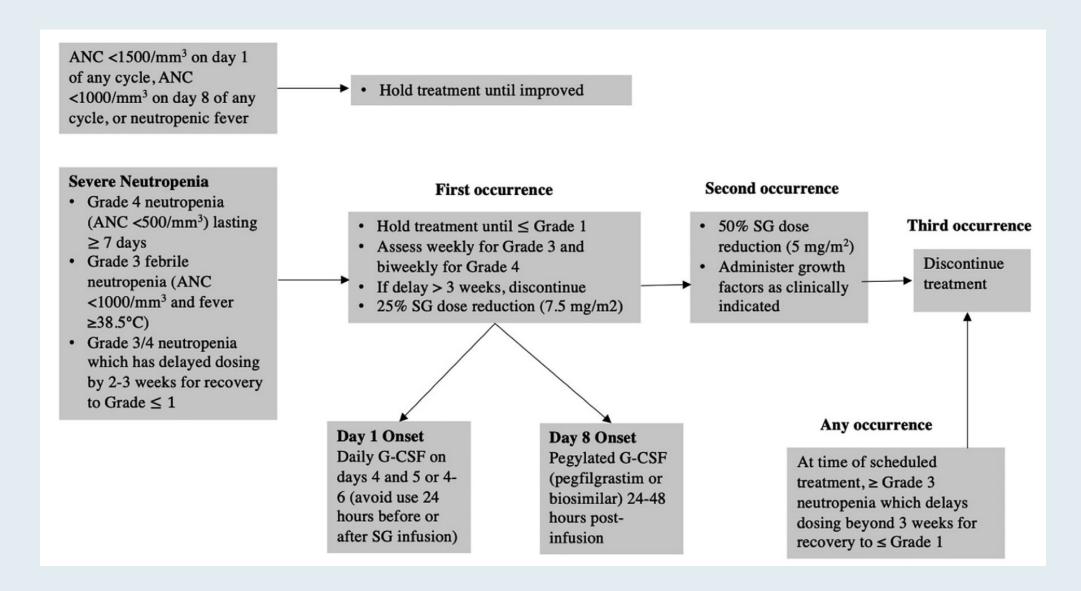
Recently received C50: stability > almost 3 years


NED, other than new inflammatory lung nodule seen on scan

Roundtable Discussion



Sacituzumab Govitecan: TROP2-Targeting ADC



Management of Sacituzumab Govitecan-Induced Diarrhea

Management of Sacituzumab Govitecan-Induced Neutropenia

Agenda

Module 1: Overview of Antibody-Drug Conjugates (ADCs)

Module 2: Trastuzumab Deruxtecan (T-DXd) in Patients with HER2-Positive Metastatic Breast Cancer (mBC) with and without Brain Metastases

Module 3: Role of ADCs for Patients with ER-Positive mBC

Module 4: T-DXd in Patients with Metastatic Non-Small Cell Lung Cancer (NSCLC) with HER2 Alterations

Module 5: Emerging Role of ADCs for Patients with Progressive EGFR-Mutant NSCLC

Clinical Scenario

A patient with metastatic HER2-mutant NSCLC is about to start first-line therapy with T-DXd

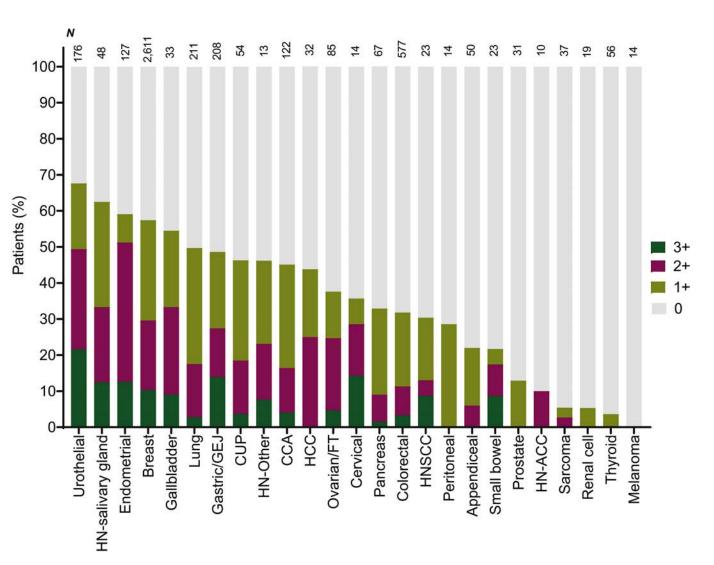
Role of T-DXd in Patients with Metastatic NSCLC with HER2 Alterations

Edward B. Garon, MD, MS

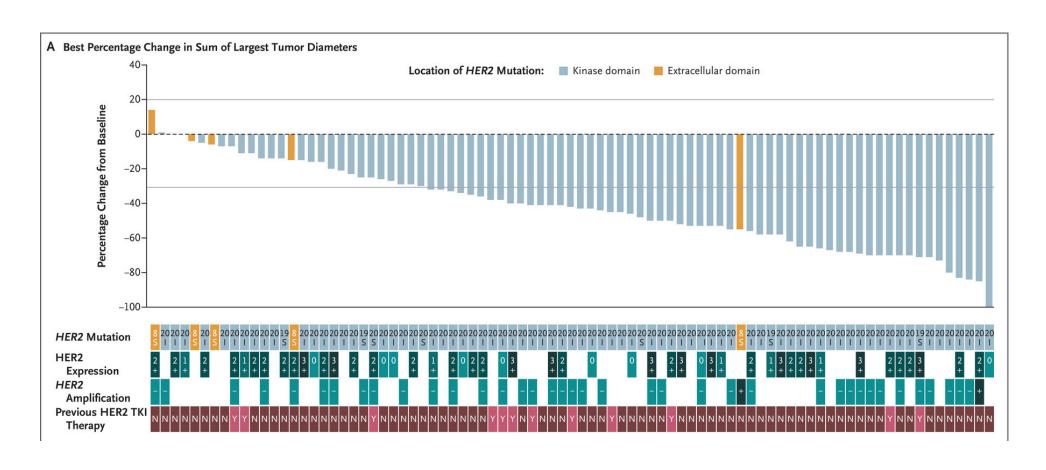
Professor

David Geffen School of Medicine at UCLA

Los Angeles, CA


Case

- 63 year old woman with no smoking history presented when a chest X-ray obtained for work showed masses
- Scans demonstrated bilateral lung lesions including three masses over 4 cm
- Patient was without complaint
- Biopsy demonstrated adenocarcinoma
- Molecular studies showed ERBB2 (Her2/Neu) Exon 20 p.G778_P780dup


HER2 Abnormalities in NSCLC

- HER2 mutations are seen in nearly 2% of NSCLC cases in US
- HER2 3+ is seen in nearly 3% of NSCLC
- High level HER2 amplification is seen in nearly 1% of NSCLC

Uzunparnak B. Annals of Oncology 2023 Waliany S. Cancer Med 2024 Odintsov I. Journal of Thoracic Oncology 2024

Trastuzumab Deruxtecan in HER2 Mutation Positive NSCLC

DESTINY-Lung02

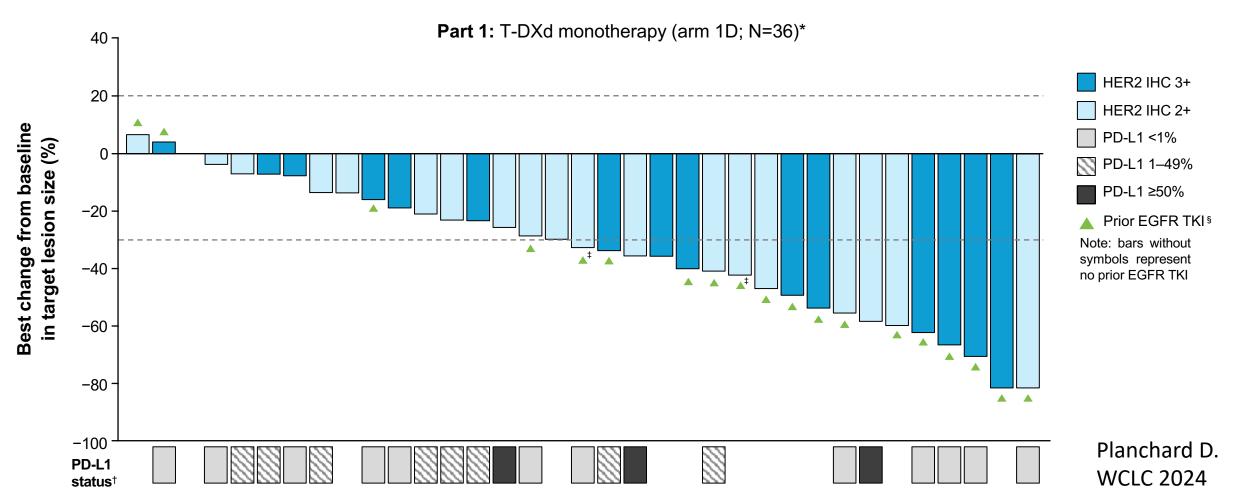
Baseline characteristics and patient disposition

Α

20 -

- Baseline demographics and clinical characteristics were similar across the T-DXd
 5.4 mg/kg and 6.4 mg/kg arms
- In the T-DXd 5.4 mg/kg and 6.4 mg/kg arms, respectively:
 - Most patients received prior anti–PD-(L)1 therapy (73.5% and 78.0%)
 - Most patients had never smoked (53.9% and 58.0%)
 - **HER2** mutations were primarily in the kinase domain (97.1% and 100%)
 - Baseline CNS metastasis was present in 34.3% and 44.0% of patients
- At final analysis data cutoff, 12.9% of patients (13/101) in the T-DXd 5.4 mg/kg arm and 12.0% of patients (6/50) in the T-DXd 6.4 mg/kg arm were continuing on study treatment

Efficacy				
Efficacy Efficacy summary	T-DXd 5.4 mg/kg n = 102	T-DXd 6.4 mg/kg n = 50		
cORR, ^{a,b} n (% [95% CI])	51 (50.0 [39.9-60.1])	28 (56.0 [41.3-70.0])		
CR PR	3 (2.9) 48 (47.1)	4 (8.0) 24 (48.0)		
SD PD	44 (43.1) 4 (3.9)	18 (36.0) 2 (4.0)		
Non-evaluable	3 (2.9)	2 (4.0)		
DCR, ^c n (% [95% Cl])	95 (93.1 [86.4-97.2])	46 (92.0 [80.8-97.8])		
DoR,b median (95%CI), months	12.6 (6.4 to NE)	12.2 (7.0 to NE)		
PFS, median (95% CI), months	10.0 (7.7-15.2)	12.9 (7.2-16.7)		
OS, median (95% CI), months	19.0 (14.7 to NE)	17.3 (13.8 to NE)		
Follow-up, median (range), months	15.8 (1.1-28.6)	16.5 (0.6-28.7)		


Change From Baseline (%) 5.4 mg/kg -60 -80 -100 HER2 mutation HER2 amplification Prior HER2 TKI therapy Previous anti-PD-(L)1 therapy No. of prior lines of В 40 -Change From Baseline (%) 6.4 mg/kg -60 -100 HER2 mutation Prior HER2 TKI therapy Previous anti-PD-(L)1

Data cutoff: August 25, 2023.

Goto K et al. J Clin Oncol 2024;42(30):3635. Janne P et al. ASCO 2024;Abstract 8543.

T-DXd in HER2-overexpressing NSCLC: Best percentage change from baseline in target lesion size

DESTINY-Lung03

Investigator assessed per RECIST v1.1. Best percentage change is the maximum reduction or minimum increase from baseline in the target lesion size; the dashed lines at -30% and 20% change in target lesion size indicate the thresholds for partial response and progressive disease, respectively. The study was not designed/powered to compare efficacy between subgroups.

*One patient was not evaluable; †patients with unknown PD-L1 status (n=12) are represented by white spaces; ‡unconfirmed response; § patients had HER2-OE (IHC 3+/2+) NSCLC
EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; HER2-OE, HER2-overexpressing; IHC, immunohistochemistry; NSCLC, non-small cell lung cancer;
PD-L1, programmed cell death ligand 1; RECIST v1.1, Response Evaluation Criteria in Solid Tumours version 1.1; T-DXd, trastuzumab deruxtecan; TKI, tyrosine kinase inhibitor

Trastuzumab Deruxtecan in HER2 3+

- On April 5, 2024, the Food and Drug Administration granted accelerated approval to fam-trastuzumab deruxtecan-nxki for adult patients with unresectable or metastatic HER2-positive (IHC 3+) solid tumors who have received prior systemic treatment and have no satisfactory alternative treatment options.
- ORR exceeded 50% and DOR exceeded a year (n = 16)

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grantsaccelerated-approval-fam-trastuzumab-deruxtecan-nxki-unresectable-or-metastatic-her2

Case 1 Continued

- Patient initially was treated with carboplatin/pemetrexed and pembrolizumab
- She responded and tolerated it well, but progressed after approximately a year and a half
- She switched to trastuzumab deruxtecan, and again responded but progressed after approximately a year and a half
- She recently initiated therapy on a trial of zongertinib

Conclusions

- Although there is no HER2 molecular abnormality with high prevalence, when combining HER2 mutant NSCLC and HER2 3+, HER2 is one of the more common molecular drivers
- Trastuzumab deruxtecan is the only agent approved for treating HER2 driven NSCLC, although oral inhibitors are in development
- HER2 amplification is rare in NSCLC, and the role of targeted agents in this context is not clear

Roundtable Discussion

Understanding the Current Paradigm and New Approaches: The Optimal Implementation of Antibody-Drug Conjugates in the Care of Patients with Cancer

Research To Practice
Oncology Nursing Society Congress 2025

Marianne Davies, DNP, CNS-BC, ACNP-BC, AOCNP-BC, FAAN
Program Manager, Care Signature: Oncology Service Line
Thoracic Oncology Nurse Practitioner, Smilow Cancer Hospital
Associate Professor, Yale University School of Nursing

Yale NewHaven **Health** Smilow Cancer Hospital

Yale cancer center

Scenario 3: Nursing Considerations for Patients with NSCLC Receiving T-DXd

62 yo male, married with two adult children and grandchildren; remote smoking history; works in sales; pizza aficionado; domestic bird owner.

Diagnosed with HER2-mutant (Exon 20 insertion)
 NSCLC

HER-2 mutant NSCLC:

- More common in females, never smokers and younger age
- 2%-4% of NSCLC
- Can also have HER-2 amplification +/or overexpression

Yale NewHaven Health Smilow Cancer Hospital

Interstitial Lung Disease

Screen (History and Physical)

Baseline SpO₂

Educate patients about signs & symptoms to report

Rule out other causes of ILD (other drugs or RT tox)

Rule out infection, progression of disease, or pulmonary embolism

Scan (Evaluation)

High-resolution CT scan, every 6-9 wks if s/s

Bronchoscopy and BAL +/- biopsy

Pulmonary function test

Synergy: Patient-MDT-Staff Triad

Pulmonary consult

Radiology

Suspend Treatment

Hold treatment during evaluation

GRADE Toxicity

May consider dose reduction

Permanent discontinuation for unresolving ILD

Steroids

Based on severity or grade of toxicity

Taper steroid based on response

Rule out: Bird Fancier's Lung (Avian Hypersensitivity Pneumonitis)

Tarantino P. *JAMA Oncol.* 2021;7(12):1873-1881. doi:10.1001/jamaoncol.2021.3595 Tarantino P. *JCO Oncol Pract.* 2023;19(8):526-527. doi:10.1200/OP.23.00097 Yale NewHaven Health Smilow Cancer Hospital

T-DXd MOA & Approval

Trastuzumab Deruxtecan (T-DXd)

Trastuzumab: antibody that binds to HER2

Deruxtecan: chemotherapy

Irinotecan derivative: Topoisomerase 1 inhibitor

DESTINY-Lung01, DESTINY-Lung02

- Approved for treatment of patients with unresectable or metastatic NSCLC whose tumors have activating HER2 (ERBB2) mutations and who have received a prior line of therapy
- Approved for treatment of patients with unresectable or metastatic HER2-positive (IHC 3+) solid tumors who have received prior systemic treatment and have no satisfactory alternative treatment options

Patient enrolled on a First-Line Clinical Trial with T-DXd

Potential Toxicities & Monitoring

- Factors influencing the side effects: T-DXd: has to do with the chemotherapy
 - Diarrhea
 - Neutropenia
 - Thrombocytopenia
- Rash
- Interstitial Lung Disease (ILD)
- Cardiac/ myocarditis: Left Ventricular Dysfunction: monitor LVEF at regular intervals; if decreased by >10%;
 - Need baseline Echocardiogram; If 40-45% and if decreased by 10-20%, hold tx and repeat ECHO at 3 weeks; if it does not recover to within 10%, then need to discontinue
- Reproductive Considerations in those of child bearing years.
- Embryo-Fetal toxicity

Cardiac Toxicity- Left Ventricular Dysfunction

- Overall Incidence 4.6% --- Grade 3 or worse 0.6%
- Assess LVEF prior to initiation of therapy and then every 3 months
- Interrupt and consult Cardiology if
 - IF LVEF 40%-45% and absolute decrease from 10-20%
 - LVEF < 40%
 - Absolute decrease from baseline >20%

Nausea and Vomiting Management

- NCCN -Highly Emetogenic and includes delayed nausea and or vomiting. Administer prophylactic anti-emetics medications per institutional guidelines
- At least D1-D4
- NK1
- 5-HT3 antagonist
- Olanzapine
- Dexamethasone

Nausea and Vomiting

- Nonpharmacological Interventions
 - Eat small frequent meals
 - Avoid foods that cause nausea such as food with strong smells
 - Sit upright or lie with head raised for 1 hour after eating
 - Drink plenty of water throughout day small sips
 - Consult dietician
 - Alternative Therapies Relaxation Techniques, Acupuncture, hypnosis, music therapy

Neutropenia Management

- Monitor Complete Blood Counts prior to each infusion
- Delay/Dose reduce for grade 3 / 4
- Add G-CSF as needed based on patient risk factors
- Patient education
 - Reduce risk of infection by washing hands frequently, avoid being in contact with people who are sick. Avoid dental work while white count is low
 - Immediately contact provider if fever occurs

Fatigue Management

- No Reliable laboratory test or objective measurements for cancer related fatigue
- Rule out other causes medication side effects, pain, anemia, emotional distress, sleep disturbances, nutritional deficiencies
- Risk factors for cancer related fatigue- Pain, Nausea, pre-existing mental health disorders or stressors
- Treatments- Physical Activity/Exercise, Cognitive Behavioral Therapy, mindfulness-based programs, Tai chi, Qigong, American Ginseng 2,000mg daily may also be recommended

Alopecia

- Typically manifests as thinning, rather than hair loss- best to be upfront with patients
 - Consider scalp cooling
 - Rule out other cause can check TSH, Vit D, Zinc, and ferritin/iron levels
- Patient counseling
 - Can use wigs, caps, or head covering
 - Protect scalp from heat, cold, and the sun
 - Sleep on satin pillowcase, wrap hair at night
 - Avoid excessive brushing, styling, or washing

Roundtable Discussion

Agenda

Module 1: Overview of Antibody-Drug Conjugates (ADCs)

Module 2: Trastuzumab Deruxtecan (T-DXd) in Patients with HER2-Positive Metastatic Breast Cancer (mBC) with and without Brain Metastases

Module 3: Role of ADCs for Patients with ER-Positive mBC

Module 4: T-DXd in Patients with Metastatic Non-Small Cell Lung Cancer (NSCLC) with HER2 Alterations

Module 5: Emerging Role of ADCs for Patients with Progressive EGFR-Mutant NSCLC

Clinical Scenario

A patient with metastatic EGFR-mutant NSCLC has experienced disease progression on standard targeted therapy and is about to start treatment with Dato-DXd

Emerging Role of ADCs in Patients with Progressive EGFR-Mutant NSCLC

Edward B. Garon, MD, MS

Professor

David Geffen School of Medicine at UCLA

Los Angeles, CA

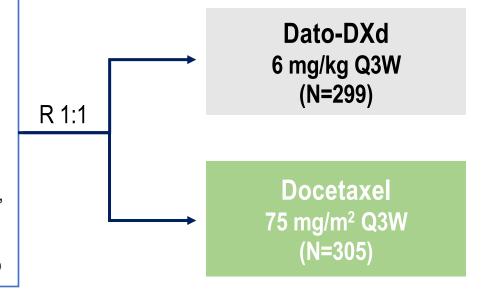
Case

- 77 year old woman presents after relocating to be closer to family
- She was originally diagnosed 8 years earlier with Stage IB NSCLC with an *EGFR* L858R mutation for which resection was performed
- First scan after 4 cycles of cisplatin/pemetrexed showed liver metastasis
- Treated with gefitinib for 6 years
- At progression, she initiated treatment with osimertinib
- Symptomatically, she is a little worse, and there is evidence of progression on scans

TROPION-Lung01 Study Design

Randomized, Phase 3, Open-Label, Global Study (NCT04656652)

Key Eligibility Criteria


- NSCLC (stage IIIB, IIIC, or IV)
- ECOG PS of 0 or 1
- No prior docetaxel

Without actionable genomic alterations^a

 1 or 2 prior lines, including platinum CT and anti–PD-(L)1 mAb therapy

With actionable genomic alterations

- Positive for EGFR, ALK, NTRK, BRAF, ROS1, MET exon 14 skipping, or RET
- 1 or 2 prior approved targeted therapies + platinum-based CT, and ≤1 anti–PD-(L)1 mAb

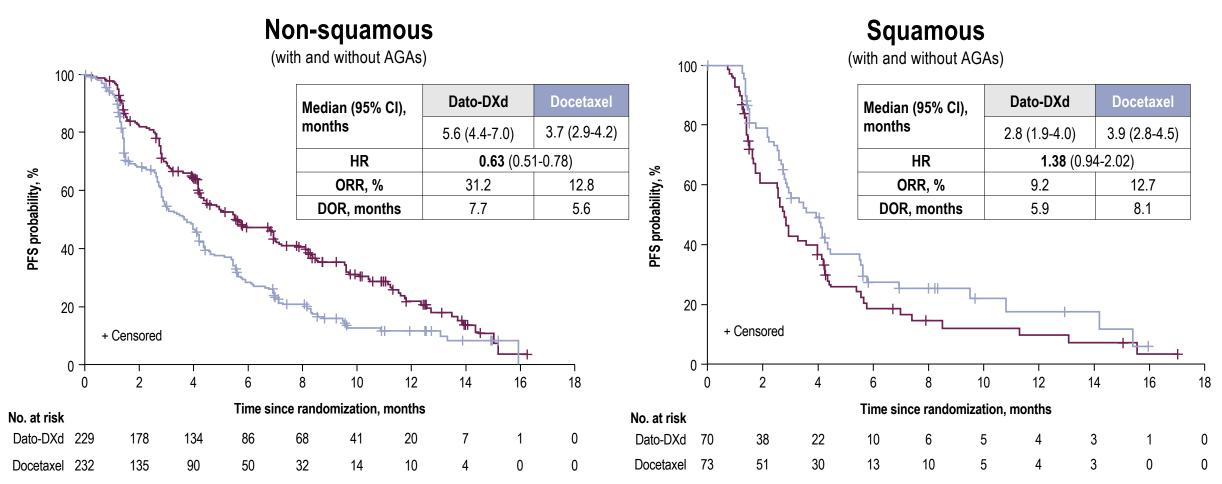
Dual Primary Endpoints

- PFS by BICR
- OS

Secondary Endpoints

- ORR by BICR
- DOR by BICR
- Safety

Stratified by: histology,^b actionable genomic alteration,^c anti–PD-(L)1 mAb included in most recent prior therapy, geography^d


Enrollment period: 19 February 2021 to 7 November 2022.

BICR, blinded independent central review; CT, chemotherapy; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; mAb, monoclonal antibody; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PD-(L)1, programmed cell death 1 (ligand 1); PFS, progression-free survival; Q3W, every 3 weeks; R, randomized.

^aPatients with KRAS mutations in the absence of known actionable genomic alterations are eligible; must meet prior therapy requirements for patients without actionable genomic alterations. ^bSquamous vs non-squamous. ^cPresence vs absence. ^dUnited States/Japan/Western Europe vs rest of world.

PFS by Histology

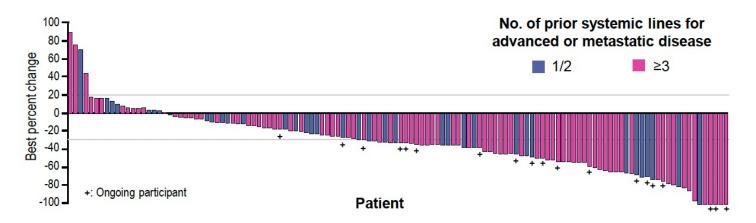
PFS HR for non-squamous without AGAs: 0.71 (0.56, 0.91)

AGA, actionable genomic alteration; DOR, duration of response; HR, hazard ratio; ORR, objective response rate; PFS, progression-free survival. Squamous subset included 3 patients with AGAs

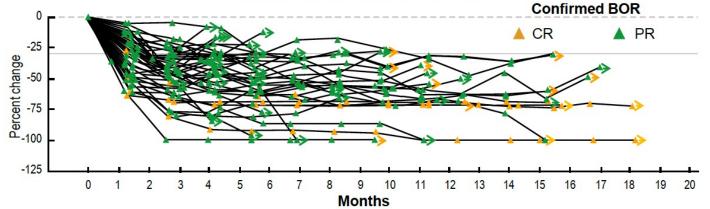
Final Overall Survival from TROPION-Lung01

		No. of events Dato-DXd	/No. of patien	its							HR
Age at randomization	<65 years	117/162	112/155		-	•					0.88
Age at randomization	≥65 years	98/137	106/150		٠	-	-				0.97
P	Male	136/183	156/210			-					0.93
Sex	Female	79/116	62/95		-	-	⊣				0.97
	White	90/123	95/126		-	•					0.85
Race	Asian	83/121	79/120		-	•	ı				0.92
	Black/African American	4/6	2/4				-			\rightarrow	1.61
	Other	33/43	35/47		-	-		1			1.05
	Never	43/60	31/52			-		—			1.22
Smoking status	Former/current	172/239	186/251		-						0.88
Brain metastases	With	37/50	31/47		-	-		⊣			1.09
at baseline	Without	178/249	187/258		٠	•					0.89
liatala mu	Nonsquamous	160/234	163/234		-						0.84
Histology	Squamous	55/65	55/71			-	•	_			1.32
Actionable genomic	Absent	182/249	185/254								0.97
alterations ^a	Present	33/50	33/51			-					0.66
_				0.0	0.5	1.0	1.5	2.0	2.5	3.0	
2024				\leftarrow	Favors Dato-DX			Favors docetaxel		\rightarrow	

The dual primary endpoint of OS showed a numerical improvement but was not statistically significant


Sands et al, WCLC 2024

Phase II TROPION-Lung05: Dato-DXd in Previously Treated Advanced NSCLC With Actionable Genomic Alterations (AGAs)

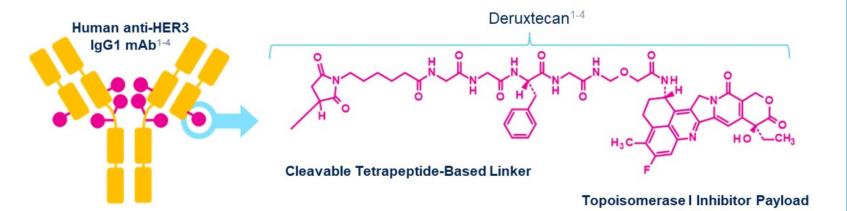

Outcome	All Patients	<i>EGFR</i> m	<i>ALK</i> +
	(N = 137)	(n = 78)	(n = 34)
Confirmed ORR, n (%)	49 (35.8)	34 (43.6)	8 (23.5)
mDoR, mo	7.0	7.0	7.0
(95% CI)	(4.2-9.8)	(4.2-10.2)	(2.8-8.4)
Confirmed DCR, n (%)	108 (78.8)	64 (82.1)	25 (73.5)
mPFS, mo	5.4	5.8	4.3
(95% CI)	(4.7-7.0)	(5.4-8.3)	(2.6-6.9)

Phase II TROPION-Lung05: Dato-DXd in Previously Treated Advanced NSCLC With AGAs

Best Percent Change From Baseline in Sum of Diameters of Target Lesions

Percent Change From Baseline in Sum of Diameters of Target Lesions in Patients With Confirmed CR/PR^c

Datopotamab deruxtecan granted Priority Review in the US for patients with previously treated advanced EGFR-mutated NSCLC Press Release: January 13, 2025


The Biologics License Application (BLA) for datopotamab deruxtecan (Dato-DXd) has been accepted and granted Priority Review in the US for the treatment of adult patients with locally advanced or metastatic epidermal growth factor receptor-mutated (EGFRm) non-small cell lung cancer (NSCLC) who have received prior systemic therapies, including an EGFR-directed therapy.

In a pooled analysis of patients with previously treated advanced or metastatic EGFRm NSCLC in the TROPION-Lung05 and TROPION-Lung01 trials presented at the European Society for Medical Oncology (ESMO) Asia 2024 Congress, datopotamab deruxtecan demonstrated a confirmed objective response rate (ORR) of 42.7% (95% confidence interval [CI] 33.6-52.2) as assessed by blinded independent central review (BICR) and a median duration of response (DoR) of 7.0 months (95% CI 4.2-9.8). The safety profile of datopotamab deruxtecan was consistent with previous reports from the TROPION-Lung05 and TROPION-Lung01 trials, with no new safety concerns identified.

Patritumab Deruxtecan (HER3-DXd)

- HER3-DXd is an ADC with 3 components¹⁻⁶:
 - A fully human anti-HER3 IgG1 mAb (patritumab), covalently linked to
 - A topoisomerase I inhibitor payload, an exatecan derivative, via
 - A tetrapeptide-based cleavable linker

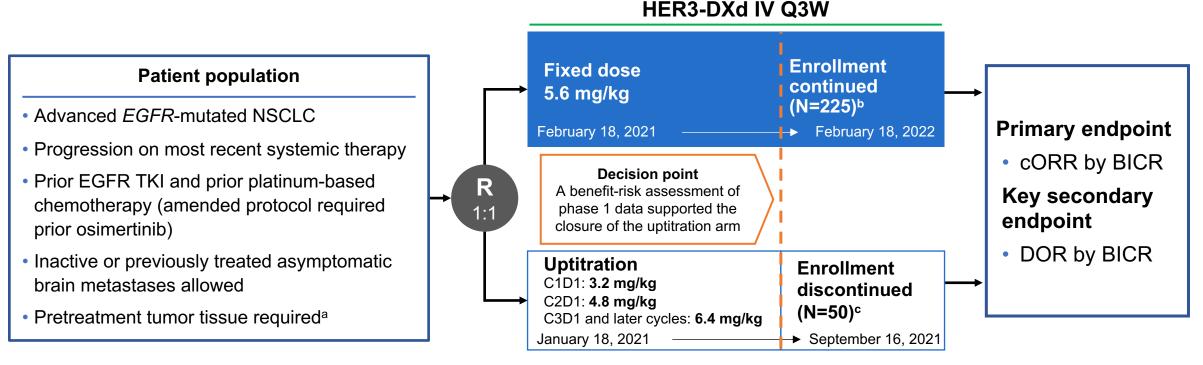
(DXd)

7 Key Attributes of HER3-DXd

Payload mechanism of action: topoisomerase I inhibitor a,1-4

High potency of payload a,1-4

High drug to antibody ratio $\approx 8^{a,1,2}$


Payload with short systemic half-life a,b,2,3

Stable linker-payload a,2-4

Tumor-selective cleavable linker a,1-5

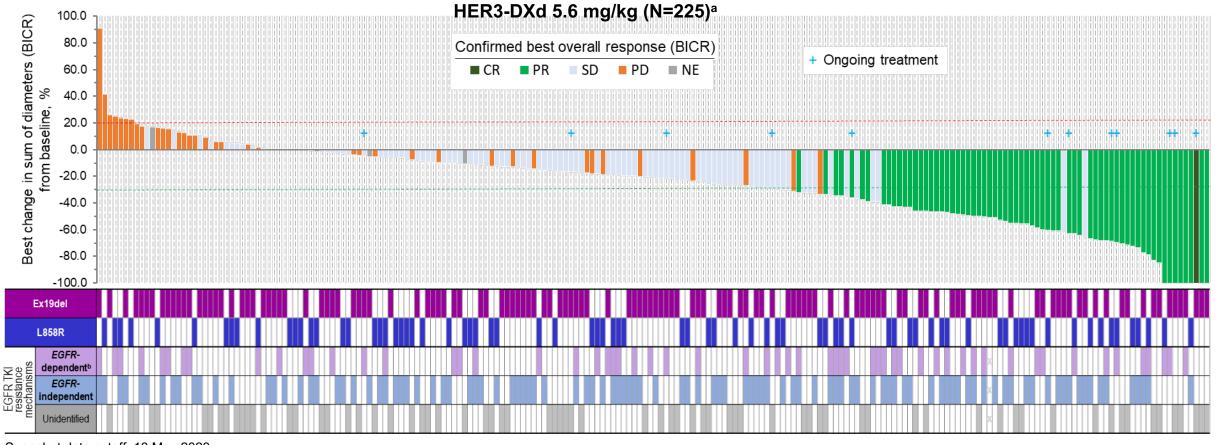
Bystander antitumor effect a,2,6

HERTHENA-Lung01 Study Design¹

Primary data cutoff, 21 Nov 2022d

Snapshot data cutoff, 18 May 2023 (additional 6 months follow-up)

Data are presented for the 5.6-mg/kg fixed-dose arm

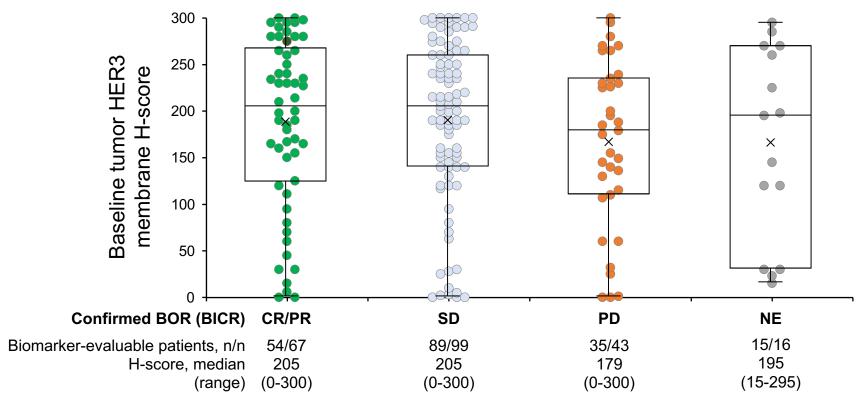

- Efficacy from snapshot data cutoff—median study follow-up, 18.9 (range, 14.9-27.5) months
- Safety from primary data cutoff—median treatment duration, 5.5 (range, 0.7-18.2) months

BICR, blinded independent central review; C, cycle; cORR, confirmed objective response rate (complete or partial response [RECIST version 1.1]); D, day; DOR, duration of response; HER, human epidermal growth factor receptor; IV, intravenous; Q3W, every 3 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; TKI, tyrosine kinase inhibitor.

a Inclusion not based on detection of HER3 expression. 226 patients were enrolled; 225 received ≥1 dose. 51 patients were enrolled; 50 received ≥1 dose. Data cutoff for the primary analysis occurred when all enrolled patients had either ≥9 months of follow-up or had discontinued from the study earlier.

1. Yu HA, et al. Future Oncol. 2023:19:1319-1329.

Tumor Reduction Across Diverse Mechanisms of EGFR TKI Resistance


Snapshot data cutoff, 18 May 2023.

Median study follow-up, 18.9 (range, 14.9-27.5) months.

BICR, blinded independent central review; CR, complete response; HER, human epidermal growth factor receptor; IHC, immunohistochemistry; NE, not evaluable; PD, progressive disease; PR, partial response; SD, stable disease; TKI, tyrosine kinase inhibitor. ^a 210 patients had evaluable target lesion measurements at both baseline and post baseline and are included. ^b T790M was not included as an *EGFR*-dependent mechanism of EGFR TKI resistance.

Efficacy Observed Across a Broad Range of Pretreatment Tumor HER3 Membrane Expression Levels

Association of Baseline Tumor HER3 Membrane H-Score With Confirmed BOR by BICR Following Treatment With HER3-DXd 5.6 mg/kg (N=225)^a

Response data are for the snapshot data cutoff, 18 May 2023. Medians are indicated by horizontal lines; means are indicated by X.

BICR, blinded independent central review; BOR, best overall response; CR, complete response; HER, human epidermal growth factor receptor; NE, not evaluable; PD, progressive disease; PR, partial response; SD, stable disease.

193 patients had tumor tissue evaluable for H-score. Baseline was the sample on or before the first dose date and not earlier than 90 days before the first dose date. Highest HER3 membrane H-score value was used if multiple records were available.

Intracranial Responses (by CNS BICR) Observed With HER3-DXd

Intracranial Efficacy of HER3-DXd in Patients With Brain Metastases at Baseline

Intracranial response by CNS BICR per CNS RECIST	Patients with brain metastasis at baseline and no prior radiotherapy (N=30) ^a
Confirmed ORR (95% CI), %	33.3 (17.3-52.8)
CR, n (%)	9 (30.0) ^b
PR, n (%)	1 (3.3)
SD, n (%) ^c	13 (43.3)
PD, n (%)	4 (13.3)
NE, n (%)	3 (10.0)
DCR (95% CI), %	76.7 (57.7-90.1)
DOR, median (95% CI), mo	8.4 (5.8-9.2)

Snapshot data cutoff, 18 May 2023.

Median study follow-up, 18.9 (range, 14.9-27.5) months.

Partial CNS Response in a Patient With a Measurable CNS BICR Target Lesion

Screening Day 167

BICR, blinded independent central review; CNS, central nervous system; CR, complete response; DCR, disease control rate (CR+PR+SD); DOR, duration of response; MRI, magnetic resonance imaging; ORR, objective response rate; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease.

a 7 patients had measurable target lesions; 23 patients had only nontarget lesions. b 8 patients had only nontarget lesions. c Includes non-CR/non-PD.

HERTHENA-Lung02

 Patritumab deruxtecan demonstrated statistically significant improvement in progression-free survival versus doublet chemotherapy in patients with locally advanced or metastatic EGFR-mutated non-small cell lung cancer in HERTHENA-Lung02 phase 3 trial. News Release. September 17, 2024.

Conclusions

- The greatest efficacy for datopotamab deruxtecan is among EGFR mutation positive patients
- Patritumab deruxtecan has demonstrated efficacy among patients with EGFR mutations
- The toxicity profile of the agents are somewhat unique
- To date, we have not seen clear association of the target of the antibody and efficacy, although evaluation is ongoing

Roundtable Discussion

Understanding the Current Paradigm and New Approaches: The Optimal Implementation of Antibody-Drug Conjugates in the Care of Patients with Cancer

Research To Practice
Oncology Nursing Society Congress 2025

Marianne Davies, DNP, CNS-BC, ACNP-BC, AOCNP-BC, FAAN
Program Manager, Care Signature: Oncology Service Line
Thoracic Oncology Nurse Practitioner, Smilow Cancer Hospital
Associate Professor, Yale University School of Nursing

Yale NewHaven **Health** Smilow Cancer Hospital

Yale cancer center

Scenario 4: EGFR-mutant NSCLC

- 55 yo woman, never smoker
 - Married, Adult children & young grandchild
 - Husband is ophthalmologist
 - Volunteers in NICU, Community Dining Hall, Church
- Diagnosed 2023 with EGFR-mutant NSCLC, L858R point mutation exon 21
- Treated with 18 months on EGFR inhibitor therapy
- Progression of disease on recent scans
- About to start Datopotamab Deruxtecan (Dato-DXd)

Dato-DXd: Side Effect Reports on TROPION-Lung01

- Nausea
- Stomatitis/mucositis inflammation 55% all grade; 6% ≥ grade 3
 - TROP₂ expressed on mucosal surfaces
- Ocular: 21% overall; Dry eye (7%) increased lacrimation (7%)
 - Conjunctivitis, keratitis
- ILD (9% all grade; 4% ≥ grade 3; 2% death)
- Hematologic toxicities: neutropenia, fever

Management of Ocular Surface Toxicities Associated With Datopotamab Deruxtecan

Grade and Description	Protocol Management Recommendations
Grade 1: Asymptomatic; Nonconfluent superficial keratitis	Consider ophthalmology assessment Maintain dose
Grade 2: Symptomatic with moderate decrease in visual acuity; Confluent keratitis, cornea defect or 3-line or more loss of best corrected distance visual acuity.	Obtain ophthalmology assessment Delay dose until resolved to grade ≤1
Grade 3: Symptomatic limiting self-care ADLs; Corneal ulcer or stromal opacity or best corrected visual acuity <20/200	Obtain ophthalmology assessment Delay dose until resolved to grade ≤1, then reduce by one dose level
Grade 4: Corneal Perforation	Obtain ophthalmology assessment Discontinue drug

Ocular Surface Events (OSE)

Prophylaxis

- Avoid contact lens use
- Lubricating artificial tears

Management

- Ophthalmologic eye exam
 - Other ADCs use prophylactic steroid, lubricant, vasoconstrictive drops. This has not so far been recommended for Dato-DXd given lower incidence
- Use of eye cooling packs during infusion?

Management of Stomatitis/Mucositis Associated With Datopotamab Deruxtecan

Grade	Protocol Management Recommendations
1	Maintain dose
2	Consider dose delay or reduction
3	Delay dose until resolved to grade ≤1 or baseline Consider dose reduction by one level if supportive medications are already optimized
4	Discontinue drug

Stomatitis

Prophylactic

- Educate patients on importance of oral hygiene, hydration and lubrication of oral mucosa
- Gentle teeth brushing, soft toothbrush, bland fluoride-containing toothpaste
- Daily flossing (stop if bleeding or painful)
- Education about oral hygiene, hydration, lubrication
 - What not to do or use
- Steroid-containing mouthwash
 - 4 times a day, swish and spit 1 to 2 minutes
 - Example is dexamethasone 0.1 mg/mL

Management

- Use bland mouthwashes every hour if needed
- Pain management topical or systemic
 - (doxepin 0.5%, viscous lidocaine 2%)
- Referral to dentist or oral surgeon for further evaluation
- Use of ice chips (cryotherapy) during infusions
 - Held in mouth during the infusion

ILD Risk factors

- Smoking
- Previous ILD
- ECOG PS >2
- Preexisting lung disease

- Patients with NSCLC are at higher risk due to underlying preexisting lung pathology and higher rates of smoking
- EGFR-TKI, osimertinib, in first line setting (incidence of grade >3 ILD ranges from 0.9-3%)

Management of ILD Associated With Datopotamab Deruxtecan

N /	
1/ /1	Chitch
101	onitor

HOLD Dato-DXd for concerning new symptoms; Rule out other causes

Confirm

Evaluation with CT scan, Pulse oximetry, Pulmonology

Manage

Grade Protocol Management Recommendations in Addition to Holding or Discontinuing Agent Monitor symptoms and closely follow up in 2-7 days for clinical onset of symptoms and SpO₂ Consider follow-up imaging in 1-2 weeks Consider starting systemic steroids (prednisone 0.5 mg/kg/day) Hold Dato-DXd until fully resolved ---If resolved in <28 days, maintain dose ---If resolved >28 days, reduce by one dose level ---If grade 1 ILD/pneumonitis does not resolve within 84 days, permanently discontinue Dato-DXd Permanently discontinue Dato-DXd Monitor and re-image Start systemic steroids (prednisone 1.0 mg/kg/day); increase steroid dose if worsening or no improvement in ≤5 days; duration until grade 1, then taper over > 4 weeks Permanently discontinue Dato-DXd Hospitalization Initiate high-dose systemic steroids (Methylprednisolone 500-1000 mg/day x 3 days) Re-image as clinically indicated If no improvement within 3-5 days, reconsider workup for alternative etiologies and consider other immunosuppressants and/or treat per local practice

Roundtable Discussion

Understanding the Current Paradigm and New Approaches in the Care of Patients with Cancer

A Complimentary NCPD Hybrid Symposium Series Held During the 50th Annual ONS Congress

Antibody-Drug Conjugates

Wednesday, April 9, 2025 11:15 AM – 12:45 PM

Faculty

Marianne J Davies, DNP, ACNP, AOCNP, FAAN
Edward B Garon, MD, MS
Marissa Marti-Smith, DNP, APRN, AGNP-C, AOCNP
Tiffany A Traina, MD, FASCO

Moderator Neil Love, MD

Understanding the Current Paradigm and New Approaches in the Care of Patients with Cancer

A Complimentary NCPD Hybrid Symposium Series Held During the 50th Annual ONS Congress

Hormone Receptor-Positive Breast Cancer

Wednesday, April 9, 2025 6:00 PM - 8:00 PM

Faculty

Virginia F Borges, MD, MMSc Jamie Carroll, APRN, MSN, CNP Ronald Stein, JD, MSN, NP-C, AOCNP Seth Wander, MD, PhD

Moderator Neil Love, MD

Thank you for joining us! Please take a moment to complete the survey currently up on Zoom. Your feedback is very important to us. The survey will remain open up to 5 minutes after the meeting ends.

To Claim NCPD Credit

In-person attendees: Please refer to the program syllabus for the NCPD credit link or QR code.

Virtual attendees: The NCPD credit link is posted in the chat room.

NCPD/ONCC credit information will be emailed to each participant within 1 to 2 business days.

