Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

CME/MOC, NCPD and ACPE Accredited

Saturday, October 11, 2025 7:15 AM – 12:30 PM ET

Agenda

Module 1 — Breast Cancer: *Drs Burstein, Goetz, McArthur and Nanda*

Module 2 — **Prostate Cancer:** *Drs Antonarakis and M Smith*

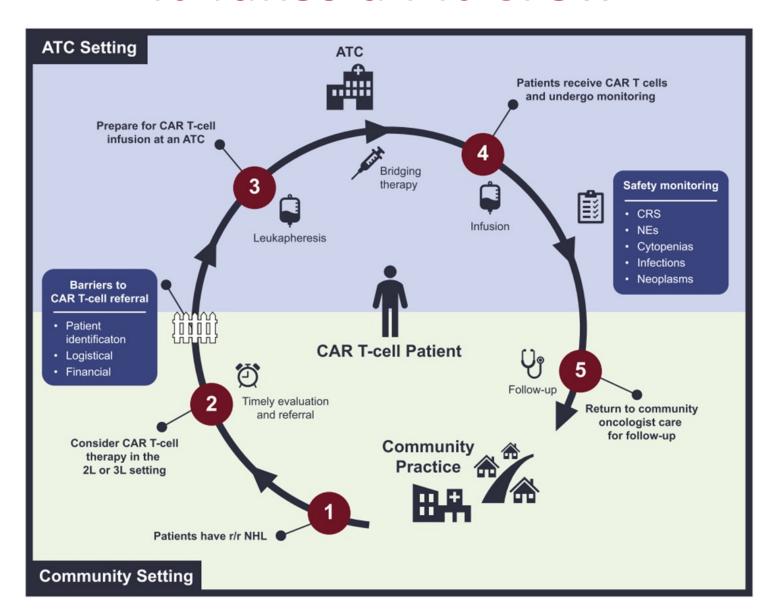
Module 3 — Colorectal Cancer: Drs Lieu and Strickler

Module 4 — Diffuse Large B-Cell Lymphoma and Follicular Lymphoma: Drs Lunning and S Smith

Diffuse Large B-Cell Lymphoma and Follicular Lymphoma Faculty

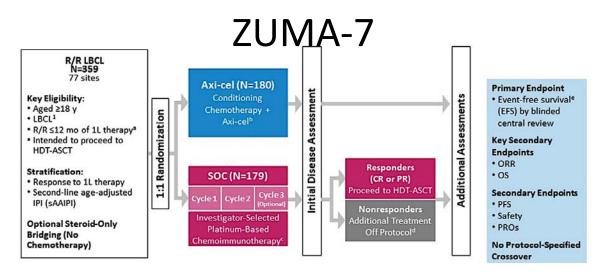
Matthew Lunning, DO
Professor
Medical Director
Gene and Cellular Therapy
Associate Vice Chair of Research
Department of Medicine
Assistant Vice Chancellor for Clinical Research
Fred and Pamela Buffett Cancer Center
University of Nebraska Medical Center
Omaha, Nebraska

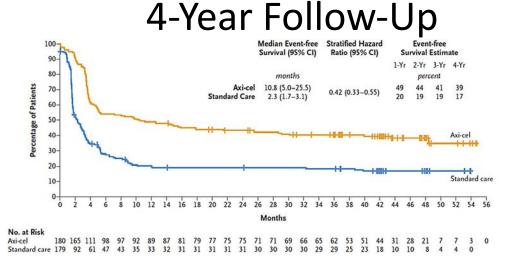
Sonali M Smith, MD
Elwood V Jensen Professor of Medicine
Chief, Section of Hematology/Oncology
Co-Leader, Cancer Service Line
The University of Chicago
Chicago, Illinois

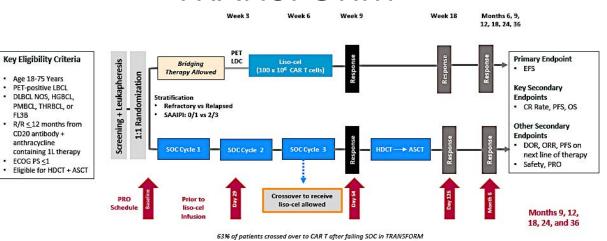

Which Driver & Which Race: CAR-T & BsAb for Relapsed or Refractory DLBCL & Follicular Lymphoma

Matthew Lunning, DO, FACP
Professor, Division of Oncology & Hematology
Medical Director, Gene & Cellular Therapy
Assistant Vice Chancellor for Clinical Research

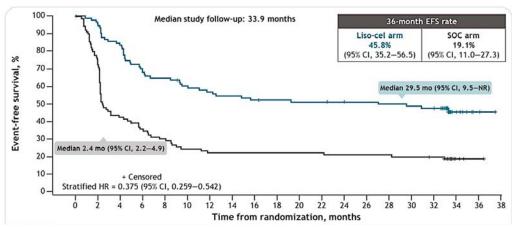
University of Nebraska Medical Center



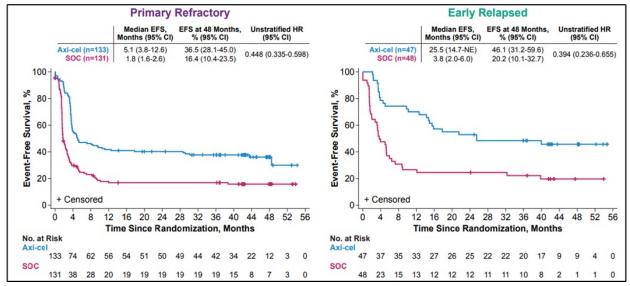

It Takes a Pit Crew

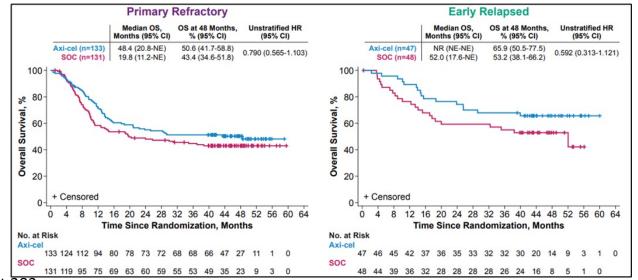


Sprint Cars: ZUMA-7/TRANSFORM

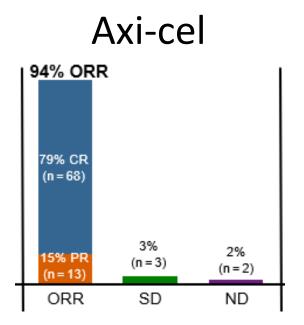


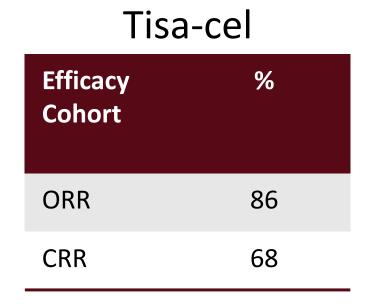
TRANSFORM

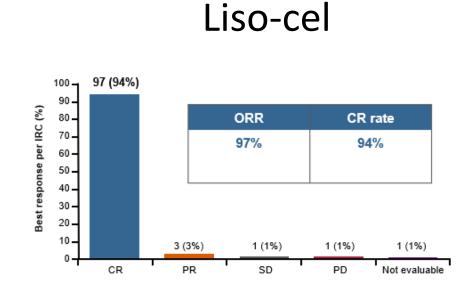



3-Year Follow-Up

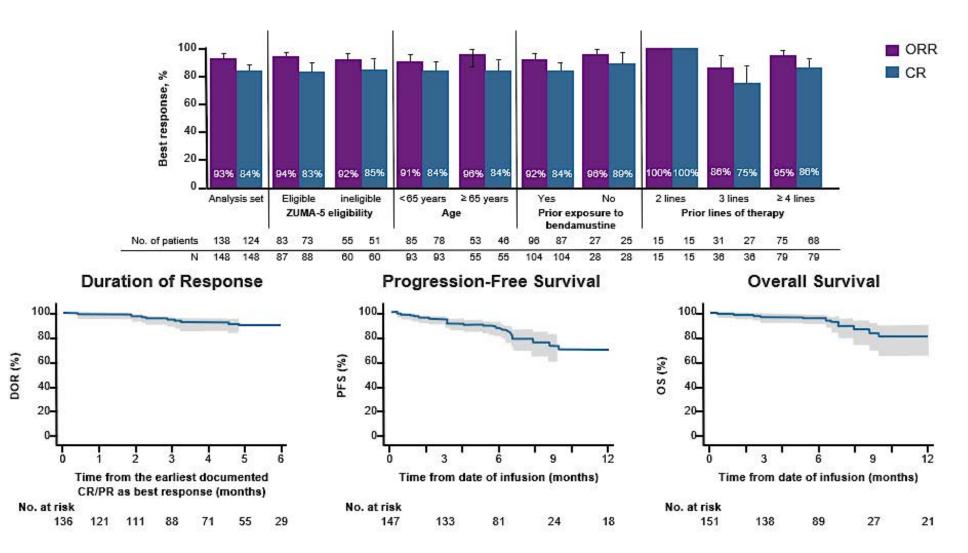
Use Your Spotter?


ZUMA-7

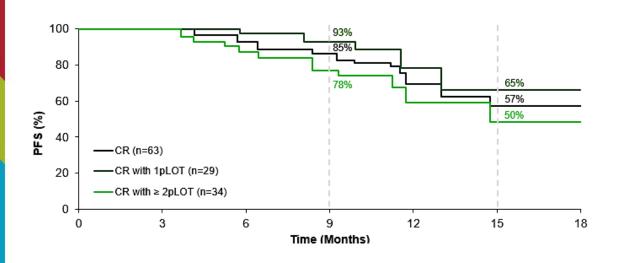




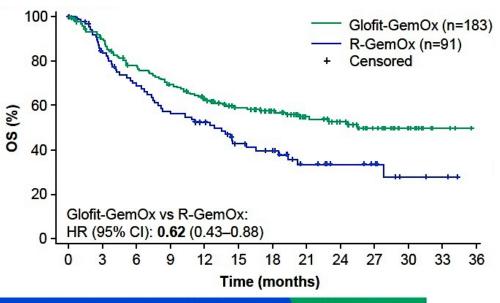
LeMonds: CAR-T for 3L FL



LeMonds: CAR-T for 3L FL

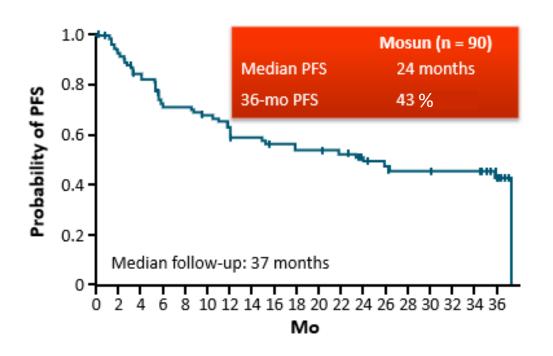


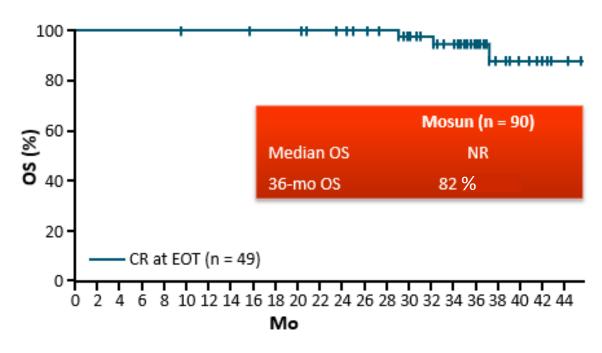
Going Two Wide: Epco & Glofit for Rel/Ref LBCL


	Epcoritamab (N=157)	Glofitamab (N=155)
Population	2+ prior therapies (allowed p CAR-T)	2+ prior therapies (allowed p CAR-T)
Median F/U	37.1 months	41.0 months
ORR	59%	52%
CR	41%	40%
PFS of CR	37.3 months	57%
OS of CR	NR	77%
CRS	All Grades: 51% G1: 32% G2: 16% G3/4 : 3%	All Grades: 63% G1: 43% G2: 16% G3/4: 4%

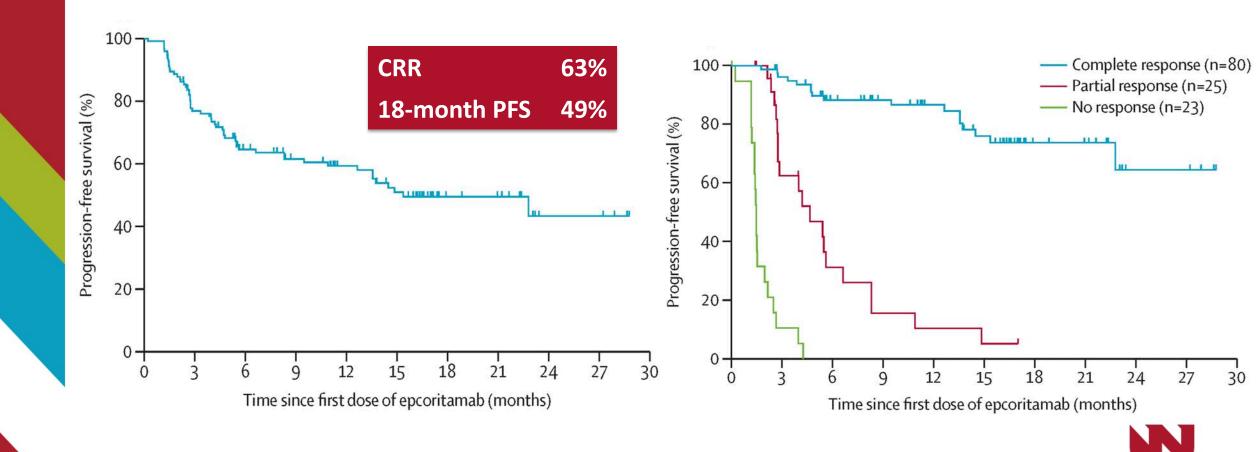
Who's Driving the Benefit?

Epco + Gem-Ox


Glofit + Gem-Ox

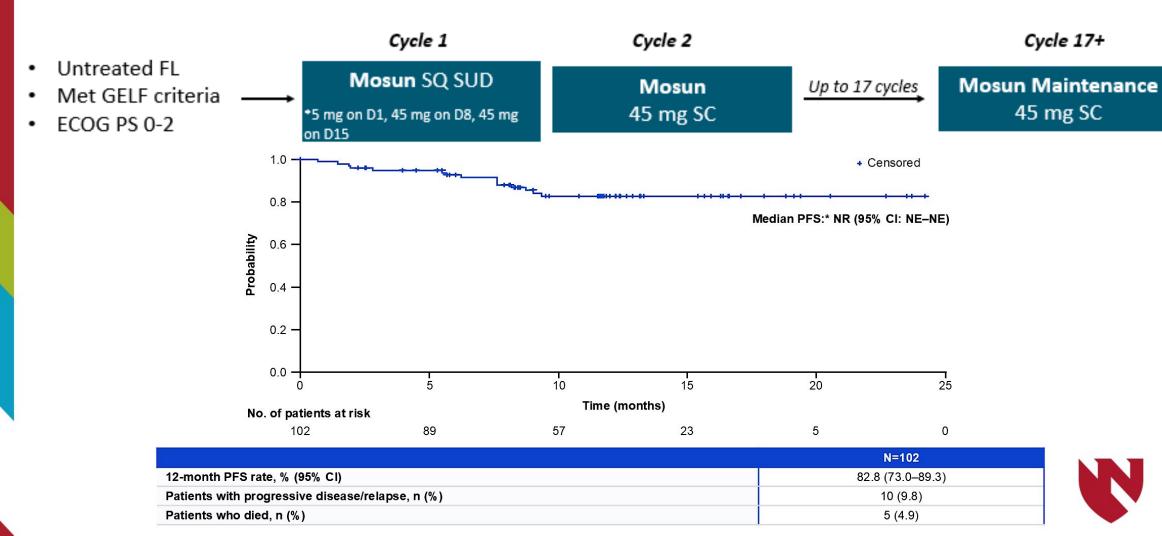


	R-GemOx (n=91)	Glofit-GemOx (n=183)	N.
Updated analysis (me	dian follow-up: 20.7 i	months)	
OS, median (95% CI); months	12.9 (7.9–18.5)	25.5 (18.3-NE)	


Mosun in Rel/Ref FL

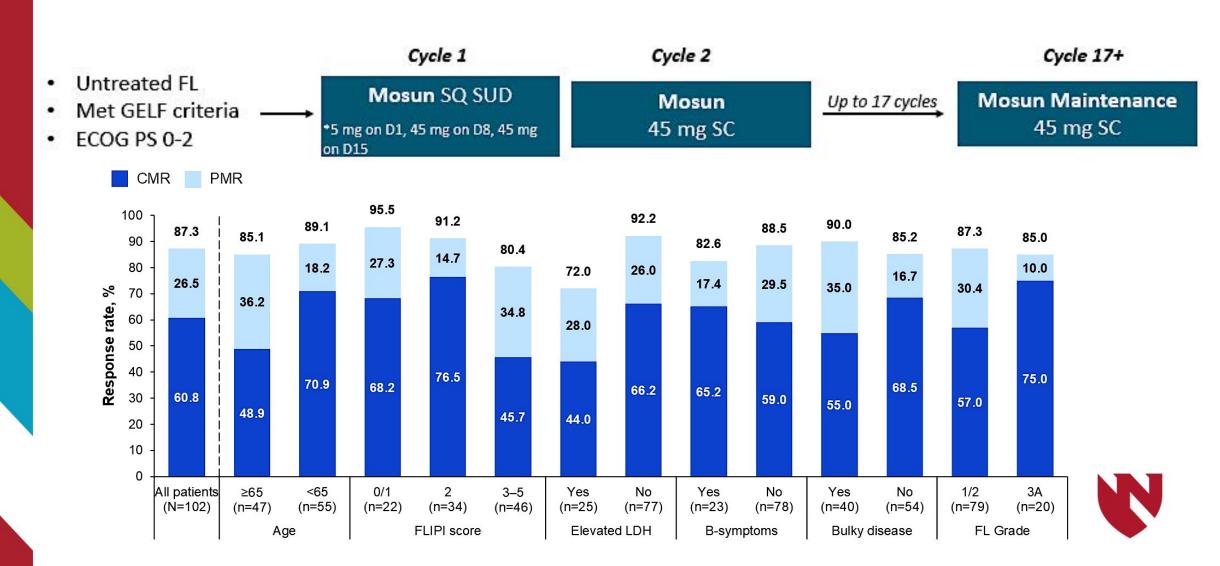
Epco in Rel/Ref FL

Phase 3 EPCORE FL-1 Clinical Trial Met Dual Primary Endpoints in Patients with Relapsed/Refractory (R/R) Follicular Lymphoma (FL) Press Release: August 7, 2025


"[The manufacturer] today announced positive results of the Phase 3 EPCORE FL-1 trial evaluating subcutaneous epcoritamab, a bispecific antibody, in combination with rituximab and lenalidomide (R²) versus R² alone for the treatment of adult patients with relapsed or refractory (R/R) follicular lymphoma (FL).

The study met its dual primary endpoints of overall response rate (ORR, p-value < 0.0001) and progression-free survival (PFS, HR 0.21, p-value < 0.0001), demonstrating statistically significant and clinically meaningful differences in both endpoints, reducing the risk of disease progression or death by 79%.

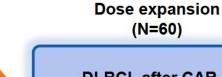
The results, derived from a pre-planned interim analysis, will be submitted for presentation at the 67th Annual Meeting and Exposition of the American Society of Hematology (ASH) and will serve as the basis for global regulatory submissions."



BsAb in Front Line FL

*PFS and other time-to-event endpoints, except for time to response, were immature at the current analysis period. CI, confidence interval; NE, not estimable; NR, not reached.

BsAb in Front Line FL



Odronextamab: Side CAR-T

ELM-1 DLBCL post-CAR T expansion cohort

Key eligibility criteria (post-CAR T cohort)

- R/R DLBCL with disease progression after CAR T-cell therapy
- ≥1 prior treatment with an anti-CD20 antibody
- ECOG PS 0 or 1
- · Adequate organ function
- Recovered from toxicities of CAR T-cell therapy and lymphodepletion*

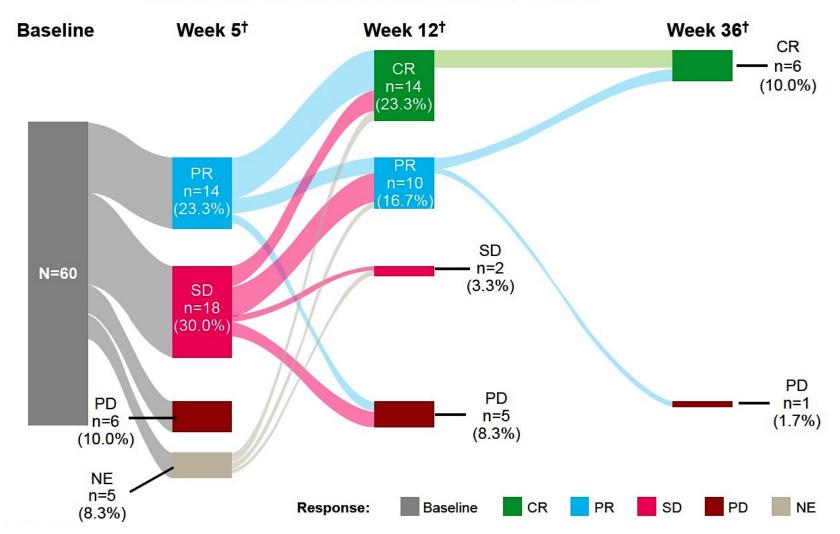
DLBCL after CAR T
Odronextamab IV

Primary endpoint

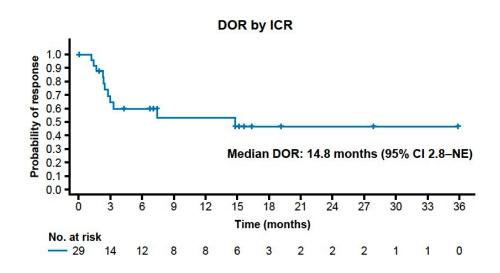
ORR† by ICR

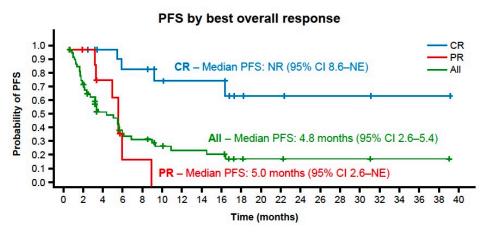
Key secondary endpoints

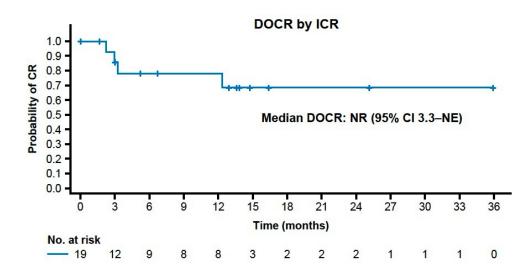
- · DOR, PFS, and OS
- Safety

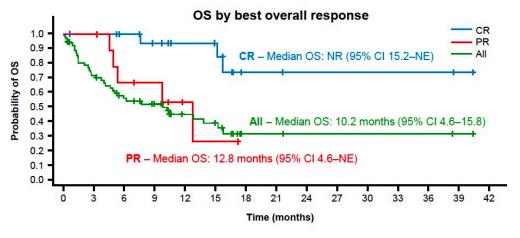

Exploratory endpoint

- · Immune biomarkers
- Odronextamab was administered with premedication and step-up doses of 0.7/4/20 mg[‡] during C1 to mitigate the risk of CRS, followed by 160 mg on D1, 8, and 15 of C2–4, then 320 mg Q2W until disease progression or unacceptable toxicity
- Patients who achieved a CR that was durable for ≥9 months transitioned to odronextamab 320 mg Q4W dosing
- Anti-infection prophylaxis was recommended during the study

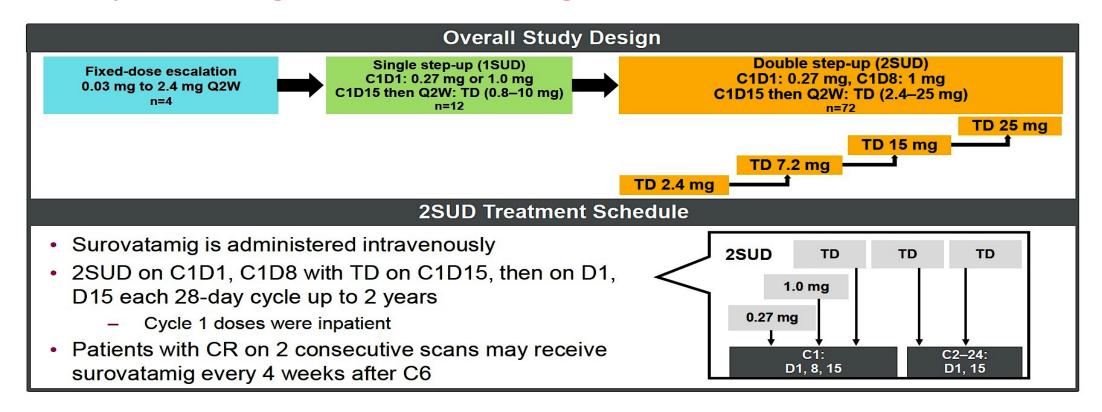

ELM-1 (Odronextamab) post CAR-T

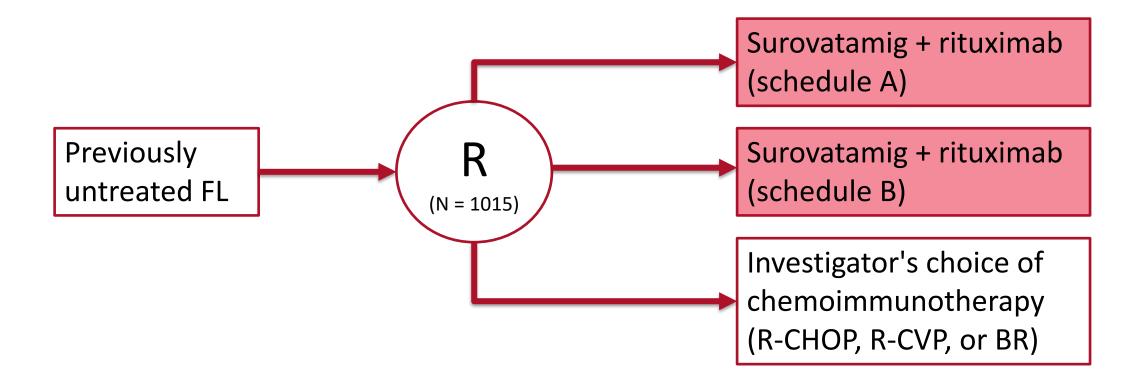

Dynamics of response by ICR at Weeks 5, 12, and 36*





ELM-1 (Odronextamab) post CAR-T




Super Charger: Surovatamig (AZD0486) [CD3 X CD19]

		Overall (N=58)			CAR-T Naive (n=31)			CAR-T Exposed (n=27)	
	n	ORR	CR rate	n	ORR	CR rate	n	ORR	CR rate
7.2 mg	24	46%	33%	9	67%	44%	15	33%	27%
15 mg	26	62%	39%	16	75%	38%	10	40%	40%
25 mg	8	75%	63%	6	83%	67%	2	50%	50%

Surovatamig 2SUD cohort (n=70), n (%)	Grade 1	Grade 2	Grade 3	Grade ≥4
CRS	30 (43)	4 (6)	0	0
ICANS	4 (6)	6 (9)	4 (6)	0

SOUNDTRACK-F1: Phase III Study of Surovatamig (AZD0486) Plus Rituximab in Previously Untreated FL

Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

CME/MOC, NCPD and ACPE Accredited

Saturday, October 11, 2025 7:15 AM – 12:30 PM ET

 In general, how do you decide between the three available CAR T-cell products, and does it matter if the patient has DLBCL or FL?

- How do you usually sequence CAR T-cell therapy and bispecific antibodies in DLBCL? What about in FL?
- Is there any available data for combining CAR T-cell therapy with a bispecific antibody?

- CASE: For a 44-year-old woman with multiply relapsed FL who is otherwise fit, at what point would you recommend CAR-T?
- CASE: A 76-year-old man with DLBCL relapses within 6 months of R-CHOP but is not a candidate for transplant. Which would you recommend: CAR T, Pola-R-GemOx or a bispecific antibody?

- What is the spectrum of CRS symptoms seen with CAR-T, and how are they managed?
- How would you compare the frequency and severity of CRS associated CAR T versus bispecific antibodies?
- Is there a role for prophylactic tocilizumab in patients receiving CAR T-cell therapy? What about for patients getting a bispecific antibody?

 How long after CAR T-cell therapy administration does ICANS normally present? Does ICANS occur with bispecific antibodies?

 How do you prevent and manage infections in patients who are receiving bispecific antibodies? How do you approach vaccinations for these patients?
 What about patients who have undergone CAR T-cell therapy?

Available and Emerging Novel Therapies for Diffuse Large B-Cell Lymphoma (DLBCL) and Follicular Lymphoma (FL)

Sonali Smith, MD FASCO Elwood V. Jensen Professor of Medicine Chief, Section of Hematology/Oncology Co-Leader, Cancer Service Line

Overview

TN DLBCL

Pola-RCHP updates

RCHOP-acala (ESCALADE)

RR DLBCL

POLARGLO

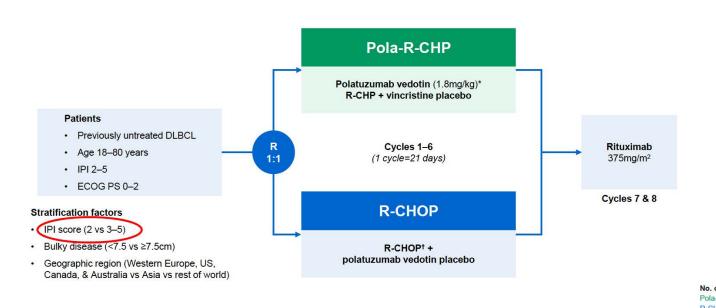
Tafasitamab + lenalidomide

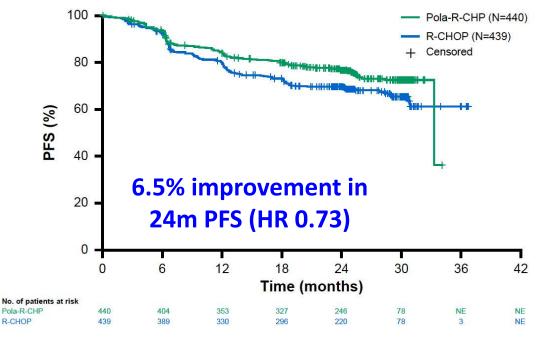
Loncastuximabtesirine

RR FL

Tafasitamab + lenalidomide + rituximab (InMIND)

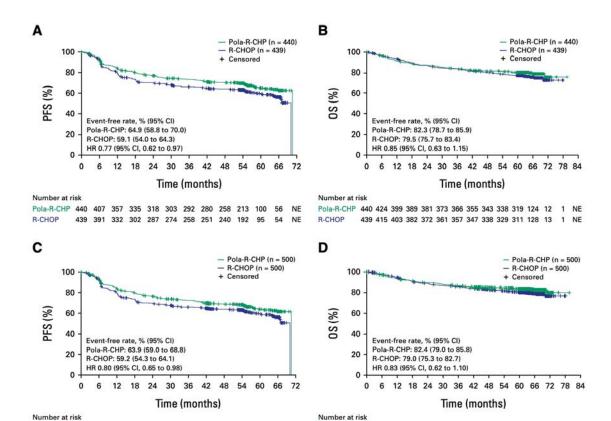
Zanubrutinib + obinutuzumb (ROSEWOOD)




Loncastuximab-tesirine combos Golcadomide

Frontline DLBCL

POLARIX: randomized, double-blind, placebo-controlled phase 3 international trial of Pola-R-CHP vs. R-CHOP in high-risk TN DLBCL


COO was *not* a stratification factor

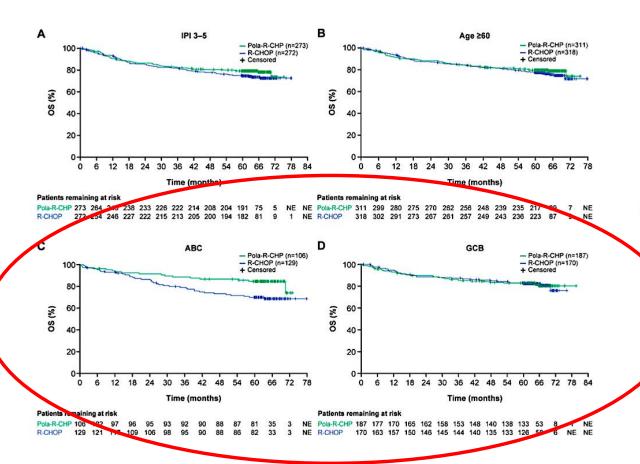
PRIMARY ENDPT: PFS Med f/u 28.2m

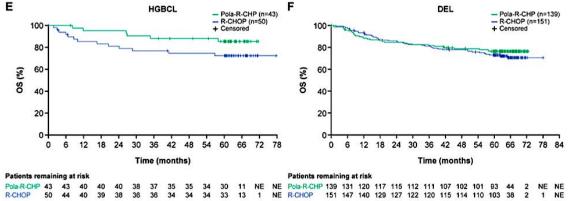
Med f/u 28m No difference in OS

POLARIX: what's new?

5y update: persistent PFS advantage for pola-R-CHP; no OS advantage

Pola-R-CHP 500 482 456 444 433 423 413 400 370 354 319 124 12

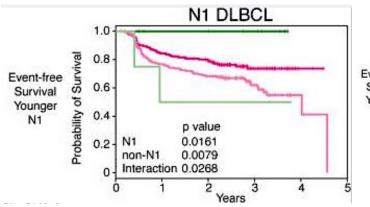


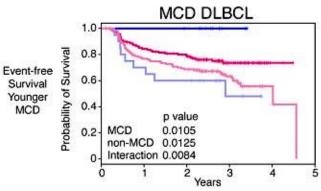

500 463 404 378 357 337 322 305 270 224 100 56 NE

		PFS							
Baseline Risk Factors		Pola-R-CHP (n = 440)		R-CHOP (n = 439)			95% Wal	Pola-R-CHP	R-CHOP
		No.	60-Month (%)	No.	60-Month (%)	HR	CI		Better
All patients		440	64.9	439	59.1	0.78	0.62 to 0.97	-	
	≤65	225	69.6	219	64.3	0.80	0.57 to 1.11		
Age group, years	>65	215	60.0	220	54.5	0.78	0.58 to 1.06	-	
	≤60	140	67.6	131	69.2	0.96	0.62 to 1.49		
Age group 2, years	>60	300	63.6	308	55.8	0.72	0.55 to 0.53	-	
	2	167	67.2	167	68.3	0.91	0.61 to 1.36		
Stratification – IPI score	3-5	273	63.2	272	53.5	0.72	0.55 to 0.54	_	
Stratification – bulky	Absent	247	69.9	247	60.0	0.61	0.44 to 0.83		
stratification – bulky disease (≥7cm)	Present	193	58.5	192	57.9	1.02	0.44 to 0.83 0.73 to 1.41		_
and the second	≤1×ULN	146	65.3	154	64.8	0.83	0.55 to 1.23		L
Baseline LDH	>1×ULN	291	64.3	284	55.7	0.77	0.59 to 1.01	-	
	Yes	76	53.3	72	44.2	0.75	0.47 to 1.20	_	L
one marrow involvement	No	342	67.3	349	63.2	0.80	0.61 to 1.04	-	
	Indeterminate	11	70.0	11	51.9	0.44	0.10 to 1.8 5		
lo. of extranodal sites	0-1	227	68.1	226	64.2	0.78	0.56 to 1.09	-	
vo. of extranodal sites	≥2	213	61.2	213	53.8	0.78	0.58 to 1.06	-	
	DLBCL, NOS, ABC, GCB	373	65.7	367	58.8	0.75	0.59 to 0.5	-	
NHL subtype	HGBCL, NOS, DHL/THL	43	66.0	50	57.6	0.67	0.33 to 1.37		-
investigator)	NOS	22	72.7	23	51.7	0.52	0.20 to 1.37		H
	DHL/THL	21	56.7	27	64.2	0.84	0.29 to 2.44		_
	Other LBCL	24	49.7	22	70.3	1.86	0.69 to 5.04	_	-
Oouble-/triple-	DHL/THL+	26	48.8	19	83.0	3.18	0.89 to 11. 12	: -	
nit lymphoma	DHL/THL-	305	65.9	315	57.6	0.72	0.56 to 0.54	-	
,	Unknown	109	65.5	105	62.0	0.75	0.47 to 1.19	-	<u> </u>
	GCB	187	65.9	170	65.8	1.07	0.74 to 1.56	_	_
lanaString COO	ABC	106	72.5	129	45.8	0.38	0.24 to 0.59	←	
NanoString COO	UNC	44	55.2	53	70.8	1.60	0.79 to 3.25	_	-
	Unknown	103	60.2	87	59.7	0.83	0.51 to 1.33	-	-
Double expressor by IHC	DEL	139	63.1	151	50.0	0.65	0.45 to 0.94	-	
	Non-DEL	223	66.6	215	64.7	0.89	0.64 to 1.24	_	-
		78	63.7	73	63.5	0.84	0.48 to 1.47		I .

PES

POLARIX: what's new? OVERALL SURVIVAL in specific subgroups


Favorable OS advantage in ABC (NanoString) and HGBCL groups



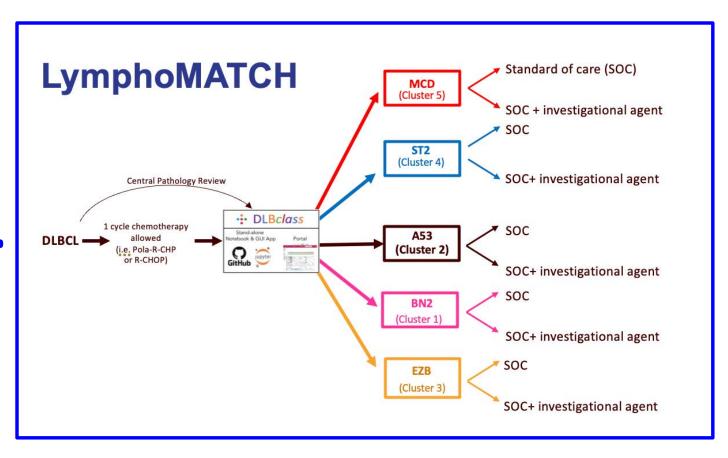
From PHOENIX (R-CHOP +/- ibrutinib) to ESCALADE (R-CHOP +/- acalabrutinib) for non-GC DLBCL

PHOENIX was a negative trial

- Increased toxicity in older patients
- Gap from dx to treatment
- Underlying genomic heterogeneity
 - MCD and N1 groups benefit the most

ESCALADE (RCHOP +/- acalabrutinib)

- ≤ 75yo
- Allows 1 cycle of RCHOP prior to protocol treatment
- Gene expression profiling to determine cell of origin
- N=600



On the horizon for frontline DLBCL: targeted vs. precision approaches

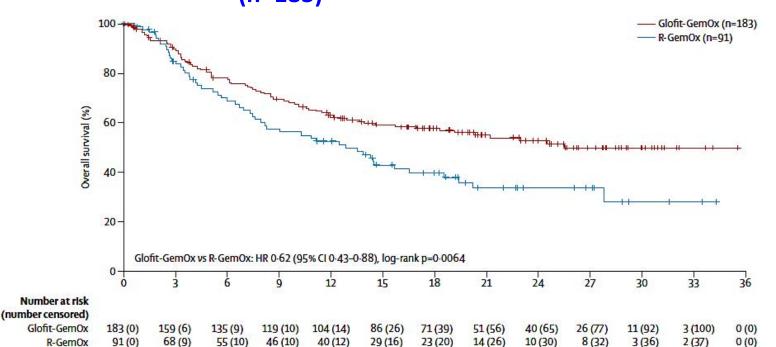
RCHOP plus "X"

Golcadomide
Bispecific agents
glofitamab
epcoritamab
odronextamab
Tafasitamab +/- len
Polatuzumab

VS.

Rel/Ref large B-cell lymphoma

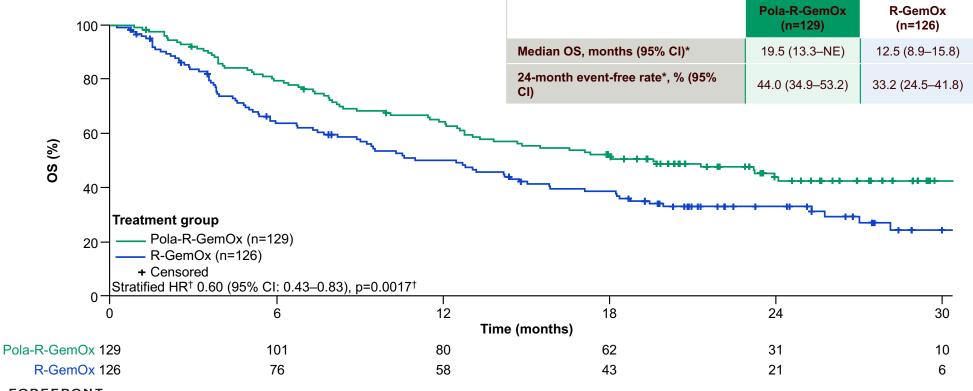
Last year: STARGLO: RP3 Trial of R-GEMOX vs. glofit-GEMOX in rel/ref LBCL


Rel/Ref LBCL
(autoHCT inelig)
1 vs >2 Rx
Rel vs ref dz

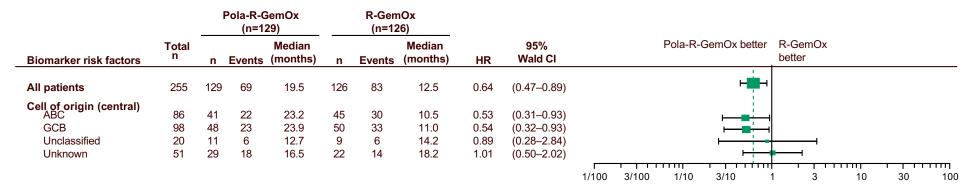
R-GemOx x 8 cycles (n=91)

Primary endpoint: OS

2 Glofit plus GEMOX x 8 cycles → glofit x 4 (n=183)


Med f/u 20.7m Med OS 25.5m vs 12.9m (HR 0.62)

NOW: POLARGLO: Pola-R-GemOx significantly improved OS vs R-GemOx in patients with R/R DLBCL


Median OS follow-up: 24.6 months (95% CI: 23.0-26.0)

POLARGLO: Survival benefit seen in both ABC and GCB cell-of-origin subgroups

Overall survival

Progression-free survival

				Pola-R-GemOx (n=129)		R-GemOx (n=126)				
Biomarker risk factors	Total n	n	Events	Median (months)	n	Events	Median (months)	HR	95% Wald Cl	Pola-R-GemOx better R-GemOx better
All patients	255	129	84	7.4	126	98	2.7	0.46	(0.34–0.62)	+
Cell of origin (central) ABC	86	41	31	7.4	45	40	2.6	0.35	(0.21–0.57)	
GCB	98	48	28	7.9	50	36	2.8	0.47	(0.28-0.77)	
Unclassified	20	11	6	10.3	9	9	2.6	0.42	(0.14–1.24)	
Unknown	51	29	19	4.3	22	13	4.7	0.79	(0.39–1.61)	
EODEEDONT										1/100 3/100 1/10 3/10 1 3 10 30 100

Tafasitamab plus lenalidomide in RR DLBCL (phase 2 trial) and RWE

Analysis	5-year final: 14 Nov 2022				
Analysis	Overall	1 pLoT	≥2 pLoT		
mPFS. months [95% CI]	11.6 [5.7–45.7]	23.5 [7.4-NR]	7.6 [2.7–45.5]		

Analysis	5-year final: 14 Nov 2022				
Analysis	Overall	1 pLoT	≥2 pLoT		
mOS, months [95% CI]	33.5 [18.3-NR]	NR [24.6-NR]	15.5 [8.6–45.5]		

Body of evidence suggests:

- Best for 2L disease
- Non-bulky
- Good PS
- CR

Table 4. Final Cox Model of Factors Associated With rwPFS Among Patients Initiating Tafasitamab for R/R DLBCL*

Characteristic	n	Hazard Ratio (95%CI)	P Value
Line of therapy patient received tafasitamab			
3L-5L	51	1.79 (1.20, 2.66)	0.004
2L (reference)	130	-	-
Ann Arbor stage at tafasitamab initiation			
Stage I/II	10	0.30 (0.10, 0.95)	0.041
Stage III/IV (reference)	169	-	-
Charlson Comorbidity Index (NCI version) at tafasitamab			
initiation (continuous)	181	1.43 (1.03, 1.97)	0.033
Tumor volume at tafasitamab initiation			
Bulky	36	1.96 (1.26, 3.05)	0.003
Nonbulky (reference)	145	-	-

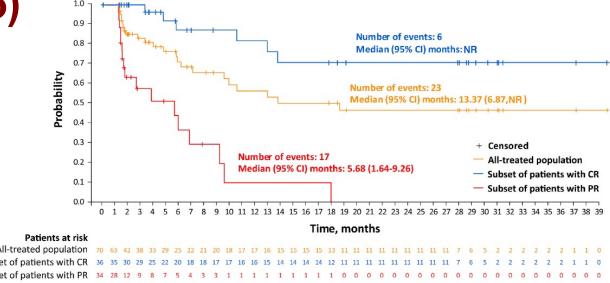

^{*}To overcome violation of proportional hazards assumption caused by the variable ECOG PS, coefficients were adjusted for ECOG PS ≥2 vs <2 through stratifying the model on ECOG PS.

Table 5. Final Cox Model of Factors Associated With rwOS Among Patients Initiating Tafasitamab for R/R DLBCL

Characteristic	n	Hazard Ratio (95% CI)	P Value
Median age at tafasitamab initiation, years (continuous)	181	1.06 (1.03, 1.09)	<0.001
Line of therapy patient received tafasitamab			
3L-5L	51	2.39 (1.46, 3.93)	< 0.001
2L (reference)	130	-	-
ECOG PS at tafasitamab initiation			
≥2	86	3.57 (2.13, 5.97)	< 0.001
<2 (reference)	95	-	-
Tumor volume at tafasitamab initiation			
Bulky	36	2.22 (1.27, 3.87)	0.005
Nonbulky (reference)	145	_	-

Loncastuximab tesirine: Final analysis of LOTIS-2 trial in

rel/ref LBCL (n=145)

LOTIS-5 RP3 Confirmatory Trial Lonca-R vs. R-GemOx:

- Regimen: Lonca 150 μg/kg + rituximab 375 mg/m² every 3 weeks (Q3W) for 2 cycles, then Lonca 75 μg/kg + rituximab 375 mg/m² Q3W for up to 6 additional cycles.
- Loncastuximab plus rituximab in RR DLBCL completed accrual (press release December 2024)
- Safety run-in of 20 pts had ORR 80% (16/20) with CR 50% (10/20) and no new safety signals

LOTIS-7 Lonca plus glofit

ORR 93%, CR 87%, Low CRS (mainly grade 1), Dose-expansion part underway

Follicular Lymphoma: treatment other than T-cell engaging approaches

Treatment options for rel/ref FL

2L Options

Chemo+ Ritux or Obinu
Len + rituximab or obinu
Anti-CD20 monotherapy
+/- maintenance
(tazemetostat)
(autoHCT)

3L+ Options

Bispecific antibody

Mosunetuzumab

Epcoritamab

**Odronextamab (not approved)

CAR-T

Axi-cel

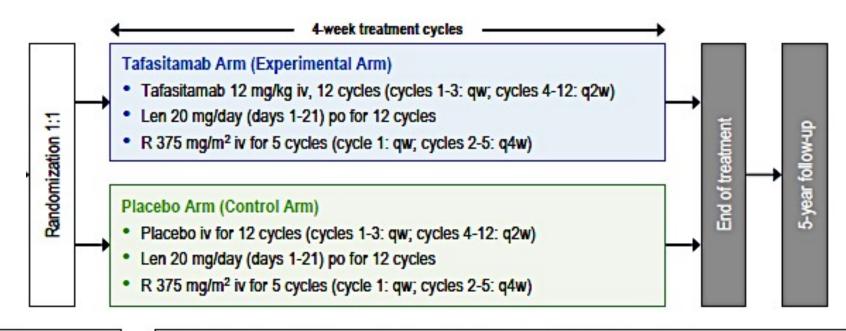
Tisa-cel

Liso-cel

Tazemetostat

Zanubrutinib + obin

(alloHCT)


NEW: Tafa-LenR Lonca-R

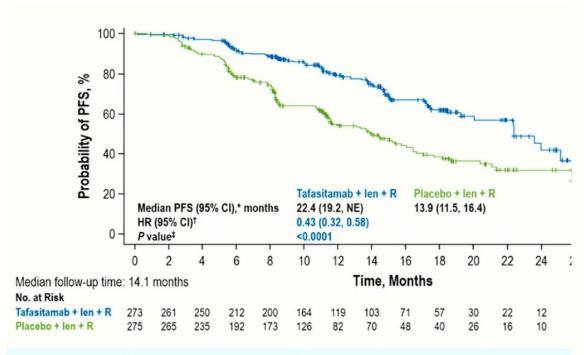
inMIND trial: RP3 double-blind len-rituximab +/-tafasitamab in rel/ref FL

Adults with R/R
FL (grade 1-3a) or MZL
previously treated with
≥1 anti-CD20 mAb;
no prior R²;
ECOG PS 0-2
(Planned N = 618;
FL, 528; MZL, 60-90)
(N = 654)

Stratification Factors (Patients With FL)

- POD24
- Refractoriness to prior anti-CD20 mAb therapy
- Number of prior lines of therapy (1 or ≥2)

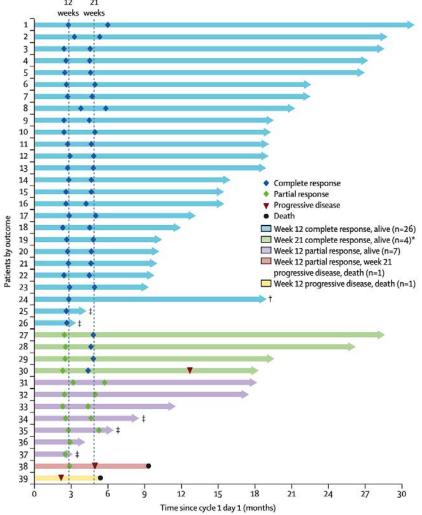
Study Endpoints in FL Population (Investigator Assessed Unless Specified)


Primary study endpoint: PFS

Key secondary: PET-CR rate in the FDG-avid population, OS
 Select other secondary: PFS by IRC, ORR, DOR, safety, QoL, MRD

Exploratory: TTNT, B-cell recovery, Ig levels, CD19 expression

inMIND Results: Tafa-LenR vs. Pbo-LenR


#1	Tafasitamab + Len + R Events/# Patients Censored	Placebo + Len + R # Events/# Patients Cen		Ratio With Confidence Limits	HR (95% CI)
Subgroup All patients	75/198	131/144	н-		0.43 (0.32, 0.58)
Sex Male	40/110	78/71	н-		0.38 (0.26, 0.56)
Female	35/88	53/73			0.51 (0.33, 0.80)
Age group 1					
<65 years	29/108	69/70	н		0.35 (0.23, 0.55)
≥65 years	46/90	62/74	H ;		0.53 (0.35, 0.80)
Age group 2 <75 years	55/164	102/119	⊢		0.44 (0.31, 0.61)
≥75 years	20/34	29/25	H	•	0.58 (0.30, 1.12)
Race	20/04	20,20			0.00 (0.00, 1.12)
White	61/158	106/113	н-		0.40 (0.29, 0.55)
Asian	11/29	21/21	H		0.34 (0.14, 0.81)
Other and missin	g 3/11	4/10			0.60 (0.08, 4.41)
Ethnicity	atino 62/166	112/114			0.20 (0.20 0.52)
Not Hispanic or L Hispanic or Latin		10/14			0.39 (0.28, 0.53) 0.71 (0.24, 2.10)
Other and missin		9/16	-		1.07 (0.25, 4.56)
Geographic region		57.10			1.07 (0.20, 4.00)
Europe	52/124	88/105	н		0.53 (0.38, 0.76)
North America	8/30	11/13	H——		0.12 (0.02, 0.55)
Rest of the world	15/44	32/26	н		0.33 (0.16, 0.68)
POD24	20/50	50/20	H-1		0.40.40.07.0.00
Yes No	29/56 46/142	52/36 79/108	H=1		0.43 (0.27, 0.69) 0.45 (0.31, 0.65)
Refractory to prior		79/100			0.45 (0.51, 0.05)
Yes	45/73	68/47	н :		0.44 (0.30, 0.65)
No	30/125	63/97	H=-1		0.44 (0.28, 0.68)
Number of prior li	nes		į		, , ,
1 line	36/110	61/86	н		0.48 (0.32, 0.74)
≥2 lines	39/88	70/58	н		0.41 (0.28, 0.61)
			0 1	2 3 4 5	6
				Hannel Datie	

Significant improvement in PFS was observed with tafasitamab

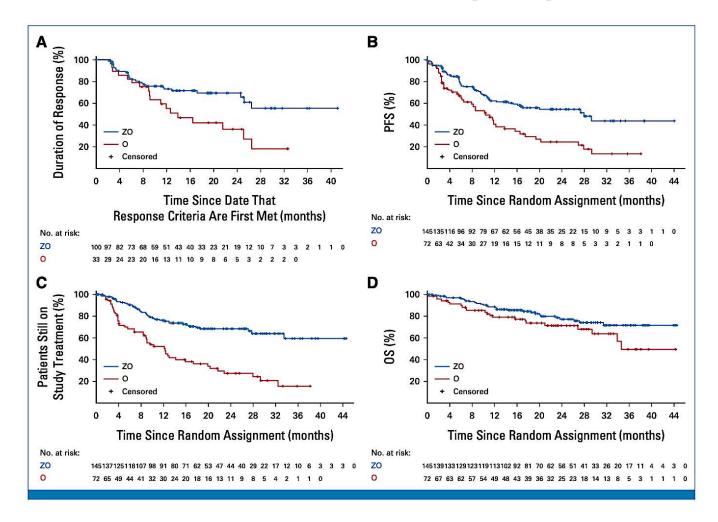
- Improved PFS, DoR, TTNT for Tafa-LenR
- NOTE: 23/24 post-treatment lymphoma samples retained CD19 expression

Lonca plus rituximab in RR FL (phase 2) n=39

Short follow up Patients with 51% early POD CR 67%

TEAEs: lymphopenia, neutropenia, generalized and peripheral edema

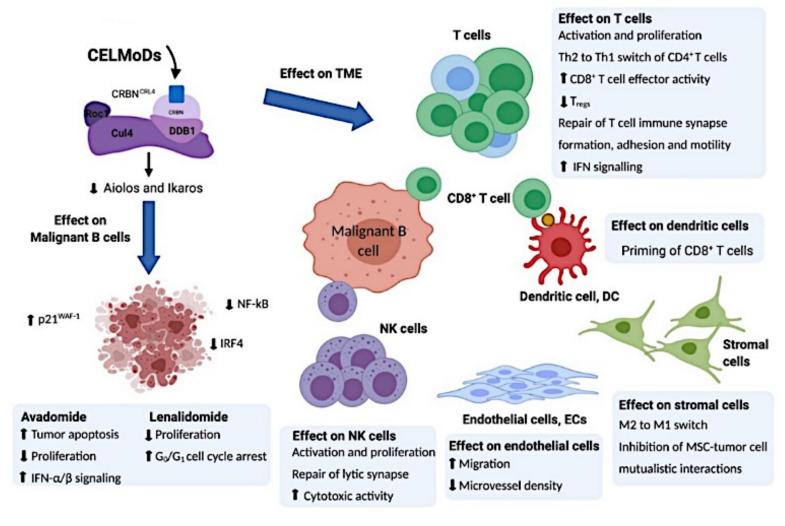
Added to NCCN Guidelines as other recommended regimen in third line and beyond for FL (v3.2025, category 2B)



ROSEWOOD: RP2 (2:1) trial of Zanu-obin vs. obin in RR FL

Pt features	ZO (n=145)	O (n=72)	P value				
Med age	63y	65.5y					
Prior Tx	3 (2-11)	3 (2-9)					
High FLIPI	53%	51%					
POD24	34%	42%					
Ref to last Tx	32%	40%					
Results							
ORR	69%	46%	0.001				
CR	39%	19%	0.004				
Med DOR	NE	14m					
Med PFS	28m	10.4m	<0.001				
Med OS	NE	34.6m	0.085				

ROSEWOOD: RP2 (2:1) Zanu-obin versus obin



ASH 2024 Update:

Post-hoc analysis of data from ROSEWOOD showed that the majority (>60%) of patients with R/R FL receiving ZO had a significant improvement in PFS vs their last prior tx, irrespective of the number of prior lines (only 2 or >2) and in all tested subgroups of high clinical interest

Emerging agents: CELMoDs

CELMoDs:

- Avadomide
- Iberdomide
- Golcadomide
- Mezigdomide

Ongoing trials:

- Golca plus RCHOP/pola-RCHP
- Golca post CAR-T

Side effects:

 Cytopenias, hyperglycemia, electrolyte abnormalities

Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

CME/MOC, NCPD and ACPE Accredited

Saturday, October 11, 2025 7:15 AM – 12:30 PM ET

 For which patients with DLBCL do you use polatuzumab vedotin + R-CHP as up-front treatment?

- How are BTK inhibitors being evaluated in DLBCL? If these agents are proven effective in the first-line in non-GCB subtype, how will you select between them and pola-R-CHP?
- Where are you currently considering the use of zanubrutinib/obinutuzumab for R/R FL?

- How are you using tafasitamab in DLBCL?
- Is tafasitamab in combination with R² now your usual second-line therapy?

- How are you incorporating loncastuximab tesirine into your current management of DLBCL?
- Given lonca-T has now been added to NCCN for FL, where are you thinking about using it in relation to zanu/obin or tazemetostat?
- What are the common toxicities of loncastuximab tesirine? How are these prevented and mitigated?
- Are you comfortable using all three CD19 directed approaches in the same patient? How will we potentially integrate a 4th?

• In general, how do you sequence agents for patients with FL and POD24 (disease progression within 24 months of initial treatment)?

Save The Date

Fifth Annual National General Medical Oncology Summit

A Multitumor CME/MOC-, NCPD- and ACPE-Accredited Educational Conference Developed in Partnership with Florida Cancer Specialists & Research Institute

Friday to Sunday, April 24 to 26, 2026

The Ritz-Carlton Orlando, Grande Lakes | Orlando, Florida

Moderated by Neil Love, MD

Thank you for joining us! Your feedback is very important to us.

Please complete the survey currently up on the iPads for attendees in the room and on Zoom for those attending virtually. The survey will remain open up to 5 minutes after the meeting ends.

How to Obtain Credit

In-person attendees: Please refer to the program syllabus for the CME/MOC, NCPD and ACPE credit link or QR code.
Online/Zoom attendees: The CME/MOC, NCPD and ACPE credit link is posted in the chat room.

