Data + Perspectives: Clinical Investigators Discuss the Current and Future Clinical Care of Patients with Prostate Cancer

> Saturday, May 31, 2025 7:00 PM – 9:00 PM CT (8:00 PM – 10:00 PM ET)

> > Faculty Neeraj Agarwal, MD, FASCO Andrew J Armstrong, MD, ScM Himisha Beltran, MD Fred Saad, MD

> > > Moderator Rana R McKay, MD

Faculty

Neeraj Agarwal, MD, FASCO Professor of Medicine Senior Director for Clinical Research Huntsman Cancer Institute Presidential Endowed Chair of Cancer Research Director, Center of Investigational Therapeutics Director, Genitourinary Oncology Program Huntsman Cancer Institute, University of Utah (NCI-CCC) Salt Lake City, Utah

Fred Saad, MD

Professor and Chairman, Department of Surgery Raymond Garneau Chair in Prostate Cancer University of Montreal Director of GU Oncology University of Montreal Hospital Center (CHUM) Montréal, Québec, Canada

Andrew J Armstrong, MD, ScM

Professor of Medicine, Surgery, Pharmacology and Cancer Biology Director of Research Duke Cancer Institute Center for Prostate and Urologic Cancers Divisions of Medical Oncology and Urology Duke University Durham, North Carolina

Himisha Beltran, MD

Associate Professor of Medicine Lank Center for Genitourinary Oncology and the Division of Molecular and Cellular Oncology Director of Translational Research Medical Oncology Dana-Farber Cancer Institute Boston, Massachusetts

Moderator

Rana R McKay, MD

Professor of Medicine and Urology Associate Director, Clinical Research Co-Lead, Genitourinary Program Moores Cancer Center University of California San Diego San Diego, California

Dr Agarwal — Disclosures Faculty

No relevant conflicts of interest to disclose

Dr Armstrong — Disclosures Faculty

Advisory Committees	Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Cytogen Corporation, Janssen Biotech Inc, Merck, Myovant Sciences, Novartis, Pfizer Inc
Consulting Agreements	Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Curium, Janssen Biotech Inc, Merck, Novartis, Pfizer Inc
Contracted Research	Amgen Inc, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol Myers Squibb, Janssen Biotech Inc, Merck, Novartis, Pathos, Pfizer Inc

Dr Beltran — Disclosures Faculty

Advisory Committees	Amgen Inc, Astellas, Bayer HealthCare Pharmaceuticals, Daiichi Sankyo Inc, Merck, Novartis, Pfizer Inc
Contracted Research	Bristol Myers Squibb, Circle Pharma, Daiichi Sankyo Inc, Novartis
Data and Safety Monitoring Boards/Committees	AstraZeneca Pharmaceuticals LP

Dr Saad — Disclosures Faculty

Advisory Committees and Consulting Agreements	AbbVie Inc, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, GSK, Janssen Biotech Inc, Merck, Novartis, Pfizer Inc, Tolmar				
Contracted Research	AbbVie Inc, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, GSK, Janssen Biotech Inc, Merck, Novartis, Pfizer Inc				
Speakers Bureaus	AbbVie Inc, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Janssen Biotech Inc, Merck, Novartis, Pfizer Inc, Tolmar				

Dr McKay — Disclosures Moderator

Advisor/Consultant	Ambrx, Arcus Biosciences, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, Blue Earth Diagnostics, Bristol Myers Squibb, Calithera Biosciences, Caris Life Sciences, Daiichi Sankyo Inc, Dendreon Pharmaceuticals Inc, Exelixis Inc, Johnson & Johnson Pharmaceuticals, Lilly, Merck, Myovant Sciences, Neomorph, Novartis, Pfizer Inc, Sanofi, Seagen Inc, Sorrento Therapeutics, Telix Pharmaceuticals Limited, Tempus				
Institutional Research Funding	Artera, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol Myers Squibb, Exelixis Inc, Oncternal Therapeutics, Tempus				

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: Aadi Bioscience, AbbVie Inc, ADC Therapeutics, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Arvinas, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, Black Diamond Therapeutics Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Clovis Oncology, Coherus BioSciences, CTI BioPharma, a Sobi Company, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, Exact Sciences Corporation, Exelixis Inc, Genentech, a member of the Roche Group, Genmab US Inc, Geron Corporation, Gilead Sciences Inc, GSK, Hologic Inc, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Jazz Pharmaceuticals Inc, Johnson & Johnson, Karyopharm Therapeutics, Kite, A Gilead Company, Kura Oncology, Legend Biotech, Lilly, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Mural Oncology Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Nuvalent, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Rigel Pharmaceuticals Inc, R-Pharm US, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Syndax Pharmaceuticals, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, and Tesaro, A GSK Company.

Commercial Support

This activity is supported by educational grants from Astellas and Pfizer Inc, Bayer HealthCare Pharmaceuticals, and Johnson & Johnson.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

This educational activity contains discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.

	Immunotherapy and Antibody-Drug	
Friday May 30	Conjugates in Lung Cancer 11:15 AM - 12:45 PM CT (12:15 PM - 1:45 PM ET)	
	Colorectal Cancer 6:30 PM - 8:30 PM CT (7:30 PM - 9:30 PM ET)	
	EGFR Mutation-Positive Non-Small Cell Lung Cancer 6:30 PM - 8:30 PM CT (7:30 PM - 9:30 PM ET)	
	Urothelial Bladder Cancer 6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET)	
Saturday May 31	Non-Hodgkin Lymphoma 7:00 PM - 9:00 PM CT (8:00 PM - 10:00 PM ET)	
	Prostate Cancer 7:00 PM - 9:00 PM CT (8:00 PM - 10:00 PM ET)	
	Chronic Lymphocytic Leukemia (Webinar) 7:00 AM - 8:00 AM CT (8:00 AM - 9:00 AM ET)	
Sunday June 1	HER2-Positive Gastrointestinal Cancers 7:00 PM - 8:30 PM CT (8:00 PM - 9:30 PM ET)	
	Ovarian and Endometrial Cancer 7:00 PM - 9:00 PM CT (8:00 PM - 10:00 PM ET)	
	Renal Cell Carcinoma (Webinar) 7:00 AM - 8:00 AM CT (8:00 AM - 9:00 AM ET)	
Monday June 2	Multiple Myeloma (Webinar) 6:00 PM - 7:00 PM CT (7:00 PM - 8:00 PM ET)	
	Metastatic Breast Cancer 7:00 PM - 9:00 PM CT (8:00 PM - 10:00 PM ET)	
Tuesday June 3	Soft Tissue Sarcoma and Other Connective Tissue Neoplasms (Webinar) 7:00 AM - 8:00 AM CT (8:00 AM - 9:00 AM ET)	

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the pre- and postmeeting surveys.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Clinicians Attending via Zoom

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the pre- and postmeeting surveys.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME Credit: A CME credit link will be provided in the chat room at the conclusion of the program.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based program.
 An email will be sent to all attendees when the activity is available.

 To learn more about our education programs, visit our website, <u>www.ResearchToPractice.com</u>

Data + Perspectives: Clinical Investigators Discuss the Current and Future Clinical Care of Patients with Prostate Cancer

> Saturday, May 31, 2025 7:00 PM – 9:00 PM CT (8:00 PM – 10:00 PM ET)

> > Faculty Neeraj Agarwal, MD, FASCO Andrew J Armstrong, MD, ScM Himisha Beltran, MD Fred Saad, MD

> > > Moderator Rana R McKay, MD

Agenda

MODULE 1: Evolving Management of Nonmetastatic Hormone-Sensitive Prostate Cancer (HSPC) — Dr Saad

MODULE 2: Current Treatment for Metastatic HSPC — Dr Armstrong

MODULE 3: Role of PARP Inhibition in Metastatic Castration-Resistant Prostate Cancer (mCRPC) — Dr Agarwal

MODULE 4: Current and Future Use of Radiopharmaceuticals for mCRPC — Dr McKay

MODULE 5: Promising Novel Agents and Strategies Under Investigation for the Management of Prostate Cancer — Dr Beltran

Agenda

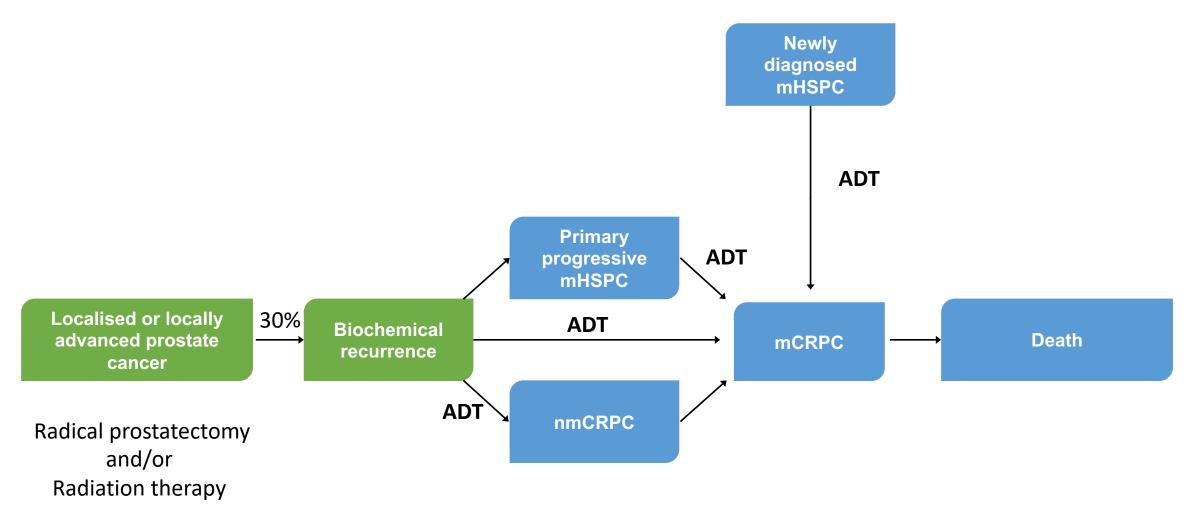
MODULE 1: Evolving Management of Nonmetastatic Hormone-Sensitive Prostate Cancer (HSPC) — Dr Saad

MODULE 2: Current Treatment for Metastatic HSPC — Dr Armstrong

MODULE 3: Role of PARP Inhibition in Metastatic Castration-Resistant Prostate Cancer (mCRPC) — Dr Agarwal

MODULE 4: Current and Future Use of Radiopharmaceuticals for mCRPC — Dr McKay

MODULE 5: Promising Novel Agents and Strategies Under Investigation for the Management of Prostate Cancer — Dr Beltran


Optimizing care in high risk nmHSPC

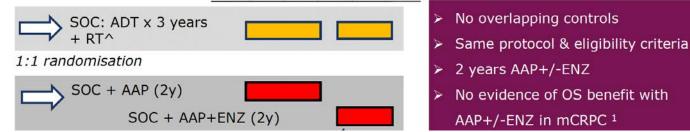
Fred Saad CQ MD FRCS FCAHS Professor and Chairman, Department of Surgery, Raymond Garneau Chair in Prostate Cancer University of Montreal Director of GU Oncology and Prostate Cancer Research University of Montreal Hospital Center

Spectrum of prostate cancer

CHUM

Intensifying ADT in high risk prostate cancer

Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: a meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol

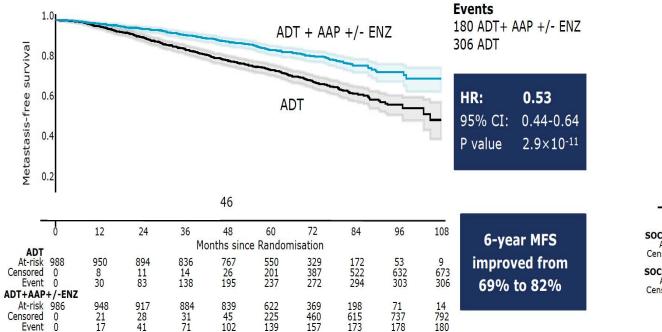

Gerhardt Attard, Laura Murphy, Noel W Clarke, William Cross, Robert J Jones, Christopher C Parker, Silke Gillessen, Adrian Cook, Chris Brawley, Claire L Amos, Nafisah Atako, Cheryl Pugh, Michelle Buckner, Simon Chowdhury, Zafar Malik, J Martin Russell, Clare Gilson, Hannah Rush, Jo Bowen, Anna Lydon, Ian Pedley, Joe M O'Sullivan, Alison Birtle, Joanna Gale, Narayanan Srihari, Carys Thomas, Jacob Tanguay, John Wagstaff, Prantik Das, Emma Gray, Mymoona Alzoueb, Omi Parikh, Angus Robinson, Isabel Syndikus, James Wylie, Anjali Zarkar, George Thalmann, Johann S de Bono, David P Dearnaley*, Malcolm D Mason*, Duncan Gilbert, Ruth E Langley, Robin Millman, David Matheson, Matthew R Sydes†, Louise C Brown†, Mahesh K B Parmar†, Nicholas D James†, on behalf of the Systemic Therapy in Advancing or Metastatic Prostate cancer: Evaluation of Drug Efficacy (STAMPEDE) investigators‡

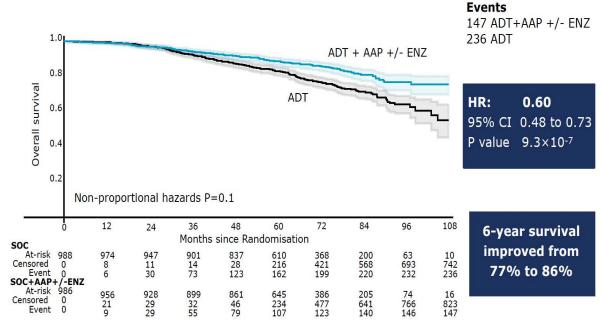
Lancet 2022; 399: 447-60 Published Online December 23, 2021 https://doi.org/10.1016/ S0140-6736(21)02437-5

Patient population

MO No evidence of metastases on bone and CT scan of pelvis, abdo, chest (pre-defined stratification criterion)	Newly-diagnosed Any of: • Node-Positive • ≥2 of: Stage T3 or T4 PSA≥40ng/ml Gleason 8, 9 or 10
Relapsing after previous RP or RT	All patients
Any of:	Written informed consent
• Node-positive	Fit for all protocol treatment
• PSA≥4ng/ml, rising & doubling time <6m	Fit for follow-up
• PSA≥20ng/ml	Full criteria: www.stampedetrial.org

2011, 2012, 2013, 2014, 2015, 2016




OS

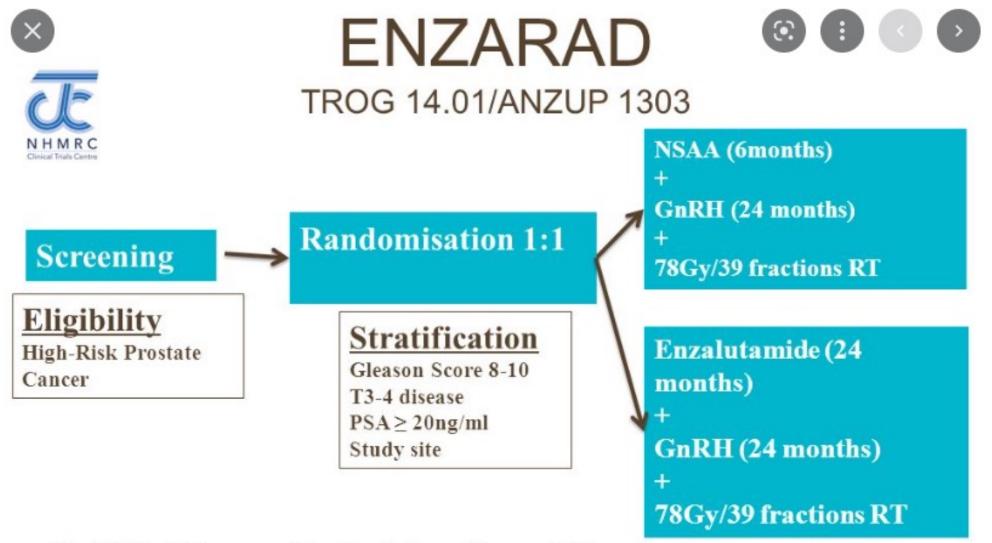
Metastasis-free survival

Overall survival

CHUM

Gerhardt Attard et al. Lancet 2022

ATLAS


Screening (≤35 days) Treatment phase: 28-day cycles ±2 days **Neoadjuvant to RT Concurrent with RT** Adjuvant to RT • HRLPC^a (Cycles 1-2) (Cycles 3-4) (Cycles 5-30) ECOG PS 0/1 **RT** with APA APA APA CCI ≤3 (240 mg QD) (240 mg QD) (240 mg QD) + bicalutamide-PBO + bicalutamide-PBO Candidates for primary RT Rb + GnRHa + GnRHa + GnRHa No distant metastasis, 1:1 history of bilateral (N=1503) orchiectomy, pelvic **RT with PBO** PBO PBO radiation, or seizure + bicalutamide + bicalutamide + GnRHa + GnRHa + GnRHa **Conventional imaging**

PSA and testosterone testing for BCF^c Conventional and PET imaging initiated at BCF^c

Long-term follow-up

- PSA and testosterone levels monitored every 3 months until distant metastasis by BICR
- Conventional imaging every 6 months until distant metastasis by BICR or death
- PET imaging every 6 months until distant metastasis on PET or conventional imaging by BICR or death

N=800, Primary Endpoint = Overall Survival Participants: ANZUP, TROG, Dana-Farber, ICORG, UK

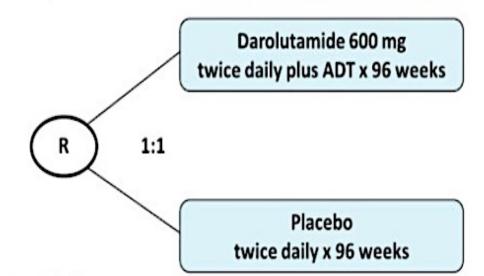
DASL HiCaP

All participants are also treated concurrently with an LHKHA for 96 weeks post randomization,

plus RT starting at week 8-24 post randomization.

Eligibility

 Very high risk localized prostate cancer to be treated with definitive radiation, or


Very high risk features + PSA persistence/rise within 12 months following radical prostatectomy (RP) to be treated with post RP radiation

- Suitable for EBRT with or without brachytherapy
- CT/MRI and bone scan negative for distant metastases (allow pelvic LN)

Statistical analysis

1100 participants:

- 3 years accrual + at least 4 years of additional follow up (until 130 events recorded)
- 80% power to detect: 40% reduction in the hazard for metastasis or death
 - assuming MFS rate at 5 years: 85% in the control group; 90.7% darolutamide group, allowing for interim analysis and missing data

Stratification

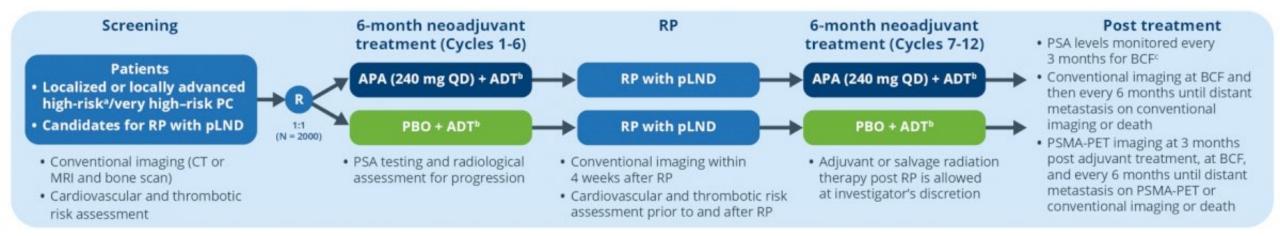
- 1. Previous radical prostatectomy (yes or no)
- . Planned docetaxel use (yes or no)
- 3. Clinical or pathological pelvic LN involvement (yes or no)

Endpoints

Primary

Metastasis-free survival

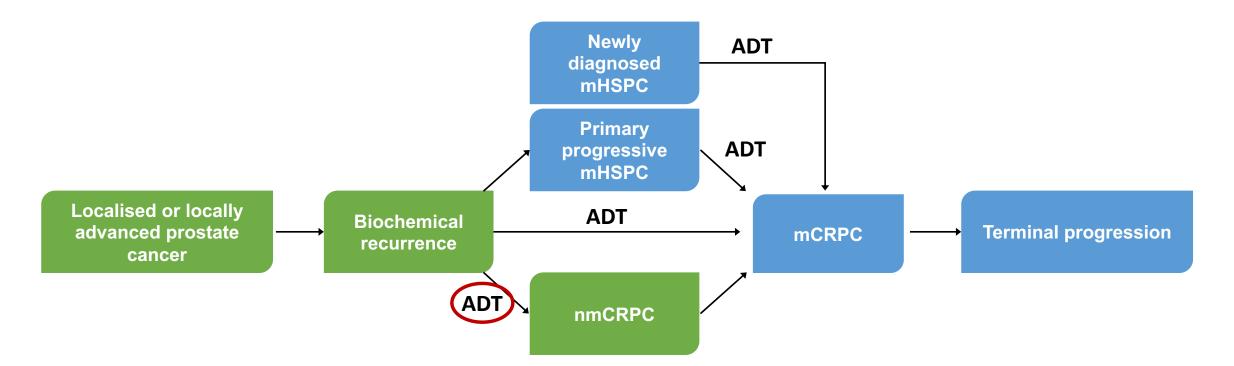
Secondary


- Overall survival
- Prostate cancer-specific survival
- PSA-progression free survival
- Time to subsequent hormonal therapy
- Time to castration-resistance
- Frequency and severity of adverse events
- Health-related quality of life
- Fear of cancer recurrence

Exploratory

- Incremental cost-effectiveness
- Prognostic/predictive biomarkers

PROTEUS: ADT Intensification in Surgery

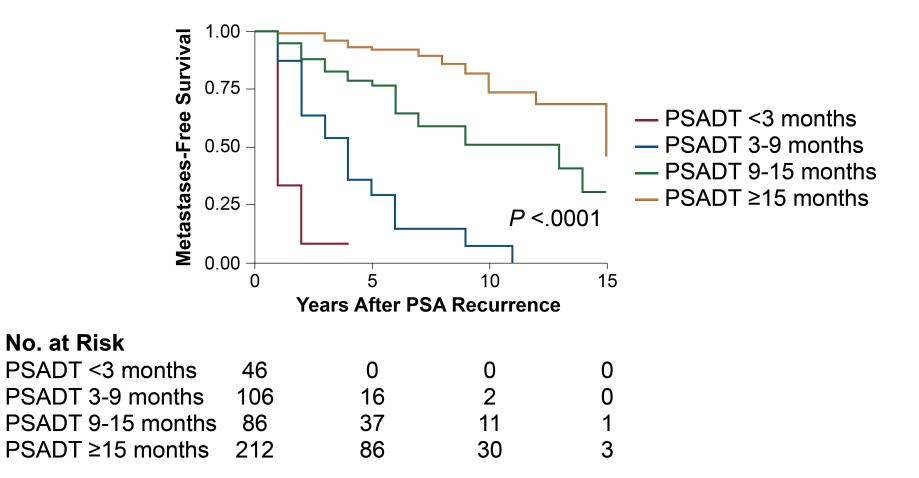


The primary endpoints are pCR rate and MFS on conventional imaging

MFS based on PSMA PET or conventional imaging will be assessed as a separate endpoint.

Biochemical recurrence

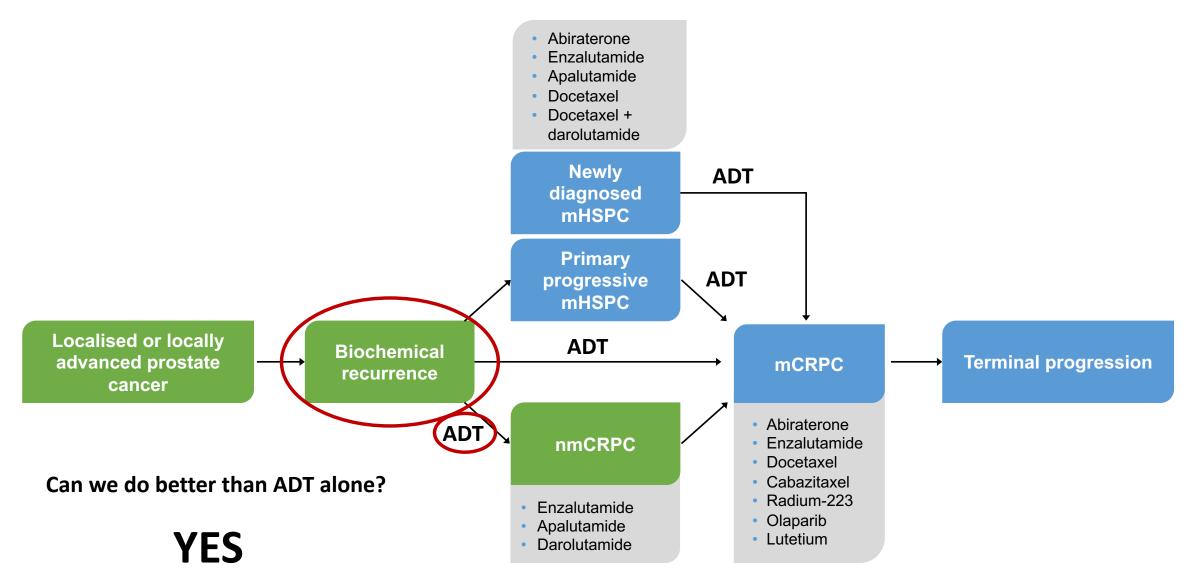
When to start in the biochemically recurrent non-metastatic patient?



Natural History of Progression After PSA Elevation Following Radical Prostatectomy

	Gleason 5-7			Gleason 8-10				
Year of Recurrence	>2 Years		≤2 Years		>2 Years		≤2 Years	
PSADT	>10 mo	≤10 mo	>10 mo	≤10 mo	>10 mo	≤10 mo	>10 mo	≤10 mo
3 years (%)	92	66	99	60	84	57	NA	52
5 years (%)	92	34	83	24	72	36	NA	27
7 years (%)	84	27	75	6	57	24	NA	7

• Probability of metastases-free progression after biochemical recurrence at 3, 5 and 7 years

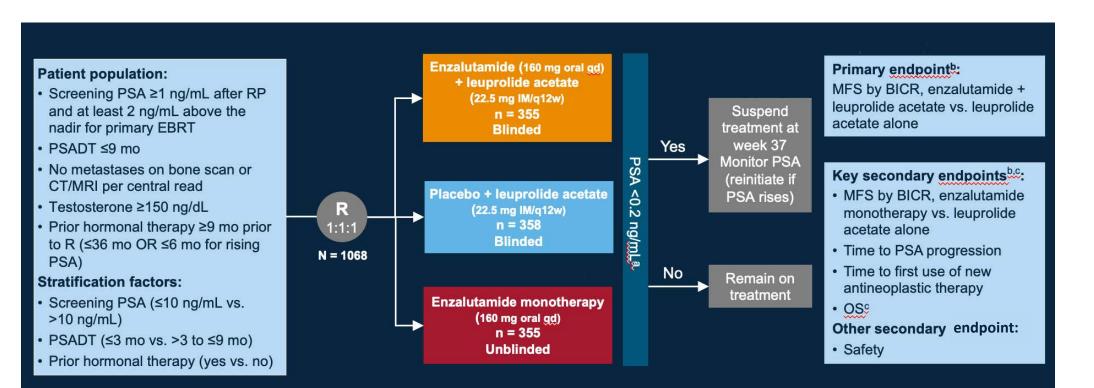

Metastases-Free Survival by PSADT¹

СНИМ

1. Antonarakis et al. BJU Int. 2012;109: 32-39.

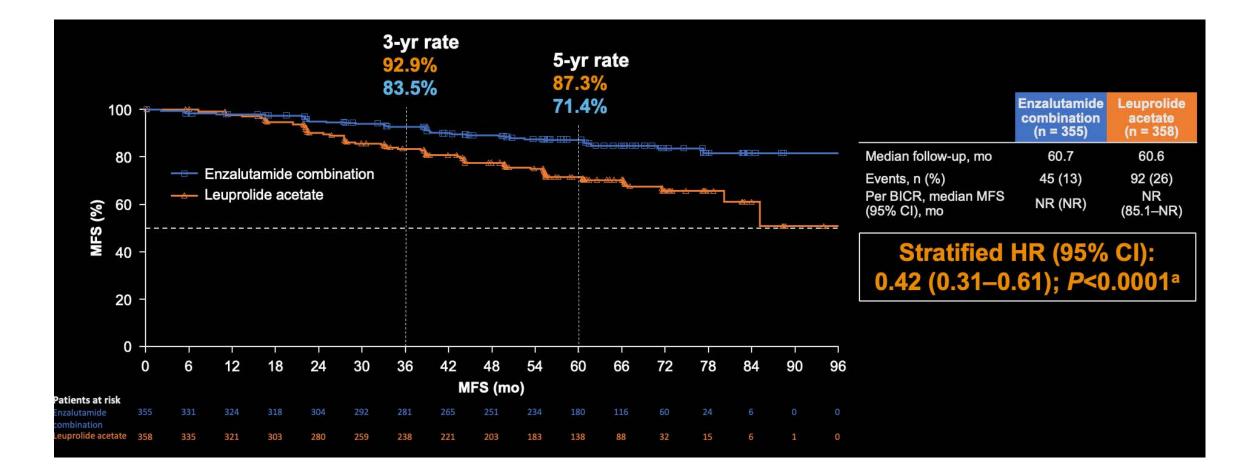
Systemic treatment options for prostate cancer

CHUM


ESTABLISHED IN 1812

OCTOBER 19, 2023

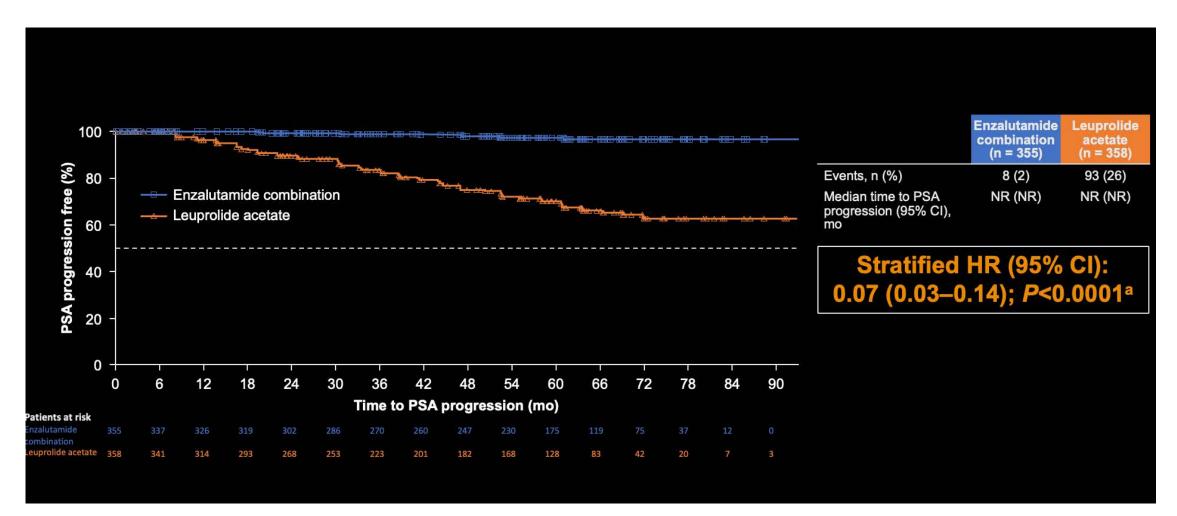
VOL. 389 NO. 16


Improved Outcomes with Enzalutamide in Biochemically Recurrent Prostate Cancer

S.J. Freedland, M. de Almeida Luz, U. De Giorgi, M. Gleave, G.T. Gotto, C.M. Pieczonka, G.P. Haas, C.-S. Kim, M. Ramirez-Backhaus, A. Rannikko, J. Tarazi, S. Sridharan, J. Sugg, Y. Tang, R.F. Tutrone, Jr., B. Venugopal, A. Villers, H.H. Woo, F. Zohren, and N.D. Shore

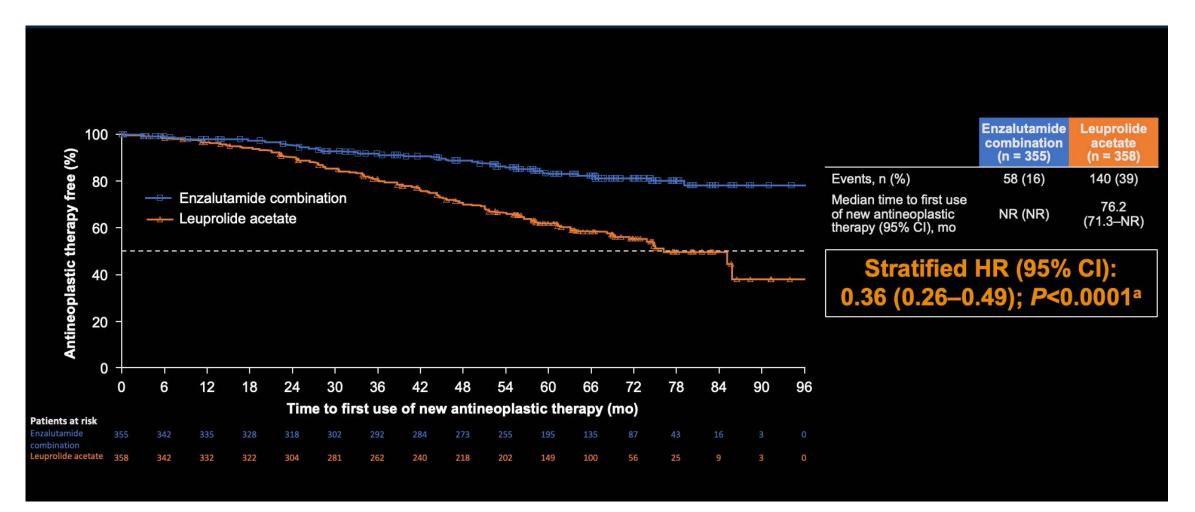
СНИМ

Primary endpoint — MFS for enzalutamide combination vs. leuprolide acetate

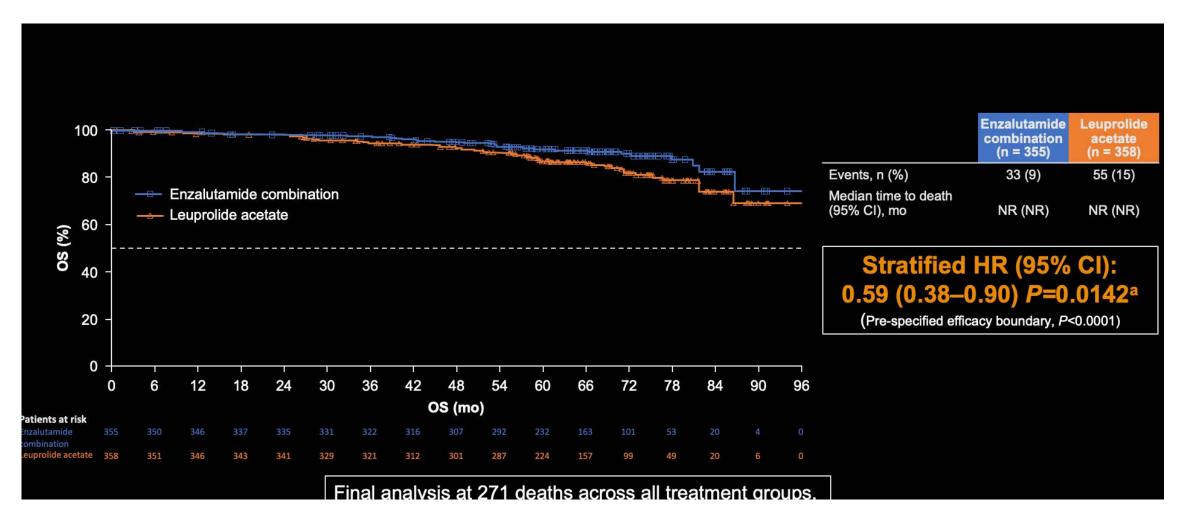


CHUM

Subgroup analysis of MFS for enzalutamide combination vs. leuprolide acetate


		Enzalutamide combination	Leuprolide acetate		
Subgroup		Events, n ,	/patients, n		MFS HR (95% CI)
All patients		45/355	92/358		0.42 (0.30–0.61)
PSADT	≤3 mo	14/69	30/80	· · · · · · · · · · · · · · · · · · ·	0.46 (0.24–0.88)
	>3 to ≤6 mo	18/187	35/142		0.33 (0.19 - 0.59)
	>6 to ≤9 mo	13/98	27/135	••••••••••••••••••••••••••••••••••••••	0.63 (0.32–1.22)
Baseline age	≤65 years	11/81	28/91	·•	0.40 (0.20–0.81)
	≥65 years	34/274	64/267	· • ·	0.44 (0.29–0.67)
Geographic region	North America	22/144	32/137	· · · · · · · · · · · · · · · · · · ·	0.62 (0.36–1.06)
	Europe	14/130	33/128		0.35 (0.19–0.66)
	ROW	9/81	27/93	F	0.32 (0.15–0.68)
Baseline PSA	≤10 ng/mL	31/278	64/273		0.42 (0.27–0.64)
	>10 ng/mL	14/77	28/83	· · · · · · · · · · · · · · · · · · ·	0.45 (0.24–0.85)
Prior hormonal therapy	Yes	19/107	34/113		0.48 (0.28–0.85)
	No	26/248	58/245	· · · · · ·	0.39 (0.25–0.62)
Prior RP	Yes	26/269	61/254	⊢ ∙(0.36 (0.23–0.58)
	No	19/86	31/104	⊢	0.57 (0.32–1.00)
			Favors enz	0.0 0.5 1.0 1.5 alutamide combination Favors leupro	2.0 Plide acetate

Key secondary endpoint — Time to PSA progression for enzalutamide combination vs. leuprolide acetate



CHUM

Key secondary endpoint — Time to first use of new antineoplastic therapy for enzalutamide combination vs. leuprolide acetate

Key secondary endpoint — Interim OS for enzalutamide combination vs. leuprolide acetate

Safety

	Enzalutamide combination (n = 353)		Leuprolide acetate (n = 354)		Enzalutamide monotherapy (n = 354)	
Event, n (%) ^a	All grades	Grade ≥3	All grades	Grade ≥3	All grades	Grade ≥3
Any AE	343 (97.2)	164 (46.5)	345 (97.5)	151 (42.7)	347 (98.0)	177 (50.0)
Treatment-related AE	305 (86.4)	62 (17.6)	283 (79.9)	31 (8.8)	312 (88.1)	57 (16.1)
Serious AE	123 (34.8)	110 (31.2)	112 (31.6)	100 (28.2)	131 (37.0)	116 (32.8)
Treatment-related serious AE	26 (7.4)	22 (6.2)	8 (2.3)	7 (2.0)	17 (4.8)	17 (4.8)
AE leading to dose reduction	25 (7.1)	11 (3.1)	16 (4.5)	5 (1.4)	56 (15.8)	14 (4.0)
AE leading to permanent discontinuation	73 (20.7)	31 (8.8)	36 (10.2)	19 (5.4)	63 (17.8)	34 (9.6)
AE leading to death	-	6 (1.7) ^b	-	3 (0.8) ^b	_	8 (2.3) ^b

 Median treatment duration excluding treatment suspension was 32.4 mo (range, 0.1–83.4 mo) for enzalutamide combination, 35.4 mo (range, 0.7–85.7 mo) for leuprolide acetate, and 45.9 mo (0.4–88.9 mo) for enzalutamide monotherapy.

The most common AE leading to study drug discontinuation was fatigue (enzalutamide combination, 3.4% [n = 12]; leuprolide acetate, 1.1% [n = 4]; enzalutamide monotherapy, 2.3% [n = 8]).

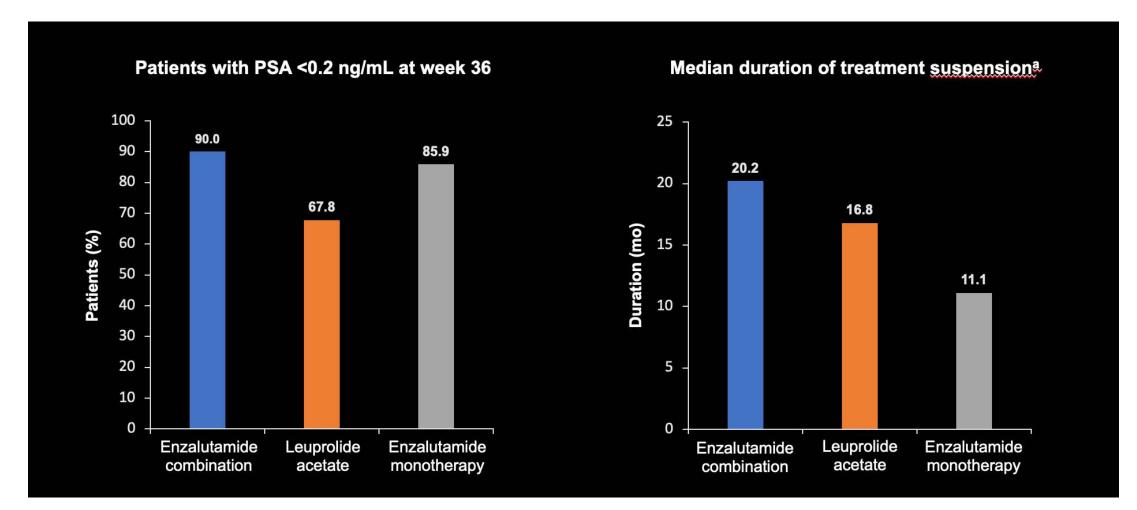
Most common TEAEs

Most common TEAEs (>15% of patients), n	Enzalutamide combination (n = 353)		Leuprolide acetate (n = 354)		Enzalutamide monotherapy (n = 354)	
(%) ^a	All grades	Grade ≥3	All grades	Grade ≥3	All grades	Grade ≥3
Hot flash	243 (68.8)	2 (0.6)	203 (57.3)	3 (0.8)	77 (<u>21.8)</u>	1 (0.3)
Fatigue	151 (42.8)	12 (3.4)	116 (32.8)	5 (1.4)	(46.6)	14 (4.0)
Arthralgia	97 (27.5)	5 (1.4)	75 (21.2)	1 (0.3)	81 (22.9)	1 (0.3)
Hypertension	82 (23.2)	2 (0.6)	69 (19.5)	0	67 (18.9)	0
Fall	74 (21.0)	3 (0.8)	51 (14.4)	2 (0.6)	56 (15.8)	5 (1.4)
Back pain	60 (17.0)	1 (0.3)	54 (15.3)	0	62 (17.5)	1 (0.3)
Nausea	42 (11.9)	0	29 (8.2)	0	54 (15.3)	1 (0.3)
Gynecomastia	29 (8.2)	0	32 (9.0)	0	159 (44.9)	1 (0.3)
Nipple pain	11 (3.1)	0	4 (1.1)	0	54 (15.3)	0

• The most common AEs (>15% of patients) for all treatment cohorts were hot flash, fatigue; <u>plus</u> gynecomastia in the enzalutamide monotherapy cohort; most were grade <3.

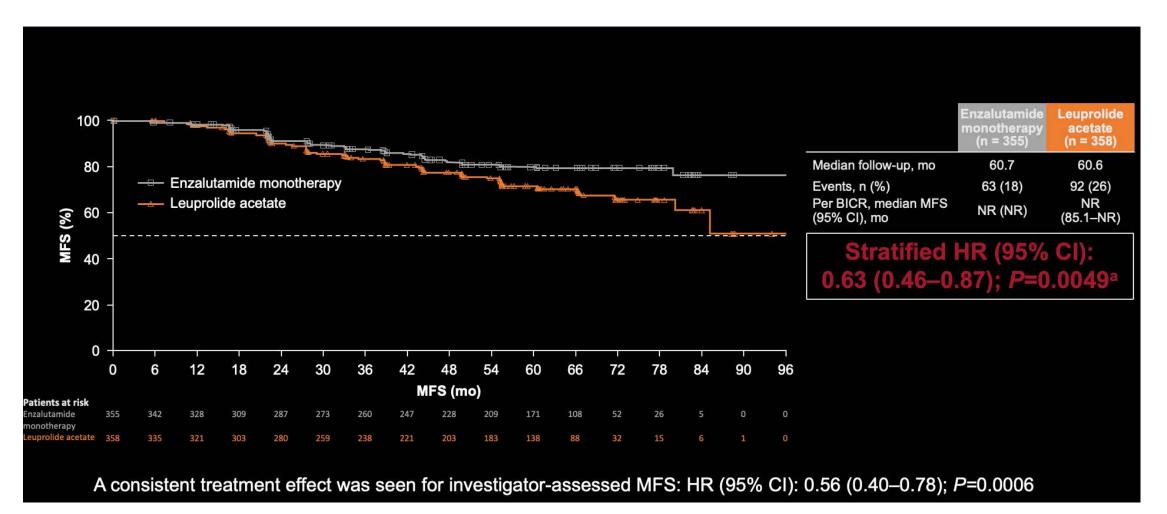
Intermittent vs Continuous?

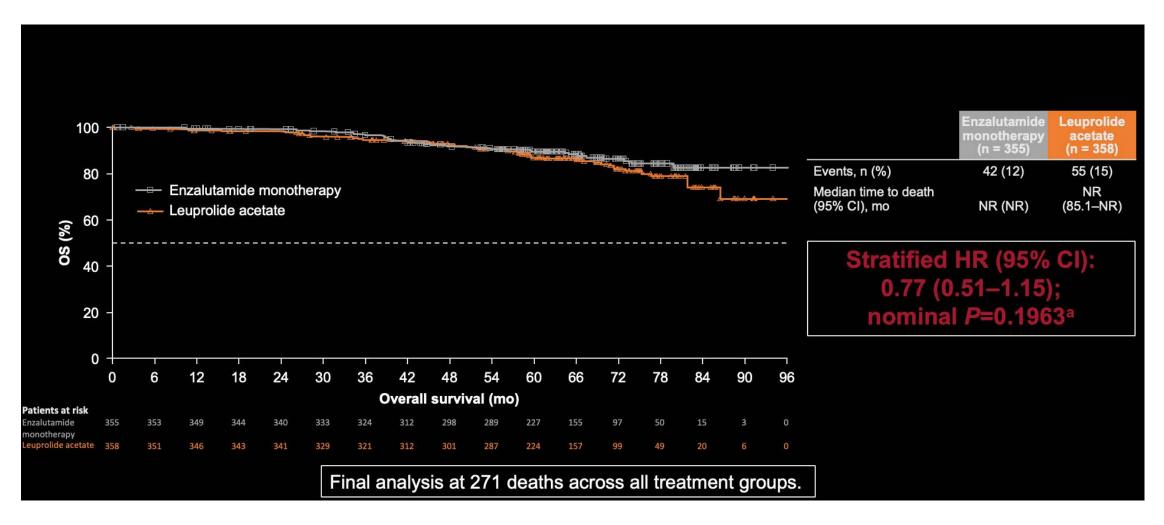
Compromise between early vs delayed

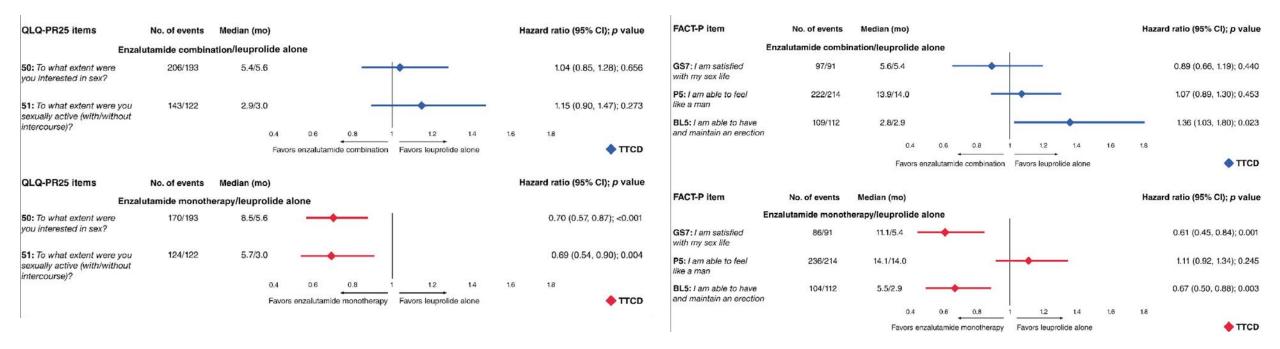

PR.7 (non-metastatic): Overall Survival

The NEW ENGLAND JOURNAL of MEDICINE

Intermittent Androgen Suppression for Rising PSA Level 100 after Radiotherapy uanita M. Crook, M.D., Christopher J. O'Callaghan, D.V.M., Ph.D., Graeme Duncan, M.D., David P. Dearnaley, M.D. Celestia S. Higano, M.D., Eric M. Horwitz, M.D., Eliot Frymire, M.A., Shawn Malone, M.D., Joseph Chin, M.D. Abdenour Nabid, M.D., Padraig Warde, M.B., Thomas Corbett, M.D., Steve Angyalfi, M.D. 5. Larry Goldenberg, M.D., Mary K. Gospodarowicz, M.D., Fred Saad, M.D., John P. Logue, M.R.C.P Median OS: Emma Hall, Ph.D., Paul F. Schellhammer, M.D., Keyue Ding, Ph.D., and Laurence Klotz, M.D. ABSTRAC — IAD: 8.8 years 80 % - CAD: 9.1 years **Overall Survival**, 60 CAD 40 IAD HR = 1.03 (95% CI, 0.87-1.22) 20 P = 0.009 (test for non-inferiority) 0 10 2 6 8 12 0 4 **Years Since Randomization** No. at Risk CAD 696 652 561 319 125 35 0 690 571 327 34 0 IAD 651 140


Secondary endpoint Undetectable PSA and Duration of suspension


Can enzalutamide be an effective alternative to ADT?


Key secondary endpoint — MFS for enzalutamide monotherapy vs. leuprolide acetate

Key secondary endpoint — Interim OS of enzalutamide monotherapy vs. leuprolide acetate

Sexual Quality of Life

PRESTO: A Phase III, Open-Label Study of Intensification of Androgen Blockade in Patients With High-Risk Biochemically Relapsed Castration-Sensitive Prostate Cancer (AFT-19)

Rahul Aggarwal, MD¹ (b); Glenn Heller, PhD²; David W. Hillman, MS³ (b); Han Xiao, MD² (b); Joel Picus, MD⁴ (b); Mary-Ellen Taplin, MD⁵; Tanya Dorff, MD⁶ (b); Leonard Appleman, MD⁷ (b); Douglas Weckstein, MD⁸; Akash Patnaik, MD⁹ (b); Alan Bryce, MD¹⁰ (b); Daniel Shevrin, MD¹¹ (b); James Mohler, MD¹² (b); Daniel Anderson, MD¹³; Arpit Rao, MD¹⁴ (b); Scott Tagawa, MD¹⁵ (b); Alan Tan, MD¹⁶; Susan Halabi, PhD¹⁷ (b); Katharine Dooley, MPH³ (b); Patrick O'Brien, BS³; Ronald Chen, MD, MPH¹⁸ (b); Charles J. Ryan, MD¹⁹; Scott E. Eggener, MD⁹ (b) and Michael J. Morris, MD² (b); on behalf of the PRESTO Study Investigators

DOI https://doi.org/10.1200/JC0.23.01157

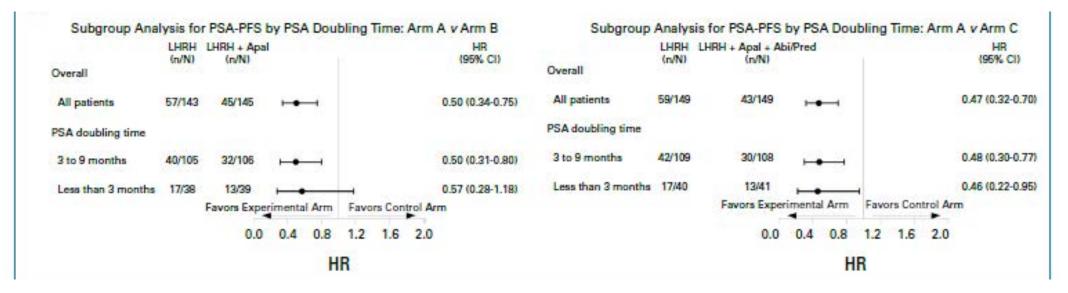
Study Schema (N=504)

(< 3 months vs. 3 – 9 months)

Radical prostatectomy Arm A: scretion **LHRH Analog Biochemical recurrence** SA with PSA \geq 0.5 ng/mL Randomize 1:1:1 per Arm B: Follow up for P Progression PSA doubling time ≤ 9 LHRH Analog + **Freatment** nvestigator Di months Apalutamide **Prior salvage RT unless** contraindicated Arm C: LHRH Analog + No metastasis on Apalutamide + conventional imaging Abiraterone Acetate + Testosterone > 150 ng/dL Prednisone (AAP) Stratified by PSA doubling time

52 Weeks

Long Term Follow Up


СНИМ

PRESTO (AFT-19): PSA-PFS

СНИМ

Subgroup analysis

	ADT	ADT + Apa	ADT + Apa + AAP
% Completed Therapy	87.7%	93.5%	91.9%
T recovery to >150 (mo)	5.1	5.7	6.9
Serious adverse events*	8%	9%	17%

*Most common: hypertension

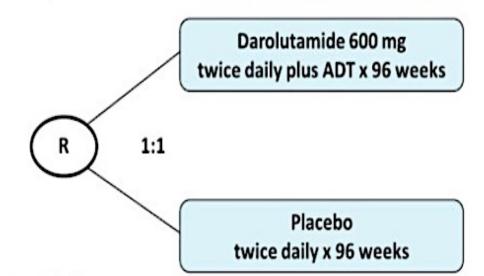
DASL HiCaP

All participants are also treated concurrently with an LHKHA for 96 weeks post randomization,

plus RT starting at week 8-24 post randomization.

Eligibility

 Very high risk localized prostate cancer to be treated with definitive radiation, or


Very high risk features + PSA persistence/rise within 12 months following radical prostatectomy (RP) to be treated with post RP radiation

- Suitable for EBRT with or without brachytherapy
- CT/MRI and bone scan negative for distant metastases (allow pelvic LN)

Statistical analysis

1100 participants:

- 3 years accrual + at least 4 years of additional follow up (until 130 events recorded)
- 80% power to detect: 40% reduction in the hazard for metastasis or death
 - assuming MFS rate at 5 years: 85% in the control group; 90.7% darolutamide group, allowing for interim analysis and missing data

Stratification

- 1. Previous radical prostatectomy (yes or no)
- . Planned docetaxel use (yes or no)
- 3. Clinical or pathological pelvic LN involvement (yes or no)

Endpoints

Primary

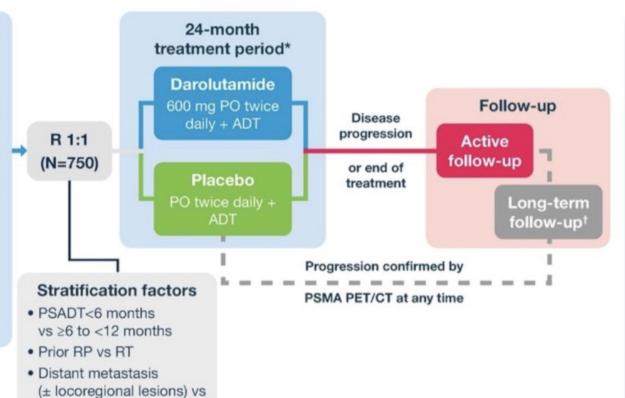
Metastasis-free survival

Secondary

- Overall survival
- Prostate cancer-specific survival
- PSA-progression free survival
- Time to subsequent hormonal therapy
- Time to castration-resistance
- Frequency and severity of adverse events
- Health-related quality of life
- Fear of cancer recurrence

Exploratory

- Incremental cost-effectiveness
- Prognostic/predictive biomarkers



ARASTEP

Key inclusion criteria

- High-risk BCR defined as:
- No metastasis on conventional imaging
- PSADT <12 months
- PSA ≥0.2 ng/mL after
 RP followed by ART
 or SRT (or RP alone in patients unfit for ART
 or SRT) OR
- PSA ≥2 ng/mL after primary RT only
- ≥1 PSMA PET/CT positive lesions

 ≥1 PSMA PET/CT positive lesions

locoregional lesions only

Endpoints Primary:

• rPFS by PSMA PET/CT assessed by BICR

Secondary:

- MFS by conventional imaging by BICR
- Time to CRPC
- Time to initiation of first subsequent systemic antineoplastic therapy
- Time to locoregional progression by PSMA PET/CT
- Time to first SSE
- OS
- PSA <0.2 ng/mL at 12 months
- Time to deterioration in FACT-P total score
- Safety

Conclusion

- Very high risk localized may benefit from ADT intensification
 - To reduce their risk of becoming metastatic and dying of prostate cancer
- BCR is concerning but not all patients are at the same risk of metastases and death
 - PSA doubling time allows us to evaluate risk
 - Lower risk can be followed or consider PSMA directed MDT +/- ADT
 - Higher risk patients (short PSADT) are in need of better treatment
 - To reduce their risk of becoming metastatic and dying of prostate cancer
 - Patients with optimal response may be safely given a treatment holiday thus reducing the cost and morbidity of treatment

Early and optimal hormonally based therapy is effective in patients with potentially lethal prostate cancer

Faculty Case Presentations

Case Presentation – Dr Armstrong: nmHSPC, enzalutamide monotherapy

- 56 yo AAM presented with a screening PSA of 8 at age 50, asymptomatic
- Biopsy showed GG4 in 12/12 cores, high volume disease
- Initial PSMA PET/CT normal other than uptake in prostate, no LAD, SVI
- Initially treated with radical prostatectomy, found to have pT3a GG4 bilateral disease, positive margins
- PSA persistence with PSA of 0.2 3 months post-op
- Completed early salvage RT to the prostate bed only, no ADT 6 mo post-op once urinary incontinence resolved, has return of sexual function despite radiation
- Despite radiation, PSA continues to rise. CT/bone scan are normal. PSA rises to 5.0 over a period of 12 months and repeat PSMA PET/CT shows multiple (4) SUV + tiny retroperitoneal and 2 pelvic lymph nodes, SUVs ranging from 6-12, size of 6-8 mm, no bone metastases
- PSADT is around 4-5 months
- Inquires about approaches to control disease while minimizing impact on quality of life and sexual health.
- Married since age 48, no children, works full time and active bicyclist and tennis player

Case Presentation – Dr Armstrong: nmHSPC, enzalutamide monotherapy (cont'd)

- Starts enzalutamide monotherapy, no ADT (patient preference to minimize sexual side effects)
- PSA drops to undetectable after 6 months and he stops therapy
- After 12 months, PSA has risen again quickly to 6.4
- He inquires if anything can be done to ensure a longer break from hormonal therapy
- Some breast tenderness but this resolved during the treatment break
- Reduced libido for about 7-8 months during enzalutamide monotherapy, but this resolved now.

QUESTIONS FOR THE FACULTY

Which patients with biochemical recurrence after definitive local treatment represent ideal candidates for ADT alone versus ADT in combination with enzalutamide versus enzalutamide alone?

How would you compare the global tolerability of enzalutamide monotherapy versus enzalutamide and ADT for patients with nmHSPC? How do they compare in terms of sexual side effects?

Do you have any tricks of the trade for managing the breast symptoms associated with enzalutamide monotherapy?

What would you recommend for this patient given his rising PSA?

Case Presentation – Dr McKay: nmHSPC

Patient Profile:

- 68-year-old male,
- Initial diagnosis: March 2021
 - PSA at diagnosis: 14.3 ng/mL
 - Digital rectal exam: Firm, irregular right base
 - MRI: PI-RADS 5 lesion in right peripheral zone, ECE suspected
 - Biopsy: Gleason 4+5=9 (Grade Group 5) in 6/12 cores, 80% maximum core involvement
 - Clinical stage: cT3a N0 M0
- Initial treatment:
 - Radical prostatectomy (May 2021)
 - Pathology: pT3b (SV+), N0, R1 (positive margin at apex)
 - Post-op PSA (8 weeks): 0.4 ng/mL
- Adjuvant treatment:
 - External beam radiation (66 Gy to prostate bed + pelvic lymph nodes)
 - Completed December 2020
 - PSA nadir after radiation: 0.1 ng/mL (May 2022)
- Biochemical recurrence:
 - PSA rise beginning September 2022
 - PSA trend: 0.3 ng/mL (Sep 2022) → 0.7 ng/mL (Dec 2022) → 1.4 ng/mL (Feb 2023) → 2.8 ng/mL (May 2023)
 - PSA doubling time: 4.2 months (high-risk)
 - Conventional imaging (CT/bone scan): Negative for metastases
 - PSMA PET/CT: Two small pelvic lymph nodes with mild PSMA uptake (SUVmax 4.2, equivocal)
 - Current status: Non-metastatic hormone-sensitive prostate cancer (nmHSPC) with biochemical recurrence

Case Presentation – Dr McKay: nmHSPC (cont'd)

Treatment Course:

- Started on ADT (leuprolide q3mo) + enzalutamide 160mg daily in July 2023
- PSA response:
 - 2.8 ng/mL (pre-treatment)
 - 0.4 ng/mL (1 month)
 - 0.08 ng/mL (2 months)
 - <0.01 ng/mL (3 months and maintained through present)
- Testosterone levels consistently <20 ng/dL
- Toxicity:
 - Grade 2 fatigue, managed with exercise program
 - Grade 1 hot flashes
 - Mild cognitive changes
- Current status:
 - 10 months into treatment (May 2024)
 - PSA remains undetectable (<0.01 ng/mL)
 - Baseline bone density scan showing osteopenia, now on calcium and vitamin D supplements

QUESTIONS FOR THE FACULTY

How do you approach treatment for patients such as this one who experience biochemical recurrence with a rapidly rising PSA after local therapy and have evidence of metastatic disease on PSMA PET but not on conventional imaging?

If this man's PSA remains undetectable, would you offer him a treatment break? Are you comfortable using intermittent therapy in this population despite their high-risk status? If so, when do you start measuring PSA levels after commencing hormonal therapy, and at what intervals do you do so? At what PSA level do you stop treatment, and when do you reinitiate it?

QUESTIONS FOR THE FACULTY

Outside of a clinical trial, would you currently employ an AR pathway inhibitor other than enzalutamide with or without ADT for patients with biochemically recurrent nmHSPC under any circumstances?

Agenda

MODULE 1: Evolving Management of Nonmetastatic Hormone-Sensitive Prostate Cancer (HSPC) — Dr Saad

MODULE 2: Current Treatment for Metastatic HSPC — Dr Armstrong

MODULE 3: Role of PARP Inhibition in Metastatic Castration-Resistant Prostate Cancer (mCRPC) — Dr Agarwal

MODULE 4: Current and Future Use of Radiopharmaceuticals for mCRPC — Dr McKay

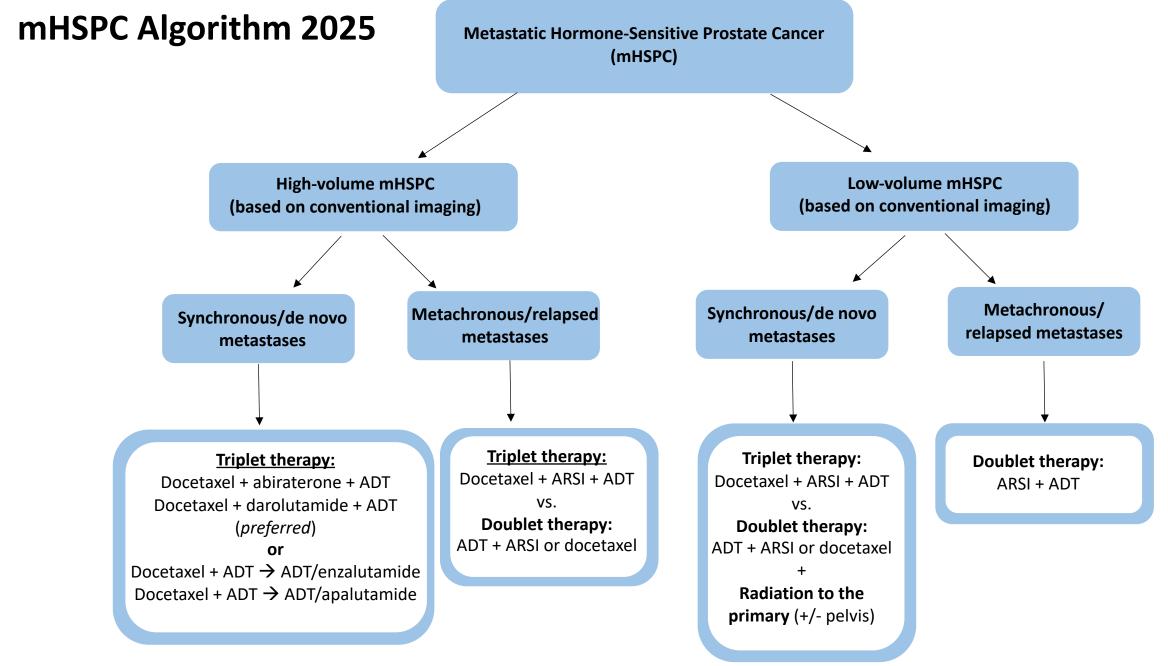
MODULE 5: Promising Novel Agents and Strategies Under Investigation for the Management of Prostate Cancer — Dr Beltran


Current Treatment for Metastatic HSPC (mHSPC)

Andrew J Armstrong MD ScM FACP ASCO 2025

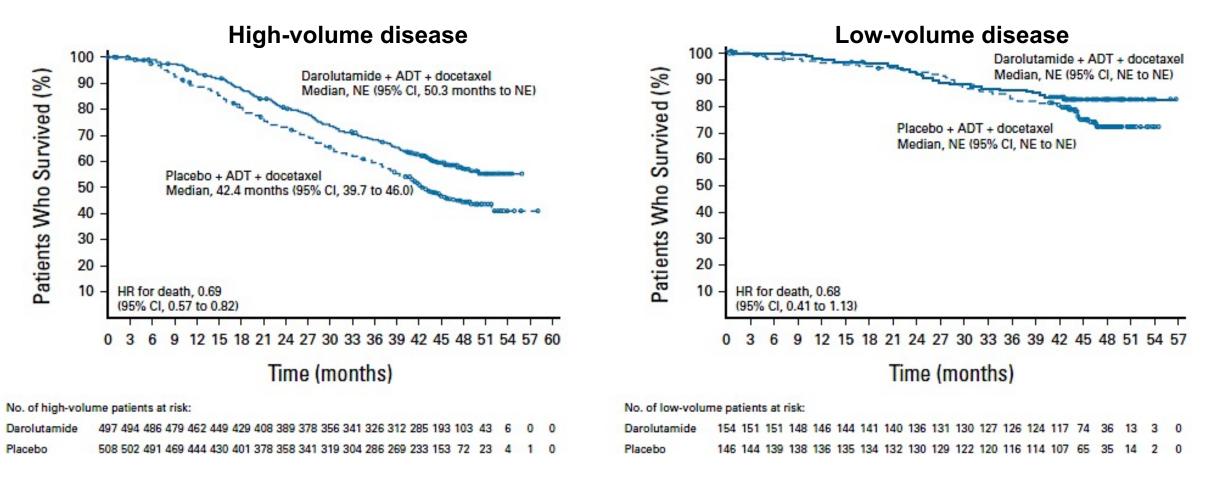
Professor of Medicine, Surgery, Pharmacology and Cancer Biology Director of Research

Duke Cancer Institute's Center for Prostate and Urologic Cancers

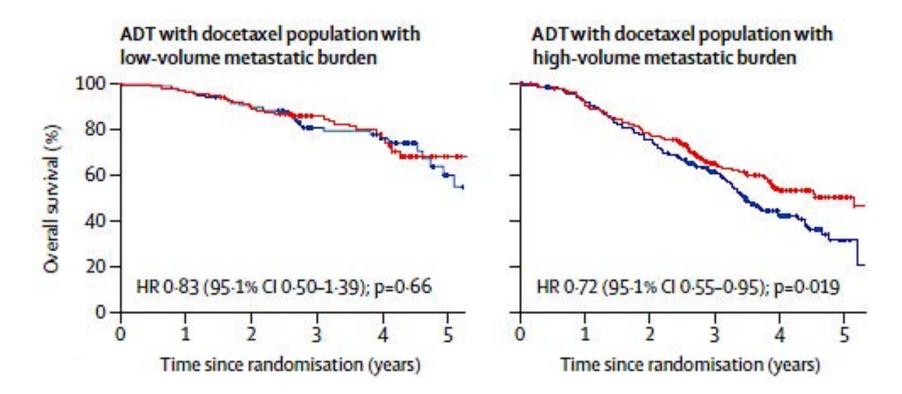

2025 ASCO: ARCHES 5 year updates and the AMPLITUDE study (abi +/- niraparib). Come on Tuesday!

Duke Dept of Medicine

mHSPC Therapies with Proven Survival Benefit


Therapy	Prior Docetaxel	Comparator	FFS/PFS benefit, HR, p-value	OS benefit, HR; p-value	
Radiation to the Primary	No	No radiation, ADT alone +/- docetaxel	Yes: low volume HR 0.59 p<0.0001	Yes: low volume HR 0.68 p=0.007	
<u>Enzalutamide</u> ARCHES ENZAMET	18% 44-45%	Placebo/ADT ADT/Bicalutamide	Yes HR 0.39 p<0.0001 Yes HR 0.39 p<0.0001	Yes HR 0.66 p<0.0001 all volumes Yes HR 0.67 p=0.002 all volumes	
Docetaxel/prednisone: STAMPEDE	No	ADT	Yes HR 0.61 p<0.0001	Yes HR 0.76 p=0.005 all volumes	
Docetaxel: CHAARTED	No	ADT	Yes HR 0.61 p<0.0001	Yes HR 0.63 p<0.001 high volume HR 1.04 low volume	
Docetaxel/Abiraterone	Docetaxel/Abiraterone Yes		Yes HR 0.47-0.58 p=0.006, <0.0001	Yes HR 0.72 p=0.019 high volume de novo	
Apalutamide	11%	Placebo/ADT	Yes HR 0.48 p<0.001	Yes HR 0.67 p=0.0053 all volumes	
Abiraterone/Prednisone LATITUDE	No	Prednisone	Yes HR 0.47 p<0.0001	Yes HR 0.66 p<0.001 high risk	
Abiraterone/Prednisone STAMPEDE	ne/Prednisone STAMPEDE No Pre		Yes HR 0.31 p<0.0001	Yes HR 0.61 p<0.001 all risk/volumes	
Abiraterone/prednisone (PEACE-1)	100% (concurrent)	ADT/Docetaxel	Yes HR 0.50 p<0.0001	Yes HR 0.75 p=0.017; HV: HR 0.72 p=0.019	
Darolutamide	100% (concurrent)	Placebo/ADT/ Docetaxel	Yes CRPC HR 0.35 p<0.0001	Yes HR 0.675 p<0.0001 de novo 86%	

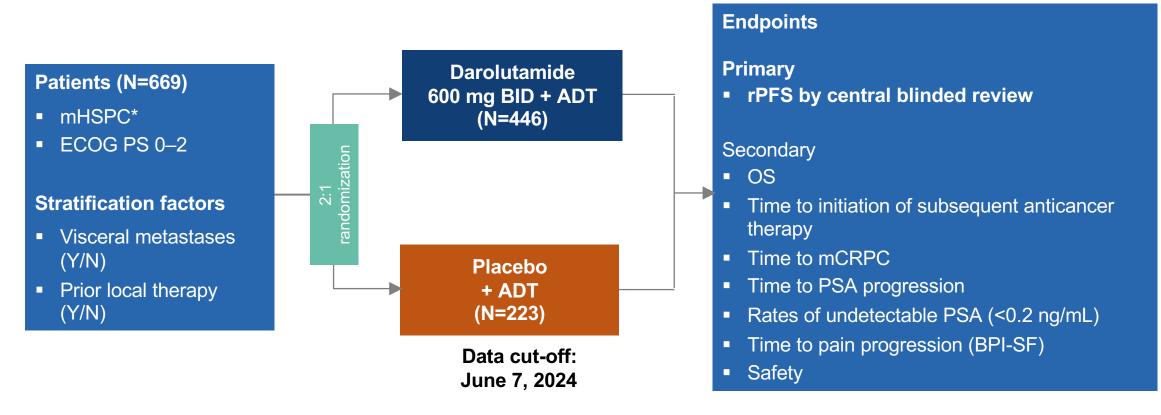
Parker et al Lancet 2018; Armstrong et al JCO 2019 and ESMO/JCO 2021; Davis et al NEJM 2019; James N et al Lancet 2015; Sweeney et al NEJM 2015; Chi KN et al NEJM 2019; Fizazi K et al NEJM 2017; James et al NEJM 2017; Smith MR et al NEJM 2022; Fizazi K et al Lancet 2022


McManus and Armstrong, JCO 2023

ARASENS by Volume

Hussain et al JCO 2023

Triplet Therapy: High Volume De NovomHSPC



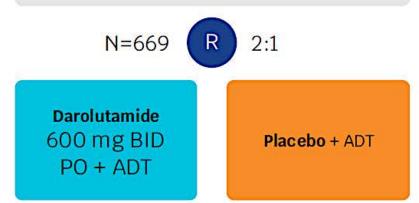
Fizazi K et al Lancet 2023

Duke Dept of Medicine

ARANOTE Study Design

Global, randomized, double-blind, placebo-controlled, phase 3 study

ClinicalTrials.gov: NCT04736199

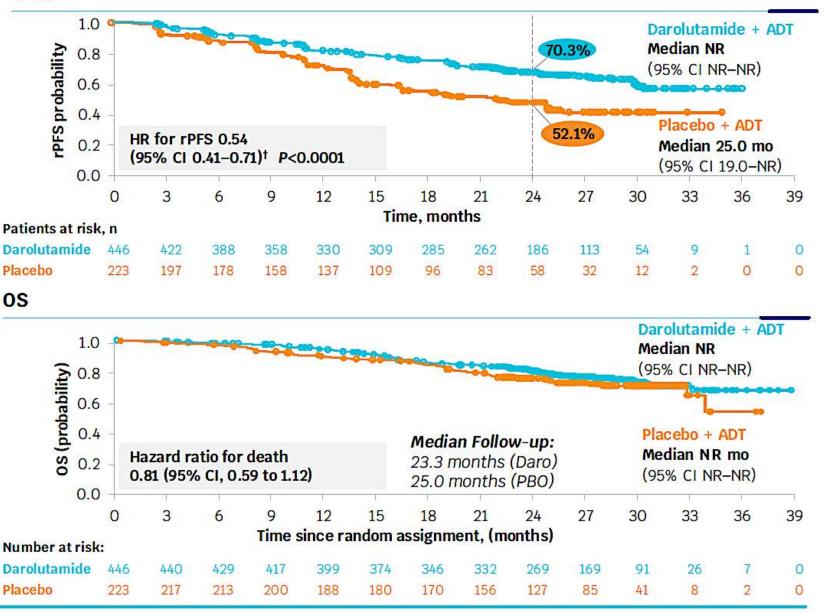

*Metastatic disease confirmed by conventional imaging method as a positive ^{99m}Tc-phosphonate bone scan or soft tissue/visceral metastases on contrast-enhanced abdominal/pelvic/chest CT or MRI scan, assessed by central review. BPI-SF, Brief Pain Inventory-Short Form.

Saad F et al. ESMO 2024; Abstract LBA68

ARANOTE: Study Design Darolutamide + ADT in mHSPC

KEY INCLUSION CRITERIA

- Histologically confirmed mHSPC (by central review)
- Started ADT w/in 12 weeks
- ECOG 0-2

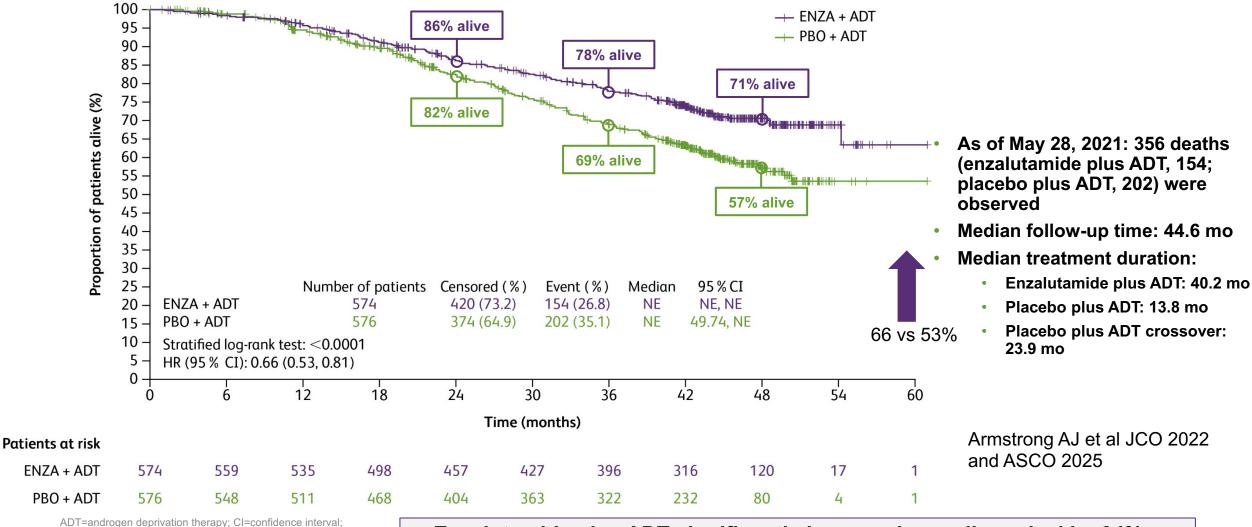


Stratification:

- Presence of visceral metastases assessed by central review
- Prior local therapy versus no local therapy

Primary endpoint: rPFS

Key Secondary Endpoint: OS

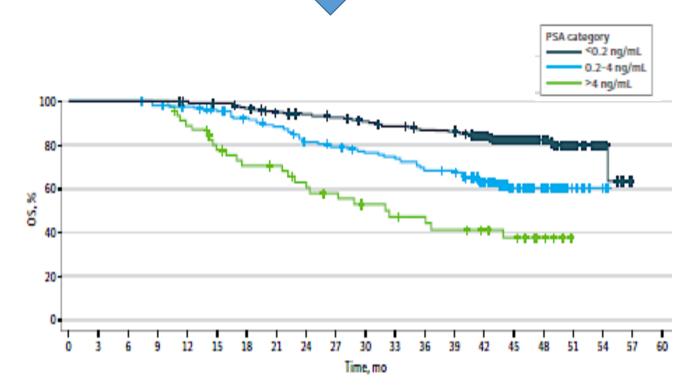


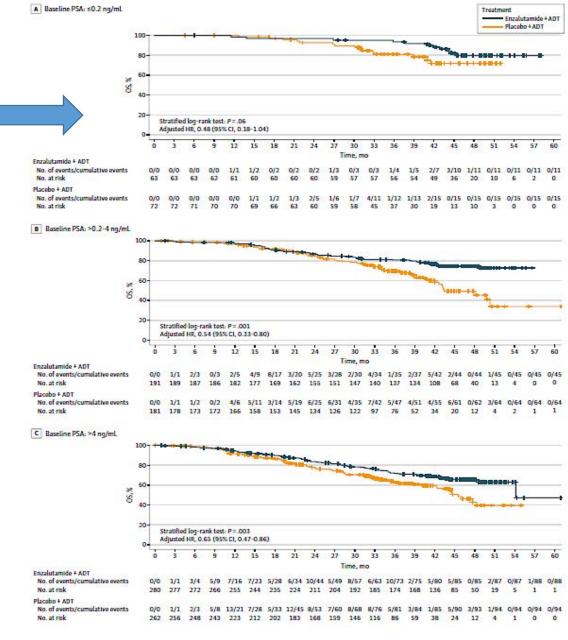
Saad F, et al. JCO 2024.

ARANOTE rPFS: Subgroup Analyses Consistent benefit of darolutamide across all subgroups

rPFS		Darolutamide (n=446)		Placebo (n=223)			
		Events/Patients, n/N	Median, months	Events/Patients, n/N	Median, months	HR (95% CI)*	
Overall population		128/446	NR	94/223	25.0	♦	0.54 (0.41-0.71)
Age subgroups, years	<65	37/118	NR	32/65	14.2		0.44 (0.27–0.71)
	65–74	53/193	NR	35/96	NR		0.64 (0.41-0.98)
	75–84	29/117	NR	22/52	NR		0.48 (0.27-0.83)
	≥85	9/18	27.4	5/10	19.2		0.51 (0.16–1.66)
Deservices DOA such as	< median	58/216	NR	44/111	26.0		0.55 (0.37-0.81)
Baseline PSA values	≥ median	67/220	NR	47/108	22.9		0.55 (0.38–0.80)
	0	61/235	NR	37/98	NR		0.55 (0.37-0.83)
ECOG PS at baseline	≥1	67/211	NR	57/125	22.6		0.56 (0.39-0.79)
	Missing/not assessed	5/13	NR	4/10	13.8		
Gleason score at initial	<8	32/122	NR	30/67	22.9		0.46 (0.28–0.75)
diagnosis	≥8	91/311	NR	60/146	25.1		0.58 (0.42-0.81)
Disease volume	High volume	113/315	30.2	75/157	19.2		0.60 (0.44-0.80)
	Low volume	15/131	NR	19/66	NR		0.30 (0.15-0.60)
	White	76/251	NR	55/125	22.2		0.52 (0.36–0.73)
Pass	Asian	38/144	NR	24/65	25.0		0.59 (0.35–0.98)
Race	Black	10/41	NR	10/24	NR	⊢−−−∎−−− −− 1	0.51 (0.21–1.23)
	Other	4/10	NR	5/9	13.7		
2	Europe and RoW	56/186	NR	39/88	22.6		0.50 (0.33–0.75)
Geographic region	Asia	37/141	NR	23/63	25.0	 ₽	0.60 (0.35–1.01)
	Latin America	35/119	NR	32/72	25.1		0.56 (0.35–0.90)
Viscoral matastasas	Yes	21/53	NR	13/27	25.0		0.71 (0.35–1.41)
Visceral metastases	No	107/393	NR	81/196	25.0	+∎-1	0.52 (0.39–0.69)
Prior local therapy	Yes	19/80	NR	18/40	19.5		0.34 (0.17-0.66)
	No	109/366	NR	76/183	25.0	-₩-1	0.59 (0.44–0.79)
						0.1 HR (95% CI)* Favors Favors darolutamide placebo	0

Overall survival with Enzalutamide (ARCHES): updated Tuesday!

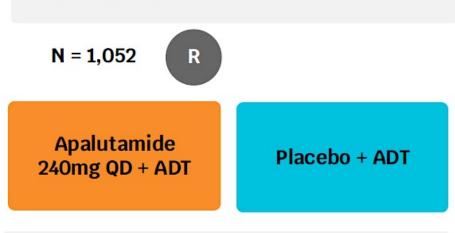

ENZA=enzalutamide; HR=hazard ratio; ITT=intent-to-treat; NE=not evaluable; PBO=placebo.


Slides are property of the author. Permission required for reuse.

 Enzalutamide plus ADT significantly improved overall survival by 34% vs placebo plus ADT

Pre-treatment PSA and Long Term Survival with Doublet Therapy

Post-treatment PSA nadir and Long Term Survival with Doublet Therapy

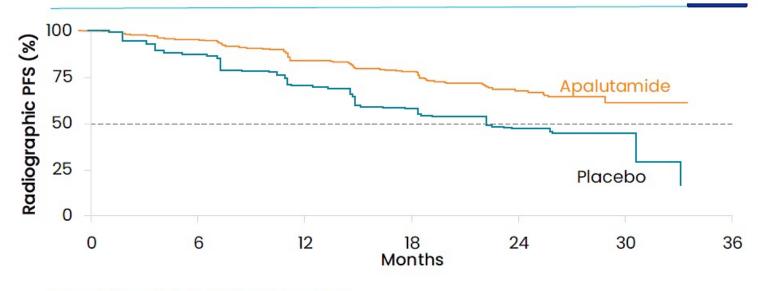


Armstrong AJ et al JAMA Netw Open 2025

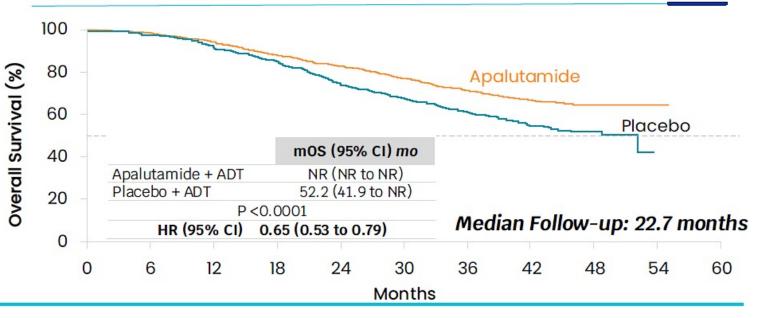
TITAN: Apalutamide in mHSPC

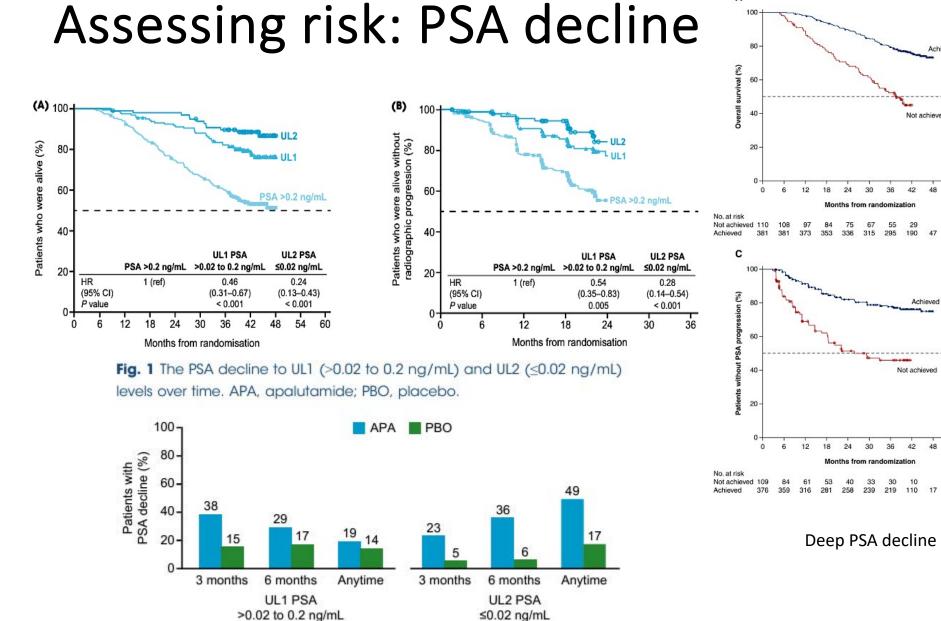
KEY ELIGIBILITY CRITERIA

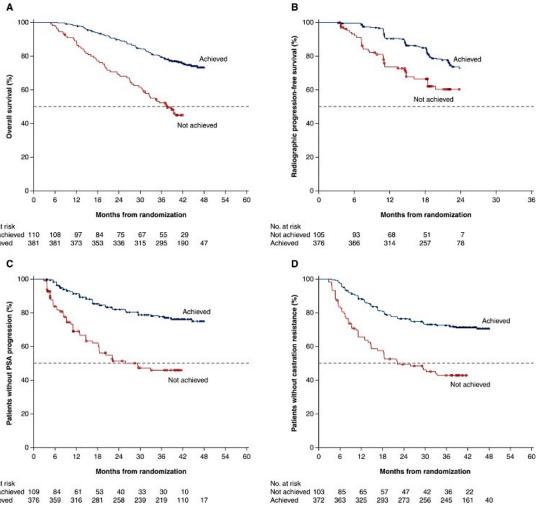
- Castration sensitive
- Distant metastatic disease by >1 lesion on bone scan mHSPC
- ECOG PS 0 or 1


STRATIFICATION FACTORS

- Gleason score at baseline
- Region (NA and EU vs others)
- Prior docetaxel (yes or no)


Primary endpoints:


rPFS and OS


rPFS: Reduced risk of rPFS or death by 52%

OS: Reduced risk of death by 35%

TITAN (apalutamide) Deep PSA decline (>90% decline or <0.2ng/mL) at 3 months

> Merseburger AS et al BJUI Int 2024 Chowdhury S et al Ann Oncol 2023

Abiraterone vs. Enzalutamide vs. Apalutamide vs Darolutamide

Abiraterone acetate

- Requires prednisone
- Mineralocorticoid excess
- Liver and electrolyte monitoring required
- BP monitoring required
- Some CV risk (afib, others)
- Bone density monitoring recommended (fracture risk)
- Exercise recommended (fatigue, muscle loss)
- Beneficial in high and low volume/risk patients
- Can be safely given with RT

Enzalutamide, Apalutamide, Darolutamide

- No prednisone requirement
- No mineralocorticoid excess
- No liver/electrolyte monitoring required
- BP monitoring required
- Fatigue, fracture risk
- Bone density monitoring recommended (fracture risk)
- Exercise recommended (fatigue, muscle loss)
- Minimal seizure risk <1%, but careful in patients with h/o seizures, strokes
- Apalutamide rash in ~30% can be significant (not enzalutamide)
- Beneficial in high and low volume/risk patients
- Can be safely given with RT

Indirect Comparison: Enza + ADT vs Daro + ADT

Indirect treatment comparison of ENZA + ADT versus DARO + ADT

Outcome	Population	ESS	Matching-adjusted estimates, forest plot	Matching-adjusted estimates, HR (95% CI); <i>P</i> -value	Unadjusted Bucher estimate, HR (95% CI); <i>P</i> -value
	Total population	319	, • •	0.54 (0.32 – 0.93); 0.03	0.72 (0.50 – 1.05); 0.09
rPFS	DOC-naïve population	263	ii	0.47 (0.26 – 0.84); 0.01	0.69 (0.49 – 1.01); 0.06
Time to castration	Total population	319	F	0.57 (0.34 – 0.94); 0.03	0.70 (0.50 – 0.98); 0.04
resistance	DOC-naïve population	263	ii	0.46 (0.27 – 0.79); 0.01	0.63 (0.44 – 0.90); 0.01
	Total population	319	F • · · · · ·	0.61 (0.29 – 1.30); 0.20	0.61 (0.39 – 0.96); 0.03
Time to PSA progression	DOC-naïve population	263	· •	0.48 (0.21 – 1.10); 0.08	0.58 (0.37 – 0.91); 0.02
		Favor	0 0.5 1 1.5 2 SENZA + ADT Favors DARO +		

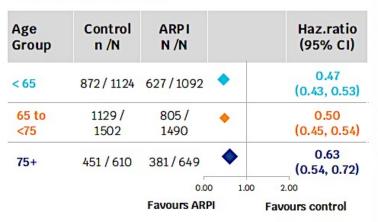
STOPCAP: Assessing benefit of ARPIs across large trials in mHSPC

Trials

- 1. LATITUDE: M1, ADT +/abiraterone
- 2. SWOT S1216: M1, ADT +/-TAK700 (orteronel)
- ENZAMET: M1, ADT + bicalutamide vs ADT + enzalutamide
- 4. STAMPEDE: M1 or N1, arm G (abi)
- 5. STAMPEDE: M1 or N1, arm J (abi + enza)
- 6. TITAN: Apalutamide
- 7. PEACE-1: Abi, doce, RT

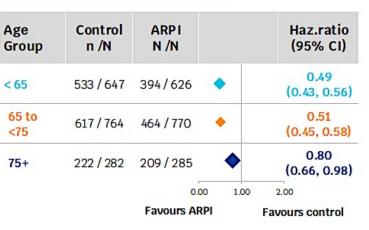
	PF	S in ARPI	trials	;		05	across all	trials		
Age Group	Control n /N	ARPI N /N		Haz.ratio (95% CI)	Class of agent and Study	ARPI n / N	Control n /N		Haz.ratio (95% CI)	% Weigh
< 65	872 / 1124	627/1092		0.47	Abiraterone trials					
				(0.43, 0.53)	STAMPEDE	293 / 501	371 / 502	H a ti	0.61 (0.52, 0.71)	19.97
65 to <75	1129 / 1502	805/1490	٠	0.50 (0.45, 0.54)	LATITUDE	275 / 597	343/602	H A H	0.66 (0.56, 0.78)	18.76
75+	451/610	381/649		0.63	PEACE-1, no RT	149 / 292	177/296	I 💌	0.86 (0.69, 1.08)	9.74
C.T.C.				(0.54, 0.72)	PEACE-1, RT	138 / 291	175/293	H 	0.72 (0.57, 0.90)	9.36
		0.0 Favours ARI		0 2.00 Favours control	Subgroup	855 / 1681	1066 / 1693	•	0.68 (0.62, 0.75)	57.83
					(Cochran Q = 6.66 on 3 c	l.f., p = 0.083)				
	PFS in	abirater	one tr	rials	Other ARPI trials					
Age	Control	ARPI		Haz.ratio	ENZAMET	208 / 563	268/562	, internet in the second secon	0.67 (0.56, 0.81)	14.49
Group	n /N	N /N		(95% CI)	TITAN	170 / 525	235/527	Here H	0.59 (0.49, 0.73)	12.03
< 65	533 / 647	394/626		0.49 (0.43, 0.56)	Subgroup	378/1088	503/1089	•	0.64 (0.56, 0.73)	26.51
					(Cochran Q = 0.80 on 1 c	l.f., p = 0.37)				
65 to <75	617/764	464/770		0.51 (0.45, 0.58)	Abiraterone + Other ARPI					
75+	222 / 282	209 / 285	•	0.80	STAMPEDE	228 / 462	292/454	H	0.64 (0.54, 0.77)	15.66
		F		(0.66, 0.98)	Overall	1461/3231	1861 / 3236	•	0.66 (0.62, 0.71)	100.00
	0.00 1.00 2.00 Favours ARPI Favours control									

Majority of patients benefit (PFS and OS), impact less in oldest population.


No clear difference by class of agent.

Adapted from Fisher D, et al. ASCO GU 2025

STOPCAP: Assessing benefit of ARPIs across large trials in mHSPC


Effect of ARPIs by Age Group

PFS in ARPI trials

Effect of ARPIs by Age Group: Abiraterone Trials

PFS in abiraterone trials

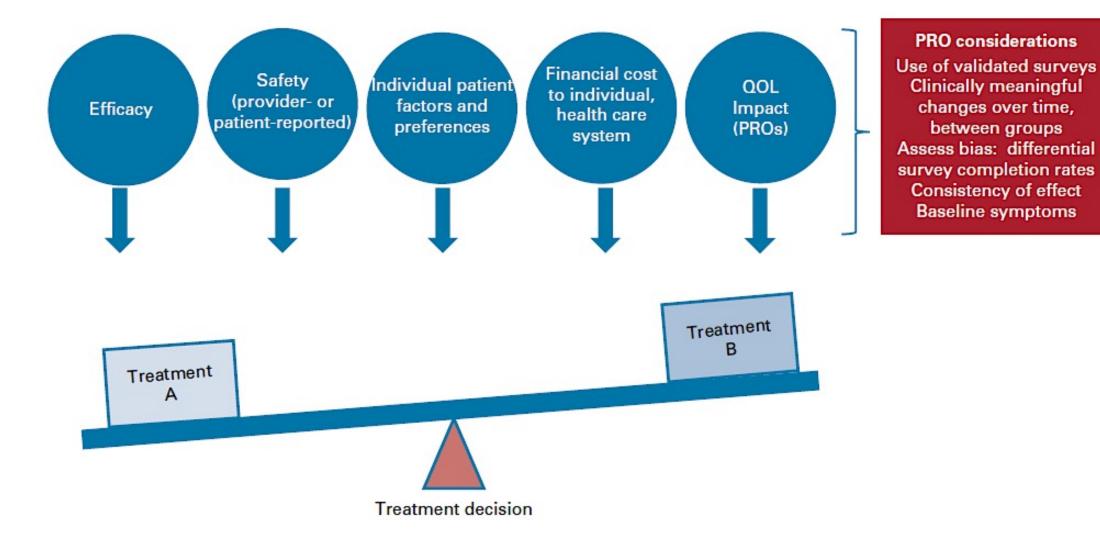
OS in abiraterone trials

Age Group	Control n /N	ARPI N /N		Haz.ratio (95% CI)
< 65	399 / 647	301 / 626	•	0.65 (0.56, 0.76)
65 to <75	485 / 764	373 / 770	•	0.62 (0.54, 0.72)
75+	182 / 282	181 / 285	•	1.01 (0.82, 1.26)
		0.00	1.00	2.00
		Favours ARPI		Favours control

Effect of ARPIs by Age Group: Amide Trials

PFS in amide trials

Age Group	Control n /N	ARPI N /N		Haz.ratio (95% CI)
< 65	339 / 477	233 / 466	•	0.46 (0.39, 0.55)
65 to <75	512 / 738	341 / 720	•	0.48 (0.42, 0.55)
75+	229/328	172 / 364	•	0.47 (0.38, 0.58)
		O. Favours Af		2.00 Favours control


OS in amide trials

Age Group	Control n /N	ARPI N /N		Haz.ratio (95% CI)
< 65	246 / 477	179 / 466	٠	0.61 (0.50, 0.75)
65 to <75	362/738	285 / 720	•	0.69 (0.59, 0.81)
75+	187 / 328	142 / 364	•	0.57 (0.45, 0.71)
		0.0 Favours ARI		2.00 Favours control

OS in ARPI trials

Age Group	Control n /N	ARPI N /N		Haz.ratio (95% CI)
< 65	645 / 1124	480 / 1092	٠	0.63 (0.56, 0.71)
65 to <75	847/1502	658 / 1490	•	0.65 (0.59, 0.72)
75+	369/610	323 / 649	•	0.77 (0.66, 0.90)
		0.00 Favours ARP		2.00 Favours control

Making the Decision: mHSPC

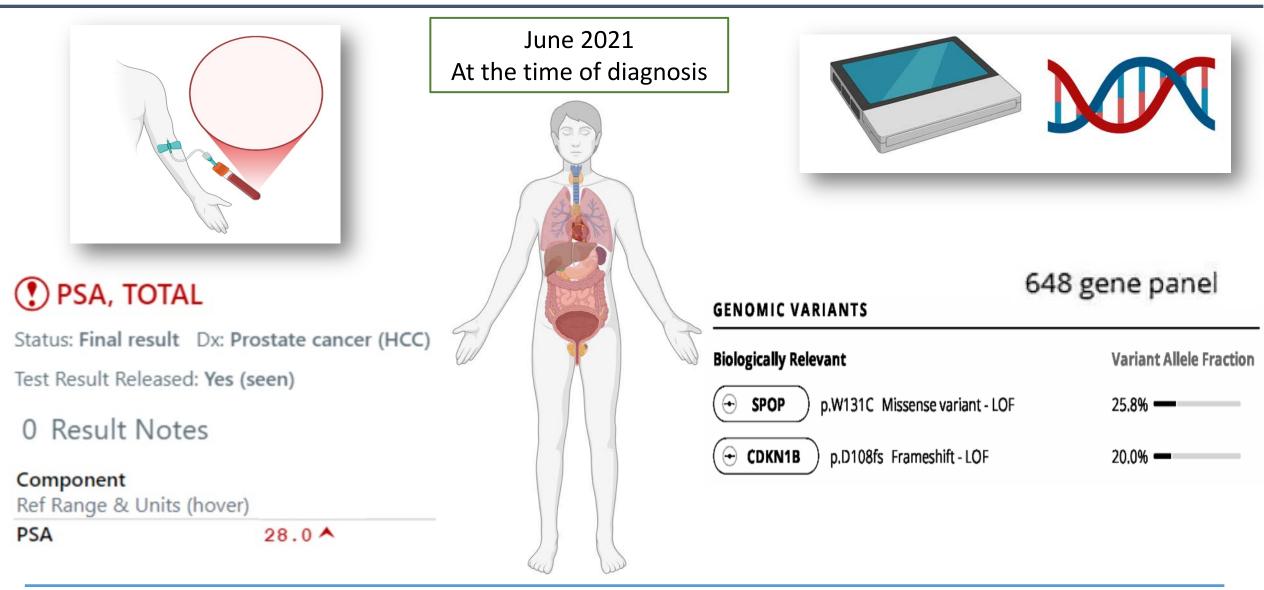
Conclusions



- The standard of care for low volume mHSPC based on conventional imaging is doublet ADT/ARPI (LEVEL 1 EVIDENCE, SURVIVAL BENEFIT)
 - Radiation to the primary for those with synchronous metastases
 - Radiation to metastatic sites may be beneficial but is presently under study!
 - STAMPEDE 2 Treatment Arm S: Stereotactic Ablative Body Radiotherapy (SABR), a type of radiotherapy to up to 5 PSMA PET + sites
 - Emerging/ongoing trials of ARPI/PARPIs (AMPLITUDE, TALAPRO-3, EVOPAR-02), Lu177-PSMA-617 (PSMAddition), AKTi (capivasertib in Capitello-281)
- Many patients would love to have a treatment holiday or to stop therapy altogether if remission is achieved in this setting
 - EMBARK, EXTEND trials establish this proof of concept
 - New trials are needed to test MDT in the setting of brief ADT/ARPI use in this oligomet HSPC setting with the goal of maintaining survival but extending treatment free intervals!

Faculty Case Presentations

Case Presentation – Dr Agarwal: ADT + Apalutamide in mHSPC


IMPRESSION:

Widespread skeletal metastases throughout the axial and appendicular skeleton with some new foci of uptake in the spine and increased uptake in one focus of the sternum and one focus of the ileum

Case Presentation – Dr Agarwal: ADT + Apalutamide in mHSPC (cont'd)

July 2021 Patient started on ADT + Apalutamide

TOTAL SERUM Status: Final result Test Result Released:	Dx: Prostate cancer	TOTAL SERUM PSA - Status: Final result Dx: Prostate cancer (HCC) Test Result Released: Yes (seen)	
0 Result Not Newer resu Component Ref Range & Units (hover) Prostate Specific			M <0.1 ^{CM}
Antigen		Specific CM Antigen -	

QUESTIONS FOR THE FACULTY

When combining an AR pathway inhibitor with ADT for a patient with mHSPC, do you have a preference for a specific agent? How do you choose among them for individual patients?

Do recent findings suggesting that abiraterone may yield less benefit than enzalutamide or apalutamide for patients aged 75 years or older diminish your enthusiasm for that strategy in older patients?

Would you ever consider a treatment break (similar to the EMBARK strategy in nmHSPC) for a patient such as this with metastatic disease but an undetectable PSA on therapy?

Case Presentation – Dr Beltran: 55 yo gentleman

- Presented to PCP and had his first screening PSA.
 - PSA 664 ng/dL
- Feels well overall. Reports frequency and 2-3 x nocturia, no back pain, fatigue, wt changes or other symptoms
- Prostate biopsy: Gleason 4+4 prostate adenocarcinoma
- PSMA PET : enlarged pelvic and retroperitoneal lymph nodes and high volume of bone metastases and multiple subcm lung lesions
- Started on degarelix
- He is presenting to discuss additional treatment recommendations
 - His PSA is now 98 ng/mL with testosterone <10 ng/dL
- Otherwise healthy, hx of hypertension controlled on amlodipine and HCTZ

QUESTIONS FOR THE FACULTY

What would you most likely recommend for this patient at this time?

For which types of patients are you prioritizing the combination of ADT/docetaxel/darolutamide over available doublet options? Do you believe all patients with mHSPC who receive cytotoxic therapy should also receive secondary hormonal therapy? Is docetaxel/ADT still an acceptable strategy under any circumstances?

Would you attempt to combine any other secondary hormonal agents (enzalutamide, apalutamide or abiraterone) with docetaxel and ADT for a patient with mHSPC?

Agenda

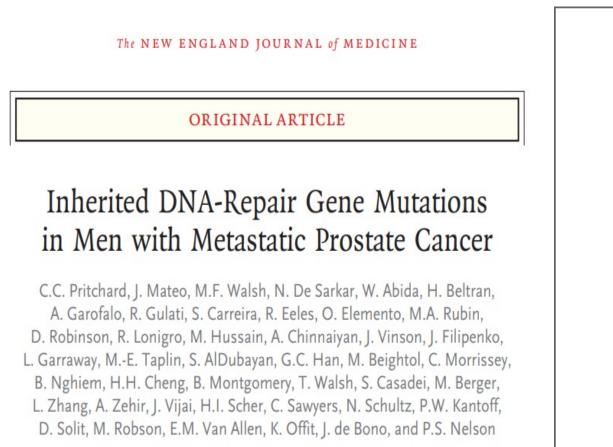
MODULE 1: Evolving Management of Nonmetastatic Hormone-Sensitive Prostate Cancer (HSPC) — Dr Saad

MODULE 2: Current Treatment for Metastatic HSPC — Dr Armstrong

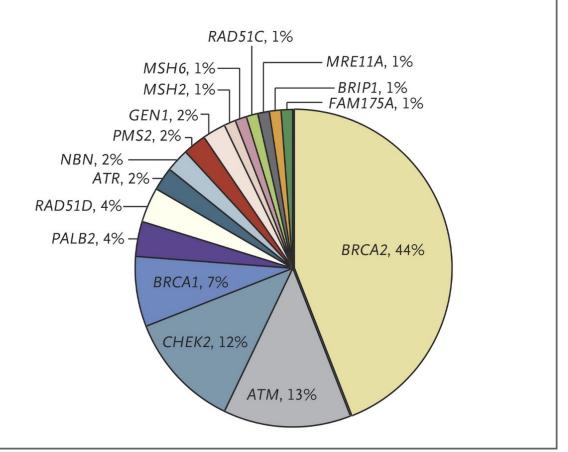
MODULE 3: Role of PARP Inhibition in Metastatic Castration-Resistant Prostate Cancer (mCRPC) — Dr Agarwal

MODULE 4: Current and Future Use of Radiopharmaceuticals for mCRPC — Dr McKay

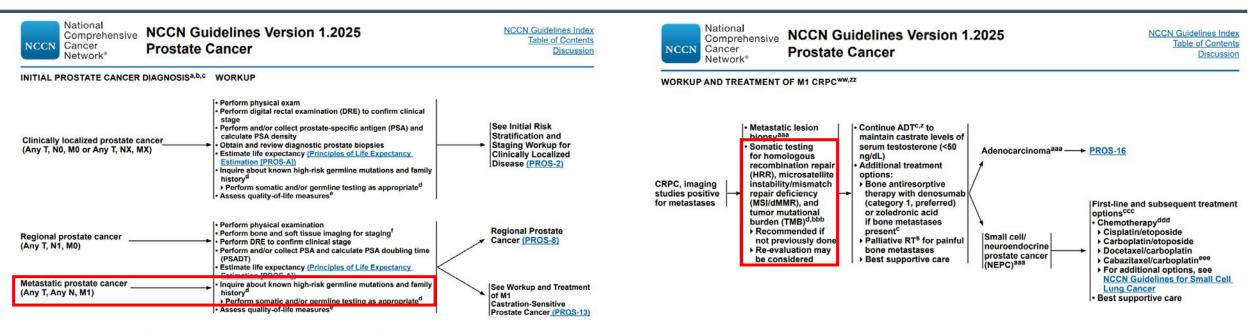
MODULE 5: Promising Novel Agents and Strategies Under Investigation for the Management of Prostate Cancer — Dr Beltran


The Role of PARP Inhibition in Metastatic Castration-Resistant Prostate Cancer

Neeraj Agarwal, MD, FASCO Professor of Medicine (Medical Oncology) Senior Director for Clinical Translation, Huntsman Cancer Institute (HCI) HCI Presidential Endowed Chair of Cancer Research Director, Center of Investigational Therapeutics Director, Genitourinary Oncology Program Huntsman Cancer Institute, University of Utah (NCI-CCC)



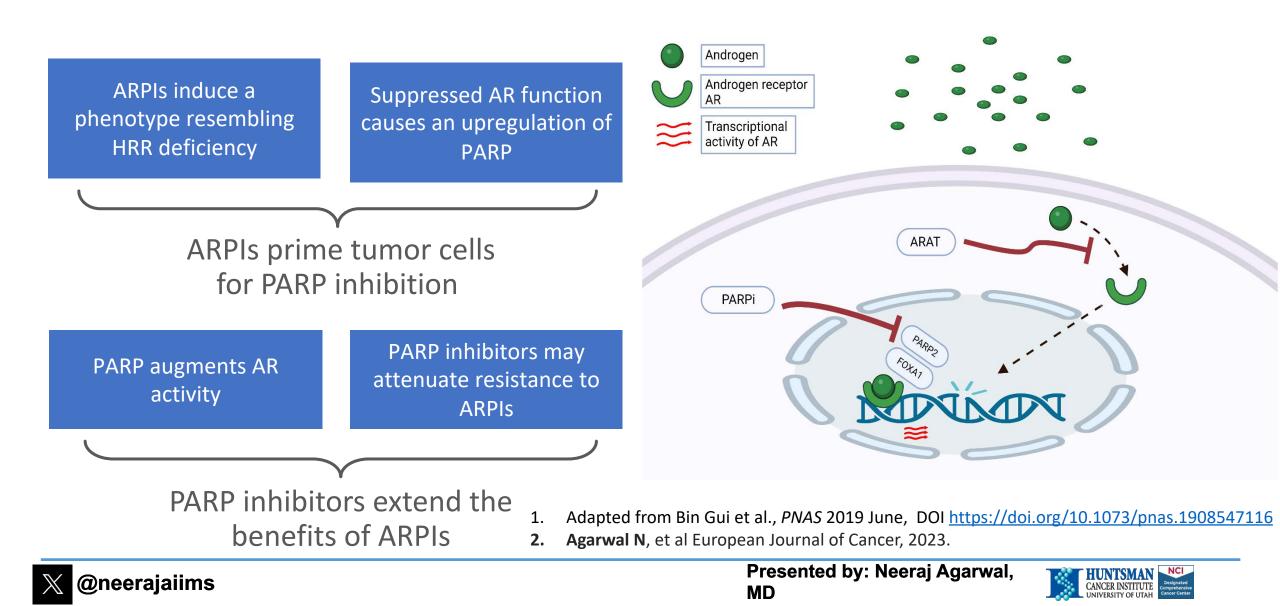
Germline HRR mutations in metastatic prostate cancer


@neerajaiims

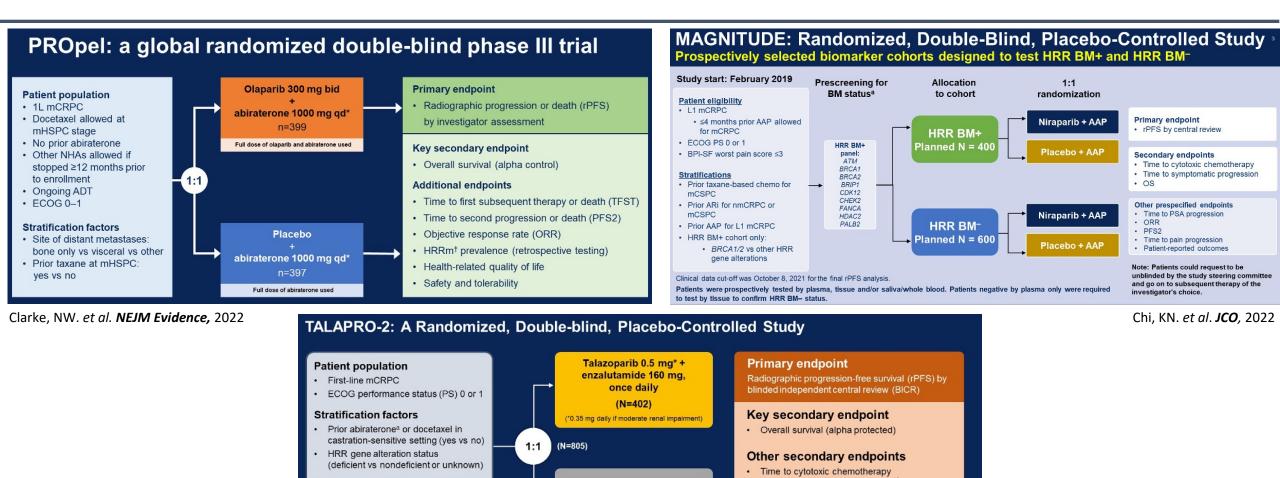
Pritchard et al. NEJM 2016

Indications for and practical implementation of genetic testing

TABLE 1. Summary of All Recommendations


Clinical Question	Recommendation				
General note. The following recommendations (strong or conditional/weak) and terminology (see Data Supplement) represent reasonable options for pa depending on clinical circumstances and in the context of individual patient preferences. Recommended care should be accessible to patients whe possible					
Who should receive germline testing with NGS technologies?	 <u>All patients</u> with metastatic prostate cancer should undergo germline genetic testing with next-generation sequencing technologies. (Evidence quality: High; Strength of recommendation: Strong) 				
Who should receive somatic testing with NGS technologies?	 Those patients with metastatic prostate cancer (both CSPC and CRPC) who are being considered for biomarker-directed systemic treatment should un- dergo somatic testing with next-generation sequencing technologies. (Evi- dence quality: High; Strength of recommendation: Strong) 				
	Practical information for Recommendation 2: While there are no current FDA- approved biomarker-directed treatments following somatic testing for mCSPC, somatic testing may be warranted in the presence of high-volume disease or where there is a high likelihood the patient's disease will progress to CRPC, where the patient is a candidate for future treatment with a biomarker- directed therapy (PARP inhibitor or checkpoint inhibitor).				
Who should receive sequential somatic testing with NGS technologies?	3. The panel recommends that sequential somatic testing may be offered when there has been a meaningful change in the patient's status or treatment plan, especially in cases where prior tests were negative or uninformative (eg, insufficient or low tumor content). (Evidence quality: Moderate; Strength of recommendation: Weak)				

Yu et al*, JCO,* 2025



The rationale for combining PARPi with ARPI

Phase 3 PARPi + ARPI Trials Design

Placebo +

enzalutamide 160 mg, once

daily

(N=403)

All comers (Cohort 1), N=805

HRRm

N=169

HRRm

N=230

HRRm only (Cohort 2), N=399

Nondeficient

or unknown

N=636

💥 @neerajaiims

Presented by: Neeraj Agarwal, MD

PFS2 by investigator assessment

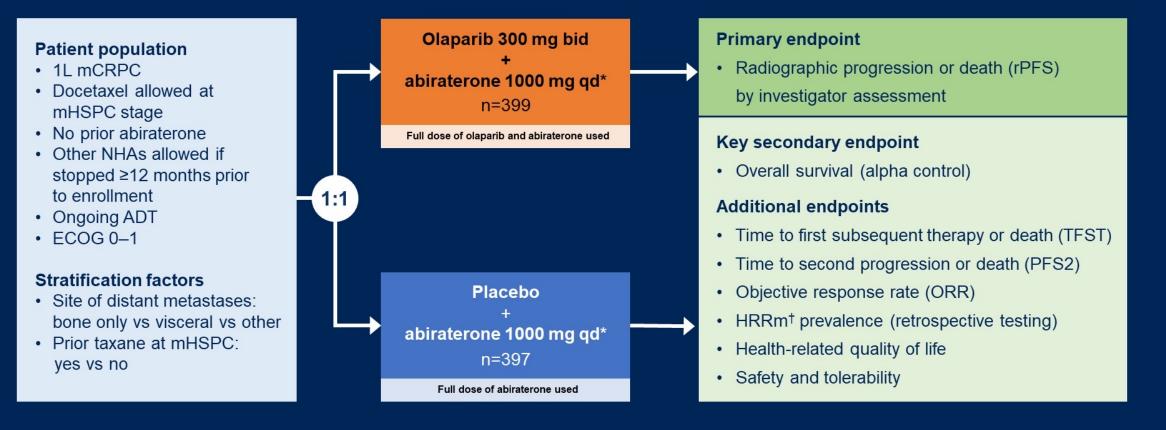
(Data cutoff: August 16, 2022)

Objective response rate (ORR)

Patient-reported outcomes

Safety

Samples prospectively assessed for HRR gene alterations (BRCA1, BRCA2, PALB2, ATM, ATR.


CHEK2, FANCA, RAD51C, NBN, MLH1, MRE11A, CDK12) using FoundationOne[®]CDx and/or

FoundationOne[®]Liquid CDx

Agarwal. N. et al. Lancet. 2023.

PROpel: a global randomized double-blind phase III trial

First patient randomized: Nov 2018; Last patient randomized: Mar 2020; DCO1: July 30, 2021, for interim analysis of rPFS and OS.

Multiple testing procedure is used in this study: 1-sided alpha of 0.025 fully allocated to rPFS. If the rPFS result is statistically significant, OS to be tested in a hierarchical fashion with alpha passed on to OS.

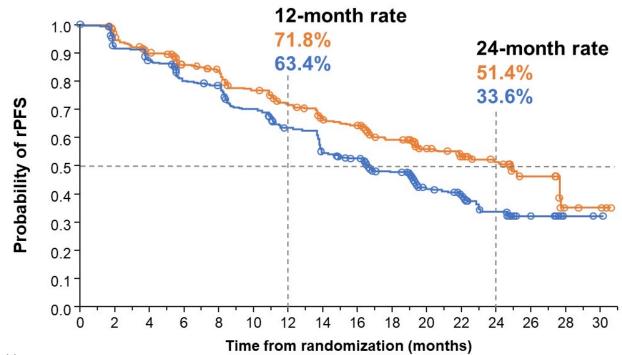
Please access the Supplement via the QR code at the end of this presentation for more details.

*In combination with prednisone or prednisolone 5 mg bid. †HRRm, homologous recombination repair mutation, including 14 genes panel.

ADT, androgen deprivation therapy; bid, twice daily; ECOG, Eastern Cooperative Oncology Group; mHSPC, metastatic hormone sensitive prostate cancer; qd, daily

@neerajaiims

PRESENTED BY: Professor Fred Saad



PROpel primary endpoint: rPFS by investigator-assessment

34% risk reduction of progression or death with olaparib + abiraterone

	Olaparib + abiraterone (n=399)	Placebo + abiraterone (n=397)			
Events, n (%)	168 (42.1)	226 (56.9)			
Median rPFS (months)	24.8	16.6			
HR (95% CI)	0.66 (0.54–0.81); <i>P</i> <0.0001				
	Pre-specified 2-sided alpha: 0.032				

Median rPFS improvement of 8.2 months favors olaparib + abiraterone*

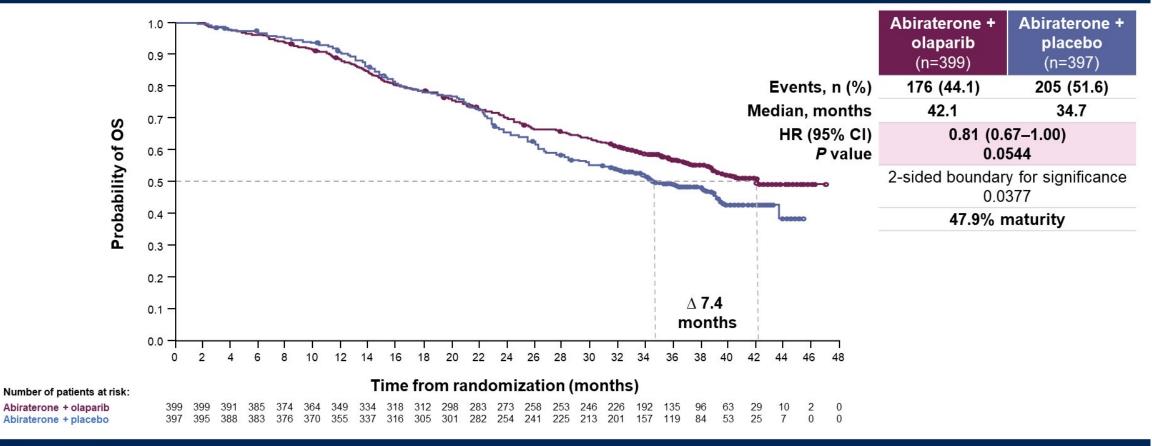
No. at risk

Olaparib + abiraterone 399 395 367 354 340 337 313 309 301 277 274 265 251 244 277 221 219 170 167 163 104 100 87 59 57 28 26 25 -5 Placebo + abiraterone 397 393 359 356 338 334 306 303 297 266 264 249 232 228 198 190 186 143 141 137 87 84 73 45 43 21 17 16

Events: 394; Maturity 49.5% *In combination with prednisone or prednisolone CI, confidence interval; HR, hazard ratio.

ASCO Genitourinary **Cancers Symposium**

Presented by: Neeraj Agarwal, MD



KNOWLEDGE CONQUERS CANCER

LINICAL ONCOLOGY

PROpel: OS at final pre-specified analysis (DCO3)

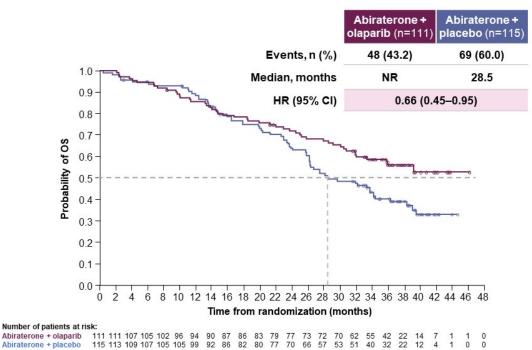
In the ITT population, median OS was >7 months longer in the abiraterone + olaparib arm

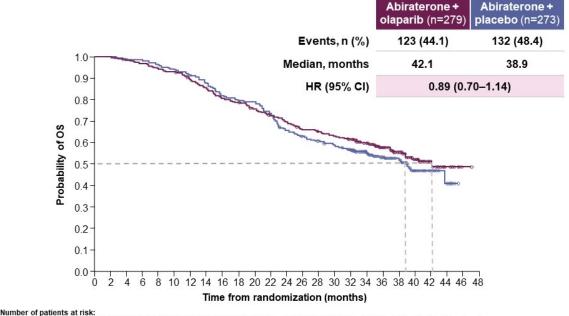
DCO3: 12 October 2022.

Median (range) duration of follow-up for censored patients at DCO3 was 36.6 months (8.3–47.0) in the abiraterone + olaparib arm and 36.5 months (2.9–45.3) in the abiraterone + placebo arm.

ASCO[°] Genitourinary Cancers Symposium

PRESENTED BY: Professor Noel Clarke




PROpel: OS in HRRm and non-HRRm subgroups (DCO3)

A trend towards OS benefit was observed across HRRm and non-HRRm subgroups

HRRm (28.4% of ITT population)

Non-HRRm (69.3% of ITT population)

 Abiraterone + olaparib
 279
 279
 275
 271
 263
 260
 247
 236
 223
 218
 207
 198
 190
 179
 175
 170
 160
 134
 92
 73
 48
 22
 9
 1
 0

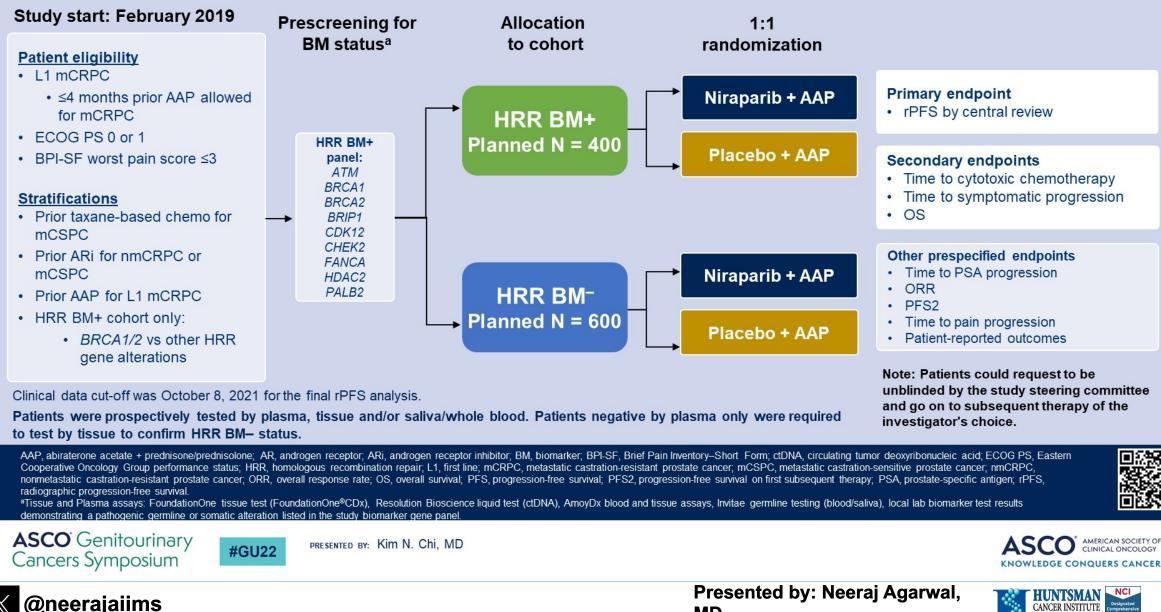
 Abiraterone + placebo
 273
 273
 270
 267
 262
 256
 247
 237
 222
 216
 214
 198
 177
 168
 162
 155
 145
 114
 84
 59
 39
 21
 6
 0
 0

DCO3: 12 October 2022.

The preplanned tumor tissue and plasma ctDNA testing was conducted after randomization and before primary analysis. Results from tumor tissue and plasma ctDNA were combined to determine patients HRRm status (see supplement for more details). 18 patients had unknown HRRm status.

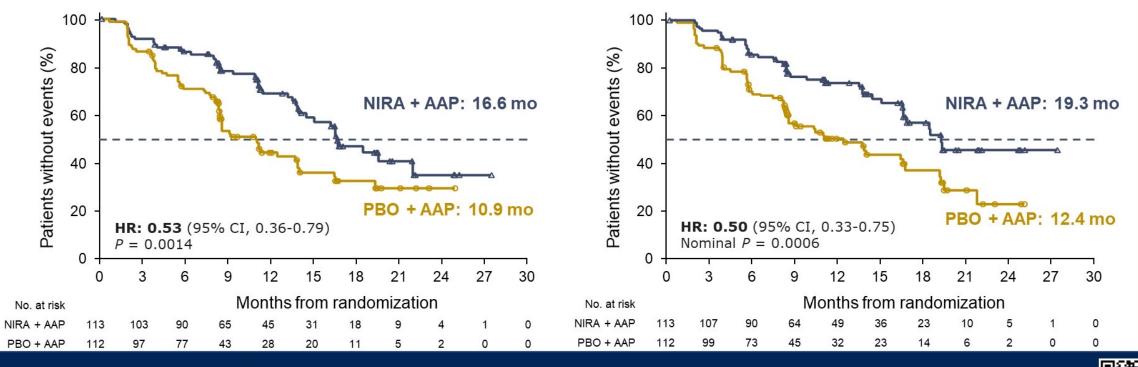
ASCO Genitourinary Cancers Symposium

PRESENTED BY: Professor Noel Clarke



💥 @neerajaiims

MAGNITUDE: Randomized, Double-Blind, Placebo-Controlled Study Prospectively selected biomarker cohorts designed to test HRR BM+ and HRR BM-

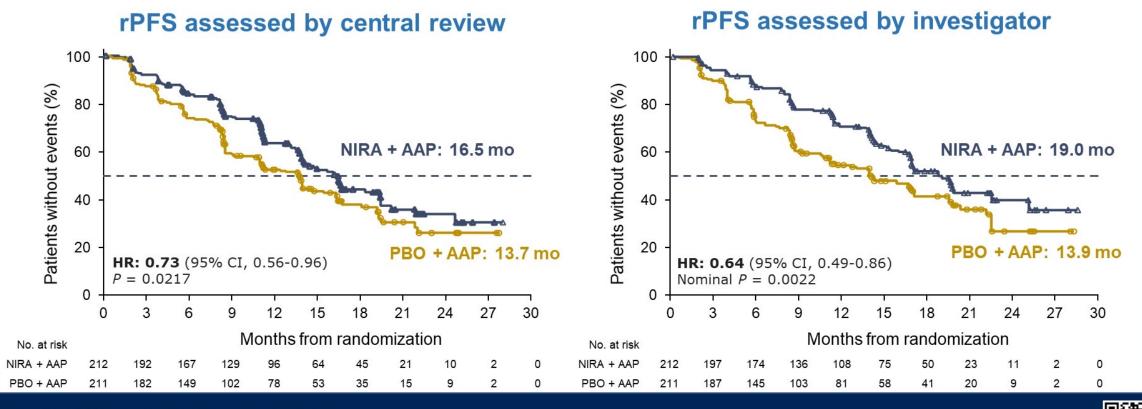

MD

CANCER INSTITUTE

MAGNITUDE BRCA1/2-mutated: **Primary Endpoint** NIRA + AAP Significantly Reduced the Risk of Progression or Death by 47%

Median follow-up 16.7 months

AAP, abiraterone acetate + prednisone/prednisolone; Cl, confidence interval; HR, hazard ratio; NIRA, niraparib; PBO, placebo; rPFS, radiographic progression-free survival

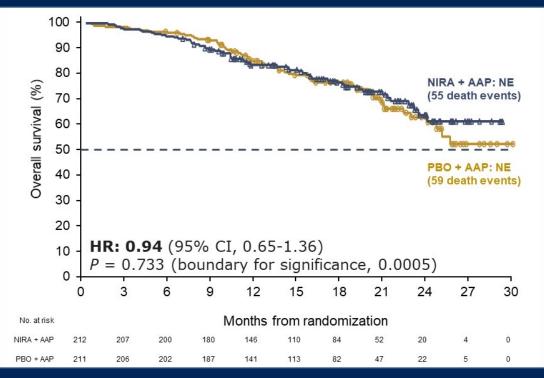


MAGNITUDE <u>All HRR BM+</u>: **Primary Endpoint** NIRA + AAP Significantly Reduced the Risk of Progression or Death by 27%

Median follow-up 18.6 months

AAP, abiraterone acetate + prednisone/prednisolone; BM, biomarker; CI, confidence interval; HR, hazard ratio; HRR, homologous recombination repair; NIRA, niraparib; PBO, placebo; rPFS, radiographic progression-free survival.

ASCO[•] Genitourinary Cancers Symposium



MAGNITUDE All HRR BM+: Overall Survival First Interim Analysis With Median Follow-up of 18.6 Months

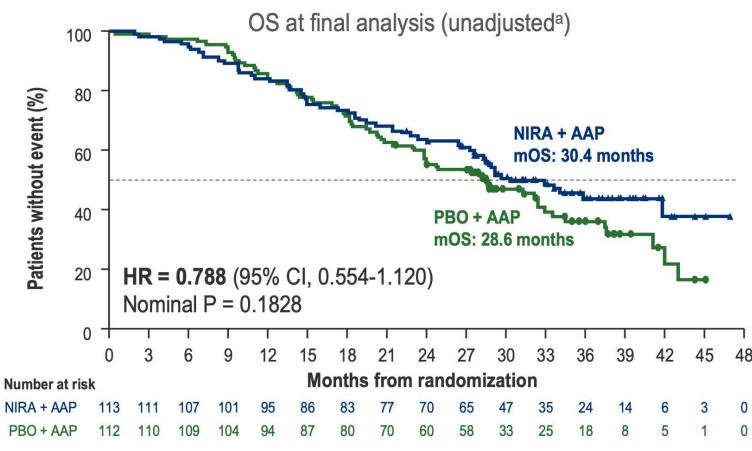
27% of deaths in the study population observed at overall survival interim analysis and thus these data are immature

Pre-specified Overall Survival Multivariate Analysis

- A multivariate analysis accounting for baseline characteristics shows overall survival favors the NIRA + AAP arm
- Overall survival HR = 0.767 (95% CI, 0.525-1.119; nominal P = 0.1682)

AAP, abiraterone acetate + prednisone/prednisolone; BM, biomarker; CI, confidence interval; HR, hazard ratio; HRR, homologous recombination repair; NE, not estimable; NIRA, niraparib; PBO, placebo

PRESENTED BY: Kim N. Chi, MD



MAGNITUDE Final Analysis

Secondary endpoint: OS favored NIRA + AAP over PBO + AAP in BRCA+ patients

Preplanned multivariate analysis (MVA) using prespecified prognostic factors supported an OS benefit of NIRA + AAP

MVA: HR = 0.663 (95% Cl, 0.464-0.947); nominal P = 0.0237

^aDoes not account for baseline imbalances. mOS, median overall survival.

@neerajaiims

Dr Kim Chi

TALAPRO-2: Trial Design

Patient population

- 1L mCRPC
- ECOG 0 or 1
- Ongoing androgen deprivation therapy

Stratification factors

- Prior abiraterone^a or docetaxel for CSPC (yes vs no)
- HRR gene alteration status (deficient vs non-deficient or unknown)^b

Talazoparib + enzalutamide

(N=402)

Placebo + enzalutamide

(N=403)

Unselected Cohort 1 (N=805)

^aPrior orteronel was received by two patients in each treatment arm in Cohort 1 and one patient in each treatment arm in Cohort 2. ^bUnselected cohort only. BICR=blinded independent central review; CSPC=castration-sensitive prostate cancer; DCO=data cutoff; ORR=objective response rate; PFS2=time to second progression or death.

1:1

ASCO[°] Genitourinary Cancers Symposium

PRESENTED BY: Professor Neeraj Agarwal

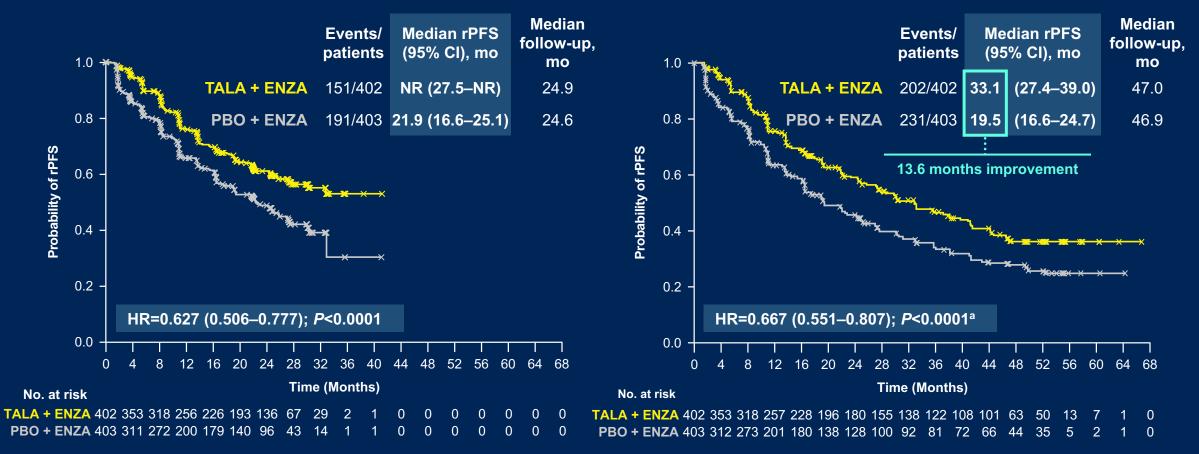
Primary endpoint

• rPFS by BICR

Key secondary endpoint

• OS (alpha protected)

Other secondary endpoints


- Time to cytotoxic chemotherapy
- PFS2
- ORR
- Patient-reported outcomes
- Safety

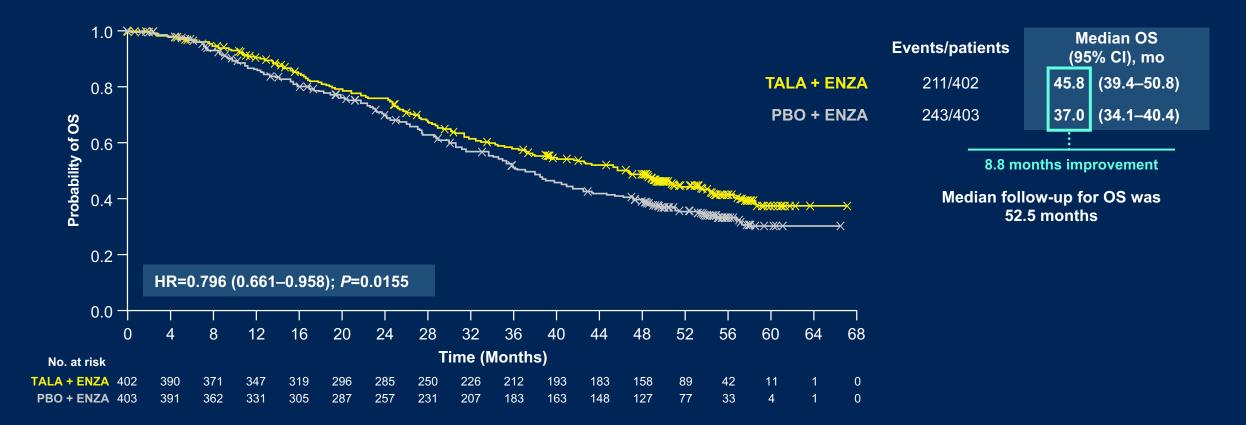
Primary Endpoint: rPFS by BICR

Statistically significant and clinically meaningful benefit maintained with ~2 years of additional follow-up

Primary analysis (DCO: Aug 16, 2022)¹

Update (DCO: Sept 3, 2024)

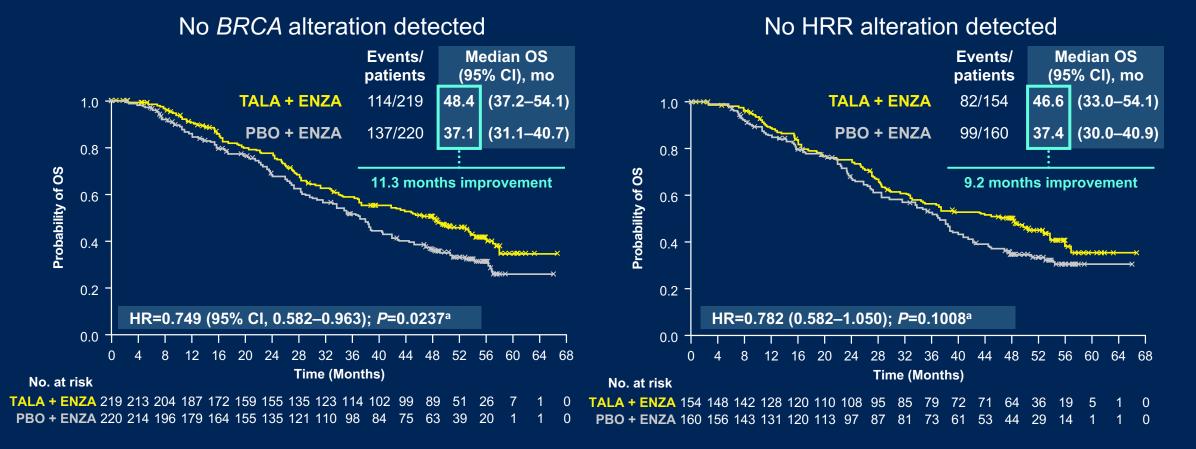
Stratified hazard ratios (HRs) and 2-sided *P* values are reported throughout this presentation unless otherwise stated. ^aThe updated rPFS data are descriptive. DCO=data cutoff; ENZA=enzalutamide; NR=not reached; PBO=placebo; TALA=talazoparib. 1. Reproduced with permission from Agarwal N, et al. *Lancet*. 2023;402:291-303.


ASCO[°] Genitourinary Cancers Symposium

Overall Survival (Final Analysis)

20.4% reduction in risk of death, >8 months improvement in median OS

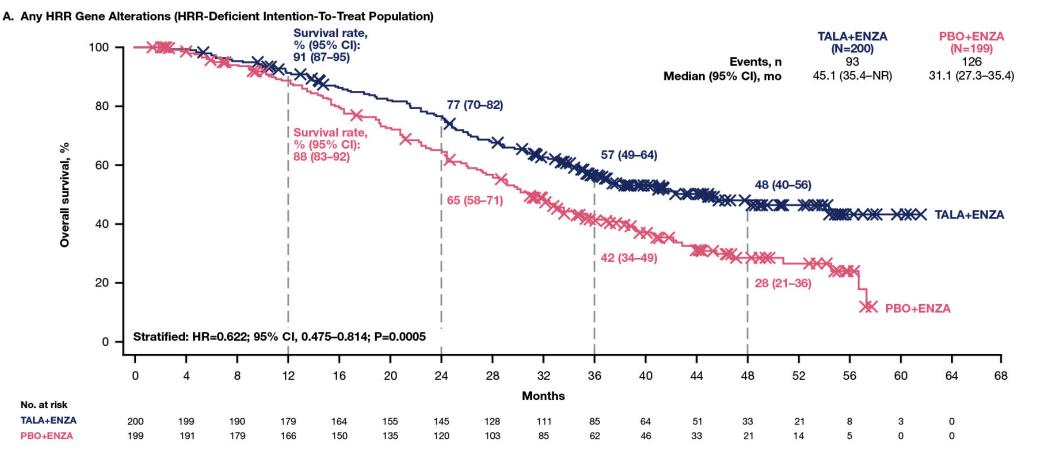
For statistical significance at the final overall survival analysis, the stratified log-rank 2-sided *P* value needed to be ≤0.022 based on a group sequential design with O'Brien-Fleming spending function. Data cutoff: September 3, 2024.


ASCO[°] Genitourinary Cancers Symposium

Overall Survival in Subgroups With No Alterations Detected by <u>Both</u> ctDNA and Tumor Tissue

Clinically meaningful reduction in risk of death in patients without BRCA or HRR alterations

Post hoc analysis employing all available test results of prescreening/screening samples including both prospective and retrospective analyses. Data cutoff: September 3, 2024. aReported *P* values are nominal and descriptive.


ASCO[°] Genitourinary Cancers Symposium

#GU25

PRESENTED BY: Professor Neeraj Agarwal

Final Overall Survival Analysis in Patients with any HRR Gene Alterations (HRR-deficient Intention-to-Treat Population)

CI=confidence interval; ENZA=enzalutamide; HR=hazard ratio; HRR=homologous recombination repair; mo=months; NR=not reached; PBO=placebo; TALA=talazoparib Fizazi, K et al. J Clin Oncol. 2025;43(suppl 5):Abstract LBA141.

FDA's Oncologic Drugs Advisory Group Unanimously Voted Against Broad Label Expansion for Talazoparib in Combination with Enzalutamide for Patients with mCRPC

On May 21, 2024, the FDA's Oncologic Drugs Advisory Committee unanimously voted that the data from TALAPRO-2 investigating talazoparib in combination with enzalutamide were not sufficient to conclude a favorable benefit-risk profile for patients with mCRPC not selected for homologous recombination repair (HRR) gene alterations.

The committee expressed concerns over the trial design and the toxicity of this regimen for this population.

The FDA previously approved talazoparib + enzalutamide combination therapy for patients with HRR-positive mCRPC on June 20, 2023. Approval for this therapy was supported with the data from the TALAPRO-2 trial (NCT03395197).

Phase 3 Combination trials of PARP inhibitors with an ARPI

	PROpel (N = 796)	MAGNITUDE (N = 423)	TALAPRO-2 (Cohort 1: N = 805)	TALAPRO-2 (Cohort 2: N = 399)	
Trial population mCRPC 1 st line	Docetaxel / ARSI in mCSPC setting allowed (ARSI without progression and > 12 months ago)	Docetaxel / ARSI in mCSPC setting allowed ; Abiraterone in mCRPC allowed if given < 4 months	Docetaxel / Abiraterone in mCSPC setting allowed		
Design and randomization	1 : 1 randomisation Abiraterone + olaparib (n = 399) vs abiraterone + placebo (n = 397)	Cohort 1: HRR cohort 1 : 1 randomisation abiraterone + niraparib (n = 212) vs abiraterone + placebo (n = 211) Cohort 2: non-HRR cohort (closed prematurely because of futility)	All-comer population 1 : 1 randomisation Enzalutamide + talazoparib (n = 402) vs enzalutamide + placebo (n = 403)	HRR cohort 1 : 1 randomisation Enzalutamide + talazoparib (n = 200) vs enzalutamide + placebo (n = 199)	
HRR analysis	Tissue or ctDNA / retrospective	100% tissue / prospective	100% tissue / prospective	99.5% tissue / prospective 0.5% ctDNA or unspecified tissue source / prospective	
Primary endpoint	rPFS (investigator review)	rPFS (central review)	rPFS (central review)	rPFS (central review)	
rPFS, HR (95% CI)					
All comers	HR 0.66 (0.54-0.81)	NR	HR 0.63 (0.51-0.78)	Not included	
HRR -ve	HR 0.76 (0.6-0.97)	HR 1.09 (0.75-1.57)	HR 0.70 (0.54-0.89)	Not included	
HRR +ve	HR 0.50 (0.34-0.73)	HR 0.73 (0.56-0.96)	HR 0.46 (0.30-0.70)	HR 0.45 (0.33-0.61)	
BRCA+	HR 0.23 (0.12-0.43)	HR 0.53 (0.36-0.79)	HR 0.23 (0.10-0.53)	HR 0.20 (0.11-0.36)	
ORR (all comers)	58% vs 48%	60% vs 28% (only HRR+ pts)	61.7% vs 43.9%	67% vs 40%	
OS (all comers)	HR 0.81 (0.67-1)	HR 0.66 (0.46-0.95) (only for BRCA 1/2)	HR 0.80 (0.66–0.96)	HR 0.62 (0.48–0.81)	
FDA approval; EMA approval	mCRPC with BRCA1/2 mutations; mCRPC when chemotherapy is not indicated	mCRPC with BRCA1/2 mutations	mCRPC with any HRR mutations; mCRPC when chemotherapy is not clinically indicated		
Publication	Clarke NSaad F. NEJM Evidence, 2022	Chi KSandhu S. <i>JCO</i> , 2023	Agarwal NFizazi K. <i>Lancet</i> , 2023	Fizazi K Agarwal N. Nature medicine, 2023	

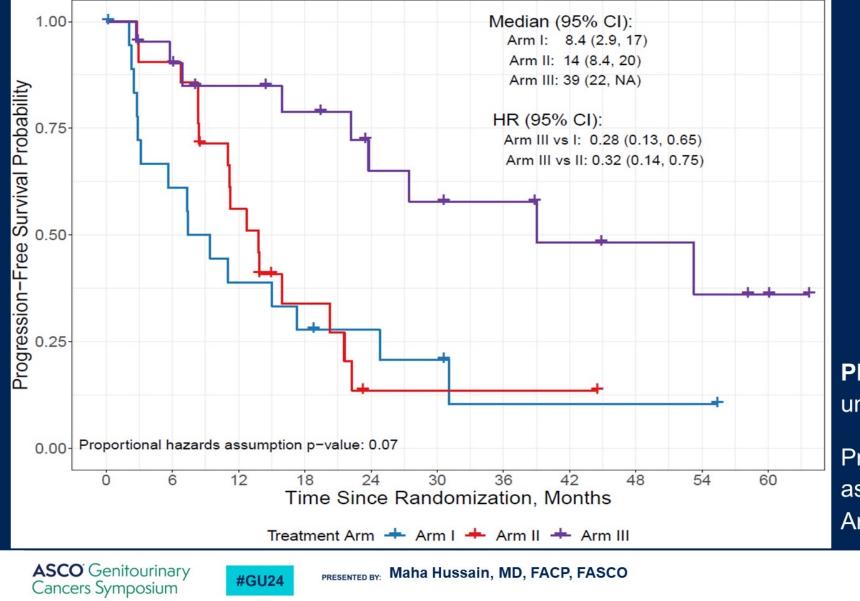
ASCO[®] Genitourinary Cancers Symposium

Abstract # 19 **BRCAAway: A Randomized Phase 2 Trial of** Abiraterone, Olaparib, or Abiraterone + Olaparib in Patients with Metastatic Castration-Resistant **Prostate Cancer (mCRPC) bearing Homologous Recombination-Repair Mutations (HRRm)**

Maha Hussain*, MD, FACP, FASCO, Masha Kocherginsky, PhD, Neeraj Agarwal, MD, Nabil Adra, MD, Jingsong Zhang, MD, PhD, Channing Judith Paller, MD, Joel Picus, MD, Zachery R Reichert, MD, PhD, Russell Zelig Szmulewitz, MD, Scott T. Tagawa, MD, Timothy Kuzel, MD, Latifa Bazzi, MPH, Stephanie Daignault-Newton, MS, Young E. Whang, MD, PhD, Robert Dreicer, MD, Ryan D. Stephenson, DO, Matthew Rettig, MD, Daniel H. Shevrin, MD, Arul Chinnaiyan, MD, PhD, Emmanuel S. Antonarakis, MD

ASCO Genitourinary **Cancers Symposium**

PRESENTED BY: Maha Hussain, MD, FACP, FASCO

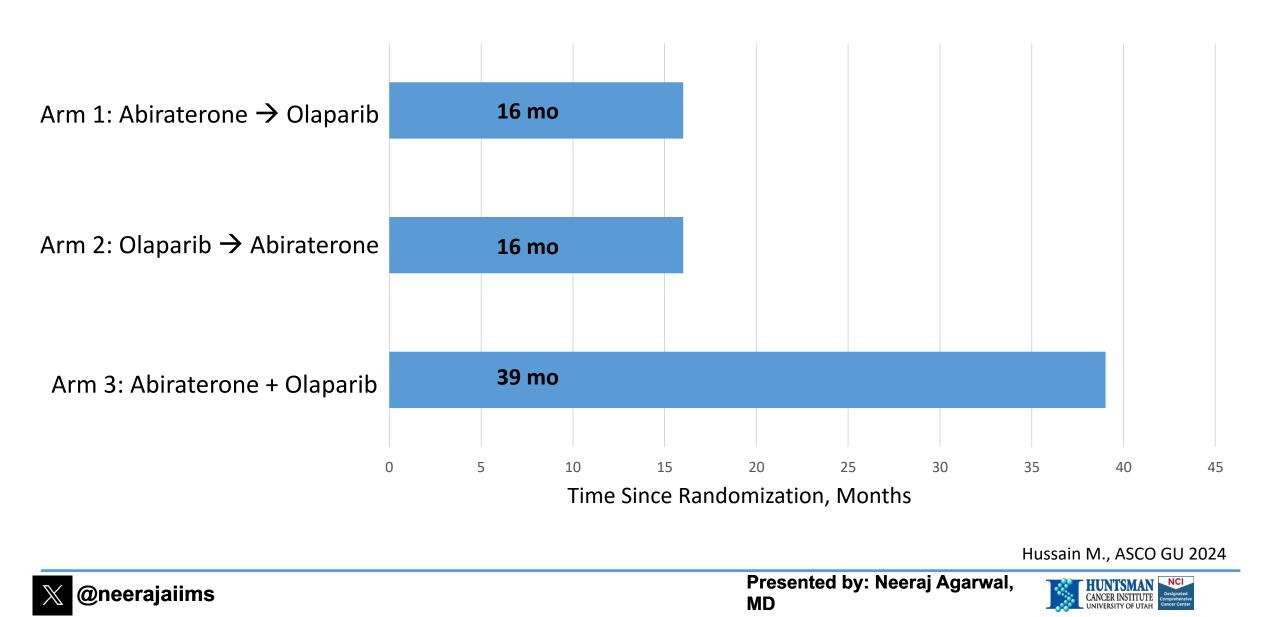


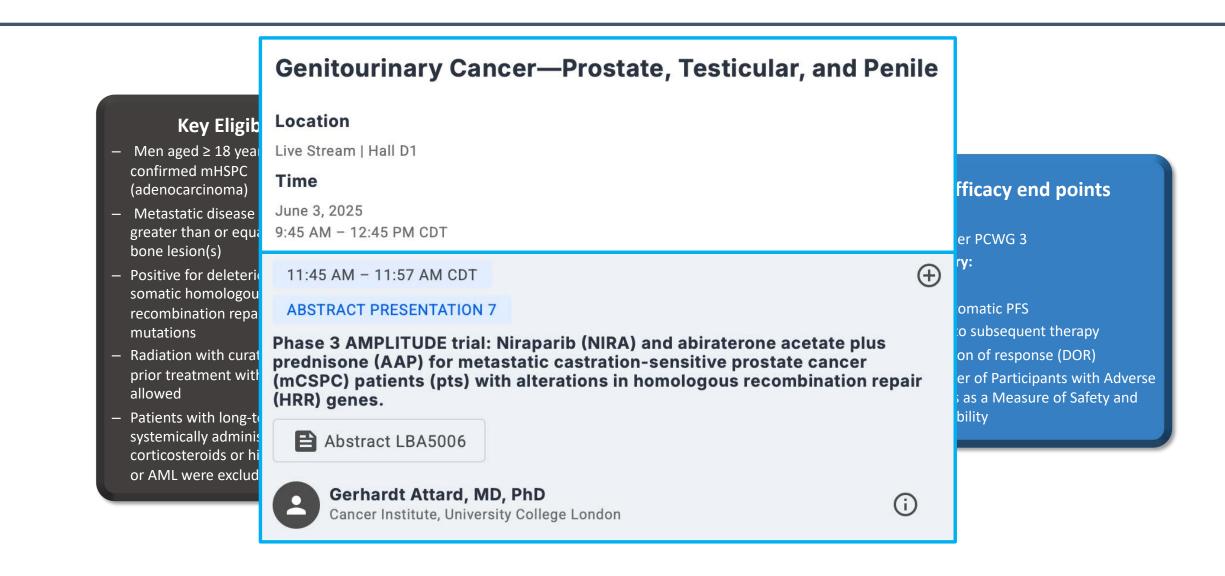
Presented by: Neeraj Agarwal, MD

Progression-Free Survival (PFS)

PFS: time from randomization until first progression or death.

Proportional hazards assumption was not met for Arm I versus II comparison.


> ASCO^{*} AMERICAN SOCIETY OF CLINICAL ONCOLOGY KNOWLEDGE CONQUERS CANCER

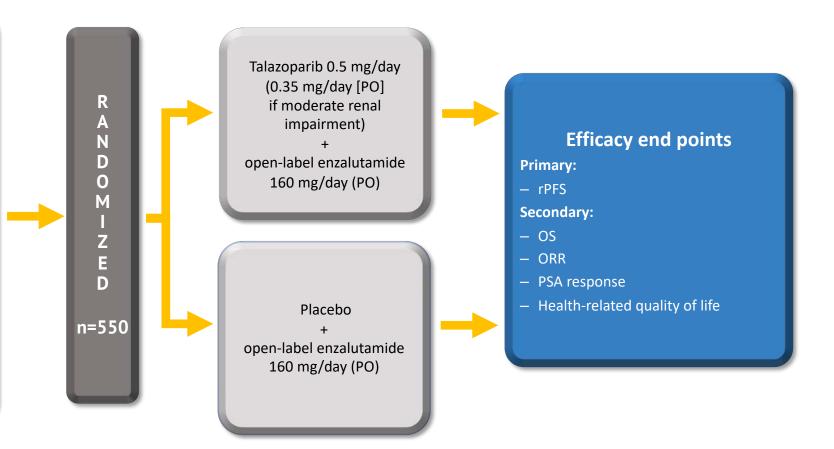

Presented by: Neeraj Agarwal, MD

Median PFS from Randomization to End of Crossover Treatment

AMPLITUDE (Niraparib): Phase 3 Trial Design (mHSPC)

www.clinicaltrials.gov: (NCT04497844)

Rathkopf et al., 2021, ABSTRACT TPS 176 ASCO-GU



💥 @neerajaiims

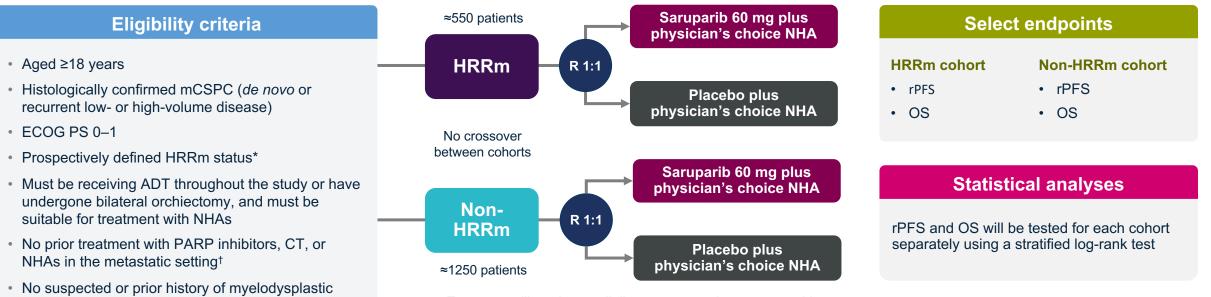
TALAPRO-3 (Talazoparib): Phase 3 Trial Design (mHSPC)

Key Eligibility

- Men aged ≥ 18 years with confirmed mHSPC (adenocarcinoma)
- Metastatic disease documented by greater than or equal to (>=) 1 bone or soft tissue lesion(s)
- Positive for deleterious germline or somatic homologous recombination repair (HRR) gene mutations
- Radiation/surgery with curative intent or prior treatment with chemotherapy or PARPi is not allowed
- Patients with brain metastases or a history of MDS or AML were excluded

www.clinicaltrials.gov: (NCT04821622)

@neerajaiims


1 Agarwal et al., 2022, ABSTRACT TPS 221 ASCO-GU

EvoPAR-Prostate01: Phase 3 Trial Design (mHSPC)

A Phase III, 2-cohort, 2-arm, randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of saruparib plus physician's choice of NHA (abiraterone, darolutamide, or enzalutamide) versus placebo plus physician's choice of NHA in participants with mCSPC

Treatment will continue until disease progression, unacceptable toxicity, or participant-initiated withdrawal

www.clinicaltrials.gov: (NCT06120491)

syndrome/acute myeloid leukemia

Agarwal N. et al, AUA 2024

My take on PARPi plus ARPI in mCRPC

- Many patients with new mCRPC will not have disease progression on a prior ARPI in the next 5-7 years: 1) patients progressing from localized prostate cancer with BCR, 2) patients with locally advanced prostate cancer receiving limited duration ARPI, and 3) patients with mHSPC not receiving ARPI at all or until progression
- How I select a given combination: 1) For new mCRPC with BRCA1/2 mutations, I use the PARPi combinations based on my selection of the partner ARPI; 2) For new mCRPC with non-BRCA1/2 HRRm, I use enzalutamide plus talazoparib
- Based on the results of the BRCAAway trial, the upfront combination of an ARPI+PARPi seems more efficacious than the sequencing of ARPI followed by a PARPi
- All patients with advanced prostate cancer should undergo tumor genomic profiling and germline testing
- Next steps:
 - Elucidation of the mechanism of response in HRRm-negative patients
 - Mechanism of resistance to PARPi

Faculty Case Presentations

Case Presentation – Dr Beltran: 69 yo gentleman

- Diagnosed with T3aN0M0 Gleason 4+5 prostate adenocarcinoma 4 years ago, PSA 15ng/ml
- Treated with radiation plus 2 years of ADT , PSA nadir 0.3 , testo <3 ng/dL
- He came off ADT but was then lost to follow-up and has not had regular PSA checks
- Presents now with PSA 10 ng/ml, testosterone 10 ng/dL
- Imaging shows multiple bone metastases
- He feels well, asymptomatic
- PMH is notable for HTN, hyperlipidemia- well controlled
- Family history notable for a sister and maternal aunt with breast cancer in 50s
- Genetic testing identified a pathogenic germline BRCA2 mutation

QUESTIONS FOR THE FACULTY

What would you recommend next for this patient?

Are there any situations in which you would currently attempt to access olaparib/abiraterone or niraparib/abiraterone outside of a clinical trial for a patient with mCRPC and an HRR mutation other than BRCA?

Outside of a clinical trial, would you currently administer a PARP inhibitor in combination with an AR pathway inhibitor for a patient with mCRPC without a documented HRR gene mutation?

QUESTIONS FOR THE FACULTY

How do you approach the use of PARP inhibitor-based combinations in patients with mCRPC who have already received a novel antiandrogen in an earlier disease setting? Would you consider a PARP inhibitor in combination with the same or an alternate secondary hormonal agent in such a scenario, or would you favor PARP inhibitor monotherapy?

Case Presentation – Dr Saad: 72-year-old patient

- In 2014 at age 61 diagnosed with cT3, Gleason 8 prostate cancer, PSA 42
- Treated with radiation therapy and 3 years of ADT
 - PSA undetectable in 2017
- In 2019 PSA was up to 4.5 with a PSADT of 6 months
 - Negative metastatic work-up
 - Put on ADT in 2019
- Did well until 2023 when PSA rose to 5.5
 - Imaging revealed metastases to lymph nodes and bone
- Lymph node biopsy revealed a BRCA2 mutation in May 2023

Case Presentation – Dr Saad: Patient with newly diagnosed mCRPC with a BRCA mutation

- Patient well informed and accepted abiraterone + niraparib
- PSA decline from 8.1 to 2.3 after 1 month of treatment
- At week 8
 - Symptomatic anemia with HB declining from 12.2 to 8.7
- Niraparib suspended and transfused 1 unit
- 1 week later was put back on niraparib at reduced dose (100mg)
- Update April 2025
 - PSA is undetectable (< 0.02) and CR of measurable disease
 - Continues to do very well on treatment

QUESTIONS FOR THE FACULTY

What outcomes from ongoing Phase III trials of PARP inhibitors in mHSPC would prompt you to employ them in that setting? What would you be looking for in terms of hazard ratios/advantages in PFS or OS?

If PARP inhibitors eventually reach the clinic for mHSPC, how would you select between this strategy and triplet therapy with an AR pathway inhibitor, docetaxel and ADT?

For how long would you likely administer the PARP inhibitor if these agents were available for mHSPC? How concerned are you about the risk of MDS/AML with prolonged use?

Agenda

MODULE 1: Evolving Management of Nonmetastatic Hormone-Sensitive Prostate Cancer (HSPC) — Dr Saad

MODULE 2: Current Treatment for Metastatic HSPC — Dr Armstrong

MODULE 3: Role of PARP Inhibition in Metastatic Castration-Resistant Prostate Cancer (mCRPC) — Dr Agarwal

MODULE 4: Current and Future Use of Radiopharmaceuticals for mCRPC — Dr McKay

MODULE 5: Promising Novel Agents and Strategies Under Investigation for the Management of Prostate Cancer — Dr Beltran

UC San Diego Health

Current and Future Use of Radiopharmaceuticals in mCRPC

Rana R. McKay, MD, FASCO Professor of Medicine and Urology Moores Cancer Center, University of California San Diego

Radiopharmaceuticals

Target e.g. tumor

Receptor on target

High expression on target with minimal or no presence in healthy tissues.

Targeting agent

E.g. antibody (fragment), peptide, molecule.

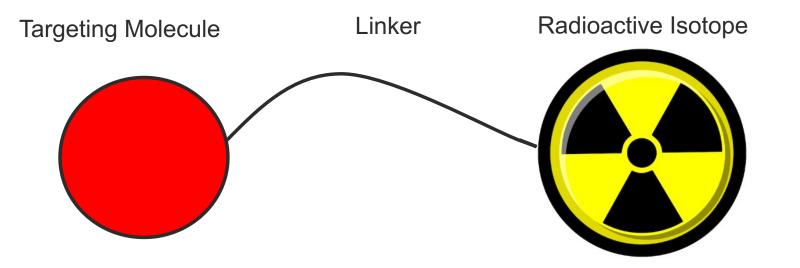
Linker

Not mandatory, depending on targeting agent, radionuclide can be incorporated directly.

Radionuclide

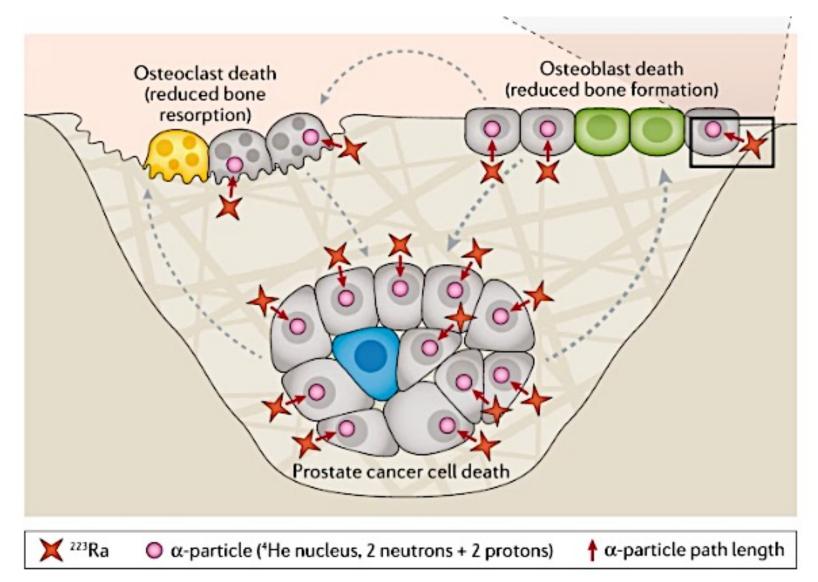
Most common: gamma, beta or alpha emitters

Healthy tissue

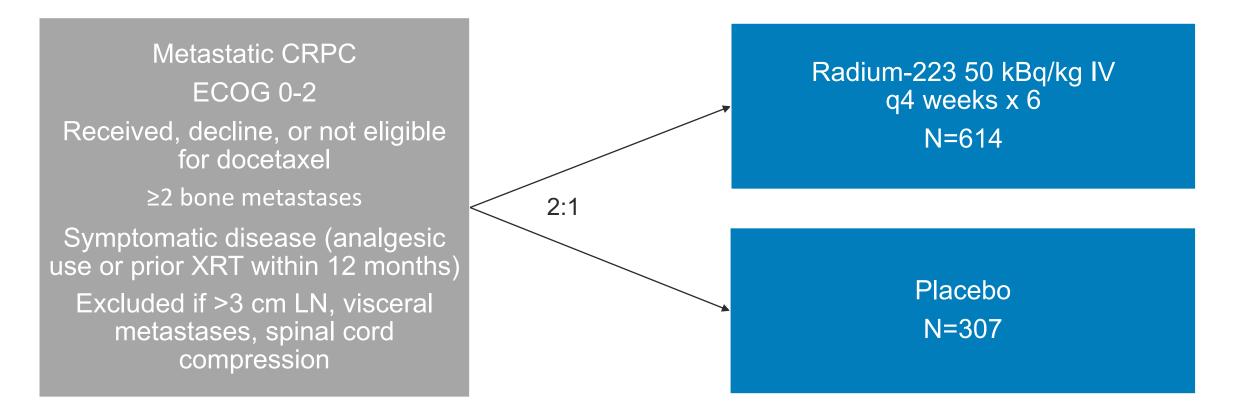

Emitted energy or particle

Emission is radionuclide dependent:

- For imaging, gamma photons* (travel long distances and cause minimal damage)
- For therapy, beta or alpha particles (travel short distances and cause severe damage)

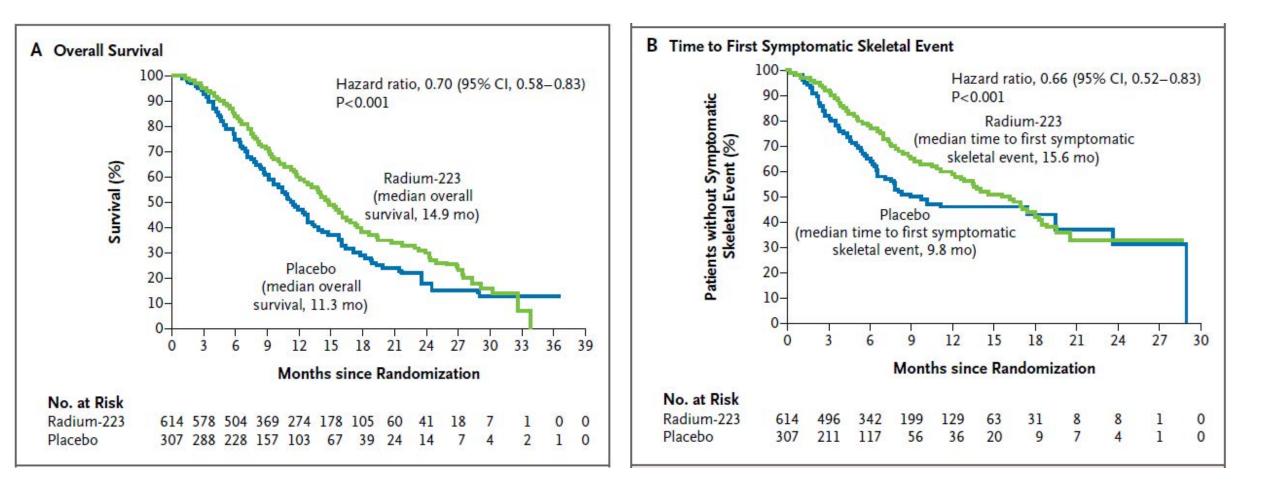

* Direct emission from gamma emitters (e.g. ^{99m} Tc) or indirect through positron emission (e.g.¹¹C)

Heterogeneity of Agents


Target	Carrier Systems	Linkers	Radiation Types
PSMA	Small molecule	Chelators – DOTA, DOTAGA	β – Lu-177, I-131, Cu-67
KLK2	Peptides	Chemical – Hydrocarbon, PEG, Peptide, Cleavable	α – Ac-225, Ra-223, Th-227
STEAP 1/STEAP 2	Antibodies		
DLL3	Nucleic acid		
	Nanoparticles		

Mechanisms of Action of Radium-223

ALSYMPCA Trial


Double-Blind, Placebo-Controlled Randomized Phase III Study

Primary Endpoint: Overall Survival

Parker et al, NEJM, 2013

ALSYMPCA Trial

Parker et al, NEJM, 2013

ALSYMPCA Secondary Endpoints

Table 2. Main Secondary Efficacy End Points in the Intention-to-Treat Population.				
End Point	Radium-223 (N = 614)	Placebo (N = 307)	Hazard Ratio (95% CI)	P Value
Median time to first symptomatic skeletal event — mo	15.6	9.8	0.66 (0.52–0.83)	<0.001
Median time to increase in total alkaline phosphatase level — mo	7.4	3.8	0.17 (0.13–0.22)	<0.001
Median time to increase in PSA level — mo	3.6	3.4	0.64 (0.54–0.77)	<0.001
Patients with ≥30% reduction in total alkaline phospha- tase response — no. /total no. (%)	233/497 (47)	7/211 (3)		<0.001
Patients with normalization of total alkaline phospha- tase level — no./total no. (%)*	109/321 (34)	2/140 (1)		<0.001

* Only patients who had elevated total alkaline phosphatase levels at baseline are included.

Parker et al, NEJM, 2013

REASSURE – Real World Observational Study Radium-223

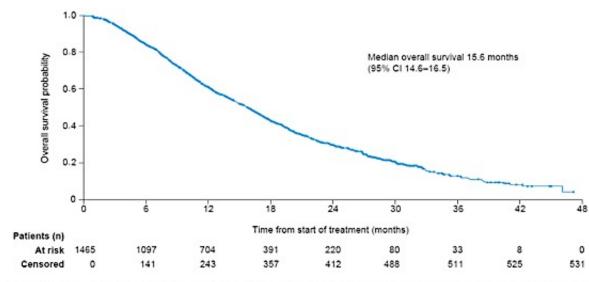
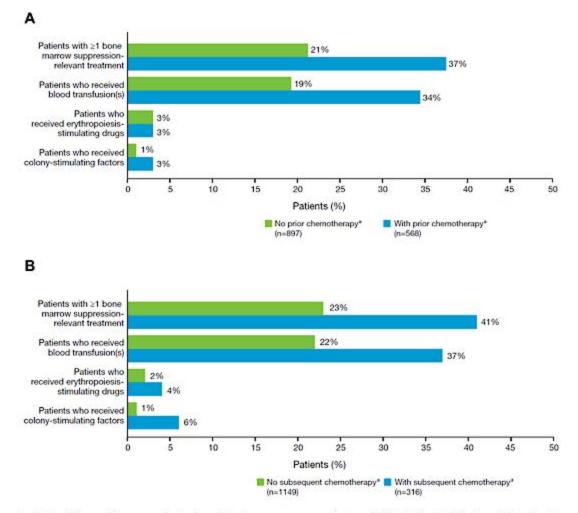
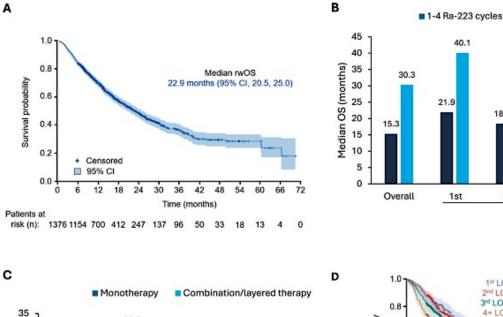


Fig. 3: Kaplan-Meler estimate of overall survival (n = 1465). Of the 531 censored patients at month 48, 171 were permanently lost to followup. Cl = confidence interval.




Fig. 2: Use of therapeutic or preventive treatments for bone-marrow suppression (n = 1465). (A) After start of radium-223 treatment in patients who did or did not receive prior chemotherapy. (B) After completion of radium-223 treatment in patients who did or did not receive subsequent chemotherapy. "Patients may have received chemotherapy at other times.

Higano et al, Lancet, 2023

Real World Radium-223 Outcomes

Retrospective analysis of 1376 patients treated with radium-223

23.4

17.5

2nd

Line of therapy

23.4

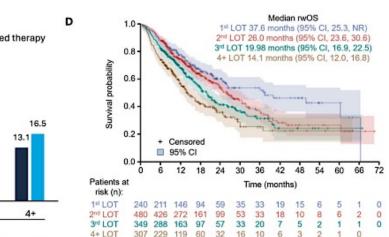
17.5

3rd

30.8

23.6

1st


26.6

20.5

Overall

5

0

40.1

21.9

1st

≥5 Ra-223 cycles

28.1

15.5

3rd

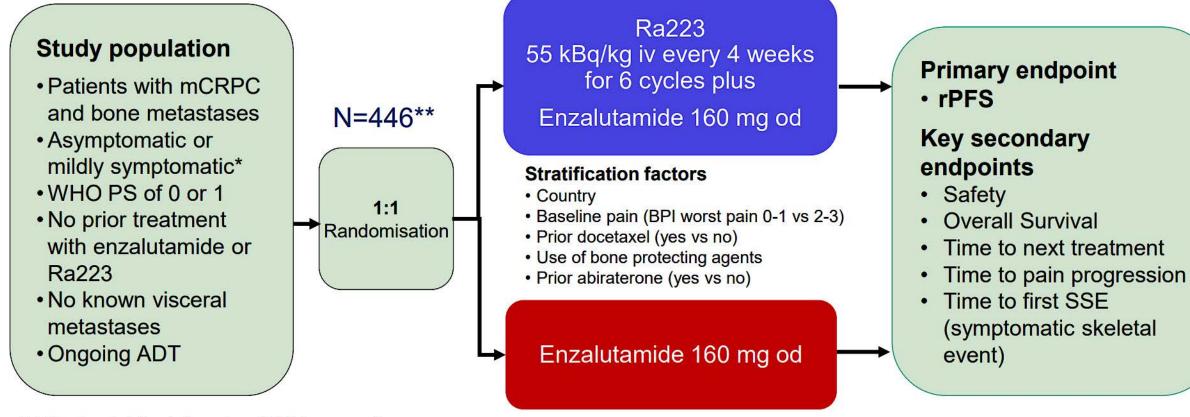
Line of therapy

24.7

10.4

4+

31.7


18.4

2nd

Fig. 3 Real-world overall survival. Data are shown for A the overall cohort, B by completion of 1–4 versus ≥5 Ra-223 cycles and LOT, C by use of Ra-223 monotherapy versus combination/layered and LOT, and D by LOT. CI confidence interval, LOT line of therapy, rwOS real-world overall survival.

Raval et al, PCPD, 2025

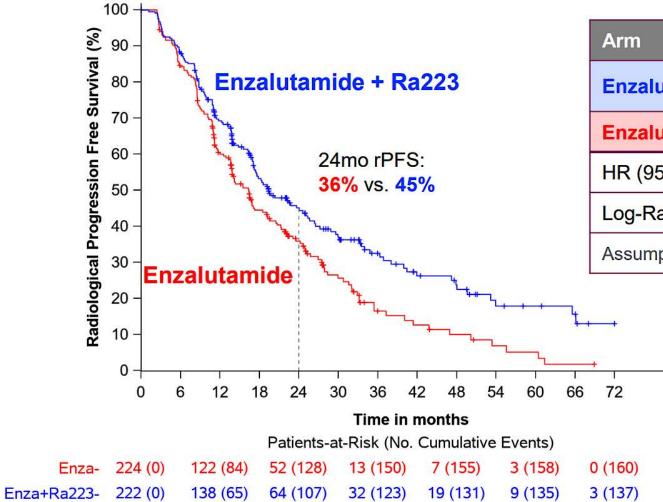
PEACE III Design

*defined as brief pain inventory WP24 score < 4 ** original target accrual N=560, adapted for slow accrual

Gillessen et al, ESMO, 2024

PEACE III Baseline Characteristics

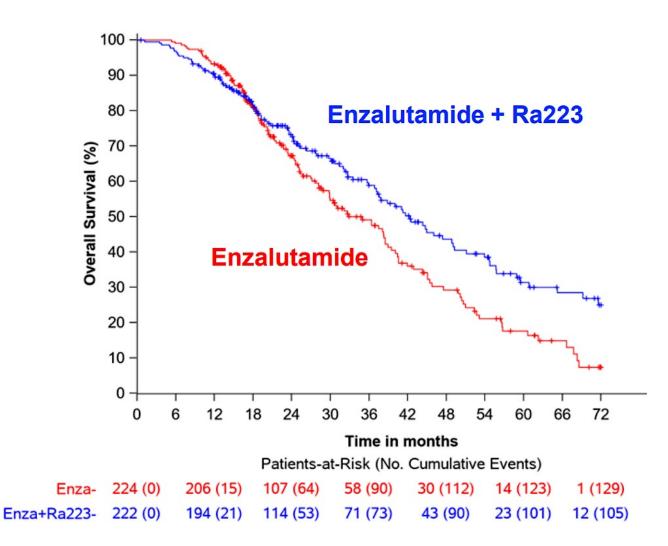
446 patients enrolled in 12 countries, 11/2015 to 03/2023, median follow-up: 42.2 months


	Enza+Ra223 (N=222)	Enza (N=224)
	N (%)	N (%)
Age, Median (range) years	70.0 (43.0 - 90.0)	70.0 (47.0 - 90.0)
PSA, Median (Q25-Q75) ng/mL	25.3 (6.5 - 68.8)	23.0 (8.5 - 54.9)
WHO Performance status 0	152 (69)	154 (69)
Prior docetaxel ⁽¹⁾	67 (30.2)	66 (30)
Prior abiraterone ⁽¹⁾	4 (2)	7 (3)
Bone lesions ⁽²⁾		7
<10	109 (49)	105 (47)
≥10	93 (42)	99 (44)
Missing or diffuse lesions	20 (9)	20 (9)
Alkaline phosphatase		
≤ULN	127 (57)	107 (48)
>ULN	82 (37)	110 (49)
Missing	13 (6)	7 (3)
Extra-skeletal disease at baseline	77 (35)	73 (33)

(1) Prior docetaxel or abiraterone was allowed for mHSPC

(2) Per imaging guidelines, the type of bone lesions is reported by a radiologist and classified into focal, diffuse or equivocal. Only focal bone lesions can be counted.

Gillessen et al, ESMO, 2024


PEACE III Primary Endpoint rPFS

Arm	n/N	Median (95%Cl)	
Enzalutamide + Ra223	139/222	19.4 (17.1-25.3) mo	
Enzalutamide	160/224	16.4 (13.8-19.2) mo	
HR (95%CI)	95%CI) 0.69 (0.54-0.87)		
Log-Rank p-value 0.0009			
Assumption of proportional hazard achieved			

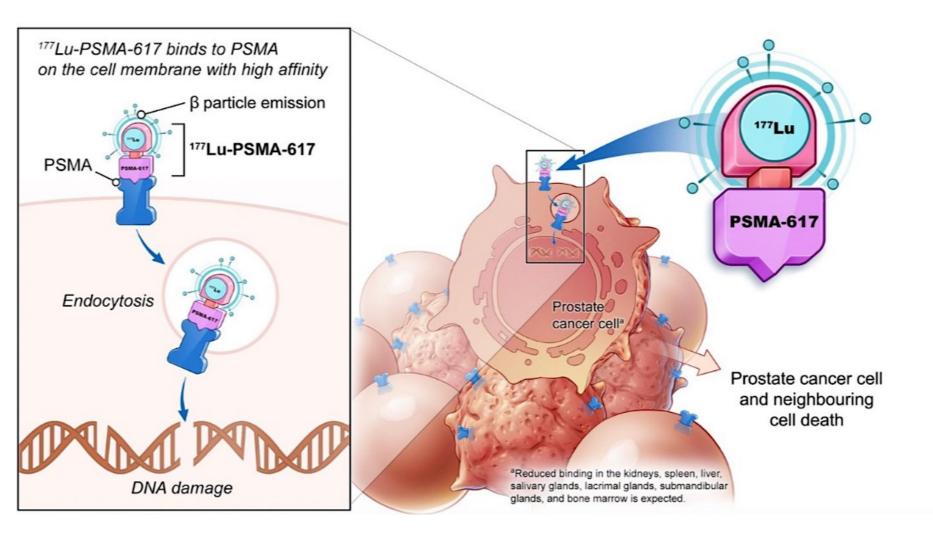
Gillessen et al, ESMO, 2024

PEACE III Overall Survival

Arm	n/N	Median (95%CI)	
Enzalutamide + Ra223	110/222	42.3 (36.8-49.1) mo	
Enzalutamide	129/224	35.0 (28.8-38.9) mo	
HR (95%CI)	0.69 (0.52	2-0.90)	
Log-Rank p- value	0.0031	<0.0034	
 Pre-set level of significance for interim analysis was ≤ 0.0034 			

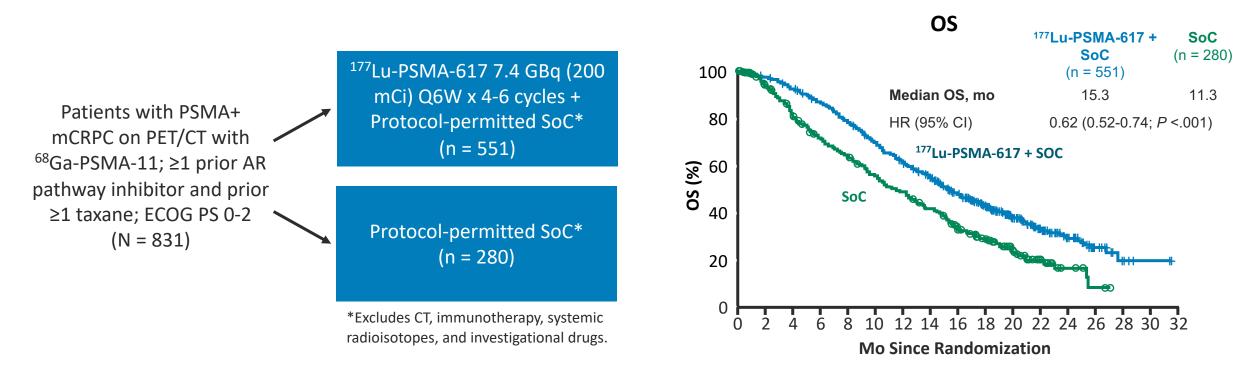
 Due to non-proportional hazards plus lack of unequivocal significance for RMST (restricted mean survival time) sensitivity analysis, study will continue to final OS analysis

Gillessen et al, ESMO, 2024


PEACE III Adverse Events

Patients	Enza+Ra223 (N=218)	Enza (N=224) N (%)	
Fatients	N (%)		
Adverse events (AEs)	218 (100)	216 (96)	
Drug-related AEs	183 (84)	158 (71)	
Serious AEs	93 (43)	66 (30)	
Serious drug-related AEs	18 (8)	3 (1)	
Grade 3-5 AEs	143 (66)	125 (56)	
Grade 3-5 drug-related AEs	61 (28)	42 (19)	
Death due to AE	7 (3)	4 (2)	
Death due to a drug-related AE	0	0	
Treatment discontinuation due to toxicity			
Enzalutamide	13 (8)	12 (7)	
RA223	7 (3)		

Most common grade 3-5 treatment emergent AE (TEAE)	Enza+Ra223 (N=218) N (%)	Enza (N=224) N (%)
All		
Hypertension	73 (33.5)	77 (34.4)
Fatigue	12 (5.5)	4 (1.8)
Fracture	11 (5.1)	3 (1.3)
Anaemia	10 (4.6)	5 (2.2)
Neutropenia	10 (4.6)	0
Bone Pain	9 (4.1)	11 (4.9)
Weight Decreased	7 (3.2)	1 (0.4)
Spinal Cord Compression	6 (2.8)	8 (3.6)
Treatment related		
Hypertension	25 (11.5)	27 (12.1)
Fatigue	9 (4.1)	3 (1.3)
Anaemia	6 (2.8)	0
Neutropenia	7 (3.2)	0


Side effects of special interest: 1 MDS, 1 AML and 1 CML in the combination arm

Mechanisms of Action of ¹⁷⁷Lu-PSMA-617

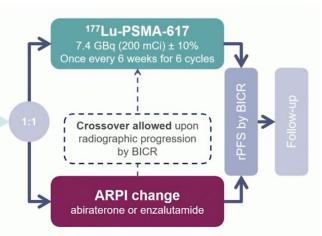
- ¹⁷⁷Lu-PSMA-617: βemitting radioligand conjugated to PSMAbinding peptide
- PSMA (prostate-specific membrane antigen): Cell surface receptor involved in folate uptake and cell migration, proliferation, survival
 - Overexpressed in ~80% of mCRPC
 - Also expressed in normal prostate, proximal renal tubules, small intestine, salivary glands

Phase III VISION: ¹⁷⁷Lu-PSMA-617 + SoC vs SoC

- PSMA+ mCRPC defined as ≥1 PSMA+ metastatic lesion with ⁶⁸Ga uptake > liver and no PSMA- lesions in bone with soft tissue component ≥1 cm, lymph nodes ≥2.5 cm, or solid organ ≥1 cm
- Of 1003 patients who underwent scanning for VISION, 12.6% did not meet PSMA+ criteria

Sartor et al. NEJM. 2021;385:1091.

VISION: Safety

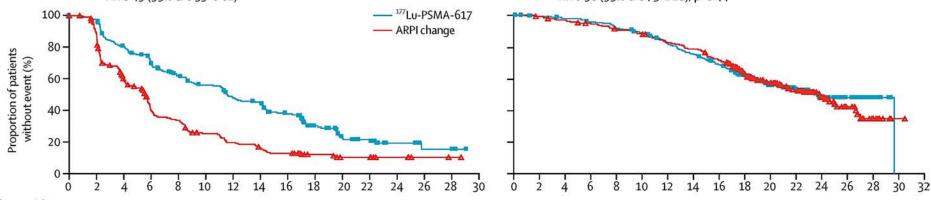

	All Gra	All Grades		Grade 3-5	
Patients, n (%)	¹⁷⁷ Lu-PSMA-617 + SoC (n = 529)	SoC Alone (n = 205)	¹⁷⁷ Lu-PSMA-617 + SoC (n = 529)	SoC Alone (n = 205)	
Fatigue	228 (43.1)	47 (22.9)	31 (5.9)	3 (1.5)	
Dry mouth	205 (38.8)	1 (0.5)	0	0	
Nausea	187 (35.3)	34 (16.6)	7 (1.3)	1 (0.5)	
Anemia	168 (31.8)	27 (13.2)	68 (12.9)	10 (4.9)	
Back pain	124 (23.4)	30 (14.6)	17 (3.2)	7 (3.4)	
Arthralgia	118 (22.3)	26 (12.7)	6 (1.1)	1 (0.5)	
Decreased appetite	112 (21.2)	30 (14.6)	10 (1.9)	1 (0.5)	
Constipation	107 (20.2)	23 (11.2)	6 (1.1)	1 (0.5)	
Diarrhea	100 (18.9)	6 (2.9)	4 (0.8)	1 (0.5)	
Vomiting	100 (18.9)	13 (6.3)	5 (0.9)	1 (0.5)	
Thrombocytopenia	91 (17.2)	9 (4.4)	42 (7.9)	2 (1.0)	
Lymphopenia	75 (14.2)	8 (3.9)	41 (7.8)	1 (0.5)	
Leukopenia	66 (12.5)	4 (2.0)	13 (2.5)	1 (0.5)	

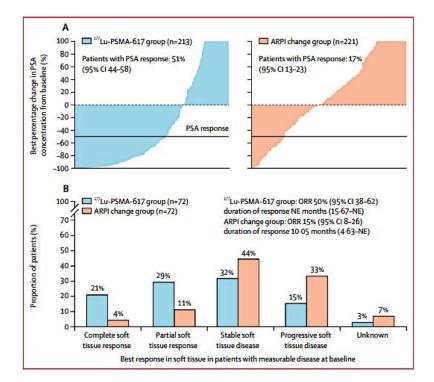
Sartor et al. NEJM. 2021;385:1091.

PSMAFore

Eligible adults

- Confirmed progressive mCRPC
- ≥ 1 PSMA-positive metastatic lesion on [⁶⁸Ga]Ga-PSMA-11 PET/CT and no exclusionary PSMA-negative lesions
- Progressed once on prior second-generation ARPI
- Candidates for change in ARPI
- Taxane-naive (except [neo]adjuvant > 12 months ago)
- Not candidates for PARPi
- ECOG performance status 0–1
- MADRID STORE




Stratification factors

- Prior ARPI setting (castration-resistant vs hormone-sensitive)
- BPI-SF worst pain intensity score (0–3 vs > 3)

A Radiographic progression-free survival

¹⁷⁷Lu-PSMA-617 group: median 11·60 months (95% CI 9·30–14·19), 154 events ARPI change group: median 5·59 months (95% CI 4·21–5·95), 180 events HR 0·49 (95% CI 0·39–0·61)

B Overall survival (intention-to-treat analysis)

¹⁷⁷Lu-PSMA-617 group: median 23.66 months (95% CI 19.75–NE), 104 events ARPI change group: 23.85 months (20.60–26.55), 112 events HR 0.98 (95% CI 0.75–1.28), p=0.44

Morris et al, Lancet, 2024

UC San Diego Health

5768 42

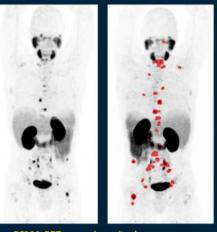
ENZA-P

mCRPC with PSA rising and >5ng/mL No chemotherapy for mCRPC ≥2 risk features for early enzalutamide failure Positive ⁶⁸Ga PSMA PET/CT

(R)

1:1

Stratification Study Site Volume of disease (>20 vs ≤20)


Early docetaxel for hormone-sensitive disease Prior treatment with abiraterone Enzalutamide 160 mg + [¹⁷⁷Lu]Lu- PSMA-617 7.5 GBq

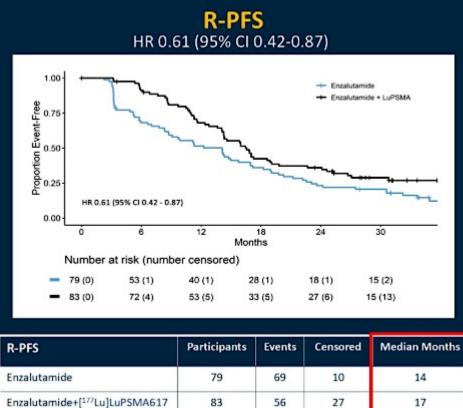
2-4 doses

Enzalutamide 160 mg

Objectives

PSA-PFS (primary endpoint) Overall survival Health-related Quality of Life Radiographic PFS PSA response rate Pain response and PFS Clinical PFS Adverse events Health economic analyses Translational/correlative

PSMA-PET screening criteria SUV_{max} \geq 15 at one site AND \geq 10 at all measurable sites Mismatch on diagnostic CT not an exclusion


Screening Criteria

Risk Factors for Early Treatment
Failure on EnzalutamideLDH ≥ULNALP ≥ULNAlbumin <35g/L</td>De novo metastatic disease at diagnosis<3 Years since initial diagnosis</td>>5 Bone metastasesVisceral metastasesPSA doubling time <84 days</td>Pain requiring opiates >14 daysPrior abiraterone

Imaging screen failure rate 18%

Emmett et al, GU ASCO, 2025

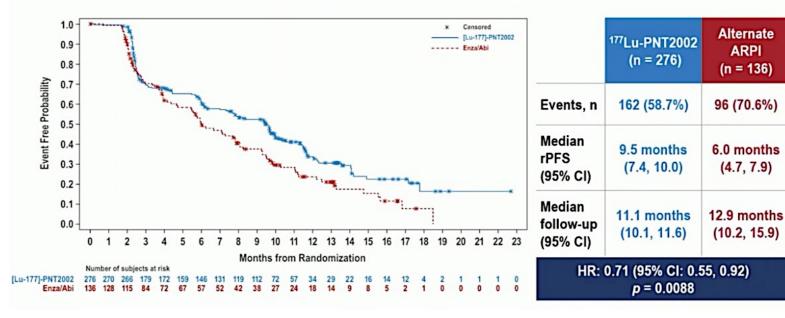


83

56

27

Emmett et al, GU ASCO, 2025


SPLASH Study Design

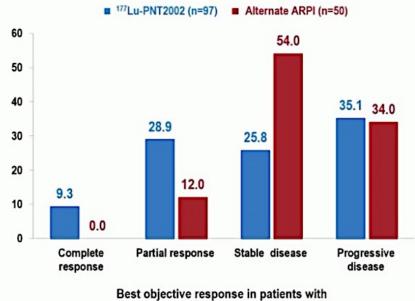
Sartor et al, ESMO, 2024

SPLASH – rPFS, ORR, PSA Response

Primary Endpoint - rPFS: Primary Analysis

Overall Response Rate

Alternate

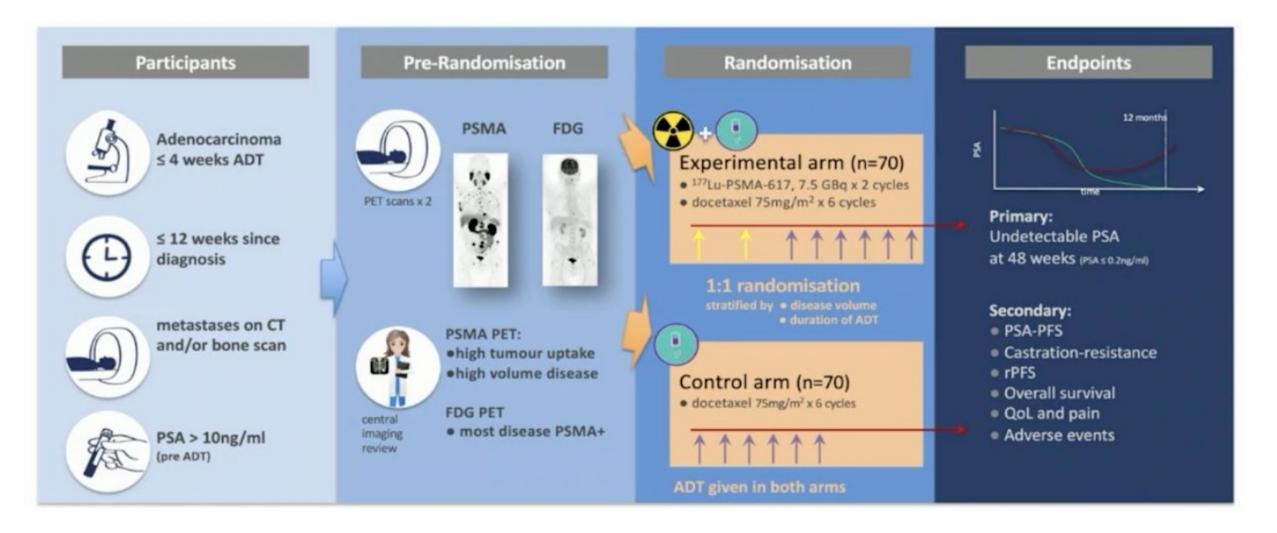

ARPI

(n = 136)

96 (70.6%)

(4.7, 7.9)

Proportion of patients (%)

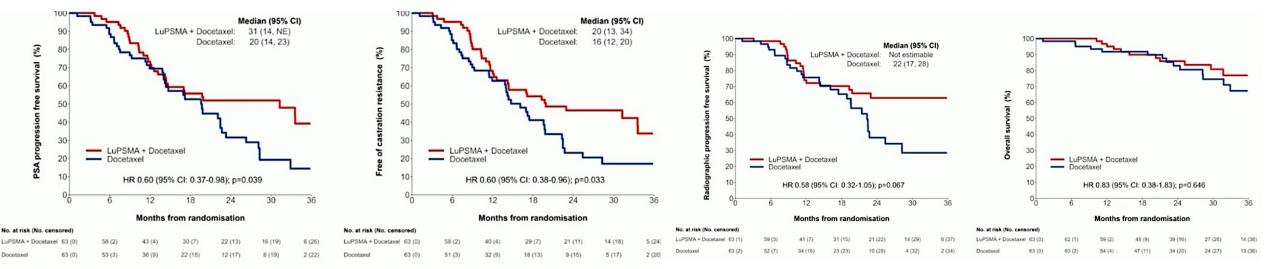

measurable disease at baseline

PSA ≥50%: 35.7% vs. 14.6%

Sartor et al, ESMO, 2024

UC San Diego Health

UpFrontPSMA



Azad et al, ESMO, 2024

UC San Diego Health

UpFrontPSMA

Treatment	Lu-PSMA + docetaxel (n=61)*	Docetaxel (n=61)*			
Undetectable PSA at week 48, %	41% (95% CI 30-54)	16% (95% CI 9-28)			
	OR 3.88 (95% CI 1.61-9.38); p=0.002				
Undetectable PSA at any time	51% (95% CI 39-63)	32% (95% CI 22-45)			
point, %	OR 2.14 (95% CI 1.03-4.46); p=0.042				
Undetectable PSA at week 12, %	17% (95% CI 10-29)	18% (95% CI 10-29)			
	OR 0.94 (95% CI 0.37-2.36); p=0.895				

Azad et al, ESMO, 2024

UC San Diego Health

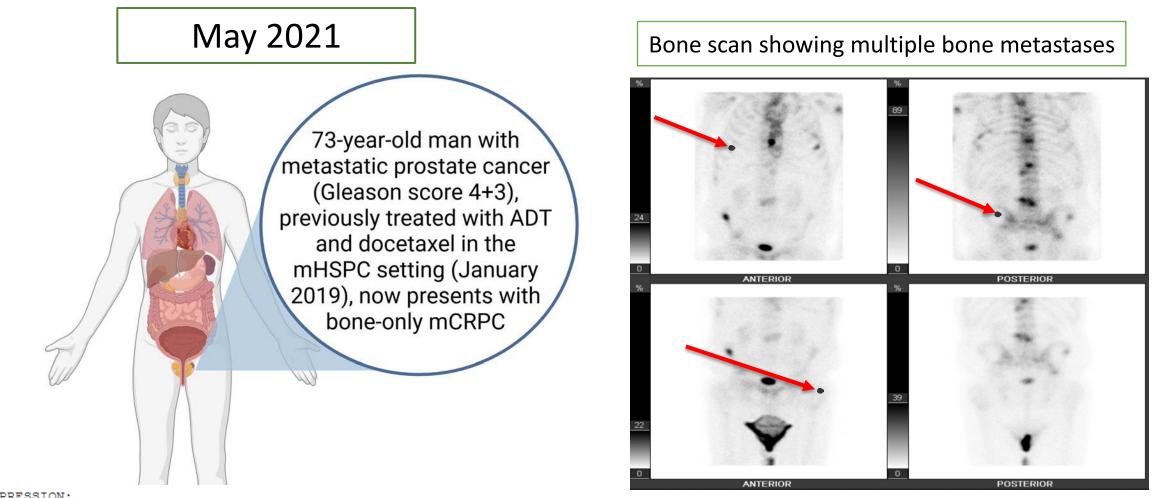
Conclusions

• Radium-223

 First FDA-approved alpha-emitter (2013) with calcium-mimetic properties that specifically targets bone metastases, extending overall survival in the ALSYMPCA trial with a manageable safety profile, though effectiveness is limited to bone disease with minimal impact on PSA levels.

• 177Lu-PSMA-617

 First PSMA-targeted radiopharmaceutical (approved 2022) that demonstrated significant survival benefits in the VISION trial, effectively targeting PSMA-expressing metastatic sites with robust PSA responses, which received FDA approval expansion in March 2025 for prechemotherapy use based on the PSMAfore trial

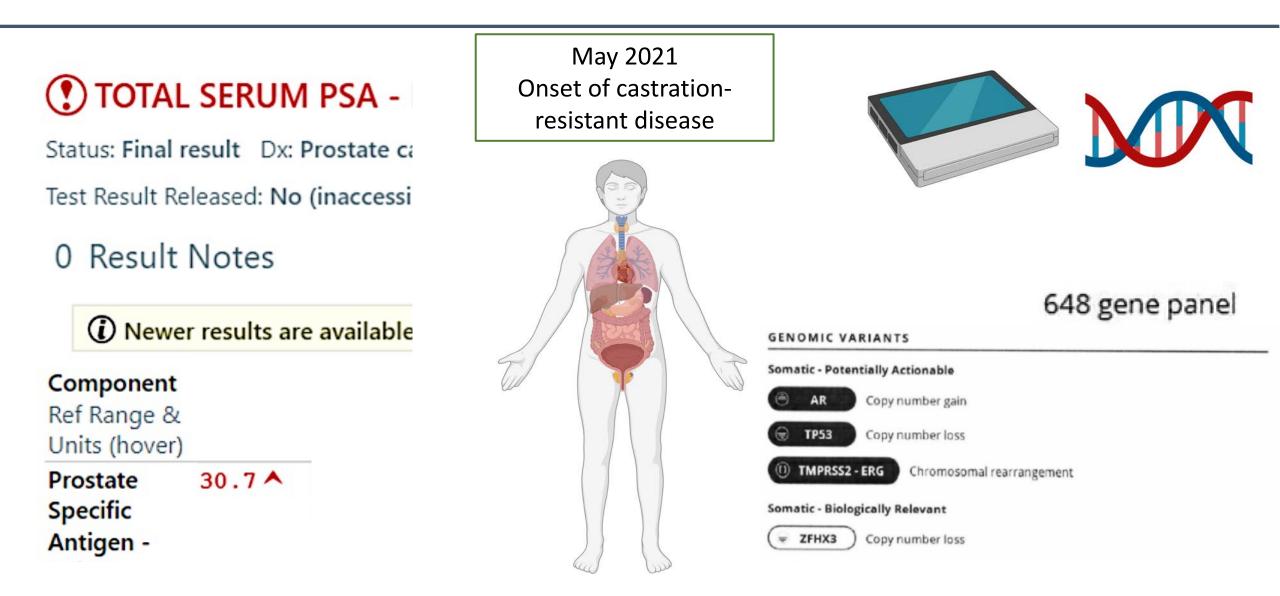

Future Directions

 The field is rapidly evolving with numerous promising agents in development, including Actinium-225-PSMA (with higher energy alpha particles) and combination approaches

Faculty Case Presentations

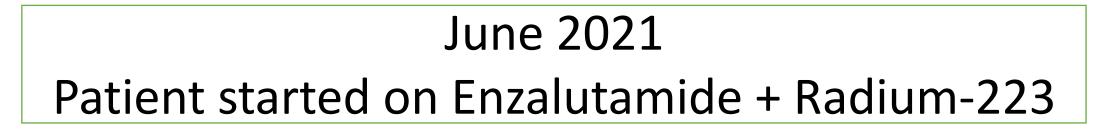
Case Presentation – Dr Agarwal: Enza + Radium-223 in mCRPC

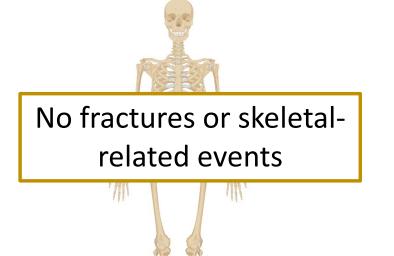
IMPRESSION:


Widespread skeletal metastases throughout the axial and appendicular skeleton with some new foci of uptake in the spine and increased uptake in one focus of the ileum

Presented by: Neeraj Agarwal, MD

Case Presentation – Dr Agarwal: Enza + Radium-223 in mCRPC (cont'd)

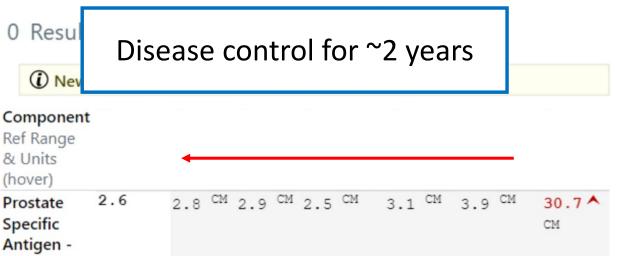




Presented by: Neeraj Agarwal, MD

Case Presentation – Dr Agarwal: Enza + Radium-223 in mCRPC (cont'd)

Zoledronic acid added to the regimen


1111

Alth

TOTAL SERUM PSA

Status: Final result Dx: Prostate cancer metastatic to multipl...

Test Result Released: No (seen, inaccessible in MyChart)

Presented by: Neeraj Agarwal, MD

QUESTIONS FOR THE FACULTY

Which patients with mCRPC do you feel are ideal candidates for radium-223?

What are the practical applications of the PEACE III trial for patients who have been exposed to AR pathway inhibitors in a prior line of therapy? Would you consider radium-223 in combination with enzalutamide in such a scenario? Would this depend at all on the specific AR pathway inhibitor the patient had received or how long ago they had received it?

How often do you see prolonged disease control with radium-223based therapy as in this patient's case?

Case Presentation – Dr Saad: 70-year-old patient

- Treated with RoRx in 2018 for cT2 Gleason 4+3 prostate cancer
- Recurrence: mHSPC in 6-2021 treated with ADT + APALUTAMIDE
- Progression on APA with PSA 5.7 in 07-2023
- PLUDO trial randomized to lutetium 09-2023
- PSA post C1 3.76, C2 1.31, C3 0.29, C4 0.02
- Last seen May 2025 PSA remains 0.02 ECOG 0
- No radiographic progression

QUESTIONS FOR THE FACULTY

How are you currently employing lutetium Lu 177 vipivotide tetraxetan for patients with mCRPC vis-à-vis other evidence-based options? Given the recent expansion of its indication, in which situations are you prioritizing it over taxane-based chemotherapy?

What other novel radiopharmaceuticals do you believe may soon enter the treatment armamentarium for patients with PSMAexpressing mCRPC? If these therapies become available, how will you select between them and lutetium Lu 177 vipivotide tetraxetan?

Agenda

MODULE 1: Evolving Management of Nonmetastatic Hormone-Sensitive Prostate Cancer (HSPC) — Dr Saad

MODULE 2: Current Treatment for Metastatic HSPC — Dr Armstrong

MODULE 3: Role of PARP Inhibition in Metastatic Castration-Resistant Prostate Cancer (mCRPC) — Dr Agarwal

MODULE 4: Current and Future Use of Radiopharmaceuticals for mCRPC — Dr McKay

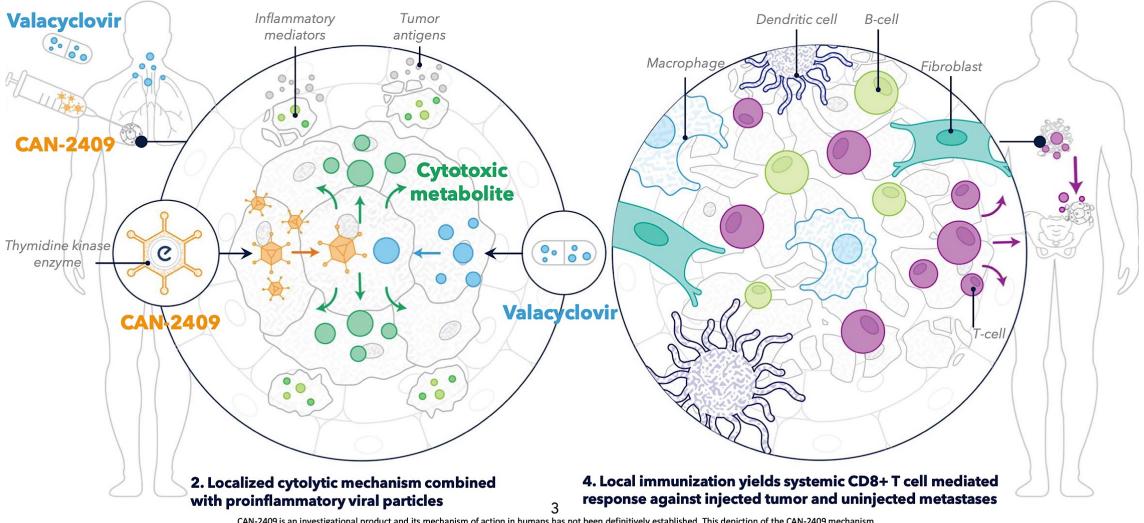
MODULE 5: Promising Novel Agents and Strategies Under Investigation for the Management of Prostate Cancer — Dr Beltran

Promising Novel Agents and Strategies Under Investigation for the Management of Prostate Cancer

Himisha Beltran, MD

Dana-Farber Cancer Institute

Boston, Massachusetts, United States


New therapies across the disease continuum

- Localized prostate cancer: Phase III trial of CAN-2409+prodrug in combination with standard of care EBRT for newly diagnosed localized prostate cancer
- De novo metastatic hormone sensitive prostate cancer: Phase III CAPItello-281 trial assessing capivasertib plus abiraterone/ADT in patients with PTEN deficiency
- Metastatic CRPC: Early phase data supporting mevrometostat in combination with enzalutamide

CAN-2409

- Locally delivered oncolytic therapy, results in vaccination against the injected tumor.
- Consists of a non-replicating adenovirus engineered to deliver gene encoding Herpes virus thymidine kinase in tumor cells
- Thymidine kinase converts oral valacyclovir into a phosphorylated nucleotide that is incorporated into the tumor cell's genome → termination of DNA synthesis and cell death
- Overall results in immunogenic cell death, release of tumor specific antigens recognized by immune system. Adenovirus itself recruits immune cells -> response in injected tumor + distant metastases

CAN-2409

1. CAN-2409 locally administered combined with oral prodrug

3. CAN-2409 induces CD8+ cytotoxic T cells

CAN-2409 is an investigational product and its mechanism of action in humans has not been definitively established. This depiction of the CAN-2409 mechanism of action and the MoA video linked above are based on preclinical data and observations in clinical studies to date

Phase 3 clinical trial of CAN-2409 in patients with newly diagnosed, intermediate / high risk, localized prostate cancer

Pls: Dr. T. DeWeese (JHU) and Dr. P. Scardino (MSKCC)

Primary Endpoint CAN-2409 + Valacyclovir o Disease-free survival (time to cancer recurrence or death due (3 injection courses + radiotherapy, N = 745to any cause) with or without short course ADT) Fully enrolled Newly diagnosed, 2:1 **Key secondary endpoints** intermediate / Randomization high risk, localized PSA freedom from biochemical prostate cancer failure⁽¹⁾ Placebo + Valacyclovir • Prostate cancer specific (3 injection courses + radiotherapy, outcomes⁽²⁾ with or without short course ADT) o Overall survival⁽³⁾

• Randomization stratified by NCCN⁽⁴⁾ risk group and planned short course ADT

Disease-free survival (DFS)

Date of randomization to date of recurrence proven by biopsy, clinical or radiographic evidence of local or regional failure, distant metastases, or death from any cause

NCT01436968

- Local failure: includes increase in tumor size by 50%, reappearance of palpable tumor or biopsy revealing
 adenocarcinoma of the prostate at least 2 years after randomization
- <u>Regional failure</u> clinical recurrence with radiographic evidence of tumor in the pelvis
- Distant metastases: clinical recurrence with radiographic evidence of disease beyond the pelvis

CAN-2409 in combination with SoC radiation +/-ADT was generally well tolerated

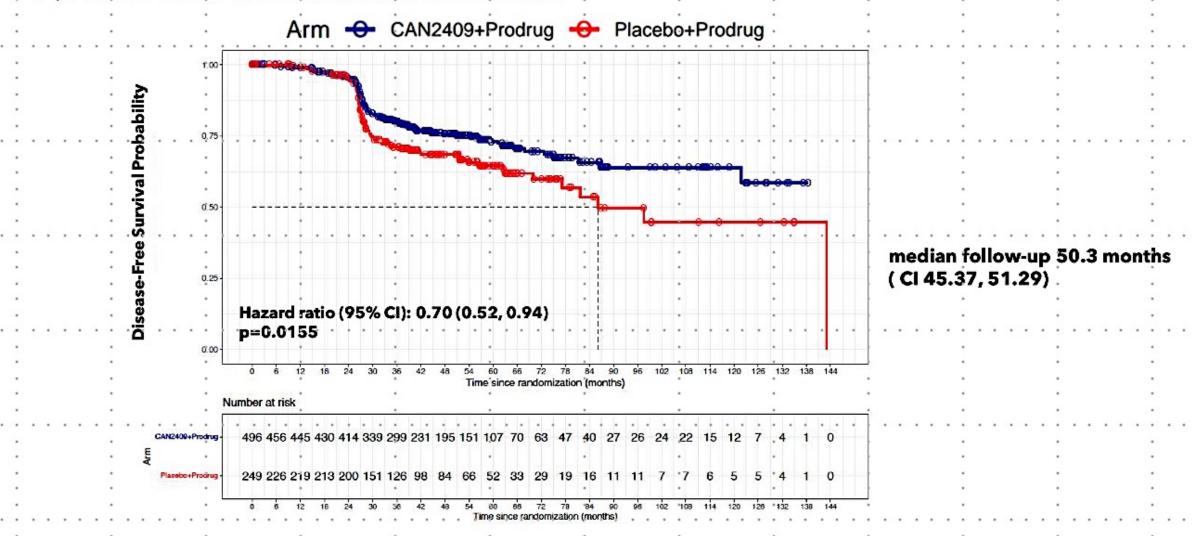
Treatment related AEs >5% in either arm

Preferred term	CAN-2409+prodrug (N=479)	Placebo+prodrug (N=232)	Total (N=711)
Chills	160 (33.4)	20 (8.6)	180 (25.3)
Influenza-like illness	146 (30.5)	32 (13.8)	178 (25.0)
Fever	120 (25.1)	9 (3.9)	129 (18.1)
Fatigue	87 (18.2)	35 (15.1)	122 (17.2)
Urinary frequency	58 (12.1)	34 (14.7)	92 (12.9)
Nausea	53 (11.1)	19 (8.2)	72 (10.1)
Headache	45 (9.4)	12 (5.2)	57 (8.0)
Diarrhoea	30 (6.3)	18 (7.8)	48 (6.8)
Malaise	28 (5.8)	5 (2.2)	33 (4.6)
Vomiting	26 (5.4)	3 (1.3)	29 (4.1)
Urinary urgency	19 (4.0)	16 (6.9)	35 (4.9)
Urinary tract pain	18 (3.8)	14 (6.0)	32 (4.5)

Chills, fever, flu-like symptoms were commonly mild to moderate and self limited

Incidence of treatment related SAEs lower on CAN-2409

- 1.7% on CAN-2409 + SoC
- 2.2% on placebo + SoC

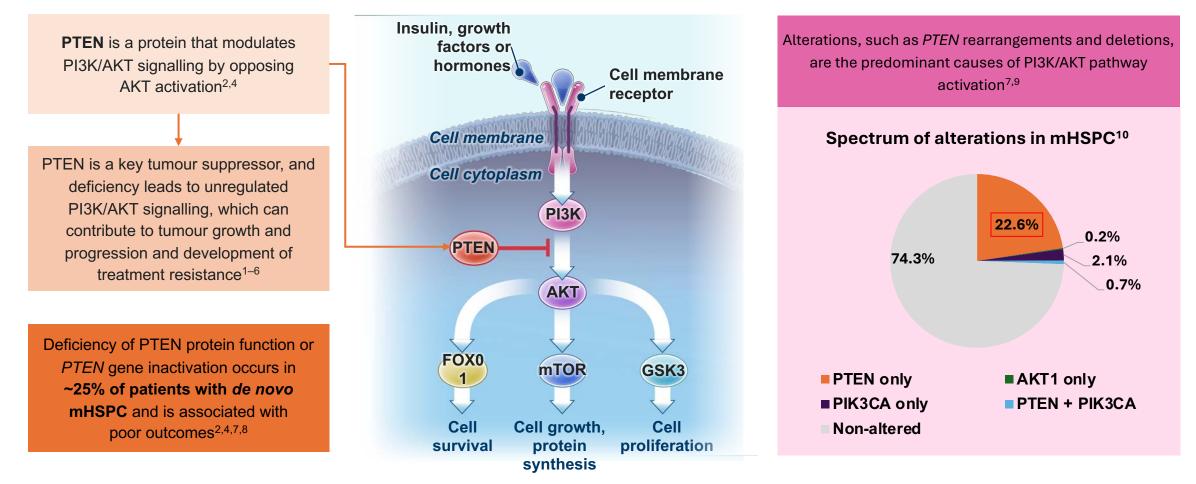

Incidence of SAEs lower on CAN-2409 arm

- 5.8% on CAN-2409 + SoC
- 7.3% on placebo + SoC

Incidence of treatment discontinuation due to AEs lower on CAN-2409 arm

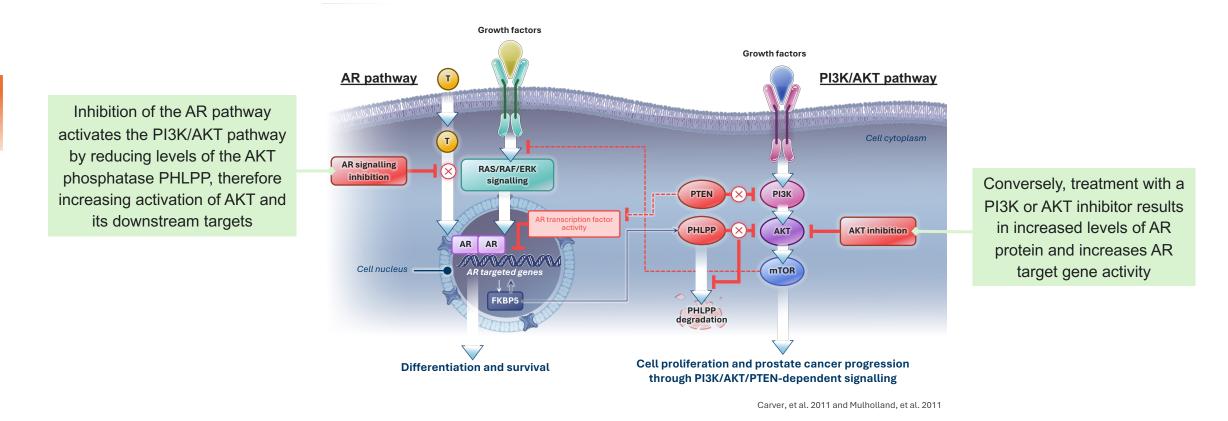
- 5.4% on CAN-2409 + SoC
- 6.0% on placebo + SoC

CAN-2409 significantly improved DFS in newly diagnosed, intermediate/high-risk prostate cancer (ITT, N=745): 30% decrease in disease recurrence



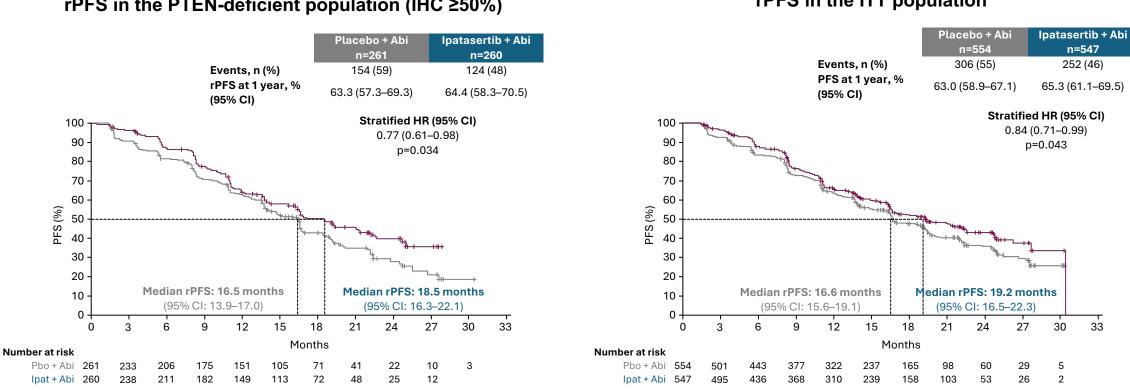
New therapies across the disease continuum

- Localized prostate cancer: Phase III trial of CAN-2409+prodrug in combination with standard of care EBRT for newly diagnosed localized prostate cancer
- De novo metastatic hormone sensitive prostate cancer: Phase III CAPItello-281 trial assessing capivasertib plus abiraterone/ADT in patients with PTEN deficiency
- Metastatic CRPC: Early phase data supporting mevrometostat in combination with enzalutamide


In mHSPC, PI3K/AKT dysregulation by deficiency of PTEN

PTEN deficiency, through gene deletion and other mechanisms, leads to unopposed PI3K/AKT signalling, contributing to tumour growth and progression, and development of treatment resistance

1. Hoxhaj G and Manning BD. Nat Rev Cancer 2020;20:74–88; 2. Jamaspishvili T, et al. Nat Rev Urol 2018;15:222–234; 3. Brown JS and Banerji U. Pharmacol Ther 2017;172:101–115; 4. Marques RB, et al. Eur Urol 2015;67:1177–1185; 5. Glaviano A, et al. Mol Cancer 2023;22:138; 6. Manning BD and Toker A. Cell 2017;169:381–405; 7. Ferraldeschi R, et al. Eur Urol. 2015;67:795–802; 8. AstraZeneca Data on File. CAPItello-281 Screening Data; 9. Phin S, et al. Front Oncol 2013;3:240; 10. Stopsack KH, et al. Clin Cancer Res 2020;26:3230–3238; 11. Pompura SL, Dominguez-Villar M. J Leukoc Biol 2018;103:1065–1076.

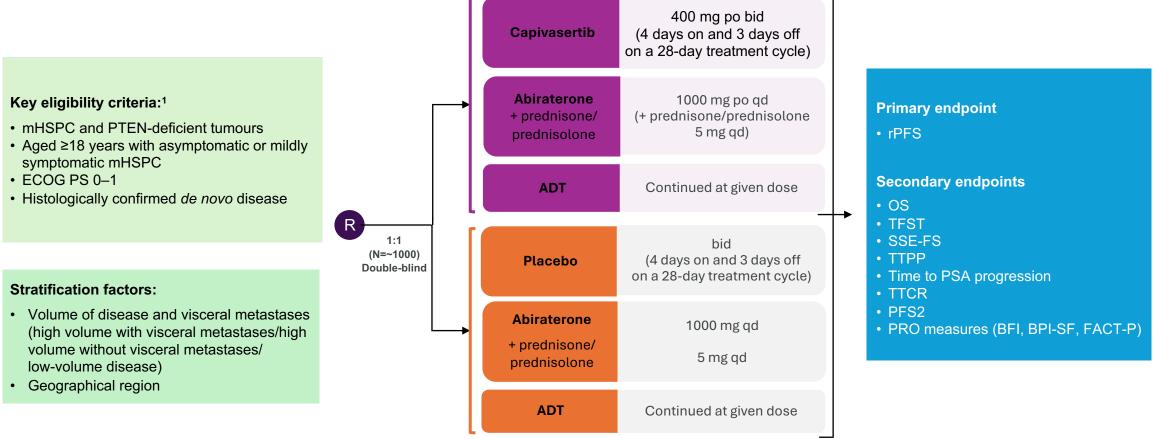

The AR and PI3K/AKT pathways are reciprocally cross-regulated, so that inhibition of one leads to upregulation of the other

In PTEN-deficient prostate tumours, the PI3K/AKT and AR pathways cooperate to drive tumour progression

In mCRPC, co-inhibition of AR and AKT in patients with PTEN-deficient tumours

Ipatasertib + abiraterone significantly improved rPFS compared with placebo + abiraterone in patients with PTEN-deficient mCRPC. However, there was no statistically significant difference in the ITT population of the Phase III randomised IPATential150 trial

*PTEN loss by IHC was defined as ≥50% of the specimen's tumour area having no detectable PTEN staining with VENTANA PTEN [SP218] assay


Sweeney C, et al. Lancet 2021;398(10295):131-142; 2. Clinicaltrials.gov. NCT03072238

Co-primary endpoint: rPFS in the PTEN-deficient population (IHC ≥50%)

Co-primary endpoint: rPFS in the ITT population

CAPItello-281

Phase III randomised trial assessing the combination of capivasertib + abiraterone vs placebo + abiraterone in patients with PTEN-deficient *de novo* mHSPC

In CAPItello-281, the IHC cut-off for tumour PTEN deficiency was ≥90% (VENTANA assay)

This is equivalent to cytoplasmic PTEN staining in no more than 10% of viable malignant cells

An exploratory analysis of the IHC data in IPATential150 demonstrated that a 90% threshold resulted in an HR of 0.72 (95% CI: 0.53–0.97) and a median rPFS of 14.7 months vs 18.5 months, which further substantiates the clinical relevance for the selected population^{1–4}

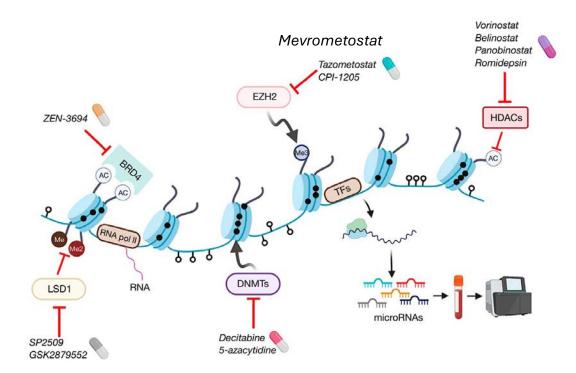
IPATential150: rPFS by PTEN-deficient status by IHC % cut-off^{1,2}

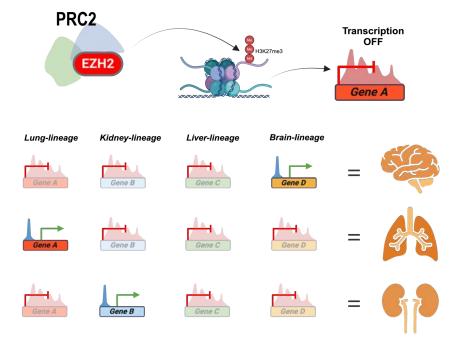
PTEN loss	No. of patients		Median P Placebo + abi Al		HR for progression or death (95% CI)	
All pts	1101	• • • • • • • • • • • • • • • • • • •	16.6	19.2	0.84 (0.71–1.00)	
10%	771	⊢	16.6	17.7	0.84 (0.69–1.02)	In IPATential150, PTEN deficiency by IHC was
20%	684		16.5	17.1	0.81 (0.66–0.99)	defined as ≥50% of the specimen's tumour
30%	618		16.5	17.1	0.82 (0.66–1.02)	area having no detectable PTEN staining with
40%	575		16.5	18.5	0.82 (0.65–1.03)	VENTANA [®] antibody clone SP218 ¹
50%	523		16.5	19.1	0.77 (0.61–0.98)	
60%	489		15.1	18.6	0.72 (0.56–0.92)	
70%	462		15.0	18.6	0.72 (0.56–0.93)	However, consistent rPFS benefits were
80%	424		14.8	18.6	0.71 (0.54–0.92)	 observed when more stringent IHC
90%	335		14.7	18.5	0.72 (0.53–0.97)	cut-offs were used ^{1,3}
100%	123		⊣ 16.5	19.2	0.65 (0.39–1.08)	
0	0.2	0.4 0.6 0.8 1 AKTi + abi better	1.2 1.4 Pbo + abi better			

*Tumour PTEN status was centrally assessed by IHC using a validated assay (VENTANA PTEN [SP218] assay; Ventana Medical Systems, Oro Valley, AZ, USA). This assay prospectively describes the PTEN status of PC baseline tumour samples (archival or newly collected).³

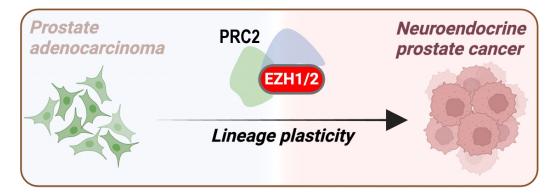
Abi, abiraterone; AKTi, protein kinase B inhibitor; ARPI, androgen receptor pathway inhibitor; CI, confidence interval; HR, hazard ratio; IHC, immunohistochemistry; Pbo, placebo; PC, prostate cancer; PTEN, phosphatase and tensin homologue; pts, patients; rPFS, radiographic progression-free survival.

1. de Bono J, et al. Presented at ASCO Genitourinary Cancers Symposium 2021; 2. Sweeney C, et al. Lancet 2021;398:131–142; 3. Sweeney C, et al. Article and supplementary online content. Lancet 2021;398:131–142; 4. CAPItello-281 Study Protocol.

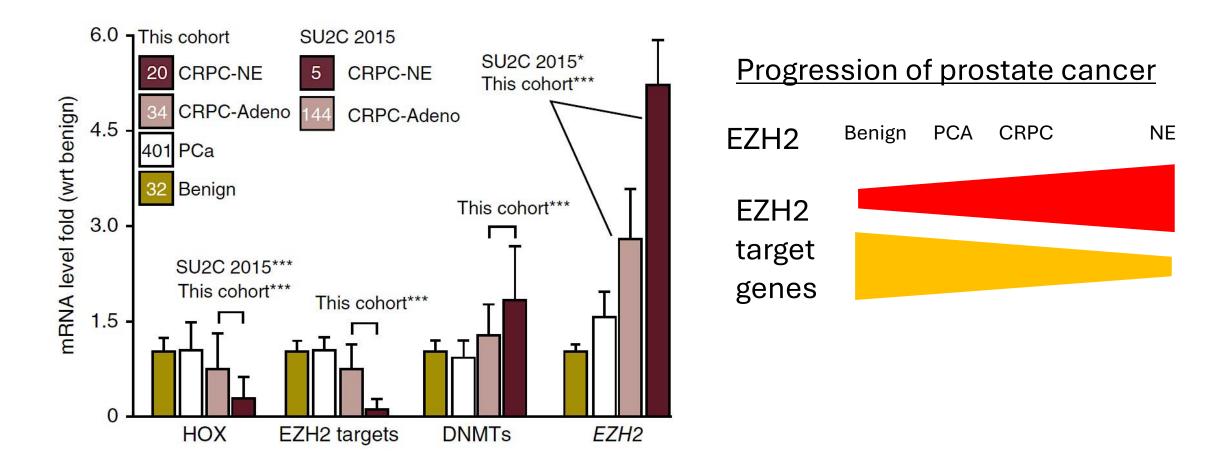

Capivasertib combination in PTEN-deficient metastatic hormone-sensitive prostate cancer demonstrated statistically significant and clinically meaningful improvement in radiographic progression-free survival in CAPItello-281 Phase III trial

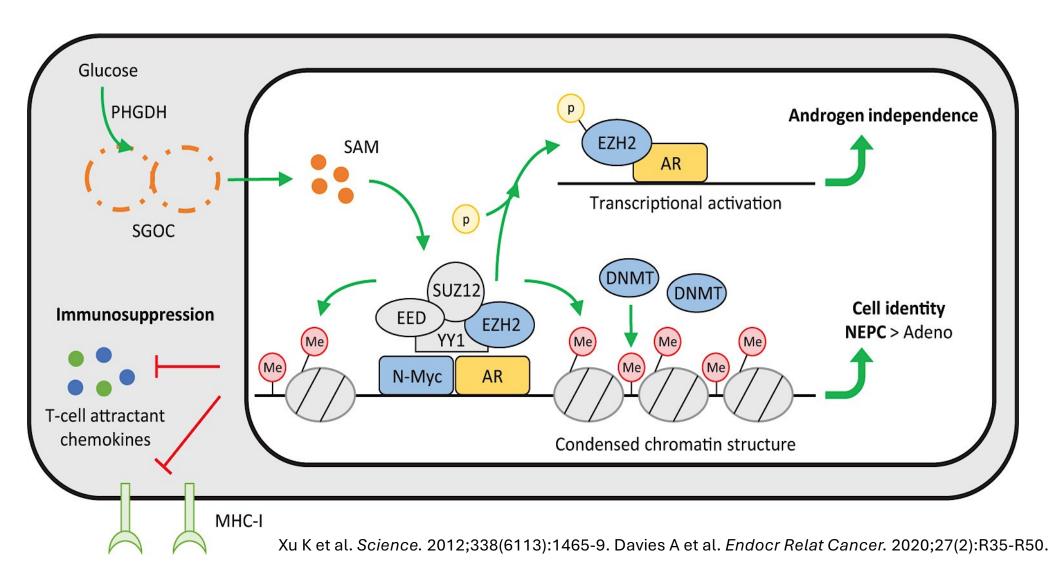

Press release, November 2024

New therapies across the disease continuum

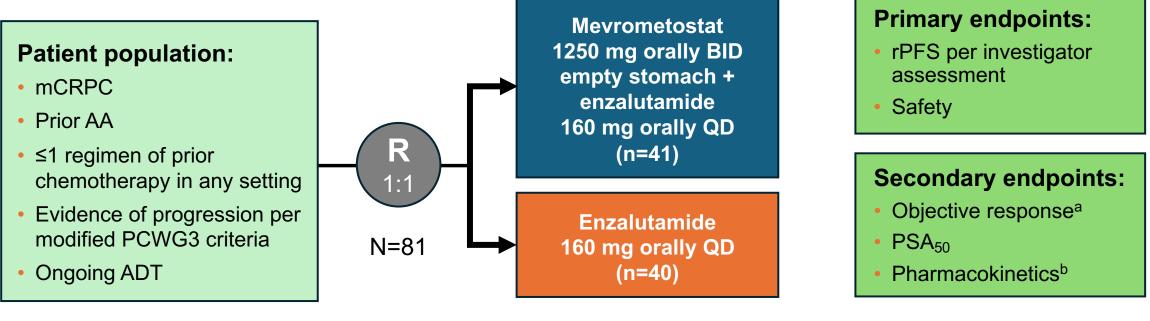

- Localized prostate cancer: Phase III trial of CAN-2409+prodrug in combination with standard of care EBRT for newly diagnosed localized prostate cancer
- De novo metastatic hormone sensitive prostate cancer: Phase III CAPItello-281 trial assessing capivasertib plus abiraterone/ADT in patients with PTEN deficiency
- Metastatic CRPC: Early phase data supporting mevrometostat in combination with enzalutamide

Targeting the epigenome in prostate cancer




EZH2 (PRC2) Plays an Important Role in Lineage Specification

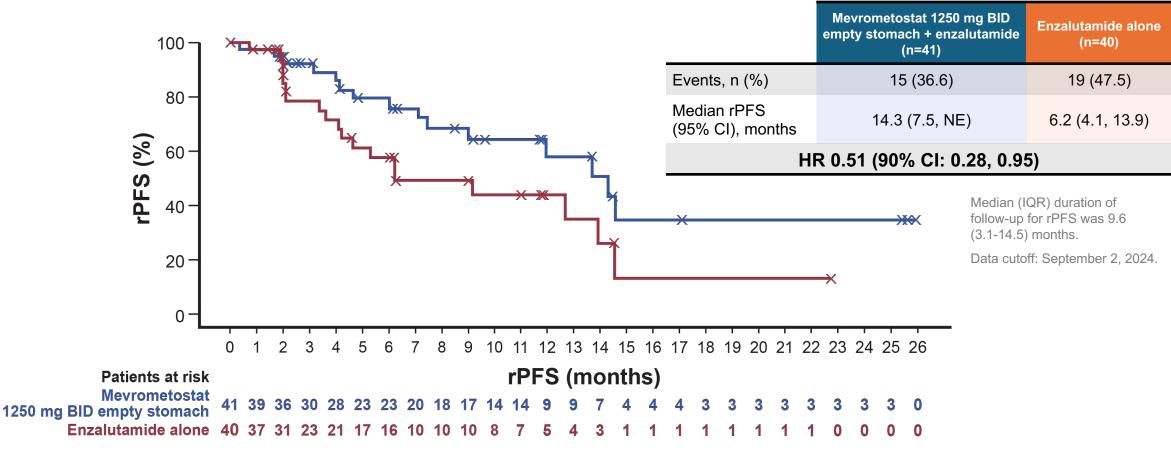
Epigenetic Dysregulation in CRPC/NEPC


Beyond PRC2: Non-Canonical Function of EZH2

Mevrometostat + Enzalutamide

Open-label, Dose Expansion Study

Study design

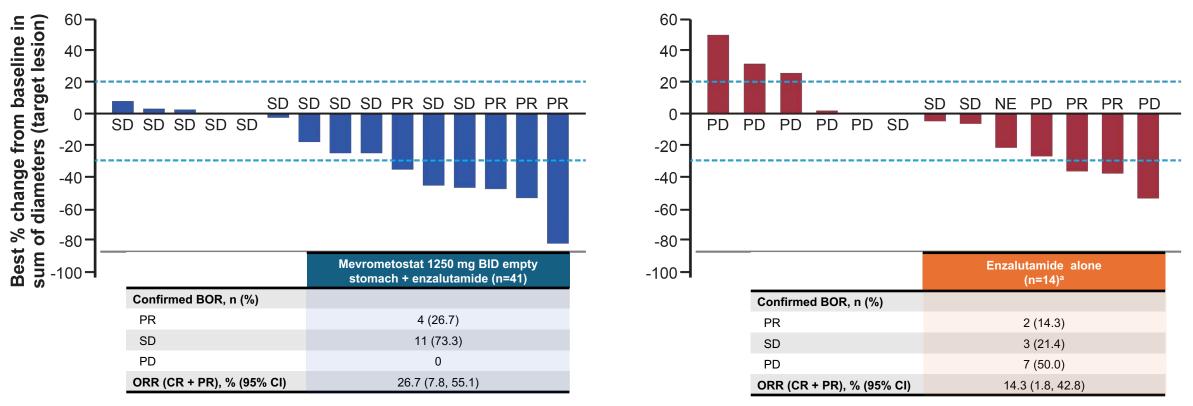

Stratification factor: Prior chemotherapy

Mevrometostat + Enzalutamide

Open-label, Dose Expansion Study (cont)

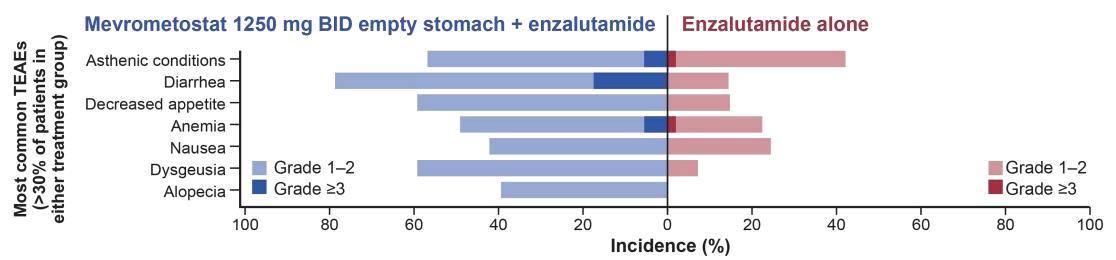
Primary endpoint: rPFS by investigator

49% reduction in the risk of progression or death and ~8-month improvement in median rPFS



Schweizer MT, et al. ASCO GU 2025. Abstract LBA138.

Mevrometostat + Enzalutamide Open-label, Dose Expansion Study (cont)


ORR

Mevrometostat 1250 mg BID empty stomach + enzalutamide improved ORR vs enzalutamide

Mevrometostat AE Data

		at 1250 mg BID enzalutamide (n=41)	Enzalutamide alone (n=40)		
Event, n (%)	All grades	Grade ≥3	All grades	Grade ≥3	
Any TEAE	40 (97.6)	22 (53.7)	37 (92.5)	17 (42.5)	
Treatment-related TEAE	39 (95.1)	20 (48.8)	33 (82.5)	9 (22.5)	
Serious AE	14 (34.1)	13 (31.7)	11 (27.5)	10 (25.0)	
Treatment-related serious TEAE ^a	10 (24.4)	10 (24.4)	1 (2.5)	1 (2.5)	
TEAE leading to dose reduction	15 (36.6)	7 (17.1)	3 (7.5)	0	
TEAE leading to study discontinuation	1 (2.4)	0	2 (5.0)	1 (2.5)	

Schweizer MT, et al. ASCO GU 2025. Abstract LBA138.

Mevrometostat + Enzalutamide

Open-label, Dose Expansion Study (cont)

- Mevrometostat + enzalutamide was associated with a 49% reduction in risk of rPFS compared with enzalutamide
- Mevrometostat 1250 mg BID on empty stomach + enzalutamide has a manageable safety profile
- Plasma exposure with mevrometostat 875 mg with food was similar to 1250 mg empty stomach, with an improved safety profile
- Mevrometostat 875 mg with food is the recommended phase 3 dose

Next steps Mevrometostat + Enzalutamide

• MEVPRO-1: Phase 3 Study

Mevrometostat + Enzalutamide vs Physician Choice (Docetaxel or Enzalutamide) in Patients With mCRPC Previously Treated With Abiraterone (rPFS)

MEVPRO-2 Phase 3 Study

Mevrometostat + Enzalutamide vs Placebo + Enzalutamide in ARPI-Naive Patients With mCRPC (rPFS)

Exciting new therapies with new mechanisms of action in late-stage clinical development across the disease continuum

- Phase III trial of CAN-2409+prodrug in combination with standard of care EBRT for newly diagnosed localized prostate cancer (ASCO 2025)
- Phase III CAPItello-281 trial assessing capivasertib plus abiraterone/ADT in patients with mHSPC and PTEN deficiency
- Promising early phase data supporting mevrometostat in combination with enzalutamide for mCRPC

Faculty Case Presentations

Case Presentation – Dr Armstrong: mHSPC, low volume disease

- 71 yo WM presented with back pain to the ER after a negative sports medicine physical, worse with activity, but still bothering him after 2 months at night
- PSA found to be 71 (first ever), alkaline phosphatase 220 (high), newly elevated from last year's wellness check. Never had PSA screening.
- PSMA PET/CT shows 4 bone metastases in his L-spine (2) and ribs, L ilium, PSMA Avid (SUV 14-20) and uptake in his prostate, no LAD
- Prostate biopsy confirms high grade GG5 disease in multiple cores, sent for Foundation CDX testing. Found to have PTEN loss and a TMPRSS2-ERG fusion, no HRD alterations, MSS, TMB 2.0 (low), PD-L1 negative
- Starts on ADT/abiraterone and inquires if there are other approaches that could improve his survival
- PMH significant for HTN and hyperlipidemia, well controlled. No heart disease and he is active but somewhat sedentary, retired. Married for 45 years, no family history of malignancy but does have 3 children

QUESTIONS FOR THE FACULTY

Should general medical oncologists in community-based practice be testing their patients with mHSPC for PTEN deficiency? If so, how would you recommend that they do so?

When will data from the CAPItello-281 study be available, and what would they need to demonstrate for you to enthusiastically employ capivasertib? For a patient with mHSPC and PTEN deficiency for whom you would normally recommend a triplet regimen based on clinical characteristics, how would you select between an AR pathway inhibitor/docetaxel/ADT and capivasertib/abiraterone/ADT if capivasertib becomes available?

Case Presentation – Dr McKay: mCRPC

Patient Profile:

- 65-year-old male
- Initial diagnosis: De novo metastatic disease (January 2022)
 - Presenting PSA: 125.6 ng/mL
 - Biopsy: Gleason 4+5=9 (Grade Group 5) in 8/12 cores
 - Imaging: Multiple bone metastases (spine, pelvis, ribs) on bone scan
 - No visceral metastases
 - Clinical stage: cT3b N1 M1b
 - Genomic testing on prostate biopsy: TP53 mutation identified, no HRR alterations
- Initial treatment for mHSPC:
 - ADT + abiraterone 1000mg daily + prednisone 5mg daily (Jan 2022-May 2024)
 - Initial PSA response: Declined to 0.2 ng/mL within 3 months
 - Maintained response for 28 months with castrate testosterone <20 ng/dL
- Recent progression to mCRPC (May 2024):
 - Rising PSA to 4.7 ng/mL despite castrate testosterone
 - CT scan and bone scan: New bone lesions, no visceral disease
 - Considered first-line mCRPC with progression on abiraterone
 - No prior enzalutamide exposure
 - No prior chemotherapy exposure
- Current status (June 2024):
 - PSA: 7.2 ng/mL (rising)
 - ECOG performance status: 1
 - Mild fatigue, intermittent bone pain well-controlled with NSAIDs
 - Laboratory: Hemoglobin 13.1 g/dL, WBC 5.8, platelets 245K, liver/renal function normal
 - PSMA PET/CT: Diffuse PSMA-avid bone metastases (SUVmax 14-38)
 - No hepatic metastases, no lymphadenopathy >1.5cm
- Treatment Course
 - Enrolled on Mevpro-1 trial

QUESTIONS FOR THE FACULTY

If mevrometostat were to eventually reach the clinic, how do you see it being sequenced relative to currently available therapies for mCRPC? Based on what we know so far, in which patient populations do you think mevrometostat might be particularly advantageous?

What other potential therapeutic targets are you most excited about in prostate cancer?

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Care of Patients with Chronic Lymphocytic Leukemia

> A CME-Accredited Virtual Event Held in Conjunction with the 2025 ASCO[®] Annual Meeting

Sunday, June 1, 2025 7:00 AM – 8:00 AM CT (8:00 AM – 9:00 AM ET)

> Faculty Catherine C Coombs, MD William G Wierda, MD, PhD

> > Moderator Neil Love, MD

Thank you for joining us! Your feedback is very important to us.

Please complete the survey currently up on the iPads for attendees in the room and on Zoom for those attending virtually. The survey will remain open up to 5 minutes after the meeting ends.

How to Obtain CME Credit

In-person attendees: Please refer to the program syllabus for the CME credit link or QR code. Online/Zoom attendees: The CME credit link is posted in the chat room.

