Integrating New Advances into the Care of Patients with Cancer

A Multitumor Symposium in Partnership with the American Oncology Network

CME/MOC, NCPD and ACPE Accredited

Saturday, November 8, 2025 10:00 AM - 3:00 PM CT

Agenda

Module 1 — Lung Cancer: *Drs Gainor, Langer and Shields*

Module 2 — Chronic Lymphocytic Leukemia: *Dr Rogers*

Module 3 — Ovarian Cancer: *Dr Konecny*

Module 4 — Gastroesophageal Cancers: *Dr Shah*

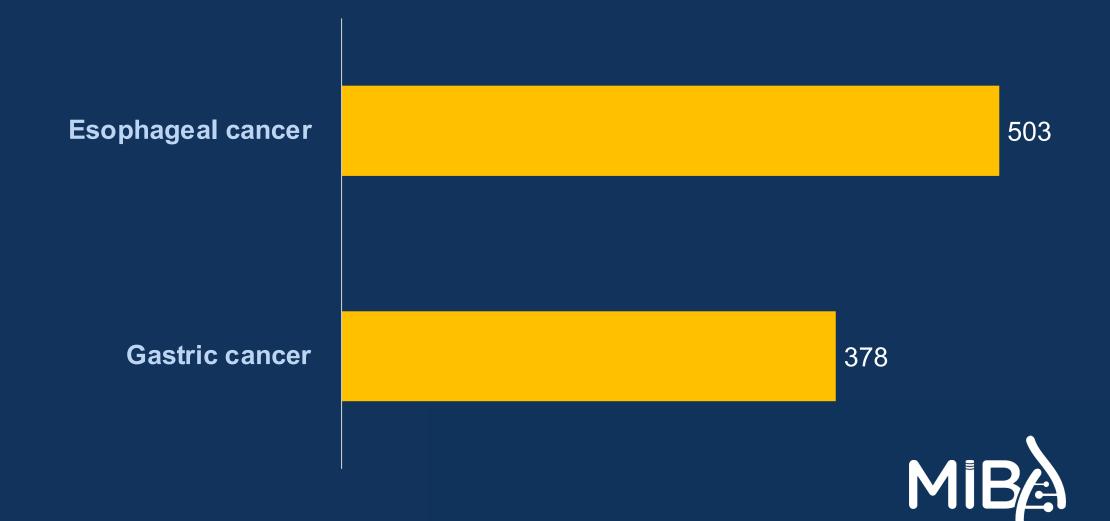
Gastroesophageal Cancers Faculty

Manish A Shah, MD
Professor of Medicine
Bartlett Family Professor of Gastrointestinal Oncology
Chief, Solid Tumor Oncology
Weill Cornell Medicine/NewYork-Presbyterian Hospital
New York, New York

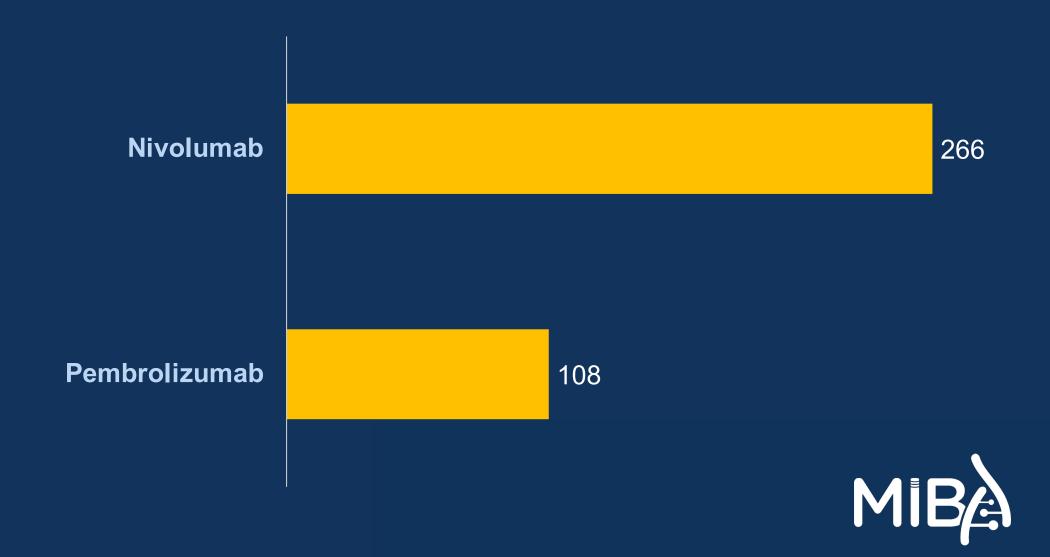
MODERATOR
Stephen "Fred" Divers, MD
Chief Medical Officer
American Oncology Network
Hot Springs, Arkansas

Dr Shah — **Disclosures**

No relevant conflicts of interest to disclose.



Dr Divers — Disclosures


Advisory Committees Da	aiichi Sankyo Inc
------------------------	-------------------

Snapshot of AON Practice Gastroesophageal Cancers

Snapshot of AON Practice Gastroesophageal Cancers — Immunotherapy

Snapshot of AON Practice Gastroesophageal Cancers — Chemotherapy

Fluorouracil/leucovorin/ oxaliplatin/docetaxel

89

Snapshot of AON Practice Gastroesophageal Cancers — HER2-Positive

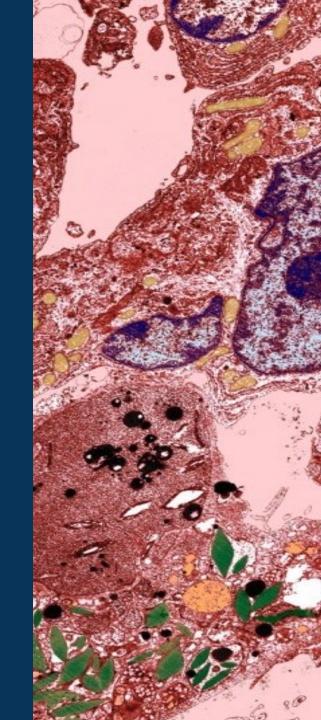
Trastuzumab deruxtecan

7

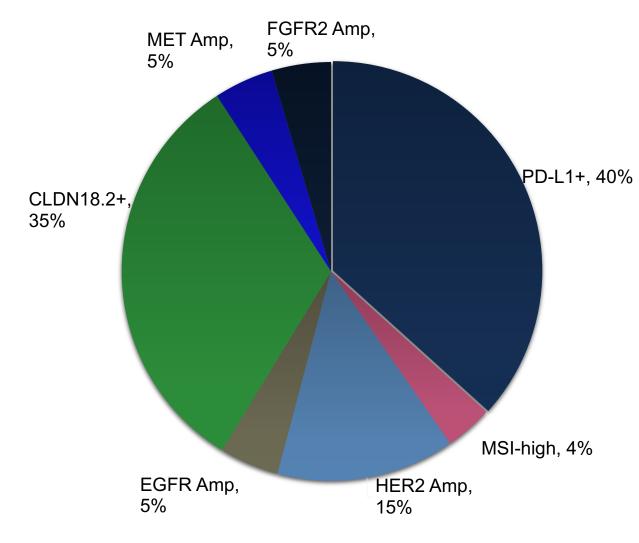
Snapshot of AON Practice Gastroesophageal Cancers – CLDN18.2-Positive

Zolbetuximab

 \cap



Highlights and Principals of Management of Metastatic Gastric/GEJ Adenocarcinoma


AON Annual Meeting Dallas, Texas November 8, 2025

Manish A. Shah, MD FASCO
Weill Cornell Medicine/ New York-Presbyterian
mas9313@med.cornell.edu

Biomarkers in Gastroesophageal Adenocarcinoma

Key Biomarkers in Gastroesophageal Cancer

AMP = amplification; CPS = combined positive score; EGFR = epidermal growth factor receptor; FGFR2 = fibroblast growth factor receptor 2; HER = human epidermal growth factor receptor

Key markers in advanced disease

HER2 positive: 15%-20% of patients; improved survival with chemo + HER2-targeting trastuzumab

MSI high: 3%-5% of patients, high response rates to immunotherapies ± chemo

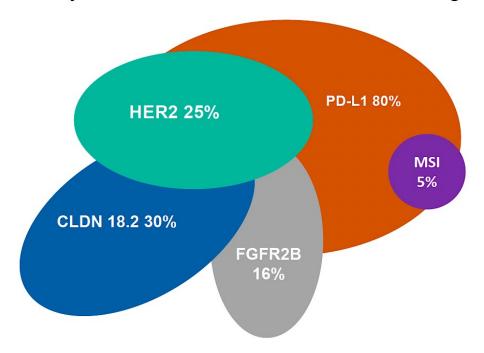
PD-L1 positive: 30%-50% of patients; identifies those more likely to benefit from immunotherapy; likely gradation within PD-L1+ (CPS)

<u>CLDN18.2</u> high: 30%-35% of patients; response predictor for CLDN18.2-targeting agent

Investigational biomarkers

FGFR2 amp: 5%-10% of patients; multiple trials of inhibitors

FGFR2 high: May be up to 30% of HER2 negative

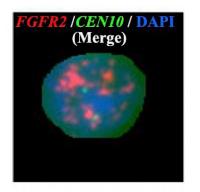

EGFR amp: 5%-7%; may predict response to EGFR agents

Tumor agnostic

Mismatch repair deficiency (or MSI-H)
Tumor mutation burden
NTRK fusion

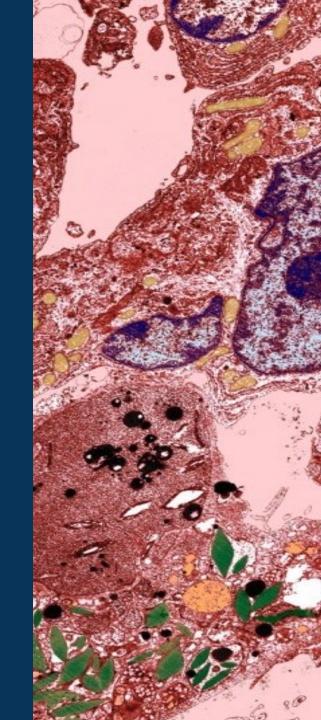
Biomarkers don't neatly fit in a pie!

- TP53mut is an early event driving CIN in GEC
- Co-occurring alterations making it difficult to target individual oncogenes
- Rely on IHC and FISH to define clinical targets



*overlapping between biomarkers may vary among studies

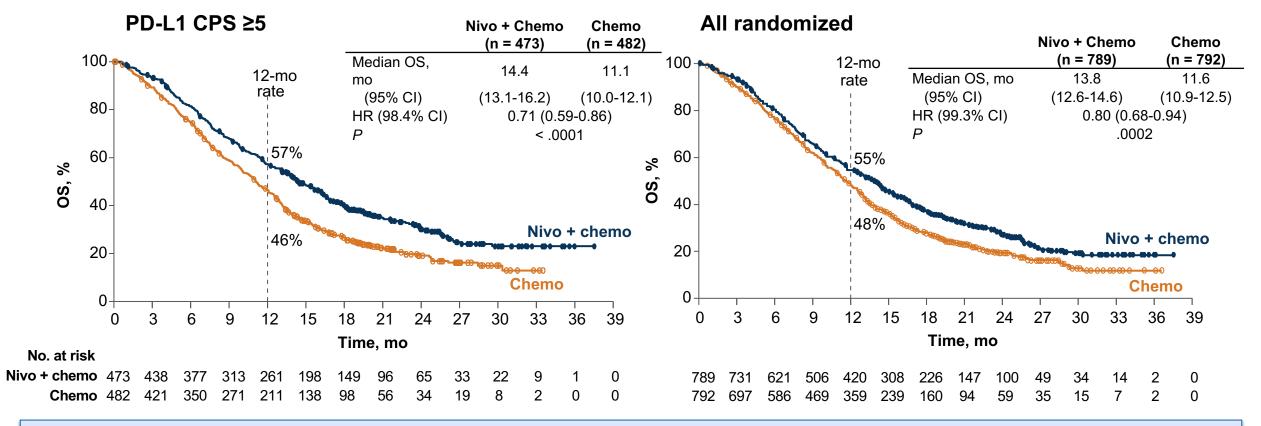
Fibroblast Growth Factor Receptor 2 (FGFR2) testing


FGFR2b ≥10% IHC 2/3+ in 16% GEC

FISH and ctDNA testing: FGFR amplifications 5%

Immunotherapy in Gastroesophageal Adenocarcinoma

Overview of Select Trials of Immunotherapy in Upper GI Cancers: Increasing Complexity

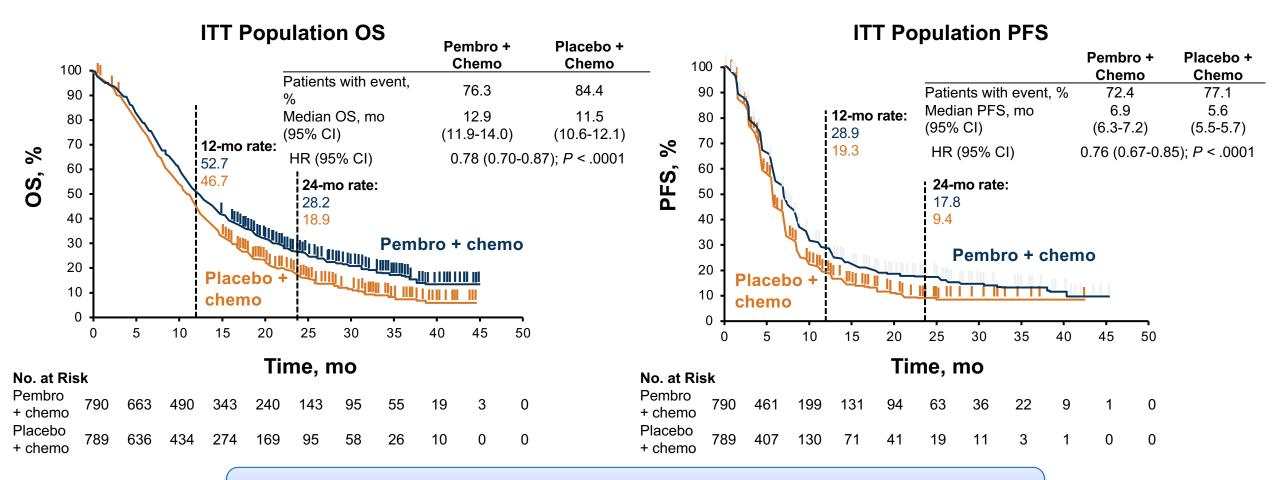

Parameter	CheckMate -649 ²	KEYNOTE-859 ³	Rationale-05	
Disease location	Gastric, GEJ, esophagus	Gastric, GEJ	Gastric, GEJ	
Histology	Adenocarcinoma	Adenocarcinoma	Adenocarcinoma	
Agent	Nivolumab + chemo vs chemo	Pembrolizumab + chemo vs chemo	Tislelizumab + chemotherapy vs chemo	
Setting	1L advanced	1L advanced	1L advanced	
ORR, %	60 vs 45 (CPS ≥5)	51.3 vs 42	50 vs 43 (TAP <u>></u> 5)	
PFS HR	0.68 (CPS ≥5)	0.76	0.67 (TAP ≥5)	
OS Δ, mo	3.3 (CPS ≥5), 2.7 (CPS ≥1), 2.2 (all patients)	1.4	4.6 mo (TAP <u>></u> 5)	

^a Results from prespecified interim analysis of the first 264 patients.

^{1.} Janjigian YY et al. Lancet. 2021;398:27-40. 2. Rha SY et al. ESMO 2023. Abstract VP1-2023. 3. Xu R-H, et al. Oral presentation at ESMO 2023. Abstract LBA80.

CheckMate-649 Global Phase 3 Trial: Nivolumab Plus Chemotherapy Improved Survival^{1,2}

FDA-approved April 2021

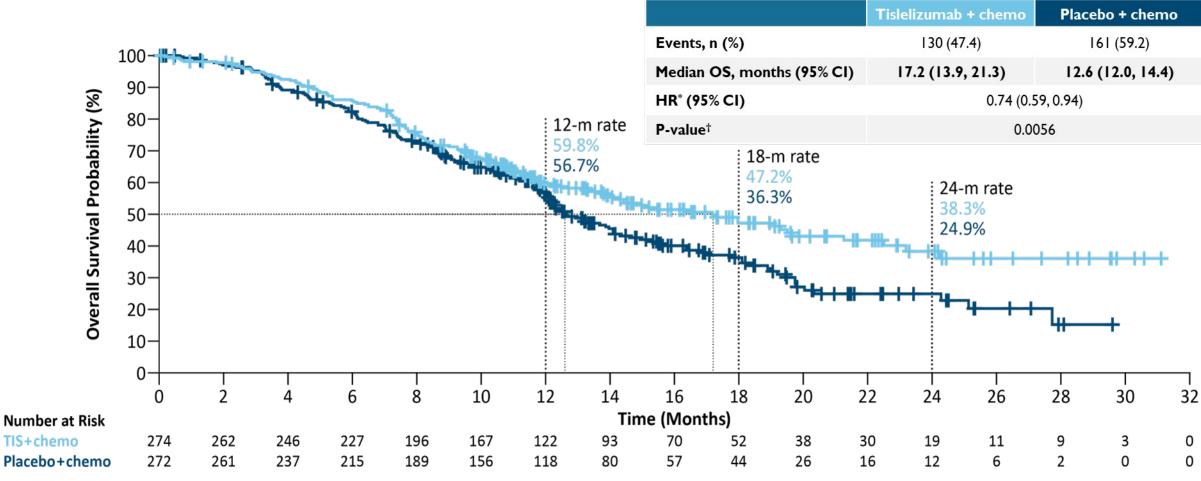


- Grade 3-4 TRAEs were reported in 59% of patients in the nivolumab + chemo arm and 44% of patients in the chemo arm
- Treatment-related deaths occurred in 16 (2%) and 4 (1%) of patients in the nivolumab + chemo and chemo arms, respectively

Adapted with permission from Yelena Y. Janjigian, MD.

- 1. Nivolumab Prescribing Information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/125554Orig1s121lbl.pdf.
- 2. Janjigian YY et al. Lancet. 2021;398:27-40.

KEYNOTE-859: 1L Pembrolizumab + Chemotherapy Improves Survival for Advanced G/GEJ Cancer¹



In addition to higher ORR (51.3% vs 42.0%), responses were also more durable in pembrolizumab arm (median DOR, 8.0 vs 5.7 months)

^{1.} Rha SY et al. ESMO 2023. Abstract VP1-2023.

RATIONALE-305: Interim Analysis

Tislelizumab plus chemotherapy demonstrated statistically significant improvement in OS vs placebo plus chemotherapy

Data cutoff: October 08, 2021.

^{*}Primary OS analysis: Stratified by regions (east Asia vs rest of the world) and presence of peritoneal metastasis. †One-sided stratified log-rank test. 116 (42.3%) patients and 147 (54.0%) patients in tislelizumab plus chemotherapy arm and placebo plus chemotherapy arm received subsequent anticancer systemic therapies, respectively. Of those, 19 (6.9%) patients and 38 (14.0%) patients received immunotherapy.

FFDA ODAC Meeting – September 24, 2024

	Nivolumab CheckMate-649 April 16, 2021	Pembrolizumab Keynote-859 November 16, 2023	Tislelizumab Rationale-305 Under review	
Intent to Treat	N = 1581	N=1579	N=997	
Median OS - ICI + Chemo arm, mos (95% CI) - Chemo arm, mos (95% CI)	13.8 (12.6, 14.6) 11.6 (10.9, 12.5)	12.9 (11.9, 14.0) 11.5 (10.6, 12.1)	15.0 (13.6, 16.5) 12.9 (12.1, 14.1)	
OS HR (95% CI)	0.80 (0.71, 0.90)	0.78 (0.70, 0.87)	0.80 (0.70, 0.92)	
Pre-specified analysis for PD-L1 group 1	CPS ≥ 1 N = 1296	CPS ≥ 1 N = 1235	TAP ≥ 5 N = 576	
Median OS - ICI + Chemo arm, mos (95% CI) - Chemo arm, mos (95% CI)	14.0 (12.6, 15.0) 11.3 (10.6, 12.3)	13.0 (11.6, 14.2) 11.4 (10.5, 12.0)	17.2 (13.9, 21.3) 12.6 (12.0, 14.4)	
OS HR (95% CI)	0.77 (0.68, 0.88)	0.74 (0.65, 0.84)	0.74 (0.59, 0.94)	
Pre-specified analysis for PD-L1 group 2	CPS ≥ 5 N = 955	CPS ≥ 10 N = 551	NA	
Median OS - ICI + Chemo arm, mos (95% CI) - Chemo arm, mos (95% CI)	14.4 (13.1, 16.2) 11.1 (10.0, 12.1)	15.7 (13.8, 19.3) 11.8 (10.3, 12.7)	NA	
OS HR (95% CI)	0.71 (0.61, 0.83)	0.65 (0.53, 0.79)	NA	

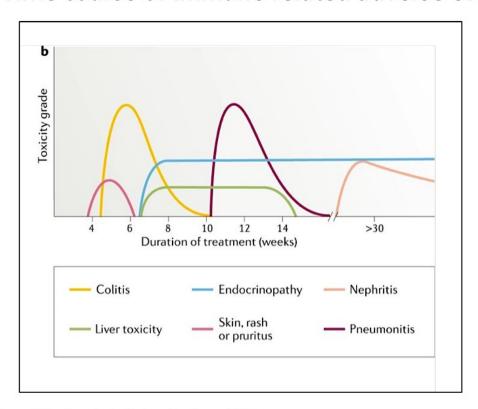
Adapted from slide made by Dr. Vaibhav Kumar

Abbreviations: CPS combined positive score; TAP tumor area positivity; ICI immune checkpoint inhibitor; mos months; OS overall survival

Pre-Specified PD-L1 groups

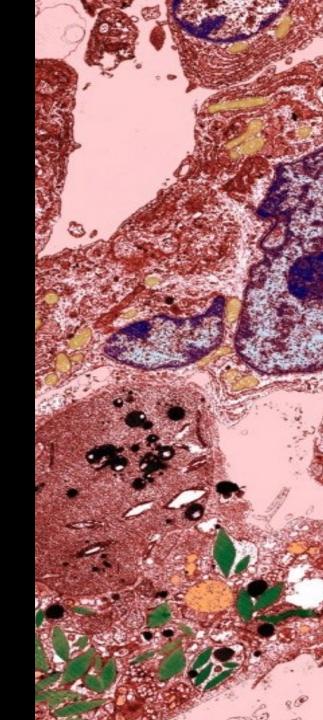
	Nivolumab CheckMate-649 April 16, 2021		Pembrolizumab Keynote-859 November 16, 2023		Tislelizumab Rationale-305 Under review	
Pre-specified analysis for PD-L1 group 1	CPS ≥ 1 N = 1296	CPS < 1 N = 265	CPS ≥ 1 N = 1235	CPS < 1 N = 344	TAP ≥ 5 N = 576	TAP < 5 N = 451
Median OS - ICI + Chemo arm, mos - Chemo arm, mos	14.0 11.3	13.1 12.5	13.0 11.4	12.7 12.2	17.2 12.6	14.1 12.9
OS HR (95% CI)	0.77 (0.68, 0.88)	0.85 (0.63, 1.15)	0.74 (0.65, 0.84)	0.92 (0.73, 1.17)	0.74 (0.59, 0.94)	0.91 (0.74, 1.12)
Pre-specified analysis for PD-L1 group 2	CPS ≥ 5 N = 955	CPS < 5 N = 606	CPS ≥ 10 N = 551)	NA	
Median OS - ICI + Chemo arm, mos (95% CI) - Chemo arm, mos (95% CI)	14.4 11.1	12.4 12.3	15.7 11.8		NA	
OS HR (95% CI)	0.71 (0.61, 0.83)	0.94 (0.78, 1.14)	0.65 (0.53, 0.79)		NA	

Abbreviations: CPS combined positive score; TAP tumor area positivity; ICI immune checkpoint inhibitor; mos months; OS overall survival

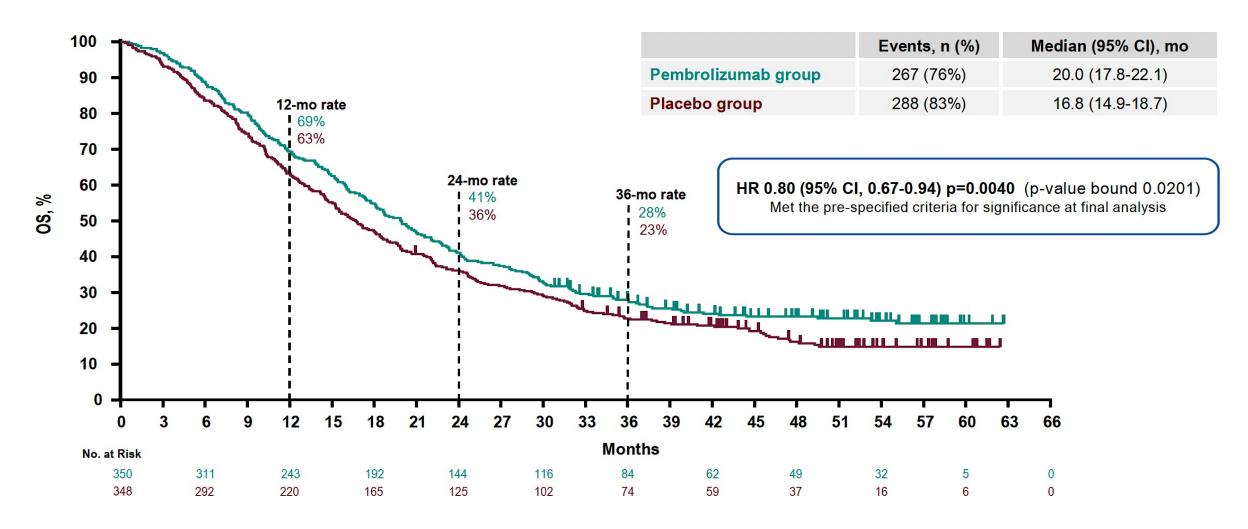


Safety – Immune Related Adverse Events (anti-PD-1)

Incidence of immune related adverse reactions (IMARs)

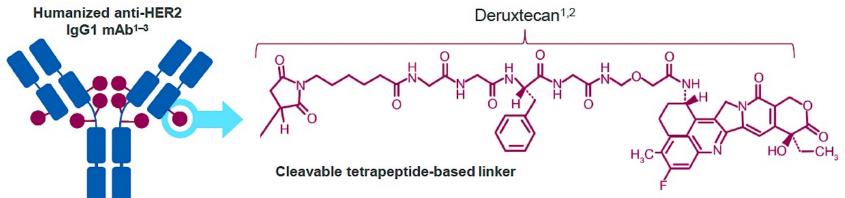

	All Grade	≥ 3
Diarrhea	6 to 19%	1%
Colitis	1 to 4%	0.3 to 2%
Pulmonary	1.5 to 5%	0 to 2%
Rash	9 to 16%	0.2 to 3.5%
Neurological	NR to 0.3%	NR to 0.3%
Endocrinopathy	7.3 to 23.4%	0 to 2%
Hepatic	0.3 to 10.8%	0 to 1.5%
Renal	NR to 2%	0 to 0.5%

Time course of immune related adverse events


Source: (Adapted-Table and Copied-Figure) Martins et al., Nature Reviews, 2019

Targeting HER2 in Gastroesophageal Junction Adenocarcinoma

KN 811 HER2+ Overall Survival at Final Analysis


Dual HER2 and PD-1 Blockade in Advanced Disease

T-DXd was designed with seven key attributes

T-DXd is an ADC composed of three components^{1,2}:

- A humanized anti-HER2 IgG1 mAb with the same amino acid sequence as trastuzumab, covalently linked to
- A topoisomerase I inhibitor payload, an exatecan derivative, via
- A tetrapeptide-based cleavable linker

*The clinical relevance of these features is under investigation.

Topoisomerase I inhibitor payload (DXd=DX-8951f derivative)

Payload mechanism of action: topoisomerase I inhibitor^{1,2,*}

High potency of payload1,2,*

High drug-to-antibody ratio ≈ 81,2,*

Payload with short systemic half-life^{1,2,*}

Stable linker-payload 1,2,*


Tumour-selective cleavable linker^{1,2,*}

Bystander antitumour effect^{1,4,*}

^{1.} Nakada T, et al. Chem Pharm Bull (Tokyo) 2019;67:173–185. 2. Ogitani Y, et al. Clin Cancer Res 2016;22:5097–5108. 3. Trail PA, et al. Pharmacol Ther 2018;181:126–142. 4. Ogitani Y, et al. Cancer Sci 2016;107:1039–1046.

DESTINY-Gastric03: 1L T-DXd plus chemo +/- anti-PD1 Trastuzumab Deruxtecan with PD-1 Blockade Safe and Effective

Phase III DESTINY-Gastric04 Study Design

Patient Population

- HER2+ (IHC 3+ or IHC 2+/ISH+)^a GC/GEJA
- HER2 status confirmed locally or centrally^b on a recent biopsy obtained after progression on trastuzumab
- ECOG PS 0 or 1
- No clinically active CNS metastases^c

Stratification factors

- HER2 status (IHC 3+ vs IHC 2+/ISH+)
- Geography (Asia [excluding mainland China] vs Western Europe vs mainland China/rest of world)
- Time to progression on 1L therapy (<6 months vs ≥6 months)

Primary Endpoint

OS

T-DXd

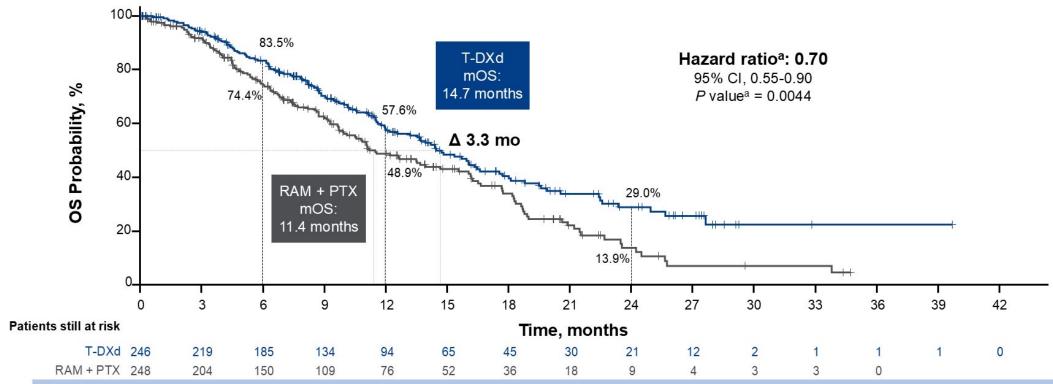
6.4 mg/kg Q3W

RAM + PTXd

Secondary Endpoints

- PFS (INV)e
- Confirmed ORR (INV)e
- DCR (INV)^e
- DOR (INV)^e
- Safety

Exploratory Endpoints


PROsf

1L, first-line; ASCO/CAP, American Society of Clinical Oncology/College of American Pathologists; CNS, central nervous system; DCR, disease control rate; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; EORTC, European Organisation for Research and Treatment of Cancer; EQ-5D-5L, EuroQol 5-Dimension, 5-Level; FACT-Ga, Functional Assessment of Cancer Therapy-gastric; GC, gastric cancer; GEJA, gastroesophageal junction adenocarcinoma; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; INV, investigator; ISH, in situ hybridization; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PRO, patient-reported outcome; PTX, paclitaxel; Q3W, every 3 weeks; R, randomization; RAM, ramucirumab; RECIST v1.1, Response Evaluation Criteria in Solid Tumours, version 1.1; T-DXd, trastuzumab deruxtecan; VAS, visual analog scale.

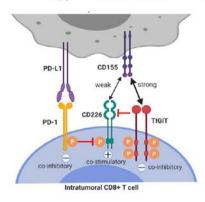
1:1

^aAs classified by the 2017 ASCO-CAP guidelines for HER2 testing in gastroesophageal adenocarcinoma. ^bStudy protocol originally mandated HER2 status be determined centrally but was later amended to allow local determination. ^cClinically active CNS metastases were defined as being untreated and symptomatic or requiring therapy with corticosteroids or anticonvulsants. Patients with clinically inactive CNS metastases could be enrolled. ^dRAM administered as 8 mg/kg on days 1 and 15 of each 28-day cycle and PTX administered as 80 mg/m² on days 1, 8, and 15 of each 28-day cycle. ^eDetermined by investigator-based assessment on RECIST v1.1. ^fBased on EORTC EQ-5D-5L VAS and FACT-Ga subscales.

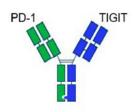
Phase III DESTINY-Gastric04: OS (Primary Endpoint)

T-DXd demonstrated a statistically significant and clinically meaningful improvement in OS compared with RAM + PTX in HER2+ GC/GEJA, showing a 30% reduction in risk of death

DCO, data cutoff; GC, gastric cancer; GEJA, gastroesophageal junction adenocarcinoma; HER2, human epidermal growth factor receptor 2; mOS, median overall survival; OS, overall survival; PTX, paclitaxel; RAM, ramucirumab; T-DXd, trastuzumab


© Copyright 2025.

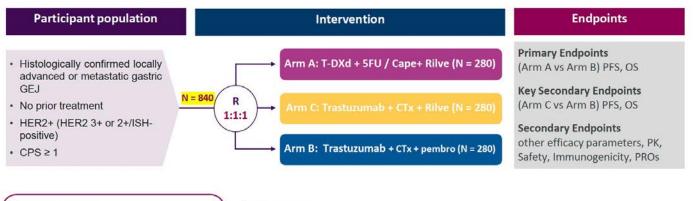
At DCO (October 24, 2024), the median duration of OS follow-up was 16.8 months for T-DXd and 14.4 months for RAM + PTX. Boundary for superiority: 2-sided P < 0.0228.


^aTwo-sided P value from stratified log-rank test and stratified Cox proportional hazards model adjusted for stratification factor: HER2 status (IHC 3+ or IHC 2+/ISH+).

Rilvegostomig (AZD2936) is designed to dual blockade PD-1 and TIGIT pathway

Ligation of PD-1 & TIGIT delivers negative signals to T cells to suppress antitumour immunity

A monovalent bispecific antibody


Affinity to human TIGIT: 15 pM
Affinity to human PD-1: 0.4 nM
Fc isotype: human IgG1-TM (reduced ADCC)

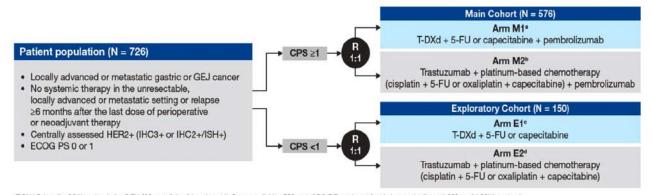
Adapted from Ge Z. et al. Front Immunol 2021;12:699895

ADCC, antibody-dependent cell-mediated cytotoxichy; CD, cluster of differentiation; Fc, fragment crystallizable; IgG1, immunoglobulin G1; TIIM, immunoreceptor tyrosine-based inhibitory motil; nM, nanomolar; PD-1, programmed cell death-1; pM, picomolar; TIGIT, T cell immunoreceptor with Ig and TIIM domains.

Study Design

ARTEMIDE-Gastric 01 Study

Stratification Factors


- HER2 status (IHC 3+ vs IHC 2+ plus ISH-positive)
- Geographic region (Japan/South Korea vs Rest of Asia [including China] vs North America/EU/ROW)
- PD L1 expression (CPS ≥ 10 vs CPS < 10).

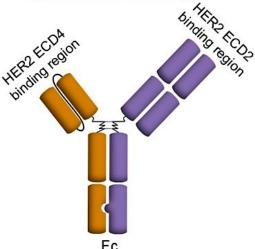
Treatment arms

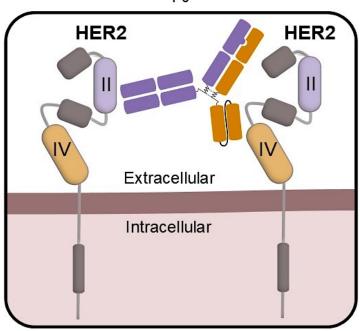
Arm A (treatment arm): T-DXd (dosed at 5.4 mg/kg), fluoropyrimidine (capecitabine [Investigators Choice of 750 mg/m2 twice-daily (8D) for 14 days] or 5-FU [600 mg/m2/day over 5 days]), and Rilvegostomig (dosed at 750 mg); Arm B (control arm): Trastuzumab (8 mg/kg loading dose, followed by 6 mg/kg for subsequent cycles), with Investigators Choice of either cisplatin/5-FU (cisplatin dosed at 80 mg/m2 and 5-FU dosed at 800 mg/m2/day over 5 days) or CapeOX (capecitabine dosed at 1000 mg/m2 BD for 14 days and oxaliplatin dosed at 130 mg/m2) and pembrolizumab (dosed at 200 mg).

Arm C (CoC arm): Trastuzumab and chemotherapy the same as control arm, Rilvegostomig (dosed at 750mg)

Phase 3 Study: T-DXd+FP+pembro (DESTINY-Gastric05)

^aT-DXd 5.4 mg/kg Q3W on day 1 plus 5-FU 600 mg/m³/day IV on days 1 to 5 or capecitabine 750 mg/m² PO BID on days 1 to 14 plus pembrolizumab 200 mg IV Q3W on day 1.


^{*}Trastuzumab loading dose of 8 mg/kg IV followed by 6 mg/kg IV Q3W plus platinum-based chemotherapy (cisplatin 80 mg/m²/day IV on day 1 plus 5-FU 800 mg/m²/day IV on days 1 to 5 or oxaliplatin 130 mg/m²/day IV on day 1 plus capecitabine 1000 mg/m² PO BID on days 1 to 14) plus pembrolizumab 200 mg IV Q3W on day 1.


[°]T-DXd 5.4 mg/kg IV Q3W on day 1 plus 5-FU 600 mg/m²/day IV on days 1 to 5 or capecitabine 750 mg/m² PO BID on days 1 to 14.

^{*}Trastuzumab loading dose of 8 mg/kg IV followed by 6 mg/kg IV Q3W plus platinum-based chemotherapy (cisplatin 80 mg/m²/day IV on day 1 plus 5-FU 800 mg/m²/day IV on days 1 to 5 or oxaliplatin 130 mg/m²/day IV on day 1 plus capecitabine 1000 mg/m² PO BiD on days 1 to 14).

HER2-Targeted Bispecific mAb: Zanidatamab + chemo 1L

Zanidatamab

- Zanidatamab is a dual HER2-targeted bispecific antibody that drives multiple antitumor MOAs, including¹:
 - Facilitation of HER2 internalization and subsequent degradation
 - Reduction of HER2 on the cell surface
 - Inhibition of HER2 signaling pathways
 - Activation of immune-mediated effects (CDC, ADCC, and phagocytosis)

Eligibility criteria

- Aged ≥18 years at the time of signing informed consent
- HER2-expressing advanced or metastatic GEA
 - Part 1: IHC 3+ or IHC 2+ regardless of FISH status per local or central assessment
 - Part 2: IHC 3+ or IHC 2+/FISH+ per central assessment
- Measurable disease per RECIST v1.1¹
- Baseline ECOG PS 0 or 1
- No prior HER2-targeted treatment

Single arm trial: Zanidatamab + clinician's choice of chemotherapy

Zanidatamab^{a,b} IV Q3W + CAPOX^c

Zanidatamab^{a,b} IV Q3W + FP^d

Zanidatamab^{b,e}
IV Q2W + mFOLFOX6^f

After the first 25 patients were enrolled and treated, antidiarrheal prophylaxisg was added for all subsequent patients

CT/MRI scans

Q6W per

RECIST v1.11

Plasma ctDNA samples at baseline and on treatment using NGS testing (Guardant360)

Primary endpoint

 Investigator-assessed confirmed ORR

Select secondary endpoints

- DOR
- PFS
- os
- Rate and severity of AEs

Exploratory endpoint

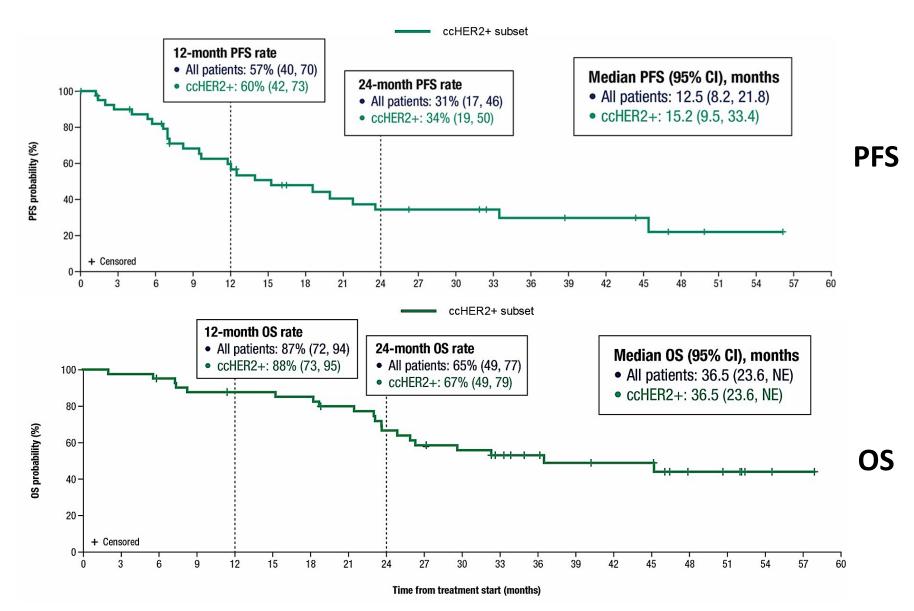
 Potential biomarkers for prognostic prediction

*Zanidatamab 30 mg/kg, 1800 mg (patients <70 kg) or 2400 mg (patients ≥70 kg); bChemotherapy was required for 6 cycles except for intolerability or disease progression. Patients who discontinued chemotherapy due to reasons not related to zanidatamab toxicity without disease progression could continue treatment with zanidatamab monotherapy; Capecitabine 1000 mg/m² PO BID on days 1-14 Q3W + oxaliplatin 130 mg/m² IV Q3W; dCisplatin 80 mg/m² IV Q3W + 5-FU 800 mg/m² IV Q3W + 5-FU 800 mg/m² IV Q3W; below to days 1-5 Q3W; PZanidatamab 20 mg/kg, 1200 mg (patients <70 kg) or 1600 mg (patients ≥70 kg) IV Q2W; belovorin 400 mg/m² IV Q2W + oxaliplatin 85 mg/m² IV Q2W + 5-FU 1200 mg/m²/day continuous IV infusion for 48 hours Q2W; below to the patient of the

5-FU, 5-fluorouracil; AE, adverse event; BID, twice daily; CAPOX, capecitabine plus oxaliplatin; CT, computed tomography; ctDNA, circulating tumor DNA; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; FP, 5-FU plus cisplatin; FISH, fluorescence in situ hybridization; GEA, gastroesophageal adenocarcinoma; IHC, immunohistochemistry; IV, intravenous; mFOLFOX6, modified 5-FU plus oxaliplatin; MRI, magnetic resonance imaging; PFS, progression-free survival; PO, by mouth; Q2W, every 2 weeks; Q3W, every 3 weeks; Q6W, every 6 weeks; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1.

HERIZON-GEA-01: Antitumor Activity

Nearly all response-evaluable patients (90%) had a decrease in target lesions from baseline


				100 7	
	All	ccHER2+	- -	80 –	Zanidatamah 02W - mEQLEQVG Zanidatamah 02W - CAROV Zanidatamah 02W - ER
	Patients	Subset	baseline in sum of target lesions (%)	60 –	Zanidatamab Q2W + mF0LF0X6 Zanidatamab Q3W + CAP0X Zanidatamab Q3W + FP
cORR	(N = 42)	(n = 37)	ns	40 –	
n (%)	32 (76)	31 (84)	e in	20 –	
95% CI	60, 88	68, 94	eli.		
cBOR , ^a n (%)	2 (7)	2 (8)) as tarç	0 –	
CR PR	3 (7) 29 (69)	3 (8) 28 (76)	Change from I diameters of	-20 –	
SD	5 (12)	4 (11)	fro	-40 –	
PD	5 (12)	2 (5)	nge		
DCR ^b	27 (00)	25 (05)	Sha	-60 –	
n (%) 95% CI	37 (88) 74, 96	35 (95) 82, 99		-80 –	
CBR ^c	14,50	02, 00		-100	
n (%)	33 (79)	32 (86)		100 -	
95% CI	63, 90	72, 96		IHC	1+1+3+2+3+3+3+3+3+3+2+2+3+3+3+3+3+3+3+3+
				FISH	+-++++++++++++++++++++++++++++++++++

Response-evaluable patients were those who underwent at least 1 post-baseline response assessment per RECIST v1.1 or discontinued treatment due to clinical progression or death. One patient in the response-evaluable analysis set had a new lesion detected (deemed PD) on an unscheduled visit before the first scheduled tumor scan; however, measurements of this lesion were not available. Hence, this patient was not included in the waterfall plot given the missing post-baseline measurements.

*BOR is defined as the best response documented between the date of investigator-assessed objectively documented progression, the date of subsequent anticancer therapy, any-cause death, loss to follow-up, or study discontinuation, whichever occurred first. Confirmed BOR is the BOR of a CR or PR per RECIST v1.1 confirmed ≥28 days after the first documentation; Disease control was defined as a BOR of SD or confirmed CR or PR; Defined as achieving a BOR of SD, non-CR, or non-PD for ≥24 weeks or confirmed CR or PR.

BOR, best overall response; cBOR, confirmed BOR; CBR, clinical benefit rate; CI, confidence interval; cORR, confirmed ORR; CR, complete response; DCR, disease control rate; PD, progressive disease; PR, partial response; NA, not available; SD, stable disease.

HERIZON-GEA-01: Survival

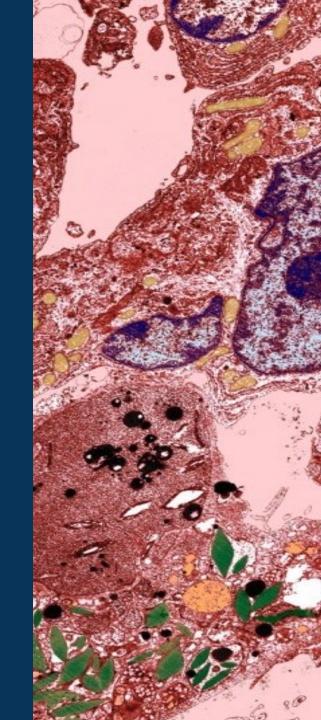
HERIZON-GEA-01: Safety Outcomes

	All Patients (N = 46)			
TRAEs (any component) ^a , n (%)	Any grade	Grade 3 or 4		
Any	46 (100)	30 (65)		
Serious	8 (17)	8 (17)		
Most Common ^b				
Diarrhea	43 (93)	18 (39)		
Nausea	37 (80)	3 (7)		
Peripheral sensory neuropathy	30 (65)	0		
Fatigue	24 (52)	2 (4)		
Decreased appetite	21 (46)	0		
Vomiting	16 (35)	4 (9)		
Hypokalemia	14 (30)	10 (22)		
Stomatitis	13 (28)	0		
Anemia	12 (26)	1 (2)		
Dysgeusia	11 (24)	0		
Decreased neutrophil count	10 (22)	2 (4)		
Hypomagnesaemia	10 (22)	1 (2)		
PPE syndrome	10 (22)	1 (2)		
IRRs	10 (22)	0		

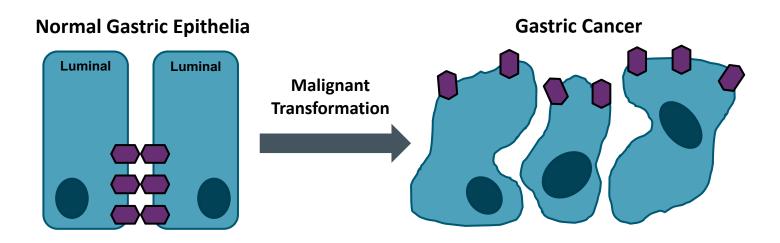
- There were no treatment-related deaths
- AESIs:
 - IRRs (10 [22%])
 - Non-infectious pulmonary toxicities (1 [2%])
 - No left ventricular dysfunction or grade ≥2 heart failure

After the first 25 patients were enrolled, protocol was amended to omit 5-FU bolus (mFOLFOX6) and to introduce mandatory antidiarrheal prophylaxis (all patients)

 Loperamide 4 mg twice daily starting on the first treatment day of cycle 1 and continuing for at least 7 days



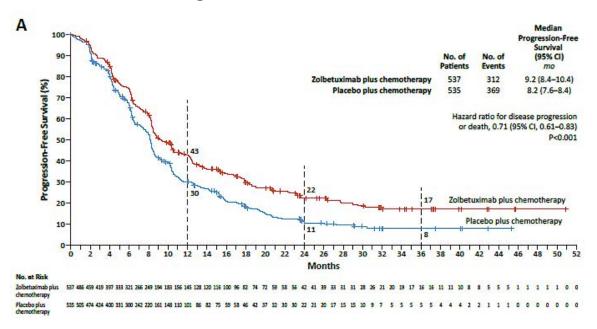
After introduction of mandatory antidiarrheal prophylaxis, patients had:


- Lower incidence of any-cause grade 3 diarrhea (56% before vs 24% after)
- No discontinuations due to diarrhea
 (2 patients before vs 0 patients after)

^aTRAEs could be related to zanidatamab and/or chemotherapy; ^bAny-grade TRAEs occurred in ≥20% of all patients.
AESI, adverse event of special interest; IRR, infusion-related reactions; PPE, palmar-plantar erythrodysesthesia; TRAE, treatment-related adverse event

Targeting Claudin18.2 in Gastroesophageal Adenocarcinoma

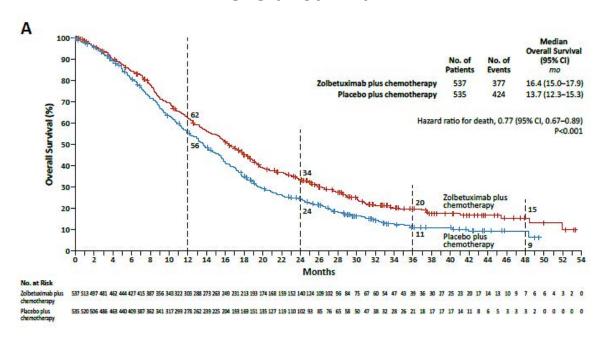
Claudin18.2: Leveraging Biology



- Claudin18.2 is a major structural component of intercellular tight junctions
- Not routinely expressed in any normal tissue outside gastric mucosa (cancer-restricted antigen)

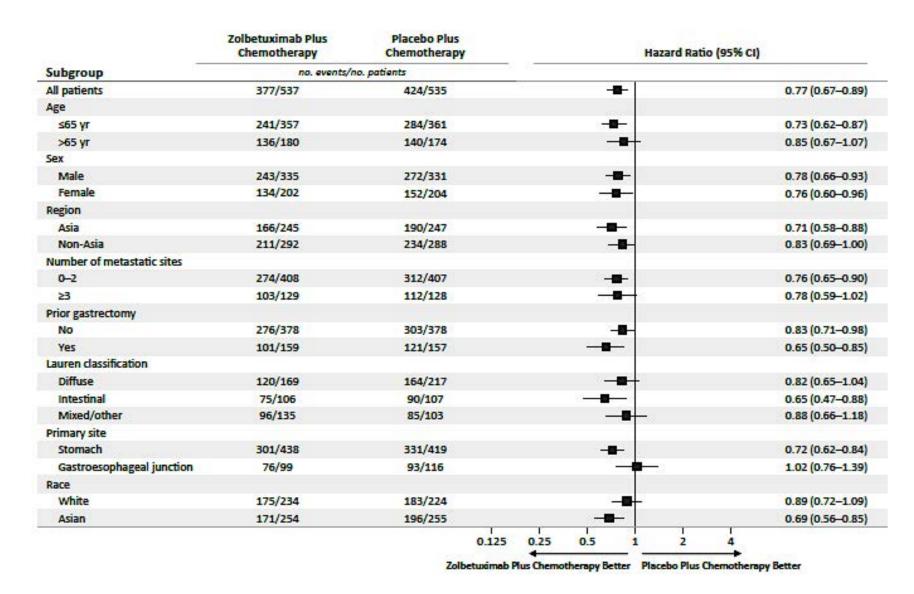
 Broadly expressed in several tumor types including gastric, GEJ, biliary, and pancreatic

SPOTLIGHT and GLOW – Combined Final Analysis


Progression Free Survival

Total Population – 1072 (n=537 Zolbe + chemo) PFS HR 0.71 (0.61-0.83), p < 0.001 OS HR 0.77 (0.67-0.89), p < 0.01

Measurable disease (n=820), Complete Response - 5.2%. v. 3.1% Partial Response - 52.2%. v. 52.2% Overall Response Rate - 57.4%. Vs. 55.3%

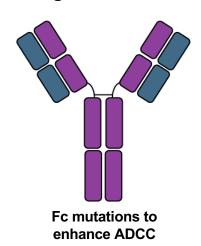

Overall Survival

Key Toxicity

≥ Grade 3 toxicity higher than control Nausea - 12.6%. vs. 4.7% Vomiting 14.3%. vs. 4.9% Decreased appetite - 6.4% vs. 2.5%

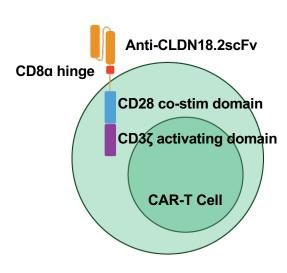
SPOTLIGHT and GLOW – Combined Final Analysis

Key Points

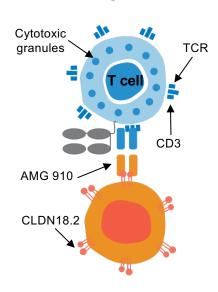

- Broad activity
- ? GEJ resistance?
- ? White people?

Validated Target

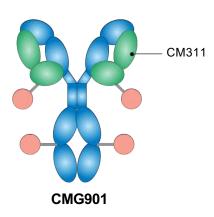
CLDN18.2 is a valid target: Emerging CLDN18.2 Targeted Treatments


Monoclonal antibody

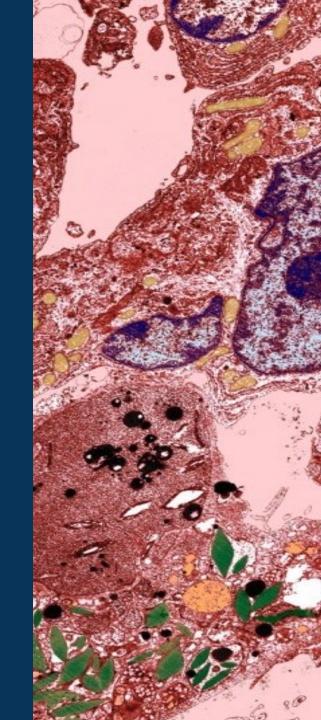
- Humanized mAb
- Engineered mAb


- IMAB306/zolbetuximab TST-001
- ABI011, MIL93, ZL1211

CAR-T


- CT-041, LCAR-C18S
- LY011

BITE Bispecific


- AMG910/ASP2138 (CD3), Q-1802 (PD-L1)
- TJCD4B (4-1BB)
- PT886 (CD47)

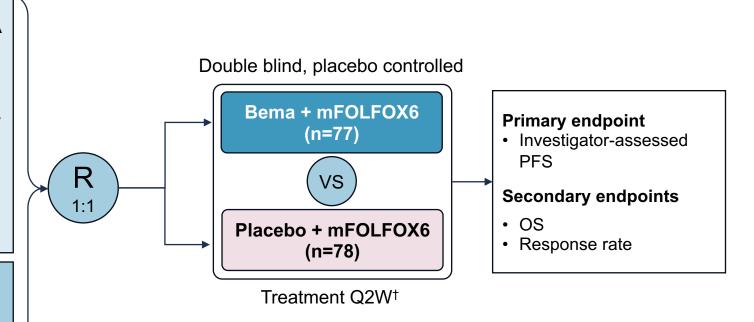
ADCs

- CMG901, EO-3021
- TPX4589
- RC118
- LM302
- SOT102
- SKB315
- JS107
- IBI343

Targeting FGFR2 in Gastroesophageal Adenocarcinoma

FIGHT Trial Design

Key Eligibility Criteria

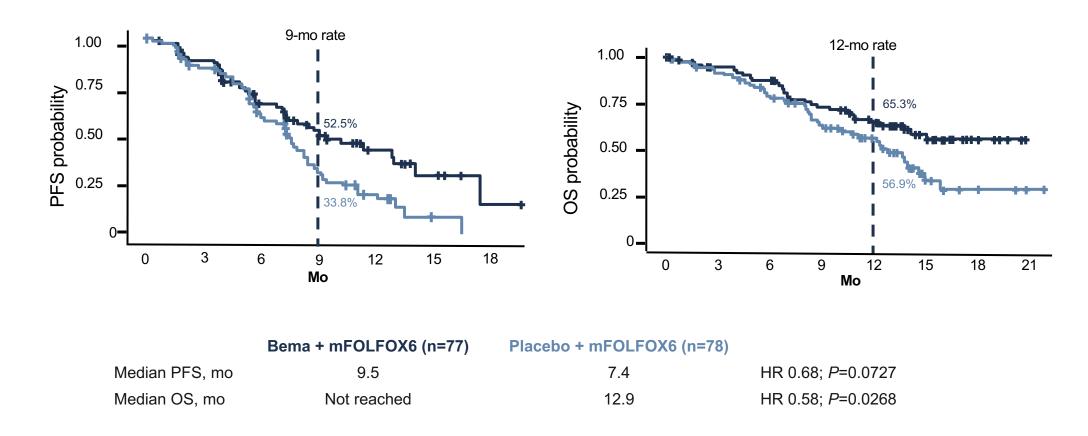

- No prior therapy for unresectable LA or mG/GEJ adenocarcinoma
- RECIST v1.1 evaluable disease
- FGFR2b overexpression by IHC and/or FGFR2 gene amplification by ctDNA*
- ECOG 0/1
- · HER2 not positive
- May receive 1 dose of mFOLFOX6

Stratification Factors

- Geographic region
- Single dose of mFOLFOX6 during screening
- Prior adjuvant or neoadjuvant chemotherapy

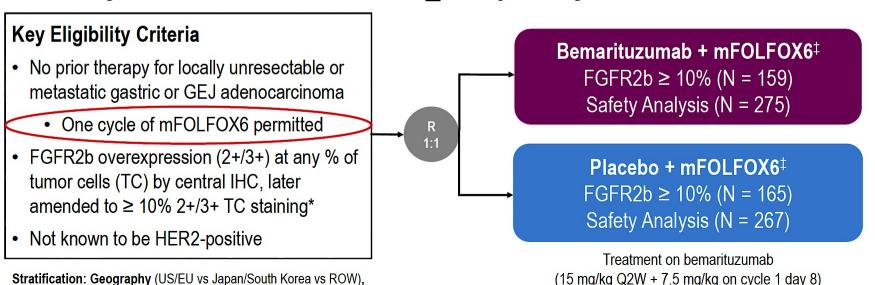
*Central testing: IHC stain (Ventana): cut-off any 2+/3+; circulating tumor DNA (PGDx): cut-off 1.5X.

†15 mg/kg Q2W with a single 7.5-mg/kg dose on Cycle 1 Day 8.


Statistical Plan

Trial initially designed as registrational phase 3 (n=548) with 2-sided α 0.05 amended after enrolling n=155 to a proof-of-concept phase 2 with prespecified statistical assumptions of:

- Hierarchical sequential testing: PFS, then OS/ORR
- ≥84 events to demonstrate benefit at a HR ≤0.76 for PFS at 2-sided α of 0.2


FIGHT: First-Line Bemarituzumab + mFOLFOX6 vs Placebo + mFOLFOX6 in Advanced Gastric/GEJ Cancer

• Randomized phase 2 trial of bemarituzumab (anti-FGFR2b antibody) or placebo + (both + mFOLFOX6) for patients with no prior therapy and unresectable LA or mG/GEJ adenocarcinoma with FGFR2b overexpression/amplification (N=155)

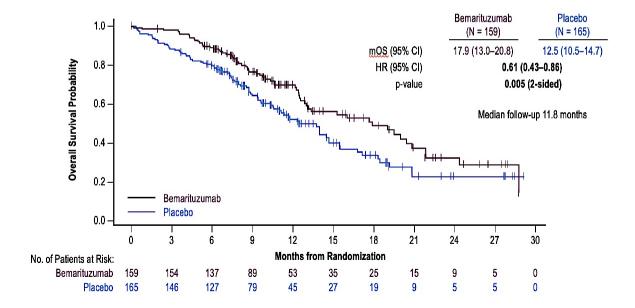
Phase III FORTITUDE-101 Study Design

- 37% PDL1 CPS ≥5, no anti-PD-1 which is now SOC, 50% started with FOLFOX pre randomization
- 57% Asia, most in China; 40% pts in last 6 months of enrollment with early censoring
- Primary OS amended to FGFR2b ≥10% primary OS with n=324

Primary Endpoint

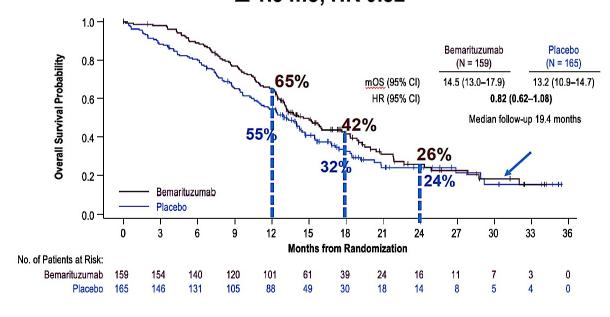
• OS in FGFR2b ≥ 10% 2+/3+ TC

Key Secondary Endpoints

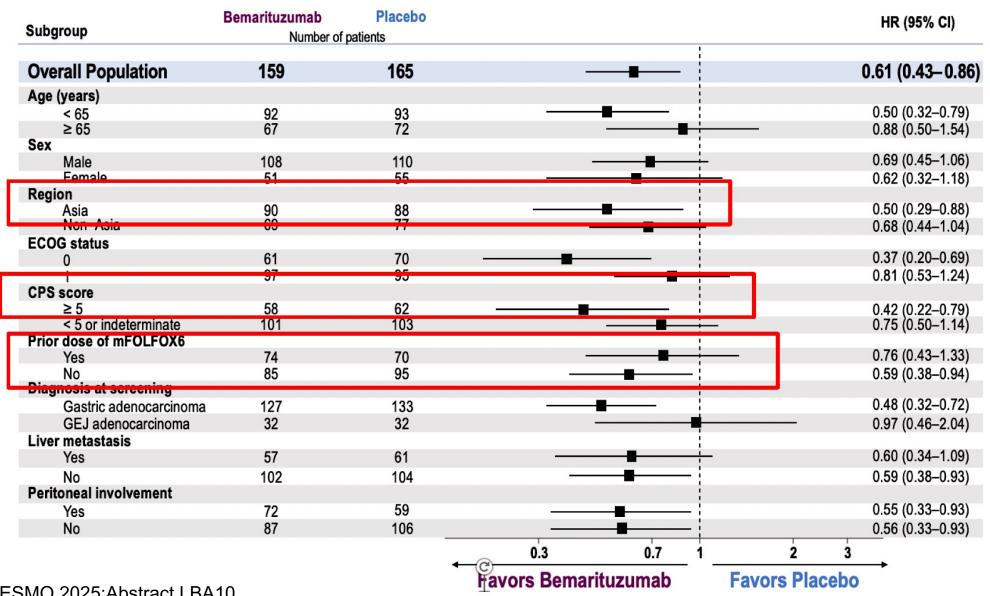

- PFS in FGFR2b ≥ 10% 2+/3+ TC
- ORR in FGFR2b ≥ 10% 2+/3+ TC
- Safety

ECOG (0 vs 1), **PD-L1 status** (CPS \geq 5 vs < 5 or indeterminate)[†]

FORTITUDE 101 KM OS Drift In FGFR2b≥10%

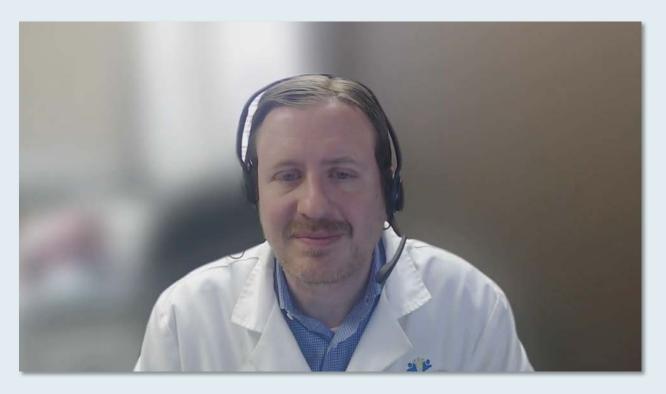

IA='FINAL' but median f/u < 1 yr

Δ 5.4 mo, HR 0.61



Updated w/ 7.6 months later

Δ 1.3 mo, HR 0.82


FORTITUDE 101 Subgroup Analysis

Conclusions

- Critical to obtain Biomarkers to optimally treat advanced Gastric/ GEJ adenocarcinoma
 - PD-L1
 - HER2
 - CLDN18.2
 - FGFR2
 - TIGIT
- Immunotherapy + chemotherapy for PD-L1 positive Gastric/GEJ adeno
- CLDN18.2 positive tumors zolbetuximab
- HER2 chemotherapy + pembrolizumab + trastuzumab

Case Presentation: 51-year-old man with MSI-high localized esophageal adenocarcinoma

Dr Brian Mulherin (Indianapolis, Indiana)

What is the optimal approach to treatment for this patient?

If the MATTERHORN regimen were to become available, would you most likely opt for it or neoadjuvant/ perioperative immune checkpoint inhibition alone for a patient with resectable MSI-H/dMMR disease?

If this patient had received the MATTERHORN approach in the neoadjuvant setting and achieved a pCR, how would you have approached adjuvant therapy? What if he had received neoadjuvant immunotherapy only without chemotherapy?

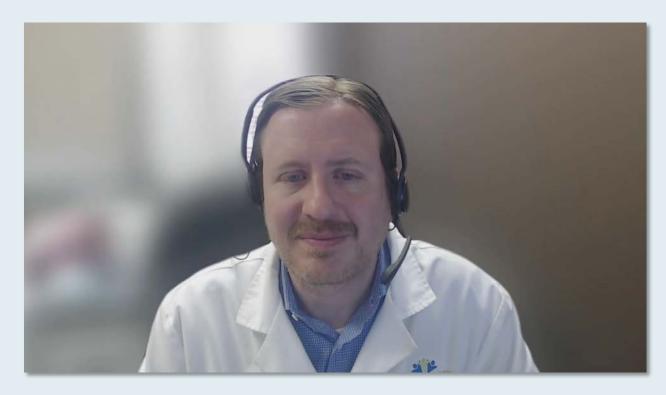
If the MATTERHORN regimen were to become available for patients, in which patients will you prioritize the use of this strategy? Would you have any hesitation about adding durvalumab to FLOT for a patient with PD-L1-negative disease?

Case Presentation: 68-year-old woman with HER2-positive (IHC 3+) and HER2 TKD-mutant metastatic esophageal adenocarcinoma

Dr Sean Warsch (Asheville, North Carolina)

How would you approach maintenance therapy for this patient going forward?

Do you rebiopsy all patients with HER2-positive gastroesophageal cancers after progression on first-line HER2-targeted therapy?


What second-line therapy would you recommend for this patient? After seeing the results of DESTINY-Gastric04, are there any situations in which you would not recommend T-DXd as second-line therapy and opt for ramucirumab/paclitaxel or something else instead?

How do you manage nausea and other GI toxicities with T-DXd?

Case Presentation: 73-year-old woman with HER2-positive (IHC 3+), PD-L1-negative, CLDN18.2-negative metastatic gastric cancer

Dr Brian Mulherin (Indianapolis, Indiana)

How do you screen for ILD with T-DXd, and do all patients need to be monitored using scans or can they be monitoring clinically with scans ordered only for those with symptoms?

How do you envision zanidatamab being employed in HER2-positive gastroesophageal cancers?

If both zanidatamab and T-DXd were available for HER2-positive gastroesophageal cancers, which one would you prioritize and why? Does zanidatamab offer any mechanistic advantages, given that it is a bispecific antibody?

What are the most common side effects associated with zanidatamab, and how can they be managed? How would you indirectly compare the global tolerability/toxicity of zanidatamab to that of T-DXd?

Given that zanidatamab is available in biliary tract cancers, are there any situations in which you would attempt to access it for a patient with HER2-positive gastroesophageal cancer outside of a clinical trial today?

Case Presentation: 73-year-old woman with metastatic GEJ adenocarcinoma (PD-L1 CPS 15) who begins treatment with FOLFOX/nivolumab and subsequently is found to have CLDN18.2 overexpression

Dr Zanetta Lamar (Naples, Florida)

When do you typically conduct CLDN18.2 testing for your patients with advanced gastroesophageal cancers, and what assay do you use? Is CLDN18.2 reported on commercially available NGS platforms?

For patients with newly diagnosed gastric/GEJ adenocarcinoma that expresses both CLDN18.2 and PD-L1, do you generally opt for anti-PD-1 antibody/chemotherapy or zolbetuximab/ chemotherapy? Would you ever offer both an anti-PD-1 antibody and zolbetuximab?

What would you most likely recommend when this patient's disease progresses? For a patient with CLDN18.2-positive disease who had already received first-line therapy, would you attempt to employ zolbetuximab in a later line?

Case Presentation: 45-year-old man with CLDN18.2-positive metastatic esophageal adenocarcinoma (PD-L1 10%) who receives mFOLFOX6 and zolbetuximab

Dr Jennifer Yannucci (Savannah, Georgia)

What has been your experience with the efficacy and tolerability of zolbetuximab/chemotherapy? Would you have treated this patient any differently?

Have you found any strategies to be particularly helpful for mitigating/managing zolbetuximab-associated nausea and vomiting?

Integrating New Advances into the Care of Patients with Cancer

A Multitumor Symposium in Partnership with the American Oncology Network

CME/MOC, NCPD and ACPE Accredited

Saturday, November 8, 2025 10:00 AM - 3:00 PM CT

Thank you for joining us! Your feedback is very important to us.

How to Obtain CME/MOC, NCPD and ACPE Credit

In-person attendees: Please refer to the program syllabus for the credit link or QR code.

Online/Zoom attendees: The credit link is posted in the chat room.

