## Integrating New Advances into the Care of Patients with Cancer

A Multitumor Symposium in Partnership with the American Oncology Network

CME/MOC, NCPD and ACPE Accredited

Saturday, November 8, 2025 10:00 AM - 3:00 PM CT





# Welcome AON Members!





MiBA (Meaningful Insights Biotech Analytics) is not your average data company.

MiBA is a healthcare AI technology company launched with a mission to close the feedback loop between physicians, patients, and industry partners. The CME program is sponsored with MiBA data insights, from AON practices.

MiBA has a clear vision to improve data quality by unlocking the power of data to fuel decisions, education and improve patient care.

### **Commercial Support**

This activity is supported by educational grants from AbbVie Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, BeOne, Corcept Therapeutics Inc, Daiichi Sankyo Inc, Jazz Pharmaceuticals Inc, Johnson & Johnson, Lilly, Merck, and Nuvalent.

## Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



This educational activity contains discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.



### **Clinicians in the Meeting Room**

#### Networked iPads are available.



Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.



Answer Survey Questions: Complete the morning and afternoon premeeting surveys.



Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.



## **Clinicians Attending via Zoom**



Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.



Answer Survey Questions: Complete the premeeting survey at the beginning of each module.



Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.



Get CME/NCPD/ACPE Credit: A credit link will be provided in the chat room at the conclusion of the program.



## **About the Enduring Program**

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.



An email will be sent to all attendees when the activity is available.

 To learn more about our education programs, visit our website, www.ResearchToPractice.com



### **Save The Date**

## Fifth Annual National General Medical Oncology Summit

A Multitumor CME/MOC-, NCPD- and ACPE-Accredited Educational Conference Developed in Partnership with Florida Cancer Specialists & Research Institute

Friday to Sunday, April 24 to 26, 2026

The Ritz-Carlton Orlando, Grande Lakes | Orlando, Florida

**Moderated by Neil Love, MD** 

## **Contributing General Medical Oncologists**



Sunil Babu, MD
Fort Wayne Medical
Oncology and
Hematology
Fort Wayne, Indiana

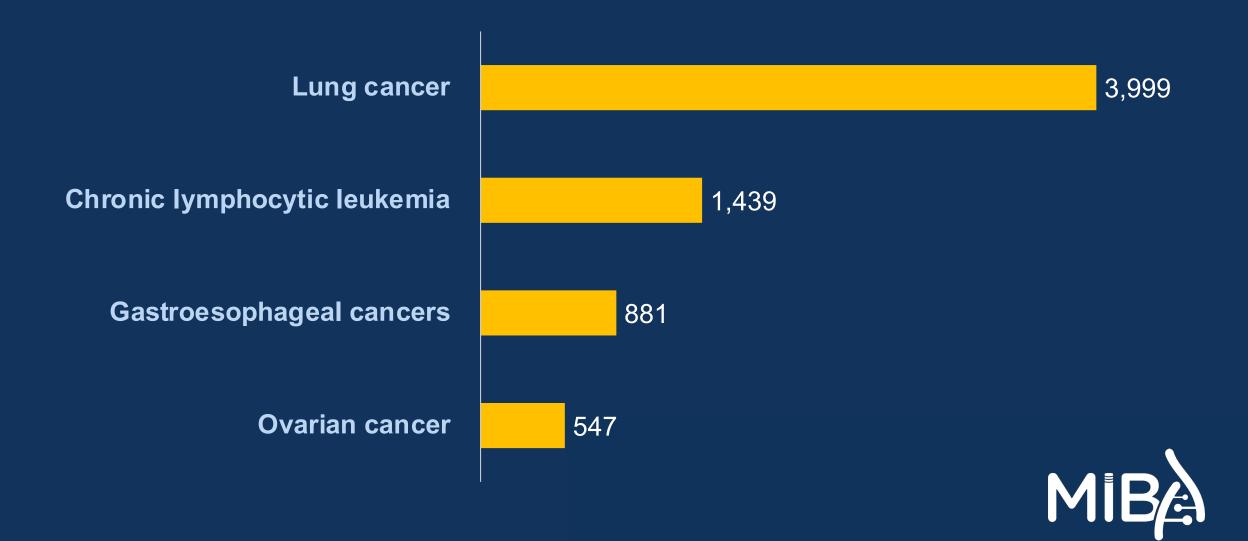


**Sean Warsch, MD**Messino Cancer Centers
Asheville, North Carolina



Zanetta S Lamar, MD
Florida Oncology and
Hematology
American Oncology Partners
Naples, Florida




Jennifer Yannucci, MD Low Country Cancer Care Savannah, Georgia



Brian P Mulherin, MD
American Oncology Network
Indianapolis, Indiana



## Snapshot of AON Practice Patients Seen in the Last 12 Months



## **Agenda**

**Module 1 — Lung Cancer:** *Drs Gainor, Langer and Shields* 

**Module 2 — Chronic Lymphocytic Leukemia:** *Dr Rogers* 

**Module 3 — Ovarian Cancer:** *Dr Konecny* 

**Module 4 — Gastroesophageal Cancers:** *Dr Shah* 



### **Lung Cancer Faculty**



Justin F Gainor, MD
Director, Center for Thoracic Cancers
Program
Director of Targeted Immunotherapy
in the Henri and Belinda Termeer
Center for Targeted Therapies
Massachusetts General Hospital
Associate Professor of Medicine
Harvard Medical School
Boston, Massachusetts



Misty Dawn Shields, MD, PhD
Assistant Professor of Clinical Medicine
Indiana University School of Medicine
Adjunct Assistant Professor of Medical
and Molecular Genetics
Associate Member, Experimental and
Developmental Therapeutics
Department of Medicine, Division of
Hematology/Oncology, Thoracic Oncology
Indiana University Melvin and Bren Simon
Comprehensive Cancer Center
Indianapolis, Indiana



Corey J Langer, MD
Director of Thoracic Oncology
Abramson Cancer Center
Professor of Medicine
Perelman School of Medicine
University of Pennsylvania
Philadelphia, Pennsylvania



MODERATOR
Stephen "Fred" Divers, MD
Chief Medical Officer
American Oncology Network
Hot Springs, Arkansas



## **Dr Gainor — Disclosures**

| Advisory Committees                    | Amgen Inc, ARS Pharmaceuticals, AstraZeneca Pharmaceuticals LP, Bristol Myers Squibb, Genentech, a member of the Roche Group, Gilead Sciences Inc, ITeos Therapeutics, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Mariana Oncology, Merck, Merus, Mirati Therapeutics Inc, Moderna, Novartis, Novocure Inc, Nuvalent, Pfizer Inc, Sanofi, Takeda Pharmaceuticals USA Inc |  |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Consulting Agreements                  | Merck, Novartis, Pfizer Inc, Takeda Pharmaceuticals USA Inc                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Contracted Research                    | Adaptimmune, ALX Oncology, AstraZeneca Pharmaceuticals LP, Blueprint Medicines, Bristol Myers Squibb, Genentech, a member of the Roche Group, Jounce Therapeutics, Merck, Moderna, NextPoint Therapeutics, Novartis, Palleon Pharmaceuticals                                                                                                                                                       |  |  |  |
| Nonrelevant Financial<br>Relationships | Al Proteins                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |



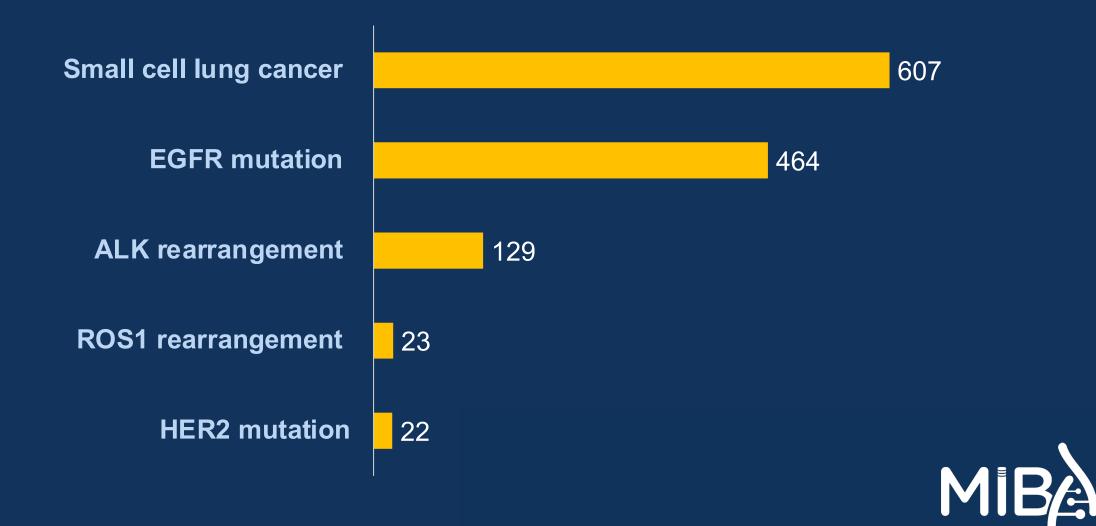
## **Dr Langer — Disclosures**

| Advisory Committees                                                     | Amgen Inc, Merck                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Consulting Agreements                                                   | Aptitude Health, Boehringer Ingelheim Pharmaceuticals Inc, Catalyst Pharmaceuticals Inc, EMD Serono Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, Jazz Pharmaceuticals Inc, Johnson & Johnson, Merck, Pfizer Inc, Regeneron Pharmaceuticals Inc |
| Contracted Research<br>(Institutional Support for<br>Clinical Research) | Amgen Inc, FUJIFILM Pharmaceuticals USA Inc, Novocure Inc                                                                                                                                                                                                           |
| Data and Safety Monitoring Boards/Committees                            | Incyte Corporation, Summit Therapeutics                                                                                                                                                                                                                             |
| Nonrelevant Financial<br>Relationships                                  | Valor (VA)                                                                                                                                                                                                                                                          |

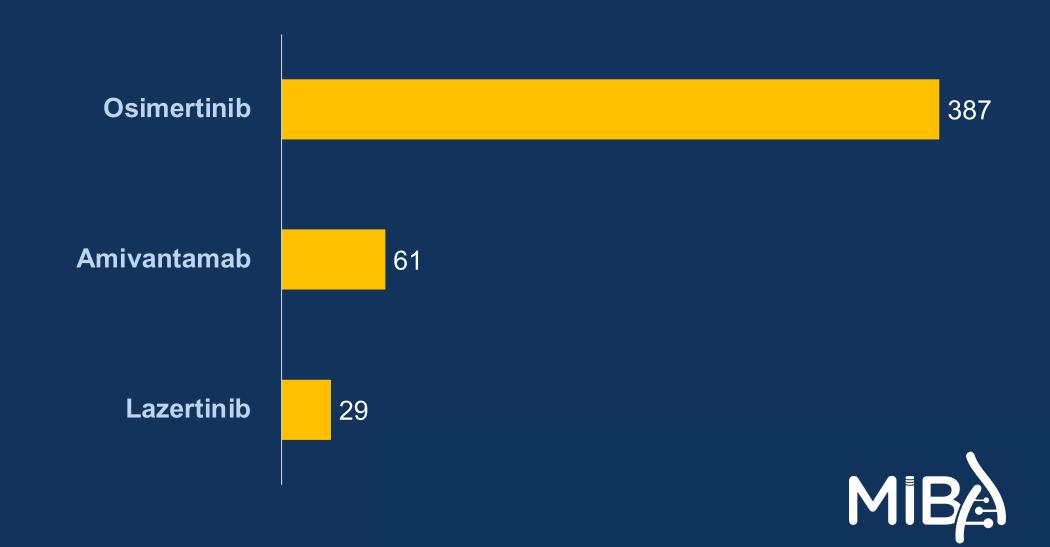


## **Dr Shields** — **Disclosures**

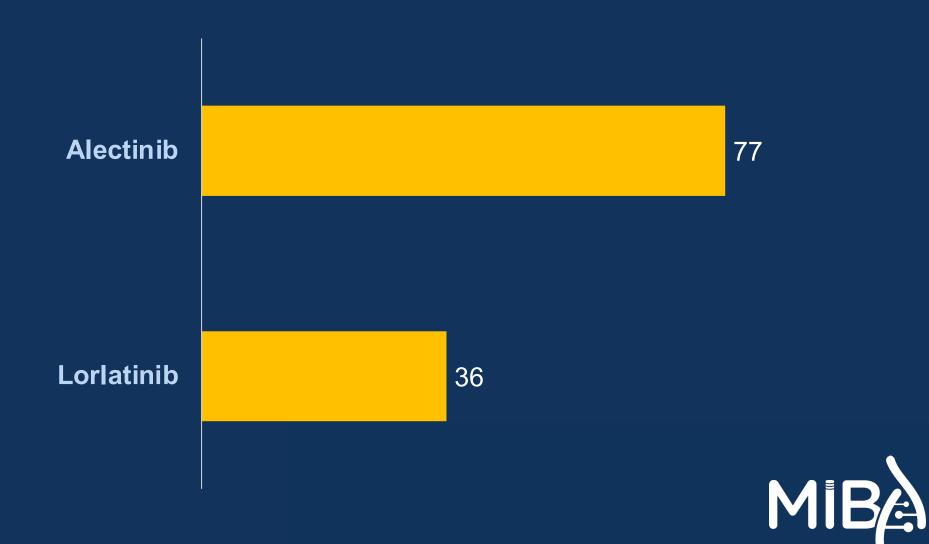
| Steering Committees | AstraZeneca Pharmaceuticals LP |
|---------------------|--------------------------------|
|---------------------|--------------------------------|




## **Dr Divers — Disclosures**


| Advisory Committees Daiichi Sankyo Inc |  |
|----------------------------------------|--|
|----------------------------------------|--|




## Snapshot of AON Practice Lung Cancer



## Snapshot of AON Practice Lung Cancer with EGFR Mutation



## Snapshot of AON Practice Lung Cancer with ALK Rearrangement



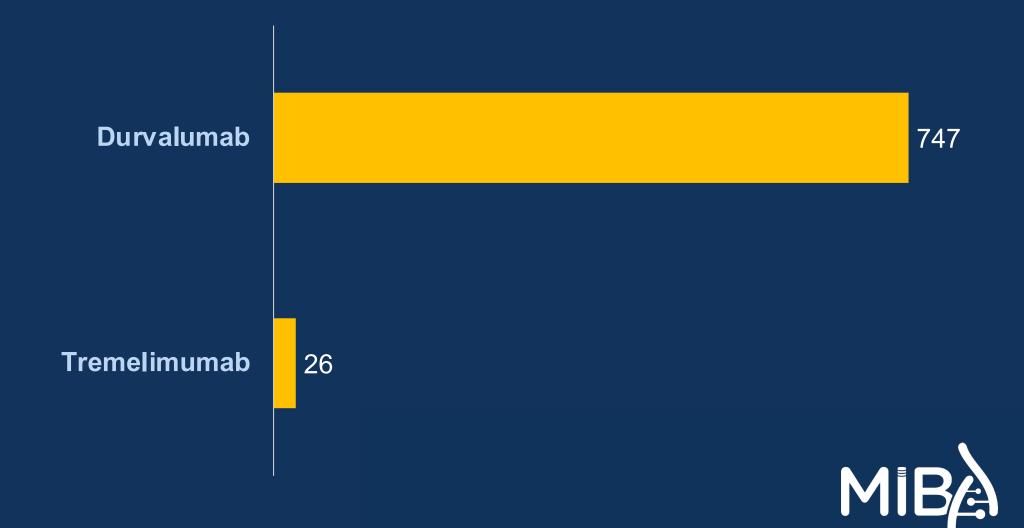
## Snapshot of AON Practice Lung Cancer with HER2 Mutation

Trastuzumab deruxtecan

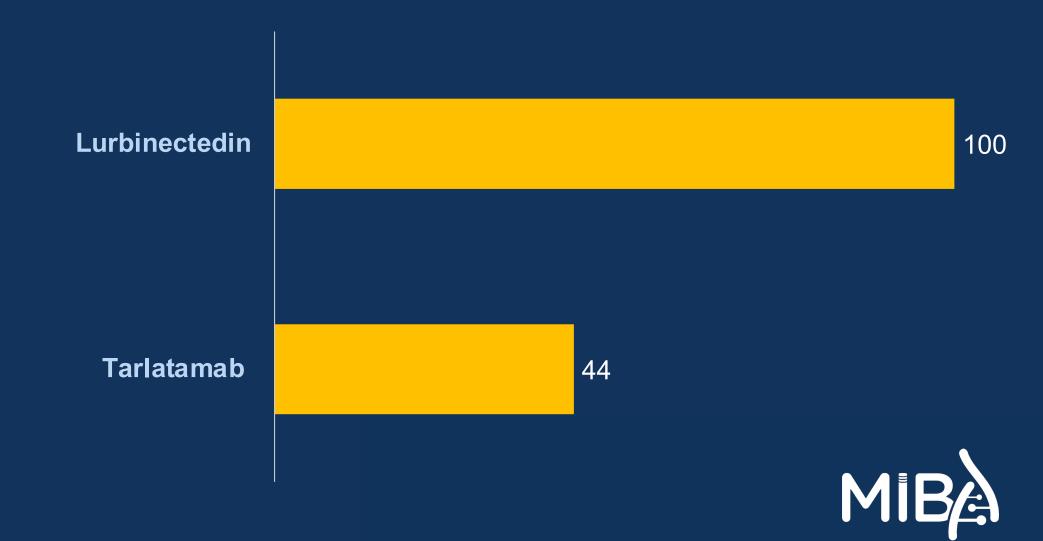
25



## Snapshot of AON Practice Lung Cancer — Other Targeted Agents


Datopotamab deruxtecan

Larotrectinib


0



## Snapshot of AON Practice Lung Cancer — Immunotherapy



## Snapshot of AON Practice Small Cell Lung Cancer



## **Agenda**

**Module 1** — **Lung Cancer:** *Drs Gainor, Langer and Shields* 

- Targeted Therapy for Non-Small Cell Lung Cancer (NSCLC) Dr Gainor
- Nontargeted Therapy for NSCLC; Small Cell Lung Cancer Dr Langer
- Neoadjuvant, Perioperative and Adjuvant Anti-PD-1/PD-L1 Antibody-Based Approaches for Patients with Localized NSCLC — Dr Shields



## **Targeted Therapies for NSCLC**

Justin F. Gainor, M.D.

Director, Center for Thoracic Cancers Director, Targeted Immunotherapy Massachusetts General Hospital Harvard Medical School





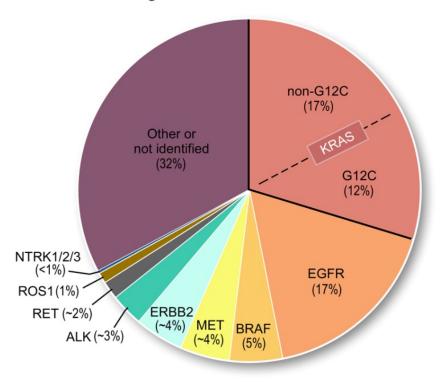
## Targeted Therapies with Regulatory Approvals

#### **NTRK**

Larotrectinib Entrectinib Repotrectinib

#### ROS1

Crizotinib
Entrectinib
Repotrectinib
Taletrectinib


#### **RET**

Selpercatinib Pralsetinib

#### **ALK**

Crizotinib
Alectinib
Brigatinib
Ceritinib
Ensartinib
Lorlatinib

#### Oncogenic mutations in NSCLC



#### NRG1 Zenocutuzumab

#### HER2 T-DXd Zongertinib

## MET Capmatinib Tepotinib

#### KRAS G12C Sotorasib Adagrasib

#### **Classical EGFR Mutations**

Osimertinib

**Erlotinib** 

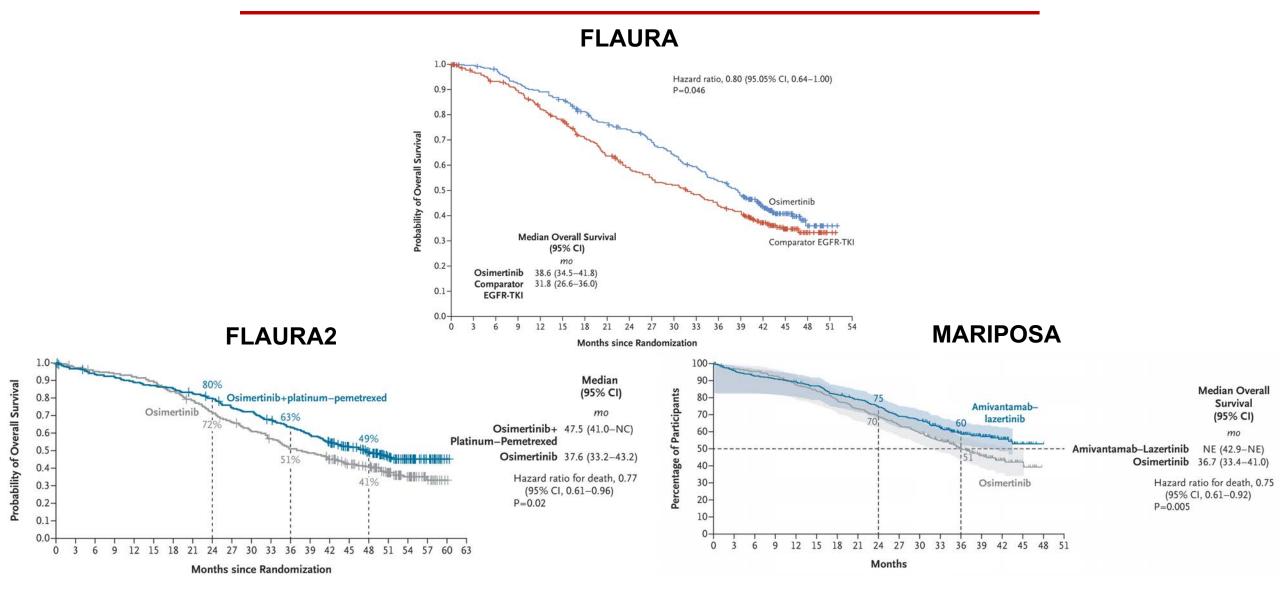
Gefitinib

**Afatinib** 

**Dacomitinib** 

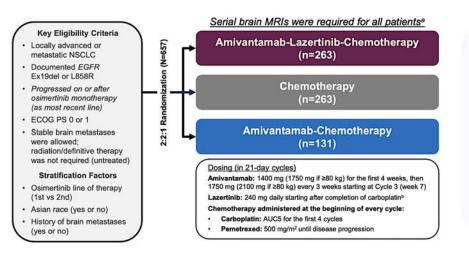
**Lazertinib + Amivantamab** 

#### **Exon 20 Mutations**


**Amivantamab** 

Sunvozertinib

## BRAF Dab/Trametinib

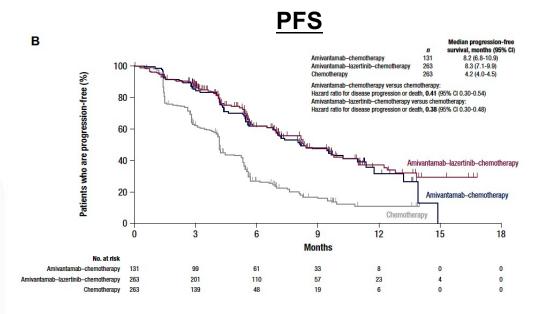

Enco/Binimetinib

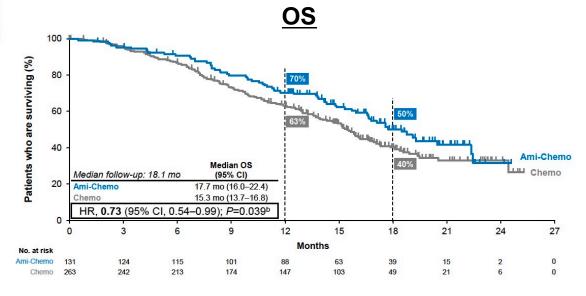
## EGFR-Mutant NSCLC: 1st Line



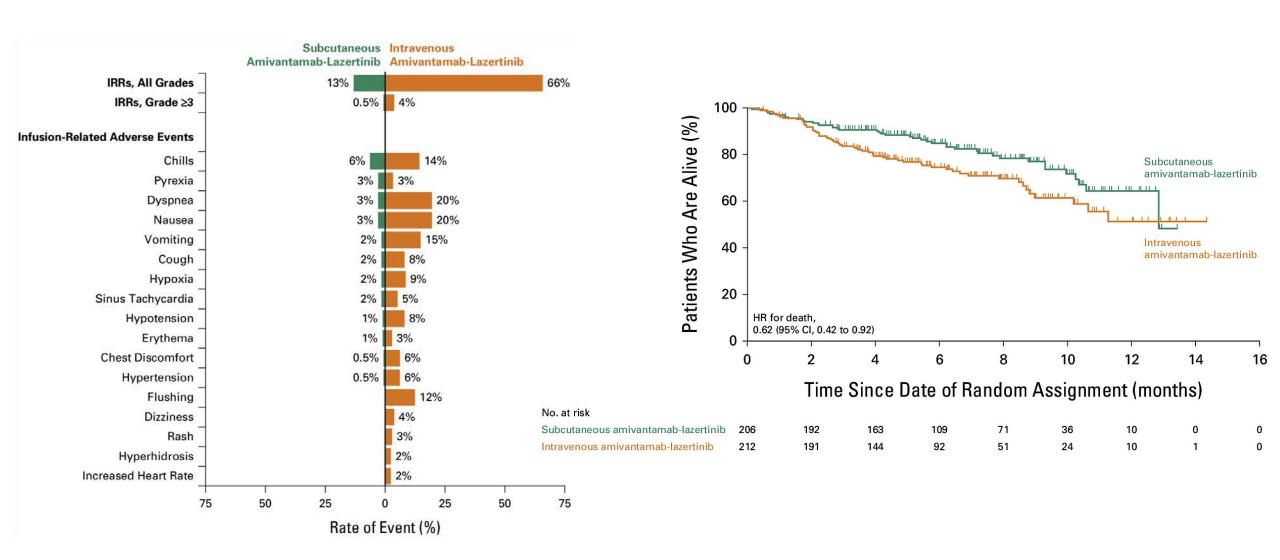
Ramalingam S, et al. NEJM 2020; Janne P, et al. NEJM 2025; Yang JC, et al. NEJM 2025

## MARIPOSA-2

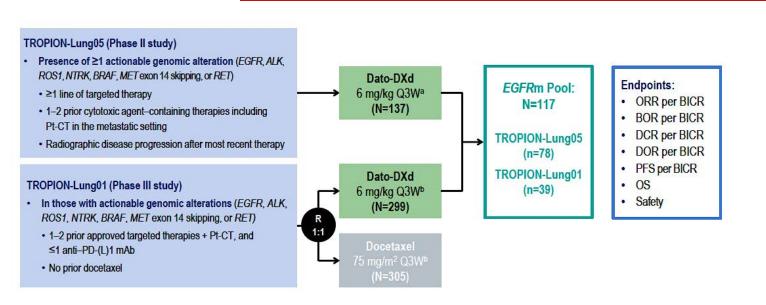




Dual primary endpoint of PFS<sup>c</sup> by BICR per RECIST v1.1:

- Amivantamab-Lazertinib-Chemotherapy vs Chemotherapy
- Amivantamab-Chemotherapy vs Chemotherapy

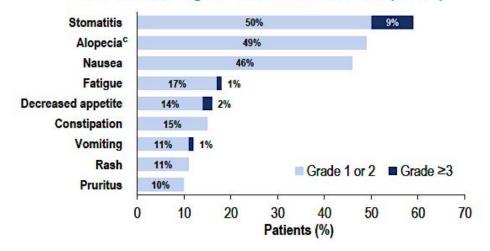

#### Secondary endpoints:

- Objective response rate (ORR)<sup>c</sup>
- · Duration of response (DoR)
- Overall survival (OS)<sup>c</sup>
- Intracranial PFS
- · Time to subsequent therapyd
- · PFS after first subsequent therapy (PFS2)d
- Symptomatic PFS<sup>d</sup>
- Safety

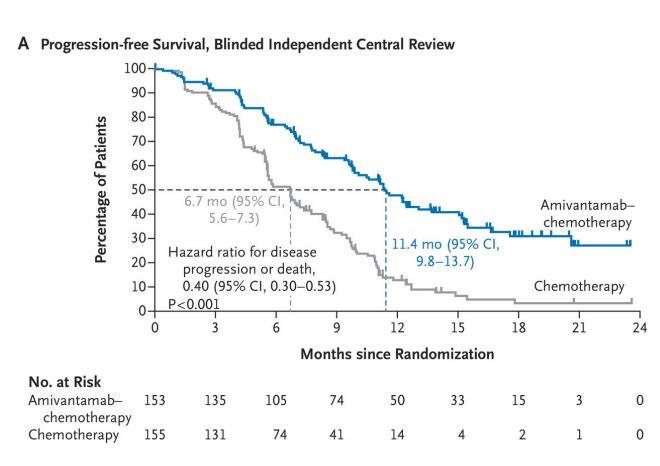


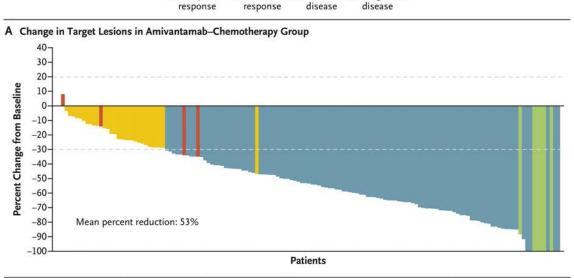



## PALOMA-3: Subcutaneous Amivantamab

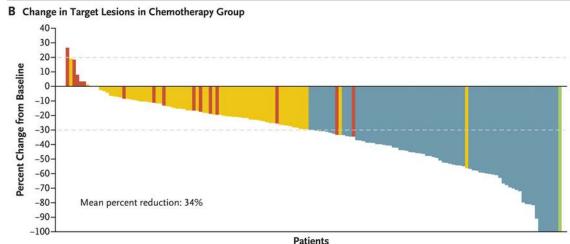



## Datopotamab Deruxtecan





| Response                                      | EGFRm Pool<br>(N=117)                                                | Prior Osimertinib<br>(N=96)                                          |
|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Confirmed ORR, <sup>a</sup> n (%)<br>[95% CI] | 50 ( <b>42.7</b> )<br>[33.6–52.2]                                    | 43 ( <b>44.8</b> )<br>[34.6–55.3]                                    |
| BOR, n (%) CR PR SD Non-CR/Non-PD PD NE       | 5 (4.3)<br>45 (38.5)<br>48 (41.0)<br>3 (2.6)<br>12 (10.3)<br>4 (3.4) | 4 (4.2)<br>39 (40.6)<br>37 (38.5)<br>2 (2.1)<br>10 (10.4)<br>4 (4.2) |
| Median DOR, months (95% CI)                   | <b>7.0</b> (4.2–9.8)                                                 | 6.9 (4.2–9.8)                                                        |
| DCR, <sup>b</sup> n (%)<br>[95% CI]           | 101 ( <b>86.3</b> )<br>[78.7–92.0]                                   | 82 ( <b>85.4</b> )<br>[76.7–91.8]                                    |
| Median PFS, months (95% CI)                   | <b>5.8</b> (5.4–8.2)                                                 | <b>5.7</b> (5.4–7.9)                                                 |
| Median OS, months (95% CI)                    | <b>15.6</b> (13.1–19.0)                                              | 14.7 (13.0–18.3)                                                     |

#### TRAEs Occurring in ≥10% of EGFRm Pool (N=117)




## EGFR Exon 20 Mutations: PAPILLON

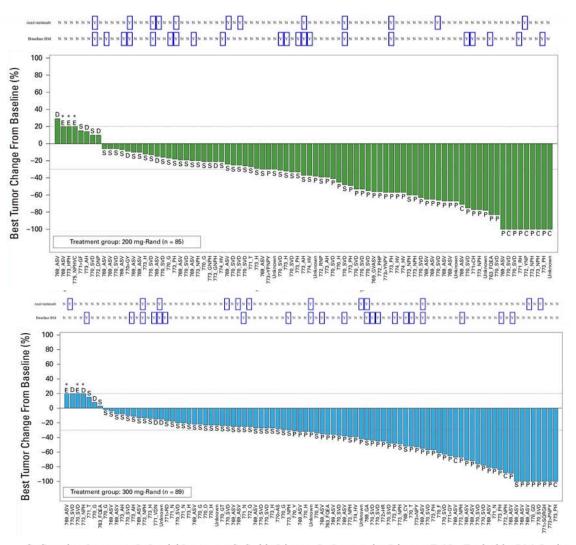




Progressive



## Sunvozertinib: Anti-Tumor Efficacy


### **Anti-tumor Efficacy**

| Tumor Response Per BICR            | 200 mg<br>(N = 85) | 300 mg<br>(N = 89) |                   |  |  |
|------------------------------------|--------------------|--------------------|-------------------|--|--|
| Confirmed ORR (%, 97.5% CI)        | 45.9 (33.6, 58.5)  | 47.2 (35.1, 59.5)  |                   |  |  |
| Disease Control Rate (%, 97.5% CI) |                    | 89.4 (79.6, 95.6)  | 92.1 (83.3, 97.2) |  |  |
| Best Overall Response (n, %)       |                    |                    |                   |  |  |
| Complete Response                  |                    | 5 (5.9)            | 3 (3.4)           |  |  |
| Partial Response                   | 34 (40.0)          | 39 (43.8)          |                   |  |  |
| Stable Disease                     | 37 (43.5)          | 40 (44.9)          |                   |  |  |
| Progressive Disease                |                    | 6 (7.1)            | 5 (5.6)           |  |  |
| Not Evaluable                      |                    | 3 (3.5)            | 2 (2.2)           |  |  |
| Median DoR (months, 95% CI)        |                    | 11.1 (8.2, NE)     | 13.8 (8.3, NE)    |  |  |
| Median PFS (months, 95% CI)        |                    | 8.4 (6.8, 13.9)    | 7.7 (6.0, 9.8)    |  |  |
| Subgroup Analysis of Confirmed OF  | RR (%)             |                    |                   |  |  |
| D. A                               | With               | 25.0               | 41.7              |  |  |
| Prior Amivantamab Treatment        | Without            | 49.3               | 48.1              |  |  |
| Parallina Paria Matagaria          | With               | 28.6               | 52.4              |  |  |
| Baseline Brain Metastasis          | Without            | 51.6               | 45.6              |  |  |

Data cut-off date: December 2, 2024.

BICR: Blinded Independent Central Review; ORR: Objective Response Rate; DoR: duration of response; PFS:

Progression Free Survival, CI: Confidence Interval; NE: Not Estimable.



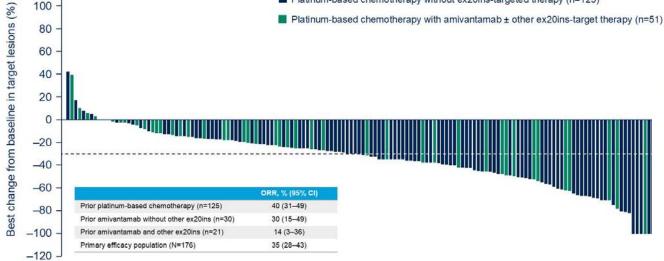
C: Complete Response; P: Partial Response; S: Stable Disease; D: Progressive Disease; E: Not Evaluable; BM: Brain Metastasis. For the patient with tumor size missing, the best change from baseline was reported as 20% increase if the patient had objective progression, discontinued treatment due to PD or died. Such patient was flagged \*.

### Sunvozertinib: Treatment-Related Adverse Events

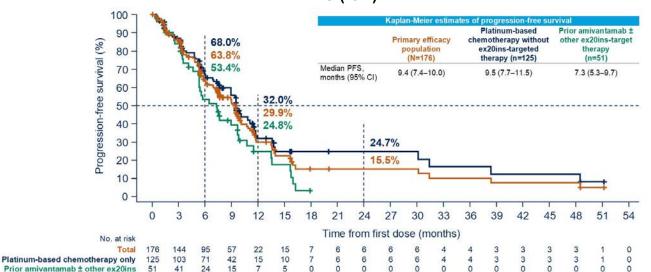
**TABLE A4.** The Common (≥20%) TRAE by Maximum CTCAE Grade

|                                        | 200 mg-Rand (n = 91), No. (%) |           |           |           | 300 mg-All (n = 111), No. (%) |            |           |           |           |         |
|----------------------------------------|-------------------------------|-----------|-----------|-----------|-------------------------------|------------|-----------|-----------|-----------|---------|
| Preferred Term                         | All Grades                    | Grade 1   | Grade 2   | Grade 3   | Grade 4                       | All Grades | Grade 1   | Grade 2   | Grade 3   | Grade 4 |
| Patients with any TRAE                 | 86 (94.5)                     | 12 (13.2) | 37 (40.7) | 34 (37.4) | 3 (3.3)                       | 108 (97.3) | 8 (7.2)   | 35 (31.5) | 56 (50.5) | 9 (8.1  |
| Diarrhea                               | 62 (68.1)                     | 44 (48.4) | 16 (17.6) | 2 (2.2)   | 0 (0.0)                       | 92 (82.9)  | 51 (45.9) | 21 (18.9) | 20 (18.0) | 0 (0.0  |
| Blood creatine phosphokinase increased | 32 (35.2)                     | 14 (15.4) | 12 (13.2) | 6 (6.6)   | 0 (0.0)                       | 58 (52.3)  | 28 (25.2) | 16 (14.4) | 12 (10.8) | 2 (1.8  |
| Rash                                   | 37 (40.7)                     | 26 (28.6) | 7 (7.7)   | 4 (4.4)   | 0 (0.0)                       | 53 (47.7)  | 33 (29.7) | 15 (13.5) | 5 (4.5)   | 0 (0.0  |
| Nausea                                 | 25 (27.5)                     | 15 (16.5) | 8 (8.8)   | 2 (2.2)   | 0 (0.0)                       | 44 (39.6)  | 33 (29.7) | 9 (8.1)   | 2 (1.8)   | 0 (0.0  |
| Anemia                                 | 28 (30.8)                     | 15 (16.5) | 9 (9.9)   | 4 (4.4)   | 0 (0.0)                       | 42 (37.8)  | 18 (16.2) | 17 (15.3) | 7 (6.3)   | 0 (0.0  |
| Paronychia                             | 24 (26.4)                     | 13 (14.3) | 11 (12.1) | 0 (0.0)   | 0 (0.0)                       | 42 (37.8)  | 24 (21.6) | 17 (15.3) | 1 (0.9)   | 0 (0.0  |
| Vomiting                               | 26 (28.6)                     | 16 (17.6) | 10 (11.0) | 0 (0.0)   | 0 (0.0)                       | 41 (36.9)  | 29 (26.1) | 11 (9.9)  | 1 (0.9)   | 0 (0.0  |
| Decreased appetite                     | 39 (42.9)                     | 26 (28.6) | 13 (14.3) | 0 (0.0)   | 0 (0.0)                       | 34 (30.6)  | 19 (17.1) | 11 (9.9)  | 4 (3.6)   | 0 (0.0  |
| Dry skin                               | 18 (19.8)                     | 12 (13.2) | 6 (6.6)   | 0 (0.0)   | 0 (0.0)                       | 27 (24.3)  | 24 (21.6) | 3 (2.7)   | 0 (0.0)   | 0 (0.0  |
| Blood creatinine increased             | 25 (27.5)                     | 19 (20.9) | 5 (5.5)   | 1 (1.1)   | 0 (0.0)                       | 25 (22.5)  | 22 (19.8) | 3 (2.7)   | 0 (0.0)   | 0 (0.0  |
| Pruritus                               | 23 (25.3)                     | 20 (22.0) | 2 (2.2)   | 1 (1.1)   | 0 (0.0)                       | 25 (22.5)  | 18 (16.2) | 6 (5.4)   | 1 (0.9)   | 0 (0.0  |
| Stomatitis                             | 20 (22.0)                     | 14 (15.4) | 5 (5.5)   | 1 (1.1)   | 0 (0.0)                       | 19 (17.1)  | 11 (9.9)  | 7 (6.3)   | 1 (0.9)   | 0 (0.0  |
| Lipase increased                       | 21 (23.1)                     | 11 (12.1) | 8 (8.8)   | 1 (1.1)   | 1 (1.1)                       | 16 (14.4)  | 7 (6.3)   | 5 (4.5)   | 3 (2.7)   | 1 (0.9  |

Abbreviations: CTCAE, Common Terminology Criteria for Adverse Events; TRAE, treatment-related adverse event.


## Zipalertinib Updates (ASCO 2025)




120 -







#### PFS (ICR)

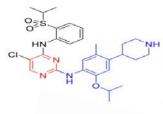


#### **Treatment-Related AEs**

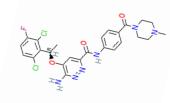
| Any-grade TRAEs reported in ≥10% of patients, No. (%) | Any grade | Grade 3  |
|-------------------------------------------------------|-----------|----------|
| Paronychia                                            | 94 (38.5) | 0        |
| Rash                                                  | 74 (30.3) | 6 (2.5)  |
| Dermatitis acneiform                                  | 60 (24.6) | 1 (0.4)  |
| Dry skin                                              | 60 (24.6) | 0        |
| Diarrhea                                              | 53 (21.7) | 5 (2.0)  |
| Stomatitis                                            | 49 (20.1) | 4 (1.6)  |
| Anemia                                                | 48 (19.7) | 17 (7.0) |
| Pruritus                                              | 44 (18.0) | 1 (0.4)  |
| Nausea                                                | 35 (14.3) | 2 (0.8)  |
| Rash maculopapular                                    | 34 (13.9) | 3 (1.2)  |
| Fatigue                                               | 29 (11.9) | 0        |

## Ongoing First-Line EGFR Exon 20 TKI Trials

**Zipalertinib + Chemo REZILIENT3** Recruiting NCT05973773 Chemo Sunvozertinib **WU-KONG28** Active, not recruiting NCT05668988 Chemo **Furmonertinib FURVENT** NCT05607550 Active, not recruiting Chemo


Slide courtesy of Z Piotrowska

# **ALK Inhibitors**


### **First-Generation**

#### Crizotinib

### Ceritinib



### Ensartinib



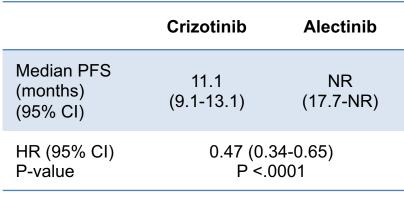
### **Second-Generation**

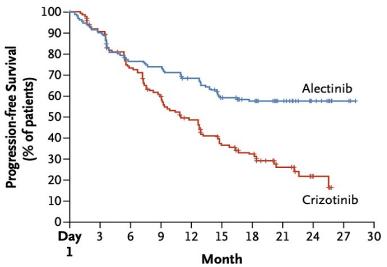
### Alectinib

### Brigatinib

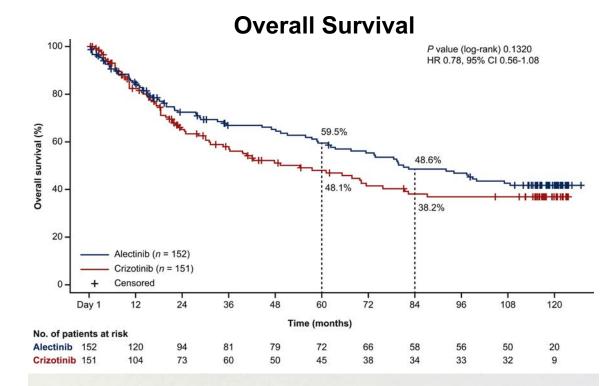
### **Third-Generation**

### Lorlatinib


Potency


**CNS Penetration** 

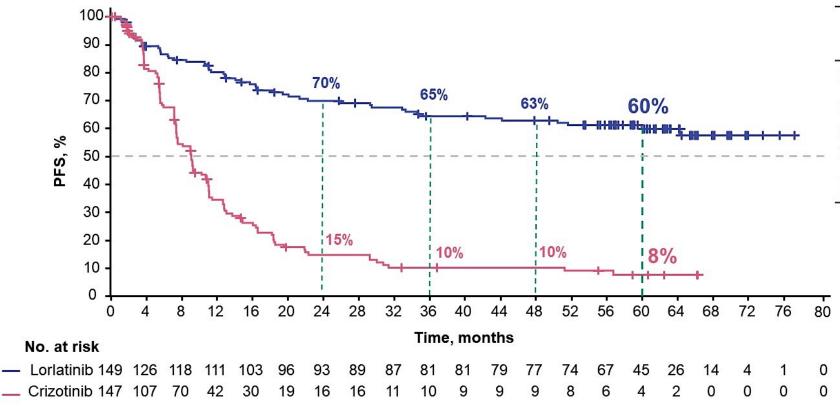
**ALK Resistance Coverage** 


# Global ALEX Study

### **Progression-Free Survival**





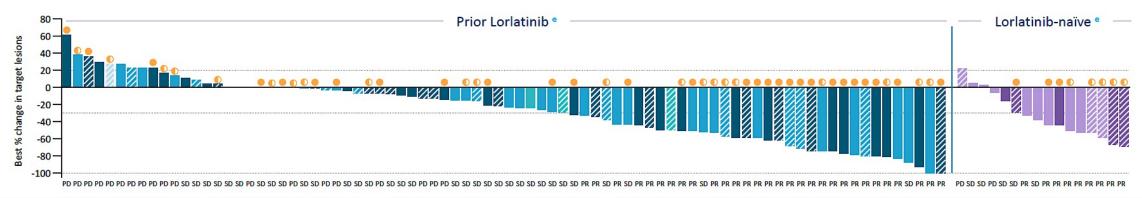

# No. at Risk Alectinib 152 135 113 109 97 81 67 35 15 3 Crizotinib 151 132 104 84 65 46 35 16 5



|                               | Alectinib (n=152) | Crizotinib (n=151) |  |
|-------------------------------|-------------------|--------------------|--|
| Patients with event, n (%)    | 76 (50.0)         | 73 (48.3)          |  |
| Median, months (95% CI)       | 81.1 (62.3-NE)    | 54.2 (34.6-75.6)   |  |
| Stratified HR (95% CI)        | 0.78 (0.56–1.08)  |                    |  |
| p-value (stratified log-rank) | 0.1320            |                    |  |

- 1. Peters S, et al. N Engl J Med. 2017;377:829-838. 2. Camidge DR, et al. N Engl J Med. 2018;379:2027-2039.
- 3. Mok T et al. ESMO 2025; Abstract LBA73. 4. Peters S et al. Ann Oncol. 2025

# **CROWN**




|                                    | Lorlatinib<br>(n=149) | Crizotinib<br>(n=147) |  |
|------------------------------------|-----------------------|-----------------------|--|
| Events, n                          | 55                    | 115                   |  |
| PFS, median<br>(95% CI),<br>months | NR<br>(64.3-NR)       | 9.1<br>(7.4-10.9)     |  |
| HR (95% CI)                        | 0.19 (0.13-0.27)      |                       |  |

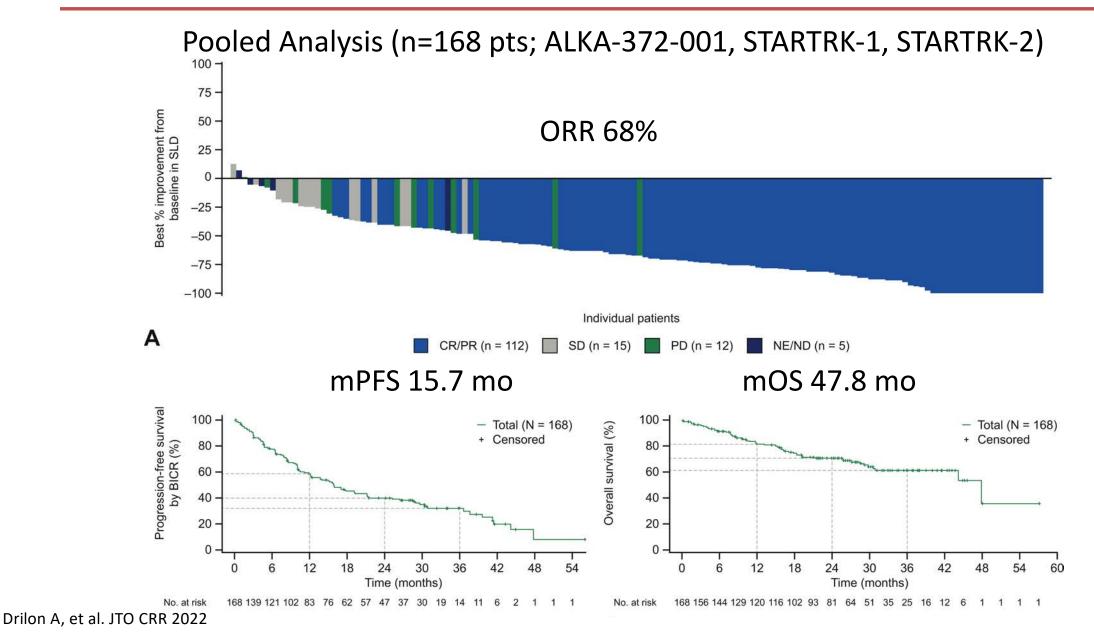
At the time of this analysis, the required number of OS events for a protocol-specified second interim analysis has not been reached. OS follow up is ongoing

# Neladalkib (NVL-655)

| RECIST 1.1 ORR,<br>% (n/N)  | NSCLC Response-E     | valuable (Any Prior A            | LK TKI, range 1 – 5)             | Pric                | or Lorlatinib (≥2 ALK T | Kls)                     | Lorlatinib-naiv   | re (≥1 2G ± 1G)     |
|-----------------------------|----------------------|----------------------------------|----------------------------------|---------------------|-------------------------|--------------------------|-------------------|---------------------|
| All patients ± chemotherapy | All                  | Any ALK<br>mutation <sup>a</sup> | G1202R b                         | All                 | Any ALK<br>mutation     | Compound ALK<br>mutation | All               | Any ALK<br>mutation |
| All Doses                   | <b>38</b> % (39/103) | <b>52%</b> (30/58)               | <b>69</b> % (22/32) <sup>d</sup> | <b>35</b> % (30/85) | <b>47</b> % (23/49)     | <b>54</b> % (15/28)      | <b>53%</b> (9/17) | <b>88</b> % (7/8)   |
| RP2D                        | <b>38</b> % (15/39)  | <b>55</b> % (12/22)              | <b>71</b> % (10/14)              | <b>35</b> % (11/31) | <b>50</b> % (8/16)      | <b>64</b> % (7/11)       | <b>57</b> % (4/7) | <b>80</b> % (4/5)   |

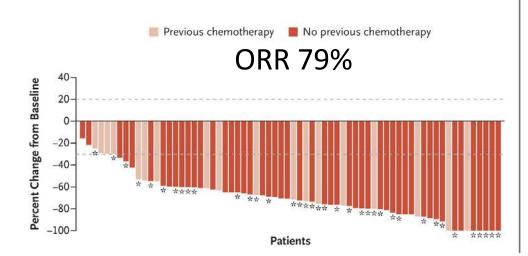


Data cut-off: 15 June 2024. Response-evaluable patients with NSCLC. All responses were confirmed.

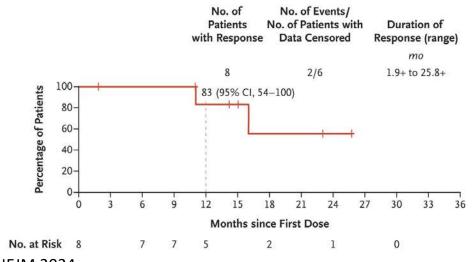

NSCLC, non-small cell lung cancer; ORR, objective response rate; PD, progressive disease; PR, partial response; RECIST 1.1, Response Evaluation Criteria in Solid Tumours version 1.1; RP2D, Recommended Phase 2 dose (150 mg QD); SD, stable disease; TKI, tyrosine kinase inhibitor.

- a Includes all patients with ≥1 identified ALK resistance mutation as per local or central testing of blood (ctDNA) or tissue. Responses observed in patients with ALK I1171N/S, V1180L, L1196Q, L1198F, D1203N, or E1210K mutations, including where multiple mutations co-occur, in addition to those with G1202R.
- b Includes patients with G1202R single and compound (≥2) mutations.
- <sup>c</sup> Cis-allelic configuration has not been confirmed for all patients with compound (≥2) ALK resistance mutations.
- d ORR = 67% (20/30) for G1202R patients with prior Iorlatinib, and ORR= 100% (2/2) for Iorlatinib-naïve G1202R patients.
- eFive response-evaluable patients (4 with no known ALK mutations and 1 with single ALK mutation) not shown due to incomplete or missing post-baseline tumor assessments in the setting of PD or symptomatic deterioration.

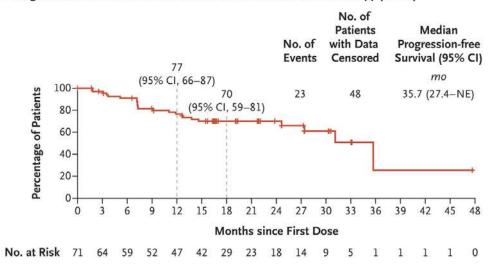



#### **KEY: PATIENT DETAILS** Lorlatinib Pre-treated: Lorlatinib-naïve: ALK single resistance ≥ 3 prior ALK TKIs ≥ 2 prior ALK TKIs mutation 2 prior, 2G + lorlatinib 1 prior, alectinib ALK compound 2 prior, 1G + lorlatinib (≥2) resistance Patient treated at RP2D mutation 1 prior (lorlatinib only)

# **ROS1 Fusions: Entrectinib**



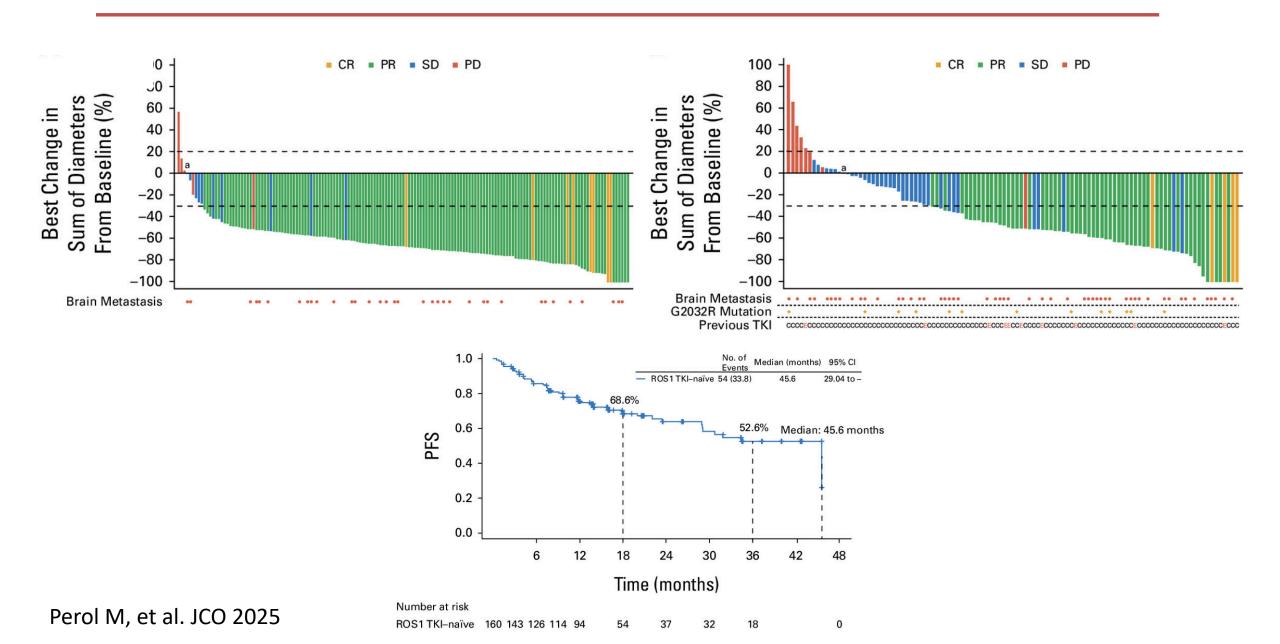

# **ROS1 Fusions: Repotrectinib**


A Maximum Change in Tumor Size in Cohort with No Previous ROS1 TKI Therapy (N=71)



A Duration of Intracranial Response in Patients with Brain Metastasis in Cohort with No Previous ROS1 TKI Therapy (N=9)




B Progression-free Survival in Cohort with No Previous ROS1 TKI Therapy (N=71)

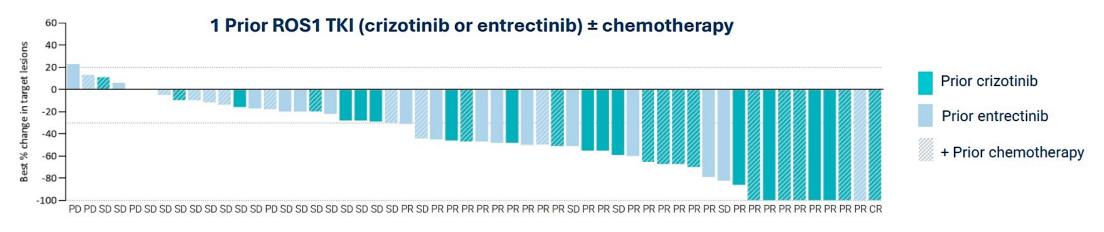


| Event                                      | <b>During Treatment Period</b> |             | Related to Treatment |          |  |
|--------------------------------------------|--------------------------------|-------------|----------------------|----------|--|
|                                            | Any Grade                      | Grade ≥3    | Any Grade            | Grade ≥  |  |
|                                            |                                | number of p | atients (percent)    |          |  |
| Any event                                  | 422 (99)                       | 216 (51)    | 409 (96)             | 122 (29) |  |
| Event occurring in ≥15% of patients        |                                |             |                      |          |  |
| Dizziness                                  | 264 (62)                       | 11 (3)      | 245 (58)             | 11 (3)   |  |
| Dysgeusia                                  | 224 (53)                       | 0           | 213 (50)             | 0        |  |
| Constipation                               | 162 (38)                       | 1 (<1)      | 111 (26)             | 0        |  |
| Anemia                                     | 160 (38)                       | 33 (8)      | 111 (26)             | 16 (4)   |  |
| Paresthesia                                | 143 (34)                       | 3 (1)       | 126 (30)             | 3 (1)    |  |
| Dyspnea                                    | 117 (27)                       | 27 (6)†     | 36 (8)               | 2 (<1    |  |
| Increased alanine aminotransferase level   | 99 (23)                        | 8 (2)       | 76 (18)              | 6 (1)    |  |
| Fatigue                                    | 95 (22)                        | 4 (1)       | 70 (16)              | 3 (1)    |  |
| Ataxia                                     | 90 (21)                        | 1 (<1)      | 87 (20)              | 0        |  |
| Increased aspartate aminotransferase level | 89 (21)                        | 9 (2)       | 75 (18)              | 6 (1)    |  |
| Nausea                                     | 85 (20)                        | 3 (1)       | 51 (12)              | 2 (<1)   |  |
| Muscular weakness                          | 85 (20)                        | 8 (2)       | 59 (14)              | 6 (1)    |  |
| Headache                                   | 79 (19)                        | 0           | 42 (10)              | 0        |  |
| Increased blood creatine kinase level      | 75 (18)                        | 15 (4)      | 72 (17)              | 15 (4)   |  |
| Weight increase                            | 67 (16)                        | 11 (3)      | 49 (12)              | 7 (2)    |  |
| Memory impairment                          | 65 (15)                        | 1 (<1)      | 54 (13)              | 1 (<1    |  |
| Cough                                      | 64 (15)                        | 1 (<1)      | 10 (2)               | 0        |  |
|                                            |                                |             |                      |          |  |

Drilon A, et al. NEJM 2024

# Taletrectinib: TRUST I-II Pooled Analysis

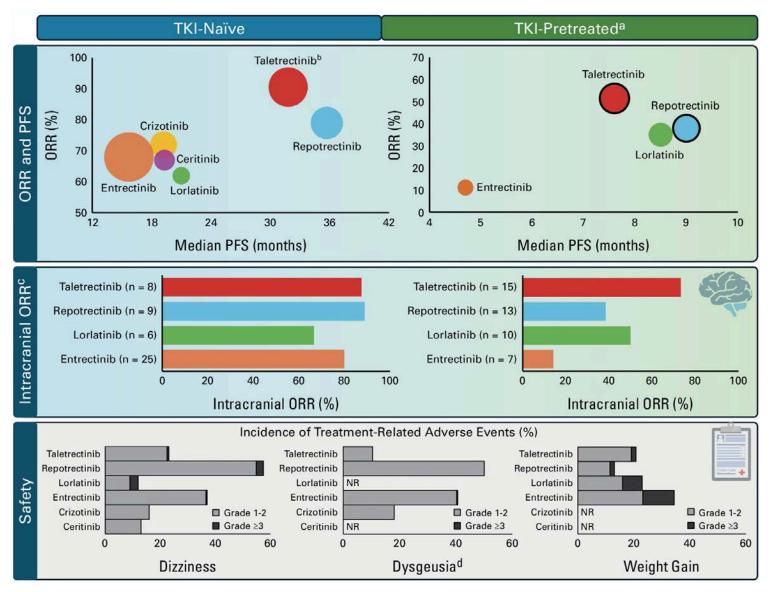



# Phase I/II ARROS-1 Trial: Zidesamtinib for Advanced NSCLC with a ROS1 mutation — Responses in Patients Who Previously Received a TKI

| Any prior ROS1 TKI<br>(range 1 - 4)<br>± chemotherapy | 1 prior ROS1 TKI<br>(crizotinib or entrectinib)<br>± chemotherapy |
|-------------------------------------------------------|-------------------------------------------------------------------|
| <b>44</b> % (51/117)                                  | <b>51%</b> (28/55) <sup>a</sup>                                   |
| [34, 53]                                              | [37, 65]                                                          |
| 1% (1/117)                                            | 2% (1/55)                                                         |
|                                                       | (range 1 - 4) ± chemotherapy  44% (51/117)  [34, 53]              |

<sup>&</sup>lt;sup>a</sup> Prior crizotinib only ± chemotherapy: ORR = 68% (19/28). Prior entrectinib only ± chemotherapy: ORR = 33% (9/27).

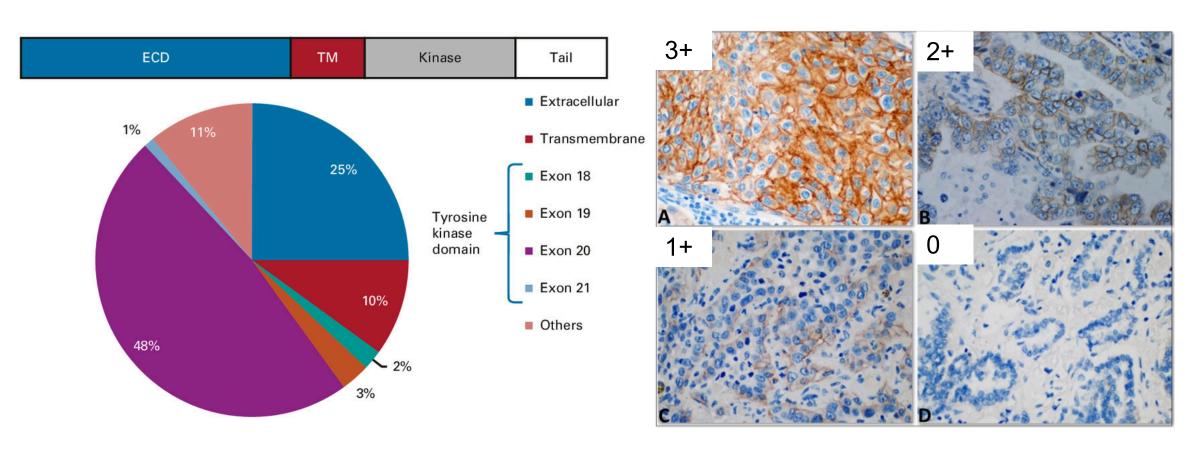
# Responses were also observed in patients previously treated with:


- ≥2 prior ROS1 TKIs ± chemotherapy:
   ORR = 38% (22/58; 95% CI: [26, 52])
- Prior repotrectinib: ORR = 47% (8/17),
   DOR range 3.5 to 17.2 months
- Prior taletrectinib: ORR = 43% (3/7),
   DOR range 5.2 to 7.0+ months

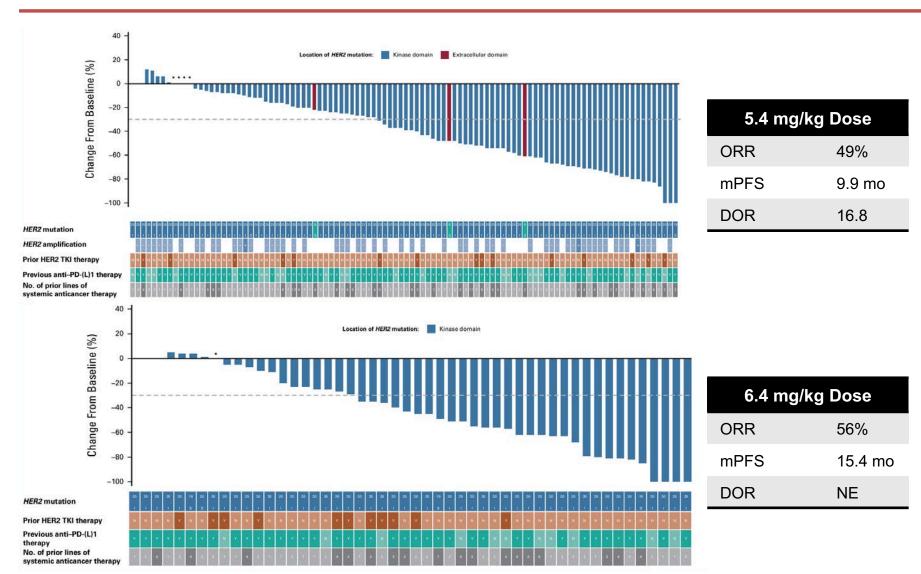


Data cut-off: March 21, 2025. CI, confidence interval; CR, complete response. PD, progressive disease; PR, partial response; RECIST 1.1, Response Evaluation Criteria in Solid Tumours version 1.1; SD, stable disease.

TKI = tyrosine kinase inhibitor; ORR = objective response rate


# Summary of ROS1 Inhibitors

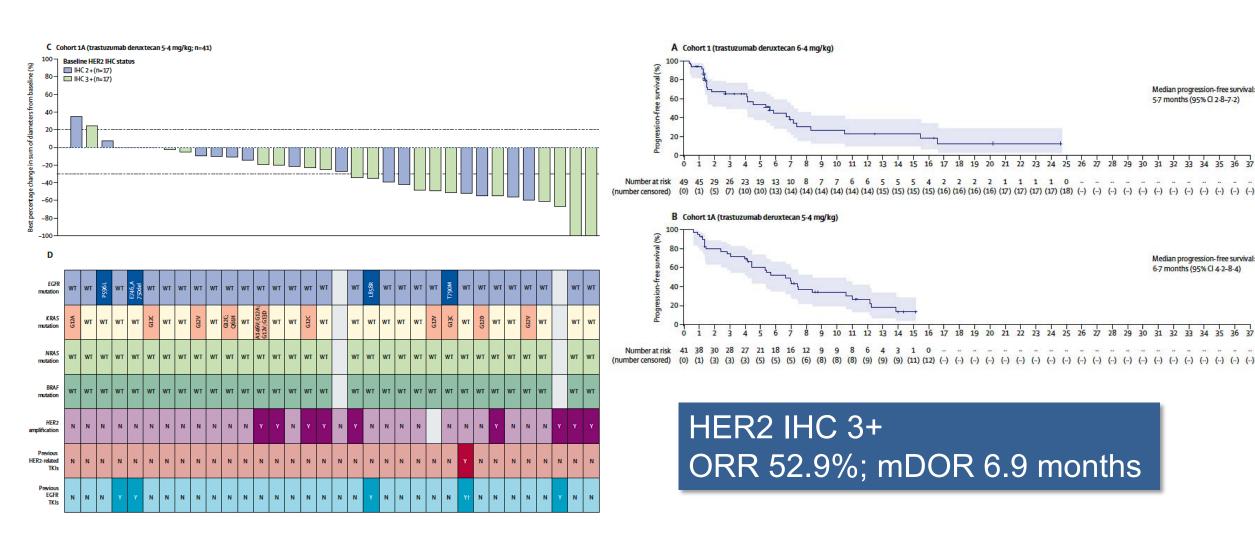



# **HER2 Alterations**

### **HER2 Mutations**

### **HER2 Expression**

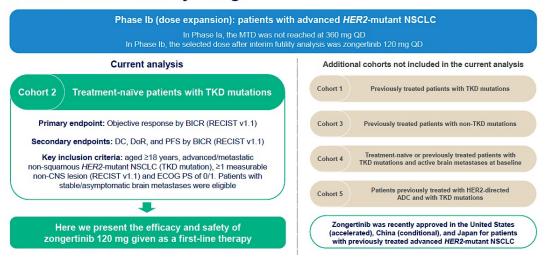


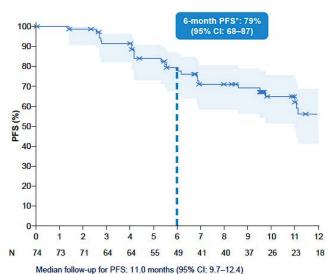

# **HER2 Mutations: T-DXd**

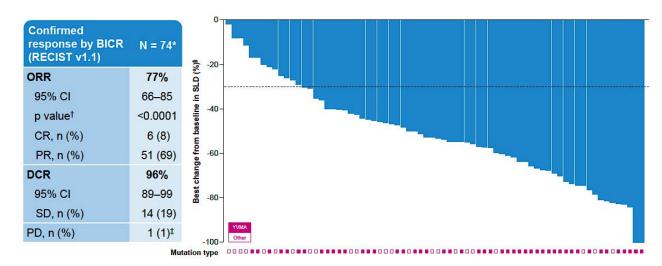


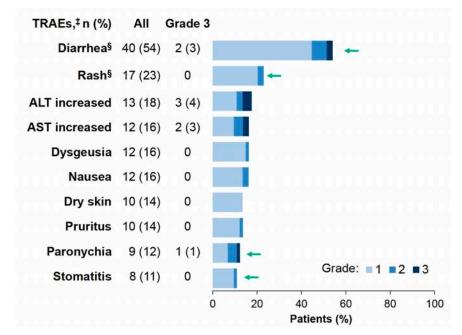
# HER2 Overexpression

Median progression-free survival:


Median progression-free survival: 6-7 months (95% CI 4-2-8-4)





Smit E, et al. Lancet Oncol 2024


# Zongertinib

#### **Beamion LUNG-1 Study Design**









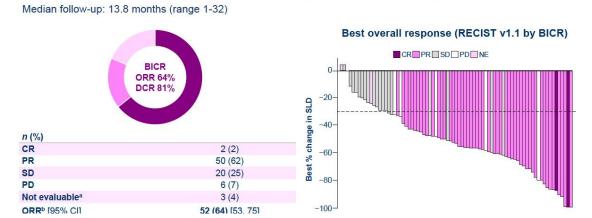
Popat S, et al. ESMO 2025; Abstract LBA74

## Sevabertinib

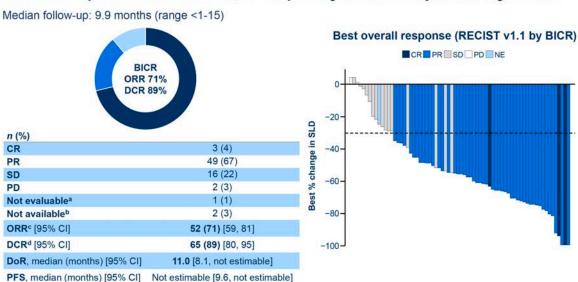
Oral, reversible TKI that inhibits HER2, including secondary resistance mutations (C805S and gatekeeper mutations T798M/I)

#### SOHO-01 study design (NCT05099172)




#### Cohort E (previous HER2 ADCs, n=55): Objective response by BICR

Median follow-up: 11.6 months (range 2-22)




Patients in Cohort E who had previously received trastuzumab deruxtecan achieved an ORR of 34% (14/41)

Cohort D (previously treated, n=81): Objective response (ORR) by BICR



### Cohort F (treatment-naïve, n=73): Objective response by BICR



# Summary

- Treatment of oncogene-driven lung cancer continues to evolve rapidly
- Intensification strategies are now yielding OS benefits in EGFR-mutant NSCLC
- Bispecifics and ADCs are providing new therapeutic options in EGFR-mutant NSCLC
- Next-generation TKIs are demonstrating significant antitumor activity for patients with ALK, ROS1 and now HER2

# Case Presentation: 65-year-old woman with ALK-mutant metastatic adenocarcinoma of the lung (PD-L1 TPS 70%)



**Dr Zanetta Lamar (Naples, Florida)** 



In general, what is your preferred first-line treatment for metastatic NSCLC with an ALK mutation?

What is your usual treatment approach for a patient with progressive disease after first-line alectinib and second-line lorlatinib?

What role, if any, do you see for new tyrosine kinase inhibitors, including neladalkib (NVL-655)?



# Case Presentation: 84-year-old woman with EGFR exon 19-deleted adenocarcinoma of the lung with recurrence after 4 years of osimertinib



Dr Jennifer Yannucci (Savannah, Georgia)



How do you select first-line treatment for EGFR-mutant metastatic NSCLC, and what are the tolerability issues with the 3 major options?

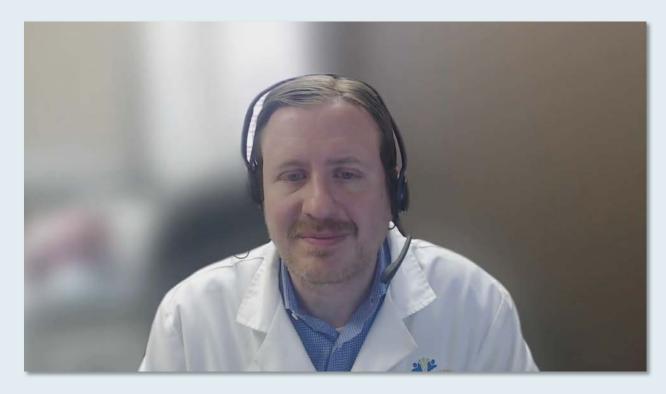
How do you select second-line treatment for EGFR-mutant metastatic NSCLC, and how does that vary based on first-line treatment?

How might the availability of subcutaneous amivantamab affect your use of this agent?



What tolerability issues have you observed with datopotamab deruxtecan?

What strategies do you use to prevent the mucositis associated with the drug?


How problematic have you found the ocular toxicities?



What is your usual first-line therapy for EGFR exon 20-mutant NSCLC?



# Case Presentation: 69-year-old woman with HER2-mutant metastatic adenocarcinoma of the lung



Dr Brian Mulherin (Indianapolis, Indiana)



How do you sequence trastuzumab deruxtecan and zongertinib for HER2-mutant NSCLC? What about for patients with HER2 overexpression?

How do zongertinib and sevabertinib compare in terms of efficacy? What about tolerability? What are the most common toxicities with these agents?

If sevabertinib were to become available, how do you think you would select between the 2 of them? Would you use them in sequence?



# Case Presentation: 73-year-old man with locally recurrent squamous cell carcinoma of the lung and a MET exon 14 skipping mutation



Dr Sean Warsch (Asheville, North Carolina)



In patients with locally advanced, unresectable NSCLC, for which actionable genomic alterations do you (or would you like to) recommend targeted treatment versus durvalumab consolidation after chemoradiation therapy?

How do you sequence targeted agents for patients with a MET exon 14 skipping mutation?



Case Presentation: 73-year-old woman with ROS1-mutant metastatic adenocarcinoma of the lung who responds to entrectinib and then to pembrolizumab/carboplatin/pemetrexed administered upon disease progression



Dr Jennifer Yannucci (Savannah, Georgia)



In general, how do you sequence the various available targeted agents for patients with ROS1-mutant lung cancer? Is there a role for immunotherapy in the care of these patients?

What role, if any, do you see for new tyrosine kinase inhibitors, including zidesamtinib? If zidesamtinib becomes available, where do you see it fitting into current algorithms?



## **Agenda**

**Module 1 — Lung Cancer:** *Drs Gainor, Langer and Shields* 

- Targeted Therapy for Non-Small Cell Lung Cancer (NSCLC) Dr Gainor
- Nontargeted Therapy for NSCLC; Small Cell Lung Cancer Dr Langer
- Neoadjuvant, Perioperative and Adjuvant Anti-PD-1/PD-L1 Antibody-Based Approaches for Patients with Localized NSCLC — Dr Shields





### Division of Hematology & Oncology

# Headway in SCLC and Driver (-) mNSCLC

Corey J. Langer, MD, FACP

**Director of Thoracic Oncology** 

Abramson Cancer Center

**Professor of Medicine** 

Perelman School of Medicine

University of Pennsylvania

Philadelphia, PA 19104

Corey.langer@uphs.upenn.edu

CP: 215-806-6152

November 08, 2025

## Headway in SCLC and Driver (-) metastatic (m)NSCLC

### mNSCLC: no targetable mutations or fusions

- ▶ Up-front therapy for higher risk populations of pts with Tx-naive mNSCLC and no targetable tumor mutations (eg, high-risk features such as KEAP1/STK11 mutations; Sq histology and PD-L1 < 1%, etc)
- ▶ IVONESCIMAB: Phase III trials (eg, HARMONi-2, HARMONi-6) in Tx-naïve mNSCLC

### **Limited SCLC**

LTS Durvalumab consolidation after chemoradiation in ADRIATIC

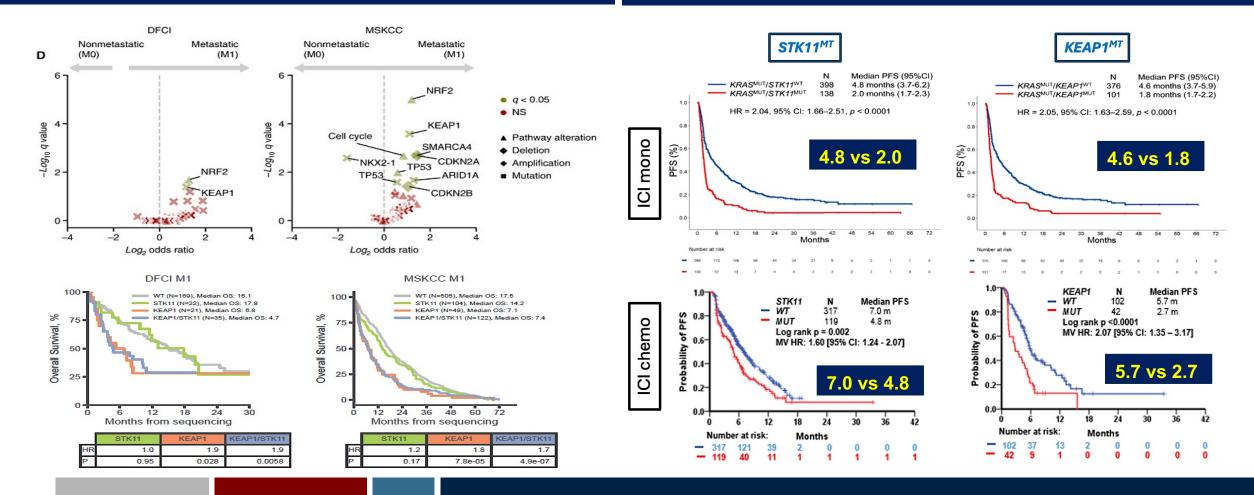
### **Extensive Stage:**

- ▶ Long-term outcomes with durvalumab (CASPIAN) and atezolizumab (IMP133), as 1L Tx
- ▶ Phase III IMforte trial of maintenance lurbinectedin + atezolizumab vs atezo alone after first-line induction Tx with EP/Atezo
- ▶ Phase III DeLLphi-304 trial comparing tarlatamab to standard chemotherapy as 2L therapy for pts with progressive SCLC
- ▶ ADCs: Mechanism of antitumor activity of ifinatamab deruxtecan (I-DXd) and other ADCs; early-phase results and ongoing Phase III trials of I-DXd for patients with ES-SCLC



# Langer's Current 1L Paradigm in wt NSCLC: November, 2025 (could change at any moment)

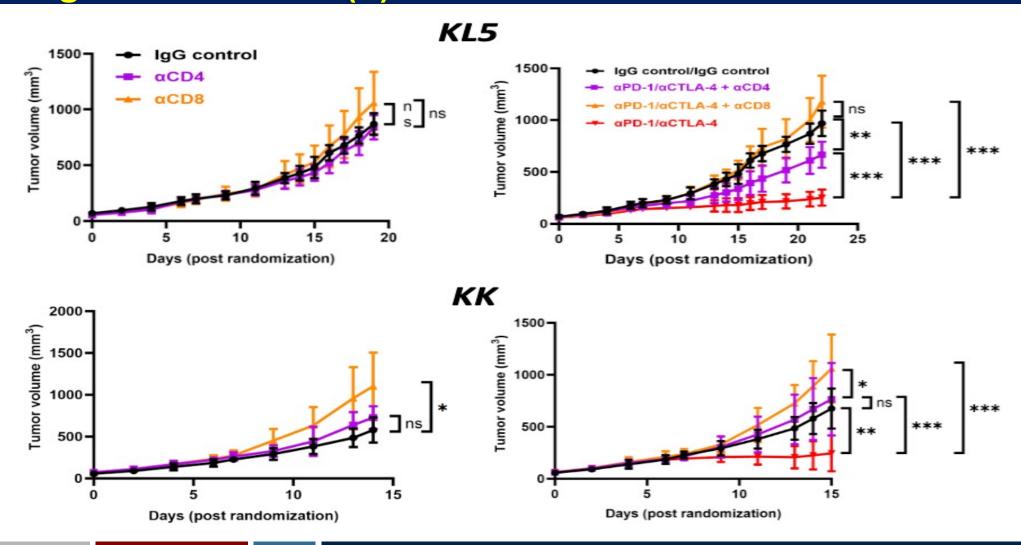
| Tx Cohort             | Non-Squamous                                      | Squamous                                            |  |
|-----------------------|---------------------------------------------------|-----------------------------------------------------|--|
| PDL1 ≥ 50%            | Pembro > Pem/Carbo/Pembro                         | Pembro > Taxane/Carbo/Pembro                        |  |
| PDL1 1-50%            | Pem/Carbo/Pembro > Pembro                         | Taxane/Carbo/Pembro > Pembro                        |  |
| PDL1 < 1%             | Pem/Carbo/Pembro                                  | Taxane/Carbo/Pembro                                 |  |
| PDL1 < 1% or TMB > 10 | Pem/Carbo/Pembro vs Ipi/Nivo or 9LA* or Poseidon  | Taxane/Carbo/Pembro vs Ipi/Nivo or 9LA* or Poseidon |  |
| TKI-Refractory        | Pem/Carbo +/- Bev or Pac/Carbo/Bev/Atezo (IMP150) |                                                     |  |
| Tissue QNS            | Pem/Carbo/Pembro                                  | Taxane/Carbo/Pembro                                 |  |


\*Ipilimumab/Nivolumab +/- 2 cycles of Histology-appropriate chemotherapy (9LA); could also consider Poseidon (Durvalumab/Tremelimumab/Carbo and either Taxane or Pem)



# STK11/KEAP1 Mutations Associated with Negative Prognostic Effects and Decreased Benefit to Anti-PD-L1

**KEAP1** associated with metastasis and reduced OS


**KEAP1/STK11** associated with reduced ICI outcomes



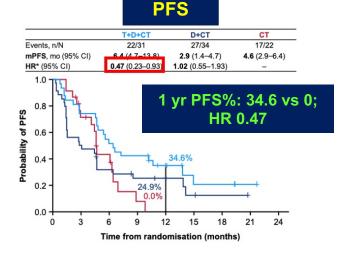


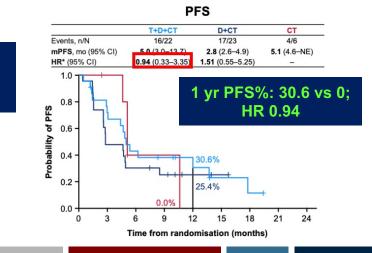


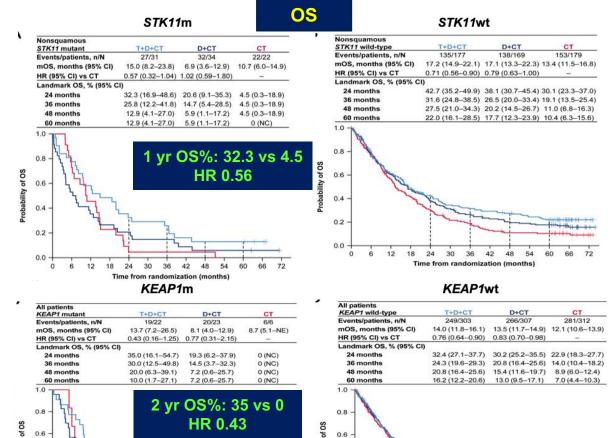
# In Vivo Mouse Experiments Show Enhanced Anti-Tumor Effect from Adding CTLA-4 to PD-(L)1 inhibitors in *KEAP1*-Deficient Tumors









# Potential Benefit from Addition of CTLA-4: POSEIDON STK11 and KEAP1 mt (+) mNSCLC


STK11 mutant

KEAP1

mutant







0.4

0.2

0.0 -

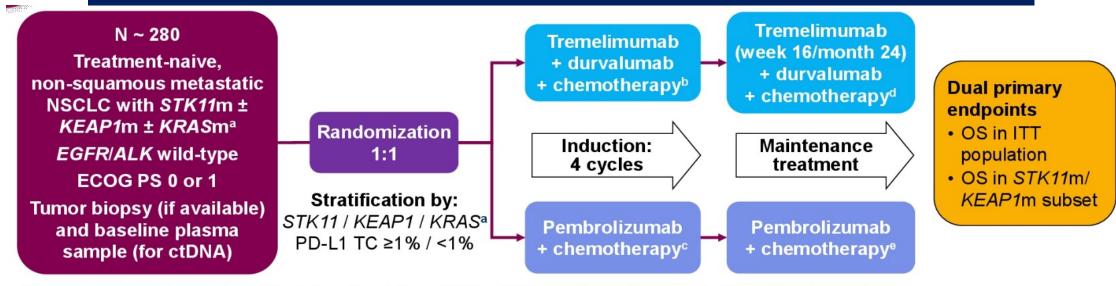
30

Time from randomization (months)



0.4

0.2


12

30 36 42 48

Time from randomization (months)

# Ongoing Phase 3b TRITON Trial (NCT06008093) to Validate *STK11/KEAP1* as Biomarkers

TRITON: Phase 3b randomized, open-label, multicenter study POSEIDON vs KN189



<sup>&</sup>lt;sup>a</sup>The proportion of participants with KRAS mutations alone (without STK11 or KEAP1 mutations) will be capped at 33% of the total sample size.

ePembrolizumab 200 mg Q3W + pemetrexed 500 mg/m<sup>2</sup> Q3W until disease progression, unacceptable toxicity, or withdrawal of consent (and for pembrolizumab only, for up to 24 months).



<sup>&</sup>lt;sup>b</sup>Tremelimumab 75 mg Q3W + durvalumab 1500 mg Q3W + platinum (carboplatin AUC 5/6 or cisplatin 75 mg/m<sup>2</sup>) + pemetrexed 500 mg/m<sup>2</sup> Q3W for up to 4 cycles.

<sup>°</sup>Pembrolizumab 200 mg Q3W + platinum (carboplatin AUC 5/6 or cisplatin 75 mg/m²) + pemetrexed 500 mg/m² Q3W for up to 4 cycles.

<sup>&</sup>lt;sup>d</sup>Tremelimumab 75 mg (a fifth dose given post-platinum at week 16, plus an optional dose at month 24 at the investigator's discretion) + durvalumab 1500 mg Q4W + pemetrexed 500 mg/m<sup>2</sup> Q4W until disease progression, unacceptable toxicity, or withdrawal of consent.

### Ivonescimab Versus Pembrolizumab for PD-L1-Positive NSCLC: A Subgroup Analysis of HARMONi-2 by Tumor Histology

Anwen Xiong, 1 Jianhua Chen, 2 Baogang Liu, 3 Hua Zhong, 4 Ying Cheng, 5 Hui Ge, 6 Qin Shi, 7 Bolin Chen, 2 Jinliang Wang, 8 Yanqiu Zhao, 9 Ligong Nie, 10 Xingya Li, 11 Yinghua Ji, 12 Xiaohong Ai, 13 Yu Lin, 14 Dingzhi Huang, 15 Jinlu Shan, 16 Wenting Li, 17 Michelle Xia, 17 Caicun Zhou 18

Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; \*Hunan Cancer Hospital, Changsha, China; \*Hunan Cancer Hospital, Changsha, China; \*Flarbou Tuberculosis
Prevention and Treatment Hospital, Fuzhou, China; Flarbou, China; The Fifth Medical Center of the Chinese People's Liberation Army General Hospital, Policy (Shanghai, China; "Peking University First Hospital, Beijing, China; "First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; "First Affiliated Hospital of Zhengzhou, China; "The First Affiliated Hospital of University First Affiliated Hospital of University of South China, Hengyang, China; "Finanjin Medical University Cancer Institute and Hospital, China; "Daping Hospital, China; "Obaping Hospital, China; "Shanghai, China; "Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; China; "Daping Hospital, Tianjin, China; "Shanghai, China; "Shang

#### **BACKGROUND**

- A combination of platinum-based chemotherapy plus programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) is the most common treatment approach for patients with newly diagnosed Stage IV non-small cell lung cancer (NSCLC) regardless of tumor PD-L1 status<sup>1</sup>
- Ivonescimab is a first-in-class investigational bispecific antibody against PD-1 and vascular endothelial growth factor (VEGF; Figure 1)<sup>2,3</sup>
  - > By blocking both PD-1 and VEGF in the tumor microenvironment, ivonescimab has the potential to drive synergistic anti-tumor activity through higher binding affinity and increased activity of T cells
  - > In vitro studies have shown that the presence of VEGF increases PD-1 binding strength by more than 10-fold
- In Phase 3 studies, ivonescimab has yielded promising clinical outcomes in patients with

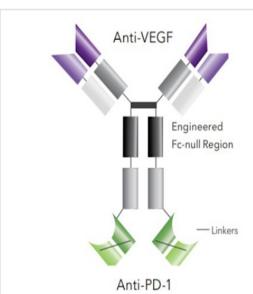
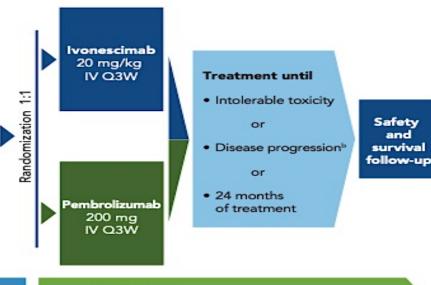



Figure 1. Ivonescimab PD-1/VEGF Bispecific


**Antibody.** Anti-PD-1 scFv attaches to the C-terminus of each anti-VEGF-A antibody heavy chain. Ivonescimab has a heterotetrameric structure consisting of 2 heavy chains of the IgG1 subclass and 2 light chains of the kappa subclass, which are covalently linked through disulfide bonds.<sup>2</sup>

Fc, fragment crystallized; IgG1, immunoglobulin G1; PD-1, programmed cell death protein 1; scFv, single-chain variable fragment; VEGF, vascular endothelial growth factor.

#### Figure 1. Trial Design

#### **Key Eligibility Criteria**

- Age ≥18 years
- Advanced or metastatic (stage IIIB/C or stage IV) PD-L1—positive NSCLC<sup>a</sup>
- No previous systemic therapy for advanced disease
- ≥1 measurable lesion by RECIST v1.1
- ECOG PS score of 0 or 1
- No sensitizing EGFR mutations or ALK translocations

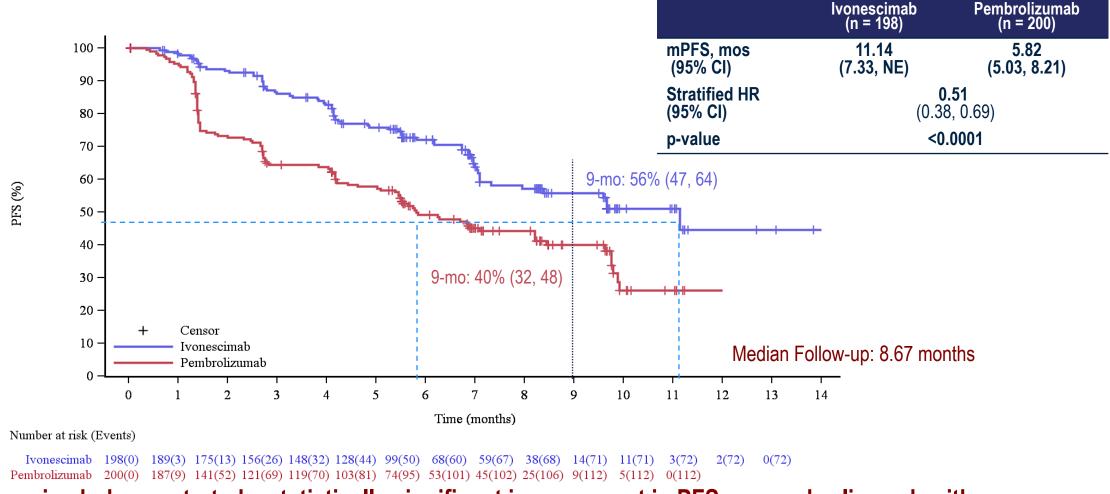


#### Stratification Factors

- Disease stage (stage IIIB or IIIC vs stage IV)
- Histology (squamous vs non-squamous)
- PD-L1 TPS (1-49% vs ≥50%)

#### Study Endpoints

- Primary: PFS by IRRC per RECIST v1.1
- Key secondary: OS
- Other secondary: ORR, DCR, DOR, TTR by IRRC per RECIST v1.1, safety, PK, and immunogenicity
- Exploratory: HRQOL assessment

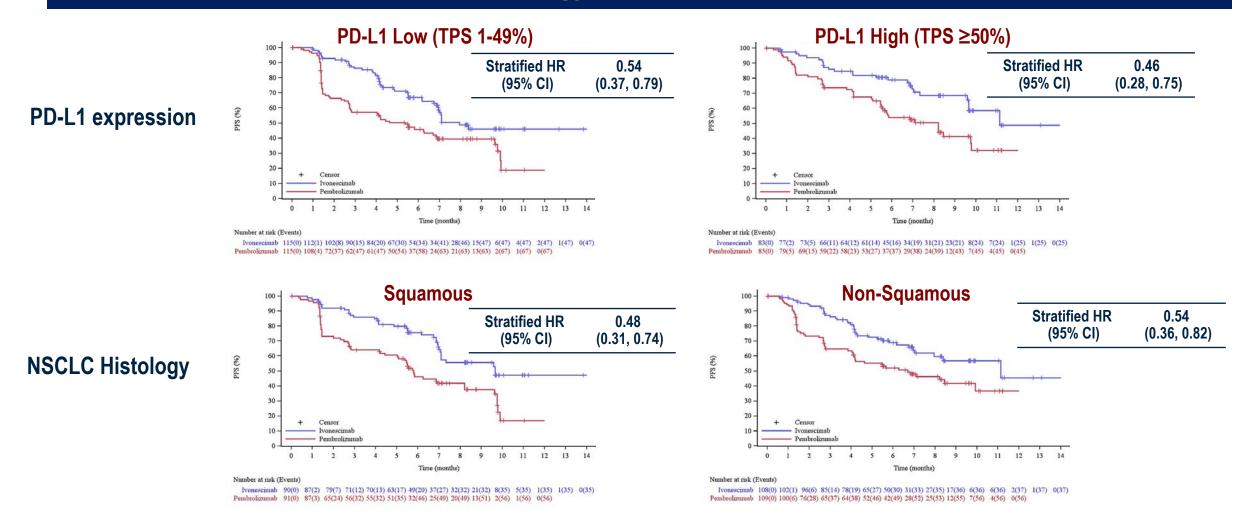

ALK, anaplastic lymphoma kinase; DCR, disease control rate; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; EGFR, endothelial growth factor receptor; HRQOL, health-related quality of life; IRRC, independent radiology review committee; IV, intravenously; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS; overall survival; PD-L1; programmed cell death ligand 1; PFS, progression-free survival; PK, pharmacokinetics; Q3W, every 3 weeks; RECIST v1.1, Response Evaluation Criteria in Solid Tumors, version 1.1; TPS, tumor proportion score; TTR, time to response.

"Squamous or nonsquamous NSCLC subtype confirmed histologically or cytologically.

<sup>b</sup>Confirmed by masked IRRC.



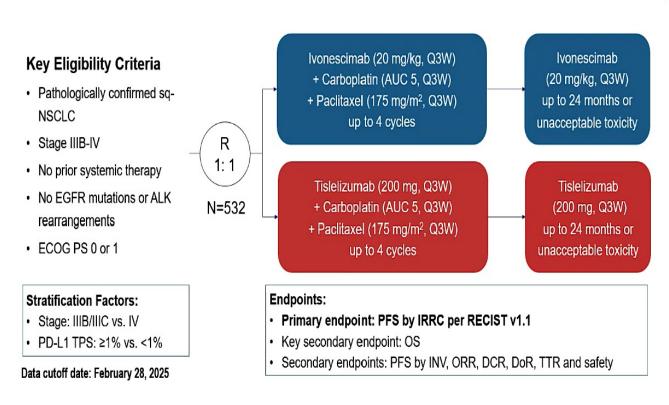
# **Primary endpoint: PFS per IRRC: HARMONI 2 – Pembro vs Ivonescimab**




Ivonescimab demonstrated a statistically significant improvement in PFS vs. pembrolizumab with HR = 0.51, and a 5.3 months improvement in mPFS.

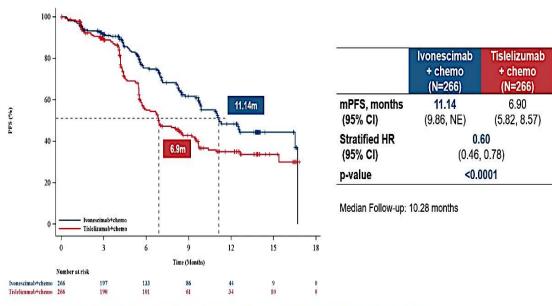


# **HARMONI-2:** Key PFS Subgroup Analyses


Histology and PD-L1 status



Ivonescimab showed meaningful improvement in PFS vs. pembrolizumab in patients with both low and high PD-L1, with squamous or non-squamous advanced NSCLC.




# HARMONi-6: randomized, double-blind parallel-controlled phase III trial in Stage IIIB/IV sq NSCLC



# Primary endpoint: PFS by IRRC

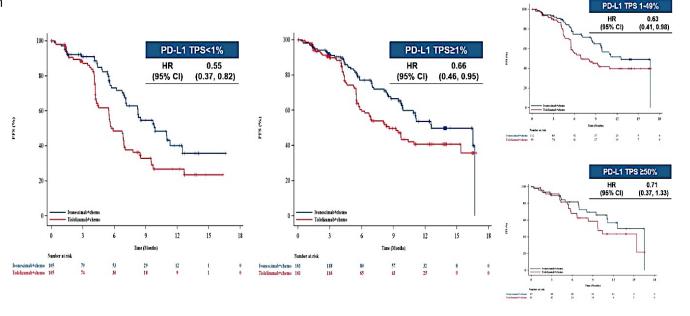
Ivonescimab+chemo demonstrated a statistically significant improvement in PFS vs. tislelizumab+chemo with HR=0.60, representing a 4.2 months improvement in mPFS.



Consistent PFS benefit by investigator-assessment: HR = 0.64 (95% CI: 0.50, 0.84)



### **Subgroup Analysis of PFS by IRRC**

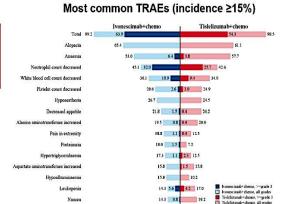

- > PFS benefit favored ivonescimab across all key subgroups.
- > Observed important baseline imbalances in the older patient subgroup (Age ≥65), such as target lesion size, brain metastases. After adjusting for these covariates, the adjusted HR for Age ≥65 was 0.69.

|                     | 51 (50)                                           |                                                    | -                        | , <del>-</del>                                     |
|---------------------|---------------------------------------------------|----------------------------------------------------|--------------------------|----------------------------------------------------|
| Characteristic      | Ivonescimab+chemo<br>Events/Number of<br>Subjects | Tislelizumab+chemo<br>Events/Number of<br>Subjects | Hazard ratio<br>(95% CI) | Favors Ivonescimab+chemo Favors Tisleiizumab+chemo |
| Overall             | 94/266                                            | 127/266                                            | 0.60 (0.46, 0.78)        |                                                    |
| Age, years          |                                                   |                                                    |                          |                                                    |
| <65                 | 37/135                                            | 69/139                                             | 0.40 (0.26, 0.59)        | <del></del>                                        |
| ≥65                 | 57/131                                            | 58/127                                             | 0.88 (0.61, 1.27)        | <del></del>                                        |
| Sex                 |                                                   |                                                    | aras di namani           |                                                    |
| Male                | 90/256                                            | 118/238                                            | 0.59 (0.45, 0.78)        |                                                    |
| Female              | 4/10                                              | 9/28                                               |                          |                                                    |
| ECOG PS             |                                                   |                                                    |                          |                                                    |
| 0                   | 16/42                                             | 21/42                                              | 0.61 (0.32, 1.17)        |                                                    |
| 1                   | 78/224                                            | 106/222                                            | 0.61 (0.45, 0.82)        | <del></del>                                        |
| Disease Stage       |                                                   |                                                    |                          | N                                                  |
| IIIB/IIIC           | 12/21                                             | 8/20                                               |                          | OLC .                                              |
| IV                  | 82/245                                            | 119/246                                            | 0.55 (0.41, 0.73)        | <del></del>                                        |
| PD-L1 TPS           |                                                   |                                                    | ,                        |                                                    |
| <1%                 | 42/105                                            | 58/105                                             | 0.55 (0.37, 0.82)        | <del></del>                                        |
| ≥1%                 | 52/161                                            | 69/161                                             | 0.66 (0.46, 0.95)        |                                                    |
| 1-49%               | 35/112                                            | 47/99                                              | 0.63 (0.41, 0.98)        |                                                    |
| >50%                | 17/49                                             | 22/62                                              | 0.71 (0.37, 1.33)        |                                                    |
| ≥3 metastases sites |                                                   |                                                    | , , , , , ,              | 100                                                |
| Yes                 | 17/42                                             | 26/39                                              | 0.46 (0.25, 0.85)        |                                                    |
| No                  | 77/224                                            | 101/227                                            | 0.64 (0.48, 0.87)        |                                                    |
| Liver metastases    |                                                   |                                                    | ,                        |                                                    |
| Yes                 | 11/28                                             | 24/45                                              | 0.53 (0.26, 1.08)        |                                                    |
| No                  | 83/238                                            | 103/221                                            | 0.64 (0.48, 0.85)        |                                                    |
| Brain metastases    | -3/-2-0                                           |                                                    | ()                       | 7.                                                 |
| Yes                 | 2/9                                               | 11/17                                              |                          |                                                    |
| No                  | 92/257                                            | 116/249                                            | 0.64 (0.49, 0.85)        |                                                    |
| 7070                | 80 To 1 To 1 To 1                                 |                                                    | ,,                       |                                                    |
|                     |                                                   |                                                    |                          | 0.125 0.25 0.5 1 2 4                               |
|                     |                                                   |                                                    |                          | 0.125 0.25 0.5 1 2 4 Hazard ratio (95% CD)         |

If the number of events at a level of a subgroup is less than 10, the median PFS and hazard ratio will not be provided.

### **PFS in different PD-L1 expression Subgroups**

Ivonescimab showed meaningful PFS improvement over tislelizumab regardless of PD-L1 expression.






### **Safety Summary**

Ivonescimab plus chemotherapy showed a manageable safety profile in sq-NSCLC.

#### **Ivonescimab Tislelizumab** + chemo + chemo (N=266) (N=265)TRAE 261 (98.5) 264 (99.2) Grade ≥ 3 TRAE 170 (63.9) 144 (54.3) Serious TRAE 80 (30.2) 86 (32.3) Leading to ivonescimab or 9 (3.4) 11 (4.2) tislelizumab discontinuation Leading to death 8 (3.0) 10 (3.8)



Patients (%)

Abbreviation: TRAE, treatment-related adverse events. Shun Lu

### **Immune-Related and VEGF-Related AEs**

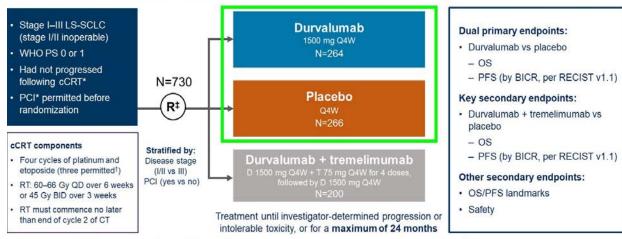
Ivonescimab exhibited similar irAEs to tislelizumab.

Possibly VEGF-related AEs occurred more frequently in the ivonescimab arm, most of which were grade 1-2.

| Immune-related AEs                                     | lvonescimab<br>+ chemo<br>(N=266) | Tislelizumab<br>+ chemo<br>(N=265) |
|--------------------------------------------------------|-----------------------------------|------------------------------------|
| Any grade                                              | 73 (27.4)                         | 67 (25.3)                          |
| Grade ≥3 irAE                                          | 24 (9.0)                          | 27 (10.2)                          |
| Serious irAE                                           | 23 (8.6)                          | 26 (9.8)                           |
| Leading to ivonescimab or tislelizumab discontinuation | 3 (1.1)                           | 6 (2.3)                            |
| Leading to death                                       | 0                                 | 1 (0.4)                            |

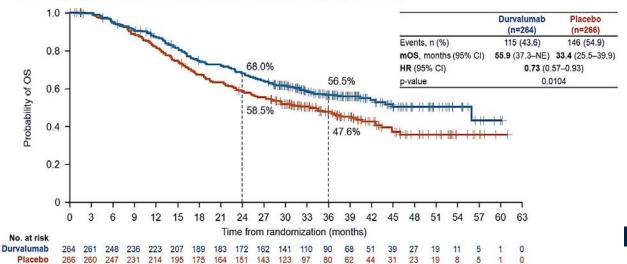
| Possibly<br>VEGF-Related  |            | ab + chemo<br>266) | Tislelizumab + chemo<br>(N=265) |          |  |
|---------------------------|------------|--------------------|---------------------------------|----------|--|
| AEs#                      | Any Grade  | Grade ≥3           | Any Grade                       | Grade ≥3 |  |
| Any                       | 123 (46.2) | 20 (7.5)           | 60 (22.6)                       | 6 (2.3)  |  |
| Proteinuria               | 72 (27.1)  | 6 (2.3)            | 29 (10.9)                       | 0        |  |
| Haemorrhage               | 57 (21.4)  | 5 (1.9)            | 25 (9.4)                        | 2 (0.8)  |  |
| Hypertension              | 27 (10.2)  | 8 (3.0)            | 12 (4.5)                        | 3 (1.1)  |  |
| Arterial thromboembolism  | 3 (1.1)    | 3 (1.1)            | 0                               | 0        |  |
| Venous<br>thromboembolism | 2 (0.8)    | 0                  | 3 (1.1)                         | 1 (0.4)  |  |
| Fistula                   | 1 (0.4)    | 0                  | 0                               | 0        |  |

<sup>\*</sup>AE terms were grouped terms.

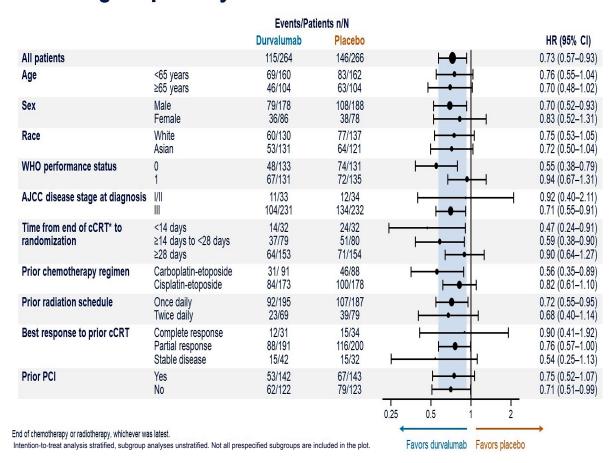

Abbreviation: VEGF, vascular endothelial growth factor; AEs, adverse events; irAEs, immune-related adverse events. Shun Lu



### **ADRIATIC Trial: LS-SCLC**


### **ADRIATIC** study design

Phase 3, randomized, double-blind, placebo-controlled, multicenter, international study (NCT03703297)

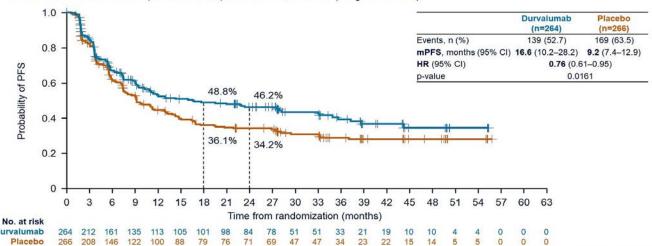



### Overall survival (dual primary endpoint)

Median duration of follow up in censored patients: 37.2 months (range 0.1–60.9)



# OS subgroup analysis





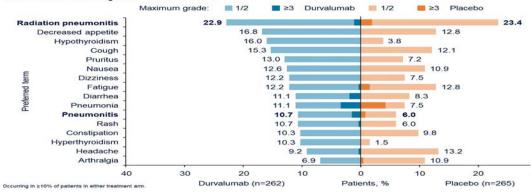

## **ADRIATIC Trial**

### Progression-free survival\* (dual primary endpoint)

• Median duration of follow up in censored patients: 27.6 months (range 0.0-55.8)



### PFS subgroup analysis


|                                         |                                                         | Events/Pati               | ients n/N                 |                |          |                                                       |
|-----------------------------------------|---------------------------------------------------------|---------------------------|---------------------------|----------------|----------|-------------------------------------------------------|
|                                         |                                                         | Durvalumab                | Placebo                   |                |          | HR (95% CI)                                           |
| All patients                            |                                                         | 139/264                   | 169/266                   | ⊢•⊢            |          | 0.76 (0.61-0.95                                       |
| Age                                     | <65 years<br>≥65 years                                  | 83/160<br>56/104          | 98/162<br>71/104          | , <del></del>  | 4        | 0.77 (0.58-1.03<br>0.77 (0.54-1.10                    |
| Sex                                     | Male<br>Female                                          | 96/178<br>43/86           | 120/188<br>49/78          | <del>  •</del> | 4        | 0.80 (0.61-1.04<br>0.71 (0.47-1.08                    |
| Race                                    | White<br>Asian                                          | 65/130<br>72/131          | 90/137<br>75/121          |                |          | 0.68 (0.49-0.93<br>0.91 (0.66-1.26                    |
| WHO performance status                  | 0                                                       | 60/133<br>79/131          | 82/131<br>87/135          |                | _        | 0.64 (0.46-0.90<br>0.91 (0.67-1.24                    |
| AJCC disease stage at diagnosis         | 1/II<br>III                                             | 14/33<br>125/231          | 19/34<br>150/232          | <u> </u>       | -1       | 0.71 (0.35-1.42<br>0.77 (0.61-0.98                    |
| Time from end of cCRT* to randomization | <14 days<br>≥14 days to <28 days<br>≥28 days            | 18/32<br>43/79<br>78/153  | 27/32<br>50/80<br>92/154  |                | 1        | 0.45 (0.24-0.83<br>0.89 (0.59-1.34<br>0.79 (0.58-1.07 |
| Prior chemotherapy regimen              | Carboplatin-etoposide<br>Cisplatin-etoposide            | 44/91<br>95/173           | 57/88<br>112/178          |                | Н        | 0.61 (0.41-0.90<br>0.86 (0.65-1.13                    |
| Prior radiation schedule                | Once daily<br>Twice daily                               | 108/195<br>31/69          | 122/187<br>47/79          | _ <del> </del> | 4        | 0.77 (0.60-1.00<br>0.72 (0.45-1.13                    |
| Best response to prior cCRT             | Complete response<br>Partial response<br>Stable disease | 15/31<br>106/191<br>18/42 | 18/34<br>130/200<br>21/32 |                | -        | 1.00 (0.50-1.99<br>0.81 (0.62-1.04<br>0.50 (0.26-0.94 |
| Prior PCI                               | Yes<br>No                                               | 65/142<br>74/122          | 84/143<br>85/123          | <u> </u>       | <u> </u> | 0.73 (0.53–1.01<br>0.80 (0.59–1.09                    |
|                                         |                                                         |                           |                           | 0.25 0.5       | 1 2      |                                                       |

Favors durvalumab Favors placebo

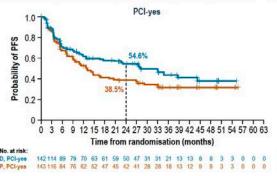
### **Exposure and safety summary**

|                                          |                           | Durvalumab<br>(n=262) | Placebo<br>(n=265) |
|------------------------------------------|---------------------------|-----------------------|--------------------|
| Number of durvalumab or placebo doses    | Median (range)            | 9.0 (1–26)            | 9.0 (1–26)         |
|                                          | Mean (standard deviation) | 12.9 (9.6)            | 11.8 (9.2)         |
| Any-grade all-cause AEs, n (%)           |                           | 247 (94.3)            | 234 (88.3)         |
| Maximum grade 3/4 AEs                    |                           | 64 (24.4)             | 64 (24.2)          |
| Serious AEs                              |                           | 78 (29.8)             | 64 (24.2)          |
| AEs leading to treatment discontinuation |                           | 43 (16.4)             | 28 (10.6)          |
| AEs leading to death                     |                           | 7 (2.7)               | 5 (1.9)            |
| Treatment-related* AEs leading to death  |                           | 2 (0.8)‡              | 0                  |
| Any-grade immune-mediated AEs†           |                           | 84 (32.1)             | 27 (10.2)          |
| Maximum grade 3/4 immune-mediated AEs    | 3                         | 14 (5.3)              | 4 (1.5)            |

#### **Most frequent AEs\***



| Pneumonitis or radiation pneumonitis (grouped terms*), n (%) | Durvalumab<br>(n=262) | Placebo<br>(n=265) |
|--------------------------------------------------------------|-----------------------|--------------------|
| Any grade                                                    | 100 (38.2)            | 80 (30.2)          |
| Maximum grade 3/4                                            | 8 (3.1)               | 7 (2.6)            |
| Leading to death                                             | 1 (0.4)               | 0                  |
| Leading to treatment discontinuation                         | 23 (8.8)              | 8 (3.0)            |



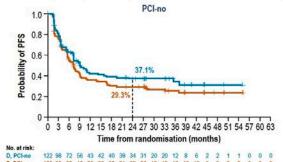

### **ADRIATIC Trial**

### PCI-yes and PCI-no subgroups – PFS

|                             | PCI-yes           |                 | PCI-no         |               |
|-----------------------------|-------------------|-----------------|----------------|---------------|
|                             | D (n = 142)       | P (n = 143)     | D (n = 122)    | P (n = 123)   |
| Median PFS (95% CI), months | 28.2 (16.8-44.2)  | 13.0 (9.2-17.0) | 9.1 (7.3-14.3) | 7.4 (5.7-9.2) |
| 2-year PFS, %               | 54.6              | 38.5            | 37.1           | 29.3          |
| HR (95% CI)                 | 0.73 (0.52-1.00)* |                 | 0.80 (0.5      | 9-1.09)*      |
| Multivariable HR (95% CI)   | 0.72 (0.52-0.99)‡ |                 | 0.84 (0.6      | 1-1.15)‡      |

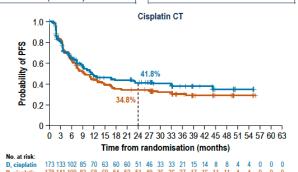
| ITT              |                    |  |  |  |  |
|------------------|--------------------|--|--|--|--|
| D (n = 264)      | P (n = 266)        |  |  |  |  |
| 16.6 (10.2-28.2) | 9.2 (7.4-12.9)     |  |  |  |  |
| 46.2             | 34.2               |  |  |  |  |
| 0.76 (0.6        | 61 <b>–</b> 0.95)† |  |  |  |  |
| 1077.780.00      |                    |  |  |  |  |




Carboplatin CT

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

Time from randomisation (months)


D, carboplatin 91 79 59 50 43 42 41 38 33 32 18 18 12 6 5 2 2 0 0 P, carboplatin 88 67 46 39 32 28 25 24 20 20 11 11 7 6 6 4 3 1 1

Salary of Probability of PFS 0.8



### Carboplatin and cisplatin CT subgroups - PFS

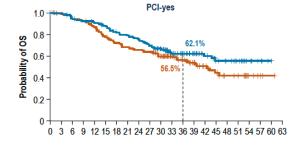
|                             | Carboplatin CT        |                   | Cisplatin CT      |                |  |
|-----------------------------|-----------------------|-------------------|-------------------|----------------|--|
|                             | D (n = 91) P (n = 88) |                   | D (n = 173)       | P (n = 178)    |  |
| Median PFS (95% CI), months | 27.9 (11.1–38.7)      | 9.2 (5.8-14.6)    | 11.4 (9.0-23.4)   | 9.7 (7.4-13.3) |  |
| 2-year PFS, %               | 54.8                  | 33.2              | 41.8              | 34.8           |  |
| HR (95% CI)                 | 0.61 (0.41-0.90)*     |                   | 0.86 (0.65-1.13)* |                |  |
| Multivariable HR (95% CI)   | 0.60 (0.4             | 0.60 (0.40-0.88)‡ |                   | 67–1.17)‡      |  |

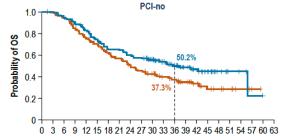


D (n = 264)

16.6 (10.2-28.2)

P (n = 266

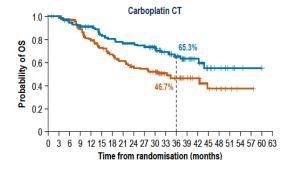

9.2 (7.4–12.9)

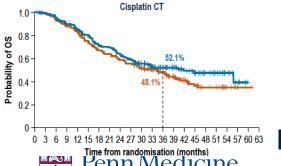

0.76 (0.61-0.95)†

### PCI-yes and PCI-no subgroups - OS

|                            | PCI-yes D (n = 142) P (n = 143) |                | PCI-no            |                  |  |
|----------------------------|---------------------------------|----------------|-------------------|------------------|--|
|                            |                                 |                | D (n = 122)       | P (n = 123)      |  |
| Median OS (95% CI), months | NR (43.9-NE)                    | 42.5 (33.4-NE) | 37.3 (24.3-NE)    | 24.1 (18.8-31.1) |  |
| 3-year OS, %               | 62.1                            | 56.5           | 50.2              | 37.3             |  |
| HR (95% CI)                | 0.75 (0.52-1.07)*               |                | 0.71 (0.51-0.99)* |                  |  |
| Multivariable HR (95% CI)  | 0.72 (0.50-1.03)‡               |                | 0.73 (0.52-1.02)‡ |                  |  |

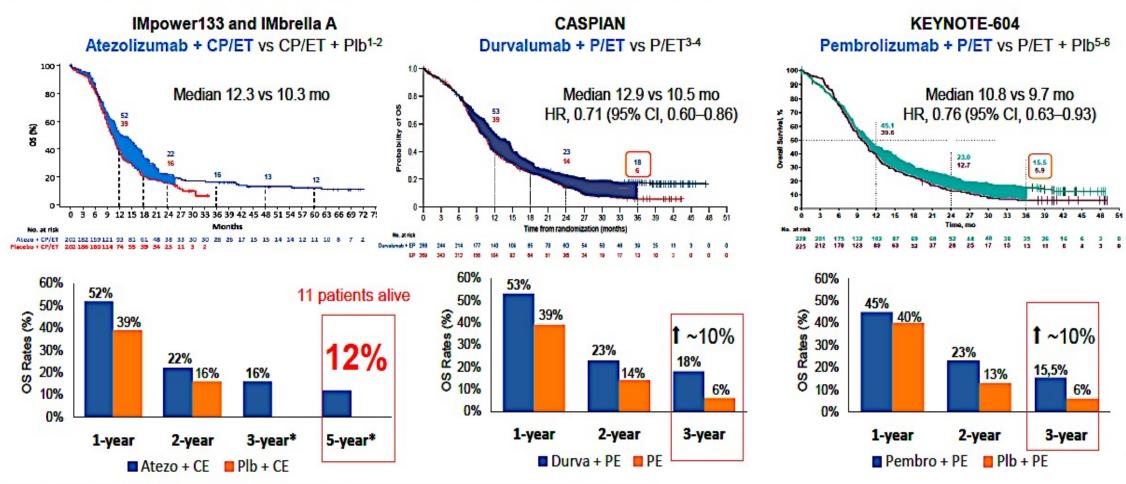
| ITT            |                  |  |  |  |  |  |
|----------------|------------------|--|--|--|--|--|
| D (n = 264)    | P (n = 266)      |  |  |  |  |  |
| 55.9 (37.3-NE) | 33.4 (25.5-39.9) |  |  |  |  |  |
| 56.5           | 47.6             |  |  |  |  |  |
| 0.73 (0.       | 57-0.93)†        |  |  |  |  |  |
|                | _                |  |  |  |  |  |




### Carboplatin and cisplatin CT subgroups – OS

|                            | Carboplatin CT    |                | Cisplatin CT      |                  |
|----------------------------|-------------------|----------------|-------------------|------------------|
|                            | D (n = 91)        | P (n = 88)     | D (n = 173)       | P (n = 178)      |
| Median OS (95% CI), months | NR (42.5-NE)      | 33.4 (21.7-NE) | 41.9 (27.7-NE)    | 34.3 (25.4-40.7) |
| 3-year OS, %               | 65.3              | 46.7           | 52.1              | 48.1             |
| HR (95% CI)                | 0.56 (0.35-0.89)* |                | 0.82 (0.61–1.10)* |                  |
| Multivariable HR (95% CI)  | 0.55 (0.35-0.87)‡ |                | 0.81 (0.60-1.08)‡ |                  |

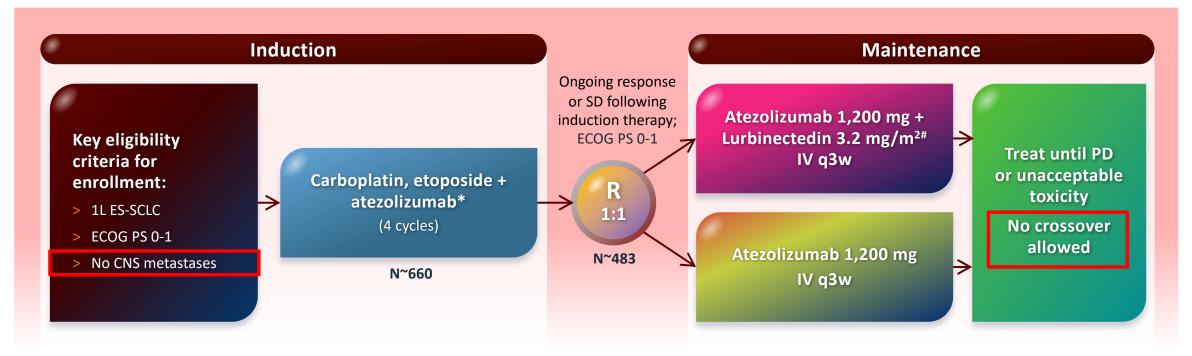

|                | Π                |
|----------------|------------------|
| D (n = 264)    | P (n = 266)      |
| 55.9 (37.3-NE) | 33.4 (25.5-39.9) |
| 56.5           | 47.6             |
| 0.73 (0.       | 57-0.93)†        |
|                | _                |





Abramson Cancer Center

# Pivotal Trials of ICIs in ES SCLC – Long term outcome




CP, carboplatin; ET, etoposide; P, platinum; Plb, placebo; NE, not estimable. \* OS rates at 3-5 years were not estimable in the control arm as rollover to IMbrella A was not permitted.

1.- Horn L, et al. N Engl J Med 2018; 2.- Liu S, et al. OA01.04, WCLC 2023; 3.- Paz-Ares L, et al. Lancet 2019; 4.- Paz-Ares L, et al. ESMO Open 2022; 5.- Rudin CM, et al. J Clin Oncol 2020; 6.- Rudin CM, et al. WCLC 2022



# IMforte Study Schema – Open Label Design

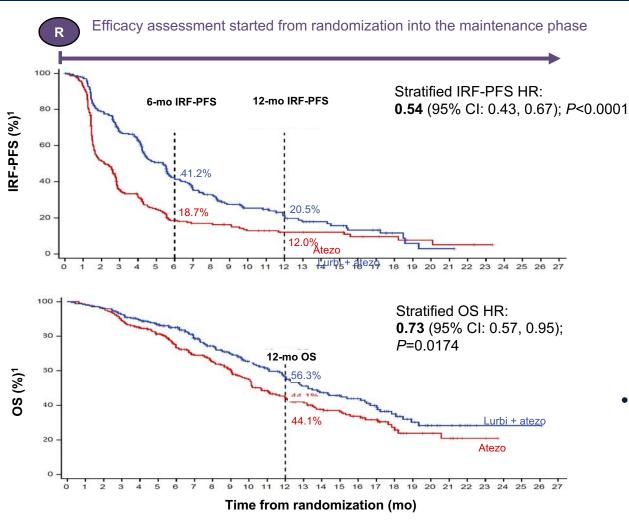


#### **Stratification factors:**

- > ECOG PS 0 vs 1 (at maintenance baseline)
- > LDH (≤ULN vs >ULN) (at maintenance baseline)
- > Presence of liver mets (at induction baseline)
- > Prior receipt of PCI

#### **Primary endpoints:**

> IRF-assessed PFS and OS


#### **Secondary endpoints:**

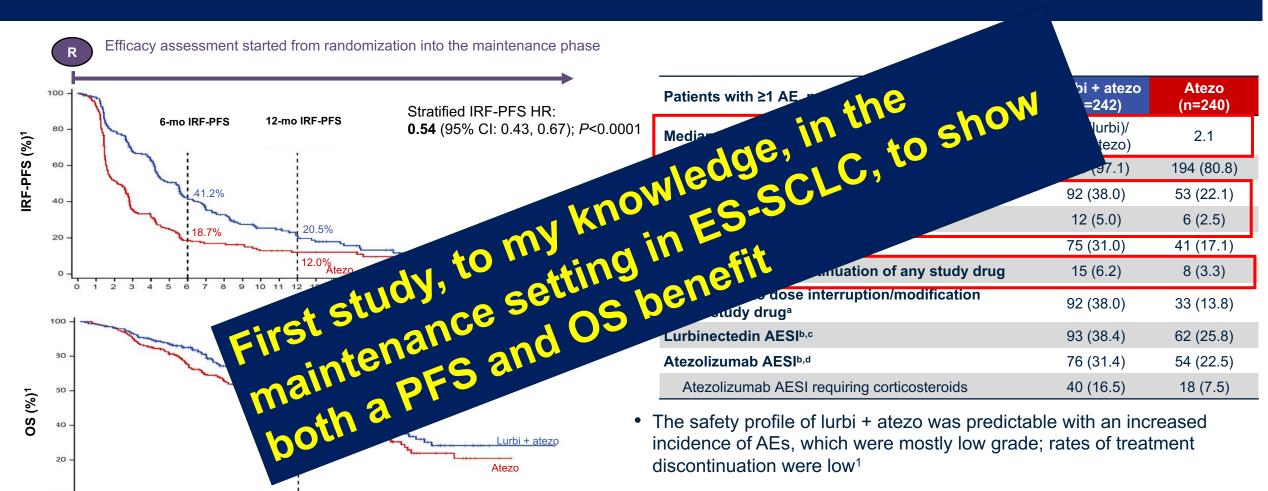
> Inv-assessed PFS, ORR, DOR, landmark PFS & OS, safety

<sup>\*</sup> PCI allowed following induction treatment and prior to start of maintenance therapy, 2 week window is required from last dose of radiotherapy to start of maintenance treatment; # primary G-CSF prophylaxis and anti-emetic prophylaxis are mandatory; **DOR**, duration of response; **Inv**, investigator; **IRF**, independent review facility; **LDH**, lactate dehydrogenase; **ORR**, objective response rate; **OS**, overall survival; **PCI**, prophylactic cranial irradiation; **PD**, disease progression; **PFS**, progression-free survival; **SD**, stable disease



# Efficacy and safety summary during the maintenance phase




| Patients with ≥1 AE, n (%)¹                                                  | Lurbi + atezo<br>(n=242)    | Atezo<br>(n=240) |
|------------------------------------------------------------------------------|-----------------------------|------------------|
| Median treatment duration, mo                                                | 4.1 (lurbi)/<br>4.2 (atezo) | 2.1              |
| All-cause AEs                                                                | 235 (97.1)                  | 194 (80.8)       |
| Grade 3/4 AEs                                                                | 92 (38.0)                   | 53 (22.1)        |
| Grade 5 AEs                                                                  | 12 (5.0)                    | 6 (2.5)          |
| Serious AEs                                                                  | 75 (31.0)                   | 41 (17.1)        |
| AEs leading to discontinuation of any study drug                             | 15 (6.2)                    | 8 (3.3)          |
| AEs leading to dose interruption/modification of any study drug <sup>a</sup> | 92 (38.0)                   | 33 (13.8)        |
| Lurbinectedin AESI <sup>b,c</sup>                                            | 93 (38.4)                   | 62 (25.8)        |
| Atezolizumab AESI <sup>b,d</sup>                                             | 76 (31.4)                   | 54 (22.5)        |
| Atezolizumab AESI requiring corticosteroids                                  | 40 (16.5)                   | 18 (7.5)         |

 The safety profile of lurbi + atezo was predictable with an increased incidence of AEs, which were mostly low grade; rates of treatment discontinuation were low<sup>1</sup>

M Reck et al. wlcc 2025



# Efficacy and safety summary during the maintenance phase



M Reck et al. wccc 2025

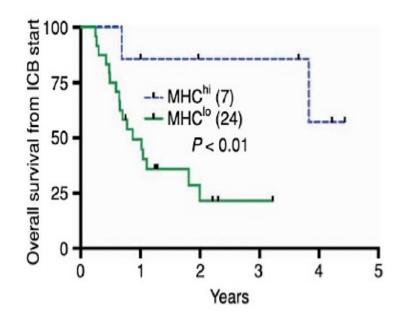


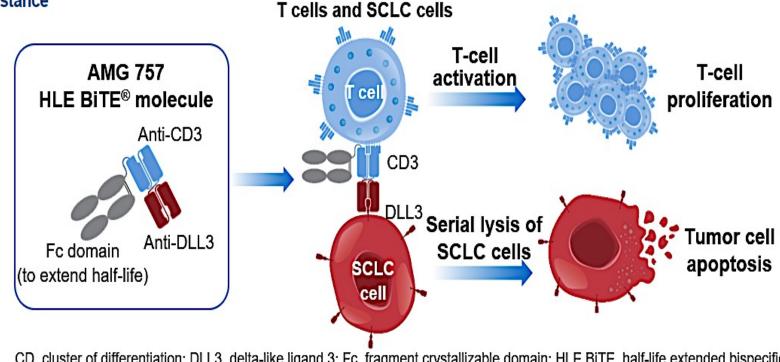
Time from randomization (mo)

# FDA Approves Lurbinectedin in Combination with Atezolizumab or Atezolizumab and Hyaluronidase-Tqjs for Extensive-Stage Small Cell Lung Cancer

**Press Release: October 2, 2025** 

"On October 2, 2025, the Food and Drug Administration approved lurbinectedin in combination with atezolizumab or atezolizumab and hyaluronidase-tqjs for the maintenance treatment of adult patients with extensive-stage small cell lung cancer (ES-SCLC) whose disease has not progressed after first-line induction therapy with atezolizumab or atezolizumab and hyaluronidase-tqjs, carboplatin, and etoposide.


Efficacy was evaluated in IMforte (NCT05091567), a randomized, multicenter, open-label trial in patients receiving first-line treatment for ES-SCLC. In IMforte, 483 patients with ES-SCLC whose disease had not progressed after completion of four cycles of atezolizumab, carboplatin, and etoposide (induction treatment) were randomized (1:1) to receive either lurbinectedin in combination with atezolizumab administered intravenously (IV) or atezolizumab IV alone until disease progression or unacceptable toxicity."



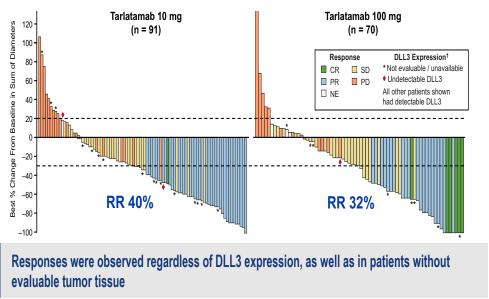

# T Cell Engagers – Tarlatamab (AMG 757) Overcoming lack of effective Ag presentation

Is downregulation of MHC-I a primary determinant of IO resistance in SCLC?

SCLC patients treated with immune checkpoint blockade

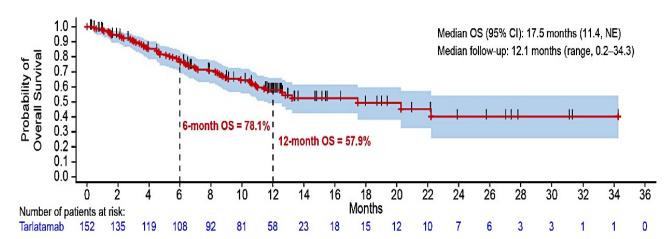





AMG 757 engages endogenous

CD, cluster of differentiation; DLL3, delta-like ligand 3; Fc, fragment crystallizable domain; HLE BiTE, half-life extended bispecific T-cell engager; SCLC, small cell lung cancer.

### BiTE molecules engage a pt's own T cells to attack and eradicate cancer cells<sup>1–3</sup>


1.Stieglmaier J, et al. *Expert Opin Biol Ther*. 2015;15:1093-1099. 2. Einsele H, et al. *Cancer*. 2020;126:3192-3201. 3. Bargou R, et al. *Science*. 2008;321:974-977. 4. Mahadevan et al. Cancer Discov. 2021. 5. Blackhall F et al. ELCC 2021;Abstract 48MO

# Tarlatamab: DeLLphi-300 & -301 Trials in pretreated SCLC pts



Shown are 91 of 100 patients (tarlatamab 10 mg) and 70 of 88 patients (tarlatamab 100 mg) who had available post-baseline measurements of target lesions. \*DLL3 expression was assessed by immunohistochemistry of tumor fissue samples.

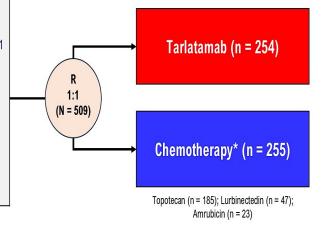
CR, complete response; DLL3, delta-like ligand 3; NE, not evaluable; PD, progressive disease, PR, partial response; SD, stable disease



| Most Common TEAEs in ≥ 20% of Patients, n (%) | Part 1 + 2<br>Tarlatamab<br>10 mg<br>(n = 99) | Part 1<br>Tarlatamab<br>100 mg<br>(n = 87) | Part 3<br>Tarlatamab<br>10 mg<br>(n = 34) |
|-----------------------------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------------------|
| CRS                                           | 49 (49)                                       | 53 (61)                                    | 19 (56)                                   |
| Grade 1–2                                     | 49 (49)                                       | 48 (55)                                    | 18 (53)                                   |
| ≥ Grade 3                                     | 0                                             | 5 (6)                                      | 1 (3)                                     |
| Decreased appetite                            | 25 (25)                                       | 38 (44)                                    | 13 (38)                                   |
| Pyrexia                                       | 38 (38)                                       | 29 (33)                                    | 8 (24)                                    |
| Constipation                                  | 28 (28)                                       | 22 (25)                                    | 8 (24)                                    |
| Anemia                                        | 26 (26)                                       | 22 (25)                                    | 9 (26)                                    |
| Asthenia                                      | 20 (20)                                       | 21 (24)                                    | 10 (29)                                   |
| Dysgeusia                                     | 24 (24)                                       | 12 (14)                                    | 14 (41)                                   |
| Fatigue                                       | 21 (21)                                       | 17 (20)                                    | 9 (26)                                    |

# **DeLLphi-304 trial**

# Randomized, controlled, phase 3 DeLLphi-304 study (NCT05740566)

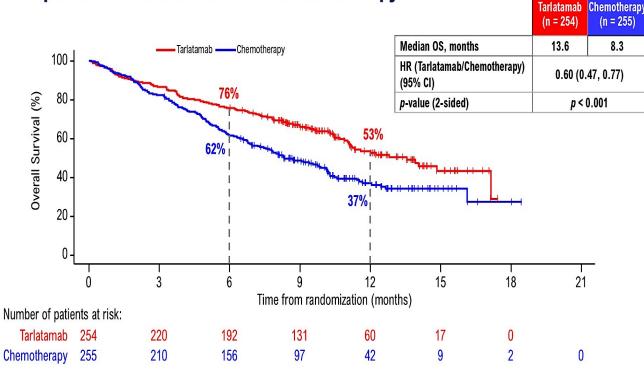



#### Key inclusion criteria

- · Histologically or cytologically confirmed SCLC
- Progression after 1L platinum-based chemotherapy +/- anti-PD-(L)1
- ECOG PS 0 or 1
- · Asymptomatic, treated or untreated brain metastases

#### Randomization stratified by

- Prior anti-PD-(L)1 exposure (yes/no)
- Chemotherapy-free interval (< 90 days vs ≥ 90 to < 180 days vs ≥ 180 days)
- Presence of (previous/current) brain metastases (yes/no)
- Intended chemotherapy (topotecan/amrubicin vs lurbinectedin)



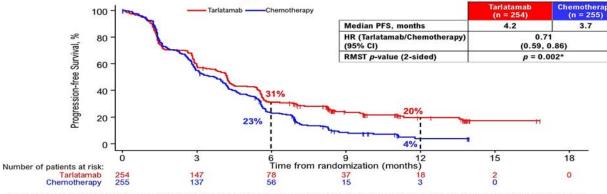

Primary Endpoint: Overall survival

Key Secondary Endpoints: Progression-free survival, patient-reported outcomes

Other Secondary Endpoints: Objective response, disease control, duration of response, safety

Dellphi-304 met its primary endpoint with tarlatamab demonstrating superior overall survival over chemotherapy






# Survival benefit with tarlatamab was consistent across prespecified patient subgroups

| Subgroup                                                       | Tarlatamab<br>no. o.                | Chemotherapy<br>f patients | Hazard Ratio for Death (9             | 5% CI)            |
|----------------------------------------------------------------|-------------------------------------|----------------------------|---------------------------------------|-------------------|
| Age                                                            |                                     |                            |                                       | 0.57 (0.40.004)   |
| < 65 years                                                     | 129                                 | 115                        | <b>⊢•</b>   .                         | 0.57 (0.40, 0.81) |
| ≥ 65 years                                                     | 125                                 | 140                        | <b>⊢</b>                              | 0.67 (0.48, 0.94) |
| Sex                                                            |                                     |                            | 0 0 1                                 |                   |
| Male                                                           | 182                                 | 169                        | . ⊢•-1                                | 0.70 (0.53, 0.93) |
| Female                                                         | 72                                  | 86                         | <b>⊢</b>                              | 0.43 (0.26, 0.72) |
| Race                                                           |                                     |                            | 101 30250 025                         | 45                |
| White                                                          | 152                                 | 139                        | <b>⊢</b>                              | 0.51 (0.37, 0.70) |
| Asian                                                          | 97                                  | 107                        | <u> </u>                              | 0.75 (0.50, 1.11) |
| Prior anti-PD-(L)1 exposure                                    |                                     |                            |                                       |                   |
| Yes                                                            | 180                                 | 180                        | <b>⊢</b>                              | 0.61 (0.45, 0.82) |
| No                                                             | 74                                  | 75                         | <u> </u>                              | 0.65 (0.42, 1.03) |
| Chemotherapy-free interval                                     |                                     | 10                         |                                       |                   |
| < 90 days                                                      | 109                                 | 114                        | <b>⊢</b> •                            | 0.60 (0.43, 0.84) |
| ≥ 90 days                                                      | 145                                 | 141                        |                                       | 0.65 (0.45, 0.93) |
| ≥ 90 to <180 days                                              |                                     | 78                         |                                       | 0.71 (0.46, 1.10) |
| ≥ 180 days                                                     | 85<br>60                            | 63                         |                                       | 0.54 (0.29, 1.03) |
| Presence (previous or current) of brain metastases             |                                     | 00                         |                                       | 310.1(10.07)      |
| Yes                                                            | 113                                 | 115                        |                                       | 0.45 (0.31, 0.65) |
| No                                                             | 141                                 | 140                        |                                       | 0.81 (0.58, 1.13) |
|                                                                | 141                                 | 140                        | A M. T.                               | 0.01 (0.00, 1.10) |
| Liver metastases                                               | 0.4                                 | ٥٢                         | 1 🔺 1                                 | 0.82 (0.57, 1.18) |
| Yes                                                            | 84                                  | 95                         |                                       | 0.54 (0.39, 0.75) |
| No characteristics                                             | 170                                 | 160                        | <b>—</b>                              | 0.34 (0.33, 0.73) |
| Chemotherapy                                                   |                                     |                            | 7 2 7                                 | 0.57 (0.44, 0.75) |
| Topotecan/Amrubicin                                            | 209                                 | 208                        | <b>⊢•</b> −1.                         |                   |
| Lurbinectedin                                                  | 45                                  | 47                         | <del></del>                           | 0.81 (0.46, 1.44) |
|                                                                |                                     | 0.1                        | 0.5 1 1.5 2.5                         |                   |
| United the second OFFI Character and the second of the Comment | 70 M (1920) Street (1921) 10 (1921) | 00000                      | Tarlatamab Better Chemotherapy Better |                   |

Hazard ratios and 95% Cls were estimated using the Cox proportional hazards model. PD-(L)1, programmed cell death (ligand)-1.

### Progression-free survival was significantly longer with tarlatamab vs chemotherapy



Median follow-up time: 11.0 months for the tarlatamab and the chemotherapy group. "The restricted mean PFS time in the tarlatamab and the chemotherapy group was 5.3 months and 4.3 months at 12 months respectively, resulting in statistically significant improvement of the tarlatamab group over the chemotherapy group.

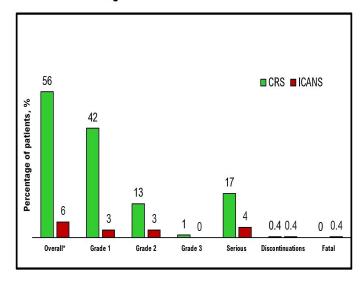
MR, hazard ratio, PFS, progression-free survival.

#### Tarlatamab was associated with more frequent and more durable responses

|                                             | Tarlatamab | Chemotherapy | Duration of respons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e                       |                           |
|---------------------------------------------|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|
|                                             | (n = 254)  | (n = 255)    | Tarlatamab — Chemo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | otherapy                |                           |
| Best overall response <sup>⋆†</sup> , n (%) |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | farlatamab<br>(n = 254) | Chemotherapy<br>(n = 255) |
| Complete response                           | 3 (1)      | 0 (0)        | Median DOR,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.9                     | 5.5                       |
| Partial response                            | 86 (34)    | 52 (20)      | months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100000                  | 3042.04                   |
| Stable disease                              | 84 (33)    | 112 (44)     | S 60 - 56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                           |
| Progressive disease                         | 56 (22)    | 50 (20)      | pour la company de la company | 140/                    |                           |
| Not evaluable/no post-baseline scan         | 25 (10)    | 41 (16)      | 40 40 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11%                     | •                         |
| Objective response rate‡, % (95% CI)        | 35 (29–41) | 20 (16–26)   | 29%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                           |
| Median duration of response, months         | 6.9        | 5.5          | Median DOR, months  80-  Median DOR, months  29%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                       |                           |
| Median time to objective response, months   | 1.5        | 1.4          | 0 3 6 9 Time from initial response (mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 15                   | 5 18                      |
| Ongoing response at data cutoff, n§ (%)     | 42 (47)    | 8 (15)       | Number of patients at risk:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 2                    | 0                         |

\*Assessment of disease response was based on RECIST 1.1 guidelines. Confirmation of complete response and partial response was required no fewer than 4 weeks after initial documentation of complete response or partial responses. Investigator-assessed response in the intention-to-treat analysis set; 10dds ratios and p value not shown as the difference in ORR between the 2 arms was not formally tested. \$\text{Percentage of total number of responders.}}

DOR, duration of response; RECIST, Response Evaluation Criteria in Solid Tumors.

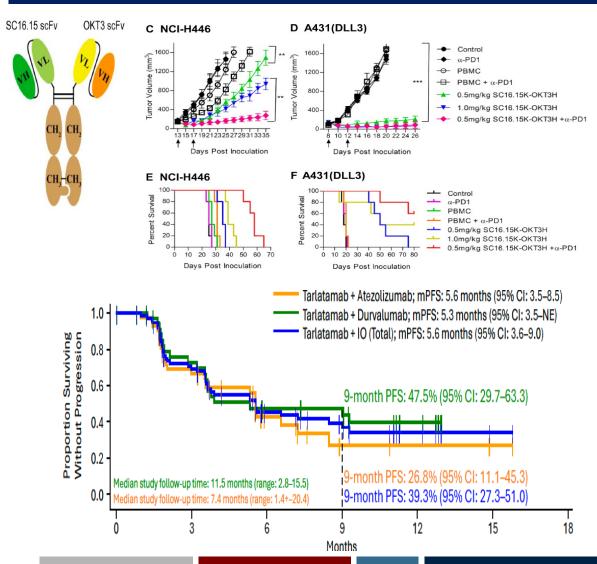


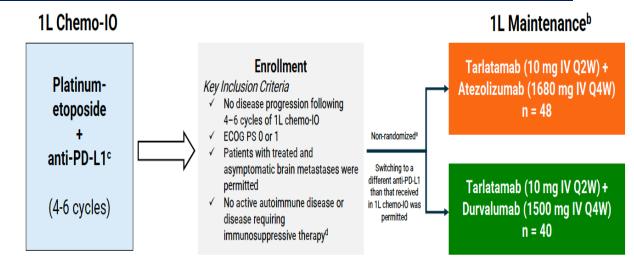

# **Toxicity Profile – DeLLphi-304**

|                                                                 | Tarlatamab<br>(n = 252)* | Chemotherapy<br>(n = 244)* |
|-----------------------------------------------------------------|--------------------------|----------------------------|
| Median duration of treatment, months, (range)                   | 4.2 (< 1–17)             | 2.5 (< 1–15)               |
| All grade, TEAEs, n (%)                                         | 249 (99)                 | 243 (100)                  |
| All grade, TRAEs n (%)                                          | 235 (93)                 | 223 (91)                   |
| Grade ≥ 3 TRAEs, n (%)                                          | 67 (27)                  | 152 (62)                   |
| Serious TRAEs, n (%)                                            | 70 (28)                  | 75 (31)                    |
| TRAEs leading to dose interruption and/or dose reduction, n (%) | 48 (19)                  | 134 (55)                   |
| TRAEs leading to discontinuation, n (%)                         | 7 (3)                    | 15 (6)                     |
| Treatment-related grade 5 events†, n (%)                        | 1 (0.4)                  | 4 (2)                      |

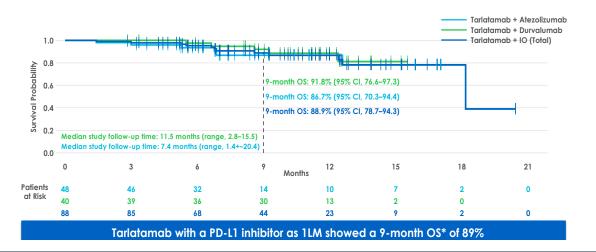
### CRS and ICANS events were consistent with tarlatamab's established safety profile

#### Treatment-emergent CRS and ICANS with tarlatamab





#### CRS with first two infusions

|                                                               | Minimum required monitoring<br>duration |                       |  |  |
|---------------------------------------------------------------|-----------------------------------------|-----------------------|--|--|
| Tarlatamab<br>(N = 252)                                       | 6 - 8 Hours<br>(n = 43)                 | 48 Hours<br>(n = 209) |  |  |
| Treatment emergent CRS, n (%)*                                | 16 (37)                                 | 125 (60)              |  |  |
| Grade 1                                                       | 12 (28)                                 | 94 (45)               |  |  |
| Grade 2                                                       | 4 (9)                                   | 28 (13)               |  |  |
| Grade 3                                                       | 0 (0)                                   | 3 (1)                 |  |  |
| Serious adverse events                                        | 3 (7)                                   | 39 (19)               |  |  |
| Leading to discontinuation of IP                              | 0 (0)                                   | 1 (0.5)               |  |  |
| Median time to intervention from last tarlatamab dose (hours) | 17                                      | 27                    |  |  |




# DLL3 TCE + PD-1 inhibition → DeLLphi-303 Trial





### OS, Beginning From 1L Maintenance



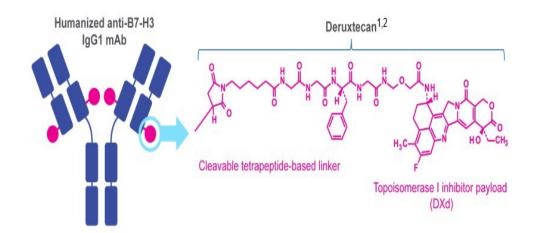


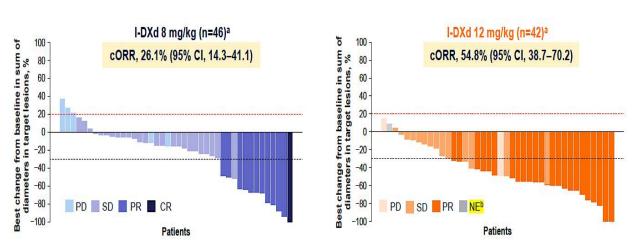
303

### **ADCs in SCLC**

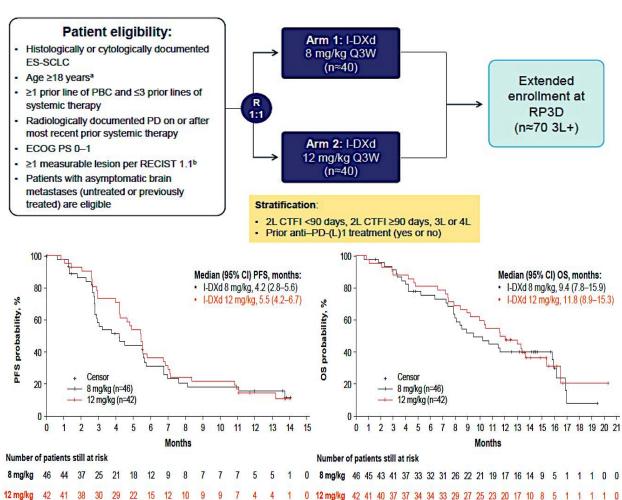
| Target    | Payload/MOA                      | Agent                            | DAR  | SCLC Activity<br>RR, DOR                  |
|-----------|----------------------------------|----------------------------------|------|-------------------------------------------|
| TROP2     | SN-38; topo I inhibitor          | Sacituzumab govitecan            | ~7-8 | N 43; ORR 41,9%; PFS<br>4,4mo; OS 13,6 mo |
| TROP2     | Rezetecan; topo I inhibitor      | Tizetatug Rezetecan<br>SHR-A1921 | 4    | N 17; ORR 33,4%                           |
| SEZ6      | Topo I inhibitor                 | ABBV-706                         | 6    | N 23; ORR 61%                             |
| SEZ6      | Calicheamicin; induces DS breaks | ABBV-011                         | ~2   | N 450; ORR 25%; PFS 3,5<br>mo             |
| EGFR/HER3 | Ed-04; topo I inhibitor          | Izabren                          | 8    | N 58; ORR 48,1%; PFS<br>4,1mo; OS 12,2 mo |

Owonikoko et al. ASCO 2024; Dowlati et al., JTO 2024; Wang et al., WLCC 2024; Morgensztern et al. CCR 2024; Chandana et al. WLCC 2024; Huang et al., ASCO 2025


# **ADCs in SCLC**


| Target | Payload/MOA                  | Agent                 | DAR | SCLC Activity<br>RR, DOR   |
|--------|------------------------------|-----------------------|-----|----------------------------|
| DLL3   | C24; Topo I inhibitor        | ZL1310                | 8   | N 42; ORR 42%              |
| DLL3   | Topo I inhibitor             | IBI3009               | 8   | Ongoing; NCT 06613009      |
| B7-H3  | Deruxtecan; topo I inhibitor | Ifinatamab deruxtecan | ~4  | N 48; ORR 54 %; PFS 5.5 mo |
| B7-H3  | HS-9365 (Topo I inhibitor))  | HS-20093              | 4   | N 22; 61.3%; PFS 7.3 mo    |
| B7-H3  | Topo I inhibitor             | YL201                 | 8   | N 72; 63,9%; PFS 6.3 mo    |
| B7-H3  | Super Topol                  | MHB088C               | 4   | N 93; RR43%; PFS 5.3 mo    |
| B7-H3  | Topo I Inhibitor             | DB-1311/BNT324        | ~6  | N 73; RR 56.2%; PFS 5.3 mo |

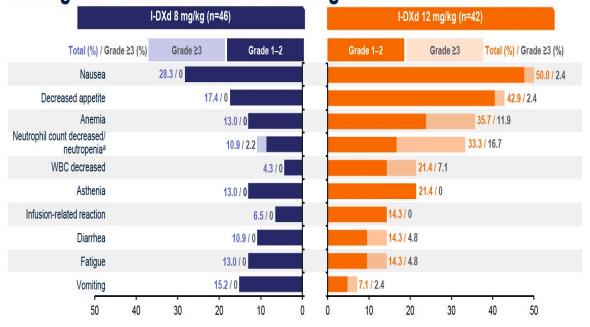
Patel et al., ASCO 2025; Rudin et al., WLCC 2024; Wang et al., WLCC 2024; Ma et al., Nat Med 2025; Zhou et al. ASCO 2025


# **IDEATE Lung 01 Phase II trial**

### Ifinatamab Deruxtecan (DS 7300) – SCLC





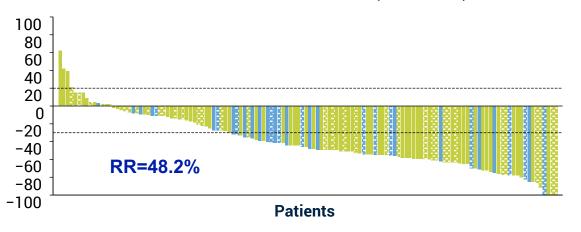

### Phase 2 IDeate-Lung01 study (NCT05280470)

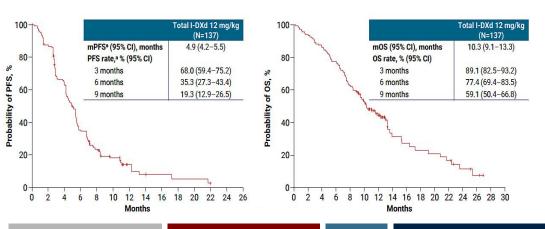


# **IDEATE Lung 01 Phase II trial - Safety**

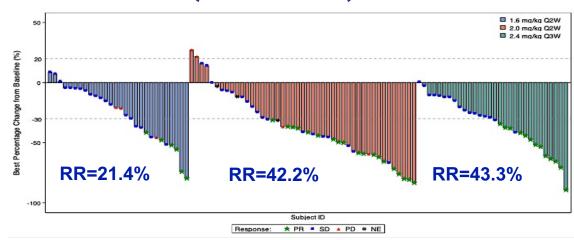
|                                                  | I-DXd 8 mg/kg<br>n=46 | I-DXd 12 mg/kg<br>n=42 |
|--------------------------------------------------|-----------------------|------------------------|
| Median treatment duration, months (range)        | 3.5 (0.03–13.9)       | 4.7 (0.03–15.2)        |
| Median cycles, n (range)                         | 6.0 (1.0–21.0)        | 7.5 (1.0–23.0)         |
| Any TEAE, n (%)                                  | 44 (95.7)             | 41 (97.6)              |
| TEAE with CTCAE Grade ≥3, n (%)                  | 20 (43.5)             | 21 (50.0)              |
| TEAE associated with drug discontinuation, n (%) | 3 (6.5)               | 7 (16.7) <sup>a</sup>  |
| TEAE associated with dose delay, n (%)           | 10 (21.7)             | 15 (35.7)              |
| TEAE associated with dose reduction, n (%)       | 4 (8.7)               | 6 (14.3)               |
| TEAE associated with an outcome of death, n (%)  | 3 (6.5)               | 6 (14.3)               |

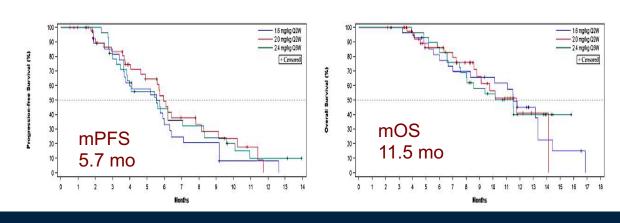
The most common treatment-related TEAEs (≥10% total population) were gastrointestinal and hematologic





ILD/pneumonitis adjudicated as treatment-related was reported in:

- Four (8.7%) patients in the 8-mg/kg cohort (Grade 2, n=3; Grade 5, n=1)
- Five (11.9%) patients in the 12-mg/kg cohort (Grade, 1 n=1; Grade 2, n=3; Grade 3, n=1)
- No ILD events were pending adjudication at the time of data cutoff


# **B7-H3 Antibody Drug Conjugates show strong** activity in Relapsed Small Cell Lung Cancer


## **Ifinatamab Deruxtecan (I-DXd)**





### QLC5508 (MHB088C) - B7-H3





# **Conclusions and Challenges in SCLC**

- In limited stage SCLC, Consolidation with Durvalumab for up to 2 yrs is the SOC with
   10-12% absolute improvement in long term OS
- The addition of CPIs to standard EP chemo in Ext stage SCLC has led to 5 yr OS rates ≥ 10%.
- Lurbinectedin combined with atezolizumab in the maintenance setting in ES-SCLC has led to statistically significant and clinically meaningful improvements in PFS and OS, albeit heightened toxicity
- Tarlatamab is the New SOC in 2L SCLC dramatically displacing lurbinectedin and topotecan based on unprecedented RR%, PFS and OS advantages
- Role of ADCs will be determined in the next 12-24 mos
- We lack clear biomarkers and reproducible targets

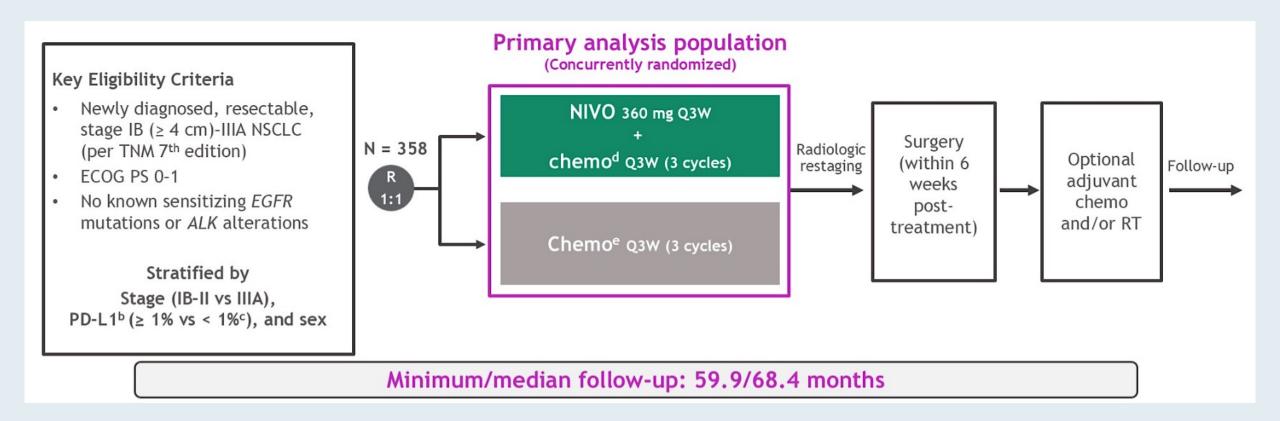


# **Agenda**

**Module 1 — Lung Cancer:** *Drs Gainor, Langer and Shields* 

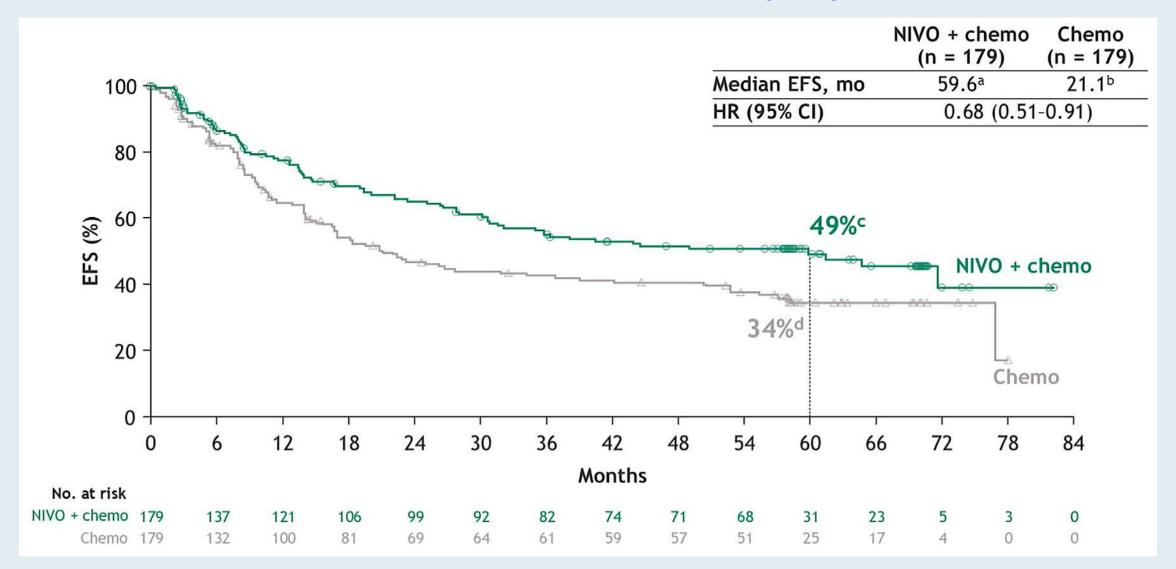
- Targeted Therapy for Non-Small Cell Lung Cancer (NSCLC) Dr Gainor
- Nontargeted Therapy for NSCLC; Small Cell Lung Cancer Dr Langer
- Neoadjuvant, Perioperative and Adjuvant Anti-PD-1/PD-L1 Antibody-Based Approaches for Patients with Localized NSCLC — Dr Shields




# Neoadjuvant, Perioperative and Adjuvant Anti-PD-1/PD-L1 Antibody-Based Approaches for Patients with Localized NSCLC

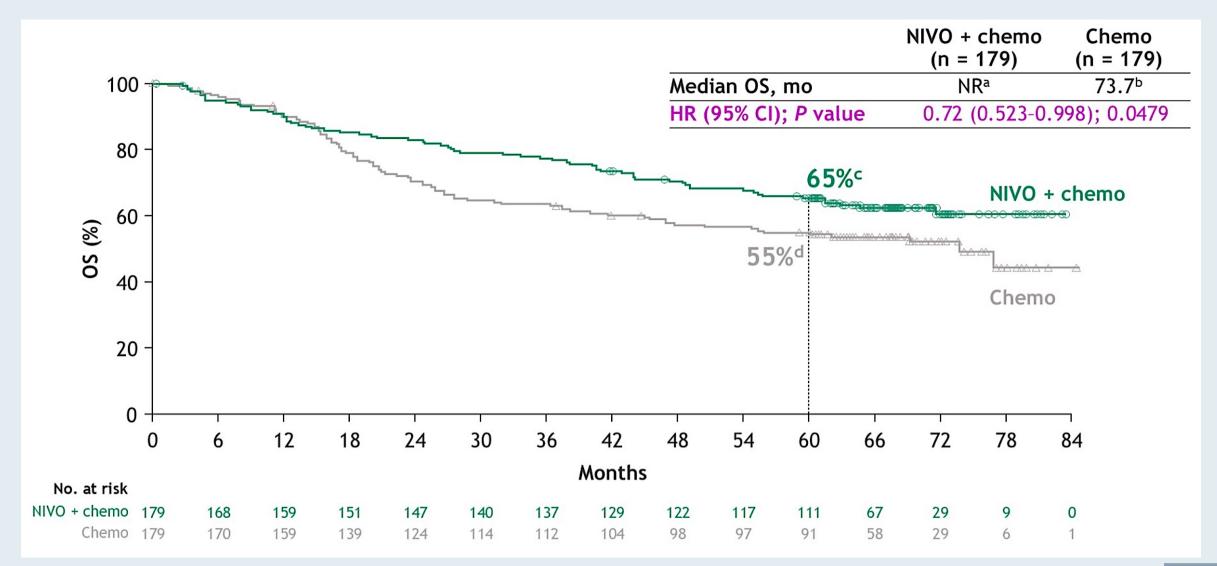
### Misty Dawn Shields, MD, PhD

Assistant Professor of Clinical Medicine
Indiana University School of Medicine
Adjunct Assistant Professor of Medical and Molecular Genetics
Associate Member, Experimental and Developmental Therapeutics
Department of Medicine, Division of Hematology/Oncology, Thoracic Oncology
Indiana University Melvin and Bren Simon Comprehensive Cancer Center
Indianapolis, Indiana




# **CheckMate 816 Study Design**

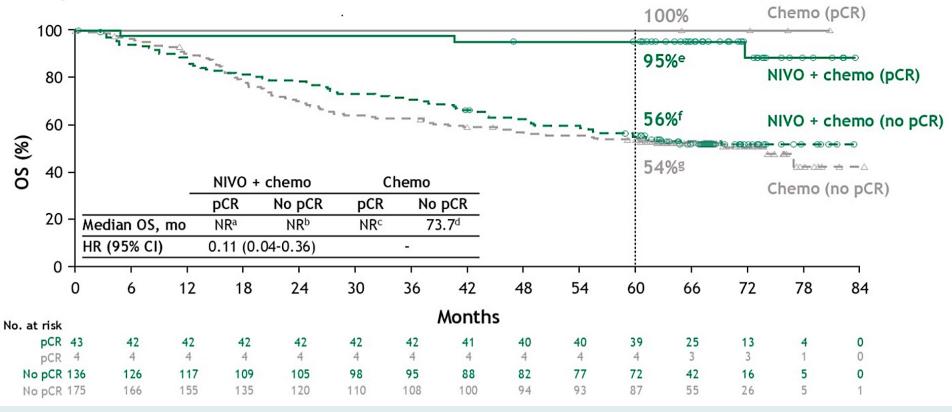





## **CheckMate 816: Event-Free Survival (EFS) Outcomes**

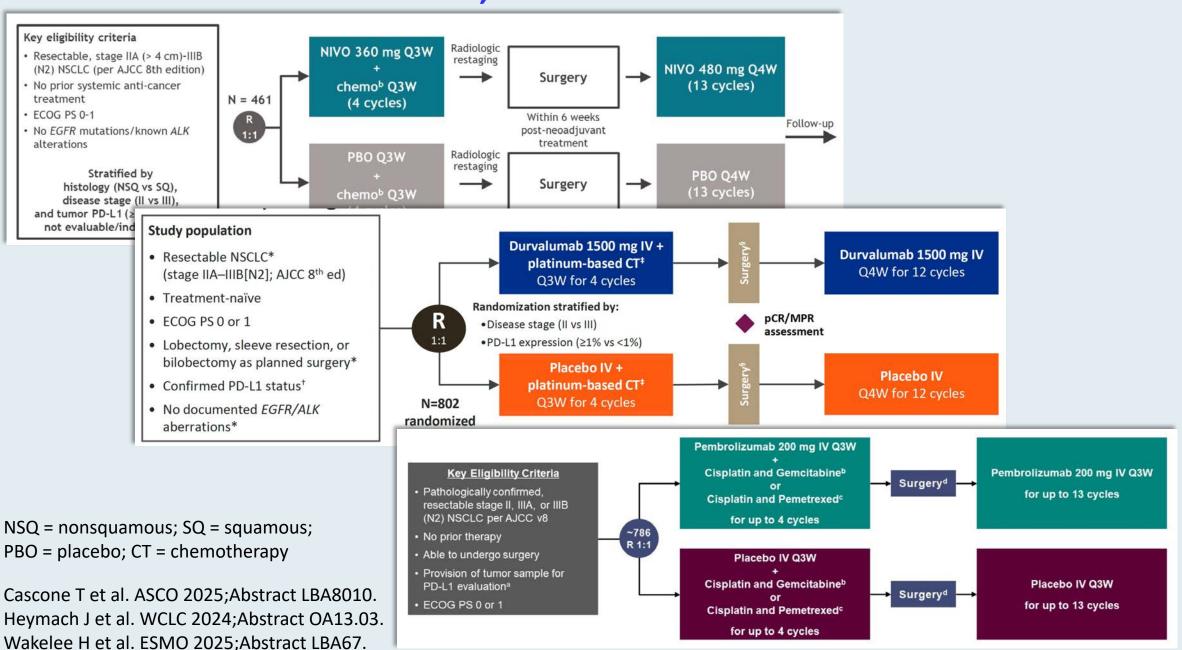





# **CheckMate 816: Final Overall Survival (OS)**

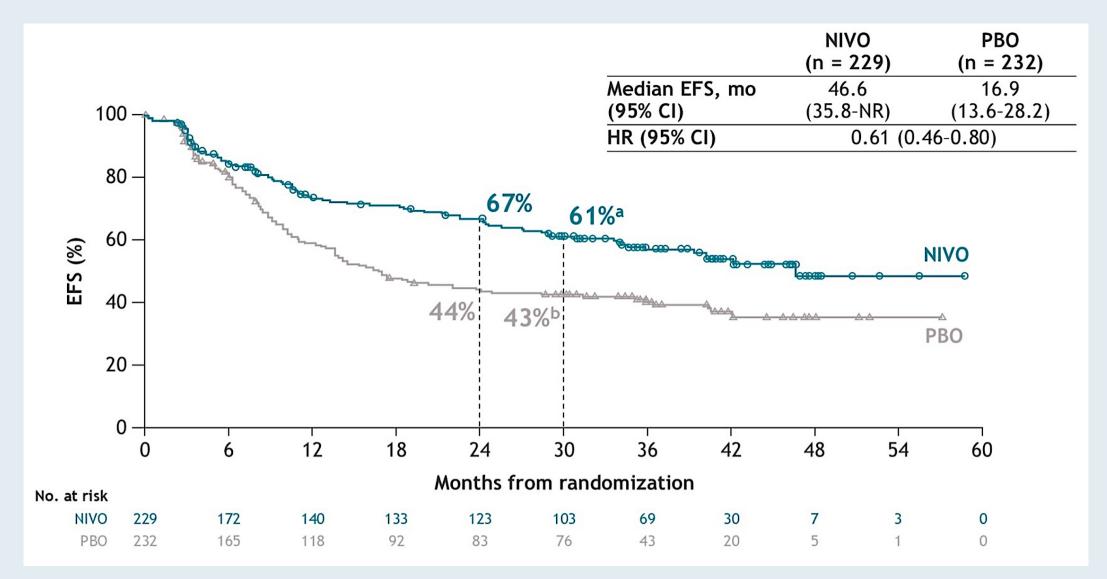





# **CheckMate 816: OS by Pathologic Complete Response (pCR) Status**

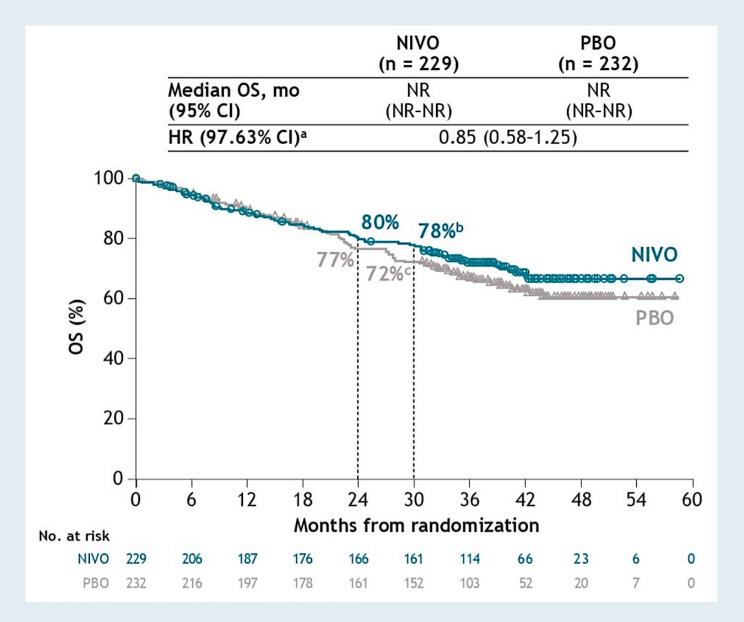
• Among concurrently randomized patients, 43/179 (24%) patients in the NIVO + chemo arm and 4/179 (2%) patients in the chemo arm had pCR<sup>1</sup>





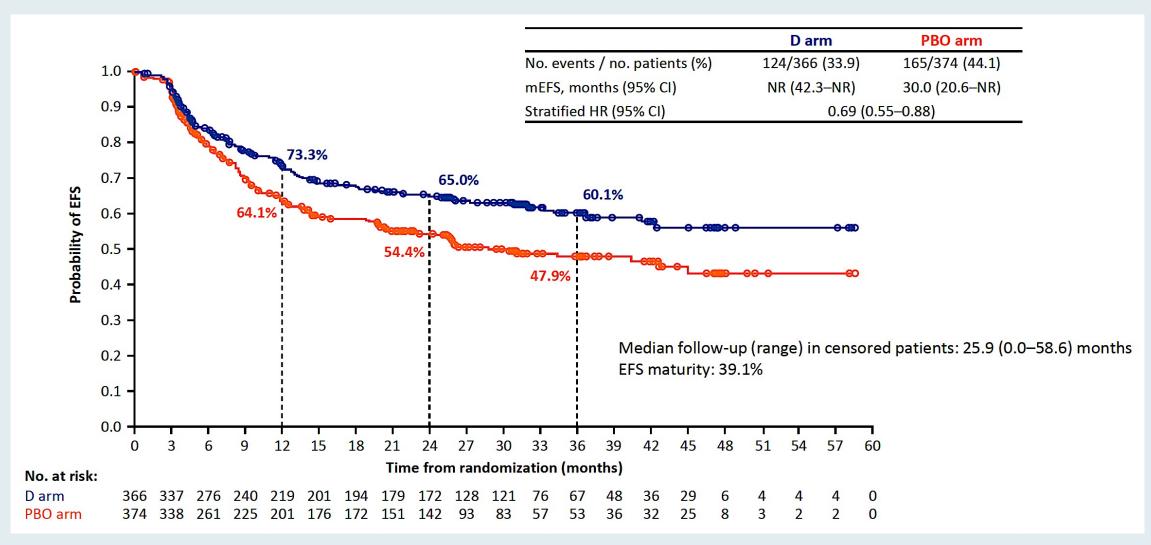

## **CheckMate 77T, AEGEAN and KEYNOTE-671 Trials**






## CheckMate 77T: EFS per Blinded Independent Central Review

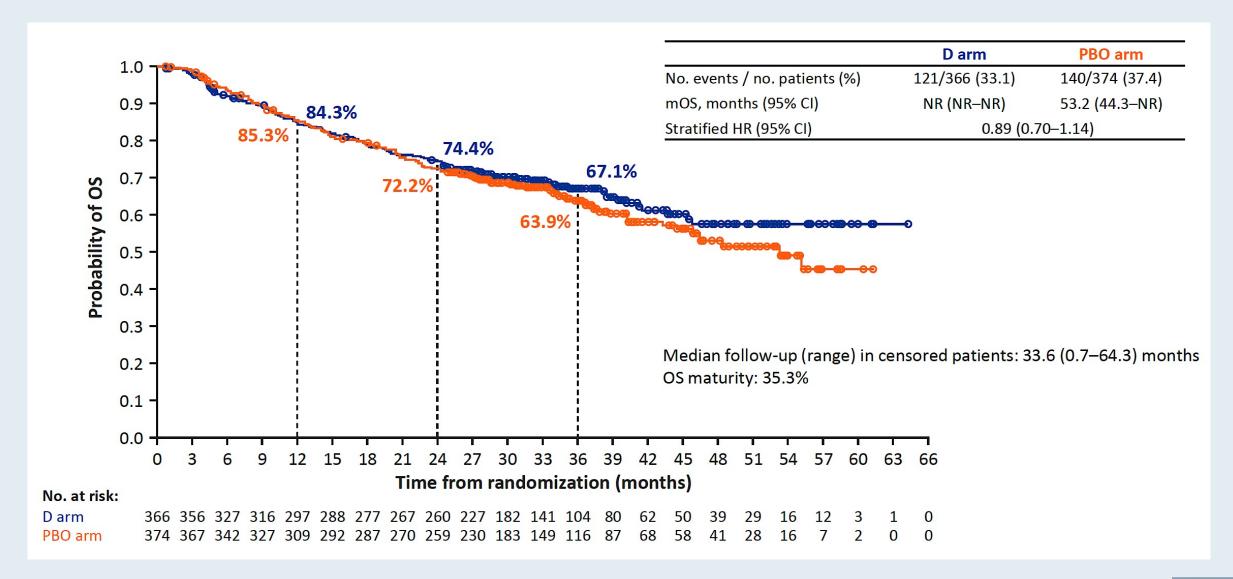





### **CheckMate 77T: OS**

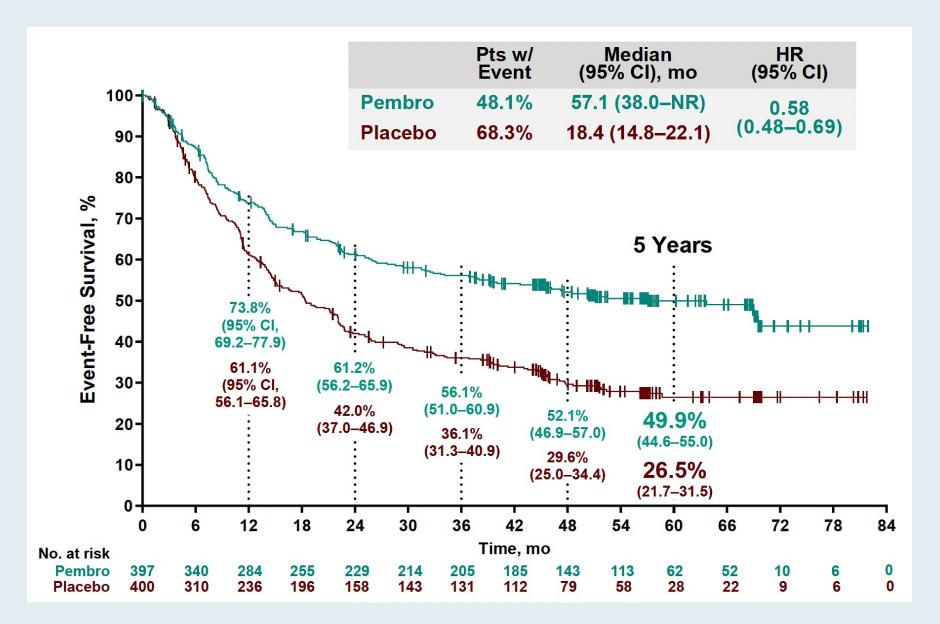





### **AEGEAN: EFS Outcomes**

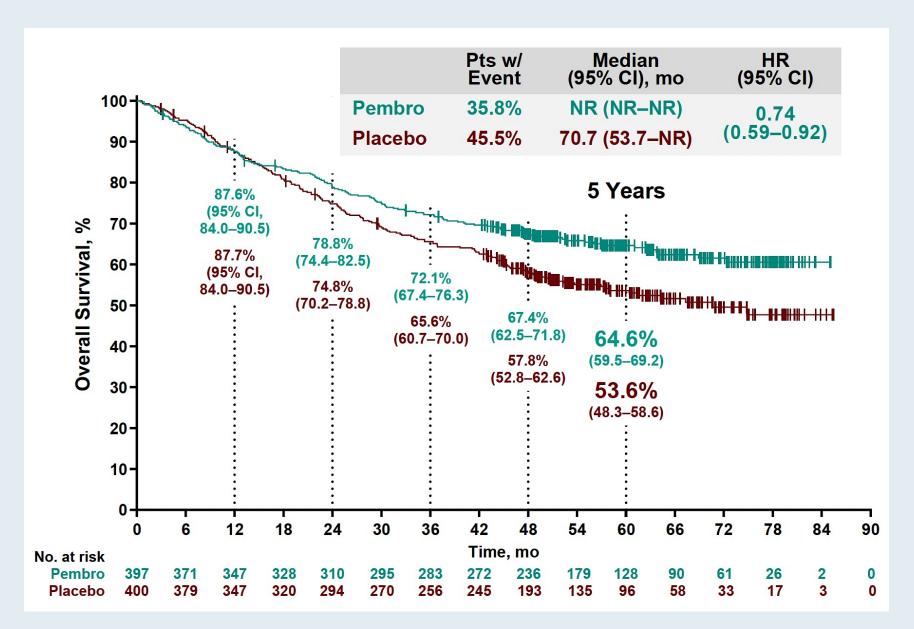


mEFS = median event-free survival




### **AEGEAN: OS Outcomes**

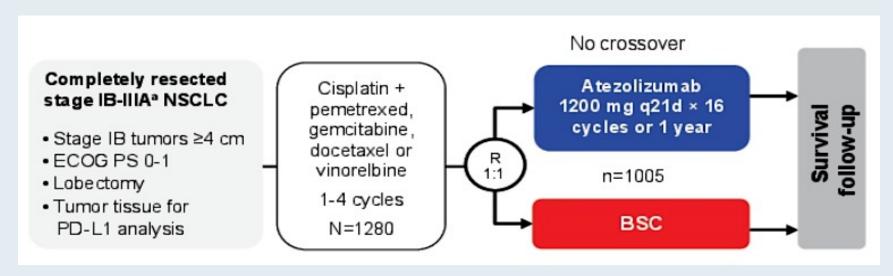


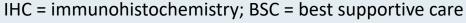



#### **KEYNOTE-671: EFS Outcomes**



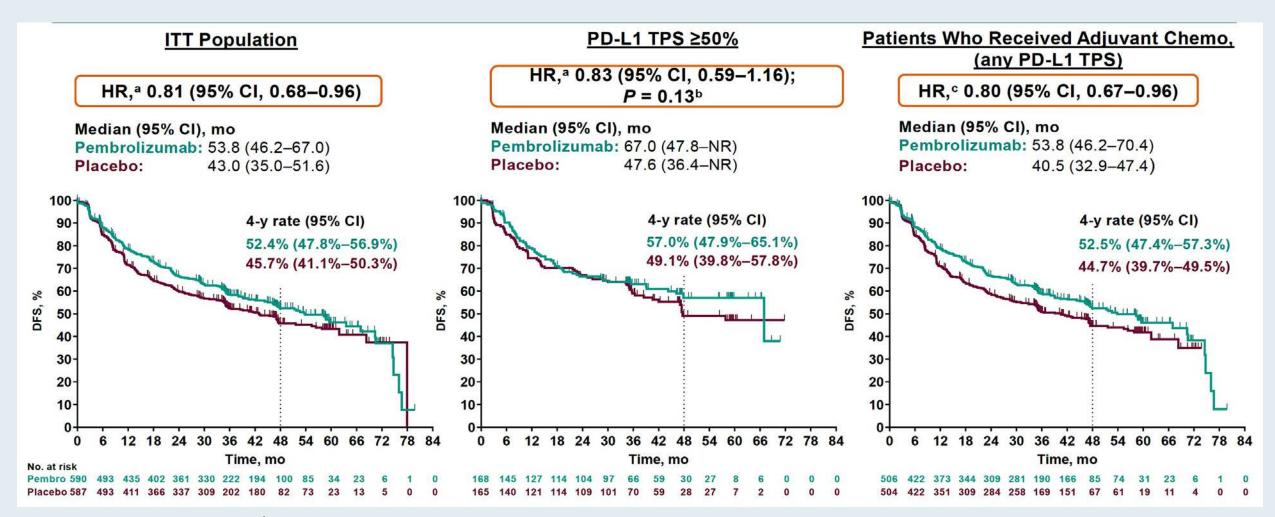



#### **KEYNOTE-671: OS Outcomes**





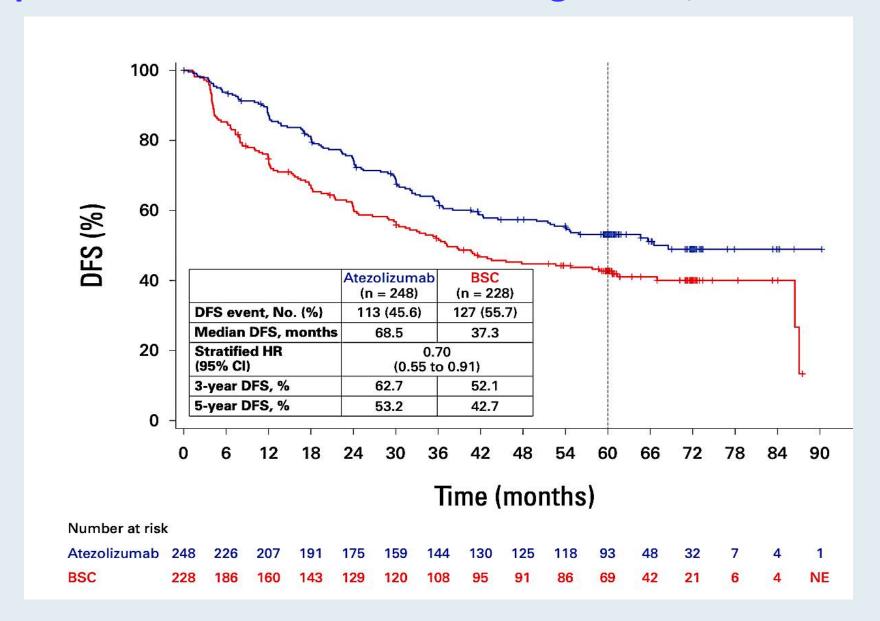

#### **KEYNOTE-091 and IMpower010 Trials**


#### **Eligibility for Registration** Eligibility for Randomization Pembrolizumab 200 mg PD-L1 testing Confirmed stage IB (T ≥4 cm), II, · No evidence of disease Q3W for (centrally using or IIIANSCLC per AJCC v7 ≤18 administrations PD-L1 IHC 22C3 ECOG PS 0 or 1 $(\sim 1 \text{ y})$ pharmDx) Complete surgical resection with Adjuvant chemotherapy negative margins (R0) R (1:1) · Considered for stage IB · Provision of tumor tissue for (T ≥4 cm) disease Placebo Q3W PD-L1 testing · Strongly recommended for for stage II and IIIA disease ≤18 administrations Limited to ≤4 cycles $(\sim 1 \text{ y})$



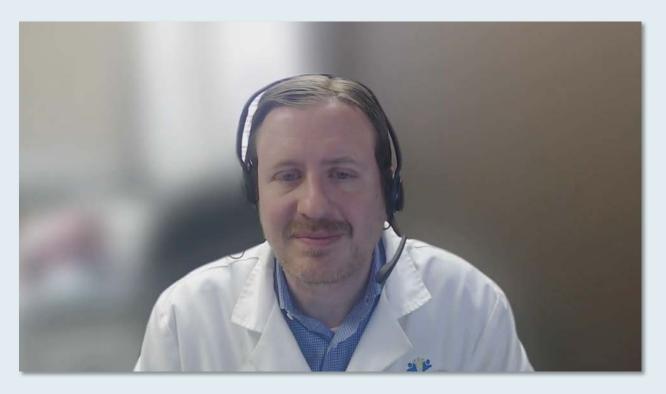





#### **KEYNOTE-091: Disease-Free Survival (DFS) Outcomes**



ITT = intention-to-treat population; TPS = tumor proportion score




#### **IMpower010: DFS Outcomes — Stage II-IIIA, PD-L1 ≥1%**





# Case Presentation: 64-year-old man with localized adenocarcinoma of the lung who receives neoadjuvant cisplatin/pemetrexed/pembrolizumab and achieves a pCR



Dr Brian Mulherin (Indianapolis, Indiana)



#### **QUESTIONS FOR THE FACULTY**

How do you generally approach neoadjuvant chemoimmunotherapy for localized NSCLC?

Do all patients receive postoperative immunotherapy?

Do you use cell-free DNA in this situation, and if so, how?



## Case Presentation: 60-year-old man with metastatic mixed adenosquamous NSCLC (PD-L1 TPS 50%)



Dr Sunil Babu (Fort Wayne, Indiana)



#### **QUESTIONS FOR THE FACULTY**

In general, how do you approach first-line therapy for patients with PD-L1-negative disease?

How, if at all, does the presence of STK11 or KEAP1 mutations affect your choice of first-line treatment? Should community-based oncologists be factoring these into their decision-making?

Do you ever start first-line immunotherapy and add chemotherapy later?



## Case Presentation: 59-year-old man diagnosed with ES-SCLC who receives carboplatin/etoposide/durvalumab



Dr Sean Warsch (Asheville, North Carolina)



#### **QUESTIONS FOR THE FACULTY**

How do you approach maintenance lurbinectedin? Would you be comfortable administering it with durvalumab for a patient such as this one, who already started on that agent?

In what situations do you use tarlatamab? Are there preexisting conditions that are relative or absolute contraindications to its use?

Based on available data, would you like to have access to ifinatamab deruxtecan? If so, where would you envision using it opposite other available options? What are the side effects of this agent?



### We are taking a lunch break!

The program will resume at 12:30 PM CT

Up Next ...

Dr Kerry A Rogers discusses the management of chronic lymphocytic leukemia

