Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Ovarian Cancer

Part 1 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 Society of Gynecologic Oncology Annual Meeting on Women's Cancer® Monday, March 18, 2024 6:30 AM - 8:00 AM PT (9:30 AM - 11:00 AM ET) Faculty Joyce F Liu, MD, MPH Mansoor Raza Mirza, MD David M O'Malley, MD **Moderator**

Kathleen N Moore, MD, MS

Faculty

Joyce F Liu, MD, MPH Associate Chief and Director of Clinical Research Division of Gynecologic Oncology Dana-Farber Cancer Institute Boston, Massachusetts

David M O'Malley, MD Director and Professor Division of Gynecologic Oncology in Obstetrics and Gynecology John G Boutselis Chair in Gynecologic Oncology The Ohio State University and The James Comprehensive Cancer Center Columbus, Ohio

Mansoor Raza Mirza, MD Chief Oncologist Copenhagen University Hospital Medical Director Nordic Society of Gynaecological Oncology – Clinical Trial Unit Vice President, European Society of Gynaecological Oncology Copenhagen, Denmark

Moderator

Kathleen N Moore, MD, MS Deputy Director Associate Director, Clinical Research Virginia Kerley Cade Chair in Developmental Therapeutics Co-Director, Cancer Therapeutics Program Stephenson Cancer Center at the University of Oklahoma HSC Associate Director, GOG Partners Board of Directors, GOG Foundation Oklahoma City, Oklahoma

Dr Liu — Disclosures Faculty

Advisory Committees	AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Eisai Inc, Genentech, a member of the Roche Group, GSK, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Regeneron Pharmaceuticals Inc, Zentalis Pharmaceuticals	
Consulting Agreement	Bristol Myers Squibb	
Trial Support to My Institution for Study Conduct	Aravive Inc, Arch Oncology, AstraZeneca Pharmaceuticals LP, Bristol Myers Squibb, Clovis Oncology, GSK, Impact Therapeutics, Regeneron Pharmaceuticals Inc, Seagen Inc, Vigeo Therapeutics, Volastra Therapeutics Inc, Zentalis Pharmaceuticals	

Dr Mirza — Disclosures Faculty

Advisory Committees	Allarity Therapeutics, BIOCAD, BioNTech SE, Daiichi Sankyo Inc, Eisai Inc, GSK, Karyopharm Therapeutics, Merck, Mersana Therapeutics Inc, MSD, Zai Lab	
Consulting Agreements	Allarity Therapeutics, AstraZeneca Pharmaceuticals LP, BIOCAD, BioNTech SE, Boehringer Ingelheim Pharmaceuticals Inc, Daiichi Sankyo Inc, Eisai Inc, Genmab US Inc, GSK, ImmunoGen Inc, Incyte Corporation, Karyopharm Therapeutics, Merck, Mersana Therapeutics Inc, MSD, Novartis, Regeneron Pharmaceuticals Inc, Roche Laboratories Inc, Seagen Inc, Takeda Pharmaceuticals USA Inc, Zai Lab	
Stock Options/Stock — Public Companies	Karyopharm Therapeutics, Sera Prognostics	

Dr O'Malley — Disclosures Faculty

Advisory Committees and Consulting Agreements (Personal Fees)	AbbVie Inc, Adaptimmune, Agenus Inc, Arcus Biosciences, Arquer Diagnostics, AstraZeneca Pharmaceuticals LP, Atossa Therapeutics, Cardiff Oncology, Celcuity, Clovis Oncology, Corcept Therapeutics, Duality Biologics, Eisai Inc, Elevar Therapeutics, Exelixis Inc, F Hoffmann-La Roche Ltd, Genelux Corporation, Genentech, a member of the Roche Group, GSK, ImmunoGen Inc, Imvax Inc, InterVenn Biosciences, InxMed, Iovance Biotherapeutics, Janssen Biotech Inc, Jazz Pharmaceuticals Inc, Laekna Therapeutics, Leap Therapeutics Inc, Luzsana Biotechnology, Merck, Mersana Therapeutics Inc, MSD, Myriad Genetic Laboratories Inc, Novartis, Novocure Inc, OncoC4, Onconova Therapeutics Inc, Regeneron Pharmaceuticals Inc, Replimune, Roche Diagnostics, R-Pharm US, Seagen Inc, Sorrento Therapeutics, Sumitomo Dainippon Pharma Oncology Inc, Sutro Biopharma, Tarveda Therapeutics, Toray Industries Inc, Trillium Therapeutics Inc, Umoja Biopharma, VBL Therapeutics, Verastem Inc, Vincerx Pharma, Xencor, Zentalis Pharmaceuticals	
Contracted Research (Institution Received Funds)	 AbbVie Inc, Advaxis Inc, Agenus Inc, Alkermes, Aravive Inc, Arcus Biosciences, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Bristol Myers Squibb, Clovis Oncology, Deciphera Pharmaceuticals Inc, Eisai Inc, EMD Serono Inc, Exelixis Inc, F Hoffmann-La Roche Ltd, Genentech, a member of the Roche Group, Genmab US Inc, GSK, ImmunoGen Inc, Incyte Corporation, Iovance Biotherapeutics, Karyopharm Therapeutics, Leap Therapeutics Inc, Merck, Mersana Therapeutics Inc, MSD, Novartis, Novocure Inc, OncoC4, OncoQuest Inc, Pfizer Inc, Predictive Oncology Inc, Prelude Therapeutics, Regeneron Pharmaceuticals Inc, Rubius Therapeutics, Seagen Inc, Sumitomo Dainippon Pharma Oncology Inc, Sutro Biopharma, Tesaro, A GSK Company, Verastem Inc 	
Nonrelevant Financial Relationships	GOG Foundation Inc, Ludwig Institute for Cancer Research Ltd, National Cancer Institute, NRG Oncology, RTOG, SWOG	

Dr Moore — Disclosures Moderator

Advisory Committees	Aadi Bioscience, Aravive Inc, AstraZeneca Pharmaceuticals LP, Blueprint Medicines, Caris Life Sciences, Clovis Oncology, Duality Biologics, Eisai Inc, Genentech, a member of the Roche Group, GSK, ImmunoGen Inc, Janssen Biotech Inc, Lilly, Merck, Mersana Therapeutics Inc, Myriad Genetic Laboratories Inc, Panavance Therapeutics, Regeneron Pharmaceuticals Inc, VBL Therapeutics, Verastem Inc, Zentalis Pharmaceuticals
Consulting Agreements	Aadi Bioscience, Caris Life Sciences, Duality Biologics, Eisai Inc, Mersana Therapeutics Inc, Regeneron Pharmaceuticals Inc
Contracted Research	Genentech, a member of the Roche Group, GSK, Lilly, PTC Therapeutics

Dr Armstrong — Disclosures Video Participant

Consulting Agreement (Uncompensated Consulting)	Janssen Biotech Inc
Contracted Research	AstraZeneca Pharmaceuticals LP, Eisai Inc
Data and Safety MonitoringBoard/Committee	AstraZeneca Pharmaceuticals LP

Dr Backes — Disclosures Video Participant

Advisory Committees and Consulting Agreements	AstraZeneca Pharmaceuticals LP, BioNTech SE, Clovis Oncology, Daiichi Sankyo Inc, Eisai Inc, EMD Serono Inc, GSK, ImmunoGen Inc, Merck
--	--

Dr Grisham — Disclosures Video Participant

Consulting Agreements	AstraZeneca Pharmaceuticals LP, GSK, Myriad Genetic Laboratories Inc, Natera Inc
Contracted Research	Context Therapeutics, Corcept Therapeutics, Pfizer Inc, SpringWorks Therapeutics Inc, Verastem Inc

Dr Salani — Disclosures Video Participant

Advisory Committees	Eisai Inc, GSK, ImmunoGen Inc, Merck, Regeneron Pharmaceuticals Inc, Seagen Inc
---------------------	--

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, GSK, Merck, and Mural Oncology Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

This program will contain discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Endometrial Cancer

Part 2 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 Society of Gynecologic Oncology Annual Meeting on Women's Cancer[®]

Monday, March 18, 2024

12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Nicoletta Colombo, MD

Matthew A Powell, MD

Brian M Slomovitz, MD

Moderator Shannon N Westin, MD, MPH, FASCO, FACOG

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the premeeting survey.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Complete Your Evaluation: Tap the CME Evaluation button to complete your evaluation electronically to receive credit for your participation.

For assistance, please raise your hand. Devices will be collected at the conclusion of the activity.

Clinicians Attending via Zoom

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the pre- and postmeeting surveys.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME Credit: A CME credit link will be provided in the chat room at the conclusion of the program.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

An email will be sent to all attendees when the activity is available.

 To learn more about our education programs, visit our website, <u>www.ResearchToPractice.com</u>

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Ovarian Cancer

Part 1 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 Society of Gynecologic Oncology Annual Meeting on Women's Cancer® Monday, March 18, 2024 6:30 AM - 8:00 AM PT (9:30 AM - 11:00 AM ET) Faculty Joyce F Liu, MD, MPH Mansoor Raza Mirza, MD David M O'Malley, MD **Moderator**

Kathleen N Moore, MD, MS

Agenda

Module 1: Current Up-Front Treatment for Advanced Ovarian Cancer (OC) — Dr Liu

Module 2: Potential Role of Immunotherapeutic Strategies for Advanced OC — Dr O'Malley

Module 3: Incorporation of Novel Therapies into the Management of Relapsed/Refractory OC — Dr Moore

Module 4: Diagnosis and Management of Adverse Events Associated with Commonly Employed Therapies for Advanced OC — Dr Mirza

Consulting Faculty

Deborah K Armstrong, MD The Sidney Kimmel Comprehensive Cancer Center Baltimore, Maryland

Rachel N Grisham, MD Memorial Sloan Kettering Cancer Center New York, New York

Floor J Backes, MD The James Cancer Hospital and Solove Research Institute Columbus, Ohio

Ritu Salani, MD, MBA UCLA Health Los Angeles, California

MODULE 1: Current Up-Front Treatment for Advanced Ovarian Cancer (OC) — Dr Liu

Consulting Faculty Questions

Integration of bevacizumab into neoadjuvant therapy; quality of tissue testing specimens to inform neoadjuvant therapy selection

Neil Love, MD

Deborah K Armstrong, MD

Rachel N Grisham, MD

QUESTIONS FOR THE FACULTY

Deborah K Armstrong, MD

Rachel N Grisham, MD

What criteria do you use to select patients for neoadjuvant systemic therapy?

In what situations do you use bevacizumab in the neoadjuvant setting? In what situations, if any, will you add bevacizumab after surgery for a patient who did not receive it as a component of neoadjuvant therapy?

Should genomic analysis be conducted prior to neoadjuvant treatment, and if so, what assays should be employed (eg, next-generation sequencing, germline, liquid biopsy)?

Are there clinical situations in which you could envision the potential benefit of neoadjuvant PARP inhibition?

Consulting Faculty Questions

First-line maintenance therapy options; potential utility of ctDNA assays

Neil Love, MD

Ritu Salani, MD, MBA

Deborah K Armstrong, MD

QUESTIONS FOR THE FACULTY

Ritu Salani, MD, MBA

Deborah K Armstrong, MD

What is your preferred initial therapy for a patient with advanced ovarian cancer and a BRCA mutation? Do you have a preferred PARP inhibitor for these patients? Do you typically employ bevacizumab? How long would you continue treatment with a PARP inhibitor for these patients?

What is your preferred initial therapy for a patient with HRD-positive, BRCA-negative advanced ovarian cancer? What about for a patient with HRD-negative, BRCAnegative disease? Do you have a preferred PARP inhibitor for these patients? Do you typically employ bevacizumab? How long would you continue treatment with a PARP inhibitor for these patients?

A 65-year-old woman with no comorbidities presenting with OC with extensive intra-abdominal disease and ascites (clinical Stage IIIC) receives neoadjuvant carboplatin/paclitaxel/bevacizumab with good response and proceeds to surgery with R0 resection. Regulatory and reimbursement issues aside, what would you most likely recommend as maintenance therapy and for what duration if genetic testing revealed a <u>BRCA1/2 mutation</u>?

	Maintenance therapy	Duration of maintenance
Dr Liu	Olaparib/bevacizumab	2 years; 15 cycles
Dr Mirza	Olaparib/bevacizumab	2 years
Dr Moore	Olaparib/bevacizumab	2 years
Dr O'Malley	Olaparib/bevacizumab	2 years; 1 year
Dr Armstrong	Olaparib	2 years
Dr Grisham	Olaparib/bevacizumab	2 years; 1 year

A 65-year-old woman with no comorbidities presenting with OC with extensive intra-abdominal disease and ascites (clinical Stage IIIC) <u>receives neoadjuvant carboplatin/paclitaxel/bevacizumab</u> with good response and proceeds to surgery with R0 resection. Regulatory and reimbursement issues aside, what would you most likely recommend as maintenance therapy and for what duration if genetic testing revealed the tumor to be <u>BRCA wild type, HR deficient (LOH high)</u>?

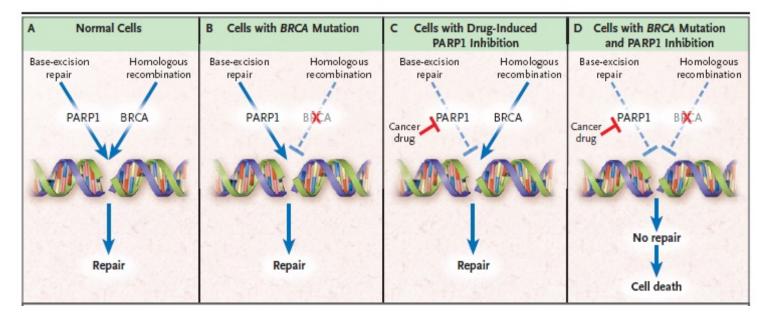
	Maintenance therapy	Duration of maintenance
Dr Liu	Olaparib/bevacizumab	2 years; 15 cycles
Dr Mirza	Olaparib/bevacizumab	2 years
Dr Moore	Olaparib/bevacizumab (if HRD)	2 years
Dr O'Malley	Olaparib/bevacizumab	2 years; 1 year
Dr Armstrong	Olaparib/bevacizumab	2 years
Dr Grisham	Olaparib/bevacizumab	2-3 years; 1 year

A 65-year-old woman with no comorbidities presenting with OC undergoes R0 resection and receives adjuvant carboplatin/paclitaxel with good response. Regulatory and reimbursement issues aside, what would you most likely recommend as maintenance therapy and for what duration if genetic testing revealed a BRCA1/2 mutation?

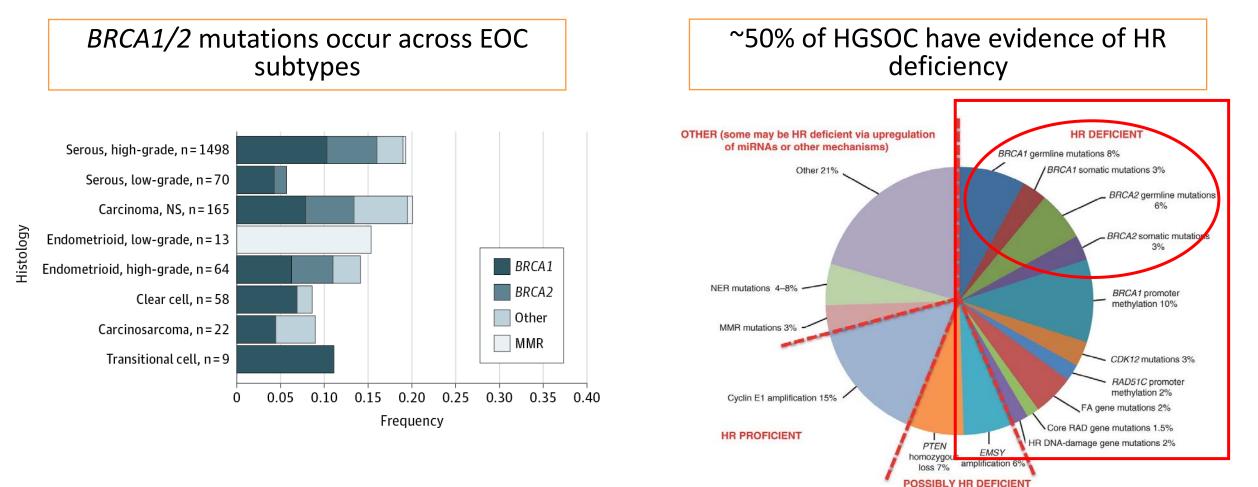
	Maintenance therapy	Duration of maintenance
Dr Liu	Olaparib	2 years
Dr Mirza	Niraparib	3 years
Dr Moore	Olaparib	2 years
Dr O'Malley	Rucaparib	2 years
Dr Armstrong	Olaparib	2 years
Dr Grisham	Olaparib	2 years

A 65-year-old woman with no comorbidities presenting with OC undergoes R0 resection and receives adjuvant carboplatin/paclitaxel with good response. Regulatory and reimbursement issues aside, what would you most likely recommend as maintenance therapy and for what duration if genetic testing revealed the tumor to be BRCA wild type, HR deficient (LOH high)?

	Maintenance therapy	Duration of maintenance
Dr Liu	Niraparib	3 years
Dr Mirza	Niraparib	3 years
Dr Moore	Olaparib/bevacizumab (if HRD)	2 years
Dr O'Malley	Rucaparib	2 years
Dr Armstrong	Niraparib	2 years
Dr Grisham	Niraparib	2 to 3 years


Current Upfront Treatment for Ovarian Cancer

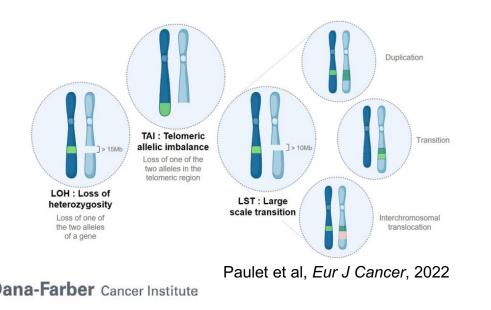
Joyce Liu, MD, MPH Associate Chief and Director of Clinical Research Division of Gynecologic Oncology Dana-Farber Cancer Institute, Boston, MA


Implications of *BRCA* and homologous recombination (HR) status in ovarian cancer

- Clinical testing for germline *BRCA* and other genetic susceptibility genes with implications for cascade testing
- Somatic testing for *BRCA* and HR deficiency with clinical decision-making implications in the era of PARP inhibitors
- Homologous recombination deficiency is a state where a cell cannot perform homologous recombination
 - Can be caused by loss of function in genes in HR pathway (e.g., *BRCA1/2*)
 - Leads to increased vulnerability to drugs such as PARP inhibitors

Silver and Iglehart, N Engl J Med, 2009

BRCA mutations and HRD are common in ovarian cancer

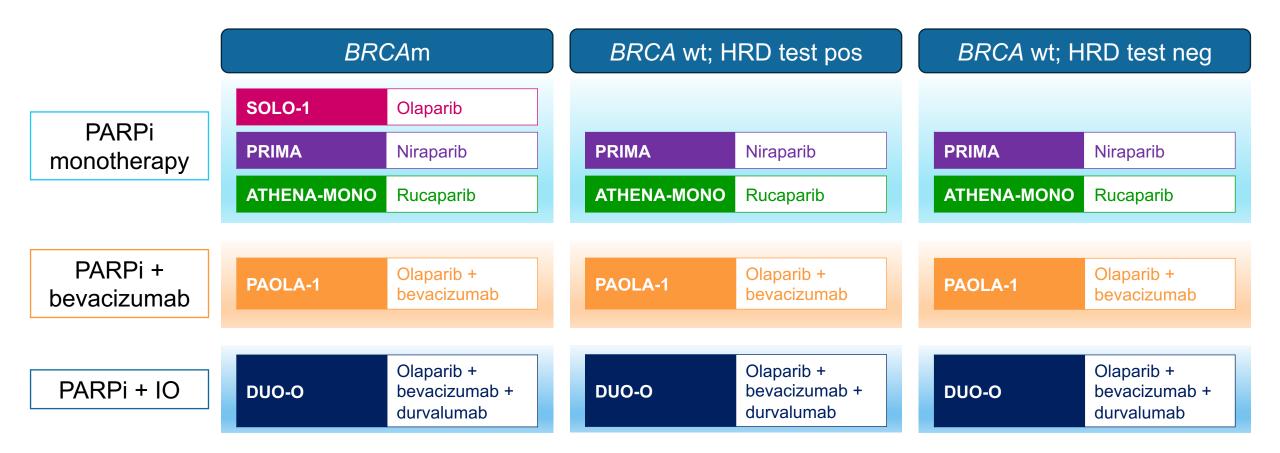


Norquist et al, JAMA Oncol, 2016

Konstantinopoulos et al, Cancer Discov, 2015

Testing for Homologous Recombination Deficiency (HRD)

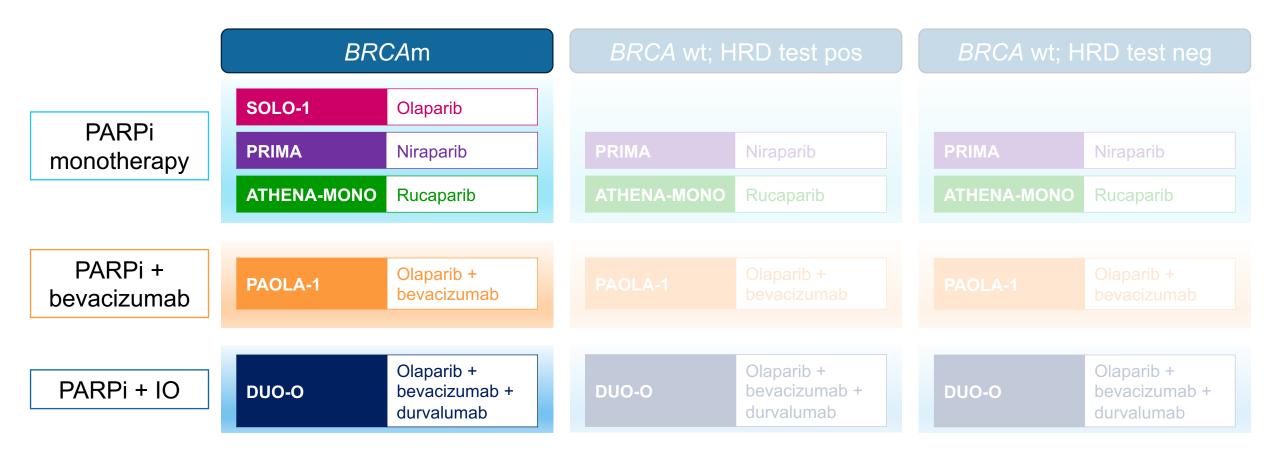
- Homologous recombination (HR) is one of the primary pathways by which cells repair double-strand DNA breaks
- Current commercial assays of HRD use patterns of DNA damage to <u>indirectly</u> predict whether a cell is HR deficient or HR proficient


Assays of HRD in Ovarian Cancer used in randomized Phase 3 trials

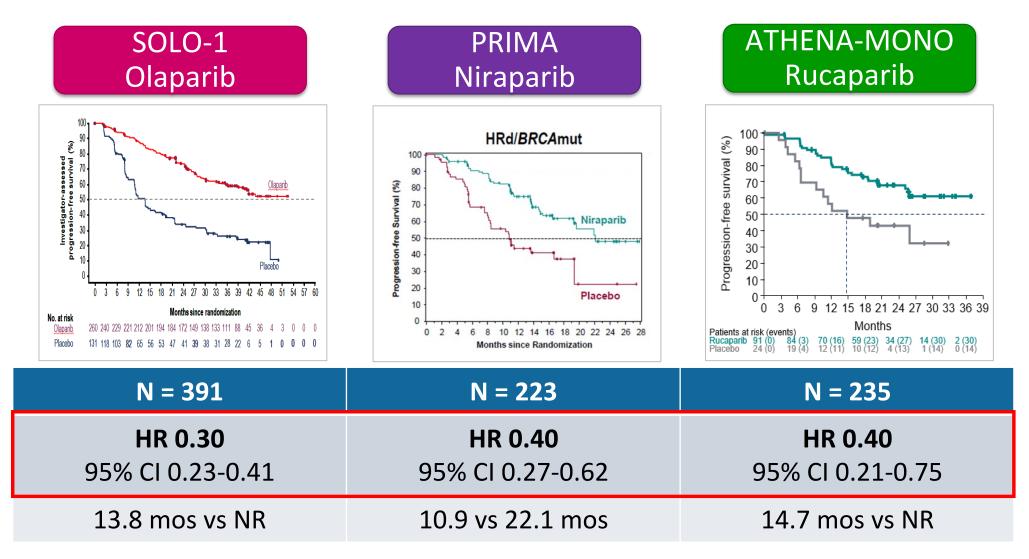
	Test	Measurement	Studies Used
R	Myriad MyChoice HRD	 Combination of 3 types of DNA change: Loss of heterozygosity (LOH) Telomeric allelic imbalance Large-scale state transitions Also includes all deleterious <i>BRCA1/2</i> mutations 	VELIA PRIMA PAOLA-1 NOVA
	FoundationOne LOH	Loss of heterozygosity	ARIEL3 ATHENA-MONO

Additional proposed assays for HRD

Test	Measurement	
HRR mutations	Identify pathogenic mutations in selected HRR genes	Non-BRCA HRR genes not predictive biomarker in PAOLA-1
Functional HRD assays (e.g., RAD51 foci)	Detection RAD51 foci formation by IHC or IF	

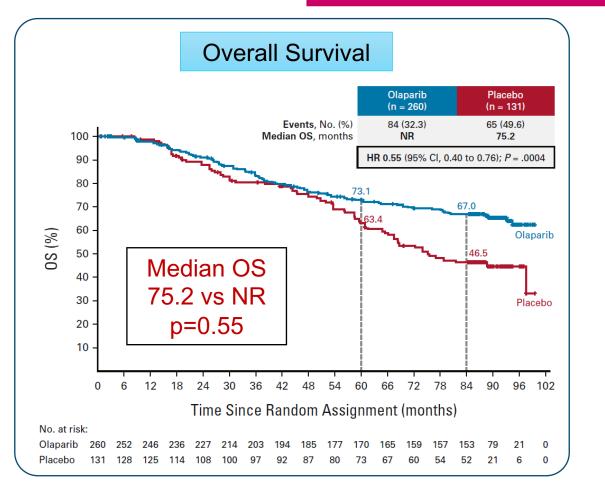

Randomized studies informing front-line PARPi maintenance

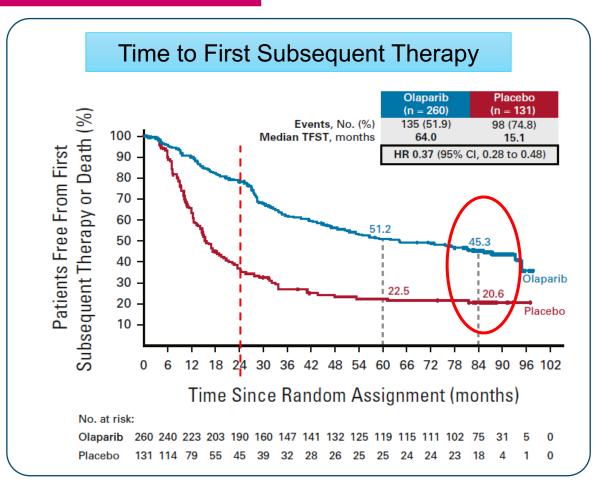
Additional studies performed in China: PRIME (niraparib); FLAMES (senaparib) Non-randomized studies: OVARIO (niraparib + bevacizumab)


Dana-Farber Cancer Institute

Randomized studies informing front-line PARPi maintenance

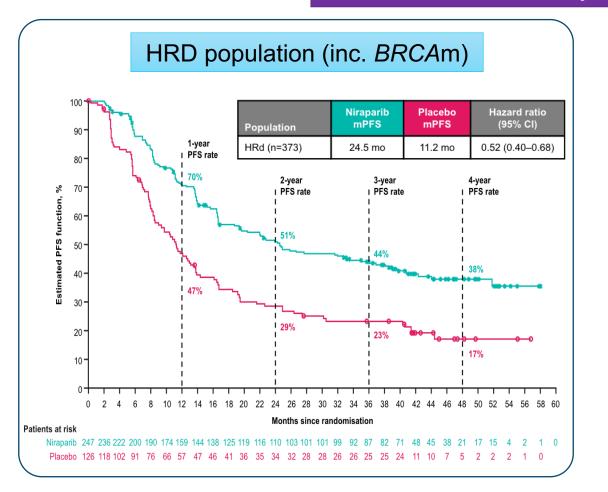
BRCAm tumors: PARP inhibitor monotherapy maintenance

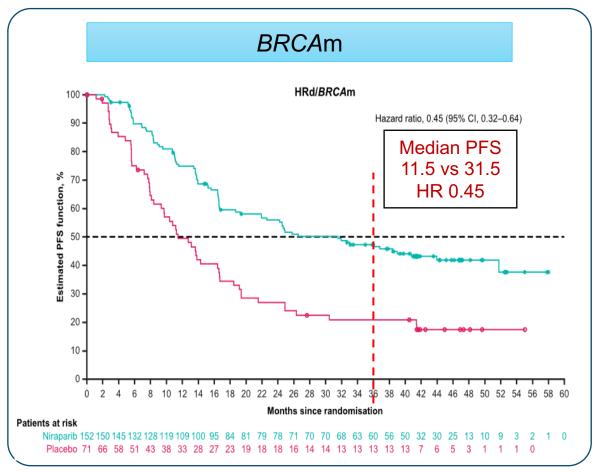




Moore et al. N Engl J Med 2018; Gonzalez-Martin et al. N Engl J Med 2019; Monk et al. J Clin Oncol 2022

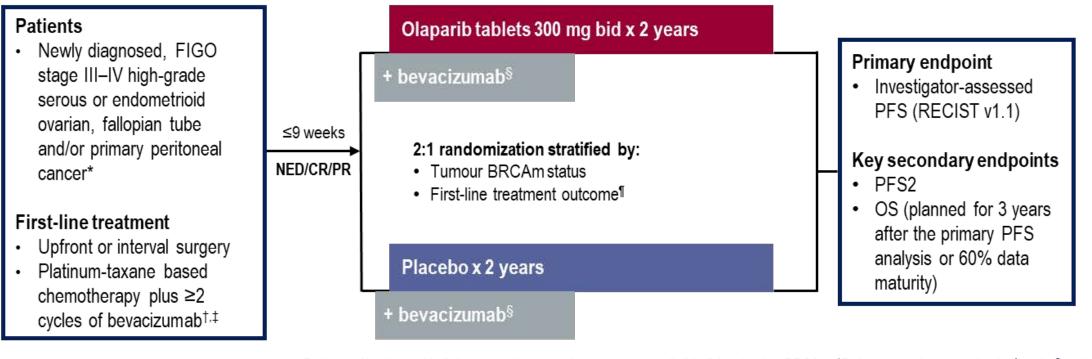
Olaparib maintenance demonstrates long-term benefit in individuals with *BRCA*mt ovarian cancers


SOLO-1: 7 year follow-up



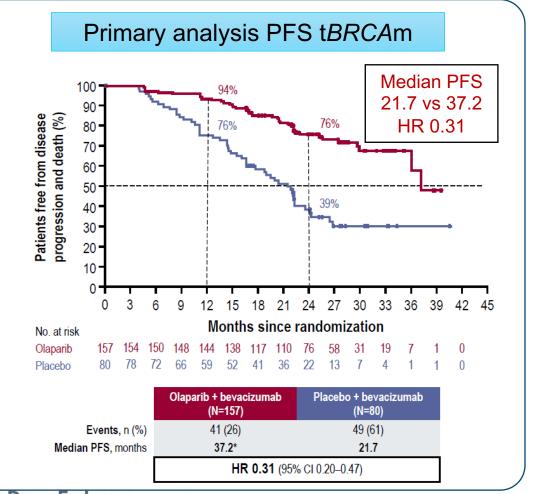
Niraparib maintenance with continued PFS benefit in *BRCA*m ovarian cancers with 3.5 years follow-up

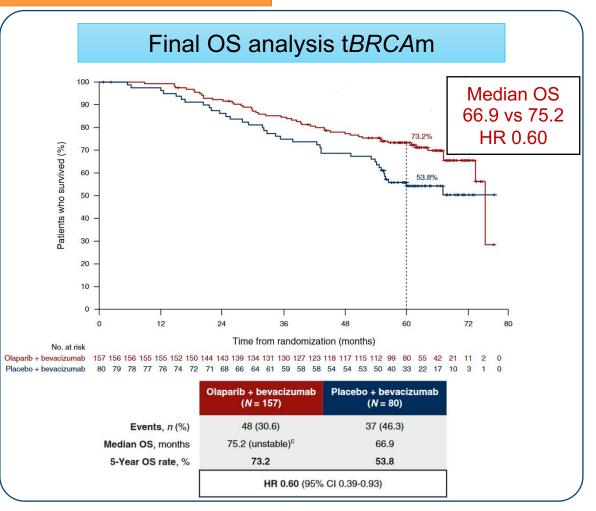
PRIMA: 3.5 year follow-up



PAOLA-1 trial design

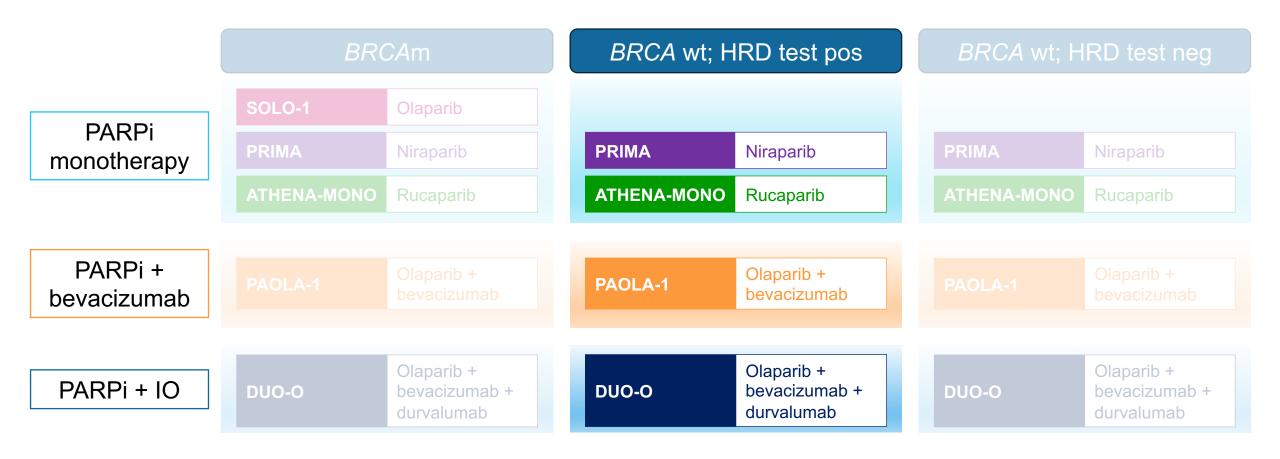
Maintenance therapy


*Patients with other epithelial non-mucinous ovarian cancer were eligible if they had a gBRCAm; [†]Patients must have received ≥4 and ≤9 cycles of platinum-based chemotherapy; [‡]Patients must have received ≥3 cycles of bevacizumab with the last 3 cycles of chemotherapy, apart from patients undergoing interval surgery who were permitted to receive only 2 cycles of bevacizumab with the last 3 cycles of chemotherapy; [§]Bevacizumab 15 mg/kg every 3 weeks for a total of 15 months, including when administered with chemotherapy; [¶]According to timing of surgery and NED/CR/PR. bid, twice daily; CR, complete response; FIGO, International Federation of Gynecology and Obstetrics; gBRCAm, germline BRCA mutation; NED, no evidence of disease; PBC, platinum-based chemotherapy; PFS2, time from randomization to second progression or death; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumours.

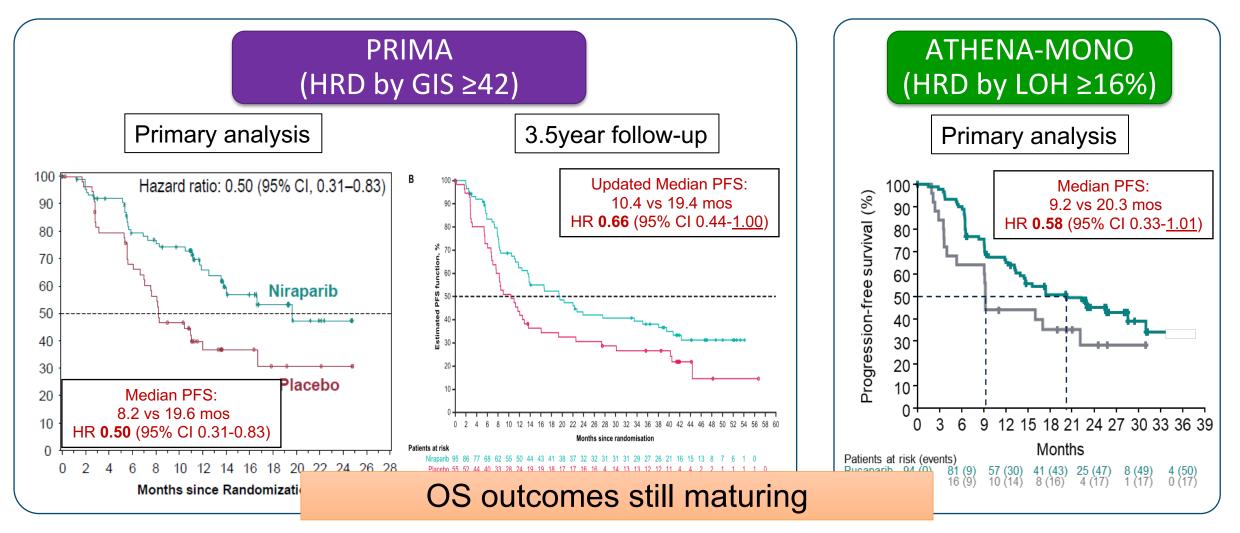

Ray-Coquard et al. N Engl J Med 2019

Olaparib/bevacizumab improves outcomes compared to bevacizumab in *BRCA*m ovarian cancer

PAOLA-1: Primary PFS and Final OS analyses

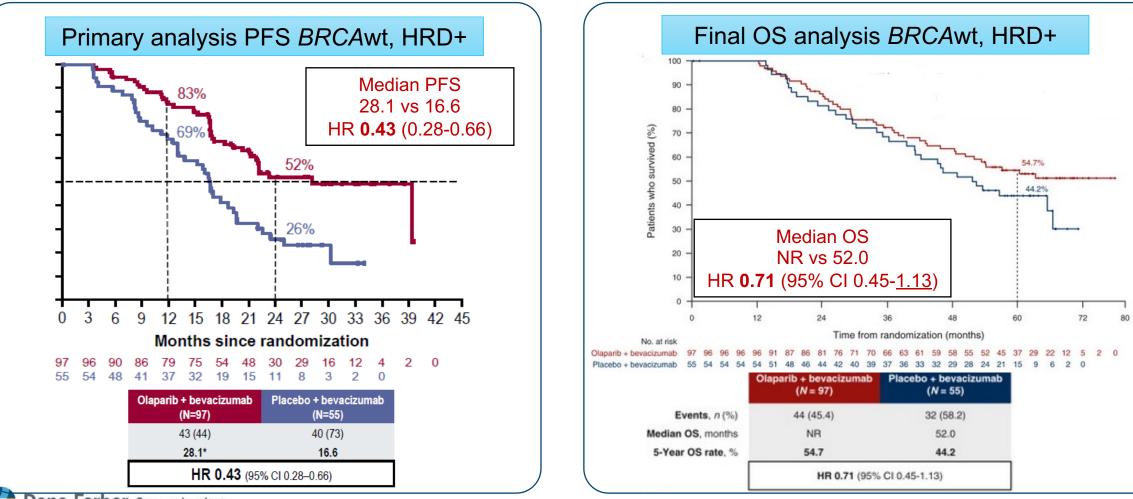


Dana-Farber Cancer Institute


Ray-Coquard et al. N Engl J Med 2019; Ray-Coquard et al. Ann Oncol 2023

Randomized studies informing front-line PARPi maintenance

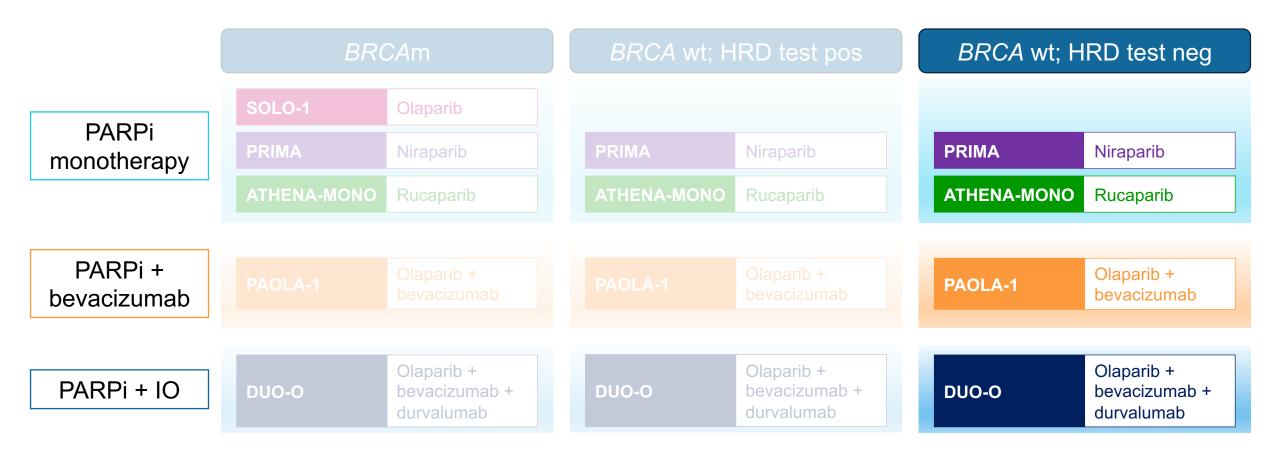
PARPi monotherapy maintenance results in PFS benefit in BRCAwt HRD test positive tumors



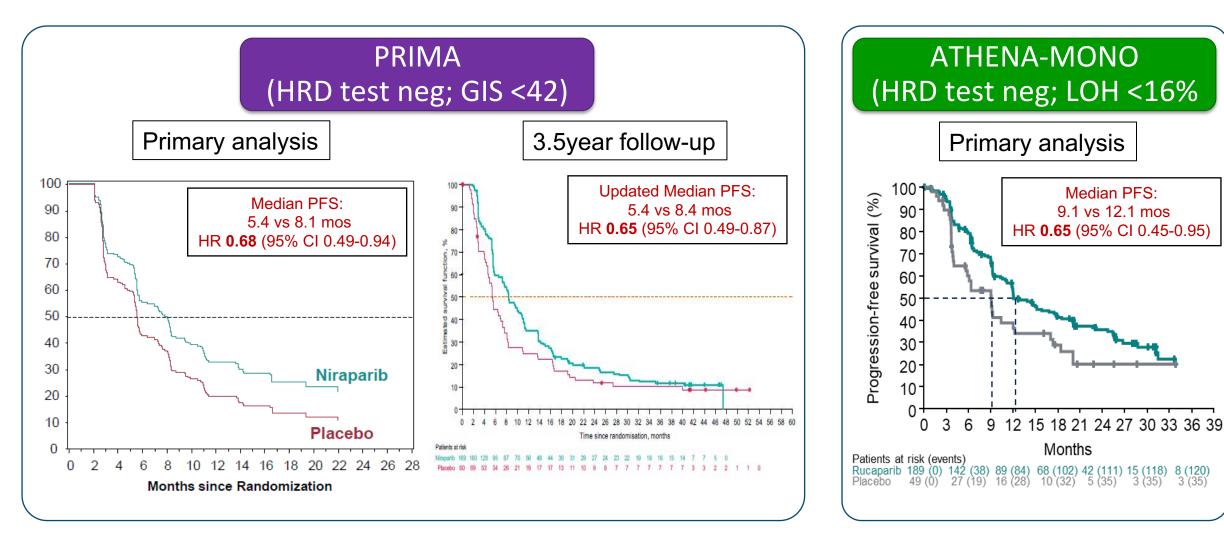
Dana-Farber Cancer Institute

Gonzalez-Martin et al. N Engl J Med 2019; Gonzalez-Martin et al. Eur J Cancer 2023; Monk et al. J Clin Oncol 2022

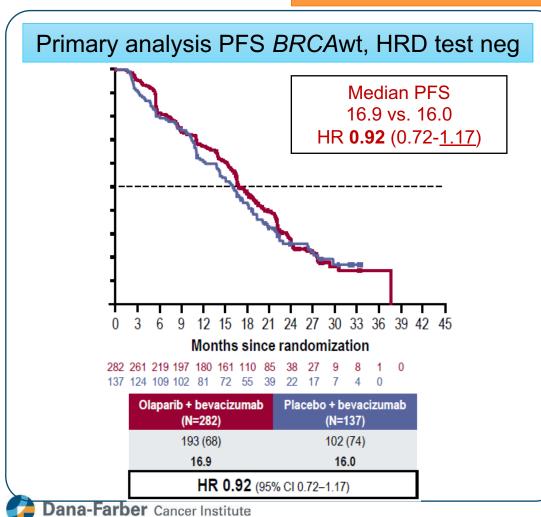
Olaparib/bevacizumab improves outcomes compared to bevacizumab in *BRCA*wt HRD test positive ovarian cancer

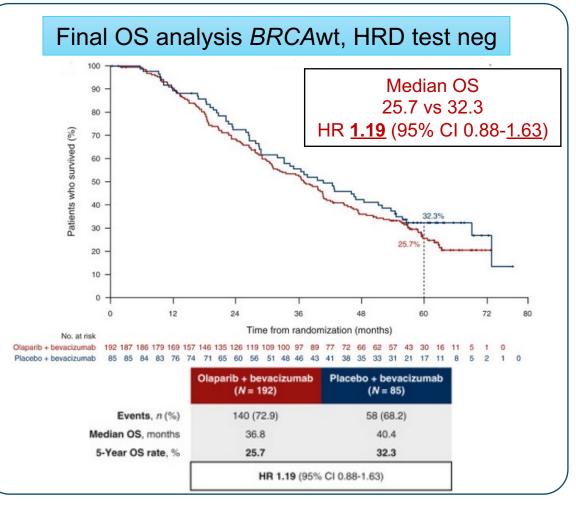

PAOLA-1: Primary PFS and Final OS analyses

Dana-Farber Cancer Institute

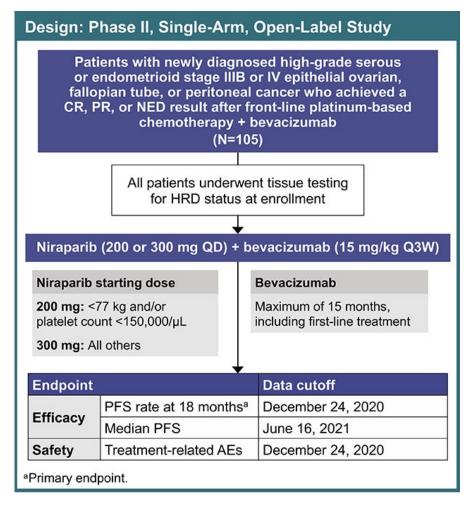

Ray-Coquard et al. N Engl J Med 2019; Ray-Coquard et al. Ann Oncol 2023

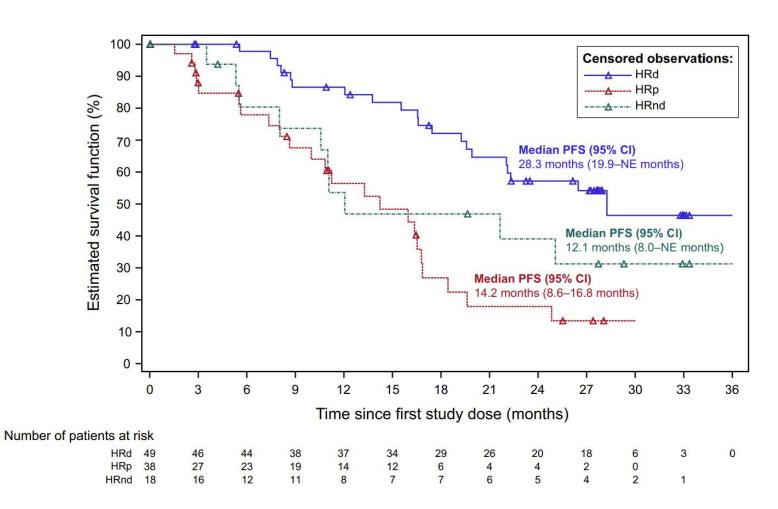
Randomized studies informing front-line PARPi maintenance




PARPi monotherapy maintenance has limited PFS benefit in *BRCA*wt HRD test negative tumors

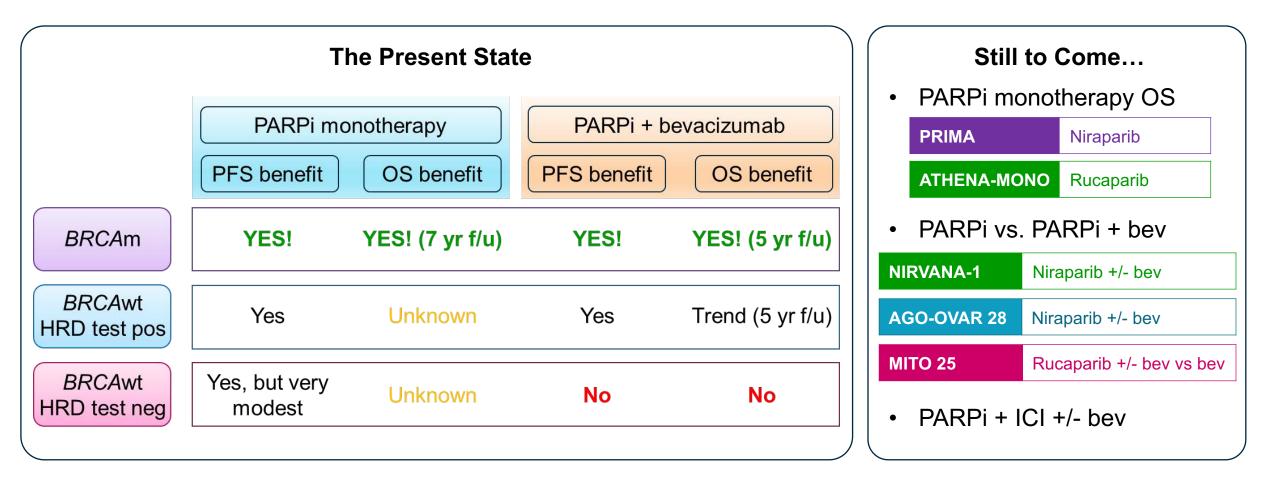
Olaparib/bevacizumab does <u>not</u> improve outcomes compared to bevacizumab in *BRCA*wt, HRD test negative ovarian cancer


PAOLA-1: Primary PFS and Final OS analyses



Ray-Coquard et al. N Engl J Med 2019; Ray-Coquard et al. Ann Oncol 2023

OVARIO: Niraparib/bevacizumab as 1L maintenance



Front-line maintenance: where are we, and what's still ahead?

• Test for BRCA mutations and HRD status

MODULE 2: Potential Role of Immunotherapeutic Strategies for Advanced OC — Dr O'Malley

Consulting Faculty Questions

FDA withdrawal of PARP indications in the recurrent setting; Duration of PARP inhibition in patients with recurrent OC

Neil Love, MD

Ritu Salani, MD, MBA

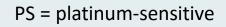
Rachel N Grisham, MD

QUESTIONS FOR THE FACULTY

Ritu Salani, MD, MBA

Rachel N Grisham, MD

Do you believe immune checkpoint inhibitors in combination with PARP inhibitors will eventually be a part of standard ovarian cancer management? Are there any situations in which you will currently employ an anti-PD-1/PD-L1 antibody in combination with a PARP inhibitor for a patient with advanced ovarian cancer?


Which of the novel immunotherapeutic strategies (eg, adoptive cell therapy, oncolytic viruses, cancer vaccines) being evaluated do you believe offer the most promise?

In what situations, if any, will you recommend a PARP inhibitor for a patient with recurrent ovarian cancer? If you were to use a PARP inhibitor in the recurrent setting, which agent would you select and how long would you continue it?

Outside of a protocol setting, in what clinical situations would you administer a PARP inhibitor to a patient with relapsed advanced OC?

Dr Liu	Maintenance after response to platinum for BRCAm cancer that has not previously progressed on PARP inhibitor
Dr Mirza	All regardless of HRD (if patient is platinum sensitive and in response to platinum)
Dr Moore	PARP inhibitor-naïve PS OC or as re-treatment for BRCAm with long PARP inhibitor-free interval
Dr O'Malley	PS OC with CR after platinum doublet only if no progression on prior PARP inhibitor
Dr Armstrong	Maintenance, PS BRCAm (germline or somatic), niraparib/bev in PS based on AVANOVA, PARP inhibitor-naïve patient with BRCA mutation
Dr Grisham	BRCA mutant after CR or PR to platinum-based therapy

Outside of a protocol setting, in what situations, if any, would you administer a PARP inhibitor as a component of later-line treatment for a patient whose disease has progressed on or after first-line maintenance with a PARP inhibitor?

Dr Liu	I may consider for a patient with PS disease, a BRCAm tumor, long platinum-free interval, response to platinum, and no progression on prior PARP inhibitor
Dr Mirza	BRCA mutation
Dr Moore	If disease progression > 12 months after completion of PARP inhibitor therapy
Dr O'Malley	Only if no progression on prior PARP inhibitor
Dr Armstrong	Very selectively, with careful discussion of MDS/AML risks
Dr Grisham	None

PS = platinum-sensitive

How would you rate your enthusiasm for enrolling a patient on the Phase III ARTISTRY-7 trial of nemvaleukin alfa in combination with pembrolizumab for patients with platinum-resistant epithelial OC?

	Enthusiasm*	Comments
Dr Liu	1	No comment
Dr Mirza	1	Not certain about activity
Dr Moore	1	No comment
Dr O'Malley	2	No comment
Dr Armstrong	4	Takes me back to when we used IP IL-2 in ovarian cancer (I AM that old!)
Dr Grisham	4	Combination may show promise

* 1 = not at all enthusiastic, 4 = very enthusiastic

Potential Role of Immunotherapeutic Strategies for Advanced Ovarian Cancer

David O'Malley, MD

Director & Professor, Division of Gynecologic Oncology in Obstetrics and Gynecology John G. Boutselis Chair in Gynecologic Oncology Ovarian Cancer Clinical Trial Advisor, GOG Partners

The James

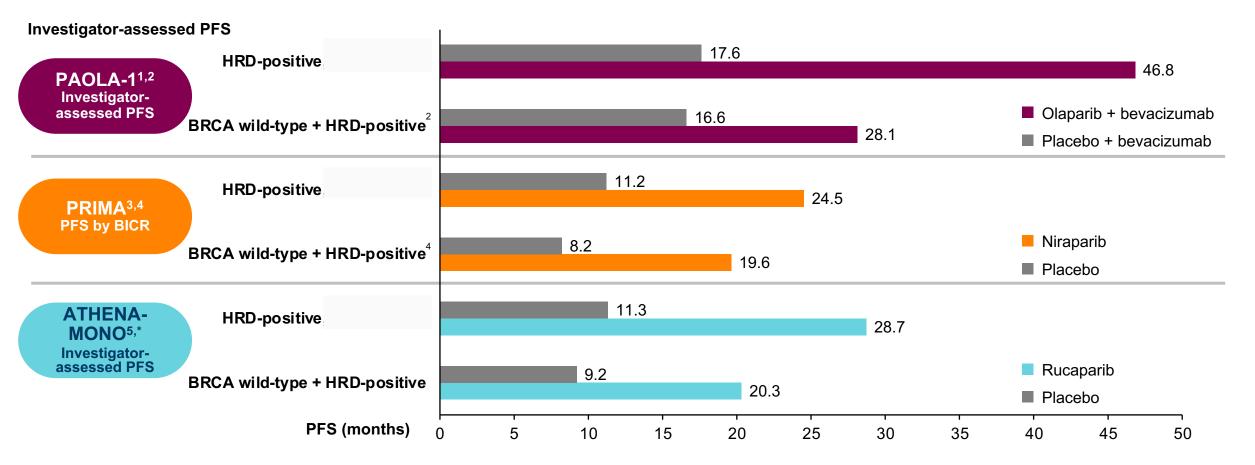
THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

Creating a cancer-free world. One person, one discovery at a time.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

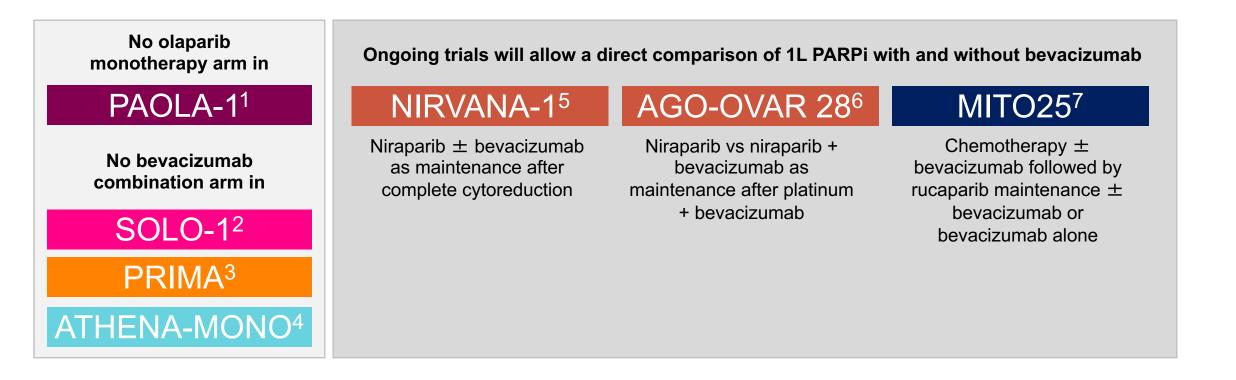
Agenda

- First Line Therapy
 - Current Standard
 - Role of IO?
 - DUO-O
 - Ongoing Trials
- PROC
 - Novel Immune Strategies



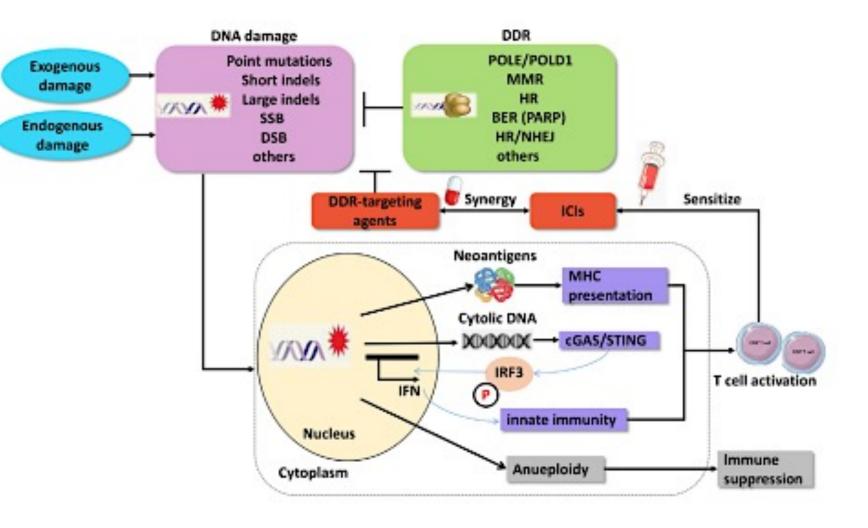
Significant progress has been made in the first-line management of ovarian cancer over the past decade

2003	2011	2018		2019–2	2022	2023-
Chemotherapy No further improvement	Paradigm shift 1: Bevacizumab Bevacizumab improved	PARP inhibi	m shift 2: tors for BRCA- varian cancer	Paradign PARP inhibit BRCA m	tors beyond	Paradigm shift 4?: Immune Therapies added to PARP inhibitors +/- Bev
in survival with chemotherapy alone	PFS versus chemotherapy alone ^{3,4}	Olaparib	SOLO-1 ⁵ NCT01844986	Olaparib + bevacizumab	PAOLA-1⁶ NCT02477644	
since the introduction of platinum–taxane chemotherapy ^{1,2}				Niraparib	PRIMA ⁷ NCT02655016	
				aRucaparib	ATHENA-MONO ⁸ NCT03522246	


McGuire WP, et al. N Engl J Med 1996;334:1–6; 2. du Bois A, et al. J Natl Cancer Inst 2003;95:1320–1329; 3. Burger RA, et al. N Engl J Med 2011;365:2473–2483;
 Perren TJ, et al. N Engl J Med 2011;365:2484–2496; 5. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT01844986 (Accessed March 2022);
 ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT02477644 (Accessed March 2022); 7. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT02655016 (Accessed March 2022); 8. Monk JM, et al. J Clin Oncol 2022. doi: http://ascopubs.org/doi/full/10.1200/JCO.22.01003 [Epub ahead of print]

PARPi clearly benefit HRD+

1. Ray-Coquard I, et al. Presented at European Society for Medical Oncology Congress; 9th-13th September 2022; Paris, France; 2. Ray-Coquard I, et al. *N Engl J Med* 2019;381:2416–2428; 3. Gonzales-Martin A, et al. Presented at European Society for Medical Oncology Congress; 9th-13th September 2022; Paris, France; abstract #530P; 4. González-Martín A, et al. Presented at European Society for Medical Oncology Congress; 9th-13th September 2022; Paris, France; abstract #530P; 4. González-Martín A, et al. Presented at European Society of Gynaecological Oncology Congress; 2nd-5th November 2019; Athens, Greece; abstract #4627; 5. Monk JM, et al. *J Clin Oncol* 2022. doi: http://ascopubs.org/doi/full/10.1200/JCO.22.01003 [Epub ahead of print]


Missing Arms of Reported Trials – Some Answers Coming

1. Ray-Coquard I, et al. *N Engl J Med* 2019;381:2416–242; 2. Moore K, et al. *N Engl J Med* 2018;379:2495–2505. 3. Gonzalez-Martin A, et al. *N Engl J Med* 2019;381:2391–2402; 4. Monk BJ, et al. *Int J Gynecol Cancer* 2021;31:1589–1594; 5. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT05183984; 6. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT03462212

Does the addition of immune therapy to PARPi improve outcomes?

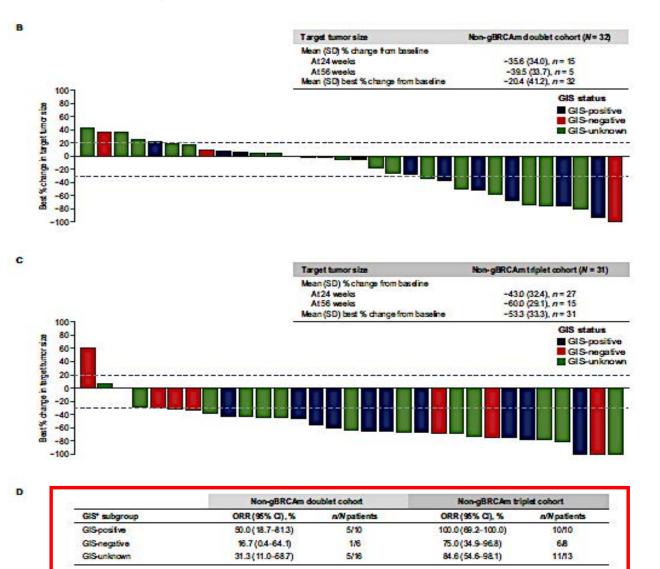
- DDR deficiency/synthetic lethality leads to neoantigens resulting in an immune response
- DNA damage activates STING (stimulator of interferon genes) pathway triggering an immune response



The James

WEXNER MEDICAL CENTER

THE OHIO STATE UNIVERSITY


MEDIOLA – olaparib tablets (300 mg twice daily) plus durvalumab (1.5 g IV every 4 weeks); the triplet cohort also received bevacizumab (10 mg/kg IV every 2 weeks) in 28-day cycles

Primary endpoints [†]	
ORR (gBRCAm expansion doublet cohort only) DCR at 24 weeks (non-gBRCAm triplet and doublet Safety and tolerability (all cohorts)	cohorts only)
Secondary endpoints [†] include:	
 DCR at 24 weeks (gBRCAm expansion doublet coh DCR at 56 weeks ORR (non-gBRCAm triplet and doublet cohorts only DoR Tumor size % change (24 and 56 weeks) Best tumor size % change PFS TDT OS PD-L1 expression in archival tumor samples 	
Fumor assessments: every 8 weeks	
Constitued follows was acceptibly for A scoutbo office look doe	a of shicks

Survival follow-up: monthly for 4 months after last dose of study treatment, then every 2–3 months thereafter

gBRCAm expansion doublet cohort (N = 51)		Non-gBRCAm doublet cohoit (N = 32)		Non-gBRCAm triplet cohort (N = 31)	
PD-L1 staining	ORR (%)*	PD-L1 staining	ORR (%)	PD-L1 staining	ORR (%)
Tumor cells					
<1% (N=34)	30 (88.2)	<1% (N = 20)	7 (35.0)	<1% (N=21)	17 (81.0
≥1% (N = 12)	12(100)	≥ 1% (N = 8)	3 (37.5)	≥ 1% (N = 6)	6(100)
Immune cells					
<1% (N = 14)	13 (92.9)	<1% (N = 12)	5 (41.7)	<1% (N=8)	7 (87.5)
≥1% (N = 32)	29 (90.6)	≥1% (N = 16)	5 (31.3)	≥1% (N = 19)	16 (84.2)

Y Drew, J W Kim, RT. Penson, D M O'Malley, C Parkinson, P Roxburgh, R Plummer, SA Im, M Imbimbo, M Ferguson, O Rosengarten, N Steeghs, MH Kim, E Gal-Yam, D Tsoref, JH Kim, B You, M Fe Jonge, R Laisang, E Gort, S Bastian, K Meyer, L Fenny, N Backer, MW Ah-See, S Domchek, S Banerjee. Olaparib plus durvalumab, with or without bevacizumab, in platinum-sensitive relapse high-grade serous ovarian cancer: a phase II multi-cohort study (MEDIOLA). CCR 2024

GOG-3025 DUO-O: C/T/Bev +/- Durva +/- Olaparib

Dosing and schedule: bevacizumab (15 mg/kg IV q3w); durvalumab (1120 mg IV q3w); olaparib (300 mg po bid); chemotherapy: paclitaxel 175 mg/m² IV q3w and carboplatin at AUC5 or AUC6 IV q3w. PFS interim analysis DCO: December 5, 2022. *With or without bevacizumab according to local practice; [†]Cycles 2–6; [‡]Genomic instability score ≥42 assessed prospectively by Myriad MyChoice CDx assay. AUC, area under the curve; bev, bevacizumab; bid, twice daily; CTx, chemotherapy; DCO, data cutoff; durva, durvalumab; FIGO, International Federation of Gynecology and Obstetrics; HRD, homologous recombination deficiency; ITT, intent-to-treat; IV, intravenous; ola, olaparib; OS, overall survival; PC, paclitaxel/carboplatin; po, by mouth; q3w, every 3 weeks; R, randomization; RECIST, Response Evaluation Criteria for Solid Tumors.

PFS: Non-tBRCAm HRD-positive population Arm 3 vs Arm 1 Arm 1 Arm 3 PC + bev PC + bev + durva + ola N=140 N=143 Median follow-up,* months 28.8 25.6 100 Events, n (%) 49 (35) 86 (60) 90% 90 Median PFS,[†] months 23.0 37.3‡ 84% Patients free from disease 80 HR (95% CI) 0.49 progression or death (%) **70%** vs Arm 1 (0.34-0.69)§ 85% 70 P<0.0001 60 69% 50 PC + bev + durva + ola 40 *** 30 20 PC + bev 10 0 15 33 36 39 42 9 12 18 21 24 27 30 45 0 3 6 Time from randomization (months) Patients at risk Arm 1 143 141 136 126 116 105 93 73 52 41 31 22 13 6 0

*In censored patients; †Medians and rates were estimated by KM method; ‡Median PFS in Arm 3 unstable; §HR and CI were estimated from a stratified

0

Cox proportional hazards model. P value from a stratified log rank text. Model stratified by timing and outcome of cytoreductive surgery; ¹24-month PFS rates unstable.

6

CI, confidence interval; HR, hazard ratio; KM, Kaplan-Meier.

140

138

135

131

120

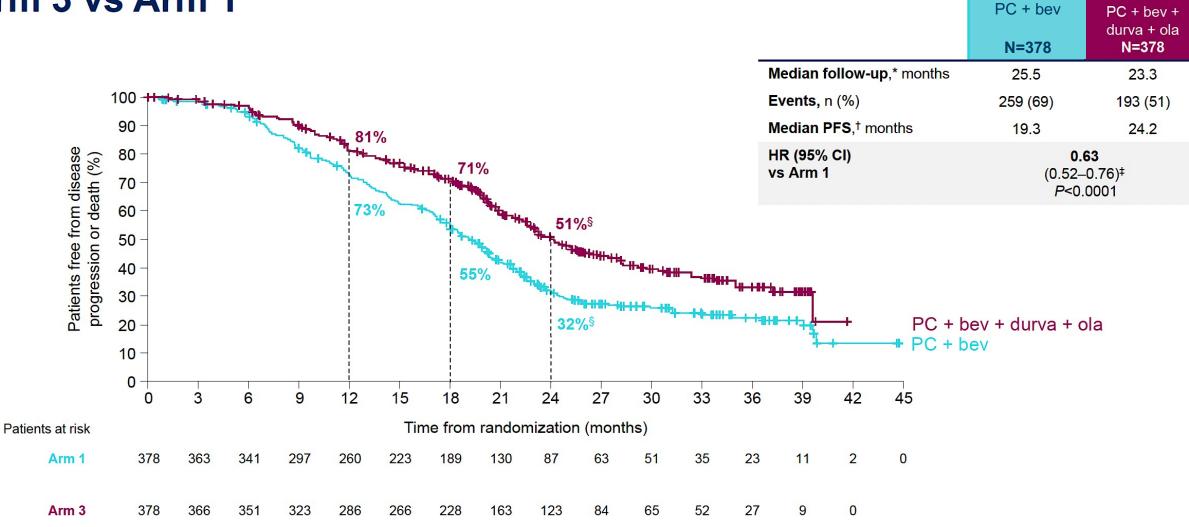
116

107

84

63

49

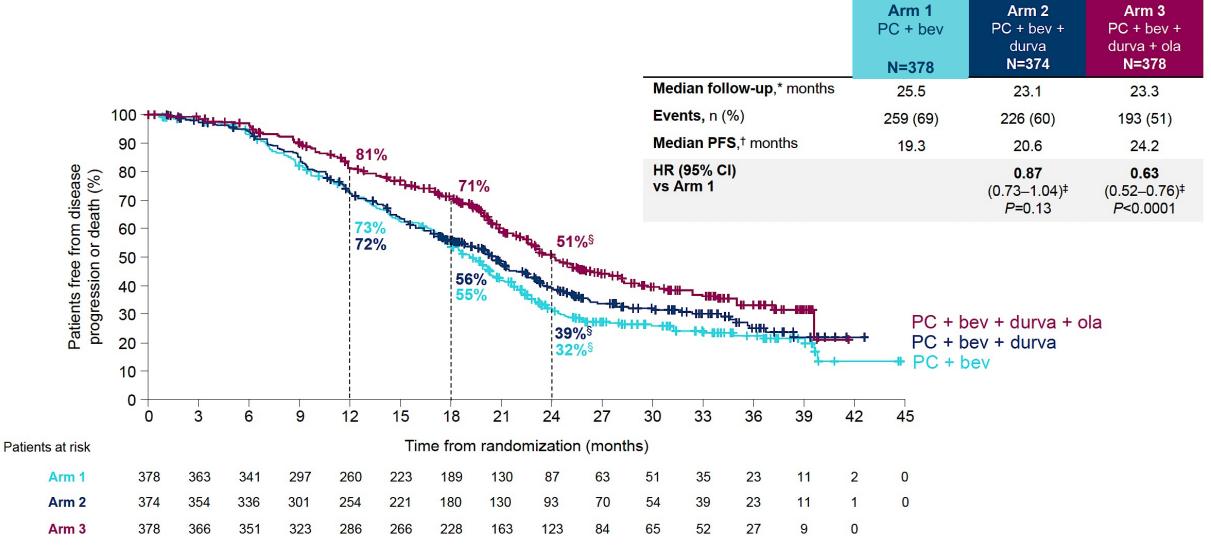

39

32

17

Arm 3

PFS: ITT population Arm 3 vs Arm 1

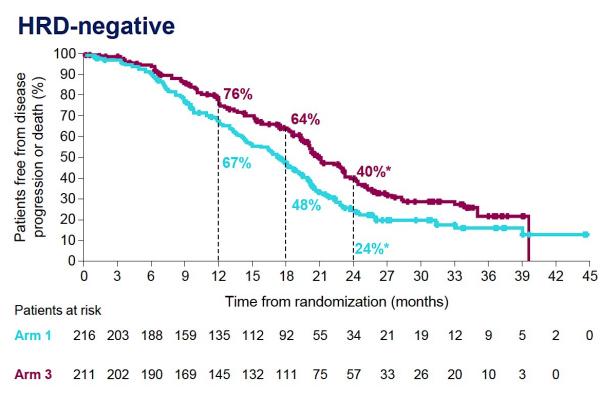


*In censored patients; [†]Medians and rates were estimated by KM method; [‡]HR and CI were estimated from a stratified Cox proportional hazards model. Model stratified by timing and outcome of cytoreductive surgery and geographical region. *P* value from a stratified log rank text; [§]24-month PFS rates unstable.

Arm 1

Arm 3

PFS: ITT population

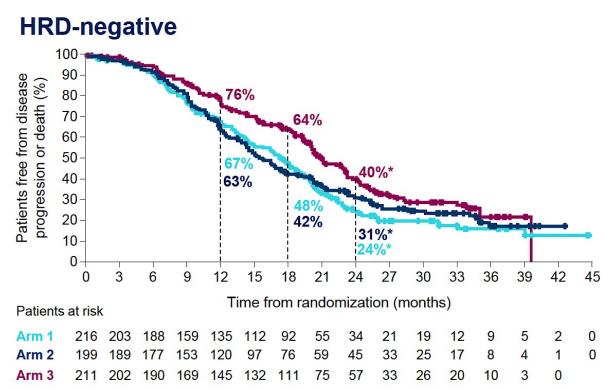


*In censored patients; [†]Medians and rates were estimated by KM method; [‡]HR and CI were estimated from a stratified Cox proportional hazards model. Model stratified by timing and outcome of cytoreductive surgery and geographical region. *P* value from a stratified log rank text; [§]24-month PFS rates unstable.

Subgroup analysis of PFS by HRD status

Non-tBRCAm HRD-positive 100-90% 84% Patients free from disease progression or death (%) **70%** 85% 69% **6**%³ C Time from randomization (months) Patients at risk Arm 126 116 105 140 138 135 131 120 116 Arm 3

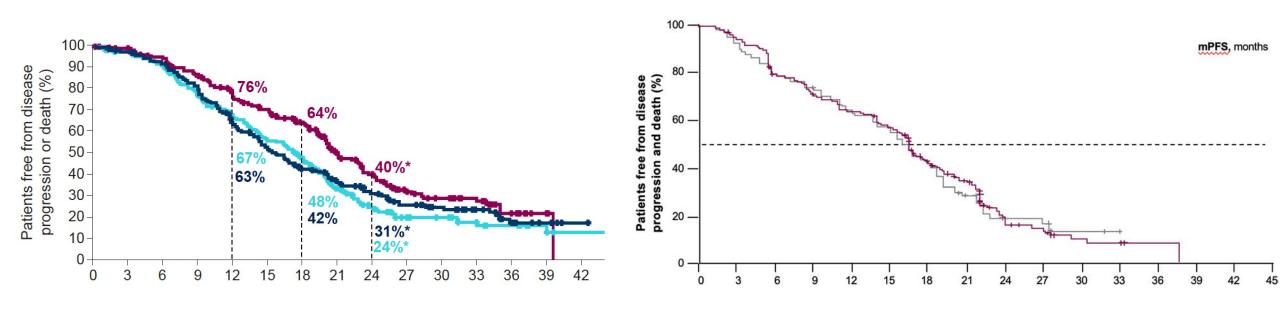
	Arm 1 PC + bev N=143	Arm 3 PC + bev + durva + ola N=140
Events, n (%)	86 (60)	49 (35)
Median PFS, months [†]	23.0	37.3 [‡]
HR (95% CI) vs Arm 1		0.51 (0.36–0.72)§


	Arm 1 PC + bev N=216	Arm 3 PC + bev + durva + ola N=211
Events, n (%)	157 (73)	127 (60)
Median PFS, months [†]	17.4	20.9
HR (95% CI) vs Arm 1		0.68 (0.54–0.86)§

*24-month PFS rates unstable; [†]Medians and rates were estimated by KM method; [‡]Median PFS in HRD-positive subgroup Arm 3 and Arm 2 unstable; [§]HR and CI were estimated from an unstratified Cox proportional hazards model.

Subgroup analysis of PFS by HRD status

Non-tBRCAm HRD-positive 100+ Statistics in the local division of the loca 84% Patients free from disease progression or death (%) 85% 85% 76% 69% 51%* 46%³ Time from randomization (months) Patients at risk Arm 1 Arm 2 135 131 120 116 Arm 3


	Arm 1 PC + bev N=143	Arm 2 PC + bev + durva N=148	Arm 3 PC + bev + durva + ola N=140
Events, n (%)	86 (60)	69 (47)	49 (35)
Median PFS, months [†]	23.0	24.4 [‡]	37.3‡
HR (95% CI) vs Arm 1		0.82 (0.60–1.12)§	0.51 (0.36–0.72)§

	Arm 1 PC + bev N=216	Arm 2 PC + bev + durva N=199	Arm 3 PC + bev + durva + ola N=211
Events, n (%)	157 (73)	142 (71)	1 27 (60)
Median PFS, months [†]	17.4	15.4	20.9
HR (95% CI) vs Arm 1		0.94 (0.75–1.18)§	0.68 (0.54–0.86)§

*24-month PFS rates unstable; [†]Medians and rates were estimated by KM method; [‡]Median PFS in HRD-positive subgroup Arm 3 and Arm 2 unstable; [§]HR and CI were estimated from an unstratified Cox proportional hazards model.

Cross Trial Comparison is not valid BUT... DUO-O (arms 1&3) & PAOLA-1 HRD

Is this a single????

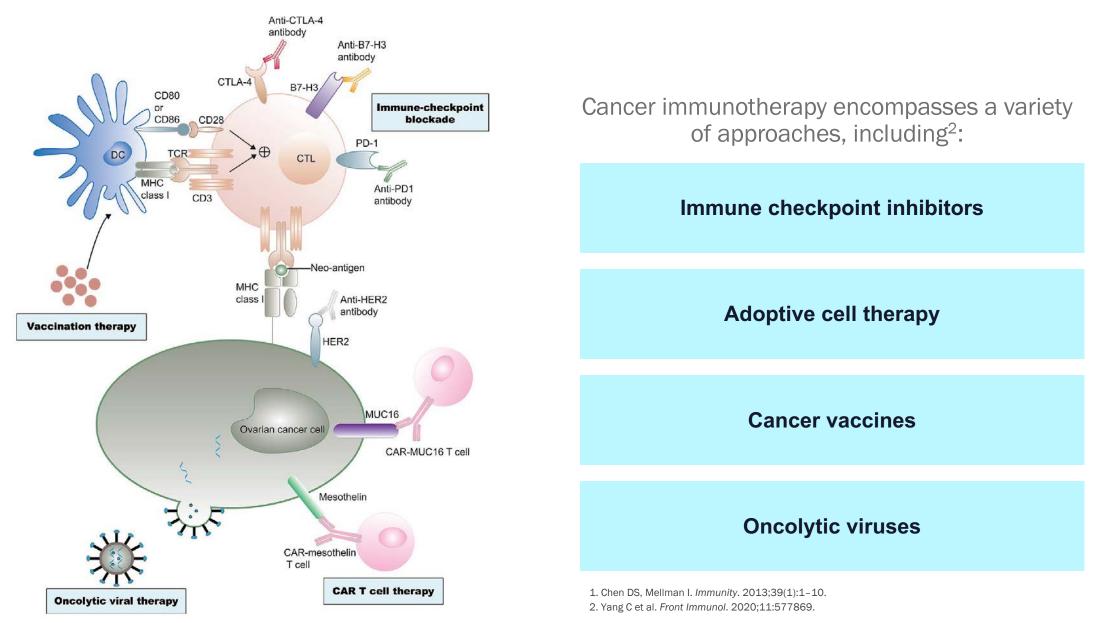
Completed Front Line Trials with IO

Trial	Size	Anti- angiogenic	PARPi	ICI	Start	Estimated Primary Completion
FIRST ^[a] ENGOT OV-44	1405	<u>+</u> Bevacizumab	Niraparib	Dostarlimab	Oct 2018	29 MAR 2024
ATHENA-COMBO ^[c] GOG-3020 ENGOT OV-45	~1000	-	Rucaparib	Nivolumab	May 2018	30 DEC 2024
KEYLYNK-001 ^[d] ENGOT OV-43 GOG-3036	~1086	<u>+</u> Bevacizumab	Olaparib	Pembrolizumab	Dec 2018	30 AUG 2024

Optional Bev

• a. ClinicalTrials.gov. NCT03602859; c. ClinicalTrials.gov. NCT03522246; d. NCT03740165.

Significant progress has been made in the first-line management of ovarian cancer over the past decade


2003	2011	2018	2019–2	2022	202	3-
Chemotherapy	Paradigm shift 1: Bevacizumab	Paradigm shift 2: PARP inhibitors for BRCA- mutated ovarian cancer	Paradigm PARP inhibit BRCA m	ors beyond		a shift 4?: apies added to tors +/- Bev
No further improvement in survival with chemotherapy alone	Bevacizumab improved PFS versus chemotherapy alone ^{3,4}	Olaparib SOLO-1 ⁵ NCT01844986	Olaparib + bevacizumab	PAOLA-1⁶ NCT02477644	Olaparib + bev + Durva	DUO-O NCT03737643
since the introduction of platinum–taxane chemotherapy ^{1,2}			Niraparib	PRIMA ⁷ NCT02655016	Niraparib + Dostar	FIRST ^a NCT03602859
			^a Rucaparib	ATHENA-MONO ⁸ NCT03522246	+/- Bev Olaparib + Pembro +/- Bev	KEYLYNK ^d NCT03740165
					Rucaparib + Nivo	ATHENA- combo ^c NCT03522246

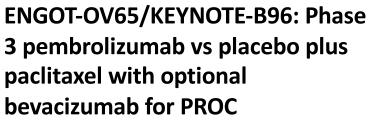
1. McGuire WP, et al. *N Engl J Med* 1996;334:1–6; 2. du Bois A, et al. *J Natl Cancer Inst* 2003;95:1320–1329; 3. Burger RA, et al. *N Engl J Med* 2011;365:2473–2483; 4. Perren TJ, et al. *N Engl J Med* 2011;365:2484–2496; 5. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT01844986 (Accessed March 2022);

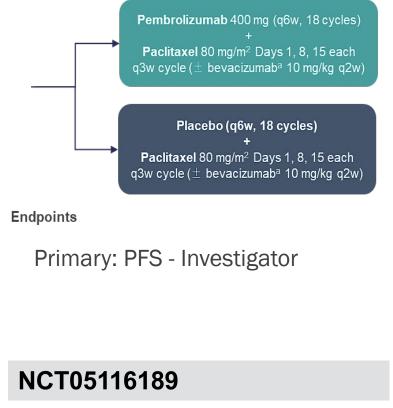
6. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT02477644 (Accessed March 2022); 7. ClinicalTrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT02655016 (Accessed March 2022); 8. Monk JM, et al. J Clin Oncol 2022. doi: http://ascopubs.org/doi/full/10.1200/JCO.22.01003 [Epub ahead of print]

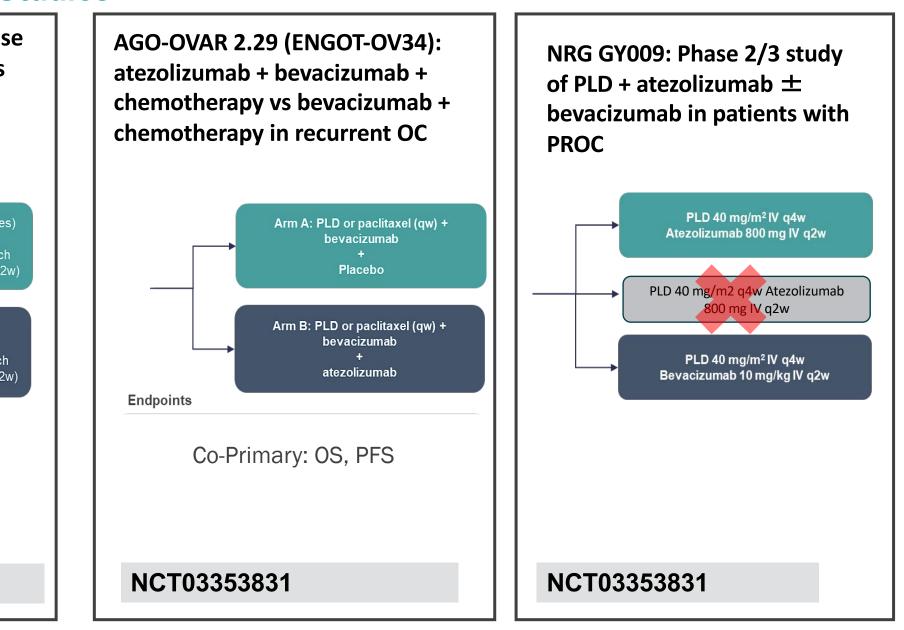
• a. ClinicalTrials.gov. NCT03602859; b. ClinicalTrials.gov. NCT03737643; c. ClinicalTrials.gov. NCT03522246; d. NCT03740165.

Platinum-Resistant Ovarian Cancer – Role of Immune Therapy

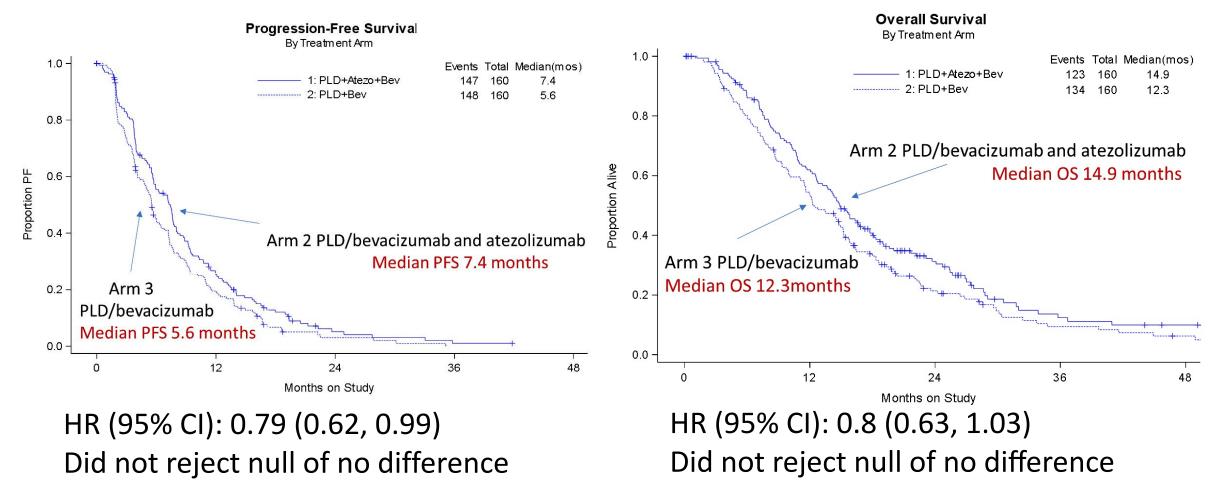
	Trial name (NCT number) / patient population (N)	Prior lines of anticancer treatment	Study design/treatments	Efficacy of Immune Checkpoint Inhibitors
Phase III		1: 48% for each arm 2–3: 52% for each arm	Open-label randomized: PLD or Ave or PLD + Ave	Co-primary end points: mPFS: 3.5 mo (95% CI: 2.1–4.0) for PLD, 1.9 mo (95% CI, 1.8–1.9) for Ave, 3.7 mo (95% CI: 3.3– 5.1) for PLD + Ave [no significant differences between treatment arms] mOS: 13.1 mo (95% CI: 11.8–15.5) for PLD, 11.8 mo (95% CI: 8.9–14.1) for Ave, 15.7 mo (95% CI: 12.7–18.7) for PLD + Ave [no significant differences between treatment arms]
	(N = 316)	Nivo vs Chemo: 1: 24% vs 20% 2: 42% vs 41% ≥3: 34% vs 39%	Open-label randomized: Chemo (Gem or PLD) or Nivo	Primary end point: mOS: 10.1 mo (95% CI: 8.3–14.1) for Nivo; 12.1 mo (95% CI: 9.3–15.3) for chemo (no significant differences between treatment arms) Secondary end points: mPFS: 2.0 mo (95% CI: 1.9–2.2) for Nivo; 3.8 mo (95% CI: 3.6–4.2) for chemo (HR 1.5, 95% CI: 1.2–1.9; p = 0.002); ORR: 7.6% for Nivo, 13.2% for chemo [no significant differences between treatment arms]; mDOR: 18.7 mo (95% CI: 2.5–NE) for Nivo, 7.4 mo (3.0–10.3) for chemo
	NCT02853318 (N = 30)	Median: 3.8 (SD 2.6)	Open-label single arm: Bev + Cyc + Pembro	Co-primary end points: ORR: 43.3% (90% CI: 29.6–58.2); PFS: 7.6 mo (90% CI: 5.7–10.3)
	(N = 26)	1: 38.5% 2: 38.5% 3: 23.1%	Open-label single arm: PLD + Pembro	Primary end point: CBR: 52.2% (95% CI: 30.6–73.2) Secondary end point: ORR: 26.1% (95% CI; 10.2–48.4)
	(NCT02674061)	1: 23% 2: 32% ≥3: 45%	Open-label single arm: Pembro	Primary end point: ORR by BICR overall: 8% (95% CI: 5.4–11.2) Secondary end points: DCR overall: 37.2% (95% CI: 32.3–42.3); DOR: 8.2 mo (range: 3.9–18.6) for cohort A; mPFS: 2.1 mo (95% CI: 2.1–2.2) for cohort A, 2.1 mo (95% CI: 2.1–2.6) for cohort B
	(N = 18)	1: 27.8% 2: 33.3% 3: 38.9%	Open-label single arm: Bev + Nivo	Primary end point: ORR: 16.7% (95% CI: 3.6–41.4) Secondary end points: mPFS: 7.7 mo (95% CI: 4.7–NA)
	(NCT02498600) (N = 100)	Nivo vs Nivo + Ipi: 1: 29% vs 20% 2: 47% vs 43% 3: 25% vs 37%	Open-label randomized: Nivo or Nivo + Ipi	Primary end point: ORR: 12.2% for Nivo, 31.4% for Nivo + Ipi (odds ratio 3.28, 85% CI: 1.5–infinity; p = 0.034) Secondary end points: mPFS: 2.0 mo for Nivo, 3.9 mo for Nivo + Ipi (95% CI: 0.339–0.821); (HR 0.528, 95% CI: 0.339– 0.821; 2-sided p = 0.004); mOS: 21.8 mo for Nivo, 28.1 mo for Nivo + Ipi [no sig difference b/t arms]
		Median: 3 (range: 1–5)	Open-label single arm: Nira + Pembro	Primary end point: ORR: 18% (90% CI: 11–29) Secondary end points: DCR: 65% (90% CI: 54–75); mPFS: 3.4 mo (95% CI: 2.1–5.1)

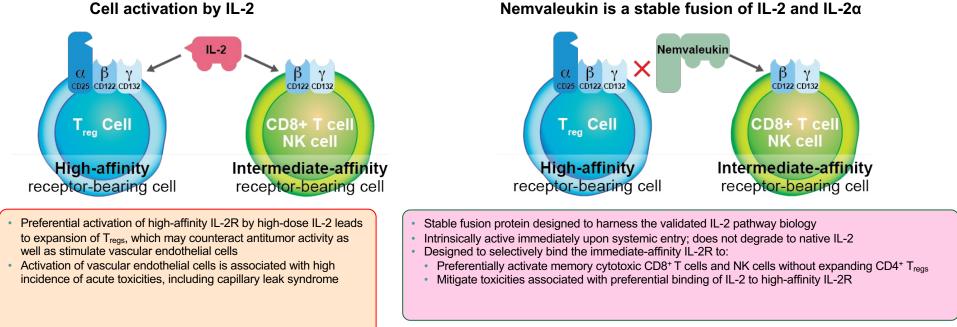

Pujade-Lauraine E, Fujiwara K, Ledermann JA *et al.* Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, Phase III study. Lancet Oncol. 22(7), 1034–1046 (2021). Hamanishi J, Takeshima N, Katsumata N *et al.* Nivolumab versus gemcitabine or pegylated liposomal doxorubicin for patients with platinum-resistant ovarian cancer: open-label, randomized trial in Japan (NINJA). J. Clin. Oncol. 39(33), 3671–3681 (2021). Zsiros E, Lynam S, Attwood KM *et al.* Efficacy and safety of pembrolizumab in combination with bevacizumab and oral metronomic cyclophosphamide in the treatment of recurrent avarian cancer: a phase 2 nonrandomized clinical trial. JAMA Oncol. 7(1), 78–85 (2021).


Lea EC, Xiong N, Cheng S-C *et al.* Combined periodicumab and pegylated liposimal doxrubicin in platinum resistant ovarian cancer: a phase 2 clinical trial. **Gynecol. Oncol.** 159(1), 72–78 (2020). Matulonis UA, Shapira-Frommer R, Santin AD *et al.* Antitumor activity and safety of pembrolizumab in platinum resistant ovarian cancer: a phase 2 clinical trial. **Gynecol. Oncol.** 159(1), 72–78 (2020). Liu JF, Herold C, Gray KP *et al.* Assessment of combined nivolumab and bevacizumab in relapsed ovarian cancer: a phase 2 clinical trial. **JAMA Oncol.** 5(12), 1731–1738 (2019).

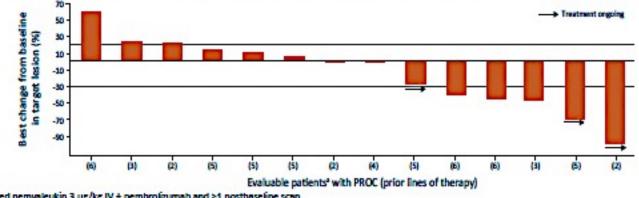

Zamarin D, Burger RA, Sill MW et al. Randomized phase II trial of nivolumab versus nivolumab and ipilimumab for recurrent or persistent ovarian cancer. an NRG Oncology study. J. Clin. Oncol. 38(16), 1814–1823 (2020). Konstantinopoulos PA, Waggoner S, Vidal GA et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol. 5(8), 1141–1149 (2019).

Thomas J Herzog, et al. ARTISTRY-7: phase III trial of nemvaleukin alfa plus pembrolizumab vs chemotherapy for platinum-resistant ovarian cancer. Future Oncology 2023 19:23, 1577-1591


CPI, Anti-Angiogenics & Chemotherapy into PROC: Randomized Phase 3 Studies



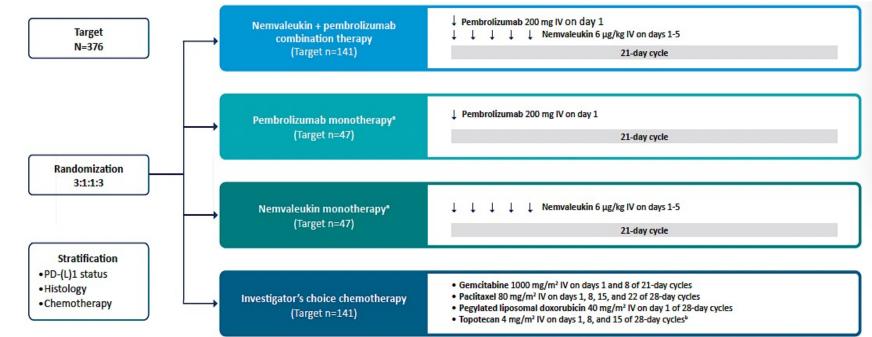
NRG GY009: A RPh2/3 STUDY OF PLD AND ATEZOLIZUMAB VS PLD, BEVACIZUMAB AND ATEZOLIZUMAB VS PLD AND BEVACIZUMAB IN PLATINUM-RESISTANT OVARIAN CANCER


Roisin O'Cearbhaill, et al. IGCS 2023

ARTISTRY-1: A Phase I/II Study of Nemvaleukin Alfa Alone and in Combination With Pembrolizumab

Nemvaleukin is a stable fusion of IL-2 and IL-2α

Figure 3: ARTISTRY-1 best change from baseline in sum of target lesions with nemvaleukin plus pembrolizumab in patients with PROC


•N=14 evaluable patients with PROC who received nervaleukin 3 µg/kg IV + pembrolizumab and ≥1 postbaseline scan. Response per Response Evaluation Criteria In Solid Tumors v1.1. Data cutoff October 29, 2021. IV, intravenous.

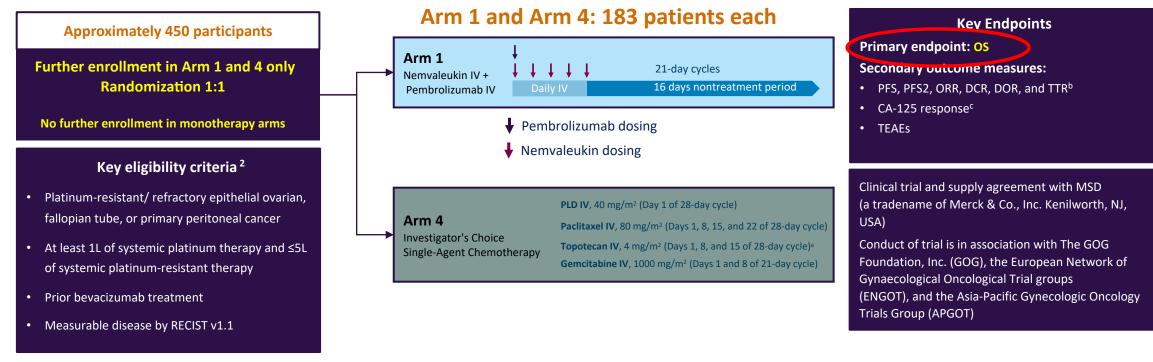
ARTISTRY-7: A Phase 3, Multicenter Study of Nemvaleukin Alfa in Combination With Pembrolizumab Versus Chemotherapy in Patients With Platinum-Resistant Epithelial Ovarian, Fallopian Tube, or Primary Peritoneal Cancer (GOG-3063; ENGOT-OV68)

- Recent Changes Announced*
 - OS primary endpoint
 - 56 additional patients
 - Closure of Single agent Pembro & Nemvaleukin arms

*Futility analyses planned to stop the monotherapy arms earlier. *1.25 mg/m² IV on days 1-5 of 21-day cycles is also an option.

Patients will continue treatment in the absence of disease progression or intolerable toxicity (maximum 35 cycles for pembrolizumab; nemvaleukin can be continued)

Patient survival will be followed until study end or up to 3 years after initiation of treatment, whichever occurs first

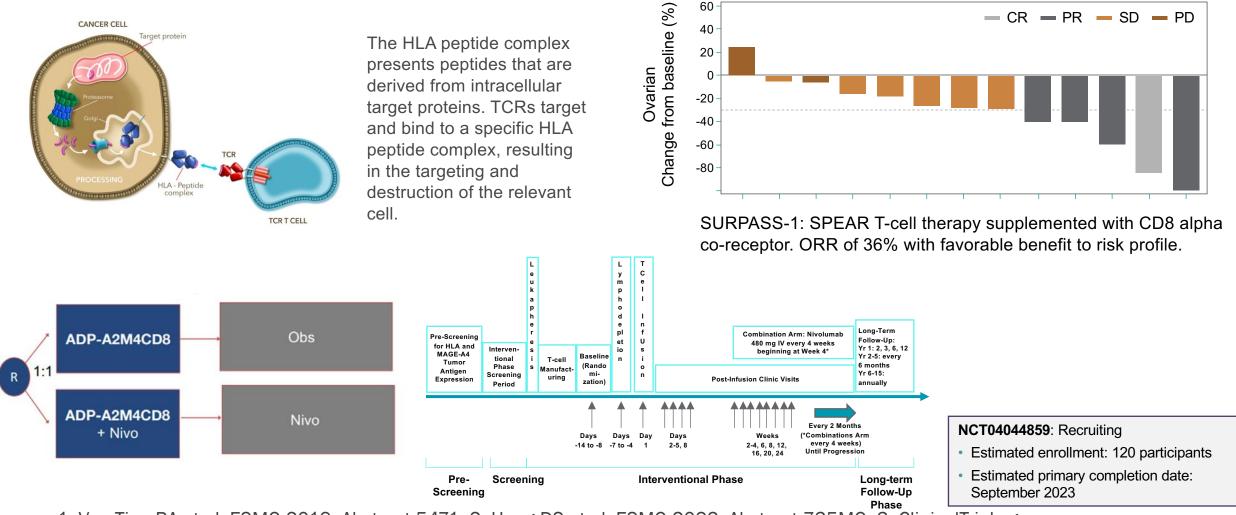

Thomas J Herzog, John L Hays, Joyce N Barlin, Joseph Buscema, Noelle G Cloven, Lynn R Kong, Nidhi Kumar Tyagi, Grainger S Lanneau, Beverly J Long, Robert L Marsh, Shelly M Seward, David C Starks, Stephen Welch, Kathleen N Moore, Panagiotis A Konstantinopoulos, Lucy Gilbert, Bradley J Monk, David M O'Malley, Xiwei Chen, Rita Dalal, Robert L Coleman, and Jalid Sehouli. ARTISTRY-7: phase III trial of nemvaleukin alfa plus pembrolizumab vs chemotherapy for platinum-resistant ovarian cancer. Future Oncology 2023 19:23, 1577-1591

The James

THE OHIO STATE UNIVERSITY

* https://ir.muraloncology.com/news-releases/news-release-details/mural-oncology-announces-enhancements-late-stage-clinical-trials

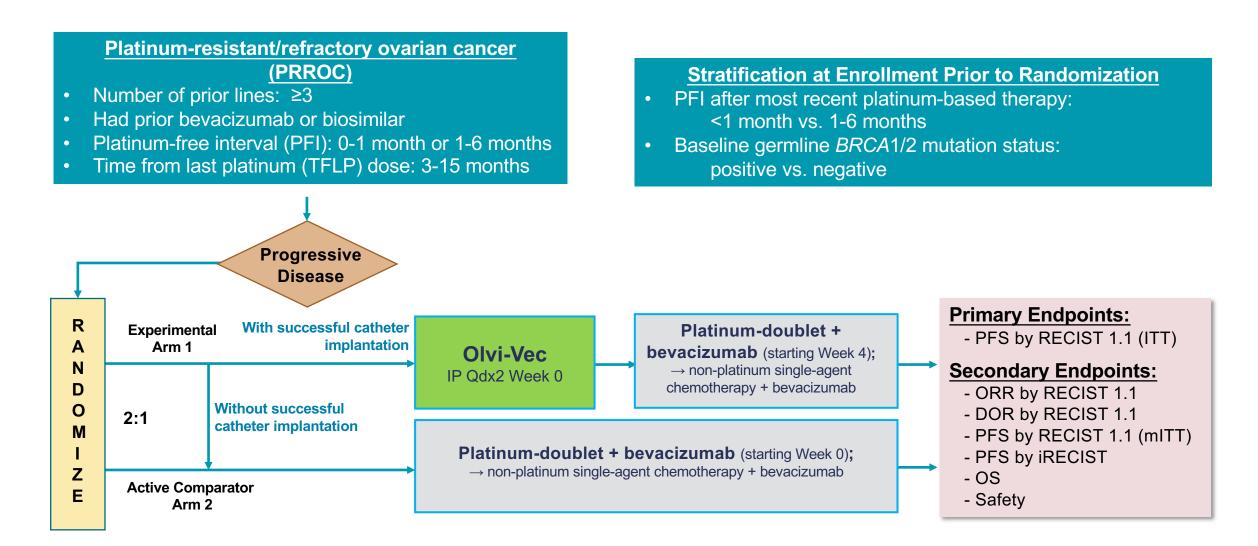
ARTISTRY-7: Updated Study Design (Protocol v5)

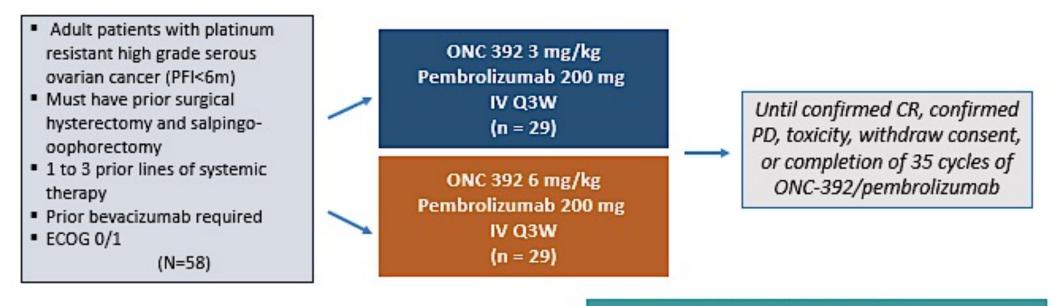

Arm 2 (Pembrolizumab Monotherapy) and Arm 3 (Nemvaleukin Monotherapy) met enrollment goals and closed to further enrollment.

^a Alternative topotecan regimen: 1.25 mg/m² on Days 1-5 of 21-d cycles ^b Response per RECIST v1.1 ^c Response per GCIG

- 1. Herzog T et al. Poster presented at the Society for Gynecologic Cancers Annual Meeting (SGO), Phoenix, AZ, March 18-21, 2022
- 2. https://clinicaltrials.gov, NCT05092360

Abbrev.: CA-125: cancer antigen-125; DCR: disease control rate; DOR: duration of response; GCIG: Gynecologic Cancer InterGroup; IV: intravenous; ORR: objective response rate; OS: overall survival; PFS: progression-free survival; PLD: pegylated liposomal doxorubicin; RECIST: Response Evaluation Criteria in Solid Tumors; TEAE: treatment-emergent adverse event; TTR: time to response


SURPASS-3: Phase 2 study of ADP-A2M4CD8 as monotherapy or in combination with nivolumab in HLA-A2+ patients with MAGE-A4–positive tumors


 1. Van Tine BA et al. ESMO 2019. Abstract 5471. 2. Hong DS et al. ESMO 2022. Abstract 735MO. 3. ClinicalTrials.gov. NCT04044859.

Phase 3 OnPrime/GOG-3076 trial in PROC

Oncolytic Vaccinia Virus Olvi-Vec (Modified oncolytic vaccinia virus (LIVP strain) with mutations that enhance tumor targeting

GOG-3081/ONC-392-005/PRESERVE-004 Phase 2 Randomized Open-label Multicenter Study of Combination of ONC-392 and Pembrolizumab for the Treatment of Patients with Platinum Resistant Ovarian Cancer (PI: Joyce Barlin/Brad Monk)

Primary endpoints: ORR and Safety. Secondary endpoints: DoR, DCR, BOR, PFS, OS

Summary

- First Line Therapy
 - Multiple Phase III trials will read out which will help to define the impact of IO in the first line
 - The impact of DUO-O remains unclear
- PROC
 - Multiple Opportunities for Novel Immune Strategies
 - Optimism persists
 - Challenging group of patients for IO therapies

MODULE 3: Incorporation of Novel Therapies into the Management of Relapsed/Refractory OC — Dr Moore

Consulting Faculty Questions

Mirvetuximab soravtansine: Repeat testing for folate receptor alpha on disease progression; monitoring for ocular toxicities

Neil Love, MD

Deborah K Armstrong, MD

Rachel N Grisham, MD

QUESTIONS FOR THE FACULTY

Deborah K Armstrong, MD

Rachel N Grisham, MD

What is your clinical experience with mirvetuximab soravtansine? How are you typically using this agent, and how frequently do you see antitumor benefit?

In general, how is mirvetuximab soravtansine tolerated? Are the ophthalmologic requirements associated with this agent challenging for you or your patients?

Consulting Faculty Questions

Screening patients for ILD associated with trastuzumab deruxtecan

Neil Love, MD

Rachel N Grisham, MD

Rachel N Grisham, MD

QUESTIONS FOR THE FACULTY

How are you currently approaching HER2 testing for patients with ovarian cancer? When are you typically testing, and how do you define HER2 positivity?

In what situations, if any, would you currently use trastuzumab deruxtecan (T-DXd)? How do you approach GI prophylaxis with T-DXd?

How do you screen for ILD in patients receiving T-DXd? How would you manage Grade 1 ILD with the agent? What about Grade 2? In what situations, if any, will you consider reintroducing T-DXd in a patient for whom ILD symptoms have resolved?

What other novel approaches, including antibody-drug conjugates, in development appear most promising?

Should HER2 testing be ordered for patients with advanced OC? Have you offered or would you offer HER2-targeted therapy to your patients with HER2-positive advanced OC outside of a protocol setting?

	Order HER2 testing?	Offer HER2-targeted therapy?	
Dr Liu	Yes	I have	
Dr Mirza	Yes	I have not but would for the right patient	
Dr Moore	Yes	I have not but would for the right patient	
Dr O'Malley	Yes	I have	
Dr Armstrong	Yes	I have	
Dr Grisham	Yes	I have not but would for the right patient	

In general how do you manage the nausea and vomiting associated with T-DXd?

Dr Liu	Premedication with 5-HT3 antagonist, neurokinin antagonist and steroids
Dr Mirza	NK1 inhibitors. We usually use aprepitant
Dr Moore	Premedication with antiemetics and good rescue for home
Dr O'Malley	Prophylactic regimen prior to infusion; if delayed nausea, then dexamethasone and prochlorperazine +/- olanzapine
Dr Armstrong	Ondansetron, prochlorperazine
Dr Grisham	Aprepitant with infusion, dexamethasone taper for 3 days post, ondansetron and lorazepam as needed

How would you rate your enthusiasm for enrolling a patient on the Phase II/III REJOICE-Ovarian01 study of raludotatug deruxtecan for patients with platinum-resistant, highgrade ovarian, primary peritoneal or fallopian tube cancer?

	Enthusiasm*	Comments	
Dr Liu	4	Based on Phase I data, rationale, and mechanism of action, I am enthusiastic	
Dr Mirza	4	Active drug	
Dr Moore	4	Phase I expansion data is very strong – drug is very well tolerated	
Dr O'Malley	4	No comment	
Dr Armstrong	3	Always excited about a new therapeutic target	
Dr Grisham	4	ADCs have been encouraging	

* 1 = not at all enthusiastic, 4 = very enthusiastic

Considerations for the treatment of recurrent ovarian cancer

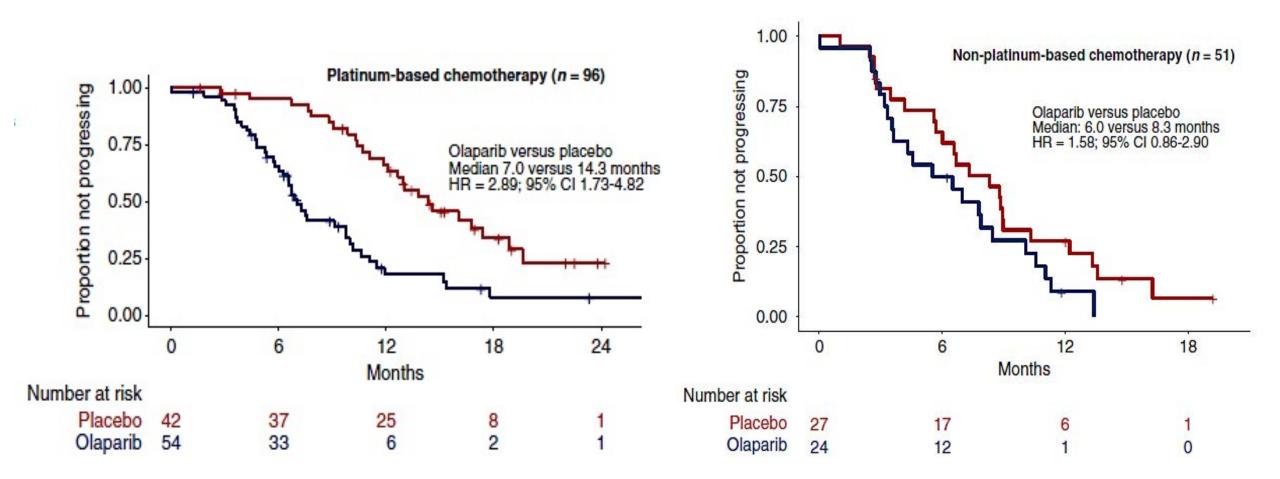
Kathleen N. Moore, MD, MS

Deputy Director and Associate Director Clinical Research

Stephenson Cancer Center at OU Health

Oklahoma City, OK

GOG F BOD

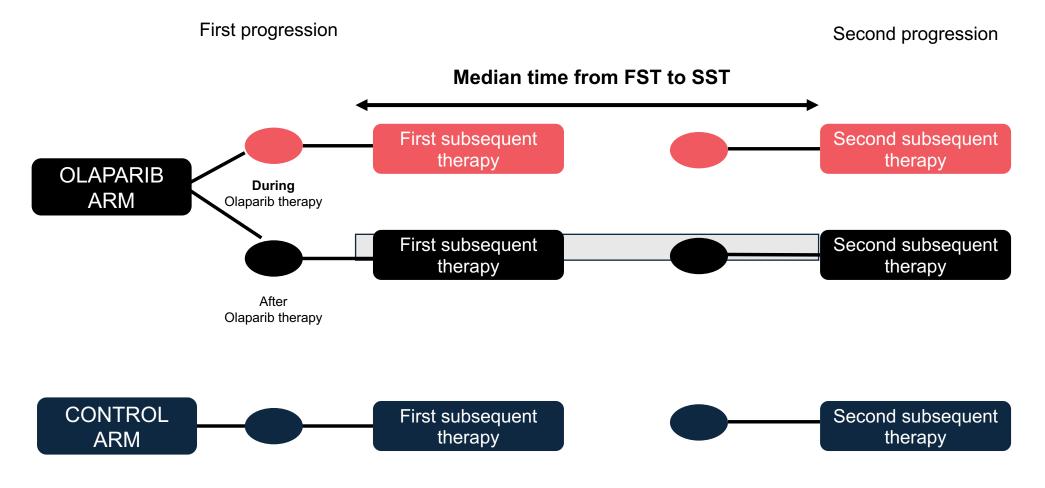

ASCO BOD

Objectives

- Role of PARP inhibition in recurrent disease
- Role of Antibody Drug Conjugates
 - Folate receptor alpha
 - Cadherin 6 (CDH6)
 - ERBB2/HER2

Overlap of Platinum & PARPi Resistance

Time to second progression according to subsequent therapy type

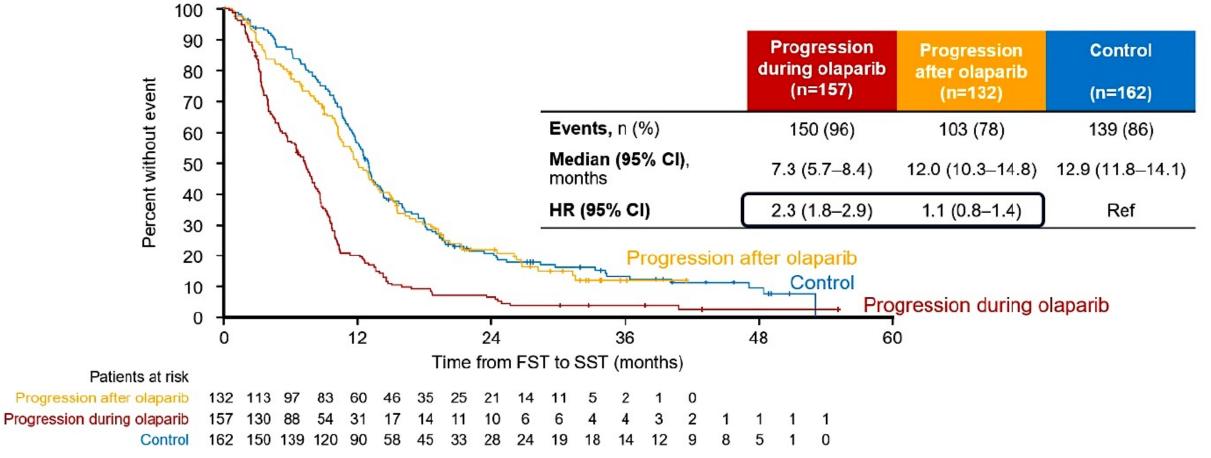


Frenel JS, et al. Ann Oncol. 2022;33(10):1021-8.

Resistance to PARPi = Resistance to Platinum?

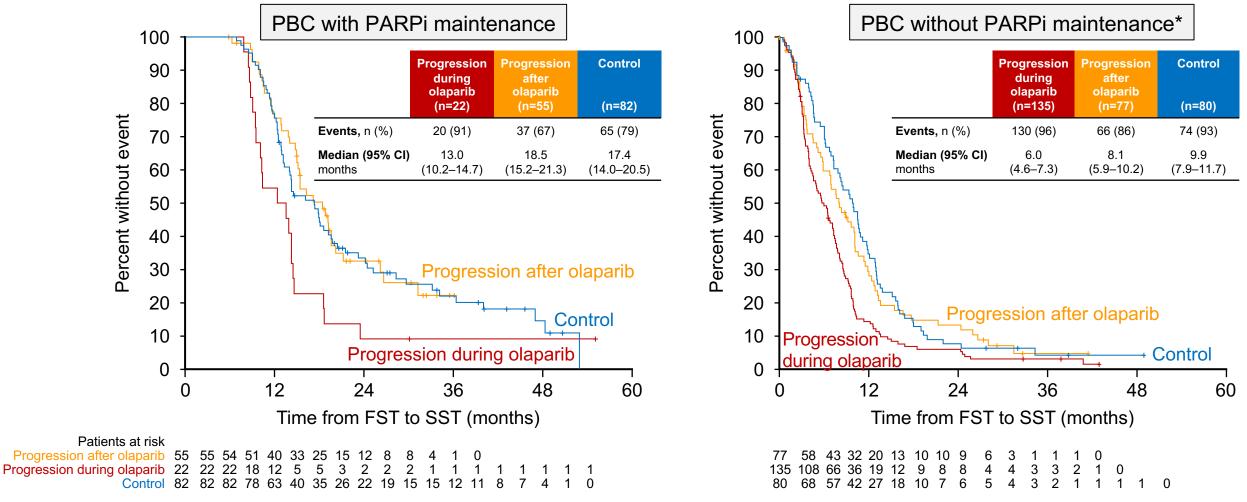
Post hoc exploratory analysis:

Time from first subsequent therapy to second subsequent therapy



FST, First Subsequent Treatment; SST, Second Subsequent Treatment

Ray Coquard et al NEJM 2019 & Harter et al ASCO 2023


Resistance to PARPi = Resistance to Platinum?

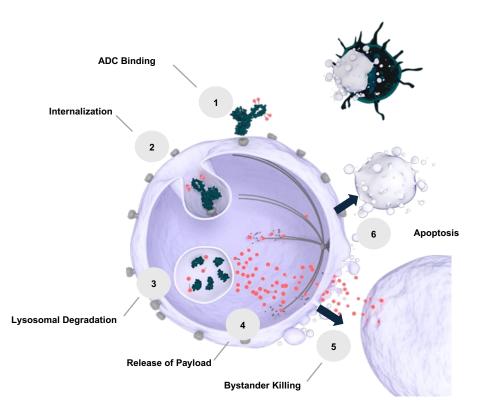
A *post hoc* exploratory PAOLA-1 analysis suggested the efficacy of subsequent chemotherapy at first relapse was reduced in patients with disease progression during vs after Olaparib plus bevacizumab maintenance¹

One patient in the olaparib arm did not receive study treatment and is not included in this analysis.

Does exposure to PARPi in FL = Resistance to PARPi in 2L?

^{*}One patient in the olaparib arm did not receive study treatment and is not included in this analysis.

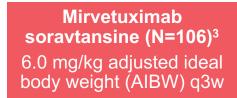
Marth C et al. ESGO 2023, Istanbul


Select ADCs under clinical development in gynecologic oncology indications

Target	Drug	DAR	Tumor type
	XMT-1660 ¹	6	Ovarian, endometrial
B7-H4	SGN-B7H4V ²⁻⁴	4	Ovarian, endometrial
	AZD8205 ^{5,6}	8	Ovarian, endometrial
CDH6	DS-6000a ^{7,8}	~8	Ovarian
FD at	Luveltamab tazevibulin (STRO-002) ^{9,10}	4	Ovarian, endometrial
FRα	Farletuzumab ecteribulin (MORAb-202) ^{11,12}	4	Ovarian, endometrial
	SYD985 ^{13,14}	2.7	Ovarian, endometrial
HER2	T-DXd ^{15,16}	7–8	Cervical, ovarian, endometrial
	DB-1303/BNT323 ^{17,18}	~8	Endometrial
Mesothelin	BMS-986148 ^{19,20}	3	Ovarian
Tissue factor	XB002 ^{21,22}	4	Cervical, ovarian
TROP2	Sacituzumab govitecan ^{23, 24}	7.5	Cervical, ovarian, endometrial
INUFZ	DB-1305 ^{25, 26}	~4	Ovarian, endometrial

ADC, antibody-drug conjugate; CDH6, cadherin 6; DAR, drug-antibody ratio; FRa, folate receptor alpha; HER2, human epidermal growth factor receptor 2; TROP2, trophoblast cell surface antigen 2.

1. Hamilton E et al. Poster presented at IGCS Annual Meeting 2022; Abstract 1420. 2. Gray E et al. *J Immunother Cancer*. 2021;9(Suppl 2):A1–A1054. 3. Patnaik A et al. Poster presented at ASCO Annual Meeting 2022; Abstract TPS3155. 4. ClinicalTrials.gov. NCT05194072. Accessed March 17, 2023. 5. Meric-Berstam F et al. Poster presented at ASCO Annual Meeting 2022; Abstract TPS3153. 6. ClinicalTrials.gov. NCT032482. Accessed March 17, 2023. 7. Hamilton EP et al. Oral Presentation at ASCO Annual Meeting 2018; Poster Presentation. 10. ClinicalTrials.gov. NCT03748186. Accessed March 17, 2023. 11. Cheng At al. *Nal Cancer Thes*. 2018;17(12):2665–2675. 12. ClinicalTrials.gov. NCT04300556. Accessed November 16, 2022. 13. Yao. *Drug Discov Today*. 2021;26(8):1857–1874. 14. ClinicalTrials.gov. NCT04205101. Accessed November 16, 2022. 15. Takegawa N et al. *Int Cancer*. 2017;14(18):1682–1689. 16. ClinicalTrials.gov. NCT04585958, NCT04483209, NCT04639219. Accessed March 17, 2023. 17. Swain et al. *Nat Rev Drug Discov*. 2023;22(2):101–126. 18. ClinicalTrials.gov. NCT05150691. Accessed October 10, 2023. 19. Rottey S et al. *Clini Cancer Res*. 2022;28(1):95-105. 20. ClinicalTrials.gov. NCT033462. Accessed March 17, 2023. 19. Rottey S et al. *Clini Cancer Res*. 2022;28(1):95-105. 20. ClinicalTrials.gov. NCT04585958, NCT04483209, NCT04639219. Accessed March 17, 2023. 17. Swain et al. *Nat Rev Drug Discov*. 2023;22(2):101–126. 18. ClinicalTrials.gov. NCT05150691. Accessed October 10, 2023. 19. Rottey S et al. *Clini Cancer Res*. 2022;28(1):95-105. 20. ClinicalTrials.gov. NCT033462. Accessed March 17, 2023. 17. Swain et al. Poster presentation at SGO Annual Meeting on Women's Cancer; Poster 301. 22. Barnscher S et al. *Cancer Res*. 2017;77(13 Suppl):61. 23. Saxena A et al. Poster presentation at ASCO Annual Meeting 2020; Abstract TPS3468. 24. ClinicalTrials.gov. NCT03544823.09, NCT045251416, NCT0354452.055. Accessed March 17, 2023; 25. A Phase 1 study of DB-1305 in people with advanced ovarian, endometrial, cervical, or lung cance


Mirvetuximab Soravtansine

MIRV is an ADC comprising an FRα-binding antibody, cleavable linker, and a maytansinoid DM4 payload² **SORAYA (NCT04296890)** was a global, single-arm pivotal study evaluating mirvetuximab soravtansine in adult patients with FR α -positive platinum-resistant epithelial ovarian, primary peritoneal, or fallopian tube cancer^{3–5}

Key eligibility criteria^{3–5}

- Platinum-resistant ovarian cancer
- Prior bevacizumab required, prior PARPi allowed
- 1–3 prior lines of therapy
- Patients with *BRCA* mutations allowed
- FRα-positive (≥75% of cells staining positive with ≥2+ staining intensity)

Primary endpoint³

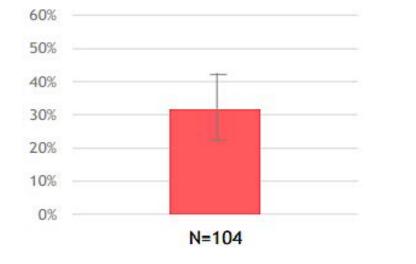
• ORR per Investigator Secondary endpoints²

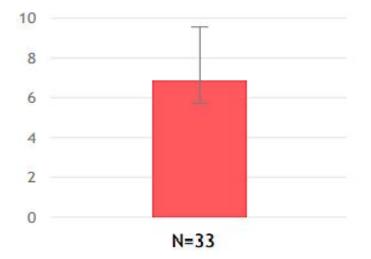
DOR, PFS, OS, CA-125 response by GCIG criteria, safety

Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

ADC, antibody-drug conjugate; BRCA breast cancer gene; CA-125, cancer antigen 125; DM4, maytansine 4; DOR, duration of response; FRα, folate receptor alpha; GCIG, Gynaecologic Cancer Intergroup; MIRV, mirvetuximab soravtansine; ORR, objective response rate; OS, overall survival; PARPi, poly (ADP-ribose) polymerase inhibitor; PFS, progression-free survival; PROC, platinum-resistant ovarian cancer; q3w, every 3 weeks.

1. FDA. Published November 14, 2022. Accessed March 3, 2023. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-mirvetuximab-soravtansine-gynx-fra-positive-platinum-resistant. 2. Moore KN et al. *Cancer.* 2017;123(16):3080–3087. 3. Matulonis UA et al. *J Clin Oncol.* 2023;JCO2201900. 4. Matulonis UA et al. Poster presentation at ASCO Annual Meeting 2022; Abstract 5512. 5. Mirvetuximab soravtansine-gynx package insert.; November 2022.




ORR% BY INVESTIGATOR¹

31.7% (22.9, 41.6)*

DOR BY INVESTIGATOR

6.9 months 95% CI: (5.6, 9.7)

	Mirvetuximab soravtansine (n=104)
Confirmed ORR, n (%) [95% CI] ^a	31.7 [22.9, 41.6]
Complete response, %	4.8
Partial response, %	26.9
mDOR, months [95% CI]	6.9 [5.6, 9.7]

Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

^aData shown from SORAYA safety population are derived from a separate data cutoff of April 29, 2022.³ DOR, duration of response; mDOR, median duration of response; ORR, objective response rate;. . Matulonis et al. J Clin Oncol. 2023 41(13): 2436-2445

An open-label, phase 3 randomized trial of MIRV vs investigator's choice chemotherapy in patients with FR α -high platinum-resistant ovarian cancer

AIBW, adjusted ideal body weight; BEV; bevacizumab; BICR, blinded independent central review; BRCA, BReast CAncer gene; CA-125, cancer antigen 125; chemo, chemotherapy; DOR, duration of response; FRα, folate receptor alpha; IC, investigator's choice; IHC, immunohistochemistry; INV, investigator; MIRV, mirvetuximab soravtansine; ORR, objective response rate; OS, overall survival; PARPi, poly (ADP-ribose) polymerase inhibitors; PFI, platinum-free interval; PFS, progression-free survival; PFS2, time from randomization until second disease progression; PLD, pegylated liposomal doxorubicin; PROs, patient-reported outcomes; PS2+, positive staining intensity ≥2; Q3W, every 3 weeks. ^aPROs will be measured using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire, 28-item Ovarian Cancer Module (OV28) study instrument.

^bGynecological Cancer InterGroup (GCIG) criteria.

1. ClinicalTrials.gov identifier: NCT04209855. Updated June 16, 2022. Accessed October 5, 2022. https://clinicaltrials.gov/ct2/show/NCT04209855

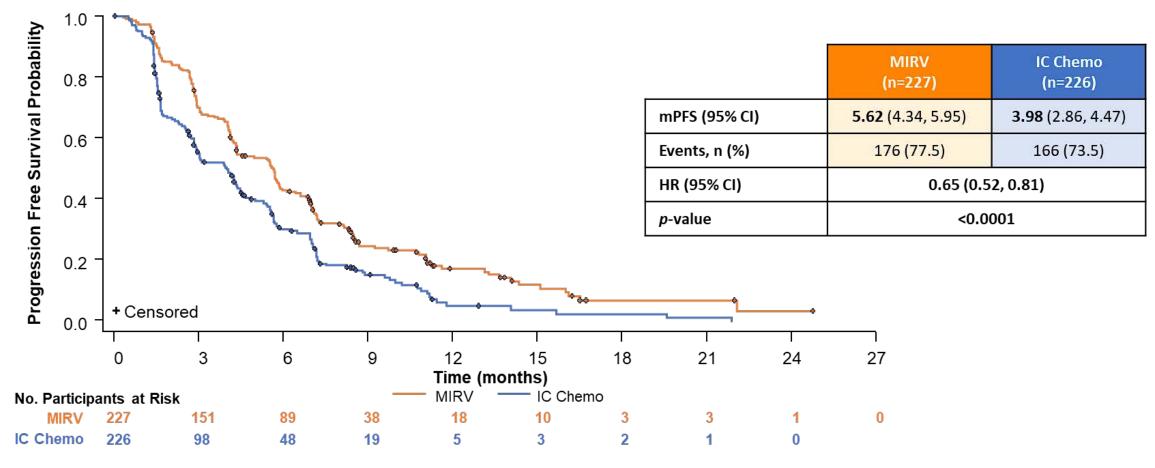
2. Moore K, et al. Presented at: 2020 American Society of Clinical Oncology Annual Meeting; May 29-31, 2020; Virtual. Abstract TPS6103.

Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

Baseline Demographics (N=453)

Characterist	ics	MIRV (n=227)	IC Chemo (n=226)
Age, median (range)	Age in years	63 (32-88)	62 (29-87)
Stage at initial diagnosis, n (%)ª	-	9 (4)	9 (4)
		137 (60)	147 (65)
	V	76 (33)	65 (29)
BRCA mutation, n (%)	Yes	29 (13)	36 (16)
	No/Unknown	198 (87)	190 (84)
No. of prior systemic therapies, n (%)	1	29 (13)	34 (15)
	2	90 (40)	88 (39)
	3	108 (48)	104 (46)
Prior exposure, n (%)	Bevacizumab	138 (61)	143 (63)
	PARPi	124 (55)	127 (56)
	Taxanes	227 (100)	224 (99)
Primary platinum-free interval, n (%) ^b	≤ 12 months	146 (64)	142 (63)
	> 12 months	80 (35)	84 (37)
Platinum-free interval, n (%) ^c	≤ 3 months	88 (39)	99 (44)
	> 3 - ≤6 months	138 (61)	124 (55)

Data cutoff: March 6, 2023


BRCA, BReast cancer gene; PARPi, poly (adenosine diphosphate [ADP]-ribose) polymerase inhibitor.

^aFive patients (2%) in the MIRV arm and five patients in the IC chemo arm (2%) were missing information for stage at initial diagnosis. ^bOne patient (<1%) in the MIRV arm was missing information on primary platinum-free interval.

^cOne patient (<1%) in the MIRV arm and 3 patients (1%) in the IC chemo arm enrolled with platinum-free interval of >6 months Moore KN, Angelergues A, Konecny GE, et al: Phase III MIRASOL (GOG 3045/ENGOT-ov55) study: Initial report of mirvetuximab soravtansine vs. investigator's choice of chemotherapy in platinum-resistant, advanced, high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate receptor–alpha expression. 2023 ASCO Annual Meeting. Abstract LBA5507. Presented June 4, 2023. Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

Primary Endpoint: Progression-Free Survival by investigator

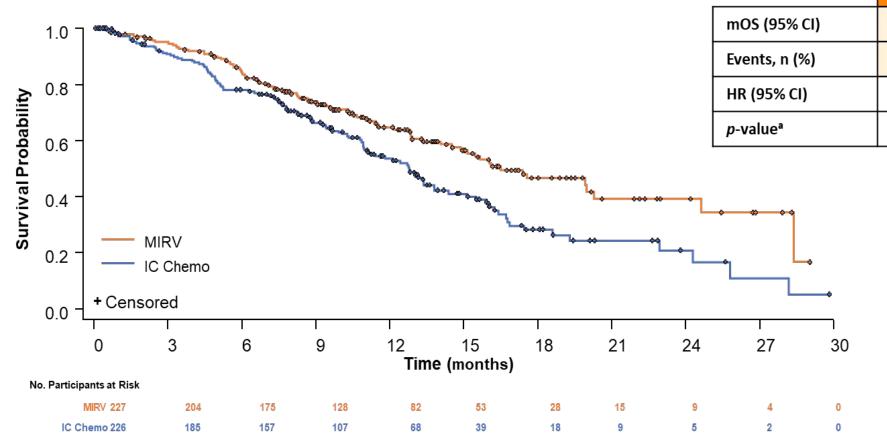
Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

Data cutoff: March 6, 2023

MIRV, mirvetuximab soravtansine; IC Chemo, investigator's choice chemotherapy; mPFS, median progression-free survival; CI, confidence interval; HR, hazard ratio

Moore et al. N Engl J Med 2023 De 7;380(23):31622174. doi: 10.1056/NEJMoa2309169

Best Overall Response by Investigator (N=453)


	MIRV (n=227)	IC Chemo (n=226)
ORR, n (%) [95% CI]	96 (42) [35.8, 49.0]	36 (16) [11.4, 21.4]
Best overall response, n (%)		
CR	12 (5)	0
PR	84 (37)	36 (16)
SD	86 (38)	91 (40)
PD	31 (14)	62 (27)
Not evaluable	14 (6)	37 (16)

Data cutoff: March 6, 2023

MIRV, mirvetuximab soravtansine; IC chemo, investigator's choice chemotherapy; ORR, objective response rate; CI, confidence interval; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease

Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

MIRAS L Overall Survival

	MIRV (n=227)	IC Chemo (n=226)	
mOS (95% CI)	16.46 (14.46, 24.57)	12.75 (10.91, 14.36)	
Events, n (%)	90 (39.6)	114 (50.4)	
HR (95% CI)	0.67 (0.50, 0.89)		
<i>p</i> -value ^a	0.0046		
Overall survival is statistically significant based on pre-specifie			

^aOverall survival is statistically significant based on pre-specified boundary p-value at interim analysis = 0.01313

Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

Data cutoff: March 6, 2023

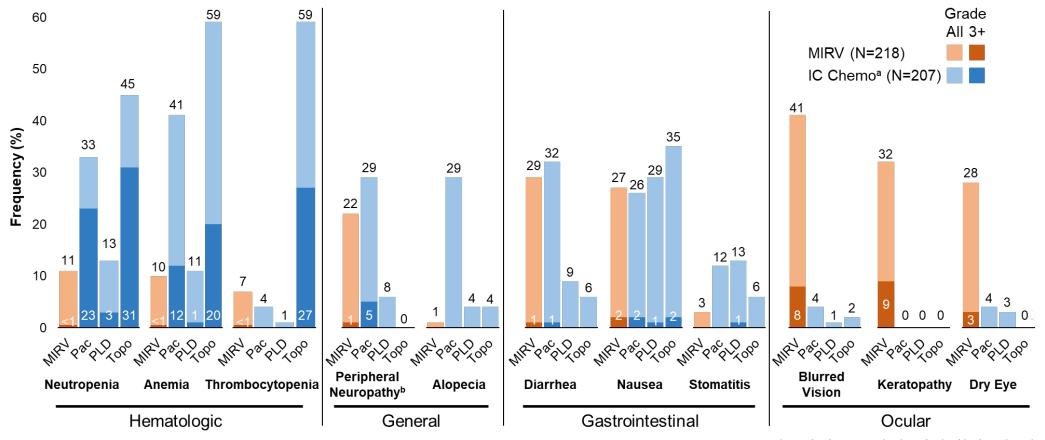
MIRV, mirvetuximab soravtansine; IC Chemo, investigator choice chemotherapy; mOS, median overall survival; CI, confidence interval; HR, hazard ratio. ^aOverall survival is statistically significant based on pre-specified boundary p-value at interim analysis = 0.01313

Moore et al. N Engl J Med 2023 Dec 7;380(23):31622174. doi: 10.1056/NEJMoa2309169

MIRAS

Safety Summary (N=425)

MIRV demonstrated a tolerable safety profile compared with IC Chemo


	MIRV (n=218)	IC Chemo (n=207)
Any TEAE, n (%)	210 (96)	194 (94)
Grade 3+ TEAEs, n (%)	91 (42)	112 (54)
SAEs, n (%)	52 (24)	68 (33)
Deaths on study drug or within 30 days of last dose, n (%)	5 (2)	5 (2)
Dose reductions due to TEAEs, n (%)	74 (34)	50 (24)
Dose delays due to TEAEs, n (%)	117 (54)	111 (54)
Discontinuations due to TEAEs, n (%)	20 (9)	33 (16)

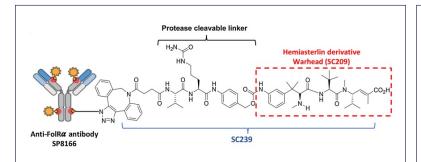
Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

Moore et al. N Engl J Med 2023 Dec 7;380(23):31622174. doi: 10.1056/NEJMoa2309169

Differentiated Safety Profile: Treatment-Emergent Adverse Events

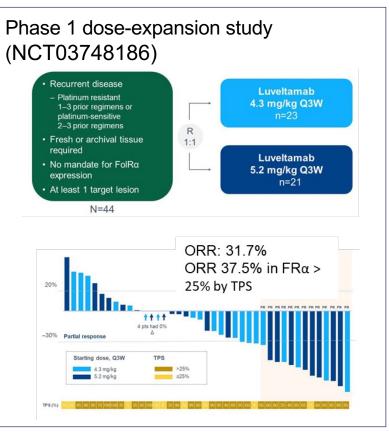
Data cutoff: March 6, 2023

MIRV, mirvetuximab soravtansine; IC Chemo: investigator's choice of chemotherapy; Pac, paclitaxel; PLD, pegylated liposomal doxorubicin; Topo, topotecan.

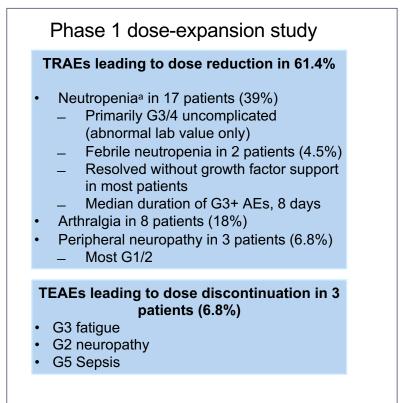

aPac n=82, PLD n=76, Topo n=49. bGrade 2+ peripheral neuropathy events were observed in 12% and 16% of patients that received MIRV or paclitaxel, respectively.

Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

Moore et al. N Engl J Med 2023 Dec 7;380(23):31622174. doi: 10.1056/NEJMoa2309169


Other FRα ADCs: Luveltamab tazevibulin (STRO-002) FRα-targeted ADC

Luveltamab

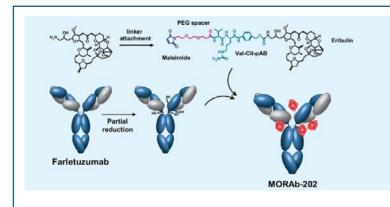


- Luveltamab (STRO-002) is a homogenous ADC targeting FRα
- Cathepsin B linker, which is a stable protease-cleavable linker
- Hemiasterlin-derivative^a cytotoxic payload
- DAR=4

Efficacy Related Outcomes

Safety Related Outcomes

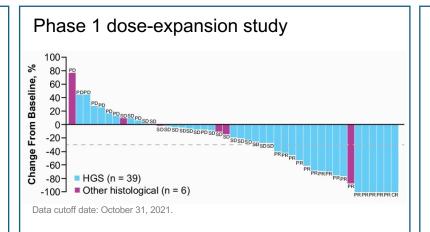
Currently moving to late phase trial


^aSutro-proprietary tubulin-targeting 3-aminophenol hemiasterlin warhead, SC209

ADC, antibody-drug conjugate; AE, adverse event; DAR, drug-to-antibody ratio; FRα, folate receptor alpha; G, grade; ORR, objective response rate; PD, progressive disease; PR, partial response; R, randomization; TPS, tumor proportion score; Q3W, every 3 weeks; TEAE, treatment-emergent adverse event.

1. Oaknin et al. Poster presented at ASCO 2023; Abstract 5508. 2. Sutro Biopharma. Accessed March 2, 2023. https://www.sutrobio.com/wp-content/uploads/2023/01/Sutro-STRO-002-Luvelta-update-Jan-9-2023-FINAL.pdf

Other FRα ADCs: Farletuzumab ecteribulin (MORAb-202) FRα-targeted ADC


MORAb-2021,2

MORAb-202 is an ADC consisting of:

- Antibody: farletuzumab
- Linker: cathepsin B cleavable linker
- Payload: eribulin, microtubule inhibitor
- DAR=4

Efficacy Related Outcomes^{1,2}

Parameter	Cohort 1: MORAb-202 0.9 mg/kg (n=24)	Cohort 2: MORAb-202 1.2 mg/kg (n=21)
CR, n (%)	1 (4.2)	0
PR, n (%)	5 (20.8)	11 (52.4)
SD, n (%)	10 (41.7)	9 (42.9)
PD, n (%)	8 (33.3)	1 (4.8)
ORR, # (5), (95% OI) ^a	C (25.0), (0.0-46.7)	11 (52.4), (20.0-74.0)
DCR, n (5), (95% Cl)ª	16 (66.7), (44.7–84	20 (95.2), (76.2–99.9)
mpro, mo (95% Ci)	0.7 (1.3-12)	0.2 (4.2-10.4)
mOS, mo (95% CI)ª	10.5 (6.4–15.1)	NE (12.5–NE)

Safety Related Outcomes¹

Phase 1 dose-expansion study

- The most common TEAE was interstitial lung disease (ILD)/pneumonitis at both dose levels
 - Cohort 1: 37.5%

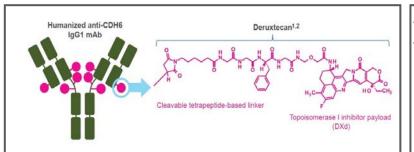
(n=9; 8 with Gr 1; 1 with Gr 2)

- Cohort 2: 66.7% (n=14; 6 with Gr 1; 7 with Gr 2, 1 with
 - Gr 3)
- Other common TEAEs of any grade, in Cohorts 1 and 2, respectively, were:
 - Nausea (25.0%; 33.3%)
 - Pyrexia (33.3%; 42.9%)
 - Malaise (16.7%; 28.6%)
 - Headache (12.5%; 47.6%)

^a CI calculations: ORR, DRC–Clopper-Pearson's exact method; PFS, OS–Kaplan-Meier estimate and Greenwood Formula

ADC, antibody-drug conjugate; CI, confidence interval; CR, complete response; DAR, drug-to-antibody ratio; DCR, disease control rate; Gr, grade; HGS, high-grade serous; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; SD, stable disease; TEAE, treatment-emergent adverse event.

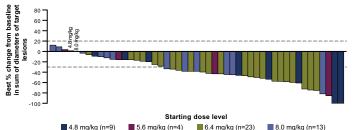
1. Nishio S et al. ASCO 2022. Abstract 5513. 2. Shimizu T et al. ASCO 2019. Abstract 5544

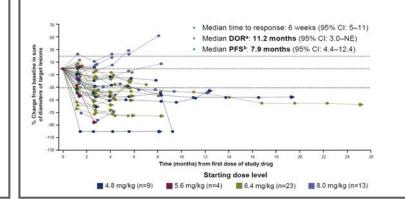

Other Antibody Drug Conjugates (ADCs) Targeting FRα PRO1184 & IMGN151 (Phase I Studies)

IMGN151 (NCT04209855)^{2,3} – Phase 1/2 PRO1184 (NCT05579366)¹ – Phase 1/2 PRO1184 Structure Igrov-1 xenograft (ovarian carcinoma) 500 Vehicle IMGN853 50 µg DM/kg (2.9 mg Ab/kg) Medium FRa IMGN853 100 µg DM/kg (5.7 mg Ab/kg) 400 (H-score 120) Novel linker IMGN151 50 µg DM/kg (2.6 mg Ab/kg) 300 200 F13 IMGN151 100 µg DM/kg (5.1 mg Ab/kg) 100 DM21-L-G 60 80 100 120 0 20 40 Day (post inoculation) B5327A: asymmetric 1200 OV-90 xenograft (endometrial) biparatopic anti-FRa antibody E 1000 Activity of PRO1184 in PDX Α IMGN853 20 µg DM/kg (1.1 mg Ab/kg) Vehicle IHC H-score (ORR = 63%) comprised of IMGN853 arm and High >200 IMGN151 10 µg DM/kg (0.5 mg Ab/kg) 800 Mid 100-200 a scFv-arm targeting an IMGN151 20 µg DM/kg Low Part A: Dose escalation and dose level expansion Low FRa <100 Best % chang ative to basel 600 (1.0 mg Ab/kg) independent epitope of FRa (H-score 48) EOC, endometrial cancer 400 Expand 2 dose breast cancer, NSCLC, and levels up to n=12 IMGN151 40 µg DM/kg mesothelioma 200 (2.1 mg Ab/kg) DM21-L-G: maytansine-derived Retrospectiv FRa-testing 20127 20120 20130 20130 20132 20132 20132 20132 20132 20132 20132 20132 20132 20132 20132 payload/linker 0 10 20 30 40 50 60 70 80 Day (post inoculation) Activity of PRO1184 vs. FR107-DM4 in PDX в PR01184 **Dose Escalation Phase Expansion Phase** ER107-DM 3+3 Design % change to basell Expansion Cohorts Part B: FRα-positive tumor specific dose expansions* Cohorts IMGN151 Dose Endometrial Cancer Cohort A Cohort 1 0.75 mg/kg* (up to 43 participants) Potential tumor types: Cohort 2 50 mg/m² PROC Cohort B EOC (up to 129 participants) Cohort 3 100 mg/m² endometrial cancer or Type 2 C breast cancer (HR+/HER2-Cohort 4 130 mg/m² OV530/ RP2D-OV0243 and triple negative Cohort 5 160 mg/m² **Full Expansion** High grade serous Panillary NSCI C 4-score = 6 2000 Cohort 6 200 mg/m² nor Type 3 mesothelioma Biomarker Cohort 7 250 mg/m² Cohort B . 1500-Cohort A *FRα-positive required for Analysis 2000 25 additional 111 additional eligibility 300 mg/m² Cohort 8 nor Type 4 Participants 1000 Participants Up to 55 participants (Tumor restricted to ovarian Cohort B - Beginning at 72 **Futility Analysis** and endometrial carcinomal At 18 participant enrolled participants 10 20 10 20 30 per cohort while Cohort A - upon Days after start of treatment enrollment continu completion of cohort 1. Call et al. AACR 2023 Abstract #9329 2. Ab O et al. AACR 2020 Abstract # 2829; 3. Study Details | First in Human Study of IMGN151 in Recurrent Endometrial Cancer and Recurrent,

High-grade Serous Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancers | ClinicalTrials.gov (accessed March 2024)

Raludotatug deruxtecan (DS-6000a), CDH6-directed ADC^{1,2}


DS-6000^{1,2}



- A humanized anti-CDH6 IgG1 monoclonal antibody
- A topoisomerase I inhibitor payload, an exatecan derivative
- · A tetrapeptide-based cleavable linker
- DAR ~8

Efficacy Related Outcomes

Confirmed ORR: 46% in the 4.8–8.0 mg/kg OVC cohort (23/50; 95% CI: 32–61); one CR and 22 PRs • 4 unconfirmed responses were ongoing at data cutoff Disease control rate³: 98%

Safety Related Outcomes

Most common (≥10%)TEAEs				
	All grades	Grade ≥3		
Nausea	35 (58.3)	1 (1.7)		
Fatigue	27 (45.0)	2 (3.3)		
Vomiting	20 (33.3)	1 (1.7)		
Anemia	17 (28.3)	11 (18.3)		
Decreased neutrophil count	15 (25.0)	7 (11.7)		
Diarrhea	16 (26.7)	1 (1.7)		
Decreased appetite	15 (25.0)	1 (1.7)		
Decreased platelet count	10 (16.7)	3 (5.0)		
Alopecia	7 (11.7)	0		
Malaise	6 (10.0)	0		

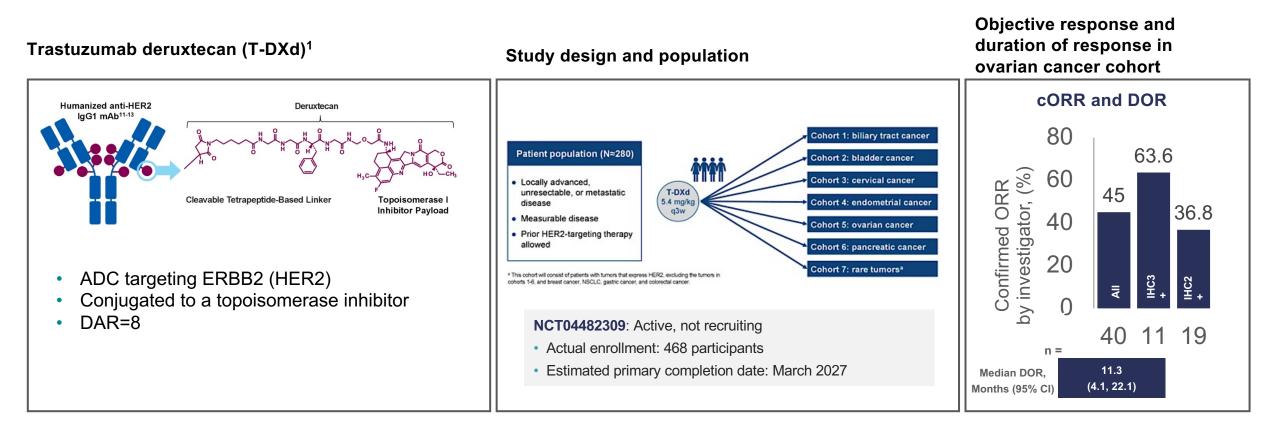
NCT04707248: Recruiting

- Estimated enrollment: 140 participants
- Estimated primary completion date: October 31, 2024

Data cutoff: July 14, 2023

The efficacy evaluable population included patients who received ≥ 1 dose of study treatment and completed ≥ 1 post-baseline tumor assessment or discontinued treatment for any reason. Change from baseline in target tumor size was assessed per RECIST v1.1.

Two patients with no measurable lesions at baseline and one patient who discontinued and did not have a post-baseline tumor assessment were not included in the waterfall or spider plots. DCR: CR + PR + stable disease.


^aMedian f/u for DOR: 5.8 months (range: 1.4-16.8). ^bMedian f/u for PFS: 5.6 months (range 0.03-25.1)

ADC, antibody-drug conjugate; CDH6, cadherin-6; cORR, confirmed overall response rate; CR, complete response; DAR, drug-to-antibody ratio; DCR, disease control rate; DOR, duration of response; f/u, follow-up; IgG1, immunoglobulin G1; NE, not estimable; ORR, overall response rate; OVC, serous ovarian cancer; PFS, progression-free survival; PR, partial response; PROC, platinum-resistant ovarian cancer; RCC, renal cell carcinoma; TEAE, treatment-emergent adverse event.

1. Moore KN et al. Poster presented at ESMO 2023; Abstract 3002. 2. ClinicalTrials.gov. NCT04707248. Accessed March 1, 2023.

Trastuzumab deruxtecan (T-DXd), HER2-targeted ADC for patients with HER2-expressing tumors including OC

DESTINY-PanTumor02 (NCT04482309), phase 2, T-DXd in select advanced HER2-expressing tumors (including GYN tumors)^{1,2}

ADC, antibody-drug conjugate; cORR, confirmed overall response rate; DAR, drug-to-antibody ratio; DOR, duration of response; ERBB2, erb-b2 receptor tyrosine kinase 2; GYN, gynecologic; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; OC, ovarian cancer; q3w, every 3 weeks.

1. ClinicalTrials.gov. NCT04482309. Accessed March 1, 2023; 2. Meric-Bernstam F et al. J Clin Oncol. 2024 42(1): 4758

Prevalence of HER2 expression in Ovarian Cancer

- Largest study GINECO study of 320 patients (Tuefferd M, et al. PLoS One 2007)
 - Evaluated with IHC and FISH, using breast criteria (complete membrane staining)
 - HER2 2+ or 3+ was 13%
 - Potentially under-representation given breast criteria used
- Additional studies estimate up to ~20% prevalence of HER2 2+/3+
 - Chao WR, et al. Virchows Arch 2022 HER2 in mucinous ovarian carcinoma
 - HER2 positive 18.2% by gastric criteria, 14.2% by breast criteria
 - Ersoy E, et al. Int J Gynecol Pathol 2022 100 cases high-grade serous carcinoma
 - 81 cases HER2 0/1+ and 18 were 2+ and 1 was 3+
 - Bookman MA, et al. J Clin Oncol 2003 phase II GOG study of trastuzumab
 - Utilized complete membrane staining criteria
 - 11.4% were HER2 2+/3+ and 19% were HER2 1+

Antibody Drug Conjugates (ADCs) **Treatment Related Adverse Events: Hematologic**

Raludotatug deruxtecan

All

grades

35 (58.3)

27 (45.0)

20 (33.3)

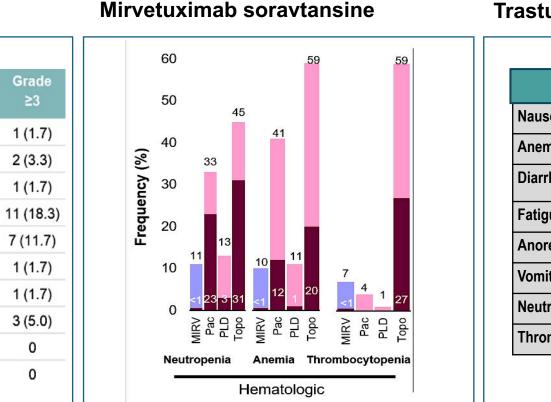
17 (28.3)

15 (25.0)

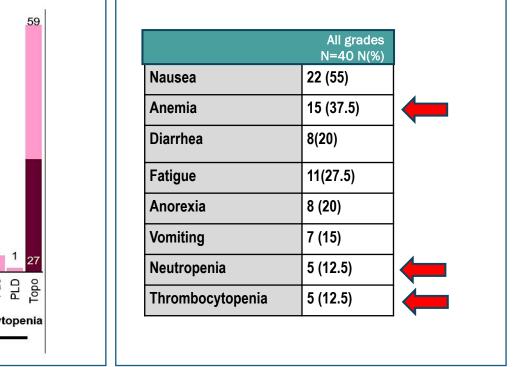
16 (26.7)

15 (25.0)

10 (16.7)


7 (11.7)

6 (10.0)


≥3

0

0

Trastuzumab deruxtecan

Moore et al. ESMO 2023

Decreased appetite

Decreased neutrophil count

Decreased platelet count

Nausea

Fatigue

Vomiting

Anemia

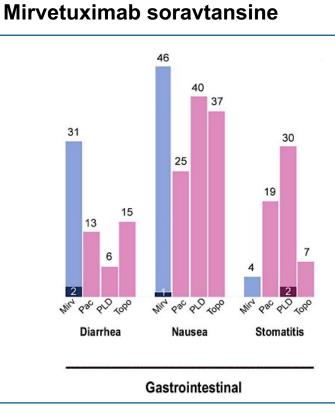
Diarrhea

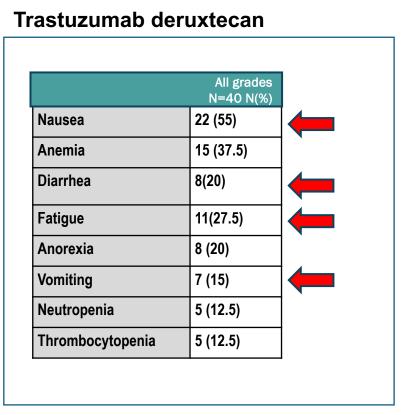
Alopecia

Malaise

Moore et al. N Engl J. Med 2023

Meric-Berstam et al. J Clin Oncol 2024


For educational purposes only. Not to be used as a cross-trial comparison


Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

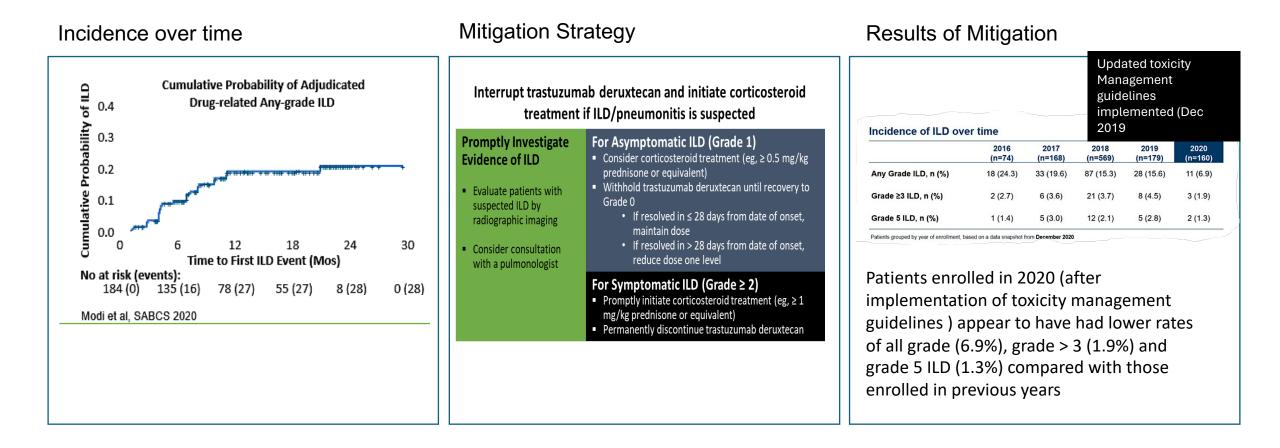
Antibody Drug Conjugates (ADCs) Treatment Related Adverse Events: Non-Hematologic

Raludotatug deruxtecan

Protomed term			
	All grades	Grade ≥3	
Nausea	35 (58.3)	1 (1.7)	
Fatigue	27 (45.0)	2 (3.3)	
Vomiting	20 (33.3)	1 (1.7)	
Anemia	17 (28.3)	11 (18.3)	
Decreased neutrophil count	15 (25.0)	7 (11.7)	
Diarrhea	16 (26.7)	1 (1.7)	
Decreased appetite	15 (25.0)	1 (1.7)	
Decreased platelet count	10 (16.7)	3 (5.0)	
Alopecia	7 (11.7)	0	
Malaise	6 (10.0)	0	

Moore et al. ESMO 2023

Moore et al. N Engl J. Med 2023


Meric-Berstam et al. J Clin Oncol 2024

Nausea, vomiting and fatigue can be common across agents and standard pre-medications are recommended for mitigation. Pneumonitis is seen across all programs (MIRV 10%; T-DXd 10.5%) the majority of which is low grade

For educational purposes only. Not to be used as a cross-trial comparison

Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

Antibody Drug Conjugates (ADCs) Mitigation of Treatment Related Adverse Events: Pneumonitis

MODULE 4: Diagnosis and Management of Adverse Events Associated with Commonly Employed Therapies for Advanced OC — Dr Mirza

Consulting Faculty Questions

Management of PARP-associated toxicities

Neil Love, MD

Ritu Salani, MD, MBA

Floor J Backes, MD

QUESTIONS FOR THE FACULTY

Ritu Salani, MD, MBA

Floor J Backes, MD

What is your experience with PARP inhibitor-related fatigue, and what approaches are available to help patients overcome this toxicity?

For a patient experiencing anemia while receiving a PARP inhibitor, what comes first — dose reduction or transfusion?

When using the "weights and plates" dosing strategy with niraparib, how do you approach re-treatment and dosing for a patient who develops Grade 4 thrombocytopenia?

Consulting Faculty Questions

Educating patients on the risk of AML/MDS associated with PARP inhibitor therapy

Neil Love, MD

Deborah K Armstrong, MD

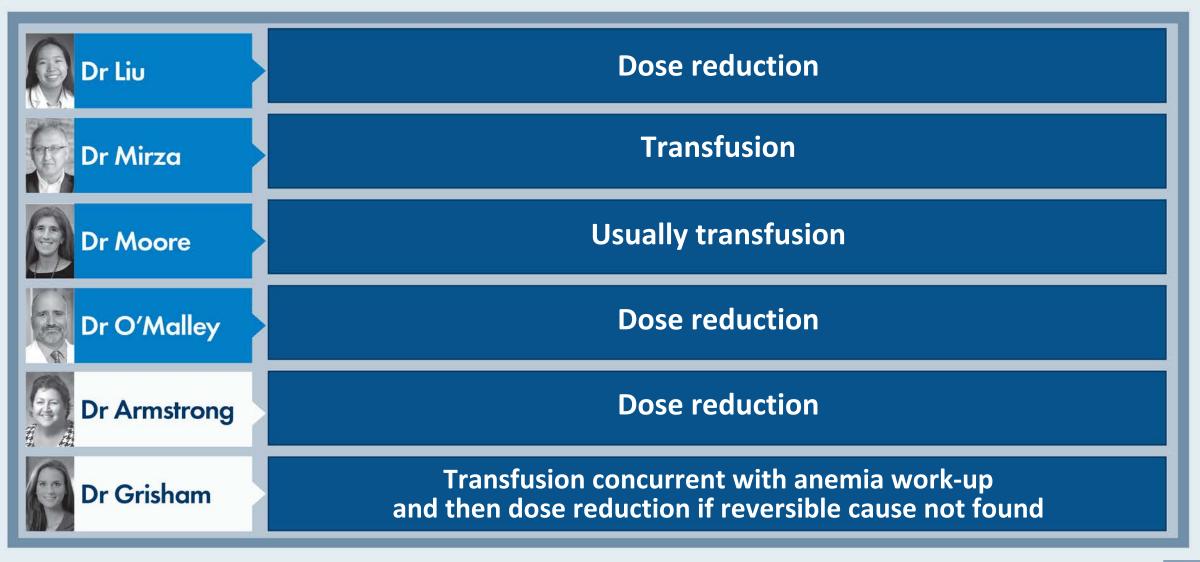
QUESTIONS FOR THE FACULTY

Deborah K Armstrong, MD

Do you discuss the potential risk of AML/MDS with all of your patients receiving PARP inhibitors?

How would you counsel an educated and interested patient (eg, a physician) regarding the risk of AML/MDS with the use of chemotherapy and PARP inhibitor maintenance? What specific estimates would you provide?

How would you respond to a 65-year-old woman with advanced OC and a <u>germline BRCA mutation</u> who undergoes resection and receives adjuvant carboplatin/paclitaxel and asks you to estimate the chance that she will develop myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML) ...


	Without further therapy	With maintenance PARPi x 2 years
Dr Liu	<1%	1%-2%
Dr Mirza	0%	1%
Dr Moore	0.5%	1.5%
Dr O'Malley	1% +/- 0.5%	1.5% +/- 0.5%
Dr Armstrong	0.8%	1.5%
Dr Grisham	0.8%	1.5%

PARPi = PARP inhibitor

Based on your personal clinical experience and/or knowledge of available data, please estimate the chance that a patient receiving up-front <u>olaparib maintenance</u> will experience toxicity during treatment that will require withholding administration. What are the primary toxicities patients experience that lead to withholding this strategy?

	Chance of withholding	Primary toxicities
Dr Liu	5%	Fatigue, anemia
Dr Mirza	5%	Nausea, fatigue
Dr Moore	24%	Anemia
Dr O'Malley	<10%	GI, fatigue, anemia
Dr Armstrong	20%	GI, fatigue, anemia
Dr Grisham	15%	Fatigue, anemia

Would you recommend transfusion or dose reduction <u>first</u> for a patient with advanced OC who is experiencing PARP inhibitor-related anemia?

Based on your personal clinical experience and/or knowledge of available data, please estimate the chance that a patient receiving up-front <u>niraparib maintenance</u> will experience toxicity during treatment that will require withholding administration. What are the primary toxicities patients experience that lead to withholding this strategy?

	Chance of withholding	Primary toxicities
Dr Liu	5%	Anemia, thrombocytopenia, fatigue
Dr Mirza	10%	Hematologic
Dr Moore	60%	Thrombocytopenia
Dr O'Malley	<10%	GI, fatigue, anemia
Dr Armstrong	10%-20%	Platelets, HTN
Dr Grisham	30%	Cytopenia

Diagnosis and Management of Adverse Events Associated with Commonly Employed Therapies for Advanced Ovarian Cancer

Mansoor Raza Mirza

PARP inhibitors

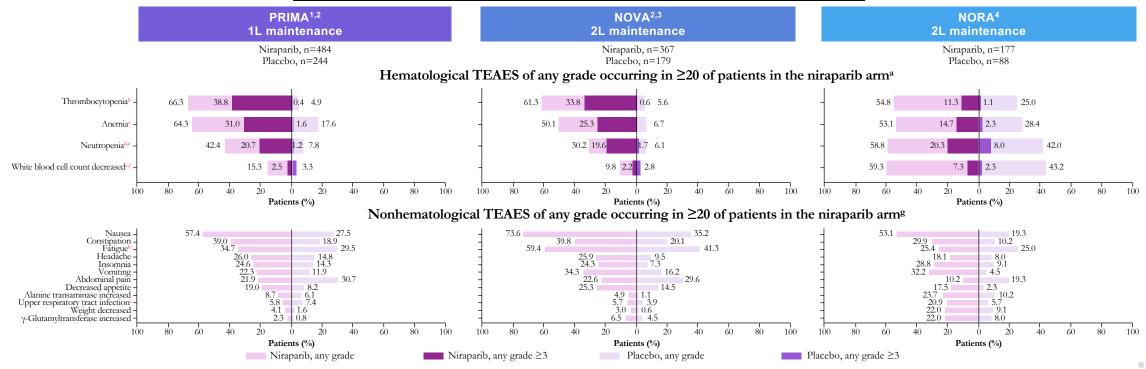
Summary of toxicity of maintenance PARPi trials (first-line)

	GOG-218	SOLO-1	PAOLA-1	PRIMA
Administration	IV q3weeks 15 months	Oral BID 2 years	Oral BID 2y + IV q3w 15m	Oral QD 3 years
% dose reduction	-	28.5	41	70.9
% dose interruption	-	51.9	54	79.5
% discontinuation	17	11.5	20	12
Most frequent Grade ≥ 3 AE	Neut. G4 (64%) HT G ≥2 (23%)	Anaemia (22%) Neut. (9%) Asthenia (4%)	HT (19%) Anaemia (17%) Lymph (7%)	Anaemia (31%) Plates. (28%) Neut. (12.8%)

Burger. NEJM 2011; Moore. NEJM 2018; Ray-Coquard. NEJM 2019; Gonzalez-Martin. NEJM 2019

Summary of toxicity of maintenance PARPi trials (relapsed disease)

Treatment Related Dose Discontinuations


Rucaparib	Olaparib	Niraparib
13.4%	17%	14.7%
Coleman RL et al. <i>Lancet</i> 2017	Poveda et al. ASCO 2020	Mirza MR et al. N Engl J Med 2016

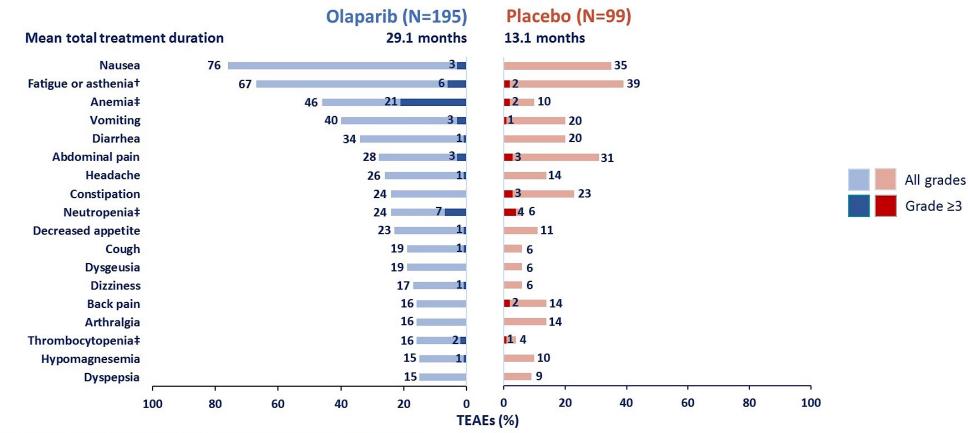
Niraparib safety in patients with *BRCA*-mutated ovarian cancer: results from three phase 3 niraparib trials

Summary of the safety of niraparib in patients with BRCAm ovarian cancer across three phase 3 trials: no new safety signals were identified

TEAEs in the overall population for PRIMA, NOVA, and NORA

^aHematologic TEAEs of any grade occurring in ≥20% of patients in the niraparib arm of PRIMA, NOVA, or NORA. Grade ≥3 TEAEs are also reported for each event; ^bThrombocytopenia: PRIMA, neutropenia, PRIMA, anemia; NOVA, anemia and decreased hemoglobin count; NORA, anemia; ^aNeutropenia; PRIMA, neutropenia, neutrophil count decreased, febrile neutropenia, and neutropenic sepsis; NOVA, neutropenia entrophil count decreased, and febrile neutropenia; NORA, neutropenia and neutrophil count decreased; ^cAnemia: PRIMA, neutropenia, neutrophil count decreased, and febrile neutropenia; NORA, neutropenia and neutrophil count decreased; ^cAnemia: PRIMA, neutropenia, neutrophil count decreased, and febrile neutropenia; NORA, neutropenia and neutrophil count decreased; ^cAnemia: PRIMA, neutropenia, neutrophil count decreased, and febrile neutropenia; NORA, neutropenia and neutrophil count decreased; ^cAnemia: PRIMA, neutropenia, neutrophil count decreased; ^cAnemia: NORA, neutropenia and neutrophil count decreased; ^cAnemia: ^bNorthe events reported with overlapping duration, and anong 13 patients who experienced meutrophil count decreased; ^cA patients had both events reported with overlapping duration, and anong 13 patients who experienced meutrophil count decreased; ^cA patients with overlapping duration. In the placebo group, among the 38 patients who experienced white blood cell count decreased and ^cAnemia; ^bNonhematologic TEAEs of any grade and 37 patients who experienced neutrophil count decreased: PRIMA and NOVA, white blood cell decreased; ^cAnemia: ^bNoRA, white blood cell decreased with overlapping duration; ^cWhite blood cell decreased: PRIMA and NOVA, white blood cell decreased; ^cAnemia; ^bNoRA, anthematologic TEAEs of any grade occurring in ≥20 of patients in the niraparib arm of PRIMA, NOVA, or NORA; ^bFatigue: PRIMA, fatigue; NOVA, fatigue, asthenia, malaise, and lethargy; NORA, asthenia; ^bNoRA, ^cAnemia; ^bNoNA, and ^cAnemia; ^bNONA, and ^cAnemia; ^bNONA, and ^cAnemia; ^bNON

© M R Mirza


ANNUAL MEETING

ON WOMEN'S CANCER

San Diego, CA + 2024

SOLO-2: most common TEAEs – final analysis*

Small increase in TEAEs in the olaparib group, compared with the primary analysis, despite longer treatment duration

*Frequency ≥15%; [†]Includes patients with fatigue and patients with asthenia; [‡]Grouped terms

Patterns of Toxicity of PARP Inhibitors

	OLAPARIB	NIRAPARIB	RUCAPARIB
Fatigue	+++	++	+++
Nausea/Vomiting	+++	++	+++
Anaemia	+++	+++	+++
Neutropenia	+	++	+
Thrombocytopenia	+	+++	++
Diarrhoea	++	+	++
Headache	++	+	+
Insomnia	+	-	-
Dysgeusia	++	-	++
Raised ALT/AST	-	-	++
Photosensitive rash	-	-	+
Hypertension	-	++	-

Poveda et al. ASCO 2020

Mirza MR et al. N Engl J Med 2016

SGO ANNUAL MEETING ON WOMEN'S CANCER San Diego, CA • 2024

© M R Mirza

SOLO-2: AEs of special interest – primary and final analyses*, *

	Olaparib (N=195)		Placebo (N=99)	
	Primary	Final	Primary	Final
Mean total treatment duration (SD), months	17.4 (9.8)	29.1 (24.7)	9.0 (8.1)	13.1 (18.6)
MDS/AML, n (%)	4 (2)	16 (8)	4 (4)	4 (4)
During the safety follow-up period (TEAE)		7 (4)		0
After the safety follow-up period (non-TEAE)		9 (5)		4 (4)
Pneumonitis, n (%)	3 (2)	3 (2)	0	0

MDS/AML

Actively solicited throughout study treatment and follow-up

#ASCO20

- Incidences should be interpreted in the context of their late onset[‡] and the longer OS observed with olaparib vs placebo
- Association with the number of prior platinum regimens, olaparib treatment and other potential risk factors is being explored

In patients with newly diagnosed ovarian cancer and a BRCAm, at median follow-up of 65 months, MDS/AML occurred in 1% of olaparib patients and no placebo patients¹

*Includes AEs that occurred outside safety follow-up period (during treatment and up to 30 days after discontinuation); [†]New primary malignancies (excluding hematologic malignancies) occurred in one olaparib patient (1%) and one placebo patient (1%) in the primary analysis, and in eight olaparib patients (4%) and two placebo patients (2%) in the final analysis; [‡]After the safety follow-up period AML, acute myeloid leukemia; MDS, myelodysplastic syndrome

PRESENTED BY: Andrés Poveda

PRESENTED AT:

2020**ASC**

ANNUAL MEETING

ANNUAL MEETING ON WOMEN'S CANCER San Diego, CA • 2024

17

© M R Mirza

Poveda et al. ASCO 2020; Abstract 6002.

NSGO-CTU Rigshospitalet ENGOT Esquestion

NOVA: Summary of MDS/AML

- At the time of the primary analysis, incidence of MDS/AML was 1.4% (5/367) in the niraparib arm vs. 1.1% (2/179) in the placebo arm¹
- With long-term follow-up and administration of subsequent therapies, 3.5% (13/367) of patients in the niraparib arm vs. 1.7% (3/179) in the placebo arm developed MDS/AML²

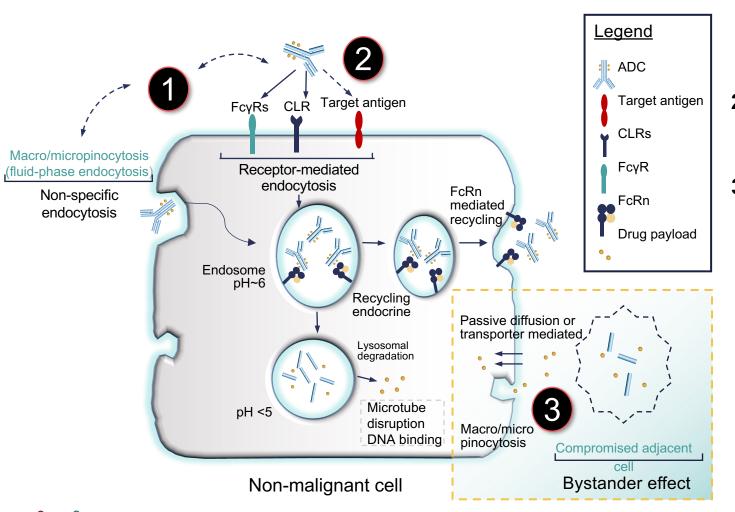
	Niraparib arm				Placebo arm	
Adverse event, n (%)	All (N=367)	g <i>BRCA</i> m (n=136)	Non- g <i>BRCA</i> m (n=231)	All (N=179)	g <i>BRCA</i> m (n=65)	Non- g <i>BRCA</i> m (n=114)
MDS/AML all	13ª (3.5)	9 (6.6)	4 (1.7)	3 (1.7)	2 (3.1)	1 (0.9)
TEAE (treatment)	9 (2.5)	7 (5.1)	2 (0.9)	0	0	0
TEAE (follow-up)	4 (1.1)	2 (1.5)	2 (0.9)	3 (1.7)	2 (3.1)	1 (0.9)

AML, acute myeloid leukemia; MDS, myelodysplastic syndromes.

Final data cutoff date was October 1, 2020 (average duration of follow-up for OS was 67 months).

*A total of 16 events of MDS/AML were reported in 13 patients treated with niraparib: 1 patient had MDS then AML; 1 patient had MDS grade 1, then MDS grade 4, then AML.

- 1. Mirza MR et al. N Engl J Med 2016;375:2154–2164.
- 2. Matulonis U et al. SGO 2021; Abstract 11139.

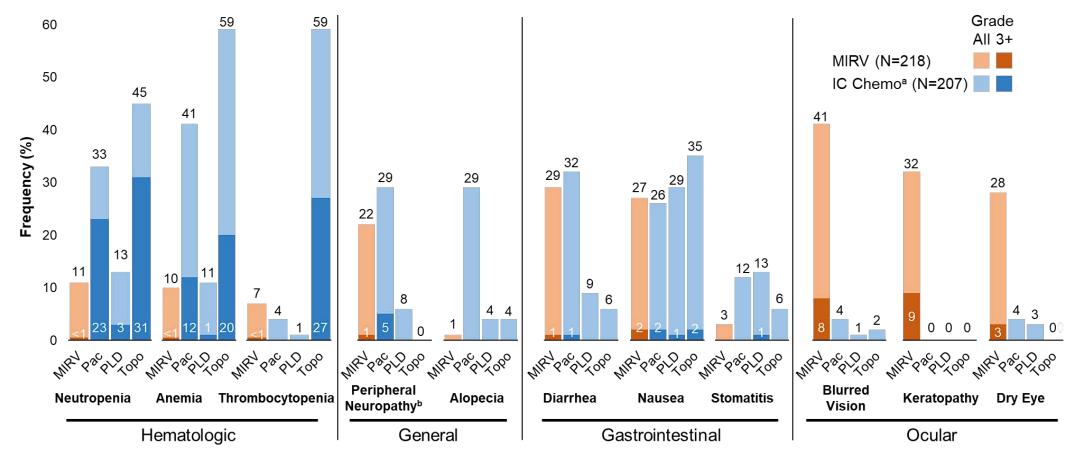


Antibody Drug Conjugates Mirvetuximab soravtansine

Potential mechanisms of toxicity associated with ADCs

- 1. Target-independent toxicity: ADC uptake into nonmalignant cells
 - Nonspecific endocytosis
 - Macropinocytosis and micropinocytosis
 - Binding to Fc receptors
- 2. On-target, off-tumor toxicity: target antigen may be expressed on normal cells and contribute to target antigen–dependent uptake of ADCs
- 3. Bystander effect (off-target, off-tissue toxicity): membrane-permeable drug payloads diffuse from target cell into neighboring cells
 - May be beneficial if the neighboring cell is cancerous, or detrimental if neighboring cell is healthy

Microtubule inhibitor	Commonly reported clinical toxicity
MMAE	Anemia, neutropenia, and peripheral neuropathy
DM1	Thrombocytopenia and hepatotoxicity
MMAF and DM4	Ocular toxicity


ADC, antibody-drug conjugate; CLR, C-type leptin receptor; DM1, maytansine 1; DM4, maytansine 4; FcRn, neonatal Fc receptor; FcγR, Fc gamma receptor; MMAE, monomethyl auristatin E; MMAF, monomethyl auristatin F.

Mahalingaiah PK et al. *Pharmacol Ther*. 2019;200:110–125.

Courtesy K Moore

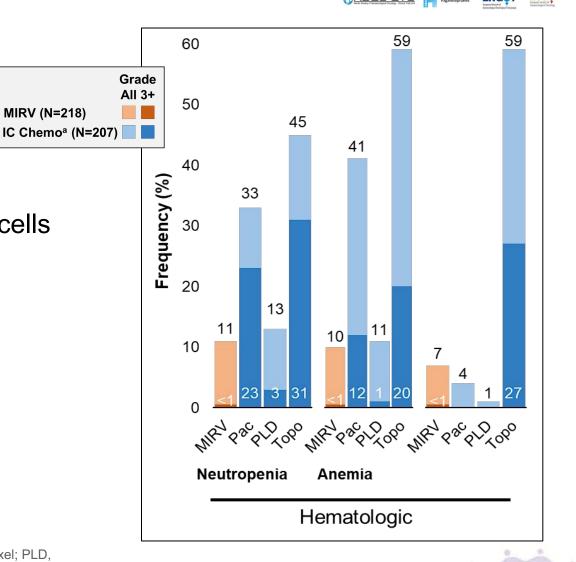
Differentiated Safety Profile: Treatment-Emergent Adverse Events

MIRV, mirvetuximab soravtansine; IC Chemo: investigator's choice of chemotherapy; Pac, paclitaxel; PLD, pegylated liposomal doxorubicin; Topo, topotecan.

Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

Moore et al. N Engl J Med 2023 Dec 7;380(23):31622174. doi: 10.1056/NEJMoa2309169

Safety Profile


Hematologic

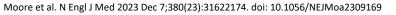
Off-target cytotoxic damage into hematopoietic stem cells of the bone marrow

Incidence < 12%Mostly Grade 1-2

Criteria to receive MIRV:

- ANC must be $\geq 1.5 \times 10^{9}$ /L (1,500/µL)
- Platelet count must be \geq 80 x 109/L (80,000/µL)

MIRV, mirvetuximab soravtansine; IC Chemo: investigator's choice of chemotherapy; Pac, paclitaxel; PLD, pegylated liposomal doxorubicin; Topo, topotecan.


aPac n=82, PLD n=76, Topo n=49. bGrade 2+ peripheral neuropathy events were observed in 12% and 16% of

patients that received MIRV or paclitaxel, respectively.

Transforming Gynecologic Cancer Care

Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

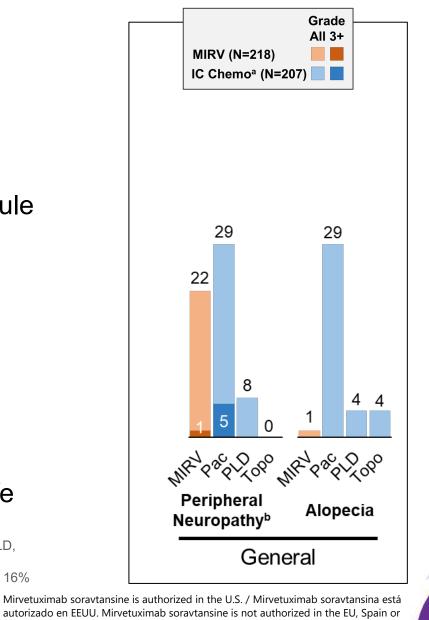
Safety Profile

Peripheral neuropathy

Off-target neurological effect associated to anti-microtubule activity

Incidence 22 % \leftrightarrow 29% with Pac

Mostly Grade 1-2 Only 1% G3+ $\leftarrow \rightarrow$ 5% with Pac


Dose reduction was considered in the case of Grade 2 peripheral neuropathy interfering with patient's normal life

MIRV, mirvetuximab soravtansine; IC Chemo: investigator's choice of chemotherapy; Pac, paclitaxel; PLD, pegylated liposomal doxorubicin; Topo, topotecan.

aPac n=82, PLD n=76, Topo n=49. bGrade 2+ peripheral neuropathy events were observed in 12% and 16% of patients that received MIRV or paclitaxel, respectively.

г •

THE POWER OF SHARED PURPOSE: Transforming Gynecologic Cancer Care

ANNUAL MEETING ON WOMEN'S CANCER San Diego, CA • 2024

Moore et al. N Engl J Med 2023 Dec 7;380(23):31622174. doi: 10.1056/NEJMoa2309169

la UE, en España ni en ningún otro país fuera de EE.UU

any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en

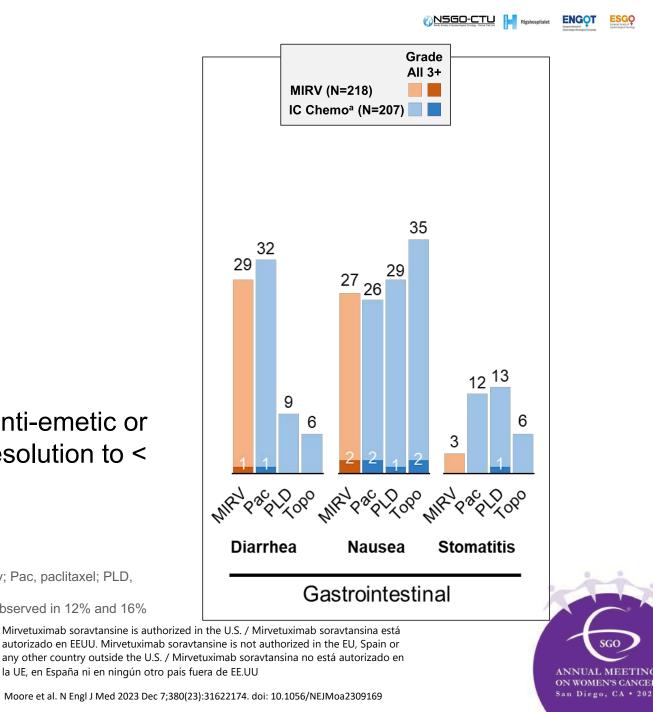
Safety Profile

Gastrointestinal

Off-target effect

Incidence 27-29 %

Mostly Grade 1-2 (only 1-2% G3+)


In the case of grade 3 despite optimal use of anti-emetic or anti-diarrheal treatment: Drug was held until resolution to < grade 1, then resumed at a lower level

MIRV, mirvetuximab soravtansine; IC Chemo: investigator's choice of chemotherapy; Pac, paclitaxel; PLD, pegylated liposomal doxorubicin; Topo, topotecan.

aPac n=82, PLD n=76, Topo n=49. bGrade 2+ peripheral neuropathy events were observed in 12% and 16% of patients that received MIRV or paclitaxel, respectively.

•

THE POWER OF SHARED PURPOSE: Transforming Gynecologic Cancer Care

Grade

All 3+

28

4 3

Safety Profile MIRV (N=218) IC Chemo^a (N=207) **Ocular** Events developed in 50/106 (47%) patients: 41 Significantly more frequent with mostly low grade MIRV compared to IC Chemo Keratopathy*† 32 n=7 Predominantly Grade 1-2 Both n=31 n=12 0 0 Blurred vision Matulonis et al. SGO 2022 Blurred Matulonis et al. J Clin Oncol 2023;41(13):2436-45 Vision

MIRV, mirvetuximab soravtansine; IC Chemo: investigator's choice of chemotherapy; Pac, paclitaxel; PLD, pegylated liposomal doxorubicin; Topo, topotecan.

aPac n=82, PLD n=76, Topo n=49. bGrade 2+ peripheral neuropathy events were observed in 12% and 16% of patients that received MIRV or paclitaxel, respectively.

THE POWER OF SHARED PURPOSE:

Transforming Gynecologic Cancer Care

0 ME Soch Los WE Soch Los WE Soch Los Keratopathy Dry Eye Ocular Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU Moore et al. N Engl J Med 2023 Dec 7;380(23):31622174. doi: 10.1056/NEJMoa2309169

Contents lists available at ScienceDirect

Gynecologic Oncology Reports

journal homepage: www.elsevier.com/locate/gynor

Review article

Strategies for prevention and management of ocular events occurring with mirvetuximab soravtansine

Andrew Hendershot ^{a,*}, Mark Slabaugh ^a, Kamran M. Riaz ^b, Kathleen N. Moore ^c, David M. O'Malley ^d, Ursula Matulonis ^e, Gottfried E. Konecny ^f

Summary of the Grading of Key Ocular Adverse Events in MIRV Clinical Trials (NCI CTCAE v5.0, 2017).

CTCAE term	Grade 1	Grade 2	Grade 3	Grade 4
Blurred vision ^a	Intervention not indicated	Symptomatic; moderate decrease in visual acuity; limiting instrumental ADL ^b	Symptomatic, with marked decrease in visual acuity; limiting self-care ADL ^c	Best corrected visual acuity of 20/200 or worse in the affected eye
Keratitis ^d (Included in keratopathy group term)	Asymptomatic; clinical or diagnostic observations only; intervention not indicated	Symptomatic; moderate decrease in visual acuity	Symptomatic, with marked decrease in visual acuity; corneal ulcer; limiting self-care ADL ^c	Perforation; best corrected visual acuity of 20/200 or worse in the affected eye
Dry eye ^e	Asymptomatic; clinical or diagnostic observations only; symptoms relieved by lubricants	Symptomatic; moderate decrease in visual acuity	Symptomatic, with marked decrease in visual acuity; limiting self-care ADL ^c	
Photophobia ^f	Symptomatic but not limiting ADL	Limiting instrumental ADL ^b	Limiting self-care ADL ^c	
		Definition: "Moderate decrease in visual acuity" Best corrected visual acuity 20/40 and better or ≤ 3 lines of decreased vision from known baseline	Definition: "Marked decrease in visual acuity" Best corrected visual acuity worse than 20/40 or >3 lines of decreased vision from known baseline, up to 20/200	

ADL, activities of daily living; CTCAE, Common Terminology Criteria for Adverse Events; MIRV, mirvetuximab soravtansine; NCI, National Cancer Institute.

. Mirvetuximab soravtansine is authorized in the U.S. / Mirvetuximab soravtansina está autorizado en EEUU. Mirvetuximab soravtansine is not authorized in the EU, Spain or any other country outside the U.S. / Mirvetuximab soravtansina no está autorizado en la UE, en España ni en ningún otro país fuera de EE.UU

Consulting Faculty Questions

Strategies to prevent peripheral neuropathy associated with taxane chemotherapy

Neil Love, MD

Rachel N Grisham, MD

QUESTIONS FOR THE FACULTY

Rachel N Grisham, MD

What approaches do you employ in your practice to prevent and/or ameliorate taxane-related neuropathy? Do you use extremity cooling? If so, how effective does it seem to be?

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Ovarian Cancer

Part 1 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 Society of Gynecologic Oncology Annual Meeting on Women's Cancer® Monday, March 18, 2024 6:30 AM - 8:00 AM PT (9:30 AM - 11:00 AM ET) Faculty Joyce F Liu, MD, MPH Mansoor Raza Mirza, MD David M O'Malley, MD **Moderator**

Kathleen N Moore, MD, MS

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Endometrial Cancer

Part 2 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 Society of Gynecologic Oncology Annual Meeting on Women's Cancer[®]

Monday, March 18, 2024

12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Nicoletta Colombo, MD

Matthew A Powell, MD

Brian M Slomovitz, MD

Moderator Shannon N Westin, MD, MPH, FASCO, FACOG

Thank you for joining us! Your feedback is very important to us.

Please complete the survey currently up on Zoom for those attending virtually. The survey will remain open up to 5 minutes after the meeting ends.

How to Obtain CME Credit

In-person attendees: Please refer to the program syllabus for the CME credit link or QR code. You may also use the iPads available in the meeting room to complete the course evaluation. Online/Zoom attendees: The CME credit link is posted in the chat room.

