Investigator Perspectives on Available Research and Challenging Questions in Renal Cell Carcinoma: A Post-ASCO Annual Review

> Wednesday, June 19, 2024 5:00 PM – 6:00 PM ET

Faculty Rana R McKay, MD Thomas Powles, MBBS, MRCP, MD

Faculty

Rana R McKay, MD

Associate Professor of Medicine and Urology Associate Director, Translational Sciences Interim Associate Director, Clinical Sciences Co-Lead, Genitourinary Oncology Program University of California San Diego Moores Cancer Center La Jolla, California

MODERATOR Neil Love, MD Research To Practice Miami, Florida

Thomas Powles, MBBS, MRCP, MD Director of Barts Cancer Institute Queen Mary University of London London, United Kingdom

Commercial Support

This activity is supported by an educational grant from Merck.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma, a Sobi Company, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab US Inc, Gilead Sciences Inc, Grail Inc, GSK, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Legend Biotech, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Mural Oncology Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, R-Pharm US, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Syndax Pharmaceuticals, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc, and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr McKay — Disclosures Faculty

Consulting Agreements	Ambrx, Arcus Biosciences, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, Blue Earth Diagnostics, Bristol Myers Squibb, Calithera Biosciences, Caris Life Sciences, Dendreon Pharmaceuticals Inc, Eisai Inc, Exelixis Inc, Johnson & Johnson Pharmaceuticals, Lilly, Merck, Myovant Sciences, Neomorph, Novartis, Pfizer Inc, Sanofi, Seagen Inc, Sorrento Therapeutics, Telix Pharmaceuticals Limited, Tempus
Contracted Research	AstraZeneca Pharmaceuticals LP, ArteraAI, Bayer HealthCare Pharmaceuticals, Bristol
(Institutional)	Myers Squibb, Exelixis Inc, Oncternal Therapeutics

Prof Powles — Disclosures Faculty

Advisory Committees, Grants/Funding to Organization/Institution and Strategic Advisory Roles	Astellas, AstraZeneca Pharmaceuticals LP, Bristol Myers Squibb, Eisai Inc, Exelixis Inc, Ipsen Biopharmaceuticals Inc, Johnson & Johnson Pharmaceuticals, Merck Serono, MSD, Novartis, Pfizer Inc, Roche Laboratories Inc, Seagen Inc
Consulting Agreements	Astellas, AstraZeneca Pharmaceuticals LP, Bristol Myers Squibb, Eisai Inc, Exelixis Inc, Gilead Sciences Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Johnson & Johnson Pharmaceuticals, Mashup Media, LLC, Merck Serono, MSD, Novartis, Pfizer Inc, Roche Laboratories Inc, Seagen Inc
Contracted Research	AstraZeneca Pharmaceuticals LP, Eisai Inc, Genentech, a member of the Roche Group, Merck, Novartis, Pfizer Inc

This educational activity contains discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY WITH DR NEIL LOVE

Management of Renal Cell Carcinoma

DR TONI CHOUEIRI DANA-FARBER CANCER INSTITUTE

Dr Toni Choueiri – Management of Ren Oncology Today with Dr Neil Love —

(15) (30)

What Clinicians Want to Know About the Management of Triple-Negative Breast Cancer

A CME/MOC-Accredited Live Webinar

Thursday, June 20, 2024 5:00 PM – 6:00 PM ET

Faculty Kevin Kalinsky, MD, MS Heather McArthur, MD, MPH

Year in Review: Gynecologic Oncology

A CME/MOC-Accredited Live Webinar

Tuesday, June 25, 2024 5:00 PM – 6:00 PM ET

Faculty Dana M Chase, MD

Year in Review: Multiple Myeloma

A CME/MOC-Accredited Live Webinar

Tuesday, July 9, 2024 5:00 PM – 6:00 PM ET

Faculty Jesús G Berdeja, MD Thomas Martin, MD

Inside the Issue: Integrating Antibody-Drug Conjugates into the Management of HR-Positive and Triple-Negative Metastatic Breast Cancer

A CME/MOC-Accredited Live Webinar

Wednesday, July 17, 2024 5:00 PM – 6:00 PM ET

Faculty Professor Peter Schmid, FRCP, MD, PhD Sara M Tolaney, MD, MPH

Inside the Issue: Integrating ALK-Targeted Therapy into the Management of Localized Non-Small Cell Lung Cancer

A CME/MOC-Accredited Live Webinar

Thursday, July 18, 2024 5:00 PM – 6:00 PM ET

Faculty

Professor Solange Peters, MD, PhD Professor Ben Solomon, MBBS, PhD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Investigator Perspectives on Available Research and Challenging Questions in Renal Cell Carcinoma: A Post-ASCO Annual Review

> Wednesday, June 19, 2024 5:00 PM – 6:00 PM ET

Faculty Rana R McKay, MD Thomas Powles, MBBS, MRCP, MD

Faculty

Rana R McKay, MD

Associate Professor of Medicine and Urology Associate Director, Translational Sciences Interim Associate Director, Clinical Sciences Co-Lead, Genitourinary Oncology Program University of California San Diego Moores Cancer Center La Jolla, California

MODERATOR Neil Love, MD Research To Practice Miami, Florida

Thomas Powles, MBBS, MRCP, MD Director of Barts Cancer Institute Queen Mary University of London London, United Kingdom

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY WITH DR NEIL LOVE

Management of Renal Cell Carcinoma

DR TONI CHOUEIRI DANA-FARBER CANCER INSTITUTE

Dr Toni Choueiri – Management of Ren Oncology Today with Dr Neil Love —

(15) (30)

What Clinicians Want to Know About the Management of Triple-Negative Breast Cancer

A CME/MOC-Accredited Live Webinar

Thursday, June 20, 2024 5:00 PM – 6:00 PM ET

Faculty Kevin Kalinsky, MD, MS Heather McArthur, MD, MPH

Year in Review: Gynecologic Oncology

A CME/MOC-Accredited Live Webinar

Tuesday, June 25, 2024 5:00 PM – 6:00 PM ET

Faculty Dana M Chase, MD

Year in Review: Multiple Myeloma

A CME/MOC-Accredited Live Webinar

Tuesday, July 9, 2024 5:00 PM – 6:00 PM ET

Faculty Jesús G Berdeja, MD Thomas Martin, MD

Inside the Issue: Integrating Antibody-Drug Conjugates into the Management of HR-Positive and Triple-Negative Metastatic Breast Cancer

A CME/MOC-Accredited Live Webinar

Wednesday, July 17, 2024 5:00 PM – 6:00 PM ET

Faculty Professor Peter Schmid, FRCP, MD, PhD Sara M Tolaney, MD, MPH

Inside the Issue: Integrating ALK-Targeted Therapy into the Management of Localized Non-Small Cell Lung Cancer

A CME/MOC-Accredited Live Webinar

Thursday, July 18, 2024 5:00 PM – 6:00 PM ET

Faculty

Professor Solange Peters, MD, PhD Professor Ben Solomon, MBBS, PhD

Investigator Perspectives on Available Research and Challenging Questions in Renal Cell Carcinoma: A Post-ASCO Annual Review

> Wednesday, June 19, 2024 5:00 PM – 6:00 PM ET

Faculty Rana R McKay, MD Thomas Powles, MBBS, MRCP, MD

Dr McKay — Disclosures Faculty

Consulting Agreements	Ambrx, Arcus Biosciences, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, Blue Earth Diagnostics, Bristol Myers Squibb, Calithera Biosciences, Caris Life Sciences, Dendreon Pharmaceuticals Inc, Eisai Inc, Exelixis Inc, Johnson & Johnson Pharmaceuticals, Lilly, Merck, Myovant Sciences, Neomorph, Novartis, Pfizer Inc, Sanofi, Seagen Inc, Sorrento Therapeutics, Telix Pharmaceuticals Limited, Tempus
Contracted Research	AstraZeneca Pharmaceuticals LP, ArteraAI, Bayer HealthCare Pharmaceuticals, Bristol
(Institutional)	Myers Squibb, Exelixis Inc, Oncternal Therapeutics

Prof Powles — Disclosures Faculty

Advisory Committees, Grants/Funding to Organization/Institution and Strategic Advisory Roles	Astellas, AstraZeneca Pharmaceuticals LP, Bristol Myers Squibb, Eisai Inc, Exelixis Inc, Ipsen Biopharmaceuticals Inc, Johnson & Johnson Pharmaceuticals, Merck Serono, MSD, Novartis, Pfizer Inc, Roche Laboratories Inc, Seagen Inc
Consulting Agreements	Astellas, AstraZeneca Pharmaceuticals LP, Bristol Myers Squibb, Eisai Inc, Exelixis Inc, Gilead Sciences Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Johnson & Johnson Pharmaceuticals, Mashup Media, LLC, Merck Serono, MSD, Novartis, Pfizer Inc, Roche Laboratories Inc, Seagen Inc
Contracted Research	AstraZeneca Pharmaceuticals LP, Eisai Inc, Genentech, a member of the Roche Group, Merck, Novartis, Pfizer Inc

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma, a Sobi Company, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab US Inc, Gilead Sciences Inc, Grail Inc, GSK, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Legend Biotech, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Mural Oncology Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, R-Pharm US, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Syndax Pharmaceuticals, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc, and Zymeworks Inc.

Commercial Support

This activity is supported by an educational grant from Merck.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

This educational activity contains discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.

Agenda

Module 1: Management of Metastatic Clear Cell Renal Cell Carcinoma (RCC) — Prof Powles

Module 2: Treatment Approaches for Nonmetastatic RCC; Optimal Care of Patients with Non-Clear Cell RCC — Dr McKay

Module 3: ASCO 2024

Agenda

Module 1: Management of Metastatic Clear Cell Renal Cell Carcinoma (RCC) — Prof Powles

Module 2: Treatment Approaches for Nonmetastatic RCC; Optimal Care of Patients with Non-Clear Cell RCC — Dr McKay

Module 3: ASCO 2024

First-Line Therapy for Metastatic Clear Cell RCC in 2024

Management of Metastatic Clear Cell Renal Cell Carcinoma (RCC)

Thomas Powles, MBBS, MRCP, MD

Professor of Genitourinary Oncology

Barts Cancer Institute

Director of Barts Cancer Centre

Queen Mary University of London

London, United Kingdom

JAVELIN Renal 101: a multicenter, randomized, phase 3 trial

- The primary (final) OS analysis was planned when 368 deaths had occurred in the PD-L1+ population, which would provide 90% power to detect an HR of 0.70 using a 1-sided log-rank test at a significance level of 0.021
 - A 4-look group sequential design with a Lan–DeMets (O'Brien–Fleming) α spending function was used to determine the efficacy boundary
 - Overall type I-error was maintained at or below 1-sided 0.025 by allocating α=0.004 to the PFS comparison and α=0.021 to the OS comparison in the PD-L1+ population
 - A gatekeeping procedure was used to allow further testing of PFS and OS in the overall population

BICR, blinded independent central review; BID, twice daily; ECOG PS, Eastern Cooperative Oncology Group performance status; HR, hazard ratio; IMDC, International Metastatic RCC Database Consortium; IV, intravenous; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PO, orally; Q2W, every 2 weeks; QD, once daily; R, randomization; RCC, renal cell carcinoma; ROW, rest of the world.

2024 ASC

ANNUAL MEETING

Prior results from JAVELIN Renal 101 in the overall population

	Primary analysis of PFS 1st interim analysis of OS ≥6 months of follow-up ¹		3rd interim analysis of OS ≥28 months of follow up ²		
	Avelumab +	Sunitinib	Avelumab +	Sunitinib	
	Axitinib (N=442)	(N=444)	Axitinib (N=442)	(N=444)	
PFS					
Median PFS (95% CI), months	13.8	8.4	13.9	8.5	
	(11.1-NE)*	(6.9-11.1)*	(11.1-16.6) [†]	(8.2-9.7)†	
HR (95% CI)	0.69 (0.563-0.838)		0.67 (0.568-0.785)		
p-value	1-sided p<0.001		1-sided p<0.0001		
OS					
Median OS (95% CI), months	Not reached	Not reached	Not reached	37.8	
	(NE)	(NE)	(42.2-NE)	(31.4-NE)	
HR (95% CI)	0.78 (0.554-1.084)		0.79 (0.643-0.969)		
Confirmed ORR (95% CI), %	51.4	25.7	59.3	31.8	
	(46.6-56.1)*	(21.7-30.0)*	(54.5-63.9) [†]	(27.4-36.3) [†]	

• The analysis of OS remained immature in 3 prespecified interim analyses

HR, hazard ratio; NE, not estimable; ORR, objective response rate; OS, overall survival; PFS, progression-free survival.

*By blinded independent central review. †By investigator assessment.

#ASCO24

1. Motzer RJ, et al. N Engl J Med. 2019; 380:1103-15; 2. Haanen J, et al. ESMO Open 2023;8:101210.

Final analysis of overall survival

PD-L1+ population*

(Primary endpoint)

Overall population

(Secondary endpoint)

At data cutoff (August 31, 2023), median follow-up was 73.7 months in the avelumab + axitinib arm and 73.6 months in the sunitinib arm (minimum follow-up, 68 months [last patient randomized to data cutoff]). HR, hazard ratio; OS, overall survival.

*PD-L1+ was defined as ≥1% of immune cells staining positive in the tumor area using the Ventana PD-L1 (SP263) assay.

#ASCO24

ANNUAL MEETING

Final analysis of OS in IMDC risk groups in the overall population

Favorable risk

96 92 90 85 77 72 65 60 57 52 46 42 26 11 2 0

Sunitinib

ANNUAL MEETING

Intermediate risk

Median OS (95% CI), months Median OS (95% CI), months Median OS (95% CI), months Avelumab + Axitinib (n=94) 79.4 (59.4-NE) Avelumab + Axitinib (n=270) 41.3 (33.7-50.0) Avelumab + Axitinib (n=73) **21.3** (14.7-33.1) **65.5** (53.4-78.6) 11.0 (7.8-16.5) Sunitinib (n=96) Sunitinib (n=277) **38.0** (29.6-47.6) Sunitinib (n=71) Unstratified HR, 0.78 (95% CI, 0.52-1.17) Unstratified HR, 0.95 (95% CI, 0.78-1.17) Unstratified HR, 0.63 (95% CI, 0.43-0.92) 1-sided p=0.2281* 1-sided p=0.6504[†] 1-sided p=0.0147[‡] 100 100-100 90 90 90 80 80 80 70 70. 70 60 60 60 % 50 50 50 OS, 40 40 40 30 30 30 20 20 20 10 10 10 0 0 42 48 54 60 66 72 78 84 90 0 12 18 24 30 36 0 12 18 24 30 36 42 48 54 60 66 72 78 84 90 0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 6 6 Months Months Months No. at risk Avelumab 94 90 88 83 77 73 73 69 63 57 53 49 33 17 270 250 228 203 176 157 136 120 110 99 85 74 46 17 73 59 43 39 32 26 25 23 18 17 16 15 + Axitinib 0 2 0

277 250 222 190 165 139 126 114 104 92 84 70 44 16 0 0

HR, hazard ratio; IMDC, International Metastatic RCC Database Consortium; NE, not estimable; OS, overall survival, RCC, renal cell carcinoma. *Stratified HR, 0.73 (95% CI, 0.48-1.10); 1-sided p=0.1290. †Stratified HR, 0.96 (95% CI, 0.78-1.18); 1-sided p=0.7119. *Stratified HR, 0.58 (95% CI, 0.39-0.87); 1-sided p=0.0076.

4 3

0 0

Poor risk

71 49 32 23 16 15 14 13 12 11 11 9

#ASCO24 PRESENTED BY: Robert J. Motzer, MD

KEYNOTE-426 Study Design (NCT02853331)

^aAxitinib dose could be increased to 7 mg, then 10 mg, twice daily if safety criteria are met; dose could be reduced to 3 mg, then 2 mg, twice daily to manage toxicity. ^bSunitinib dose could be decreased to 37.5 mg, then 25 mg, once daily for the first 4 weeks of each 6-week cycle to manage toxicity. Data cutoff: January 23, 2023.

Within-Arm Association Among Tcell_{inf}GEP, Angiogenesis Gene Signatures, PD-L1 CPS, and Clinical Outcome

	Pembrolizumab + axitinib			Sunitinib		
Biomarker	ORR	PFS	OS	ORR	PFS	OS
Tcell _{inf} GEP	<0.0001(+)	<0.0001(+)	0.002(+)	NS	NS	NS
Angiogenesis	NS	NS	0.004(+)	0.002(+)	<0.001(+)	<0.0001(+)
PD-L1 CPS	NS	NS	NS	NS	NS	0.025(-)

- Higher Tcell_{inf}GEP was associated with improved clinical outcome within the pembrolizumab + axitinib arm
- Higher angiogenesis gene expression was associated with improved clinical outcome within the sunitinib arm
- PD-L1 CPS was negatively associated with OS within the sunitinib arm

PD-L1 CPS: pembrolizumab + axitinib, n = 407; sunitinib, n = 409. Bold indicates significance. +/- indicates the observed association is positive/negative. NS, not significant. Clinical data cutoff: January 23, 2023.

ORR by Mutational Status

Study design: CLEAR

2024 ASCO

ANNUAL MEETING

PFS by gene signature-high and -low subgroups

		Patients		PFS Hazard Ratio	HR (95% CI)	Median (months)
Subgroup		L+P	S		L+P vs S	L+P	S
Overall population Gene alteration analysis set		355 192	357 196		0.48 (0.39–0.58) 0.52 (0.41–0.68)	23.9 24.3	9.2 9.4
GEP	-Low -Non-low	58 134	60 136		0.41 (0.24–0.68) 0.58 (0.43–0.79)	27.7 24.0	6.0 10.1
mMDSC	-Low -High	93 99	93 103		0.57 (0.39–0.82) 0.48 (0.34–0.69)	24.0 25.9	9.4 9.2
gMDSC	-Low -High	96 96	97 99		0.59 (0.41–0.87) 0.45 (0.31–0.64)	26.9 23.9	11.1 7.3
Angiogenesis	-Low -High	88 104	98 98		0.39 (0.27–0.57) 0.66 (0.46–0.94)	20.3 28.6	5.7 13.8
MVD	-Low -High	92 100	99 97		0.51 (0.36–0.74) 0.54 (0.38–0.79)	20.3 27.6	9.2 11.1
Angio36	-Low -High	103 89	88 108		0.44 (0.31–0.63) 0.61 (0.42–0.88)	24.0 24.3	9.2 11.0
Proliferation	-Low -High	93 99	102 94		0.56 (0.38–0.81) 0.48 (0.34–0.69)	27.6 22.0	11.1 7.0
MYC	-Low -High	91 101	98 98		0.62 (0.42–0.92) 0.42 (0.30–0.60)	27.7 16.7	11.2 5.9
RAS	-Low -High	95 97	100 96		0.44 (0.30–0.64) 0.61 (0.43–0.87)	27.6 22.2	9.5 9.2
WNT	-Low -High	104 88	97 99		0.52 (0.37–0.74) 0.51 (0.35–0.74)	24.0 24.3	11.0 9.2
Stroma/EMT/TGFβ	-Low -High	94 98	97 99		0.51 (0.35–0.73) 0.54 (0.38–0.78)	24.3 24.0	9.9 7.4
Glycolysis	-Low -High	90 102	104 92		0.56 (0.38–0.82) 0.48 (0.34–0.68)	26.9 24.0	11.1 7.4
Hypoxia	-Low -High	94 98	101 95		0.44 (0.30–0.65) 0.60 (0.42–0.85)	24.0 24.3	9.2 11.0
				0.25 0.35 0.50 0.75 1.	.0		
				In favor of L+P			

L+P arm showed longer PFS than S arm regardless of signature-high and -low subgroups

Cutoff values (1st tertile of GEP, median of non-GEP signatures) were determined based on the combined 3 arms. High/Non-low: >= cutoff; Low: <cutoff

ORR and PFS by molecular subtypes

PRESENTED BY:

#ASCO24

2024 ASCO

ANNUAL MEETING

		L+P		S		
Cluster*	n	Median PFS (95% CI)	n	Median PFS (95% CI)		
All	192	24.3 (18.6–28.6)	196	9.4 (6.0–11.1)		
Angiogenesis/Stromal	40	28.6 (15.9–37.0)	33	13.0 (10.1–NE)		
Angiogenesis	28	27.6 (16.6–42.2)	31	18.2 (5.6–26.3)		
Immune/Proliferative	40	23.9 (11.1–29.1)	34	9.5 (5.6–18.4)		
Proliferative	25	15.3 (7.4–26.9)	29	5.6 (3.9–9.7)		
Stromal/Proliferative	35	25.3 (11.1–31.1)	38	5.6 (3.7–7.0)		
Other	24	43.3 (12.7–NE)	31	11.0 (5.6–27.8)		

L+P demonstrated numerically higher tumor response and longer PFS than S across all molecular subtypes

*Associations between molecular subtypes and PFS were tested by a 5-degree of freedom likelihood ratio test (while adjusting for KPS). An association between PFS and the S arm (*p*=0.0009) was further evaluated by adding signatures (associated significantly with KPS-adjusted PFS; such as Proliferation, MYC, Angiogenesis and MVD) as covariates to test the independent value of the molecular subtypes. Molecular subtypes were associated with PFS in the S arm but not after adjustment for KPS and gene signatures that were shown to individually associate with PFS in the S arm (Pr[>Chisq]=0.1721).

IMmotion010 Study design (NCT03024996)

EFS, event-free survival; IC, tumour-infiltrating immune cells; IRF, independent review facility; ITT, intention to treat; IV, intravenous; NED, no evidence of disease; OS, overall survival; q3w, every 3 weeks; R, randomized; TNM, tumor, node, metastasis. ^a Per TNM/grading system or status post metastasectomy. ^b Including patients with synchronous metastasectomy and patients with metachronous metastasectomy ≥12 months after primary surgery. ^cWhichever occurred first. ^d Per VENTANA SP142 immunohistochemistry assay. ^e Not including Mexico.

KIM-1^{High} status at baseline was associated with worse DFS in IMmotion010

Baseline

	n	Median DFS (months)	HRª (95% CI)
KIM-1 ^{High}	300	35.88	4 75 (4 40 9 47)
KIM-1 ^{Low}	452	57.23	1.75 (1.40, 2.17)

Time (months)

^a HR stratified by pathologic disease stage and geographic region.

Atezolizumab improved DFS vs Placebo in the baseline KIM-1^{High} subgroup

^a HR stratified by pathologic disease stage and geographic region.

#ASCO24

57.23

HR^a (95% CI)

1.12 (0.88, 1.63)

Serum KIM-1 levels increased at time of disease recurrence vs baseline

Disease Recurrence/ Treatment Discontinuation

2024 ASCO

ANNUAL MEETING

^a Analysis conducted in patients with matched samples at baseline and at disease recurrence or at treatment discontinuation without disease recurrence (approximately 1 year or 16 treatment cycles)

Belzutifan for RCC in 2024 and Beyond

Belzutifan versus Everolimus for Previously Treated Advanced ccRCC: Randomized Open-Label Phase III LITESPARK-005 Study

 Key Eligibility Criteria Unresectable, locally advanced or metastatic clear cell RC Disease progression after 1-3 prior systemic regimens, including ≥1 anti-PD-(L)1 mAb and ≥1 VEGFR-TKI 	R = 374 $R = 374$	Belzutifan 120 mg orally daily	
 Karnofsky Performance Status score ≥70% 	N = 372		
	Belzutifan (N = 374)	Everolimus (N = 372)	
ge, median (range), yrs	62 (22–90)	63 (33–87)	
ale	79.4%	76.3%	
PS scorea			

Age, median (range), yrs	62 (22–90)	63 (33–87)
Male	79.4%	76.3%
KPS scoreª 90/100 70/80	63.6% 36.1%	64.5% 35.2%
IMDC risk categories Favorable Intermediate Poor	21.1% 66.6% 12.3%	22.3% 65.6% 12.1%
Sarcomatoid features Yes No/Unknown/Missing	11.2% 88.8%	8.3% 91.7%
Prior nephrectomy	69.8%	69.6%
# Prior VEGF/VEGFR-TKIs 1 2-3	50.0% 50.0%	51.1% 48.9%
# Prior lines of therapy ^b 1 2 3	12.3% 42.0% 45.2%	14.0% 44.6% 40.3%

Albiges L et al. ESMO 2023; Abstract LBA88.

LITESPARK-005: Primary Endpoint of PFS by BICR

PFS = progression-free survival; BICR = blinded independent central review; IA = interim analysis

LITESPARK-005: Primary Endpoint of Overall Survival (OS)

LITESPARK-005: Safety Profile

LITESPARK-011: Belzutifan and Lenvatinib versus Cabozantinib for Advanced Renal Cell Carcinoma After Anti-PD-1/PD-L1 Therapy

Assessments
Q8W first 104 weeks and then Q12W thereafter

RCC = renal cell carcinoma; PFS = progression-free survival; OS = overall survival;

ORR = objective response rate; DOR = duration of response

LITESPARK-012: Pembrolizumab and Lenvatinib with or without Belzutifan or Quavonlimab for Advanced Renal Cell Carcinoma

ccRCC = clear cell renal cell carcinoma; PFS = progression-free survival; BICR = blinded independent central review; OS = overall survival; ORR = objective response rate; DOR = duration of response

Health-related quality of life with nivolumab subcutaneous or intravenous in patients with advanced or metastatic clear cell renal cell carcinoma who have received prior therapy in the phase 3 CheckMate 67T trial

Saby George, 1 Maria T. Bourlon, 2 Matt Dixon, 3 Jennifer Lord-Bessen, 3 Gill Worthy, 4 Katie Frampton, 4 Christine Yip, 5 Rachael Lawrance, 4 Fiona Taylor, 5 Laurence Albigès 6

to Savetl Park Comprehensive Cancer Center, Buffalo, NY; Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico; Bristol Myers Squibb, Princeton, NJ; Adelphi Values, Bollington, Cheshire, UK; Adelphi Values, Boston, MA; Gustave Roussy, Villejuif, France

George S et al. ASCO 2024; Abstract LBA360.

Phase III CheckMate 67T Study: Safety Summary

- Safety was consistent between NIVO IV and NIVO SC
 - Rates of AEs, TRAEs, SAEs, TRSAEs, AEs leading to discontinuation, and TRAEs leading to discontinuation for SC arm
 were similar or lower than IV arm
 - Study drug toxicity led to 3 deaths in the NIVO SC arm and 1 death in the NIVO IV arm
 - Local site reactions in the NIVO SC arm were low grade, transient (mean duration, 3.02 days), and most resolved without treatment
 - No anaphylactic reactions were observed in either arm

	NIVO SC + rHu	PH20 (n = 247)	NIVO IV (n = 245)		
n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	
AE	230 (93.1)	87 (35.2)	229 (93.5)	100 (40.8)	
TRAE	146 (59.1)	24 (9.7)	158 (64.5)	36 (14.7)	
AE leading to discontinuation	25 (10.1)	18 (7.3)	29 (11.8)	21 (8.6)	
TRAE leading to discontinuation	10 (4.0)	6 (2.4)	12 (4.9)	9 (3.7)	
SAE	69 (27.9)	52 (21.1)	71 (29.0)	56 (22.9)	
TRSAE	17 (6.9)	16 (6.5)	17 (6.9)	16 (6.5)	
Select AEs Hypersensitivity/infusion-related reactions Local site reactions	3 (1.2) 20 (8.1)	1 (0.4) 0	9 (3.7) 5 (2.0)	0 0	

AE, adverse event; IV, intravenous; NA, not applicable; NIVO, nivolumab; rHuPH20, recombinant human hyaluronidase PH20; SAE, serious adverse event; SC, subcutaneous; TRAE, treatment-related adverse event; TRSAE, treatment-related serious adverse event.

Phase III CheckMate 67T: Most Common Adverse Events (AEs)

	NIVO SC + rHuPH20 (n = 247)		NIVO IV (n = 245)		
n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	
AE	230 (93.1)	87 (35.2)	229 (93.5)	100 (40.8)	
Arthralgia	29 (11.7)	1 (0.4)	39 (15.9)	1 (0.4)	
Fatigue	19 (7.7)	2 (0.8)	39 (15.9)	5 (2.0)	
Diarrhea	24 (9.7)	1 (0.4)	33 (13.5)	1 (0.4)	
Hyperglycemia	23 (9.3)	6 (2.4)	32 (13.1)	5 (2.0)	
Decreased appetite	22 (8.9)	0	28 (11.4)	2 (0.8)	
Back pain	19 (7.7)	2 (0.8)	27 (11.0)	4 (1.6)	
Oedema peripheral	11 (4.5)	1 (0.4)	24 (9.8)	2 (0.8)	
Nausea	20 (8.1)	0	22 (9.0)	0	
Hypokalemia	17 (6.9)	6 (2.4)	21 (8.6)	1 (0.4)	
Abdominal pain	16 (6.5)	0	16 (6.5)	1 (0.4)	

Questions?

TIVO-3 Study: Tivozanib (TIVO) versus Sorafenib for Relapsed/Refractory Advanced RCC

• TIVO-3 (NCT02627963) is a phase 3, global, open-label, parallel-arm study comparing TIVO with SOR in patients with R/R advanced mRCC (**Figure 1**)

BID, twice daily; CPI, checkpoint inhibitor; ECOG PS, Eastern Cooperative Oncology Group performance status; fav, favorable; IMDC, International Metastatic RCC Database Consortium; int, intermediate; mRCC, metastatic renal cell carcinoma; PO, oral; QD, once daily; TKI, tyrosine kinase inhibitor; VEGFR, vascular endothelial growth factor receptor.

Long-Term PFS from TIVO-3: Tivozanib (TIVO) versus Sorafenib for Relapsed/Refractory Advanced RCC

HR, 0.624 (95% CI, 0.49-0.79); log-rank P<.0001

Atkins MB et al. Genitourinary Cancers Symposium 2022; Abstract 362.

Agenda

Module 1: Management of Metastatic Clear Cell Renal Cell Carcinoma (RCC) — Prof Powles

Module 2: Treatment Approaches for Nonmetastatic RCC; Optimal Care of Patients with Non-Clear Cell RCC — Dr McKay

Module 3: ASCO 2024

Adjuvant Treatment of RCC in 2024

Treatment Approaches for Nonmetastatic RCC and Optimal Care of Patients with Non-Clear Cell RCC

Rana R. McKay, MD, FASCO

Associate Professor of Medicine and Urology Associate Director, Clinical Sciences Interim Associate Director, Translational Sciences Co-Lead, Genitourinary Oncology Program University of California San Diego – Moores Cancer Center La Jolla, California

Nonmetastatic RCC

Phase III KEYNOTE-564 Trial of Adjuvant Pembrolizumab for Clear Cell RCC: Study Design

Key Eligibility Criteria

- Histologically confirmed clear cell RCC with no prior systemic therapy
- Surgery ≤12 weeks prior to randomization
- Postnephrectomy intermediate-high risk of recurrence (M0):
 - pT2, grade 4 or sarcomatoid, N0
 - pT3, any grade, N0
- Postnephrectomy high risk of recurrence (M0):
 - pT4, any grade, N0
 - Any pT, any grade, N+
- Postnephrectomy + complete resection of metastasis (M1 NED)
- ECOG PS 0 or 1

Stratification Factors

- M stage (M0 vs. M1 NED)
- M0 group further stratified:
 - ECOG PS 0 vs. 1
 - US vs. non-US

Primary Endpoint

· Disease-free survival by investigator

Key Secondary Endpoint

Overall survival

Other Secondary Endpoints

Safety

KEYNOTE-564: Investigator-Assessed DFS in the ITT Population

DFS = disease-free survival; ITT = intention to treat

Choueiri TK et al. ASCO 2024; Abstract LBA359.

KEYNOTE-564: OS in the ITT Population

OS = overall survival; ITT = intention to treat

Choueiri TK et al. ASCO 2024; Abstract LBA359.

KEYNOTE-564: Safety

	Prior Analysis (30.1 mo follow-up)		IA3 (57.2 mo follow-up)	
As-Treated Population	Pembrolizumab	Placebo	Pembrolizumab	Placebo
	(N = 488)	(N = 496)	(N = 488)	(N = 496)
Duration of therapy, median (range), months	11.1 (0.03-14.3)	11.1 (0.03-15.4)	11.1 (0.03-14.3)	11.1 (0.03–15.4)
Any-cause AEs ^a	470 (96.3%)	453 (91.3%)	470 (96.3%)	453 (91.3%)
Grade 3 to 5	157 (32.2%)	88 (17.7%)	156 (32.0%)	88 (17.7%)
Led to treatment discontinuation	103 (21.1%)	11 (2.2%)	103 (21.1%)	11 (2.2%)
Led to death	2 (0.4%)	1 (0.2%)	2 (0.4%)	1 (0.2%)
Serious AEs ^a	101 (20.7%)	57 (11.5%)	101 (20.7%)	57 (11.5%)
Led to treatment discontinuation	49 (10.0%)	5 (1.0%)	49 (10.0%)	5 (1.0%)
Treatment-related AEs ^a	386 (79.1%)	265 (53.4%)	386 (79.1%)	263 (53.0%)
Grade 3 to 4	91 (18.6%)	6 (1.2%)	91 (18.6%)	6 (1.2%)
Led to treatment discontinuation	89 (18.2%)	4 (0.8%)	89 (18.2%)	4 (0.8%)
Led to death	0	0	0	0
Immune-mediated AEs and infusion reactions ^b	174 (35.7%)	34 (6.9%)	178 (36.5%)	36 (7.3%)
Grade 3 to 4	45 (9.2%)	3 (0.6%)	46 (9.4%)	3 (0.6%)
Led to death	0	0	0	0
Required high-dose (≥40 mg/day) systemic corticosteroids	37 (7.6%)	3 (0.6%)	37 (7.6%)	3 (0.6%)

Safety findings did not change substantially from last analysis

First-Line Therapy for Advanced Non-Clear Cell RCC in 2024

Non-Clear Cell Renal Cell Carcinoma (nccRCC)

Variant Renal Cell Carcinoma Histologies

Clear Cell	Papillary	Chromophobe	Collecting Duct	Mucinous Tubular	Unclassified
Proximal Tubule	Proximal and Distal Tubules	Distal Tubule Intercalated Cells	Collecting Duct	Proximal Tubule	-
80%	15-20%	5%	1-2%	<1%	4-5%
VHL, chr 3p	MET, chr 7, FH	PTEN, TP53, MTOR, TSC 1/2	NF2, CDKN2A/B, SMARCB1	chr loss and gain	NF2,SETD2, BAP1
5-year OS 81%	5-year OS 82%	5-year OS 91%	5-year OS 44%	Favorable	5-year OS 60%

OS=Overall survival. *5-year OS for patients with localized disease.

Moch et al, Eur Urol, 2022

Phase II SWOG-1500 Trial of Sunitinib versus Cabozantinib, Crizotinib or Savolitinib for Advanced Papillary RCC: Study Design

mPRCC = metastatic papillary RCC

Pal SK et al. Genitourinary Cancers Symposium 2021; Abstract 270.

Phase II SWOG-1500 Study: Survival Outcomes

 Cabozantinib treatment resulted in significantly longer PFS compared with sunitinib for patients with metastatic PRCC. Savolitinib and crizotinib did not improve PFS compared to sunitinib. No significant differences in overall survival were observed between treatment groups.

KEYNOTE-B61: A Phase II Trial of Pembrolizumab with Lenvatinib as First-Line Therapy for Advanced nccRCC

Key Eligibility Criteria

- Histologically confirmed diagnosis of non–clear cell RCC (per investigator)
- Locally advanced/metastatic disease
- No prior systemic therapy
- Measurable disease per RECIST v1.1
- Tumor tissue sample available
- KPS ≥70%

Primary endpoint: ORR per RECIST v1.1 by BICR

ORR = objective response rate

Voss MH et al. Genitourinary Cancers Symposium 2024; Abstract 2.

KEYNOTE-B61: Responses

CA209-9KU: A Phase II Study of Cabozantinib and Nivolumab for nccRCC

Parameter	Line of treatment		Renal cell carcinoma histology		
	1st line (<i>n</i> = 26)	2nd line (<i>n</i> = 14)	Papillary (n = 32)	UCP (<i>n</i> = 6)	TA-RCC (<i>n</i> = 2)
ORR, % (95% CI)	54 (33–73)	36(13–65)	47 (30–64)	50 (12-88)	50 (1–99)
Complete response, <i>n</i> (%)	1 (3.8)	0(0)	1 (3.1)	0(0)	0(0)
Partial response, n (%)	13 (50)	5 (36)	14 (44)	3 (50)	1 (50)
Stable disease, n (%)	12 (46)	7 (50)	16 (50)	2 (33)	1 (50)
Progressive disease, n (%)	0(0)	2 (14)	1 (3.1)	1 (17)	0(0)
Median PFS, mo (95% CI)	11 (7–19)	13 (5–16)	13 (7–16)	8 (1–NE)	14 (5–23)

CI = confidence interval; ORR = objective response rate; NE = not estimable; PFS = progression-free survival; TA-RCC = translocation-associated renal cell carcinoma; UCP = unclassified without papillary features.

Fitzgerald KN et al. Eur Urol May 22 2024;[Online ahead of print].

Phase II CA209-9KU Study: Safety

Symptomatic AEs

Adverse event	Patients, n (%)		
	All grades	Grade 3–4	
Fatigue	28 (70)	0 (0)	
Palmar-plantar erythrodysesthesia syndrome	27 (68)	2 (5.0)	
Diarrhea	25 (63)	3 (7.5)	
Dry mouth	19 (48)	0 (0)	
Hypertension	17 (43)	5 (13)	
Mucositis oral	14 (35)	0 (0)	
Nausea	14 (35)	1 (2.5)	
Hoarseness	12 (30)	0 (0)	
Dry skin	11 (28)	0 (0)	
Dyspnea	11 (28)	0 (0)	
Constipation	10 (25)	0 (0)	_
Gastroesophageal reflux disease	10 (25)	0 (0)	
Headache	10 (25)	0 (0)	
Pruritus	10 (25)	0 (0)	
Back pain	9 (23)	0 (0)	
Cough	9 (23)	0 (0)	
Anorexia	8 (20)	0 (0)	
Arthralgia	8 (20)	0 (0)	
Dysgeusia	8 (20)	0 (0)	
Rash maculopapular	8 (20)	0 (0)	
Nasal congestion	7 (18)	0 (0)	
Vomiting	7 (18)	0 (0)	
Weight loss	7 (18)	0 (0)	

Laboratory AEs

Adverse event	Patients, n (%)		
	All grades	Grade 3-4	
Aspartate aminotransferase increased	36 (90)	5 (13)	
Alanine aminotransferase increased	28 (70)	6 (15)	
Hypophosphatemia	26 (65)	13 (33)	
Serum amylase increased	19 (48)	7 (18)	
Lipase increased	16 (40)	6 (15)	
Hypomagnesemia	11 (28)	1 (2.5)	
Alkaline phosphatase increased	10 (25)	0 (0)	
Platelet count decreased	7 (18)	0 (0)	
Lymphocyte count decreased	6 (15)	2 (5.0)	

• There were no major differences observed in the known safety profile of cabozantinib with nivolumab.

LITESPARK-004 Trial: Belzutifan for von Hippel-Lindau (VHL) Disease – RCC Cohort

	RCC N = 61	
ORR, n (%) [95% CI]	36 (59) [45.7-71.4]	
Best objective response, n (%)		
CR	2 (3)	
PR	34 (56)	
SD	24 (39)	
PD	0 (0)	
Nonevaluable	1 (2)	

CR, complete response; PR, partial response; SD, stable disease

 From the previous data cutoff date of December 12, 2020 to the current data cutoff date of July 15, 2021, the confirmed objective response rate in VHL disease-associated RCC increased from 49% to 59%, including 2 CRs

Jonasch E et al. ASCO 2022; Abstract 4546.

100 90

LITESPARK-004: Treatment-Related Adverse Events (TRAEs) with Incidence ≥10% Among All Patients

TRAE	Any grade	Grade 3 ^{a,b}
Any	61 (100)	10 (16)
Anemia	54 (89)	6 (10)
Fatigue	37 (61)	3 (5)
Dizziness	15 (25)	0 (0)
Nausea	14 (23)	0 (0)
Headache	11 (18)	0 (0)
Dyspnea	10 (16)	0 (0)
Myalgia	8 (13)	0 (0)
Alanine aminotransferase increased	6 (10)	0 (0)

- No new safety signals emerged with additional follow-up.
- Anemia was the most common TRAE (primarily Grade 1-2)
- No Grade 4 or 5 TRAEs occurred.

Jonasch E et al. ASCO 2022; Abstract 4546.

Questions?

FORTUNE: A Single-Arm Phase II Study of Tivozanib and **Nivolumab for Patients with Advanced nccRCC**

Nguyen CB et al. ASCO 2024; Abstract TPS4612.

Trial registration: NCT06053658

Phase III STELLAR-304 Trial: Zanzalintinib with Nivolumab

- leading to increased invasion and metastasis • Promote endothelial proliferation,
- migration, and survival
 TAM and MET may act as compensatory mechanisms of VEGER inhibition
- Increase M2/M1 ratio of Mo
- Inhibit antigen presentation
- Inhibit T cell activation and limit
- anti-tumor T cell responses

- Zanzalintinib inhibits VEGFR, MET, and TAM kinases and may enhance the activity of nivolumab by promoting an immune-permissive tumor microenvironment
- Nivolumab binds to the PD-1 receptor on immune cells and blocks interactions with ligands, such as PD-L1, which restores T-cell activation and increases antitumor effects

Pal SK et al. ASCO 2024; Abstract TPS4611.

Conclusions

- Adjuvant pembrolizumab for patients with high-risk ccRCC
- First-line treatment options for advanced nccRCC
- Belzutifan for patients with VHL-associated RCC
- Novel therapies under investigation for nccRCC

Agenda

Module 1: Management of Metastatic Clear Cell Renal Cell Carcinoma (RCC) — Prof Powles

Module 2: Treatment Approaches for Nonmetastatic RCC; Optimal Care of Patients with Non-Clear Cell RCC — Dr McKay

Module 3: ASCO 2024

Other ASCO 2024 Oral Abstracts on RCC

Doshi et al. A multi-institution analysis of outcomes with first-line systemic therapy for 99 patients with metastatic chromophobe renal cell carcinoma. ASCO 2024;Abstract 4512.

Pal et al. Preliminary safety, pharmacokinetics and clinical activity of DFF332, an oral HIF2a inhibitor, as monotherapy in a phase 1 dose escalation study in patients with advanced clear cell renal cell carcinoma. ASCO 2024; Abstract 4513.

Zarba et al. Systemic treatments in favorable and very favorable risk metastatic renal cell carcinoma (mRCC): Real world evidence from the International mRCC Database Consortium (IMDC). ASCO 2024;Abstract 4514.

Kashima et al. Investigation of T cell phenotypes associated with response or resistance to immune checkpoint inhibitors (ICI) through single-cell analysis of renal cell carcinoma (RCC). ASCO 2024;Abstract 4515.

What Clinicians Want to Know About the Management of Triple-Negative Breast Cancer

A CME/MOC-Accredited Live Webinar

Thursday, June 20, 2024 5:00 PM – 6:00 PM ET

Faculty Kevin Kalinsky, MD, MS Heather McArthur, MD, MPH

> Moderator Neil Love, MD

Thank you for joining us!

Please take a moment to complete the survey currently up on Zoom. Your feedback is very important to us. The survey will remain open for 5 minutes after the meeting ends.

CME and MOC credit information will be emailed to each participant within 5 business days.

