What I Tell My Patients: Integrating New Research Information into Current Clinical Care

A Complimentary NCPD Hybrid Symposium Series Held During the 49th Annual ONS Congress

Myelofibrosis

Saturday, April 27, 2024 12:15 PM – 1:45 PM

Faculty

Ilene Galinsky, NP
Andrew T Kuykendall, MD
Sara M Tinsley-Vance, PhD, APRN, AOCN
Abdulraheem Yacoub, MD

Moderator Neil Love, MD

Faculty

Ilene Galinsky, NP
Senior Adult Leukemia Program
Research Nurse Practitioner
Dana-Farber Cancer Institute
Boston, Massachusetts

Abdulraheem Yacoub, MD
Professor of Medicine
Division of Hematologic Malignancies
and Cellular Therapeutics (HMCT)
Department of Internal Medicine
The University of Kansas Cancer Center
Westwood, Kansas

Andrew T Kuykendall, MD
Associate Member, Department of Malignant Hematology
Moffitt Cancer Center
Assistant Professor, Department of Oncologic Sciences
University of South Florida
Tampa, Florida

Moderator
Neil Love, MD
Research To Practice
Miami, Florida

Sara M Tinsley-Vance, PhD, APRN, AOCN
Nurse Practitioner and Researcher
Malignant Hematology
Moffitt Cancer Center
Courtesy Assistant Professor
University of South Florida College of Nursing
Tampa, Florida

Ms Galinsky — Disclosures

Advisory Committees	AbbVie Inc, Astellas, CTI Biopharma, a Sobi company, Novartis, Takeda Pharmaceuticals USA Inc
Consulting Agreements	AbbVie Inc, CTI Biopharma, a Sobi company, Novartis

Dr Kuykendall — Disclosures

Advisory Committees	AbbVie Inc, Blueprint Medicines, Bristol Myers Squibb, Cogent Biosciences, CTI Biopharma, a Sobi company, Incyte Corporation, Karyopharm Therapeutics, PharmaEssentia					
Consulting Agreements	AbbVie Inc, Karyopharm Therapeutics, MorphoSys					
Contracted Research	Blueprint Medicines, Bristol Myers Squibb, Geron, Janssen Biotech Inc, Protagonist Therapeutics, MorphoSys					
Data and Safety Monitoring Board/Committee	Geron					

Dr Tinsley-Vance — **Disclosures**

Advisory Committees	AbbVie Inc, CTI Biopharma, a Sobi company, Incyte Corporation, Pfizer Inc
Consulting Agreements	CTI Biopharma, a Sobi company, Incyte Corporation, Novartis
Speakers Bureaus	Astellas, Bristol Myers Squibb, CTI Biopharma, a Sobi company, Incyte Corporation, Jazz Pharmaceuticals Inc
Nonrelevant Financial Relationships (Contracted Research)	Gulf Coast Community Foundation, National Institutes of Health, Patient-Centered Outcomes Research Institute

Dr Yacoub — Disclosures

Consulting Agreements

AbbVie Inc, Acceleron Pharma, Apellis, CTI Biopharma, a Sobi company, Gilead Sciences Inc, Incyte Corporation, Karyopharm Therapeutics, Notable Labs, Novartis, Pfizer Inc, PharmaEssentia, Protagonist Therapeutics, Servier Pharmaceuticals LLC

Commercial Support

This activity is supported by educational grants from CTI Biopharma, a Sobi company, GSK, and Incyte Corporation.

Research To Practice NCPD Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

This educational activity contains discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the pre- and postmeeting surveys. Survey questions will be discussed throughout the meeting.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Clinicians Attending via Zoom

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the pre- and postmeeting surveys. Survey questions will be discussed throughout the meeting.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get NCPD Credit: An NCPD credit link will be provided in the chat room at the conclusion of the program.

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

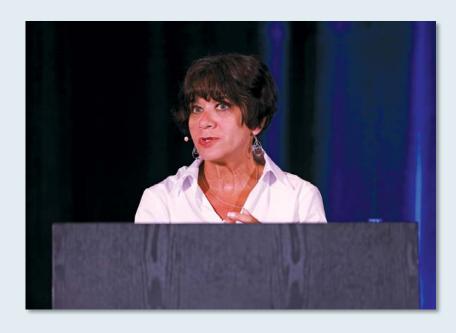
Answer Survey Questions: Complete the pre- and postmeeting surveys. Survey questions will be discussed throughout the meeting.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Complete Your Evaluation: Tap the NCPD Evaluation button to complete your evaluation electronically to receive credit for your participation.


For assistance, please raise your hand. Devices will be collected at the conclusion of the activity.

Clinicians, Please Complete the Pre- and Postmeeting Surveys



About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

 To learn more about our education programs, visit our website, www.ResearchToPractice.com

"What I Tell My Patients" Sixteenth Annual RTP-ONS NCPD Symposium Series

Wednesday April 24	Hormone Receptor-Positive Breast Cancer 6:00 PM - 8:00 PM ET
	Endometrial Cancer 6:00 AM - 7:30 AM ET
Thursday April 25	Antibody-Drug Conjugates 12:15 PM - 1:45 PM ET
	Chronic Lymphocytic Leukemia and Bispecific Antibodies in Lymphoma 6:00 PM - 8:00 PM ET
	Head and Neck Cancer 6:00 AM - 7:30 AM ET
Friday April 26	Non-Small Cell Lung Cancer with an EGFR Mutation 12:15 PM - 1:45 PM ET
	Ovarian Cancer 6:00 PM - 7:30 PM ET
	Hepatobiliary Cancers 6:00 AM - 7:30 AM ET
Saturday April 27	Myelofibrosis 12:15 PM – 1:45 PM ET
	Gastroesophageal and Colorectal Cancers 6:00 PM - 8:00 PM ET
Wednesday, May 1	LIVE WEBINAR — Prostate Cancer 7:00 PM - 8:00 PM ET

Consulting Nurse Faculty

Jacqueline Broadway-Duren, PhD, DNP, APRN, FNP-BC The University of Texas MD Anderson Cancer Center Houston, Texas

Kathleen D Burns, RN, MSN, AGACNP-BC, OCN City of Hope Comprehensive Cancer Center Duarte, California

Sonia Glennie, ARNP, MSN, OCN Swedish Cancer Institute Center for Blood Disorders Seattle, Washington

Amy Goodrich, CRNP
The Sidney Kimmel Comprehensive
Cancer Center
Baltimore, Maryland

Jessica Mitchell, APRN, CNP, MPH
Mayo Clinic College of Medicine and Science
Rochester, Minnesota

Tiffany A Richards, PhD, ANP-BC, AOCNP
The University of Texas
MD Anderson Cancer Center
Houston, Texas

Kimberly A Spickes, MNSc, RN, APRN, OCN, ACNP-BC
University of Arkansas for Medical Sciences
Little Rock, Arkansas

Ronald Stein, JD, MSN, NP-C, AOCNP USC Norris Comprehensive Cancer Center Los Angeles, California

What I Tell My Patients: Integrating New Research Information into Current Clinical Care

A Complimentary NCPD Hybrid Symposium Series Held During the 49th Annual ONS Congress

Myelofibrosis

Saturday, April 27, 2024 12:15 PM – 1:45 PM

Faculty

Ilene Galinsky, NP
Andrew T Kuykendall, MD
Sara M Tinsley-Vance, PhD, APRN, AOCN
Abdulraheem Yacoub, MD

Moderator Neil Love, MD

Agenda

Introduction

Module 1: Biology of Myelofibrosis (MF)

Module 2: Role of Available and Investigational JAK inhibitors in the Management of MF

Module 3: Promising Agents and Strategies for Patients with MF

Agenda

Introduction

Module 1: Biology of Myelofibrosis (MF)

Module 2: Role of Available and Investigational JAK inhibitors in the Management of MF

Module 3: Promising Agents and Strategies for Patients with MF

Consulting Nursing Faculty Comments

Financial stressors on patients

Jacqueline Broadway-Duren, PhD, DNP, APRN, FNP-BC

Agenda

Introduction

Module 1: Biology of Myelofibrosis (MF)

Module 2: Role of Available and Investigational JAK inhibitors in the Management of MF

Module 3: Promising Agents and Strategies for Patients with MF

Tampa, Florida

The Biology of MF

Westwood, Kansas

- Typical presentation, symptoms and clinical course of MF; differences between primary and secondary disease
- Clinical significance of the JAK-STAT pathway in MF development
- Appropriate risk stratification for patients with MF; advantages and limitations of available scoring systems
- Establishing goals of care; identification of patients who may be appropriate for allogeneic stem cell transplant
- Effectiveness of various interventions, such as transfusions, erythropoiesisstimulating agents, growth factors and splenectomy, in addressing common symptoms of MF

Overview of Myelofibrosis (MF)

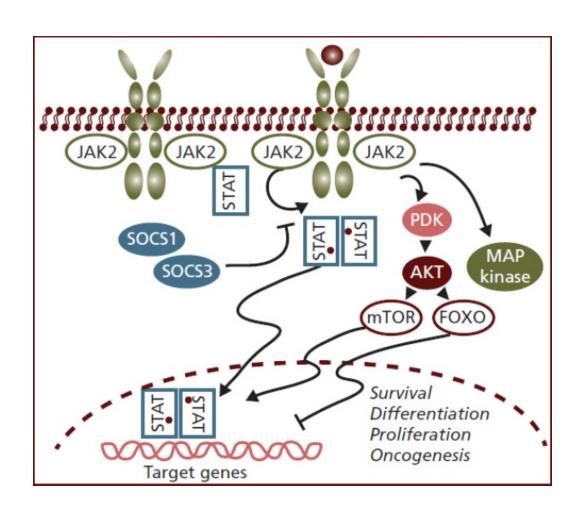
Myelofibrosis: Clinical Manifestations¹

Constitutional symptoms	Fatigue, weight loss, cachexia, pruritus, night sweats, bone/joint pain, low-grade fever, cough						
Marked hepatosplenomegaly	Early satiety, abdominal discomfort, painful splenic infarcts, portal hypertension, cachexia						
Nonhepatosplenic extramedullary hematopoiesis (rare)	Cord compression, ascites, pulmonary hypertension, pulmonary embolism, lymphadenopathy, skin tumors						

Thrombohemorrhagic complications

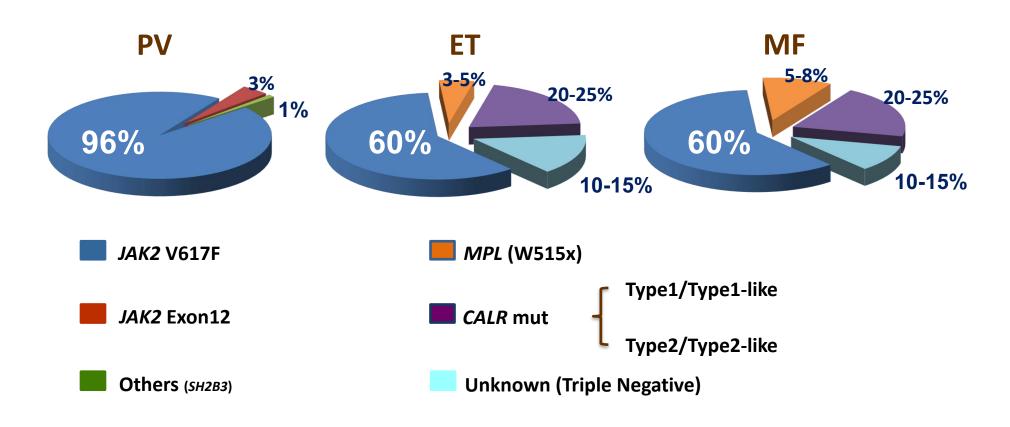
Marked leukocytosis or thrombocytosis; severe anemia, thrombocytopenia, neutropenia; hyperuricemia

Increased risk of leukemic transformation



Splenomegaly²

1. Barbui T et al. J Clin Oncol. 2011;29:761-770. 2. Image provided courtesy of S. Verstovsek.


JAK-STAT Pathway Constitutively Activated in Myelofibrosis

- JAK-STAT pathway implicated in normal hematopoiesis¹
- An activating mutation in the pseudokinase domain of Janus kinase 2 (JAK2) was identified in approximately 50% of MF patients
- Dysregulation of JAK-STAT, regardless of JAK mutation status, is a key pathologic feature of MF and other MPNs^{1,2}

1. Vannucchi AM et al. CA Cancer J Clin. 2009;59:171-191. 2. Anand S et al. Blood. 2011;118:1610-1621.

Phenotypic Driver Mutations (they activate JAK-STAT pathway) in MPNs

Klampfl T, et al. *NEJM* 2013;369(25):2379-90; Nangalia J, et al. *NEJM* 2013;369(25):2391-405.

Ilene Galinsky, NP

What I tell my patients with MF about myeloproliferative neoplasms – how they are defined and diagnosed and the goals of treatment, including allotransplant

Quality of Life in MPNs

- * Individualized based on your goals and values
- * Optimal symptom management
- * Shared decision-making
 - Enhanced by understanding of MPN
- * Improved communication

Myeloproliferative Neoplasm Symptom Assessment Form Total Symptom Score (MPN-SAF TSS)

Symptom	1 to 10 (0 if absent) ranking 1 is most favorable and 10 least favorable							
Please rate your fatigue (weariness, tiredness) by circling the one number that best describes your WORST level of fatigue during past 24 hours*	(No Fatigue) 0 1 2 3 4 5 6 7 8 9 10 (Worst Imaginable)							

Filling up quickly when you eat (Early satiety)	(Absent)	0	1	2	3	4	5	6	7	8	9	10	(Worst Imaginable)
Abdominal discomfort	(Absent)	0	1	2	3	4	5	6	7	8	9	10	(Worst Imaginable)
Inactivity	(Absent)	0	1	2	3	4	5	6	7	8	9	10	(Worst Imaginable)
Problems with concentration – Compared to prior to my MPD	(Absent)	0	1	2	3	4	5	6	7	8	9	10	(Worst Imaginable)
Numbness/Tingling (in my hands and feet)	(Absent)	0	1	2	3	4	5	6	7	8	9	10	(Worst Imaginable)
Night sweats	(Absent)	0	1	2	3	4	5	6	7	8	9	10	(Worst Imaginable
Itching (pruritus)	(Absent)	0	1	2	3	4	5	6	7	8	9	10	(Worst Imaginable)
Bone pain (diffuse not joint pain or arthritis)	(Absent)	0	1	2	3	4	5	6	7	8	9	10	(Worst Imaginable)
Fever (>100 F)	(Absent)	0	1	2	3	4	5	6	7	8	9	10	(Daily)
Unintentional weight loss last 6 months	(Absent)	0	1	2	3	4	5	6	7	8	9	10	(Worst Imaginable)

^{*} Question used with permission from the MD Anderson Cancer Center Brief Fatigue Inventory ©

About this form

The article describes the development and use of this form as published in the November 20, 2012 edition of the *Journal of Clinical Oncology*.

- * You are a key member of your healthcare team
- * Assist your healthcare team in recognition and evaluation of your symptoms
- * This tool can help you evaluate how symptoms change over time
- Discuss your symptoms with your healthcare team and focus on how it affects your normal routine

Emanuel, R.M., Dueck, A.C., Geyer, H.L., Kiladjian, J.J., Slot,S., Zweegman, S., te Boekhorst, P.A., ... Mesa. R.A. (2012). Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patient with MPNs. Journal of Clinical Oncology, 30(33), 4098–4103.

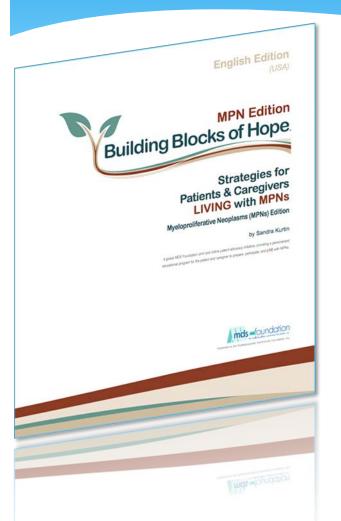
Courtesy of Sara M Tinsley-Vance, PhD, APRN, AOCN

Identify Goals of Treatment

- * Individualized to what is most important to you
- Improve symptoms and overall quality of life
 - * Fatigue
 - * Concentration Problems
 - Early Satiety
 - * Inactivity
 - * Night Sweats
 - Pruritus (Itching)
 - * Bone Pain
 - * Abdominal Discomfort
 - Weight Loss
 - * Fever
- * Reduction in spleen size
- * Delay progression of MPN to later stages of disease and transformation to acute myelogenous leukemia
- * Sometimes cure is the goal through allogeneic transplant

Emanuel, R.M., Dueck, A.C., Geyer, H.L., Kiladjian, J.J., Slot, S., Zweegman, S., te Boekhorst, P.A., ... Mesa. R.A. (2012). Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patient with MPNs. Journal of Clinical Oncology, 30(33), 4098–4103. Mesa, R.A., Scherber, R.M., & Geyer, H.L. (2015). Reducing symptom burden in patients with myeloproliferative neoplasms in the era of Janus kinase inhibitors. Leukemia & Lymphoma, 56(7), 1989–1999.

Courtesy of Sara M Tinsley-Vance, PhD, APRN, AOCN


Anemia Management

- Monitor complete blood count
- * Recognize symptoms of anemia (increasing fatigue, shortness of breath)
- * Communicate symptoms to healthcare team could be related to anemia
- * Review medications at each visit
- Consider other causes of anemia aside from myelofibrosis (bleeding, nutrition, worry)
- Transfuse as needed to minimize impact of anemia on quality of life
- Involve your support team in education

Fowkles, Sabrina et al. Myeloproliferative neoplasms (MPNs) – Part 2: A nursing guide to managing the symptom burden of MPNs. Canadian Oncology Nursing Journal / Revue canadienne de soins infirmiers en oncologie, [S.I.], v. 28, n. 4, p. 276-281, Oct. 2018. ISSN 2368-8076. Available at:

< http://canadianoncologynursingjournal.com/index.php/conj/article/view/931>. Date accessed: 19 Mar. 2020.

Strategies to Improve Understanding

- * Written communication reinforces verbal communication
 - * These are complicated diseases that are difficult to explain to others
- * Online Resources
 - MDS Foundation Building Blocks of Hope MPN Edition
 - * Voices of MPN
 - * MPN Research
 - * Leukemia and Lymphoma Society -MPN

Agenda

Introduction

Module 1: Biology of Myelofibrosis (MF)

Module 2: Role of Available and Investigational JAK inhibitors in the Management of MF

Module 3: Promising Agents and Strategies for Patients with MF

Tampa, Florida

The Role of Ruxolitinib in Therapy for MF

Westwood, Kansas

- Published research database with ruxolitinib for patients with intermediateand high-risk MF; impact on symptom control and survival
- Common side effects and toxicities associated with ruxolitinib, such as thrombocytopenia, anemia, neutropenia and infection; appropriate monitoring of blood counts
- Initial dosing of ruxolitinib and dose-modification strategies for patients with treatment-related toxicity, preexisting thrombocytopenia or inadequate initial response
- Importance of gradual tapering versus abrupt discontinuation of ruxolitinib

Ruxolitinib

Mechanism of action

Janus-associated kinase (JAK) 1/2 inhibitor

Indication in myelofibrosis

 For the treatment of intermediate- or high-risk myelofibrosis, including primary myelofibrosis, post-polycythemia vera (PV) myelofibrosis and post-essential thrombocythemia (ET) myelofibrosis in adults

Recommended dosing for myelofibrosis

- Starting dose based on patient's baseline platelet count:
 - Greater than 200 x 10⁹/L: 20 mg given orally twice daily
 - 100×10^9 /L to 200×10^9 /L: 15 mg given orally twice daily
 - 50 x 10⁹/L to less than 100 x 10⁹/L: 5 mg given orally twice daily
- Monitor complete blood counts every 2 to 4 weeks until doses are stabilized, and then
 as clinically indicated. Modify or interrupt dosing for thrombocytopenia.

JAK Inhibitor Specificities

JAK and FLT3 Kinases IC ₅₀ (nM)									
Kinase	Pacritinib	Pacritinib Ruxolitinib Fedratinib							
JAK1	1280	3.4	18	11					
JAK2	6.0	4.5	1.1	18					
JAK2 ^{V617F}	9.4	NR	NR	-					
	Non-tyros	ine Kinases of Intere	est IC ₅₀ (nM)						
CSF1R	39.5	>3000	220	:—:					
IRAK1	13.6	290	620	NR					
ACVR1	16.7	>1000	273	52.5					

CSF1R, colony stimulating factor 1 receptor; FLT, FMS-like tyrosine kinase; IRAK, interleukin-1 receptor-associated kinase; ITD, internal tandem duplication; TYK, tyrosine kinase. Singer J, et al. *Blood.* 2014;124:1874; Mascarenhas JO, et al. *Haematologica*. 2017;102:327-335. Jadwiga J. et al. *Blood.* 2018 132 (Supplement 1): 2559. Duenas-Perez AB et al. *Ther Adv Hematol.* 2015: 186-201

What Does Ruxolitinib Do?

Patient Before Ruxolitinib Therapy

It is good for spleen and symptoms

2012;366:799-807

The NEW ENGLAND JOURNAL of MEDICINE

COMFORT-I

ORIGINAL ARTICLE

A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis

Srdan Verstovsek, M.D., Ph.D., Ruben A. Mesa, M.D., Jason Gotlib, M.D.,

M.D., Vikas Gupta, M.D., John F. DiPersio, M.D., Ph.D., M.D., Michael Deininger, M.D., Ph.D., Carole Miller, M.D., er, M.D., Moshe Talpaz, M.D., Elliott F. Winton, M.D., Ir., M.D., Murat O. Arcasoy, M.D., Elizabeth Hexner, M.D., ons, M.D., Ronald Paquette, M.D., Azra Raza, M.D., Isan Erickson-Viitanen, Ph.D., Iphigenia L. Koumenis, M.S., D., Victor Sandor, M.D., and Hagop M. Kantarjian, M.D.

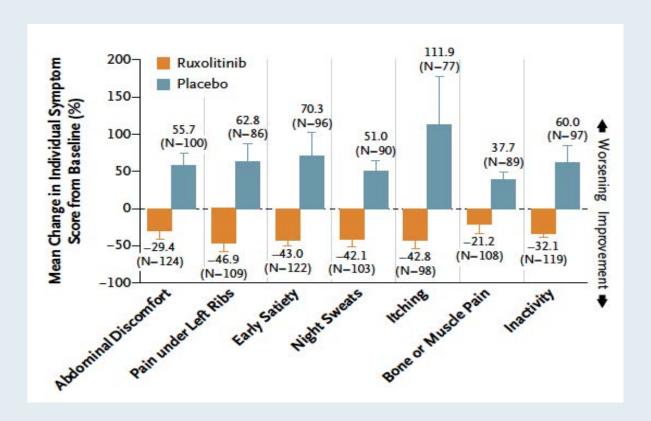
The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

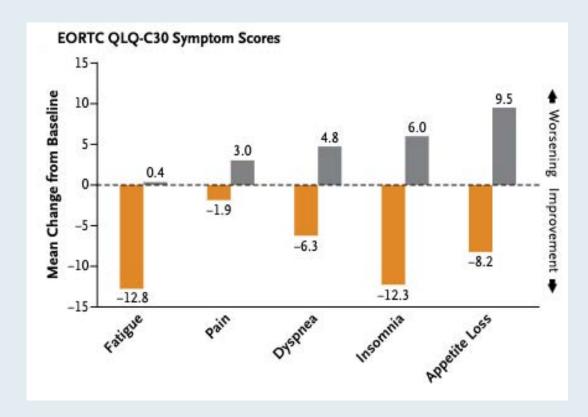
MARCH 1, 2012

VOL. 366 NO. 9

COMFORT-II


JAK Inhibition with Ruxolitinib versus Best Available Therapy for Myelofibrosis

Claire Harrison, D.M., Jean-Jacques Kiladjian, M.D., Ph.D., Haifa Kathrin Al-Ali, M.D., Heinz Gisslinger, M.D., Roger Waltzman, M.D., M.B.A., Viktoriya Stalbovskaya, Ph.D., Mari McQuitty, R.N., M.P.H., Deborah S. Hunter, Ph.D., Richard Levy, M.D., Laurent Knoops, M.D., Ph.D., Francisco Cervantes, M.D., Ph.D., Alessandro M. Vannucchi, M.D., Tiziano Barbui, M.D., and Giovanni Barosi, M.D.

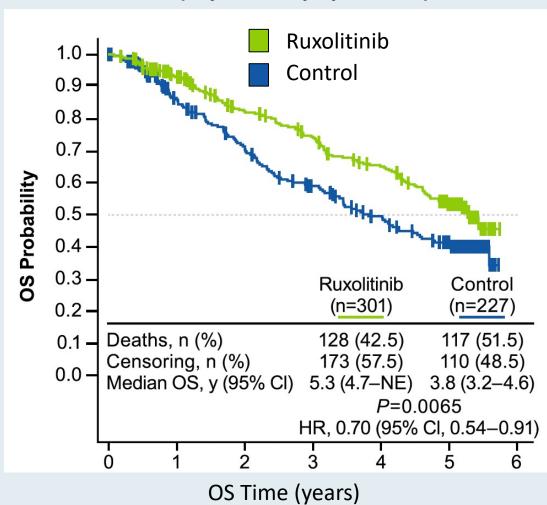


COMFORT-I and COMFORT-II: Symptom Responses with Ruxolitinib

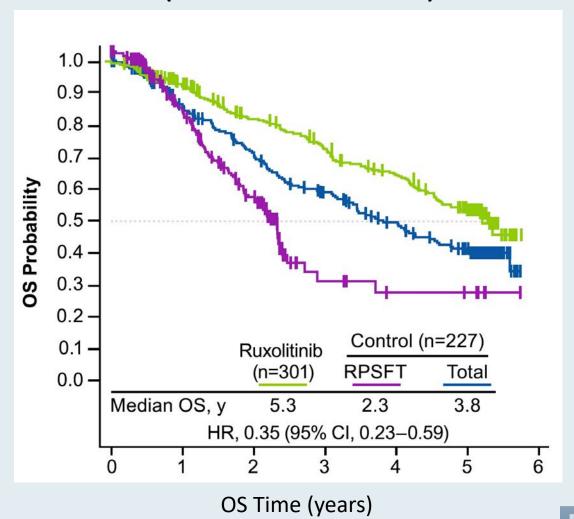
COMFORT-I

COMFORT-II

RESEARCH Open Access


Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses

Srdan Verstovsek^{1*}, Jason Gotlib², Ruben A. Mesa³, Alessandro M. Vannucchi⁴, Jean-Jacques Kiladjian⁵, Francisco Cervantes⁶, Claire N. Harrison⁷, Ronald Paquette⁸, William Sun⁹, Ahmad Naim⁹, Peter Langmuir⁹, Tuochuan Dong¹⁰, Prashanth Gopalakrishna¹¹ and Vikas Gupta¹²



COMFORT-I and II Pooled Analyses: Long-Term Survival with Ruxolitinib

OS (5-year ITT population)

OS (corrected for crossover)

OS = overall survival; ITT = intention to treat

Verstovsek S et al. J Hematol Oncol 2017;10:156.

Sara M Tinsley-Vance, PhD, APRN, AOCN

What I tell my patients who are about to begin treatment with ruxolitinib

Tampa, Florida

Fedratinib in the Management of MF

Dr YacoubWestwood, Kansas

- Mechanistic similarities and differences between fedratinib and ruxolitinib
- Efficacy and safety outcomes reported in key studies of fedratinib for newly diagnosed or previously treated MF; selection of patients for fedratinib therapy
- Incidence of encephalopathy with fedratinib; assessment of thiamine levels and thiamine supplementation for patients receiving this agent
- Rates of gastrointestinal (GI) adverse events reported with fedratinib; early implementation of mitigation strategies to prevent GI toxicity
- Spectrum, frequency and severity of other toxicities associated with fedratinib;
 optimal approach to monitoring and management

Fedratinib

Mechanism of action

JAK2 and FLT3 inhibitor

Indication

For patients with intermediate-2 or high-risk primary or secondary (post-PV or post-ET) MF

Recommended dosing

- 400 mg PO once daily with or without food for patients with a baseline platelet count greater than or equal to 50 x 10⁹/L
- Reduce dose for patients taking strong CYP3A inhibitors or with severe renal impairment

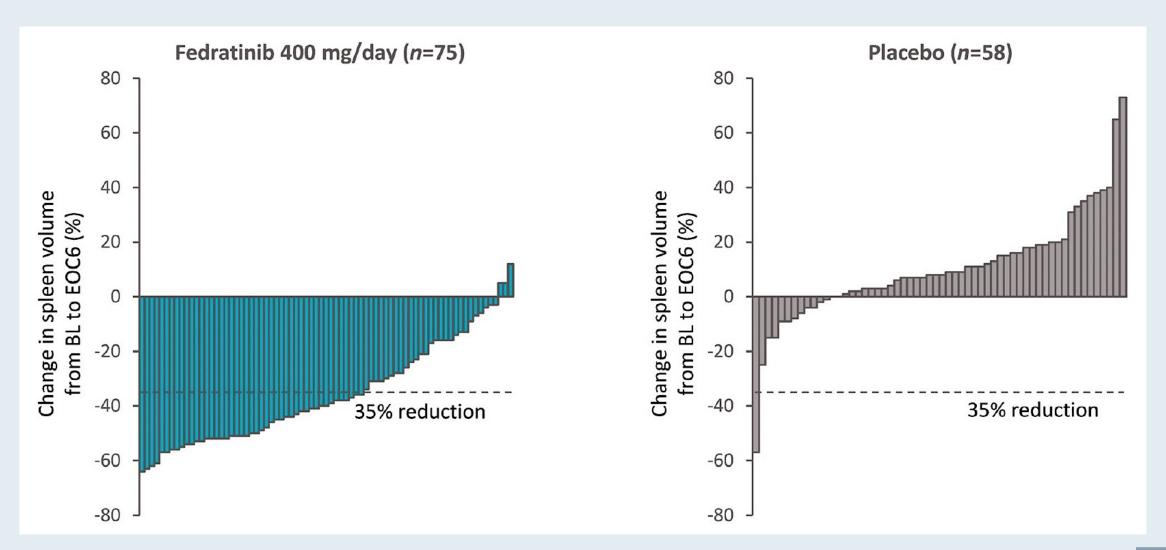
JAK Inhibitor Specificities

	JAK	and FLT3 Kinases IC	50 (nM)		
Kinase	Pacritinib	Ruxolitinib	Fedratinib	Momelotinib	
JAK1	1280	3.4	18	11	
JAK2	6.0	4.5	1.1 18		
JAK2 ^{V617F}	9.4	NR	NR	-	
	Non-tyros	ine Kinases of Inter	est IC ₅₀ (nM)		
CSF1R	39.5	>3000	220	-	
IRAK1	13.6	290	620	NR	
ACVR1	16.7	>1000	273	52.5	

CSF1R, colony stimulating factor 1 receptor; FLT, FMS-like tyrosine kinase; IRAK, interleukin-1 receptor-associated kinase; ITD, internal tandem duplication; TYK, tyrosine kinase. Singer J, et al. *Blood.* 2014;124:1874; Mascarenhas JO, et al. *Haematologica.* 2017;102:327-335. Jadwiga J. et al. *Blood.* 2018 132 (Supplement 1): 2559. Duenas-Perez AB et al. *Ther Adv Hematol.* 2015: 186-201

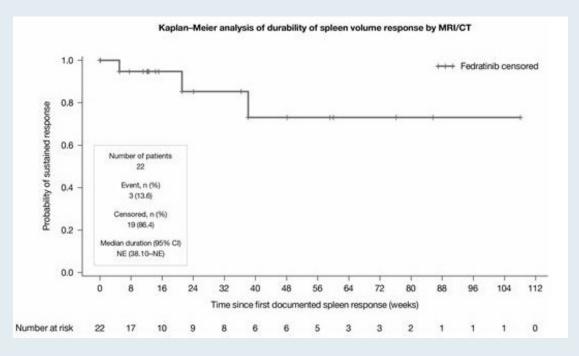
bjh short report

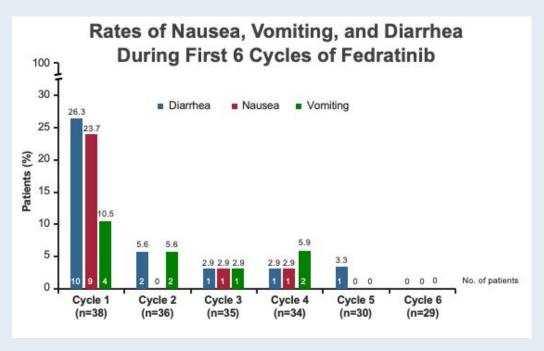
Updated results of the placebo-controlled, phase III JAKARTA trial of fedratinib in patients with intermediate-2 or high-risk myelofibrosis


Animesh Pardanani,¹ D

Ayalew Tefferi,¹ D Tamás Masszi,²
Elena Mishchenko,³ Mark Drummond,⁴
Eric Jourdan,⁵ Alessandro Vannucchi,⁶
Mindaugas Jurgutis,⁷ Vincent Ribrag,⁸
Alessandro Rambaldi,^{9,10}
Liang Piu Koh,¹¹ Shelonitda Rose,¹²
Jun Zhang¹² and Claire Harrison¹³

Br J Haematol 2021;195:244-8


JAKARTA: Change in Spleen Volume from Baseline to End of Cycle 6



Phase IIIB FREEDOM Trial of Fedratinib for Patients with Primary, Post-PV or Post-ET Myelofibrosis Previously Treated with Ruxolitinib

FREEDOM included proactive strategies to mitigate GI adverse events, thiamine level decreases and potential encephalopathy

- Clinically relevant and durable spleen responses were observed
- Most GI AEs were Grade 1/2 and occurred during cycle 1, and decreased in subsequent cycles
- 6 patients with Grade 1/2 decreases in thiamine levels after initial tx were treated and deficiencies were resolved at next assessment; no patients required tx discontinuation due to low thiamine levels

JAKARTA: Selected Adverse Events

	Fedratinib 400 mg (n = 96)		Placebo (n = 95)			
Adverse events	All grades	Grade ≥3	All grades	Grade ≥3		
Diarrhea	66%	5%	16%	0		
Nausea	62%	0	15%	0		
Anemia	40%	30%	14%	7%		
Vomiting	39%	3.1%	5%	0		
Fatigue	19%	5%	16%	1.1%		
Laboratory parameters	boratory parameters					
Anemia	74%	34%	32%	10%		
Thrombocytopenia	47%	12%	26%	10%		
Neutropenia	23%	5%	13%	3.3%		
Biochemistry	Biochemistry					
Lipase increased	35%	10%	7%	2.2%		

No patient receiving fedratinib 400 mg/day experienced Wernicke encephalopathy

Fedratinib Warning: Encephalopathy, Including Wernicke

Serious and fatal encephalopathy, including Wernicke's, has occurred in patients treated with fedratinib. Wernicke's encephalopathy is a neurologic emergency. Assess thiamine levels in all patients prior to starting fedratinib, periodically during treatment, and as clinically indicated. Do not start fedratinib in patients with thiamine deficiency; replete thiamine prior to treatment initiation. If encephalopathy is suspected, immediately discontinue fedratinib and initiate parenteral thiamine. Monitor until symptoms resolve or improve and thiamine levels normalize.

Ilene Galinsky, NP

What I tell my patients who are about to begin treatment with fedratinib

Tampa, Florida

The Role of Pacritinib in MF Treatment

Westwood, Kansas

- Implications of the mechanistic differences between pacritinib and other approved JAK inhibitors for its safety in cytopenic patients
- Key efficacy and safety findings with pacritinib for MF, including for patients with baseline thrombocytopenia
- FDA approval of pacritinib for patients with MF and severe thrombocytopenia; optimal use in clinical practice and ongoing investigations
- Potential utility of pacritinib for patients with MF and severe anemia
- Reported risk of hemorrhage and other adverse events with pacritinib; importance of holding therapy before planned surgical and invasive procedures

JAK Inhibitor Specificities

	JAK	and FLT3 Kinases IC	50 (nM)		
Kinase	Pacritinib	Ruxolitinib	Fedratinib	Momelotinib	
JAK1	1280	3.4	18	11	
JAK2	6.0	4.5	1.1 18		
JAK2 ^{V617F}	9.4	NR	NR	-	
	Non-tyros	ine Kinases of Inter	est IC ₅₀ (nM)		
CSF1R	39.5	>3000	220		
IRAK1	13.6	290	620	NR	
ACVR1	16.7	>1000	273	52.5	

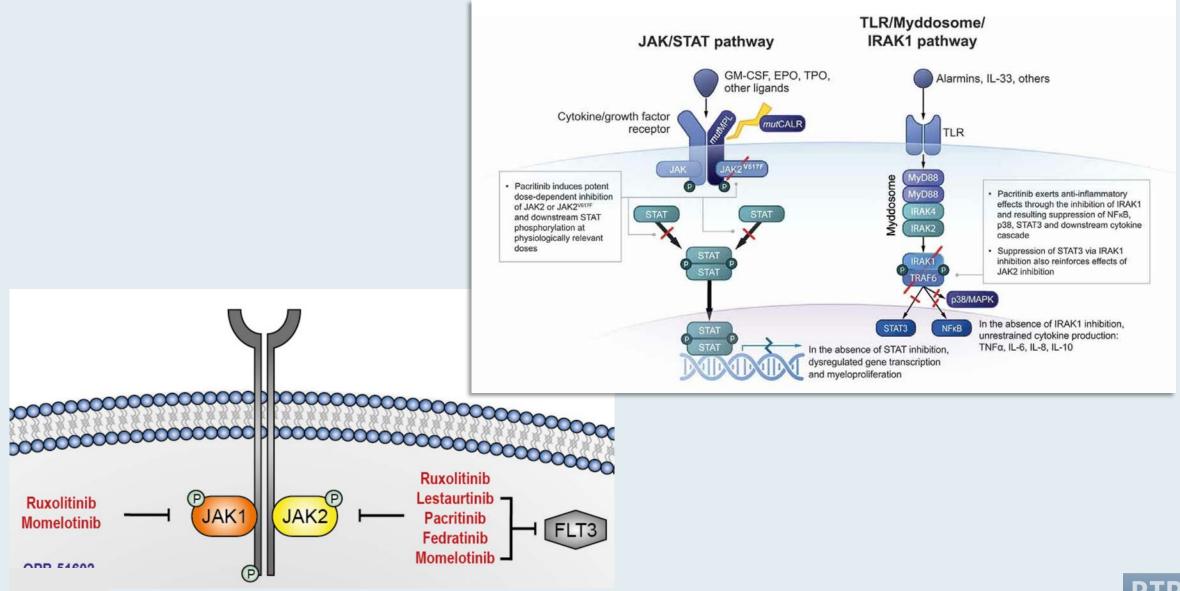
CSF1R, colony stimulating factor 1 receptor; FLT, FMS-like tyrosine kinase; IRAK, interleukin-1 receptor-associated kinase; ITD, internal tandem duplication; TYK, tyrosine kinase. Singer J, et al. *Blood.* 2014;124:1874; Mascarenhas JO, et al. *Haematologica.* 2017;102:327-335. Jadwiga J. et al. *Blood.* 2018 132 (Supplement 1): 2559. Duenas-Perez AB et al. *Ther Adv Hematol.* 2015: 186-201

Pacritinib

Mechanism of action

Oral inhibitor of JAK2, FLT3 and IRAK1 kinases

Indication


For patients with intermediate or high-risk primary or secondary (post-PV or post-ET) myelofibrosis with a platelet count below 50 x 10⁹/L

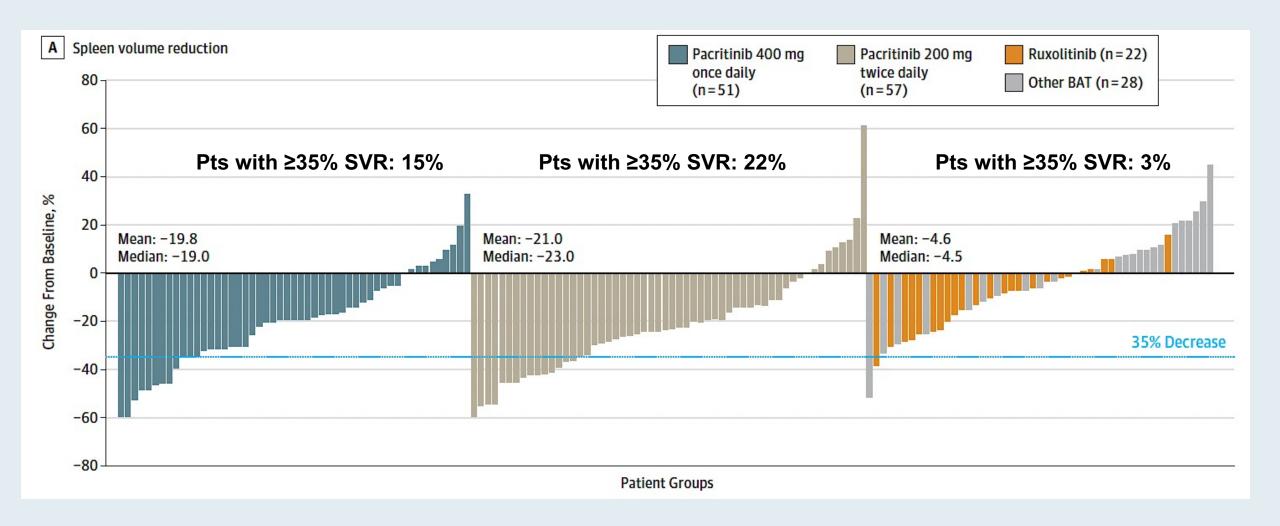
Recommended dosing

200 mg PO BID, with or without food

Pacritinib Mechanism of Action: JAK2/FLT3/IRAK1 Inhibitor

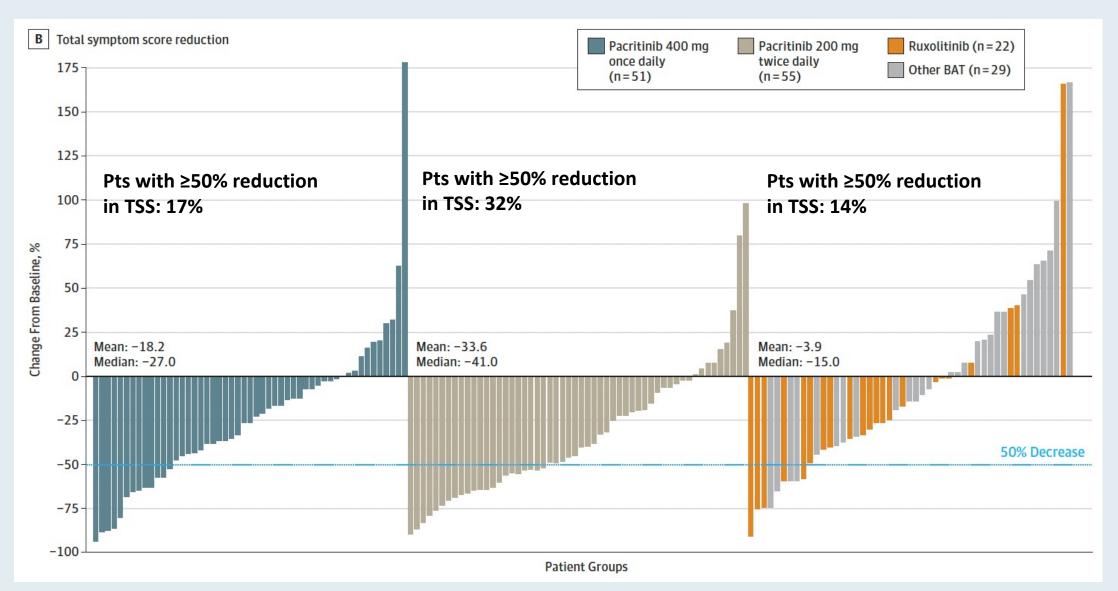
Research

2018;4(5):652-9


JAMA Oncology | Original Investigation

Pacritinib vs Best Available Therapy, Including Ruxolitinib, in Patients With Myelofibrosis A Randomized Clinical Trial

John Mascarenhas, MD; Ronald Hoffman, MD; Moshe Talpaz, MD; Aaron T. Gerds, MD; Brady Stein, MD; Vikas Gupta, MD, FRCP, FRCPath; Anita Szoke, MD; Mark Drummond, MBChB, PhD, FRCPath; Alexander Pristupa, MD; Tanya Granston, PhD; Robert Daly, PhD; Suliman Al-Fayoumi, PhD; Jennifer A. Callahan, MS; Jack W. Singer, MD; Jason Gotlib, MD; Catriona Jamieson, MD, PhD; Claire Harrison, MD, DM, FRCP, PRCPath; Ruben Mesa, MD, FACP; Srdan Verstovsek, MD, PhD



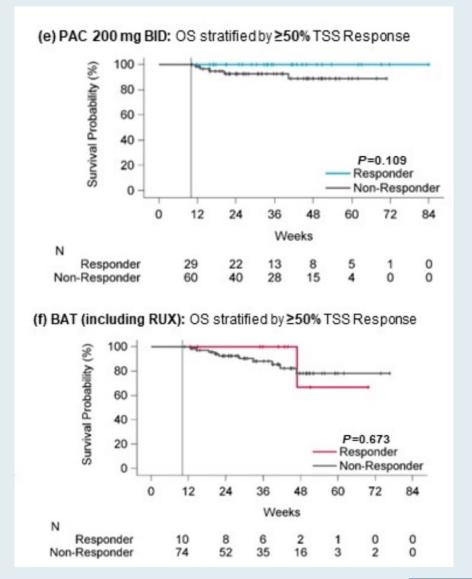
PERSIST-2 Trial: Spleen Volume Reduction (SVR)

PERSIST-2: Reduction in Total Symptom Score (TSS)

PERSIST-2: Adverse Event Profile of Pacritinib

Adverse Reactions	PAC 200 mg BID (n = 106)	BAT (n = 98)			
Any-grade AEs in >15% of patier	nts in either arm, %				
Diarrhea	48	15			
Thrombocytopenia	34	24			
Nausea	32	11			
Anemia	24	15			
Peripheral edema	20	15			
Vomiting	19	5			
Fatigue	17	16			
Grade ≥3 AEs in >5% of patients	in either arm, %				
Thrombocytopenia	32	18			
Anemia	22	14			
Neutropenia	7	5			
Pneumonia	7	3			
Serious AEs in >3% of patients in either arm, %					
Anemia	8	3			
Thrombocytopenia	6	2			
Pneumonia	6	4			
Congestive heart failure	4	2			

Impact of Symptom Benefit and Transfusion Response on Survival in Myelofibrosis Patients Treated with Pacritinib: PERSIST-2 Landmark Survival Analysis


Ajufo H et al.

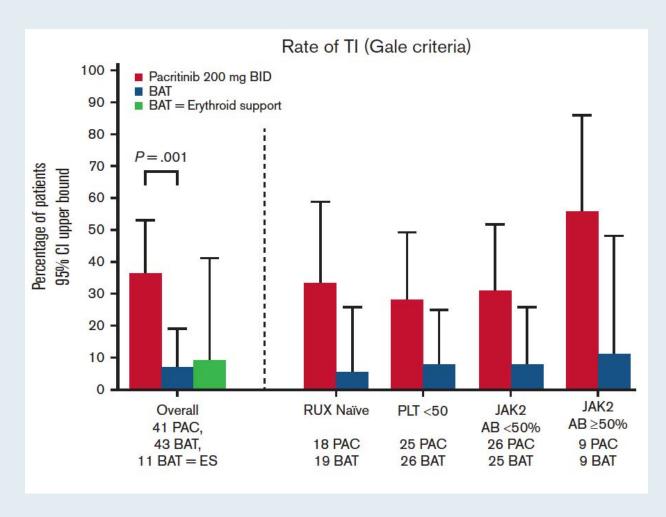
ASH 2023; Abstract 3207.

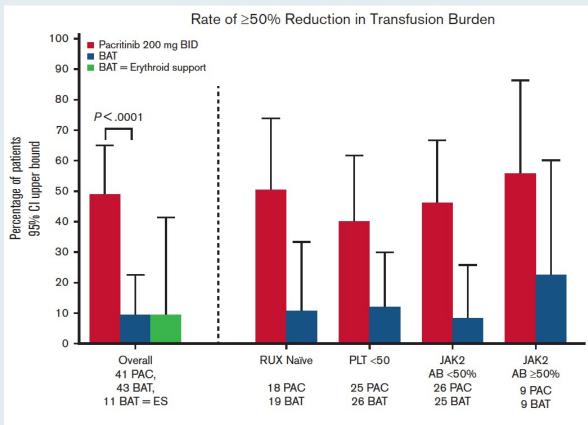
PERSIST-2: OS Stratified by TSS Response

Figure 1. Landmark survival analysis based on week 12 Total Symptom Score (TSS) reduction. Survival stratified by varying thresholds of TSS (v2.0, excluding tiredness) response (≥10%, ≥20%, ≥50%) for pacritinib 200 mg BID (A, C, E) and BAT (B, D, F). (a) PAC 200 mg BID: OS stratified by ≥10% TSS Response (b) BAT (including RUX): OS stratified by ≥10% TSS Response 80 60 60 40 P=0.021 P=0.769 20 20 Responder Non-Responder Non-Responder 12 24 72 12 24 Non-Responder Non-Responder (c) PAC 200 mg BID: OS stratified by ≥20% TSS Response (d) BAT (including RUX): OS stratified by ≥20% TSS Response 80 80 Survival Probability 60 60 40 P=0.0505 P=0.637 20 20 Responder Non-Responder Non-Responder 12 24 12 24 72 Weeks Weeks 0 Responder 31 Non-Responder Non-Responder

REGULAR ARTICLE

Pacritinib is a potent ACVR1 inhibitor with significant anemia benefit in patients with myelofibrosis


Stephen T. Oh,¹ Ruben A. Mesa,² Claire N. Harrison,³ Prithviraj Bose,⁴ Aaron T. Gerds,⁵ Vikas Gupta,⁶ Bart L. Scott,⁷ Jean-Jacques Kiladjian,⁸ Alessandro Lucchesi,⁹ Tim Kong,¹ Sarah A. Buckley,¹⁰ Shanthakumar Tyavanagimatt,¹⁰ Bryan G. Harder,¹⁰ Karisse Roman-Torres,¹⁰ Jennifer Smith,¹⁰ Adam R. Craig,¹⁰ John Mascarenhas,¹¹ and Srdan Verstovsek⁴


¹Washington University School of Medicine, St. Louis, MO; ²Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC; ³Guy's and St Thomas' NHS Trust, London, United Kingdom; ⁴The University of Texas MD Anderson Cancer Center, Houston, TX; ⁵Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; ⁶Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; ⁷Fred Hutchinson Cancer Research Center, Seattle, WA; ⁸Hôpital Saint- Louis, Université de Paris, Paris, France; ⁹Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori," Meldola, Italy; ¹⁰CTI BioPharma Corp., Seattle, WA; and ¹¹Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY

2023;7(19):5835-42

PERSIST-2: Transfusion Independence (TI) and Transfusion Reduction with Pacritinib

Abbreviations: AB, allele burden; BAT, best available therapy; BID, twice daily; CI, confidence interval; ES, erythroid support; JAK, Janus associated kinase; PAC, pacritinib; PLT, platelets; RUX naïve (no RUX prior to first dose).

Sara M Tinsley-Vance, PhD, APRN, AOCN

What I tell my patients who are about to begin treatment with pacritinib

Tampa, Florida

The Current Utility of Momelotinib in Therapy for MF

- Rationale for the activity of momelotinib in patients with MF and anemia
- Historical data sets with momelotinib for treatment-naïve and previously treated MF
- Key clinical trial findings supporting the FDA approval of momelotinib for symptomatic, anemic patients with MF who have previously received a JAK inhibitor
- Tolerability and toxicity profile of momelotinib; recognition and management of commonly occurring adverse events, such as anemia, thrombocytopenia, infections and peripheral neuropathy

JAK Inhibitor Specificities

	JAK	and FLT3 Kinases IC	50 (nM)		
Kinase	Pacritinib	Ruxolitinib	Fedratinib	Momelotinib	
JAK1	1280	3.4	18	11	
JAK2	6.0	4.5	1.1 18		
JAK2 ^{V617F}	9.4	NR	NR	(-)	
	Non-tyros	ine Kinases of Inter	est IC ₅₀ (nM)		
CSF1R	39.5	>3000	220 –		
IRAK1	13.6	290	620 NF		
ACVR1	16.7	>1000	273	52.5	

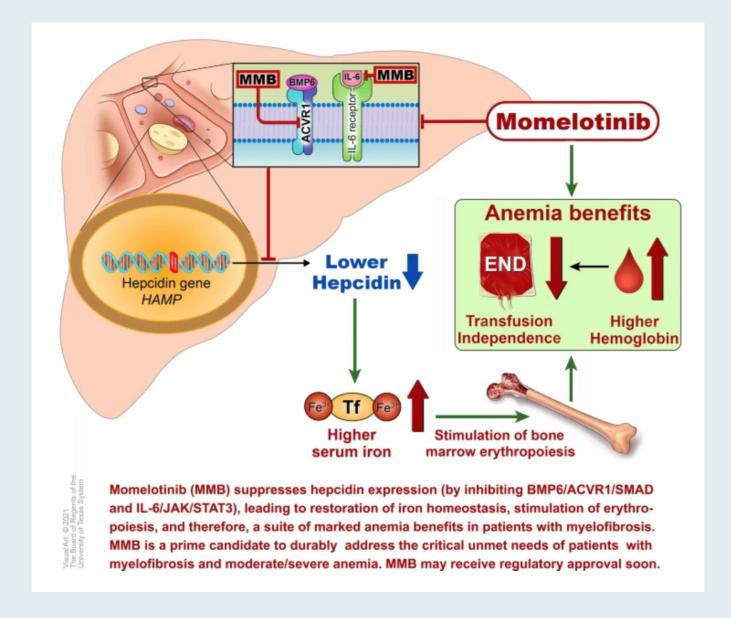
CSF1R, colony stimulating factor 1 receptor; FLT, FMS-like tyrosine kinase; IRAK, interleukin-1 receptor-associated kinase; ITD, internal tandem duplication; TYK, tyrosine kinase. Singer J, et al. *Blood.* 2014;124:1874; Mascarenhas JO, et al. *Haematologica.* 2017;102:327-335. Jadwiga J. et al. *Blood.* 2018 132 (Supplement 1): 2559. Duenas-Perez AB et al. *Ther Adv Hematol.* 2015: 186-201

Momelotinib

Mechanism of action

Highly selective JAK1/2 and activin A receptor, Type 1 (ACVR1) inhibitor

Indication


 For treatment of intermediate or high-risk myelofibrosis, including primary or secondary myelofibrosis (post-PV or post-ET), in adults with anemia

Recommended dosing

- 200 mg PO once daily, with or without food
- Severe hepatic impairment (Child-Pugh class C): Reduce the starting dose to 150 mg PO once daily

Proposed Mechanism of Momelotinib for MF with Anemia

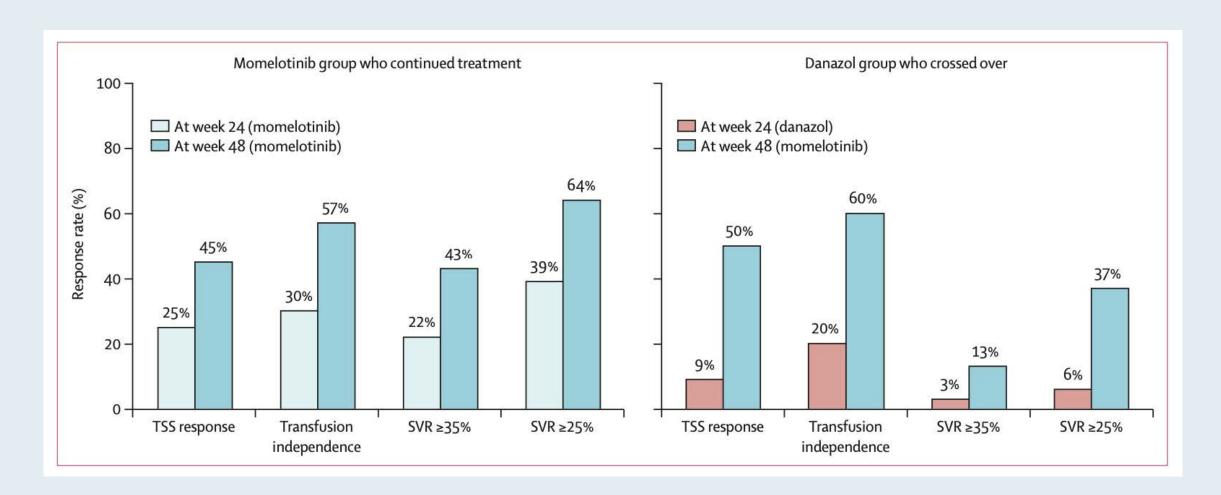
Momelotinib Granted Approval for Myelofibrosis with Anemia Press Release: September 15, 2023

"On September 15, 2023, the FDA approved momelotinib for the treatment of intermediate- or high-risk myelofibrosis, including primary myelofibrosis or secondary myelofibrosis (post–polycythemia vera and post–essential thrombocythemia), in adults with anemia.

The FDA approval of momelotinib is supported by data from the pivotal MOMENTUM study (NCT04173494) and a subpopulation of adults with anemia from the SIMPLIFY-1 phase III trial (NCT01969838).

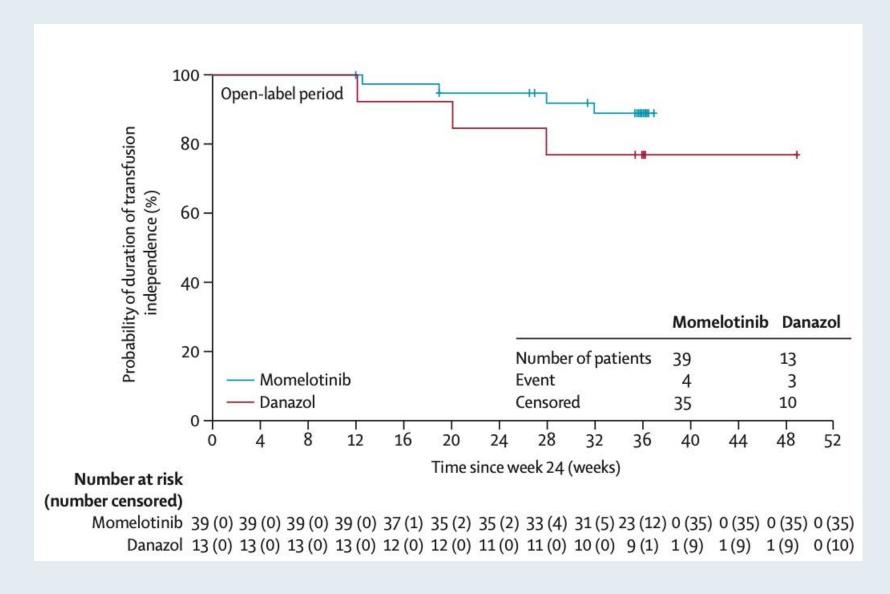
MOMENTUM was designed to evaluate the safety and efficacy of momelotinib vs danazol for the treatment and reduction of key manifestations of myelofibrosis in an anemic, symptomatic, JAK inhibitor—experienced patient population. The MOMENTUM trial met all its primary and key secondary endpoints, demonstrating statistically significant response with respect to constitutional symptoms, splenic response, and transfusion independence in patients treated with momelotinib vs danazol."

Momelotinib versus danazol in symptomatic patients with anaemia and myelofibrosis previously treated with a JAK inhibitor (MOMENTUM): an updated analysis of an international, double-blind, randomised phase 3 study



Aaron T Gerds, Srdan Verstovsek, Alessandro M Vannucchi, Haifa Kathrin Al-Ali, David Lavie, Andrew T Kuykendall, Sebastian Grosicki, Alessandra Iurlo, Yeow Tee Goh, Mihaela C Lazaroiu, Miklos Egyed, Maria Laura Fox, Donal McLornan, Andrew Perkins, Sung-Soo Yoon, Vikas Gupta, Jean-Jacques Kiladjian, Nikki Granacher, Sung-Eun Lee, Luminita Ocroteala, Francesco Passamonti, Claire N Harrison, Stephen Oh, Barbara J Klencke, Jing Yu, Rafe Donahue, Jun Kawashima, Ruben Mesa

Lancet Haematol 2023;10(9):e735-46



MOMENTUM: Summary of Response Rates at Weeks 24 and 48

MOMENTUM: Duration of Transfusion Independence Response

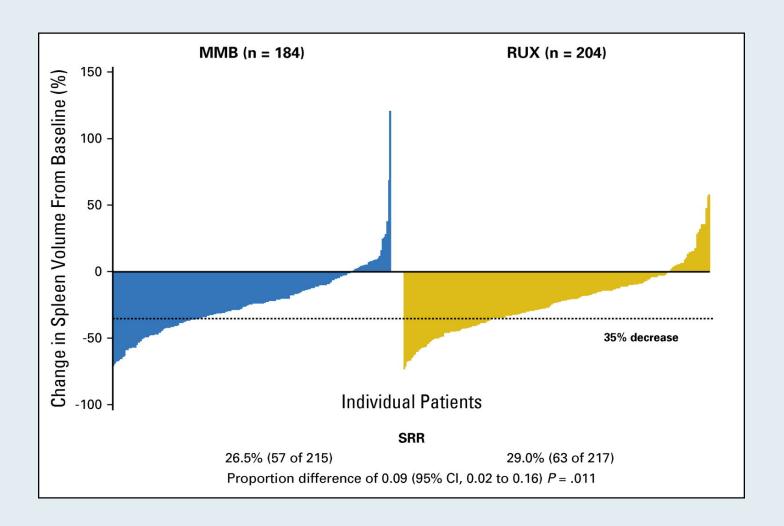
MOMENTUM: Treatment-Emergent Adverse Events

	Momelotinib (n=130)	Momelotinib group (n=130)		Danazol group (n=65)	
	Any grade	Grade ≥3	Any grade	Grade ≥3	
Non-haematological abnormalities	(preferred term)				
Diarrhoea	29 (22%)	0	6 (9%)	1 (2%)	
Nausea	21 (16%)	3 (2%)	6 (9%)	2 (3%)	
Asthenia	17 (13%)	1 (1%)	6 (9%)	1 (2%)	
Pruritus	14 (11%)	2 (2%)	7 (11%)	0	
Weight decreased	14 (11%)	0	4 (6%)	0	
Blood creatinine increased	10 (8%)	1 (1%)	10 (15%)	2 (3%)	
Dyspnoea	10 (8%)	3 (2%)	9 (14%)	1 (2%)	
Peripheral oedema	10 (8%)	2 (2%)	9 (14%)	0	
Fatigue	8 (6%)	1 (1%)	7 (11%)	2 (3%)	
Acute kidney injury	6 (5%)	4 (3%)	8 (12%)	6 (9%)	
Haematological abnormalities*					
Anaemia	129 (99%)	79 (61%)	65 (100%)	49 (75%)	
Thrombocytopenia	99 (76%)	36 (28%)	40 (62%)	17 (26%)	
Neutropenia	38 (29%)	16 (12%)	17 (26%)	6 (9%)	

Data are n (%). *Haematological abnormalities are based on laboratory values. The data shown are for events of the worst grade during the 24-week randomised treatment phase of the study, regardless of whether this grade was a change from baseline.

SIMPLIFY-1: A Phase III Randomized Trial of Momelotinib Versus Ruxolitinib in Janus Kinase Inhibitor-Naïve Patients With Myelofibrosis

Authors: Ruben A. Mesa , Jean-Jacques Kiladjian, John V. Catalano, Timothy Devos, Miklos Egyed, Andrzei Hellmann, Donal McLornan, Kazuya Shimoda, Elliott F. Winton, Wei Deng, Ronald L. Dubowy, Julia D. Maltzman, Francisco Cervantes, and Jason Gotlib SHOW FEWER AUTHORS INFO &


AFFILIATIONS

Publication: Journal of Clinical Oncology . Volume 35, Number 34

JCO 35, 3844-3850(2017)

SIMPLIFY-1: Primary Endpoint (Change in Spleen Volume)

SIMPLIFY-1: Adverse Events

	Double-Blind Phase	
Treatment-Emergent Adverse Event	Momelotinib $(n = 214)$	Ruxolitinib $(n = 216)$
Thrombocytopenia	40 (18.7)	63 (29.2)
Diarrhea	38 (17.8)	43 (19.9)
Headache	37 (17.3)	43 (19.9)
Dizziness	34 (15.9)	25 (11.6)
Nausea	34 (15.9)	8 (3.7)
Fatigue	31 (14.5)	26 (12.0)
Anemia	29 (13.6)	82 (38.0)
Abdominal pain	22 (10.3)	24 (11.1)
NOTE. Data presented as No. (%).		

Ilene Galinsky, NP

What I tell my patients who are about to begin treatment with momelotinib

Agenda

Introduction

Module 1: Biology of Myelofibrosis (MF)

Module 2: Role of Available and Investigational JAK inhibitors in the Management of MF

Module 3: Promising Agents and Strategies for Patients with MF

Promising Agents and Strategies for Patients with MF

Westwood, Kansas

- Tampa, Florida
 - Educating patients on the potential advantages of participating in a clinical research study of a novel strategy
 - Mechanism of antitumor activity of navitoclax and biological rationale for its evaluation in patients with MF, including in tandem with JAK2 inhibition
 - Recently presented efficacy and safety findings with navitoclax in combination with ruxolitinib versus ruxolitinib alone for patients with previously untreated MF
 - Potential role of navitoclax in the up-front setting and ongoing evaluation for relapsed/refractory disease
 - Tolerability profile of navitoclax in published clinical investigations

Tampa, Florida

Promising Agents and Strategies for Patients with MF (Continued)

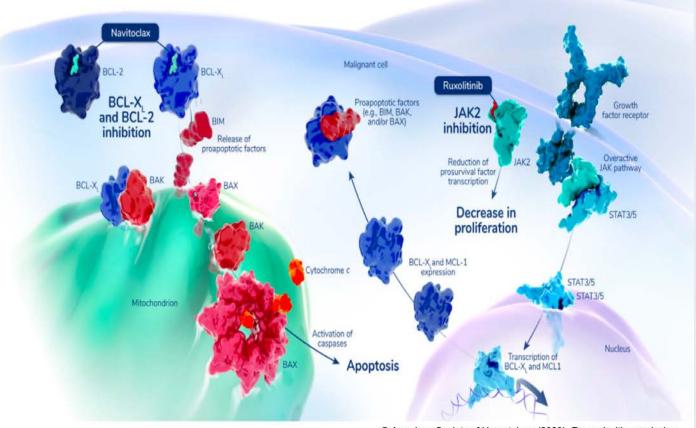
Westwood, Kansas

- Scientific justification for the inhibition of BET proteins for MF; mechanism of action of pelabresib
- Recently presented findings with the combination of pelabresib and ruxolitinib for JAK inhibitor-naïve MF
- Early results with and ongoing evaluations of other BET inhibitors, such as INCB057643 and BMS-986158, as monotherapy and in combination with JAK inhibitors
- Available data with luspatercept as monotherapy or combined with a JAK2 inhibitor for patients with MF and anemia; current nonresearch role, if any

Tampa, Florida

Promising Agents and Strategies for Patients with MF (Continued)

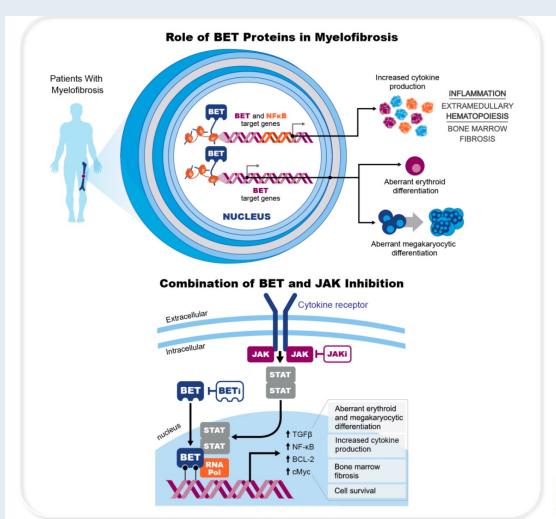
Westwood, Kansas


- Potential role of ACVR1/ALK2 inhibition in alleviating anemia for patients with MF; mechanism of action of zilurgisertib
- Preliminary data with and ongoing investigation of zilurgisertib as monotherapy and combined with ruxolitinib for patients with anemia due to MF
- Early activity and safety data with and ongoing investigation of other novel agents and strategies for MF, such as imetelstat, navtemadlin, selinexor, bomedemstat and ropeginterferon alfa-2b

Navitoclax Mechanism of Action in Myelofibrosis

 Navitoclax is a novel, oral inhibitor of BCL-X_L and BCL-2, anti-apoptotic members of the BCL-2 family¹

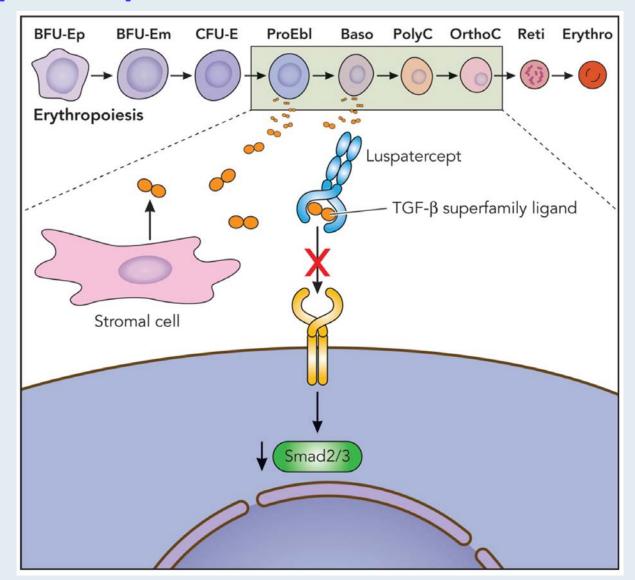
- Preclinical studies suggest that JAK2 + BCL-2/BCL-X_L inhibition could overcome acquired resistance to single-agent JAKi treatment²
- Navitoclax, in combination with ruxolitinib, demonstrated pronounced antitumor activity, including clinical responses in patients with MF who no longer benefited from ruxolitinib in the phase 2 REFINE trial (NCT03222609)³



© American Society of Hematology (2020). Reused with permission

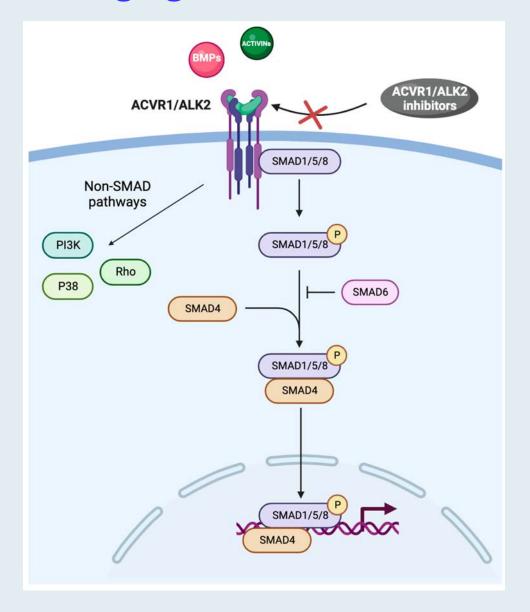
^{1.} Tse C, et al. Cancer Res. 2008;68(9):3421–3428; 2. Waibel M, et al. Cell Rep. 2013;5:1047–1059; 3. Harrison et al. J Clin Oncol. 2022;40:1671–1680. BCL-X_L, B-cell lymphoma-extra large; BCL-2, B-cell lymphoma 2; JAK2, Janus kinase 2; JAKi, Janus kinase inhibitor; MF, myelofibrosis.

Simultaneous Inhibition of BET and JAK in Myelofibrosis A Potential Therapeutic Approach to Address Heterogeneous Disease Pathology



- JAK inhibition with ruxolitinib is the standard of care in patients with higher risk MF who are ineligible for HSCT, but unmet medical need persists due to limited efficacy with currently available JAKi monotherapy, high rates of discontinuation and toxicities¹
- Preclinical data indicated synergistic effects of BET and JAK inhibition in MF²
- Pelabresib, a BET inhibitor, downregulates the expression of genes that contribute to the heterogenous pathology of MF³⁻⁷

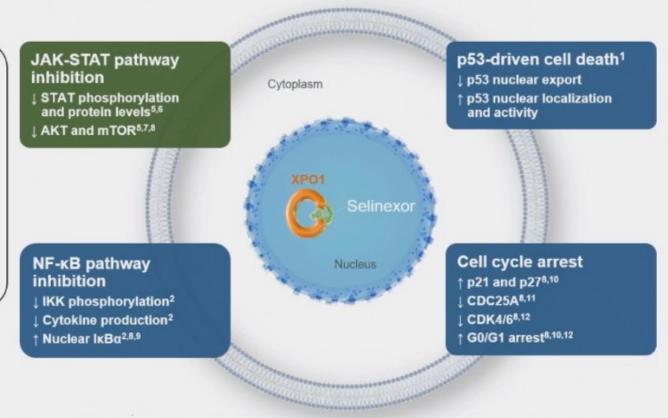
Reprinted with permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Leukemia, Paradigm shift: combination BET and JAK inhibition in myelofibrosis, John Mascarenhas, et al. Copyright ©2021.



Luspatercept Mechanism of Action in Anemia

ACVR1 Is an Emerging Biomarker in MF and Anemia

Selinexor Mechanism of Action in Myelofibrosis

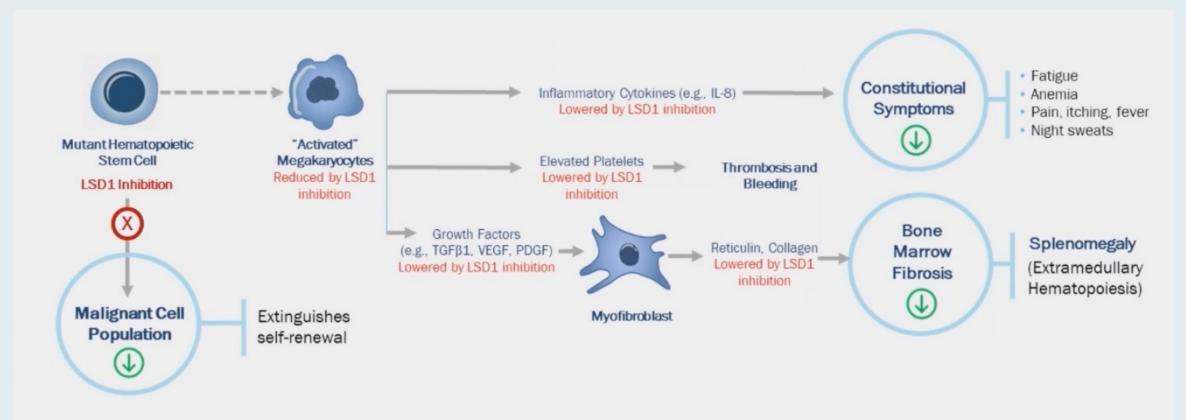

XPO1 Inhibition is a fundamental mechanism of action that may target both JAK/STAT and non-JAK/STAT pathways in MF

Selinexor inhibits XPO1-mediated nuclear cargo protein export that may lead to:

- Increased malignant cell death¹
- Reduced inflammation²
- Apoptosis of JAK2-mutated MF CD34+ cells but not healthy donor cells³
- Synergism with ruxolitinib and other therapeutic agents in cell lines with or without JAK2^{V617F} and TP53 mutations⁴

Poster 1792

Lu M, et al. Use of Combination Therapies Including the XPO1 Inhibitor Selinexor Is a Potential Effective Therapeutic Strategy to Treat Myelofibrosis Patients Saturday, December 9, 2023: 6:00 PM–8:00 PM Halls G–H (San Diego Convention Center)


AKT, protein kinase B; CD, cluster of differentiation; CDC, cell division cycle, CDK, cyclin-dependent kinase; IkBa, inhibitor of nuclear factor kappa-B kinase subunit alpha; IKK, inhibitor of nuclear factor-kB kinase; mTOR, mammalian target of rapamycin; NF-kB, nuclear factor-k-light-chain-enhancer of activated B cells; pXX, tumor suppressor protein XX; XPO1, exportin 1.

1. Yan D, et al. Clin Cancer Res. 2019;25(7):2323-2335. 2. Kashyap T, et al. Oncotarget. 2016;7(48):78883-78895. 3. Lu M, et al. Poster presented at: 65th ASH Annual Meeting and Exposition. December 9–12, 2023; San Diego, CA. Abstract 1792.
4. Malcof M, et al. Poster presented at: 15th International Congress for Myeloproliferative Neoplasms (MPN), November 2–3, 2023; Brooklyn, NY. 6, Walker CJ, et al. Blood. 2013;122(17):3034-3044.
6. Cheng Y, et al. Mol Cancer Ther. 2014;13(3):675-686. 7. Argueta C, et al. Oncotarget. 2018;9(39);25529-25544. 8. Gandhi UH, et al. Clin Lymphoma Myeloma Leuk. 2018;18(5):335-345. 9. Turner JG, et al. Oncotarget. 2016;7(48):78896-78999.

10. Gravina GL, et al. BMC Cancer. 2015;15:941. 11. Gard M, et al. Oncotarget. 2017;8(5):7521-7532. 12. Tan M, et al. Am J Physiol. 2014;307(11):F1179-F1186.

Bomedemstat Mechanism of Action

Gill H, Yacoub A, Pettit KM, et al. A phase 2 study of the LSD1 inhibitor Img-7289 (bomedemstat) for the treatment of advanced myelofibrosis. Blood. 2021 Nov 23;138:139.

Gill H. Lysine-specific demethylase 1 (LSD1/KDM1A) inhibition as a target for disease modification in myelofibrosis. Cells. 2022 Jul 3;11(13):2107.

Pettit KM, Gill H, Yacoub A, et al. A phase 2 study of the LSD1 inhibitor bomedemstat (IMG-7289) for the treatment of advanced myelofibrosis (MF): updated results and genomic analyses. Blood. 2022 Nov:9717-20.

Rienhoff Jr HY, Gill H. Bomedemstat as an investigative treatment for myeloproliferative neoplasms. Expert Opinion on Investigational Drugs. 2023 Oct 3;32(10):879-86.

Sara M Tinsley-Vance, PhD, APRN, AOCN

What I tell my patients about the logistics and potential benefits of enrolling on a clinical trial

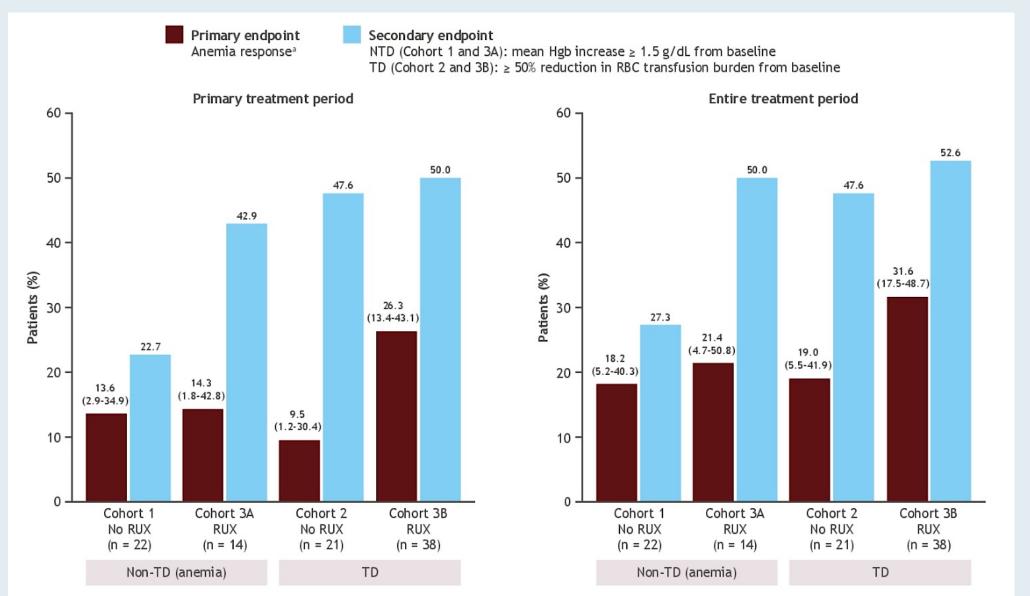
Consulting Nursing Faculty Comments

Trip to LEGOLAND

Amy Goodrich, CRNP

APPENDIX

Promising Agents and Strategies for Patients with MF


Safety and Efficacy of Luspatercept for the Treatment of Anemia in Patients with Myelofibrosis: Results from the ACE-536-MF-001 Study

Gerds AT et al.

ASCO 2023; Abstract 7016.

ACE-536-MF-001: Efficacy Results

TRANSFORM-1: A Randomized, Double-Blind, Placebo-Controlled, Multicenter, International Phase 3 Study of Navitoclax in Combination With Ruxolitinib Versus Ruxolitinib Plus Placebo in Patients With Untreated Myelofibrosis

Naveen Pemmaraju¹, Adam J. Mead², Tim CP Somervaille³, James McCloskey⁴, Francesca Palandri⁵, Steffen Koschmieder⁶, David Lavie⁷, Brian Leber⁸, Su-Peng Yeh⁹, Maria Teresa Gomez Casares¹⁰, Emanuele Ammatuna¹¹, Ho-Jin Shin¹², Keita Kirito¹³, Eric Jourdan¹⁴, Timothy Devos¹⁵, Hun S. Chuah¹⁶, Atanas Radinoff¹⁷, Andrija Bogdanovic¹⁸, Rastislav Moskal¹⁹, Qi Jiang¹⁹, Avijeet S Chopra¹⁹, Elektra J Papadopoulos¹⁹, Jalaja Potluri¹⁹, Francesco Passamonti²⁰

ASH 2023; Abstract 620



TRANSFORM-1: Efficacy Outcomes with Navitoclax and Ruxolitinib for Treatment-Naïve Myelofibrosis

• Time to first SVR₃₅ response was similar in NAV + RUX arm compared with PBO + RUX [median (range): 12.3 (10.1–48.3) vs 12.4 (11.3–72.3) weeks]

	NAV + RUX (N=125)	PBO + RUX (N=127)	Response rate difference (95% CI; P-value)
SVR ₃₅ at Week 24; n (%)	79 (63.2)	40 (31.5)	31.0 (19.5–42.5); P<0.0001
Duration of study follow-up; median (range) months	14.8 (1.0–29.5)	14.9 (0.0–28.8)	
SVR ₃₅ at any time on-study; n (%)	96 (76.8)	53 (41.7)	34.6 (23.6–45.6); P<0.0001*
Time to first SVR ₃₅ response; median (range) weeks	12.3 (10.1–48.3)	12.4 (11.3–72.3)	
Subjects who lost SVR ₃₅ response; n/N (%)	18/96 (18.8)	14/53 (26.4)	
12-month duration of SVR ₃₅ rate; % (95% CI)	76.7 (64.7, 85.0)	76.9 (59.8, 87.4)	

^{*}Nominal P-value. ^aDuration of SVR35 is the time from the first date of SVR35 to the first assessment where SVR35 is not maintained and the spleen volume is ≥25% increased from nadir (the lowest spleen volume in the previous assessments), confirmed relapse, or leukemic transformation per IWG criteria, whichever is earlier.

Selinexor Plus Ruxolitinib in JAK Inhibitor (JAKi)-Naïve Patients With Myelofibrosis: Long-Term Follow-up From XPORT-MF-034 Suggestive of Disease Modification

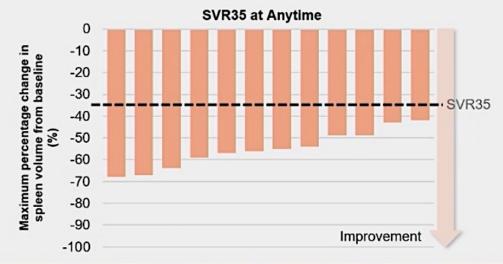
Srinivas K Tantravahi,¹ Ashwin Kishtagari,² Keri Maher,³ Sanjay Mohan,² Josef T Prchal,¹ Xulong Wang,⁴ Kamal Chamoun,⁵ Christopher J Walker,⁴ Pietro Taverna,⁴ Steve Kye,⁴ Haris Ali⁶

ASH 2023; Abstract 622

¹Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA

²Vanderbilt Ingram Cancer Center, Nashville, TN, USA

³VCU Massey Cancer Center, Richmond, VA, USA


⁴Karyopharm Therapeutics, Newton, MA, USA

⁵Formerly of Karyopharm Therapeutics, Newton, MA, USA

⁶City of Hope Comprehensive Cancer Center, Duarte, CA, USA

XPORT-MF-034: Phase I Long-Term Follow-Up of SVR and TSS with Selinexor and Ruxolitinib

All patients in the efficacy evaluable population treated with selinexor 60 mg QW achieved an SVR35 at anytime

		TSS50
Population	Timepoint	Selinexor 60 mg QW + ruxolitinib n (%)
Efficacy	Week 12	8/10‡ (80)
evaluable	Week 24	7/9§ (78)
Intent-to-	Week 12	8/12 (67)
treat	Week 24	7/12 (58)

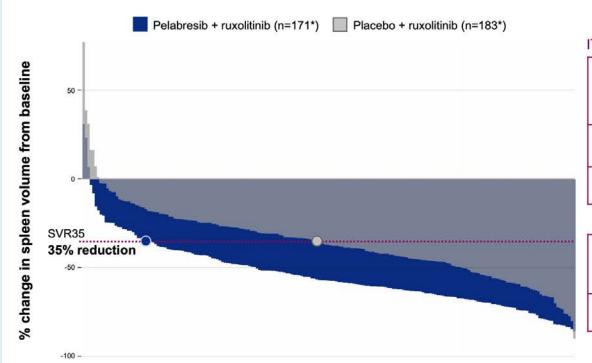
90% of patients in the efficacy evaluable population treated with selinexor 60 mg QW achieved an TSS50 at anytime

SVR, spleen volume reduction; TSS, total symptom score.

*Data cutoff date: August 01, 2023; †Two patients discontinued prior to Week 24; ‡One patient discontinued prior to Week 12; one patient with missing data at Week 12, who subsequently discontinued prior to Week 24;

*Two patients discontinued prior to Week 24, and one had missing data.

Pelabresib in combination with ruxolitinib for Janus kinase inhibitor treatment-naïve patients with myelofibrosis: results of the MANIFEST-2 randomized, double-blind, Phase 3 study


<u>Raajit Rampal</u>,¹ Sebastian Grosicki, Dominik Chraniuk, Elisabetta Abruzzese, Prithviraj Bose, Aaron T Gerds, Alessandro M Vannucchi, Francesca Palandri, Sung-Eun Lee, Vikas Gupta, Alessandro Lucchesi, Stephen Oh, Andrew T Kuykendall, Andrea Patriarca, Alberto Álvarez-Larrán, Ruben Mesa, Jean-Jacques Kiladjian, Moshe Talpaz, Morgan Harris, Sarah-Katharina Kays, Anna Maria Jegg, Qing Li, Barbara Brown, Claire Harrison*, John Mascarenhas*

ASH 2023; Abstract 628

MANIFEST-2: Spleen Volume Reduction with Pelabresib and Ruxolitinib for Treatment-Naïve Myelofibrosis

Significantly greater response in patients treated with pelabresib + ruxolitinib vs placebo + ruxolitinib

ITT population

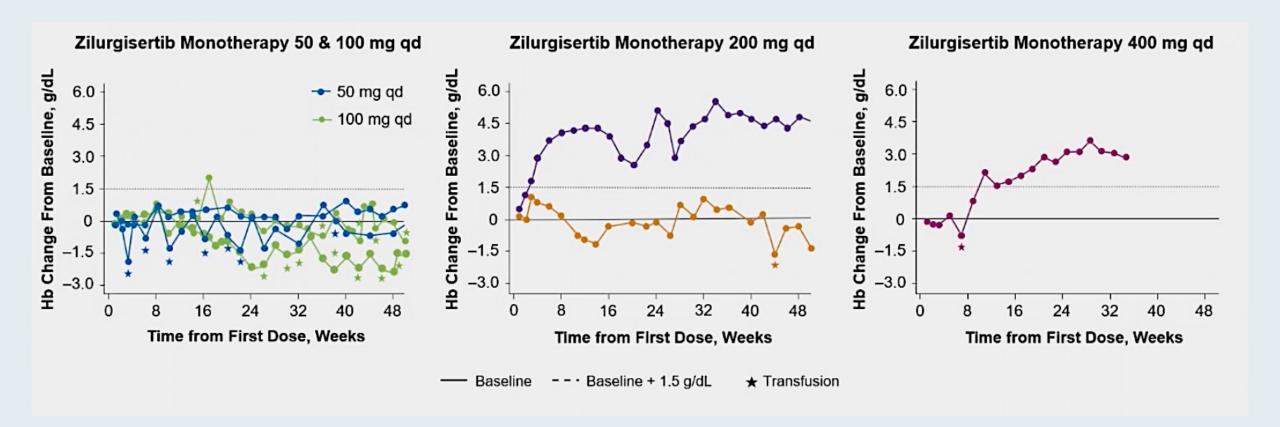
	Pelabresib + ruxolitinib (N=214)	Placebo + ruxolitinib (N=216)	p-value
SVR35 at Week 24	65.9%	35.2%	
Difference† (95% CI)	30.4 (21.6, 39.3)		<0.001

Mean % change in spleen volume at Week 24 [‡]	-50.6 (n=171)	-30.6 (n=183)	
95% CI	-53.2, -48	-33.7, -27.5	

Data cut off: August 31, 2023. Cl, confidence interval; ITT, intent-to-treat; SVR35, ≥35% reduction in spleen volume. Spleen volume assessed by central read. *Waterfall plots represent patients who have baseline and Week 24 data. †Calculated by stratified Cochran–Mantel–Haenszel test; ‡Patients without Week 24 assessment are considered non-responders.

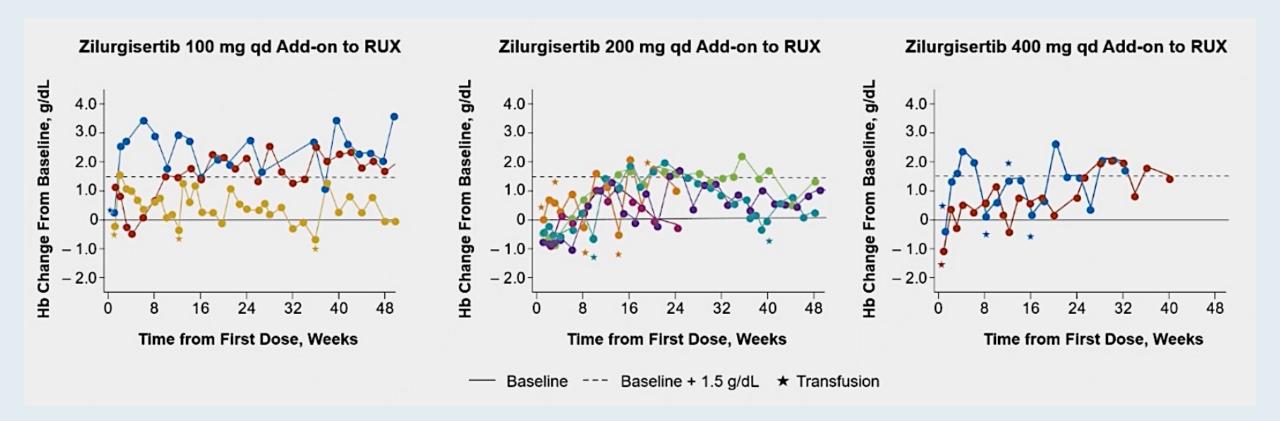
Rampal R, et al. ASH 2023. Oral 628

Pelabresib (CPI-0610) is an investigational new drug and has not been approved by any regulatory authority



Phase 1/2 Study of the Activin Receptor-like Kinase-2 Inhibitor Zilurgisertib (INCB000928, LIMBER-104) as Monotherapy or With Ruxolitinib in Patients With Anemia due to Myelofibrosis

Sanjay Mohan, MD, MSCI,¹ Stephen T. Oh, MD, PhD,² Jean-Jacques Kiladjian, MD, PhD,³
Masahiro Takeuchi, MD, PhD,⁴ Jason Gotlib, MD, MS,⁵ Ellen Ritchie, MD,⁶ Taizo Shimomura, MD, PhD,⁷
Paola Guglielmelli, MD, PhD,⁸ Anthony M. Hunter, MD,⁹ Francesca Palandri, MD, PhD,¹⁰ Francoise Boyer, MD,¹¹
Alessandro Rambaldi, MD,¹² Takehiko Mori, MD,¹³ Tomoki Ito, MD,¹⁴ Betty Lamothe, PhD,¹⁵ Yan-ou Yang, PhD,¹⁵
Yi Cui, PhD,¹⁵ Francis Seguy, MSc,¹⁶ Amanda McBride, MD, PhD,¹⁵ Prithviraj Bose, MD¹⁷
ASH 2023;Abstract 624



LIMBER-104: Results with Zilurgisertib as Monotherapy

LIMBER-104: Results with Zilurgisertib in Combination with Ruxolitinib

Phase 2 Study to Assess the Safety and Efficacy of Bomedemstat (MK3543) in Combination with Ruxolitinib in Patients with Myelofibrosis

Harinder Gill², Lester Au², Garret M.K. Leung², Dorothy Y.Y. Tsai², Rita Yim², Lynn Chin², Vivian Li², Paul Lee², Rock Y.Y. Leung², Elaine Y.P. Lee³, Hugh Young Rienhoff Jr⁴, Yok-Lam Kwong²

ASH 2023; Abstract 621

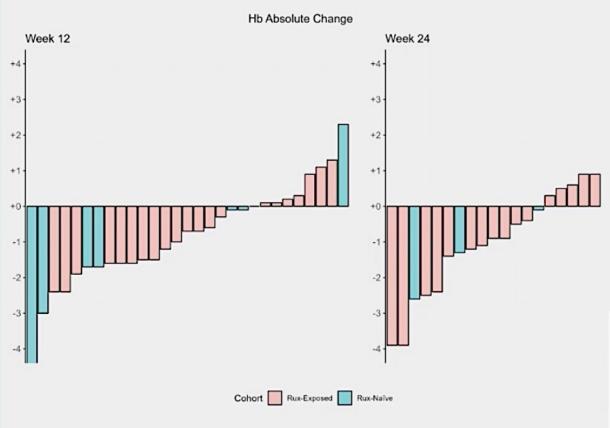
Spleen Responses with Bomedemstat

Responses – Spleen length at Week 12 and 24

	Week 12	Week 24
Total no. of patient	25	17
No. of patient in Cohort A	19	14
No. of patient in Cohort B	6	3
No. of patients with 30% reduction in Cohort A	13	9
No. of patients with 30% reduction in Cohort B	5	3

≥30% reduction in spleen length at Week 12:

- Rux-exposed=68.4%
- Rux-naïve=83.3%


≥30% reduction in spleen length at Week 24:

- Rux-exposed=64.3%
- Rux-naïve=100%

Hemoglobin Responses with Bomedemstat

Responses – changes in Hb at Week 12 and 24

Stable (Δ <± 1.0 g/dL) or improved Hb (>1.0 g/dL) at Week 12 Rux-exposed=13/22 (59.9%) Rux-naïve=3/7 (42.9%)

Stable (Δ <± 1.0 g/dL) or improved Hb (>1.0 g/dL) at Week 24 Rux-exposed=9/16 (56.3%) Rux-naïve=1/3 (33.3%)

3 out 5 patients had reductions (60%) in RBC transfusion requirements at Week 24 with 1 patient being transfusion independent

	Week 12	Week 24
Total no. of patient	29	19
No. of patient in Cohort A	22	16
No. of patient in Cohort B	7	3

What I Tell My Patients: Integrating New Research Information into Current Clinical Care

A Complimentary NCPD Hybrid Symposium Series Held During the 49th Annual ONS Congress

Myelofibrosis

Saturday, April 27, 2024 12:15 PM – 1:45 PM

Faculty

Ilene Galinsky, NP
Andrew T Kuykendall, MD
Sara M Tinsley-Vance, PhD, APRN, AOCN
Abdulraheem Yacoub, MD

Moderator Neil Love, MD

What I Tell My Patients: Integrating New Research Information into Current Clinical Care

A Complimentary NCPD Hybrid Symposium Series Held During the 49th Annual ONS Congress

Gastroesophageal and Colorectal Cancers

Saturday, April 27, 2024 6:00 PM – 8:00 PM

Faculty

Deanna A Griffie, MSN, AGNP-C Caroline Kuhlman, MSN, APRN-BC Manish A Shah, MD John Strickler, MD

Moderator Neil Love, MD

Thank you for joining us! Please take a moment to complete the survey currently up on Zoom. Your feedback is very important to us. The survey will remain open up to 5 minutes after the meeting ends.

To Claim NCPD Credit

In-person attendees: Please refer to the program syllabus for the NCPD credit link or QR code.

Virtual attendees: The NCPD credit link is posted in the chat room.

NCPD/ONCC credit information will be emailed to each participant within 1 to 2 business days.

