Inside the Issue: Optimizing the Diagnosis and Treatment of Neuroendocrine Tumors

A CME/MOC-Accredited Live Webinar

Thursday, August 29, 2024 5:00 PM – 6:00 PM ET

Faculty Pamela Kunz, MD Simron Singh, MD, MPH

Faculty

Pamela Kunz, MD Associate Professor of Medicine/Oncology Division Chief, GI Oncology Director, Center for GI Cancers Yale School of Medicine and Yale Cancer Center New Haven, Connecticut

MODERATOR

Neil Love, MD Research To Practice Miami, Florida

Simron Singh, MD, MPH Professor, University of Toronto Susan Leslie Clinic for Neuroendocrine Tumours Odette Cancer Centre Sunnybrook Health Sciences Centre Toronto, Ontario, Canada

Survey Participants

Daniel M Halperin, MD Consulting Medical Oncologist Atlanta, Georgia

Heloisa P Soares, MD, PhD Medical Director, Clinical Trials Office Leader, University of Utah NET Destination Care Program Associate Professor, Division of Oncology Huntsman Cancer Institute, University of Utah Salt Lake City, Utah

Daneng Li, MD Associate Professor Department of Medical Oncology and Therapeutics Research City of Hope Comprehensive Cancer Center Duarte, California

Jonathan Strosberg, MD Professor, Dept of GI Oncology Moffitt Cancer Center Tampa, Florida

Commercial Support

This activity is supported by educational grants from Exelixis Inc, Merck, and Novartis.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma, a Sobi Company, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab US Inc, Geron Corporation, Gilead Sciences Inc, Grail Inc, GSK, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Legend Biotech, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Mural Oncology Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, R-Pharm US, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Syndax Pharmaceuticals, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc, and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Kunz — Disclosures Faculty

Advisory Committees (All Uncompensated)	Exelixis Inc, Novartis, RayzeBio	
Contracted Research	Novartis, RayzeBio	
Speaker	Bristol Myers Squibb, Foundation Medicine	

Dr Singh — Disclosures Faculty

Advisory Committees	Ipsen Biopharmaceuticals Inc, Novartis
---------------------	--

Dr Halperin — Disclosures Survey Participant

Advisory Committees	Amryt Pharma, Camurus, Crinetics Pharmaceuticals, Exelixis Inc, Harpoon Therapeutics, ITM Isotope Technologies Munich SE, Lantheus, Novartis	
Contracted Research	Camurus, ITM Isotope Technologies Munich SE, Novartis, RayzeBio	
Data and Safety Monitoring Board/Committee		

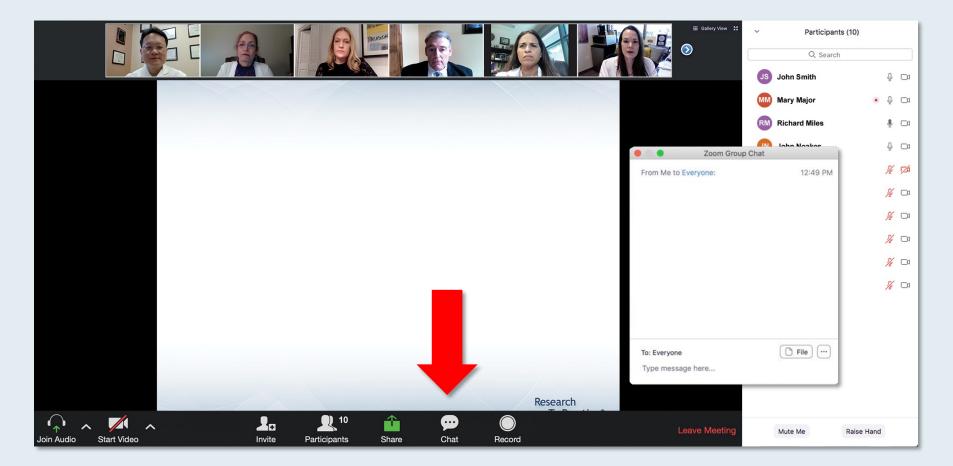
Dr Li — Disclosures Survey Participant

Consulting Agreements	AbbVie Inc, AstraZeneca Pharmaceuticals LP, Coherus BioSciences, Delcath Systems Inc, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group, Jazz Pharmaceuticals Inc, Merck, Sumitomo Dainippon Pharma Oncology Inc, TransThera Sciences, TriSalus Life Sciences	
Speakers Bureau	eakers Bureau Ipsen Biopharmaceuticals Inc	

Dr Soares — Disclosures Survey Participant

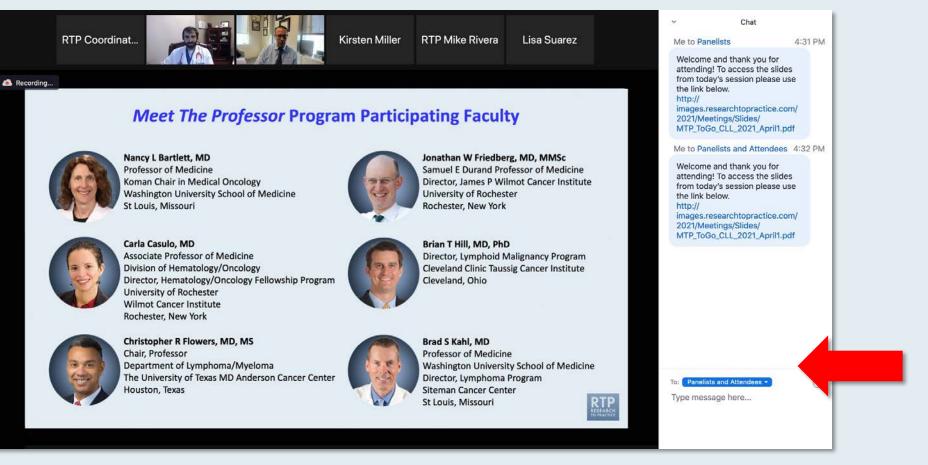
Advisory Committees	Biopharmaceuticais inc, Novartis	
Contracted Research		

Dr Strosberg — Disclosures Survey Participant


Advisory Committee	Boehringer Ingelheim Pharmaceuticals Inc	
Contracted Research	ITM Isotope Technologies Munich SE, RadioMedix Inc, RayzeBio	

This educational activity contains discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.

We Encourage Clinicians in Practice to Submit Questions



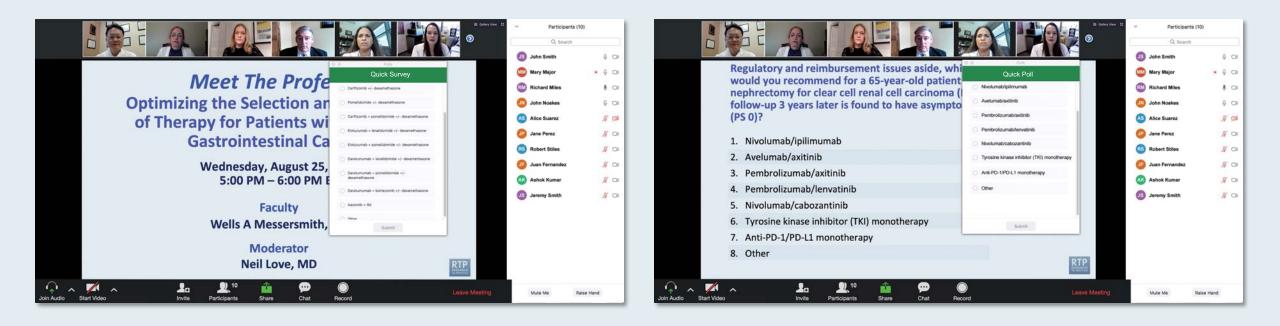
Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface


Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY with dr neil love Neuroendocrine Tumors

DR PAMELA KUNZ YALE CANCER CENTER

Dr Pamela Kunz – Neuroendocrine Tun Oncology Today with Dr Neil Love —

(15) (30)

Data + Perspectives: Clinical Investigators Discuss the Role of CAR T-Cell Therapy for Patients with Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia

> Part 1 of a 2-Part CME Satellite Symposium Series During the Society of Hematologic Oncology 2024 Annual Meeting

> > Wednesday, September 4, 2024 11:46 AM – 12:46 PM CT

> > > Faculty Joshua Brody, MD Jason Westin, MD, MS

> > > Moderator Matthew Lunning, DO

Data + Perspectives: Clinical Investigators Discuss the Current and Future Management of Diffuse Large B-Cell Lymphoma

Part 2 of a 2-Part CME Satellite Symposium Series During the Society of Hematologic Oncology 2024 Annual Meeting

> Wednesday, September 4, 2024 7:30 PM – 8:30 PM CT

Faculty Grzegorz S Nowakowski, MD Laurie H Sehn, MD, MPH

Moderator Christopher R Flowers, MD, MS

The Implications of Recent Datasets for the Current and Future Management of Non-Small Cell Lung Cancer with Actionable Targets Beyond EGFR

A CME/MOC-Accredited Live Webinar in Conjunction with the IASLC 2024 World Conference on Lung Cancer

> Wednesday, September 11, 2024 5:00 PM – 6:00 PM ET

Faculty Ibiayi Dagogo-Jack, MD *Additional faculty to be announced.*

The Implications of Recent Datasets for the Current and Future Use of Nontargeted Therapy for Metastatic Non-Small Cell Lung Cancer

A CME/MOC-Accredited Live Webinar in Conjunction with the IASLC 2024 World Conference on Lung Cancer

> Thursday, September 12, 2024 5:00 PM – 6:00 PM ET

Faculty Edward B Garon, MD, MS Luis Paz-Ares, MD, PhD

Meet The Professor: Optimizing the Management of Chronic Lymphocytic Leukemia

A CME/MOC-Accredited Live Webinar

Tuesday, September 17, 2024 5:00 PM – 6:00 PM ET

Faculty Matthew S Davids, MD, MMSc

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of Hematologic Cancers				
A CME Friday Satellite Symposium and Webcast Series Preceding the 66 th ASH Annual Meeting and Exposition				
Friday, December 6, 2024				
	Chronic Myeloid Leukemia 7:30 AM – 9:00 AM PT	Chronic Lymphocytic Leukemia 7:30 AM – 9:30 AM PT		
	CAR T-Cell Therapy 11:30 AM – 1:30 PM PT	Myelofibrosis 11:30 AM – 1:30 PM PT		
	Acute Myeloid Leukemia 3:15 PM – 5:15 PM PT	Multiple Myeloma 3:15 PM – 5:15 PM PT		

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of Chronic Myeloid Leukemia

A CME Friday Satellite Symposium and Webcast Preceding the 66th ASH Annual Meeting

Friday, December 6, 2024 7:30 AM – 9:00 AM PT (10:30 AM – 12:00 PM ET)

Faculty Professor Andreas Hochhaus B Douglas Smith, MD

Moderator Michael J Mauro, MD

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of Chronic Lymphocytic Leukemia

A CME Friday Satellite Symposium and Webcast Preceding the 66th ASH Annual Meeting

Friday, December 6, 2024 7:30 AM – 9:30 AM PT (10:30 AM – 12:30 PM ET)

Faculty

Farrukh T Awan Bita Fakhri, MD, MPH Kerry A Rogers, MD William G Wierda, MD, PhD

Moderator Jeff Sharman, MD

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Use of CAR T-Cell Therapy and Bispecific Antibodies in the Management of Lymphoma

A CME Friday Satellite Symposium and Webcast Preceding the 66th ASH Annual Meeting

Friday, December 6, 2024 11:30 AM – 1:30 PM PT (2:30 PM – 4:30 PM ET)

Faculty

Jennifer Crombie, MD Martin Hutchings, MD, PhD

Matthew Lunning, DO Tycel Phillips, MD

Moderator Jeremy S Abramson, MD, MMSc

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of Myelofibrosis

A CME Friday Satellite Symposium and Webcast Preceding the 66th ASH Annual Meeting

Friday, December 6, 2024 11:30 AM – 1:30 PM PT (2:30 PM – 4:30 PM ET)

Faculty

Prithviraj Bose, MD Angela G Fleischman, MD, PhD Abdulraheem Yacoub, MD

Moderator Andrew T Kuykendall, MD

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of Acute Myeloid Leukemia

A CME Friday Satellite Symposium and Webcast Preceding the 66th ASH Annual Meeting

Friday, December 6, 2024 3:15 PM – 5:15 PM PT (6:15 PM – 8:15 PM ET)

Faculty

Alexander Perl, MD Richard M Stone, MD

Eunice S Wang, MD Andrew H Wei, MBBS, PhD

Moderator Eytan M Stein, MD

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of Multiple Myeloma

A CME Friday Satellite Symposium and Webcast Preceding the 66th ASH Annual Meeting

Friday, December 6, 2024 3:15 PM – 5:15 PM PT (6:15 PM – 8:15 PM ET)

Faculty

Professor Philippe Moreau, MD Robert Z Orlowski, MD, PhD

Noopur Raje, MD Paul G Richardson, MD

Moderator Sagar Lonial, MD

Thank you for joining us!

Information on how to obtain CME, ABIM MOC and ABS credit will be provided at the conclusion of the activity in the Zoom chat room. Attendees will also receive an email in 1 to 3 business days with these instructions.

Inside the Issue: Optimizing the Diagnosis and Treatment of Neuroendocrine Tumors

A CME/MOC-Accredited Live Webinar

Thursday, August 29, 2024 5:00 PM – 6:00 PM ET

Faculty Pamela Kunz, MD Simron Singh, MD, MPH

Faculty

Pamela Kunz, MD Associate Professor of Medicine/Oncology Division Chief, GI Oncology Director, Center for GI Cancers Yale School of Medicine and Yale Cancer Center New Haven, Connecticut

MODERATOR

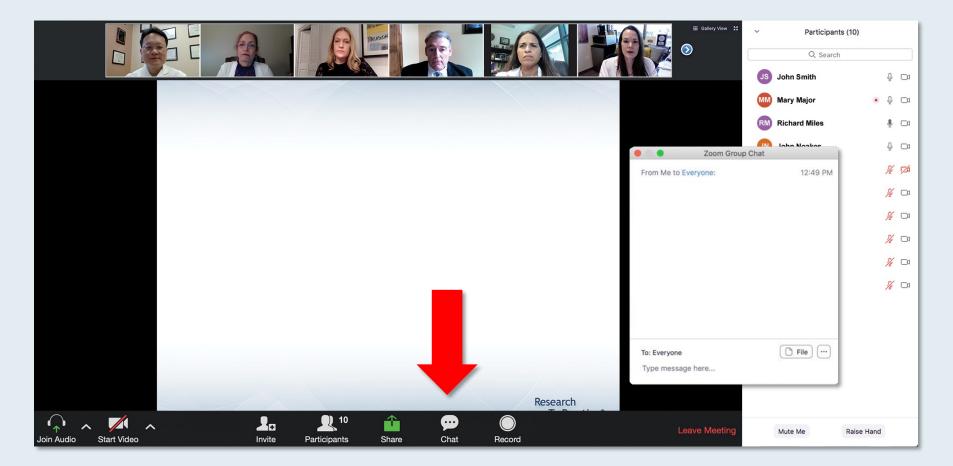
Neil Love, MD Research To Practice Miami, Florida

Simron Singh, MD, MPH Professor, University of Toronto Susan Leslie Clinic for Neuroendocrine Tumours Odette Cancer Centre Sunnybrook Health Sciences Centre Toronto, Ontario, Canada

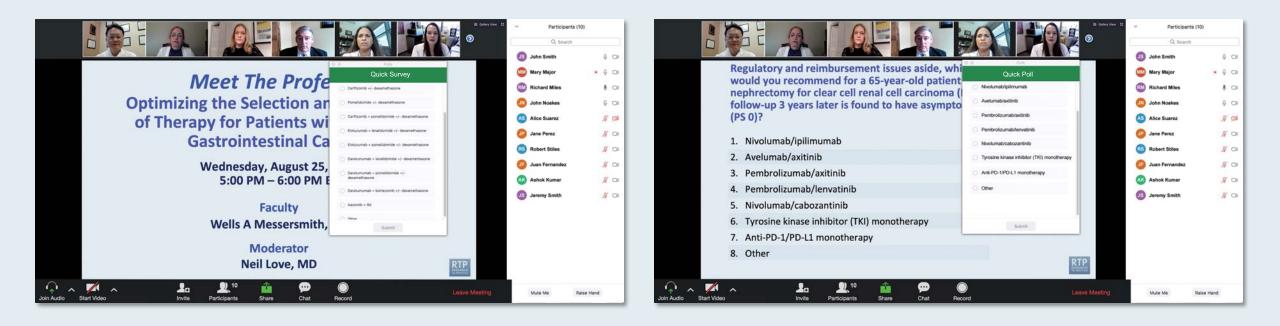
Survey Participants

Daniel M Halperin, MD Consulting Medical Oncologist Atlanta, Georgia

Heloisa P Soares, MD, PhD Medical Director, Clinical Trials Office Leader, University of Utah NET Destination Care Program Associate Professor, Division of Oncology Huntsman Cancer Institute, University of Utah Salt Lake City, Utah


Daneng Li, MD Associate Professor Department of Medical Oncology and Therapeutics Research City of Hope Comprehensive Cancer Center Duarte, California

Jonathan Strosberg, MD Professor, Dept of GI Oncology Moffitt Cancer Center Tampa, Florida


We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY with dr neil love Neuroendocrine Tumors

DR PAMELA KUNZ YALE CANCER CENTER

Dr Pamela Kunz – Neuroendocrine Tun Oncology Today with Dr Neil Love —

(15) (30)

Data + Perspectives: Clinical Investigators Discuss the Role of CAR T-Cell Therapy for Patients with Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia

> Part 1 of a 2-Part CME Satellite Symposium Series During the Society of Hematologic Oncology 2024 Annual Meeting

> > Wednesday, September 4, 2024 11:46 AM – 12:46 PM CT

> > > Faculty Joshua Brody, MD Jason Westin, MD, MS

> > > Moderator Matthew Lunning, DO

Data + Perspectives: Clinical Investigators Discuss the Current and Future Management of Diffuse Large B-Cell Lymphoma

Part 2 of a 2-Part CME Satellite Symposium Series During the Society of Hematologic Oncology 2024 Annual Meeting

> Wednesday, September 4, 2024 7:30 PM – 8:30 PM CT

Faculty Grzegorz S Nowakowski, MD Laurie H Sehn, MD, MPH

Moderator Christopher R Flowers, MD, MS

The Implications of Recent Datasets for the Current and Future Management of Non-Small Cell Lung Cancer with Actionable Targets Beyond EGFR

A CME/MOC-Accredited Live Webinar in Conjunction with the IASLC 2024 World Conference on Lung Cancer

> Wednesday, September 11, 2024 5:00 PM – 6:00 PM ET

Faculty Ibiayi Dagogo-Jack, MD *Additional faculty to be announced.*

The Implications of Recent Datasets for the Current and Future Use of Nontargeted Therapy for Metastatic Non-Small Cell Lung Cancer

A CME/MOC-Accredited Live Webinar in Conjunction with the IASLC 2024 World Conference on Lung Cancer

> Thursday, September 12, 2024 5:00 PM – 6:00 PM ET

Faculty Edward B Garon, MD, MS Luis Paz-Ares, MD, PhD

Meet The Professor: Optimizing the Management of Chronic Lymphocytic Leukemia

A CME/MOC-Accredited Live Webinar

Tuesday, September 17, 2024 5:00 PM – 6:00 PM ET

Faculty Matthew S Davids, MD, MMSc

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of Hematologic Cancers			
A CME Friday Satellite Symposium and Webcast Series Preceding the 66 th ASH Annual Meeting and Exposition			
Friday, Decer	nber 6, 2024		
Chronic Myeloid Leukemia 7:30 AM – 9:00 AM PT	Chronic Lymphocytic Leukemia 7:30 AM – 9:30 AM PT		
CAR T-Cell Therapy 11:30 AM – 1:30 PM PT	Myelofibrosis 11:30 AM – 1:30 PM PT		
Acute Myeloid Leukemia 3:15 PM – 5:15 PM PT	Multiple Myeloma 3:15 PM – 5:15 PM PT		

Inside the Issue: Optimizing the Diagnosis and Treatment of Neuroendocrine Tumors

A CME/MOC-Accredited Live Webinar

Thursday, August 29, 2024 5:00 PM – 6:00 PM ET

Faculty Pamela Kunz, MD Simron Singh, MD, MPH

Dr Kunz — Disclosures Faculty

Advisory Committees (All Uncompensated)	Exelixis Inc, Novartis, RayzeBio		
Contracted Research Novartis, RayzeBio			
Speaker	Bristol Myers Squibb, Foundation Medicine		

Dr Singh — Disclosures Faculty

Advisory Committees	Ipsen Biopharmaceuticals Inc, Novartis
---------------------	--

Dr Halperin — Disclosures Survey Participant

Advisory Committees	Amryt Pharma, Camurus, Crinetics Pharmaceuticals, Exelixis Inc, Harpoon Therapeutics, ITM Isotope Technologies Munich SE, Lantheus, Novartis	
Contracted Research	Camurus, ITM Isotope Technologies Munich SE, Novartis, RayzeBio	
Data and Safety Monitoring Board/Committee	RadioMedix Inc	

Dr Li — Disclosures Survey Participant

Consulting Agreements	AbbVie Inc, AstraZeneca Pharmaceuticals LP, Coherus BioSciences, Delcath Systems Inc, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group, Jazz Pharmaceuticals Inc, Merck, Sumitomo Dainippon Pharma Oncology Inc, TransThera Sciences, TriSalus Life Sciences		
Speakers Bureau	Ipsen Biopharmaceuticals Inc		

Dr Soares — Disclosures Survey Participant

Advisory Committees	AstraZeneca Pharmaceuticals LP, Bristol Myers Squibb, Exelixis Inc, Ipsen Biopharmaceuticals Inc, Novartis
Contracted Research	Bristol Myers Squibb, ITM Isotope Technologies Munich SE, Novartis

Dr Strosberg — Disclosures Survey Participant

Advisory Committee	Boehringer Ingelheim Pharmaceuticals Inc		
Contracted Research	ITM Isotope Technologies Munich SE, RadioMedix Inc, RayzeBio		

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma, a Sobi Company, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab US Inc, Geron Corporation, Gilead Sciences Inc, Grail Inc, GSK, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Legend Biotech, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Mural Oncology Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, R-Pharm US, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Syndax Pharmaceuticals, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc, and Zymeworks Inc.

Commercial Support

This activity is supported by educational grants from Exelixis Inc, Merck, and Novartis.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

This educational activity contains discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.

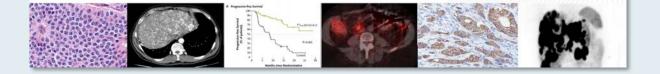
First Line Therapy of Neuroendocrine Cancers (NETs)

Research To Practice Seminar Aug, 2024

Simron Singh, MD. MPH. FRCPC.

Professor of Medicine, University of Toronto Susan Leslie Clinic for Neuroendocrine Tumours, Sunnybrook Odette Cancer Center Provincial Lead, Cancer Care Ontario, Person Centered Care

🕙 The Susan Leslie Clinic for Neuroendocrine Tumours



Later-Line Treatment for Advanced NETs

Pamela L. Kunz, MD

Associate Professor of Medicine / Oncology Director, Center for Gastrointestinal Cancers Chief, Division GI Medical Oncology Yale School of Medicine, Yale Cancer Center

Research To Practice ~ August 2024

Agenda

Module 1: Overview

Module 2: Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors (NETs)

Module 3: Multitarget Tyrosine Kinase Inhibitors for the Treatment of NETs

Module 4: Other New Advances in the Management of NETs

Striving for Consensus: Optimizing the Current and Future Management of Biliary Tract Cancers — A Clinical Investigator Think Tank

> Friday, August 23, 2024 12:00 PM – 3:00 PM ET

Faculty

Lipika Goyal, MD, Mphil James J Harding, MD Milind Javle, MD Robin (Katie) Kelley, MD

Agenda

Module 1: Overview

Module 2: Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors (NETs)

Module 3: Multitarget Tyrosine Kinase Inhibitors for the Treatment of NETs

Module 4: Other New Advances in the Management of NETs

Initial Evaluation

Should patients with a diagnosis of a NET be evaluated by a center of excellence for NETs, either in person or through virtual communication?

What are common clinical presentations of metastatic NET? What is the current chance of 5-year survival for patients presenting with metastatic disease?

What imaging modality/modalities do you use for initial staging?

How do differentiation and tumor grade factor into your treatment decisions?

Which patients with metastatic disease do you elect to observe instead of initiating therapy?

Initial Treatment Selection

How do you decide whether to use local therapy (surgery) for a patient with metastatic disease?

What is the current role of adjuvant chemotherapy for patients who have undergone resection? What ongoing trials are evaluating this strategy?

Globally, how would you indirectly compare the major treatment modalities available for NETs in terms of efficacy (eg, response rates) and toxicities/risks?

Somatostatin Analogs

What factors do you consider when selecting between the available somatostatin analogs (SSAs) for your patients? What information do you discuss with your patients regarding SSA therapy?

Are there any clinical situations in which you would recommend an SSA to an asymptomatic patient with low tumor burden somatostatin receptor (SSTR)-positive disease?

Are there notable differences between octreotide and lanreotide in terms of efficacy and tolerability profiles?

In a patient with clear-cut disease progression on an SSA, in what situations, if any do you continue the SSA or intensify the dose of the SSA?

How common is it to observe transformation of low-grade NETs to high-grade NETs?

Somatostatin Analogs (Continued)

What imaging modality/modalities do you use for initial staging and to follow a patient's response to treatment?

What imaging modality do you use to look for recurrences in patients with a history of NET with completely resected disease? Will a regular CT scan with contrast suffice in these cases or is a PET dotatate scan necessary?

Do you encounter issues with insurance approval of PET dotatate scans?

Genetic Testing

Do you routinely order genetic testing for all patients with NET or for only select patients?

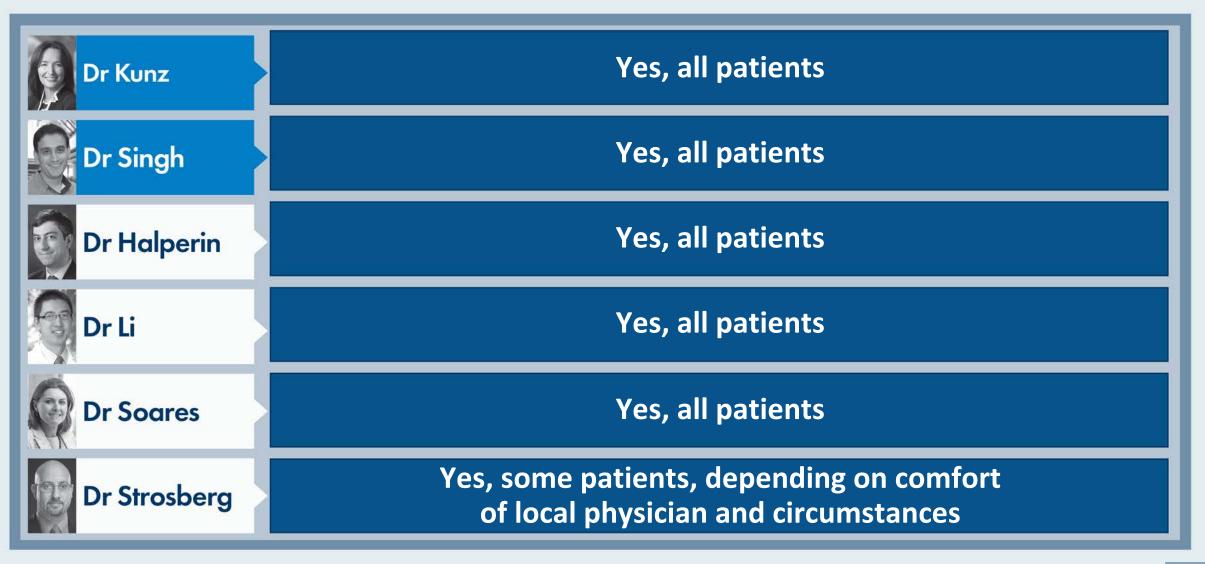
What aspects of a patient's familial or medical history would suggest to you an inherited predisposition to NETs and prompt genetic testing?

What specific gene mutations do you look for? What is the significance of genetic alterations in Rb or TP53 for NETs?

What testing platform(s) do you use (germline-only blood test, broad-based NGS for germline and somatic gene mutations)?

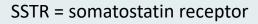
Tumor Markers

In patients with fully resected disease, do you check tumor markers at each follow-up visit, and if so, which ones?


What tumor markers do you use to follow a patient's response to treatment in the metastatic setting?

Are there any biomarkers you follow to assess the extent of a patient's disease?

Is there a role for minimal residual disease assessment or measuring levels of circulating tumor DNA?


Should patients with a diagnosis of a NET be evaluated by a center of excellence for NETs, either in person or through virtual communication?

What clinical and biological factors do you consider when deciding to initiate systemic therapy for patients with gastroenteropancreatic NETs (GEP-NETs)?

Dr Kunz	Primary site, grade, Ki-67, symptoms, pace of growth, SSTR status			
Dr Singh	Primary site, stage, differentiation, Ki-67, symptoms, tumor growth rate, disease bulk, functional vs not, performance status			
Dr Halperin	Disease volume, cadence of progression, pathological differentiation, primary site and tumor grade			
Dr Li	Grade, disease volume, labs, performance status			
Dr Soares	Grade, disease volume, Ki-67, symptoms			
Dr Strosberg	Tumor grade, SSTR expression, tumor burden, tumor aggressiveness			

Are there any clinical situations in which you would recommend a somatostatin analog (SSA) to an asymptomatic patient with low tumor burden somatostatin receptor (SSTR)-positive disease?

Dr Kunz	Yes, if patient prefers to start treatment		
Dr Singh	Yes, for GI NETs with Ki-67 <10%		
Dr Halperin	Yes, if patient prefers		
Dr Li	Yes, if functional tumor		
Dr Soares	Yes, if patient prefers		
Dr Strosberg	Yes, if patient prefers to start treatment		

Based on your clinical experience and knowledge of available data, what do you estimate to be the proportion of patients receiving the SSAs below who experience the following treatment-related adverse events?

	Gallstones		Hypothyroidism	
	Octreotide	Lanreotide	Octreotide	Lanreotide
Dr Kunz	~50%	~50%	~30%	~30%
Dr Singh	10%	5%	Minimal	Minimal
Dr Halperin	10%	15%	10%	10%
Dr Li	15%	15%	1%	1%
Dr Soares	70%	70%	5%	5%
Dr Strosberg	15%	15%	<1% clinically significant	<1% clinically significant

Based on your clinical experience and knowledge of available data, what do you estimate to be the proportion of patients receiving the SSAs below who experience the following treatment-related adverse events?

	Hypoglycemia		Hyperglycemia	
	Octreotide	Lanreotide	Octreotide	Lanreotide
Dr Kunz	<10%	<10%	~50%	~50%
Dr Singh	Minimal	Minimal	10%	10%
Dr Halperin	3%	3%	30%	30%
Dr Li	10%	10%	30%	30%
Dr Soares	5%	5%	50%	50%
Dr Strosberg	<1% clinically significant	<1% clinically significant	5% clinically significant	5% clinically significant

GEPNETs: Treatment options beyond SSA

Small bowel NET

Systemic therapy options

- Everolimus
- ¹⁷⁷Lu-Dotatate [SSTR+]
- Cytotoxic chemotherapy

Pancreatic NET

Systemic therapy options

- Everolimus
- Sunitinib
- Capecitabine/Temozolomide
- ¹⁷⁷Lu-Dotatate [SSTR+]

Locoregional therapy options

Liver-directed therapy

Locoregional therapy options

Liver-directed therapy

Optimal sequence of therapies is unknown

Adapted from the NCCN Neuroendocrine Tumor Guidelines v 1.2023

GEPNETs: Treatment in 2024

Small bowel NET

Systemic therapy options

- Everolimus
- ¹⁷⁷Lu-Dotatate [SSTR+] 2nd line G1/G2
- ¹⁷⁷Lu-Dotatate [SSTR+] 1st line G2/G3*
- Cytotoxic chemotherapy
- Cabozantinib*

Locoregional therapy options

• Liver-directed therapy

Pancreatic NET

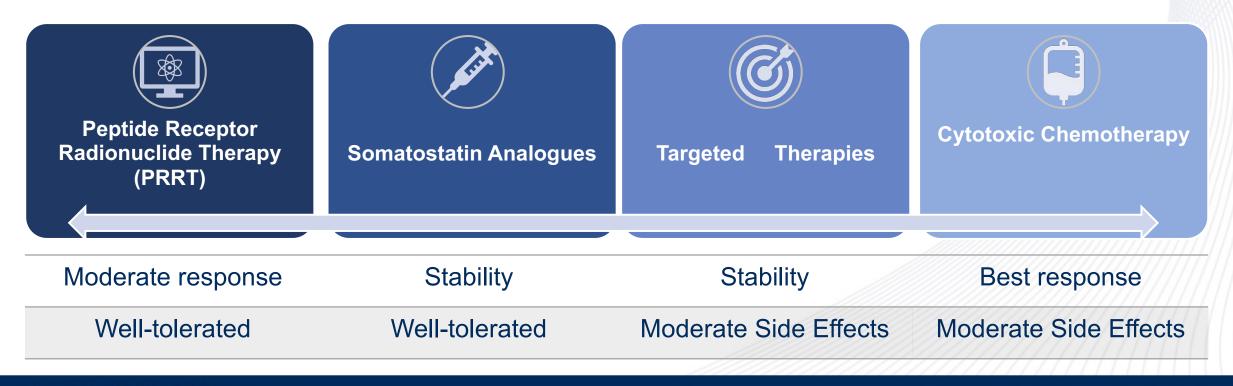
Systemic therapy options

- Everolimus
- Sunitinib
- Capecitabine/Temozolomide
- Other cytotoxic chemotherapy
- ¹⁷⁷Lu-Dotatate [SSTR+] 2nd line G1/G2
- ¹⁷⁷Lu-Dotatate [SSTR+] 1st line G2/G3*
- Cabozantinib*

Locoregional therapy options

• Liver-directed therapy

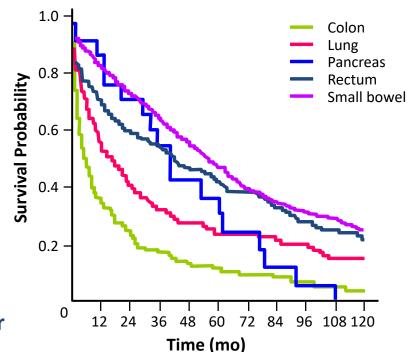
Optimal sequence of therapies is unknown


Adapted from the NCCN Neuroendocrine Tumor Guidelines v 1.2023; * = not yet FDA approved

YaleNewHaven**Health** Smilow Cancer Hospital

Selecting treatment: A balancing act

- Patient characteristics
- Treatment Outcomes: Stabilization vs. Response
- Side Effects: Minimal vs. moderate

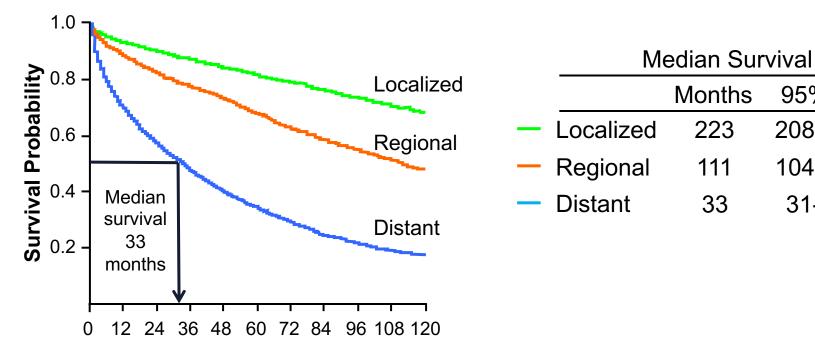


Courtesy of Simron Singh, MD, MPH

Correlation of Primary Tumour Site With Survival

- Known prognostic factors include:
 - Location of primary tumour
 - Tumour stage
 - Extent of disease
 - Degree of differentiation/
 - Tumour grade
 - Patient age
 - Performance status

65% of patients with advanced NET will not be alive in 5 yr


Distant metastases

Yao JC, Hassan M, Phan A, et al. J Clin Oncol. 2008;26:3063-3072.

Courtesy of Simron Singh, MD, MPH

33-Month Median Survival for Patients With Distant Metastatic NET

Time, months

CI. confidence interval

95% CI

208-238

104-118

31-35

Months

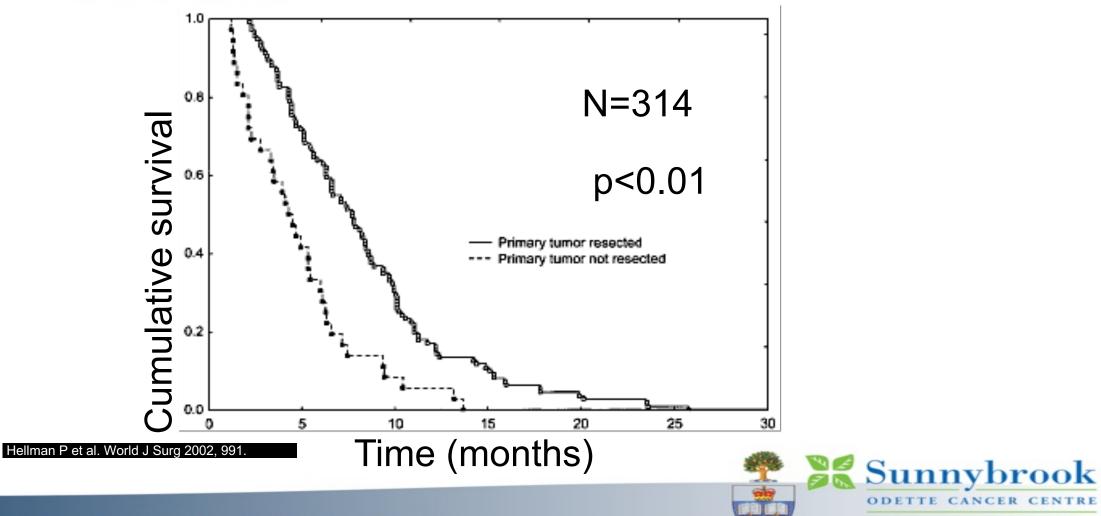

223

111

33

Data from an analysis of 35,825 cases of NET identified in the SEER registries

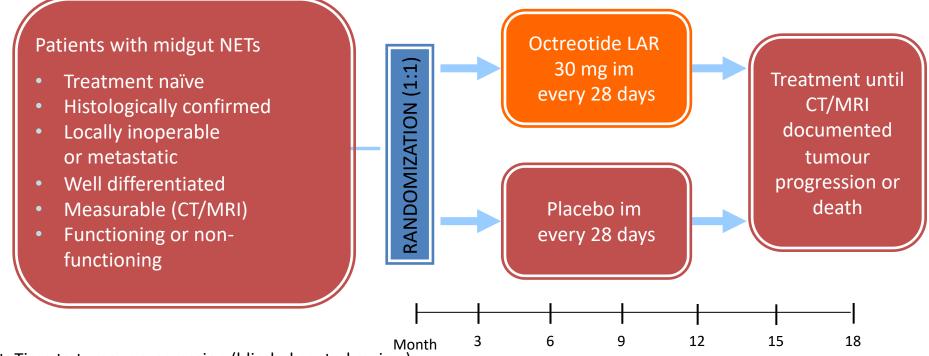
Yao JC et al. J Clin Oncol. 2008;26:3063-3072.



Courtesy of Simron Singh, MD, MPH

A Gauer Care Ontario Partner when it Matters

MOST


Removing the primary ... helps – just do the right surgery!

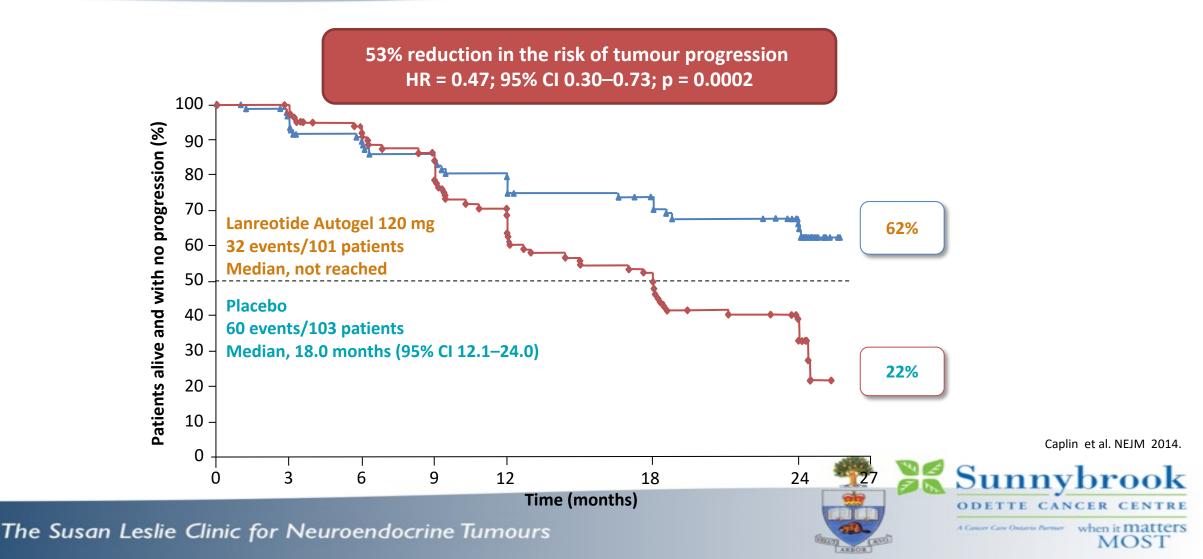
The Susan Leslie Clinic for Neuroendocrine Tumours

PROMID: Evaluation of the Antiproliferative Effect of Octreotide LAR

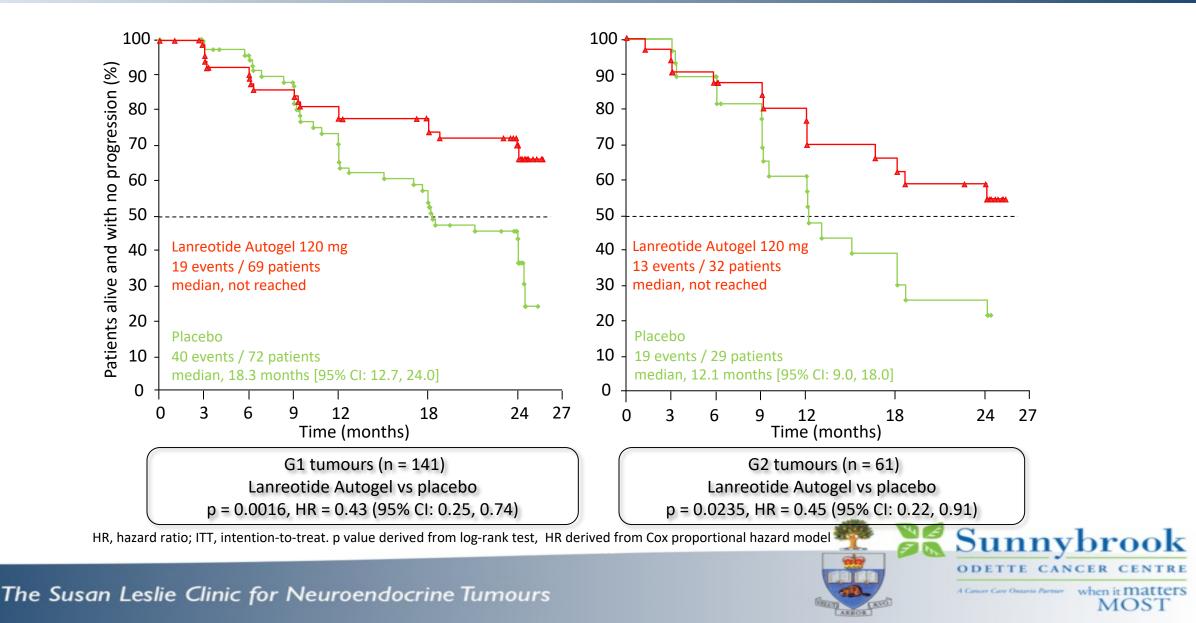
Phase III randomized, double-blind, placebo-controlled study

- Primary endpoint: Time to tumour progression (blinded central review)
- Secondary endpoints: objective response rate, survival, quality of life, safety

Rinke A et al. J Clin Oncol 2009;27:4656-4663



Tumour control in NET:


Courtesy of Simron Singh, MD, MPH

Lanreotide Autogel significantly prolongs PFS

CLARINET: well-/moderately differentiated non-functioning GEP NET

Lanreotide Subgroup Analysis (ITT): Effect of Tumour Grade

Agenda

Module 1: Overview

Module 2: Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors (NETs)

Module 3: Multitarget Tyrosine Kinase Inhibitors for the Treatment of NETs

Module 4: Other New Advances in the Management of NETs

Common Questions for Neuroendocrine Tumors

Peptide Receptor Radionuclide Therapy

What is the difference between alpha-emitting and beta-emitting radionuclides?

How does the extent of SSTR positivity factor into your treatment decision-making?

How often do you see oligometastases and how do you manage them with local therapy?

What are common side effects that may be observed with lutetium Lu 177 dotatate? What strategies do you use to prevent or manage these effects?

Do the side effects differ when administered in combination with an SSA?

How commonly do you observe renal toxicity secondary to lutetium Lu 177 dotatate therapy? What is the role of amino acid infusions to address this side effect?

Common Questions for Neuroendocrine Tumors

Peptide Receptor Radionuclide Therapy (Continued)

Are there any radiation protection precautions that should be taken with lutetium Lu 177 dotatate therapy? Do these precautions pose any challenges?

What is the incidence of secondary malignancies such as myelodysplastic syndrome after lutetium Lu 177 dotatate? What is the lag time between treatment and the development of secondary cancers?

How often do you observe the development of neuroendocrine hormonal crisis with lutetium Lu 177 dotatate treatment? Are there any factors that predispose a patient to its development?

What other radioligand therapies are currently under clinical investigation?

A 60-year-old man with no past medical history presents to a local emergency department for kidney stones. Routine CT scan and MRI reveal a large pancreatic mass and numerous bulky liver metastases. ⁶⁸Ga-dotatate PET imaging shows strong SSTR uptake. <u>Regulatory and reimbursement issues aside</u>, which systemic treatment would you recommend if biopsy of the liver demonstrated a well differentiated ...?

	Grade 1 NET	Grade 2 NET	Grade 3 NET	
Dr Kunz	Lutetium Lu 177 dotatate or Capecitabine/temozolomide	Lutetium Lu 177 dotatate or Capecitabine/temozolomide	Capecitabine/temozolomide or Other chemotherapy	
Dr Singh	SSA	SSA if low grade, chemotherapy if bulky or neoadjuvant or PRRT	Lutetium Lu 177 dotatate + octreotide	
Dr Halperin	Capecitabine/ temozolomide	Capecitabine/ temozolomide	Lutetium Lu 177 dotatate	
Dr Li	SSA	Lutetium Lu 177 dotatate + octreotide	Capecitabine/ temozolomide	
Dr Soares	Capecitabine/ temozolomide	Capecitabine/ temozolomide	Capecitabine/ temozolomide	
Dr Strosberg	SSA	SSA	Lutetium Lu 177 dotatate + octreotide	

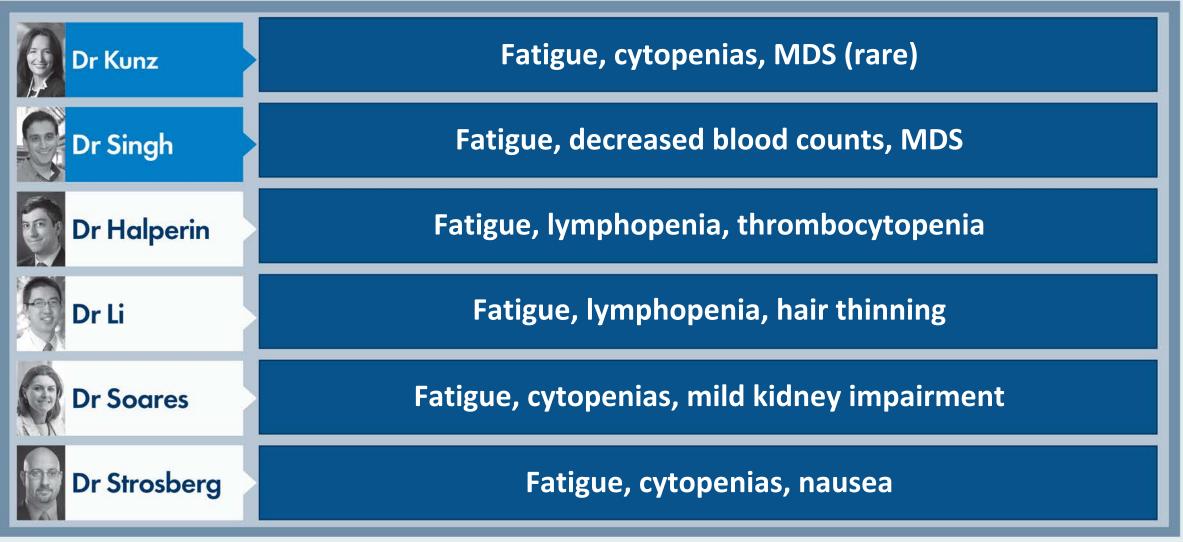
SSA: octreotide or lanreotide; PRRT = peptide receptor radionuclide therapy

To approximately how many patients with previously untreated GEP-NETs have you administered lutetium Lu 177 dotatate with or without an SSA on or off protocol?

Dr Kunz	0
Dr Singh	20
Dr Halperin	5
Dr Li	100
Dr Soares	6
Dr Strosberg	3

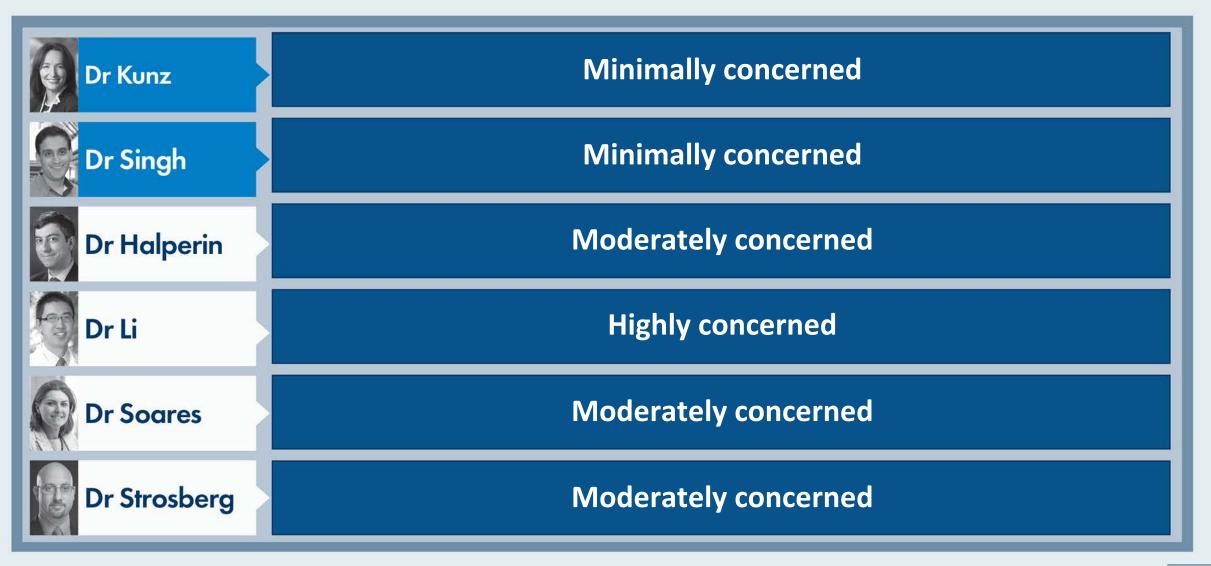
In the literature or your personal experience, what have you observed regarding the efficacy and tolerability of lutetium Lu 177 dotatate <u>in combination with an SSA</u>?

Dr Kunz	Very well tolerated
Dr Singh	No difference in personal experience
Dr Halperin	Very effective and highly tolerable
Dr Li	Good disease control and tolerability, less ORR than clinical trial results
Dr Soares	Good, but unclear if better than SSA alone as there is no randomized trial
Dr Strosberg	Addition of SSA does not impact toxicity, and unclear whether SSA contributes to efficacy in patients who already had disease progression on SSA



A 60-year-old woman with a well differentiated Grade 2 (Ki-67 3%) SSTR-positive pancreatic NET with low-volume liver metastases <u>receives octreotide</u> and maintains stable disease for 2 years. A recent follow-up CT scan reveals 5 new lesions in the liver that are subsequently deemed unresectable. <u>Regulatory and reimbursement issues aside</u>, which systemic therapy would you recommend for this patient?

Dr Kunz	Lutetium Lu 177 dotatate or capecitabine/temozolomide
Dr Singh	Capecitabine/temozolomide
Dr Halperin	Everolimus
Dr Li	Everolimus
Dr Soares	Lutetium Lu 177 dotatate
Dr Strosberg	Lutetium Lu 177 dotatate


Based on your clinical experience and knowledge of available data, what are the top 3 side effects patients experience when receiving lutetium Lu 177 dotatate?

MDS = myelodysplastic syndromes

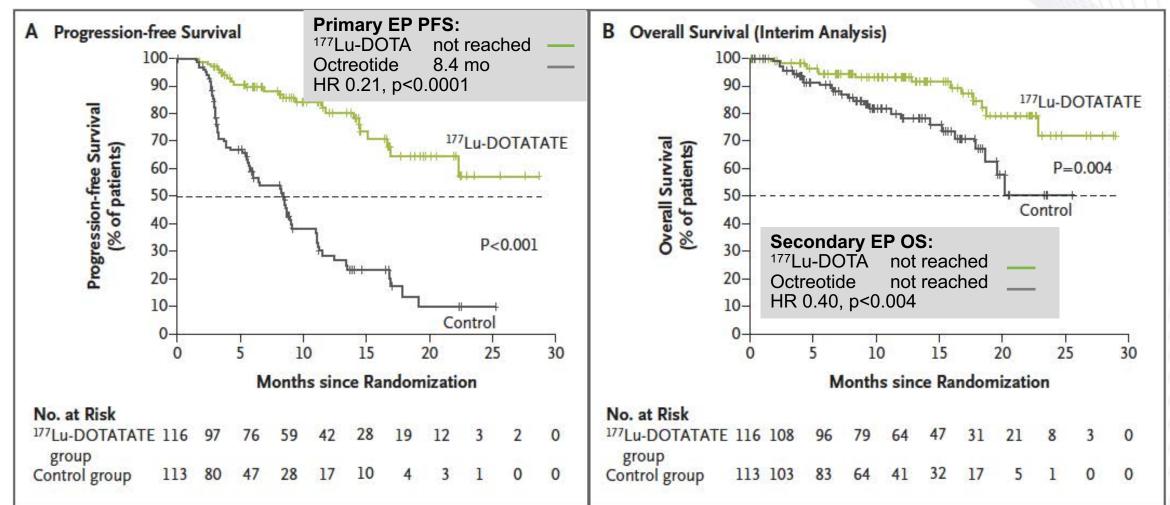
How concerned are you about the risk of secondary cancer such as myelodysplastic syndromes or acute leukemia for your patients receiving lutetium Lu 177 dotatate?

Phase III ¹⁷⁷Lu-Dotatate (NETTER-1)

YaleNewHavenHealth

Smilow Cancer Hospital

Yale


Aim	Evaluate efficacy and safety of ¹⁷⁷ Lu-Dotatate + SSAs compared to octreotide LAR 60 mg in inoperable, somatostatin receptor-positive, midgut NET, progressive under octreotide LAR 30 mg
Design	International, multicenter, randomized, comparator-controlled, parallel group

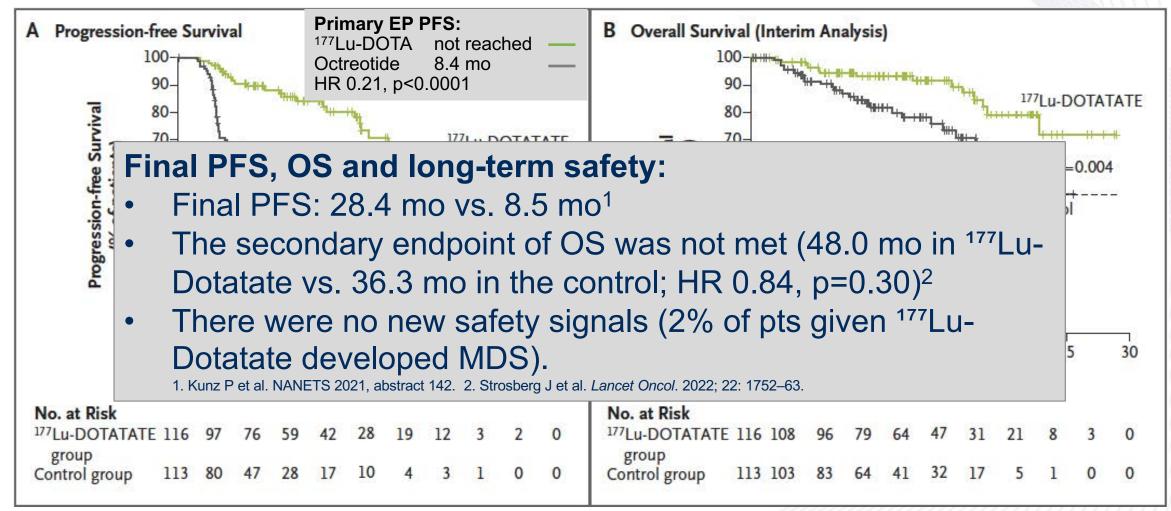
Treatment and Assessments: Progression-free survival (by RECIST) every 12 wk; Primary EP PFS

Baseline	n = 116	4 administrations IV of 200 mCi (7.4 GBq) of ¹⁷⁷ Lu-Dotatate every 8 wk + SSA	5-year
and	1:1		follow-
Randomization	n = 113	Octreotide LAR 60 mg IM (high dose) every 4 wk	up
NCT01578239			

Courtesy of Pamela Kunz, MD

NETTER-1: PFS and OS

¹⁷⁷Lu-Dotatate FDA-Approved for GEP NETs (2018)


1. Strosberg J et al. N Engl J Med. 2017;376(2):125-135.

YaleNewHaven**Health** Smilow Cancer Hospital

Yalecancer

Courtesy of Pamela Kunz, MD

NETTER-1: PFS and OS

¹⁷⁷Lu-Dotatate FDA-Approved Jan 2018

Strosberg J et al. N Engl J Med. 2017;376(2):125-135.

Courtesy of Pamela Kunz, MD

YaleNewHaven**Health** Smilow Cancer Hospital Valesanser

NETTER-1: Response Rates

Response Category	¹⁷⁷ Lu-Dotatate Group (N = 101)	Control Group (N = 100)	P Value†
Complete response — no. (%)	1 (1)	0	
Partial response — no. (%)	17 (17)	3 (3)	
Objective response			
No. with response	18	3	
Rate — % (95% CI)	18 (10–25)	3 (0–6)	<0.001

YaleNewHaven**Health** Smilow Cancer Hospital Yale

Courtesy of Pamela Kunz, MD

NETTER-1: Adverse Events

Event	¹⁷⁷ Lu-Dotatate Group (N = 111)	Control Group (N=110)	P Value†
	number of patients (percent)		
Adverse event			
Any	106 (95)	95 (86)	0.02
Related to treatment	95 (86)	34 (31)	< 0.001
Serious adverse event			
Any	29 (26)	26 (24)	0.76
Related to treatment	10 (9)	1 (1)	0.01
Withdrawal from trial because of adverse event			
Because of any adverse event	7 (6)	10 (9)	0.46
Because of adverse event related to treatment	5 (5)	0	0.06

Most common AEs: cytopenias, nausea, vomiting, fatigue (MDS 2%-3%)

Strosberg J et al. N Engl J Med. 2017;376(2):125-135.

Trials to Watch - RLT in GEPNET

Study	Design	Indication	Drugs	N
COMPETE NCT03049189	Randomized, Ph III (2:1)	Well-diff, G1/2 GEP NET, SSTR+, <u>after SSA</u>	¹⁷⁷ Lu-Edotreotide vs. everolimus	300 Accrual complete
COMPOSE NCT04919226	Randomized, Ph III (2:1)	Well-diff, G2/3, met GEPNET, SSTR+, <u>any line</u>	¹⁷⁷ Lu-Edotreotide vs. Pl choice (everolimus, CapTem, FOLFOX)	202
A022001 NCT05247905 PIs: Hobday/Soares	Randomized Ph II (1:1)	Well-diff, G1-3, met pNET, <u>1st line</u> for symptomatic G2/3, 2 nd line+ for others	¹⁷⁷ Lu-Dotatate vs. CapTem	198
ACTION-1 NCT05477576	Randomized Ph 1b/III (1:1)	Well-diff, G1/2, met GEPNET, SSTR+, <u>PD after ¹⁷⁷Lu-Dota</u>	²²⁵ Ac-Dotatate vs. investigator's choice	218
CCTG-NE1 NET RETREAT NCT05773274	Randomized Ph II (1:1)	Well-diff, G1/2, met midgut NET, SSTR+, <u>PD after ¹⁷⁷Lu-Dota</u>	¹⁷⁷ Lu-Dotatate x 2 vs. Everolimus	100

Yale

THE LANCET

Access provided by Sunnybrook Health Sciences Centre

This journal Journals Publish Clinical Global health Multimedia Events About

ARTICLES | ONLINE FIRST

[¹⁷⁷Lu]Lu-DOTA-TATE plus long-acting octreotide versus high-dose longacting octreotide for the treatment of newly diagnosed, advanced grade 2–3, well-differentiated, gastroenteropancreatic neuroendocrine tumours (NETTER-2): an open-label, randomised, phase 3 study

Simron Singh, MD A ⊡ • Daniel Halperin, MD • Sten Myrehaug, MD • Ken Herrmann, MD • Prof Marianne Pavel, MD • Pamela L Kunz, MD • et al. Show all authors • Show footnotes

Published: June 05, 2024 • DOI: https://doi.org/10.1016/S0140-6736(24)00701-3 • 🖲 Check for updates

[¹⁷⁷Lu]Lu-DOTA-TATE plus long-acting octreotide versus high-dose long-acting octreotide for the treatment of newly diagnosed, advanced grade 2–3, well-differentiated, gastroenteropancreatic neuroendocrine tumours (NETTER-2): an open-label, randomised, phase 3 study

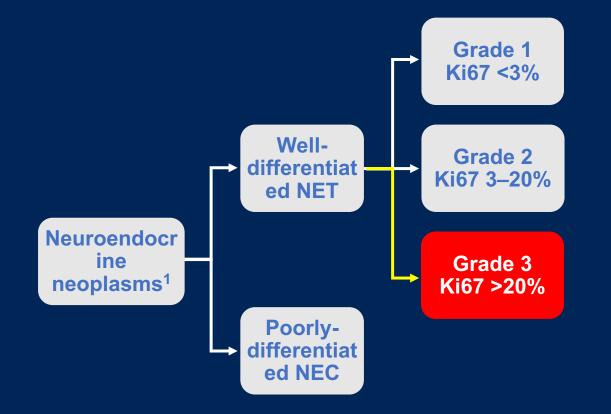
Simron Singh, Daniel Halperin, Sten Myrehaug, Ken Herrmann, Marianne Pavel, Pamela L Kunz, Beth Chasen, Salvatore Tafuto, Secondo Lastoria, Jaume Capdevila, Amparo García-Burillo, Do-Youn Oh, Changhoon Yoo, Thorvardur R Halfdanarson, Stephen Falk, Ilya Folitar, Yufen Zhang, Paola Aimone, Wouter W de Herder, Diego Ferone, on behalf of all the NETTER-2 Trial Investigators*

ASCO[°] Gastrointestinal Cancers Symposium

Efficacy and Safety of [¹⁷⁷Lu]Lu-DOTA-TATE in Newly Diagnosed Patients with Advanced Grade 2 and Grade 3, Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors: Primary Analysis of the Phase 3 Randomized NETTER-2 Study

Simron Singh MD, MPH,¹ Daniel Halperin MD,² Sten Myrehaug MD,¹ Ken Herrmann MD,^{3,4} Marianne Pavel MD,⁵ Pamela L, Kunz MD,⁶ Beth Chasen MD,² Jaume Capdevila MD, PhD,⁷ Salvatore Tafuto MD,⁸ Do-Youn Oh MD, PhD,⁹ Changhoon Yoo MD, PhD,¹⁰ Stephen Falk MD,¹¹ Thorvardur Halfdanarson MD,¹² Ilya Folitar MD,¹³ Yufen Zhang PhD,¹⁴ Paola Santoro MS,¹⁴ Paola Aimone MD,¹³ Wouter W. de Herder MD, PhD,¹⁵ Diego Ferone MD,¹⁶ on behalf of all the NETTER-2 Trial Investigators

¹University of Toronto, Toronto, ON, Canada; ²MD Anderson Cancer Center, Houston, TX, USA; ³Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; ⁴National Center for Tumor Diseases (NCT), NCT West, Germany; ⁵Uniklinikum Erlangen, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany; ⁶Yale School of Medicine, Yale University, New Haven, CT, USA; ³Vali d'Hebron Iniversity Hospital, Cancer Research Institute of Oncology (VHIO), Barcelona, Spain; ⁶Oncologia Clinica e Sperimentale Sarcomi e Tumor NRT, USA; ⁵Ondazione G. Pascale, Naples, Italy; ⁹Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; ¹⁴Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ¹⁴Bristol Haematology and Oncology Centre, University Hospitals Bristol NHS Foundation Trust, Bristol, UK; ¹²Mayo Clinic, Rochester, MN, USA; ¹³Novartis Pharma AG, Basel, Switzerland; ¹⁴Novartis Pharmaceuticals Corp, East Hanover, NJ, USA; ¹⁰Cerasmus MC, Rotterdam, The Netherlands; ¹⁶Endocrinology, IRCCS Policilnico San Martino and DiMI, University of Genova, Italy

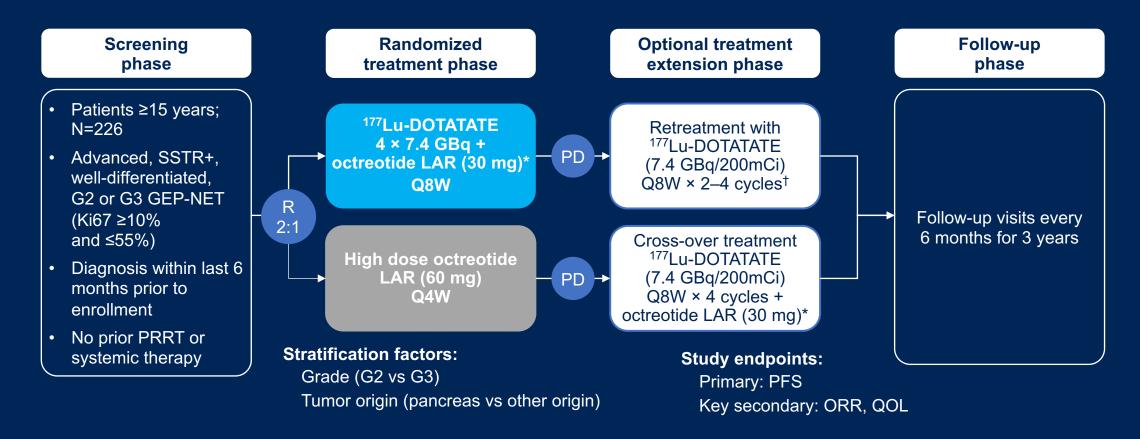

Simron Singh

ASCO[•] Gastrointestinal Cancers Symposium

Standard of care is undefined for newly diagnosed high G2 and G3 GEP-NETs

- Well-differentiated G3 NETs are a relatively new classification²
- No randomized studies have investigated the most appropriate first-line treatment strategy for high G2 / G3 GEP-NETs^{3,4}

G, grade; GEP-NET, gastroenteropancreatic neuroendocrine tumor; NEC, neuroendocrine carcinoma; NET, neuroendocrine tumor. 1. Nagtegaal ID, et al. Histopathology 2020;76:182–188; 2. Rindi G, et al. Mod Pathol 2018;31:1770–86; 3. Del Rivero J, et al. J Clin Oncol 2023;41:5049–67; 4. Eads JR, et al. Endocr Relat Cancer 2023; 30:e220206.


ASCO[°] Gastrointestinal Cancers Symposium

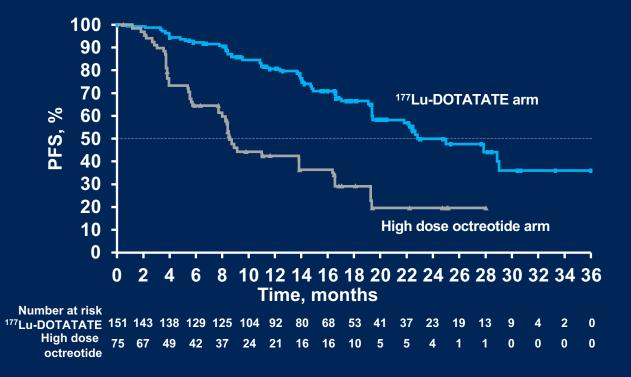
PRESENTED BY: Simron Singh, MD, MPH

NETTER-2 (NCT03972488) is the first randomized trial to evaluate RLT as 1L treatment in any solid tumor

*Q8W during ¹⁷⁷Lu-DOTATATE treatment then Q4W; [†]Octreotide LAR in retreatment phase is at discretion of investigator.

1L, first line; G, grade; GEP-NET, gastroenteropancreatic neuroendocrine tumor; LAR, long-acting repeatable; ORR, objective response rate; PD, progressive disease; PRRT, peptide receptor radionuclide therapy;

QnW, every n weeks; QOL, quality of life; R, randomization; RLT, radioligand therapy; SSTR, somatostatin receptor.


ASCO[•] Gastrointestinal Cancers Symposium

PRESENTED BY: Simron Singh, MD, MPH

¹⁷⁷Lu-DOTATATE showed significant improvement in primary PFS endpoint

	¹⁷⁷ Lu- DOTATATE arm n=151	High dose octreotide arm n=75
PFS median, months (95% CI)	<mark>22.8</mark> (19.4, NE)	<mark>8.5</mark> (7.7, 13.8)
Stratified HR (95% CI)	0.276 (0.1	82, 0.418)
p-value	<0.0	0001
Number of events, n (%)	55 (36)	46 (61)
Progression	47 (31)	41 (55)
Death	8 (5)	5 (7)

72% reduction in the risk of disease progression or death in the ¹⁷⁷Lu-DOTATATE arm versus the high dose octreotide arm

PFS centrally assessed according to RECIST 1.1

CI, confidence interval; HR, hazard ratio; NE, not estimable; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors.

ASCO[•] Gastrointestinal Cancers Symposium

PRESENTED BY: Simron Singh, MD, MPH

PFS benefit was consistent across prespecified subgroups

Subgroup		Hazard ratio (95% CI)
Age group		1
<65 years (n=134)	⊢−−−−□ −−−−−4	0.26 (0.16, 0.45)
≥65 years (n=92)		0.37 (0.20, 0.71)
Gender	· · · · · · · · · · · · · · · · · · ·	
Female (n=105)		0.30 (0.16, 0.55)
Male (n=121)	le la construcción de la	0.32 (0.18, 0.54)
Race		
White (n=165)		0.36 (0.22, 0.59)
Asian (n=34)		0.14 (0.05, 0.38)
Tumor grade	· · · · · · · · · · · · · · · · · · ·	
G2 (n=147)		0.31 (0.18, 0.53)
G3 (n=79)		0.27 (0.14, 0.49)
Tumor origin		
Pancreas (n=123)		I 0.34 (0.20, 0.56)
All non-pancreas (n=103)		l 0.23 (0.12, 0.46)
Small intestine (n=66)	► <mark>_</mark>	0.30 (0.13, 0.74)
SSTR uptake per central review	· · · · · · · · · · · · · · · · · · ·	
Grade 3 (n=34)		0.31 (0.10, 0.89)
Grade 4 (n=185)		0.30 (0.19, 0.47)
177Lu-DOTATATE better	125 0.0625 0.125 0.25 0.5	1 — High dose octreotide

CI, confidence interval; G, Grade; PFS, progression-free survival; SSTR, somatostatin receptor

PRESENTED BY: Simron Singh, MD, MPH

ORR was significantly higher for ¹⁷⁷Lu-DOTATATE

	¹⁷⁷ Lu-DOTATATE arm n=151	High dose octreotide arm n=75
Best overall response, n (%)		
CR	8 (5.3)	0 (0)
PR	57 (37.7)	7 (9.3)
SD	72 (47.7)	42 (56.0)
Non-CR / Non-PD	0 (0)	1 (1.3)
PD	8 (5.3)	14 (18.7)
Unknown	6 (4.0)	11 (14.7)
ORR*, n (%)	65 (43.0)	7 (9.3)
[95% CI]	[35.0, 51.3]	[3.8, 18.3]
Stratified odds ratio (95% CI)	7.81 (3.32	, 18.40)
p-value	<0.00	01
Responders, n	65	7
Duration of response median (95% CI), months	23.3 (18.4, NE)	NE (2.3, NE)

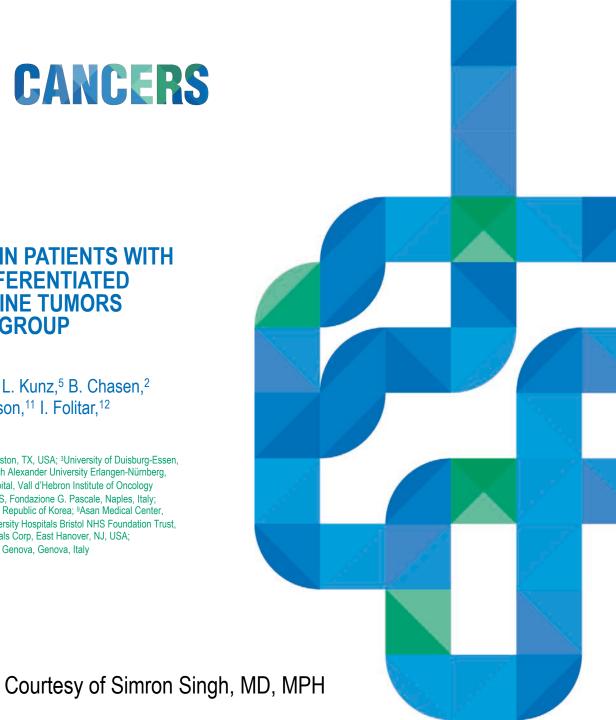
*CR+PR (central review, RECIST 1.1; confirmation of response was not required)

CI, confidence interval; CR, complete response; NE, not estimable; ORR, objective response rate; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease.

Safety was in line with the established profiles of ¹⁷⁷Lu-DOTATATE and octreotide LAR

	¹⁷⁷ Lu-DOTATATE group n=147	High dose octreotide group n=73
Any AE / AE related to treatment (all grades), n (%)	136 (93) / 101 (69)	69 (95) / 43 (59)
Any AE / AE related to treatment (Grade ≥3), n (%)	52 (35) / 23 (16)	20 (27) / 3 (4)
Most common all grade AEs (>20%), n (%)		
Nausea	40 (27.2)	13 (17.8)
Diarrhea	38 (25.9)	25 (34.2)
Abdominal pain	26 (17.7)	20 (27.4)
Most common grade ≥3 AEs (>3%), n (%)		
Lymphocyte count decreased	8 (5.4)	0 (0)
GGT increased	7 (4.8)	2 (2.7)
Small intestinal obstruction	5 (3.4)	0 (0)
Abdominal pain	4 (2.7)	3 (4.1)
Secondary hematologic malignancies, n (%)	1 (0.7)	0 (0)

AE, adverse event; GGT, gamma-glutamyl transferase; LAR, long-acting repeatable


2024 ESMO GASTROINTESTINAL CANCERS

Annual Congress

FIRST-LINE EFFICACY OF [¹⁷⁷Lu]Lu-DOTA-TATE IN PATIENTS WITH ADVANCED GRADE 2 AND GRADE 3, WELL-DIFFERENTIATED GASTROENTEROPANCREATIC NEUROENDOCRINE TUMORS BY TUMOR GRADE AND PRIMARY ORIGIN: SUBGROUP ANALYSIS OF THE PHASE 3 NETTER-2 STUDY

S. Singh,¹ D. Halperin,² S. Myrehaug,¹ K. Herrmann,³ M. Pavel,⁴ P. L. Kunz,⁵ B. Chasen,² J. Capdevila,⁶ S. Tafuto,⁷ D-Y. Oh,⁸ C. Yoo,⁹ S. Falk,¹⁰ T. Halfdanarson,¹¹ I. Folitar,¹² Y. Zhang,¹³ W. W. de Herder,¹⁴ D. Ferone¹⁵

¹University of Toronto, Sunnybrook Odette Cancer Centre, Toronto, ON, Canada; ²MD Anderson Cancer Center, Houston, TX, USA; ³University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany; ⁴Uniklinikum Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany; ⁵Yale School of Medicine, Yale University, New Haven, CT, USA; ⁶Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ⁷Oncologia Clinica e Sperimentale Sarcomi e Tumori Rari, Istituto Nazionale Tumori IRCCS, Fondazione G. Pascale, Naples, Italy; ⁸Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; ⁹Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ¹⁰Bristol Haematology and Oncology Centre, University Hospitals Bristol NHS Foundation Trust, Bristol, UK; ¹¹Mayo Clinic, Rochester, MN, USA; ¹²Novartis Pharma AG, Basel, Switzerland; ¹³Novartis Pharmaceuticals Corp, East Hanover, NJ, USA; ¹⁴Erasmus MC, Rotterdam, The Netherlands; ¹⁵Endocrinology, IRCCS Policlinico San Martino and DiMI, University of Genova, Genova, Italy

Agenda

Module 1: Overview

Module 2: Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors (NETs)

Module 3: Multitarget Tyrosine Kinase Inhibitors for the Treatment of NETs

Module 4: Other New Advances in the Management of NETs

Multitarget Tyrosine Kinase Inhibitors

Which tyrosine kinase inhibitors have been studied for the treatment of NETs? How do they compare to everolimus in terms of their efficacy and tolerability?

Which tyrosine kinases are targeted by cabozantinib?

Does the site of the primary NET have any effect on responses observed to cabozantinib?

What is known about the efficacy of cabozantinib, including response rates?

What are the main side effects are observed with cabozantinib? How often are dose adjustments necessary?

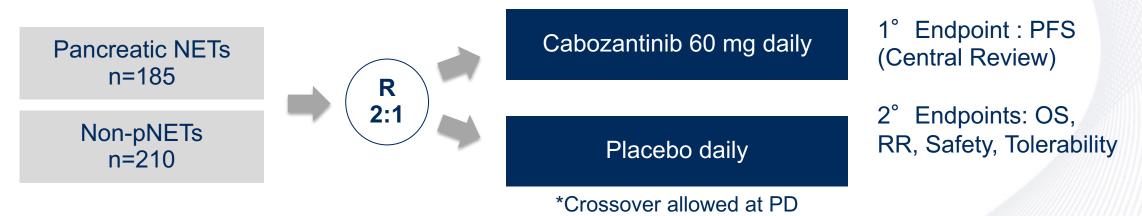
Have you administered or would you administer cabozantinib outside of a clinical trial to a patient with an advanced NET and progressive disease?

Have you administered or would you administer cabozantinib outside of a clinical trial to a patient with an advanced NET and progressive disease? To approximately how many such patients have you done so?

	Cabozantinib outside of a clinical trial?	Number of patients
Dr Kunz	I have	2
Dr Singh	I have	10
Dr Halperin	I have	5
Dr Li	I have	5
Dr Soares	I have	10
Dr Strosberg	I have	12

In the literature or your personal experience, what have you observed regarding the efficacy of cabozantinib?

Dr Kunz	Similar to published results	
Dr Singh	Effective	
Dr Halperin	Excellent disease control, rare response	
Dr Li	Consistent with clinical trial results in terms of disease control and less ORR	
Dr Soares	Efficacious, and patients can have symptomatic response	
Dr Strosberg	Probably slightly better than everolimus or sunitinib; mostly disease stabilization	

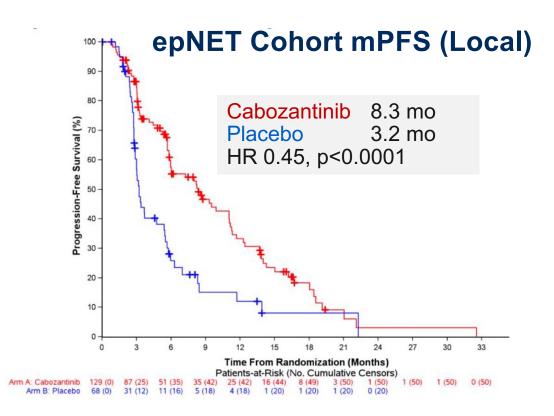

In the literature or your personal experience, what have you observed regarding the tolerability of cabozantinib?

Dr Kunz	Fatigue, diarrhea — I usually start with a 40-mg dose
Dr Singh	Well tolerated
Dr Halperin	More challenging, fatigue and diarrhea
Dr Li	Needs good weekly management when starting, to control side effects
Dr Soares	Fatigue and HTN issues better at reduced dose, such as 40 mg
Dr Strosberg	Most patients require dose reductions from starting dose of 60 mg, many all the way down to 20 mg

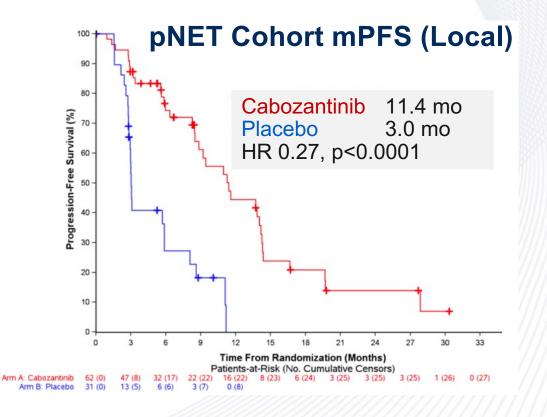
Targeted Therapy: Cabozantinib

Key inclusion criteria:

- •Well- to moderately differentiated NET, functional and non-functional
- •Any radiographic progression within 12 mo prior to randomization
- •Progression on at least 1 prior FDA-approved systemic therapy, not including SSA
- •Concurrent SSA allowed provided stable dose for $\geq 2 \mod 2$


Chan JA, et al. ESMO 2023, LBA53.

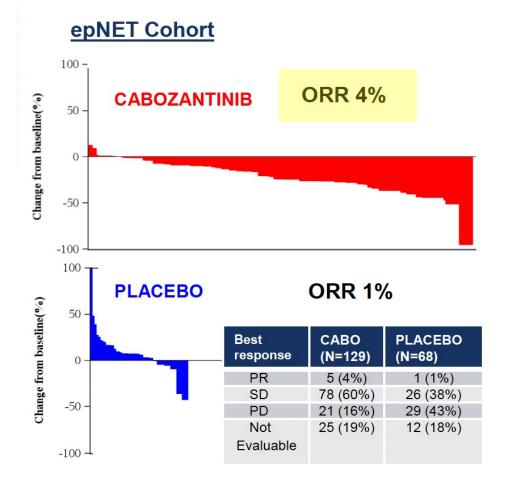
cMET, VEGFR2,

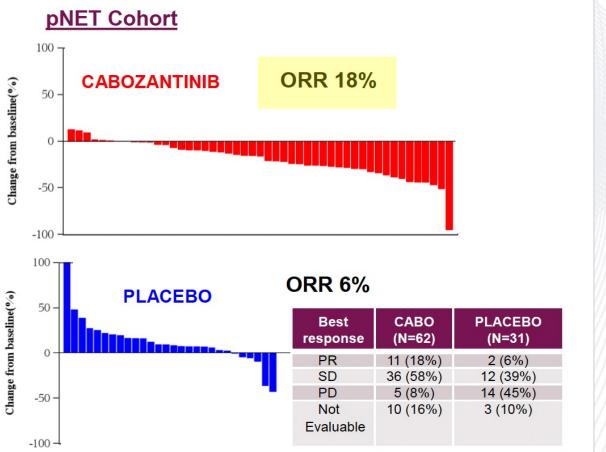

AXL, RET

0

CABINET: Primary Endpoint PFS is CMET, VEGFR2, AXL, RET

Yalesenser




Chan JA, et al. ESMO 2023, LBA53.

CABINET: Response Rates

Chan JA, et al. ESMO 2023, LBA53.

Yalecancer

CABINET: Adverse Events

epNET Cohort

	CABOZANTINIB (N=124)	PLACEBO (N=63)		
Grade 3 AE	74 (59.7%)	21 (33.3%)		
Grade 4 AE	9 (7.3%)	1 (1.6%)		
Grade 5 AE	11 (8.9%)	5 (7.9%)		
Commonly Occurring Grade 3+ AEs (≥ 10%)				
Hypertension	34 (27.4%)	3 (4.8%)		
Fatigue	17 (13.7%)	5 (7.9%)		
Diarrhea	12 (10%)	2 (3%)		

Grade 5 AEs in Cabozantinib Arm:

- Unrelated/unlikely related in 8 pts

Yalesenser

 Possibly related in 3 pts (hemorrhage in 1 pt; NOS in 2 pts)

pNET Cohort

	CABOZANTINIB (N=60)	PLACEBO (N=30)
Grade 3 AE	34 (56.7%)	13 (43.3%)
Grade 4 AE	5 (8.3%)	0
Grade 5 AE	2 (3.3%)	0
Commonly Occurring Grade 3+ AEs (≥ 10%)		
Hypertension	16 (26.7%)	6 (20.0%)
Fatigue	8 (13.3%)	1 (3.3%)
Hyperglycemia	5 (8.3%)	3 (10.0%)
Thromboembolic event	7 (11.7%)	0
Hand-foot syndrome	6 (10.0%)	0

Grade 5 AEs in Cabozantinib Arm:

- Unrelated in 2 pts

Chan JA, et al. ESMO 2023, LBA53.

The trail of other TKIs...

Drug	Target 🎯	Indication	Primary Endpoint	Status
Pazopanib ¹	VEGF, PDGFR, c- KIT, FGF	Advanced carcinoid	PFS 11.6 vs. 8.5 mo (p=0.0005)	Company decision to not purse Ph III
Surufatinib ^{2,}	VEGFR-1, VEGFR- 2, VEGFR-3, FGFR1, CSFR1	Pancreatic, Extra-pancreatic NET	pNET: PFS 10.9 vs 3.7 mo; (p=0.0011) epNET: PFS 9.2 vs. 3.8 mo; (<i>p</i> <0.0001)	FDA approval denied (2022)
Axitinib ⁴	VEGFR1-3	Extrapancreatic NETs	PFS 17.2 vs. 12.3 mo (p = 0.169)	Negative trial (but high RR)
Lenvatinib ⁵	VEGFR-1-3, FGFR 1-4, PDGFRα, PDGFRβ, c-KIT, RET	GI and pNET	RR pNET: 44% RR GI NET: 17%	High RR, however, non-randomized

1. Bergsland. ASCO 2019, Ab 4005. 2. Xu J et al. *Lancet Oncol*. 2020;21(11):1489-1499; 3. Xu J et al. *Lancet Oncol*. 2020;21(11):1500-1512. 4. Garcia-Carbonero, et al. ASCO 2021, abstract 360. 5. Capdevila, J Clin Oncol 2021; 39:2304-2312

Yalesenser

Agenda

Module 1: Overview

Module 2: Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors (NETs)

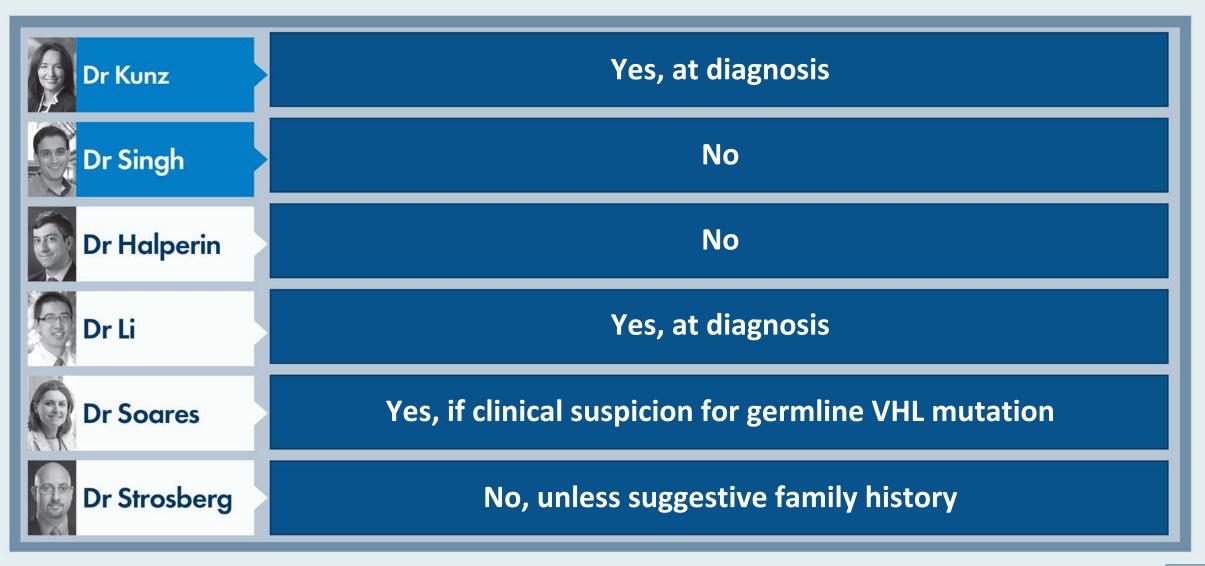
Module 3: Multitarget Tyrosine Kinase Inhibitors for the Treatment of NETs

Module 4: Other New Advances in the Management of NETs

Common Questions for Neuroendocrine Tumors

New Advances in the Management of NETs

For which of your patients with NETs do you test for a germline von Hippel-Lindau (VHL) gene alteration?


Is belzutifan being investigated for cancers not associated with VHL gene mutations? (Sounds like renal cell carcinoma!)

For patients with a NET who harbor a VHL gene mutation, where in your treatment algorithm do you incorporate belzutifan?

How often do you observe anemia secondary to belzutifan? Is there any role for erythropoiesis-stimulating agents?

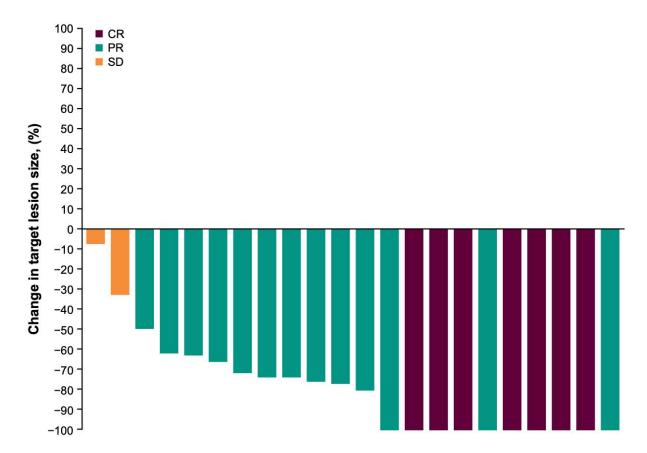
Do you test for a germline VHL gene alteration in your patients with NETs?

CLINICAL CANCER RESEARCH | CLINICAL TRIALS: TARGETED THERAPY

Belzutifan for von Hippel–Lindau Disease: Pancreatic Lesion Population of the Phase 2 LITESPARK-004 Study

Tobias Else¹, Eric Jonasch², Othon Iliopoulos³, Kathryn E. Beckermann⁴, Vivek Narayan⁵, Benjamin L. Maughan⁶, Stephane Oudard⁷, Jodi K. Maranchie⁸, Ane B. Iversen⁹, Cynthia M. Goldberg¹⁰, Wei Fu¹⁰, Rodolfo F. Perini¹⁰, Yanfang Liu¹⁰, W. Marston Linehan¹¹, and Ramaprasad Srinivasan¹¹

Clin Cancer Res 2024;30(9):1750-7.


LITESPARK-004: Belzutifan in von Hippel–Lindau (VHL) Disease – Pancreatic Lesions and Pancreatic NETs Cohort

	Pancreatic lesions	pNETs
Characteristic	<i>N</i> = 61	N = 22
Age, median (range; y)	41 (19-66)	42 (19–66)
Sex, n (%)		
Male	32 (52)	11 (50)
Female	29 (48)	11 (50)
ECOG PS, <i>n</i> (%)		
0	50 (82)	20 (91)
1	10 (16)	2 (9)
2	1 (2)	0
VHL disease subtype, <i>n</i> (%)		
1	51 (84)	17 (77)
2A	2 (3)	1 (5)
2B	6 (10)	3 (14)
2C	0	0
Missing	2 (3)	1 (5)
Prior surgeries ^a , <i>n</i> (%)		
Total number of patients who had ≥1 prior surgery	59 (97)	22 (100)
Pancreatic lesions ^b	9 (15)	2 (9)
Size of target lesions, median (range; mm)	19 (10–61) ^c	19 (10–52) ^d

YaleNewHaven**Health** Smilow Cancer Hospital

LITESPARK-004: Belzutifan in VHL-Associated Pancreatic NETs — Response Data

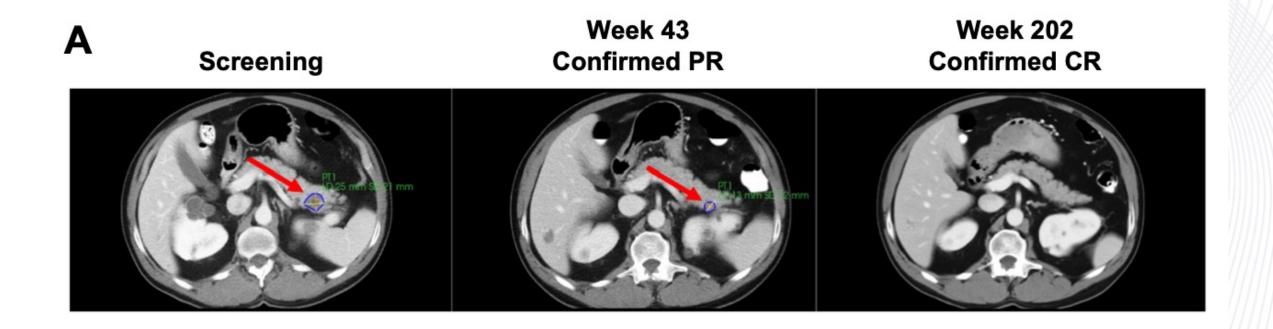


Table 2. Response in VHL disease-associated pancreaticneoplasms.

	Pancreatic lesions <i>N</i> = 61	pNETs <i>N</i> = 22
ORR, <i>n</i> (%; 95% Cl)	51 (84) (71.9–91.8)	20 (91) (70.8-98.9)
Best overall response, n (%)		
CR	17 (28)	7 (32)
PR	34 (56)	13 (59)
Stable disease	9 (15)	2 (9)
Progressive disease	0	0
Not evaluable	1 (2)	0
TTR, median (range; mo)	8.3 (2.5-32.9)	8.2 (2.5–16.4)
DOR, median (range; mo)	NR (2.6+ to 37.3+)	NR (11.0+ to 37.3+)

Yale CANCER CENTER

LITESPARK-004: Belzutifan in VHL-Associated Pancreatic NETs — Durability of Response

YaleNewHaven**Health** Smilow Cancer Hospital

Yalesenter

Else T et al. *Clin Cancer Res* 2024;30(9):1750-7.

Courtesy of Pamela Kunz, MD

Data + Perspectives: Clinical Investigators Discuss the Role of CAR T-Cell Therapy for Patients with Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia

> Part 1 of a 2-Part CME Satellite Symposium Series During the Society of Hematologic Oncology 2024 Annual Meeting

> > Wednesday, September 4, 2024 11:46 AM – 12:46 PM CT

> > > Faculty Joshua Brody, MD Jason Westin, MD, MS

> > > Moderator Matthew Lunning, DO

Thank you for joining us!

Please take a moment to complete the survey currently up on Zoom. Your feedback is very important to us. The survey will remain open for 5 minutes after the meeting ends.

Information on how to obtain CME, ABIM MOC and ABS credit is provided in the Zoom chat room. Attendees will also receive an email in 1 to 3 business days with these instructions.

