Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

A CME/MOC-, ACPE- and NCPD-Accredited Event

Saturday, October 26, 2024 7:15 AM – 12:30 PM ET

Agenda

Module 1 — HR-Positive Breast Cancer: Drs O'Shaughnessy and Wander

Module 2 — Prostate Cancer: Drs M Smith and Srinivas

Module 3 — Lung Cancer: Drs Goldberg and Sabari

Module 4 — Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia: Drs Kahl and S Smith

Module 5 — Multiple Myeloma: Drs Lonial and Raje

Lung Cancer Faculty

Sarah B Goldberg, MD, MPH Associate Professor of Medicine (Medical Oncology) Chief of Thoracic Oncology Co-Director of the Center for Thoracic Cancers Yale Cancer Center New Haven, Connecticut

Joshua K Sabari, MD

Attending Physician Thoracic Medical Oncology Assistant Professor of Medicine NYU Langone Health Perlmutter Cancer Center New York, New York

Non-targeted Therapy for Lung Cancer

Research To Practice / FCS Retreat October 26, 2024

Sarah Goldberg, MD, MPH

Associate Professor of Medicine (Medical Oncology) Division Chief, Thoracic Oncology Co-Director, Center for Thoracic Cancers Yale School of Medicine and Yale Cancer Center

Agenda

• Advanced NSCLC

- First-line treatment
 - Pembrolizumab, atezolizumab and cemiplimab as monotherapy or in combination with chemotherapy
 - Long-term data with dual immune checkpoint inhibition with or without chemotherapy
- Previously-treated
 - Datopotamab deruxtecan
 - PD-L1 x 4-1BB bispecific antibody acasunlimab
- SCLC
 - Limited stage
 - Durvalumab as consolidation treatment (ADRIATIC)
 - Extensive stage
 - DLL3 x CD3 bispecific antibody tarlatamab
 - B7-H3-directed antibody-drug conjugate ifinatamab deruxtecan

Agenda

Advanced NSCLC

- First-line treatment
 - Pembrolizumab, atezolizumab and cemiplimab as monotherapy or in combination with chemotherapy
 - Long-term data with dual immune checkpoint inhibition with or without chemotherapy
- Previously-treated
 - Datopotamab deruxtecan
 - PD-L1 x 4-1BB bispecific antibody acasunlimab
- SCLC
 - Limited stage
 - Durvalumab as consolidation treatment (ADRIATIC)
 - Extensive stage
 - DLL3 x CD3 bispecific antibody tarlatamab
 - B7-H3-directed antibody-drug conjugate ifinatamab deruxtecan

PD-(L)1 inhibitor monotherapy for upfront treatment of stage IV NSCLC with high PD-L1 expression

ORR is ~40%-50% \rightarrow caution using single-agent IO in patients who have a high tumor burden or who are very symptomatic

Reck M et al. *J Clin Oncol*. 2021 Herbst RS et al. *N Engl J Med*. 2020 Ozguroglu M et al. *Lancet Oncol*. 2023

Immunotherapy-based combinations for upfront treatment of stage IV NSCLC: IO plus chemotherapy

Ghandi L et al. NEJM 2018 Gogishvili M et al. *Nat Med*. 2022 Socinski MA et al. *N Engl J Med*. 2018

EMPOWER-Lung 3: Cemiplimab Plus

IMpower150: Atezolizumab Plus Chemotherapy/Bevacizumab

Immunotherapy-based combinations for upfront treatment of stage IV NSCLC: Combination IO

CheckMate 227: Nivo plus Ipi

No. at Risk

 Nivolumab + ipilimumab
 396
 341
 295
 264
 242
 212
 190
 165
 153
 145
 129
 91
 41
 9
 1
 0

 Chemotherapy
 397
 358
 306
 250
 218
 190
 166
 141
 126
 112
 93
 57
 22
 6
 1
 0

No. at Risk

Nivolumab + ipilimumab	187	165	142	120	110	100	87	80	73	69	59	34	19	8	2	0
Chemotherapy	186	164	135	107	92	74	62	49	41	35	29	19	12	5	0	0

Immunotherapy-based combinations for upfront treatment of stage IV NSCLC: Combination IO plus chemo

Nivo/Ipi + 2 Cycles of Chemotherapy CheckMate 9LA

Durva/Treme + 4 Cycles of Chemotherapy POSEIDON

Long-term outcomes with single-agent immunotherapy

Pembrolizumab

Cemiplimab

Reck M et al. JCO 2021 Baramidze et al. WCLC 2024 Abstract OA11.06.

Long-term outcomes with chemo/immunotherapy

5-year OS updates from KEYNOTE-189

Persistent benefit also seen in the 5-year results from KEYNOTE-407

PD-L1 ≥ 50%

PD-L1 1-49%

PD-L1 < 1%

Garassino M, et al. JCO 2023

Long-term outcomes with combination immunotherapy

5-year OS updates from CheckMate 227

PD-L1 ≥ 1%

Time (months)

No. at risk:																										
Nivolumab plus ipilimumab	396	341	296	265	246	214	192	166	154	146	134	126	123	118	115	110	104	101	99	95	89	74	47	20	3	0
Nivolumab	396	330	299	265	220	201	176	153	139	129	119	112	108	98	91	80	75	70	66	63	59	46	27	12	3	0
Chemotherapy	397	358	305	250	218	190	166	141	126	112	98	87	80	78	72	66	63	60	56	53	50	37	18	5	2	0

PD-L1 < 1%

Nivolumab Plus

Nivolumab Plus

Brahmer JR, et al. JCO 2022

Long-term outcomes with combination immunotherapy plus chemotherapy

4-year OS updates from CheckMate 9LA

Carbone DP, et al. JITC 2024

Agenda

• Advanced NSCLC

- First-line treatment
 - Pembrolizumab, atezolizumab and cemiplimab as monotherapy or in combination with chemotherapy
 - Long-term data with dual immune checkpoint inhibition with or without chemotherapy
- Previously-treated
 - Datopotamab deruxtecan
 - PD-L1 x 4-1BB bispecific antibody acasunlimab
- SCLC
 - Limited stage
 - Durvalumab as consolidation treatment (ADRIATIC)
 - Extensive stage
 - DLL3 x CD3 bispecific antibody tarlatamab
 - B7-H3-directed antibody-drug conjugate ifinatamab deruxtecan

TROPION-Lung01: Dato-DXd vs docetaxel

Study Design (NCT04656652)¹

Dual Primary Endpoints: PFS by BICR; OS Secondary Endpoints: ORR by BICR; DOR by BICR; Safety

Ahn, MJ, et al. JCO 2024

Biomarkers of benefit with Dato-DXd

TROP2 Normalized Membrane Ratio (NMR) measured by Quantitative Continuous Scoring (QCS)

QCS is a novel, fully-supervised computational pathology approach that precisely quantifies and locates targets like TROP2

Ahn, MJ, et al. JCO 2024 Garassino M, et al. WCLC 2024 Dacic S, WCLC 2024

Overcoming resistance to PD-(L)1 inhibitors

- Acasunlimab is a bispecific antibody against PD-L4 and 4-1BB
- Conditional activation of 4-1BB dependent on simultaneous binding of the PD-L1 arm

- 6-month PFS rate 34% with combination q6w dosing
- 12-month OS-rate 69%, median OS 17.5 months

Activity in PD-L1+ subset

	Acasunlimab Monotherapy (n=16)	Acasunlimab + Pembro Q3W (n=22) ^a	Acasunlimab + Pembro Q6W (n=24) ⁶
Unconfirmed ORR, % (95% CI)	31.3 (11.0-58.7)	20.8 (7.1-42.2)	29.6 (13.8-50.2)
Confirmed ORR, % (95% CI)	12.5 (1.6-38.3)	18.2 (5.2-40.3)	16.7 (4.7-37.4)
Confirmed DCR; % (95% CI)	50.0 (24.7-75.3)	59.1 (36.4-79.3)	75.0 (53.3-90.2)
Median DOR, mo (95% Cl)	2.0 (1.6-NR)	5.2 (3.5-NR)	NR (NR-NR)
6-month PFS rate, % (95% CI)	0 (NA)	14 (3-31)	34 (13-56)
12-month OS rate, % (95% CI)	30 (9-54)	26 (6-52)	69 (43-85)

Data cutoff: March 22, 2024, Centrally confirmed PD-L1 patients are shown In-24 for unconfirmed OIR. In-27 for unconfirmed OIR.

Aerts J, et al. ASCO 2024

Agenda

- Advanced NSCLC
 - First-line treatment
 - Pembrolizumab, atezolizumab and cemiplimab as monotherapy or in combination with chemotherapy
 - Long-term data with dual immune checkpoint inhibition with or without chemotherapy
 - Previously-treated
 - Datopotamab deruxtecan
 - PD-L1 x 4-1BB bispecific antibody acasunlimab
- SCLC
 - Limited stage
 - Durvalumab as consolidation treatment (ADRIATIC)
 - Extensive stage
 - DLL3 x CD3 bispecific antibody tarlatamab
 - B7-H3-directed antibody-drug conjugate ifinatamab deruxtecan

ADRIATIC: Consolidation durvalumab for limited-stage SCLC

Phase 3, randomized, double-blind, placebo-controlled, multicenter, international study (NCT03703297)

Baseline characteristics

		Durvalumab (n=264)	Placebo (n=266)
Age, years	Median (range)	62.0 (28-84)	62.0 (28-79)
Sex, %	Male / Female	67.4 / 32.6	70.7 / 29.3
Race, %	White / Asian / Other	49.2 / 49.6 / 1.1	51.5 / 45.5 / 3.0
WHO performance status, %	0/1	50.0 / 50.0	47.4 / 52.6
Smoking status, %	Current / Former / Never	23.9 / 67.4 / 8.7	20.7 / 69.5 / 9.8
AJCC disease stage at diagnosis, %	1711710	3.0 / 9.5 / 87.5	4.1 / 8.6 / 87.2
Prior chemotherapy regimen, %*	Cisplatin-etoposide / Carboplatin-etoposide	65.5 / 34.5	66.9 / 33.1
Prior radiation schedule, %	Once daily / Twice daily	73.9 / 26.1	70.3 / 29.7
Best response to prior cCRT, %	CR / PR / SD	11.7 / 72.3 / 15.9	12.8 / 75.2 / 12.0
Prior PCI, %	Yes / No	53.8 / 46.2	53.8 / 46.2

Spigel DR, et al. ASCO 2024

ADRIATIC: Consolidation durvalumab for limited-stage SCLC

Progression-free survival* (dual primary endpoint)

• Median duration of follow up in censored patients: 27.6 months (range 0.0-55.8)

Overall survival (dual primary endpoint)

Median duration of follow up in censored patients: 37.2 months (range 0.1–60.9)

Spigel DR, et al. ASCO 2024

Agenda

- Advanced NSCLC
 - First-line treatment
 - Pembrolizumab, atezolizumab and cemiplimab as monotherapy or in combination with chemotherapy
 - Long-term data with dual immune checkpoint inhibition with or without chemotherapy
 - Previously-treated
 - Datopotamab deruxtecan
 - PD-L1 x 4-1BB bispecific antibody acasunlimab
- SCLC
 - Limited stage
 - Durvalumab as consolidation treatment (ADRIATIC)
 - Extensive stage
 - DLL3 x CD3 bispecific antibody tarlatamab
 - B7-H3-directed antibody-drug conjugate ifinatamab deruxtecan

Tarlatamab: a bispecific T cell engager

- Tarlatamab is a bispecific T cell engager (BiTE) combining the binding specificities for DLL3 and CD3 genetically fused to the IgG Fc region
- Designed to induce T cell proliferation and tumor cell lysis

Phase II DeLLphi-301 study of Tarlatamab in patients with previously-treated extensive-stage SCLC

Patient characteristics

Characteristic	Tarlatamab,	10 mg Tarla	atamab, 100 mg								
	Parts 1 and 2 (N=100)	Part 3 (N = 34)	Part 1 (N=88)			Pr	ogressio	n-free si	rvival		
No. of previous lines of therapy — no. (%)						1 1	081 03510	II-II CC SC	11 11 1 1	Median Progress	ion-free
1	2 (2)	0	2 (2)							Survival (95%	6 CI)
2	65 (65)	22 (65)	48 (55)							то	
3	19 (19)	6 (18)	22 (25)			-			Tarlatamab, 10 mg	4.9 (2.9–6.7	7)
>3 Median no. of previous lines of therapy (range)	14 (14)	6 (18)	16 (18)		≌ <u>80</u> ⊣	PL			Tarlatamab, 100 mg	3.9 (2.6–4.4	4)
Median sum of target-lesion diameters (range) — mm	FUP	A gra	ints a	cceiei	rate	ea a	ppr	ova	ΙΟ		
Previous use of PD-L1 or PD-1 inhibitor — no. (%)					a - 14V II I		· · ·		DEALE		
Yes	taria	atam	nah-di	lo tor	OVT	'Ang		cta		12	15
No Duration of sensitivity to platinum-based treatment — no. (%)[Land	atan			CAL			JLa	y c		
<90 days								4 0		2	0
90 to <180 days	Sm2	ALL CE		o can	cer	on	IVIA	VIN		3	0
≥180 days				g van				J • •	•		
Unknown		1 (32)	34 (39)	_			• • •	• •			
DLL3 expression — no./total no. (%)¶	-2024	NA 7	71/74 (96)				Overall	survival	м	edian Overall Surviv (95% CI)	ival
Treatme	nt respon	ISe	ma Tadatamah 100 m		100	Tarlatamab, 10	mg		Tarlatamab, 10 mg Tarlatamab, 100 mg	mo 14.3 (10.8–NE) NE (12.4–NE)	
Variable		(N = 100)	(N = 88)	atients	80-	the the the	73	68			
Best overall response — no. (%)				of P	60- Tarlatar	mab, 100 mg	71				
Objective response				00 00	40-		1	100	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	+1	
Confirmed complete response		1 (1)	7 (8)	cents	20-		1				
Confirmed partial response		39 (39)	21 (24)	Per	0						
Stable disease		30 (30)	27 (31)		Ó	3	6	9	12	15	18
Progressive disease		20 (20)	13 (15)					Months			
Not evaluable†		2 (2)	4 (5)	No. at Risk	100		67	44	17	2	0
Death before postbaseline scant		6 (6)	13 (15)	Tarlatamab, 100 mg	88	62	53	39	16	2	0
No postbaseline scant		2 (2)	3 (3)								
Percentage of patients with objective response	se (97.5% CI)	40 (29-52)	32 (21-44)					A	hn M-J et al. N	Engl J Med	2023
	· · · · · · · · · · · · · · · · · · ·	- ()									

Toxicity with tarlatamab

Adverse Events	Tarlatar	nab, 10 mg	Tarlatamab, 100 mg
	Parts 1 and 2 (N = 99)	Part 3, Reduced Monitoring (N=34)	Part 1 (N=87)
		number of patients (p	percent)
Events during treatment period			
According to severity			
Any grade	96 (97)	34 (100)	87 (100)
Grade ≥2	86 (87)	33 (97)	83 (95)
Grade ≥3	57 (58)	22 (65)	56 (64)
Grade ≥4	16 (16)	7 (21)	13 (15)
Fatal	3 (3)	4 (12)	5 (6)
Serious adverse event	58 (59)	14 (41)	62 (71)
Event leading to dose interruption, dose re- duction, or both	31 (31)	5 (15)	39 (45)
Event leading to tarlatamab discontinuation	7 (7)	3 (9)	6 (7)
Events of interest during treatment period			
Cytokine-release syndrome†			
Overall	49 (49)	19 (56)	53 (61)
Grade ≥3 severity	0	1 (3)	5 (6)
Serious	26 (26)	5 (15)	32 (37)
Leading to tarlatamab discontinuation	0	0	1 (1)
Fatal	0	0	0
ICANS and associated neurologic events:			
Overall	7 (7)	4 (12)	24 (28)
Grade ≥3 severity	0	0	4 (5)
Serious	2 (2)	2 (6)	11 (13)
Leading to tarlatamab discontinuation	1 (1)	0	1 (1)
Fatal	0	0	0
Neutropenía			
Overall	18 (18)	5 (15)	14 (16)
Grade ≥3 severity	6 (6)	2 (6)	9 (10)
Serious	2 (2)	0	3 (3)
Leading to tarlatamab discontinuation	0	0	0
Fatal	0	0	0
Events related to treatment			
According to severity			
Any grade	89 (90)	29 (85)	81 (93)
Grade ≥2	69 (70)	23 (68)	66 (76)
Grade ≥3	29 (29)	5 (15)	29 (33)
Grade ≥4	5 (5)	2 (6)	3 (3)
Fatal	0	1 (3)	0
Serious	37 (37)	7 (21)	46 (53)
Event leading to dose interruption, dose re- duction, or both	14 (14)	3 (9)	25 (29)
Event leading to tarlatamab discontinuation	4 (4)	0	3 (3)

Cytokine-Release Syndrome and Immune effector cell-associated neurotoxicity syndrome (ICANS)

Ahn M-J et al. N Engl J Med 2023

ADCs for SCLC: Ifinatamab deruxtecan

• Ifinatamab Deruxtecan (I-DXd) is an ADC against B7-H3 with a topoisomerase I inhibitor payload (an exatecan derivative)

12

Phase 2 IDeate-Lung01 study (NCT05280470)

Patient demographics and baseline characteristics

	I-DXd 8 mg/kg n=46	I-DXd 12 mg/kg n=42	Total N=88
Age, median (range)	64 (42-85)	64 (34–79)	64 (34-85)
Male, n (%)	30 (65.2)	33 (78.6)	63 (71.6)
ECOG PS, n (%) 0 1	13 (28.3) 33 (71.7)	6 (14.3) 36 (85.7)	19 (21.6) 69 (78.4)
ES-SCLC at diagnosis, n (%)	32 (69.6)=	35 (83.3)	67 (76.1)
Patients with brain metastasis at baseline, n (%)	19 (41.3)	18 (42.9)	37 (42.0)
Number of prior lines of systemic therapy, n (%) 1 2 3	13 (28.3) 22 (47.8) 11 (23.9)	12 (28.6) 22 (52.4) 8 (19.0)	25 (28.4) 44 (50.0) 19 (21.6)
Chemotherapy-free interval ^b <90 days ≥90 days	22 (47.8) 22 (47.8)	23 (54.8) 19 (45.2)	45 (51.1) 41 (46.6)
Select prior anticancer therapy received, n (%) Lurbinectedin Irinotecan or topotecan Tarlatamab Amrubicin	11 (23.9) 14 (30.4) 4 (8.7) 3 (6.5)	3 (7.1) 17 (40.5) 2 (4.8) 3 (7.1)	14 (15.9) 31 (35.2) 6 (6.8) 6 (6.8)
Prior anti-PD-(L)1 therapy received, c n (%)	35 (76.1)	32 (76.2)	67 (76.1)

Rudin C, et al. WCLC 2024

Activity of I-DXd

Confirmed response by BICR ^e	I-DXd 8 mg/kg n=46	I-DXd 12 mg/kg n=42
ORR, % (95% CI) CR, n (%)	26.1 (14.3–41.1) 1 (2.2)	54.8 (38.7–70.2) 0
DCR, % (95% CI)	11 (23.9) 80.4 (66.1–90.6)	23 (54.8) 90.5 (77.4–97.3)
Median (range) TTR, ^a months Median (95% CI) DOR, ^{a,b} months	1.4 (1.2–1.5) 7.9 (4.1–NE)	1.4 (1.0–8.1) 4.2 (3.5–7.0)

Rudin C, et al. WCLC 2024

Conclusions on non-targeted therapy for lung cancer

- Immunotherapy alone or in combination is standard first-line therapy for metastatic NSCLC
 - Long-term disease control and survival is seen in a subset of patients
- Durvalumab improves both PFS and OS as consolidation therapy after chemoradiation in patients with limited-stage SCLC
- Novel immunotherapies are emerging
 - Tarlatamab is now approved for previously-treated SCLC
 - Bispecific antibodies are showing promise in NSCLC, such as the PD-L1/4-1BB inhibitor acasunlimab
- ADCs have activity in patients with previously-treated NSCLC and SCLC
 - For example, Dato-DXd in non-squamous NSCLC and I-DXd in SCLC

Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

A CME/MOC-, ACPE- and NCPD-Accredited Event

Saturday, October 26, 2024 7:15 AM – 12:30 PM ET

Phase III CheckMate 816 Study: 4-Year EFS Update with Neoadjuvant Nivolumab

 In CheckMate 816, neoadjuvant NIVO + chemo significantly improved the primary endpoints of EFS and pCR vs chemo and demonstrated a favorable OS trend in patients with resectable NSCLC^{1,2}

EFS = event-free survival; pCR = pathologic complete response; OS = overall survival

Spicer JD et al. ASCO 2024; Abstract LBA8010.

Phase III CheckMate 816 Study: 4-Year OS Update with Neoadjuvant Nivolumab

Spicer JD et al. ASCO 2024; Abstract LBA8010.

AEGEAN Trial: Perioperative Durvalumab for Resectable NSCLC

Efficacy analyses were performed in the mITT population (or its resected subpopulation), which excluded patients with documented EGFR/ALK aberrations[®]

Primary endpoints: pCR, evaluated centrally (IASLC 2020¹), and EFS per BICR (RECIST v1.1)

Key secondary endpoints: MPR, evaluated centrally (IASLC 2020¹), DFS per BICR (RECIST v1.1) in the resected subpopulation, and OS

	EFS interim analysis #1	EFS interim analysis #2 (reported here)
Data cutoff	November 10, 2022	May 10, 2024
Median EFS follow-up	11.7 months (censored patients)	25.9 months (censored patients)
Data maturity	31.9%	39.1%

¹Travis WD, et al. J Thorac Oncol 2020;15:709–40.

CT = chemotherapy; pCR = pathological complete response; MPR = major pathological response; EFS = event-free survival; DFS = disease-free survival; OS = overall survival

AEGEAN: Perioperative Durvalumab – EFS

• EFS benefit favoring the durvalumab arm was maintained and consistent with that reported previously¹

AEGEAN: Perioperative Durvalumab – EFS by Adjuvant Treatment Status

• EFS benefit in the durvalumab arm was more pronounced in patients who received adjuvant treatment

Did not receive adjuvant treatment

1

0

0

0

0

Probability of EFS

No. at risk:

D arm

PBO arm

											Dar	m	_	P	BO arm
			N	lo. eve	ents /	no. p	atien	ts (%)		66/	124 (53.2)		82/	137 (59.
			n	nEFS, I	mont	hs (95	5% CI)			5.1	4.5-	-9.3)		5.2	(4.1-6.3
			U	Instra	tified	HR (9	5% C	1)		e 6.	10.5	0.83	(0.60	-1.14)
4															
1															
	1														
	1														
	1														
	1														
	ł														
		.													
	and the second se	1	35	5.9%											
	The state of the s		35	5.9%		21	8.7%		28	3.7%					
	and the second sec		35	5.9%	4-44	21	8.7%	-++-	28	3.7%	-+				
	and the second sec	27.5	35	5.9%	4-44 4	2	8.7% + ++ • + + ₊		28	3.7%	-+				
	-Annual Contraction	27.5	35	5.9%	Ч-чн —ч 23.29	21	8.7% + ++ • + 1+	16.5	28	3.7%	-+	+	÷		
	- And	27.5	35	5.9%	ч- ч 23.29	21	8.7% + + * + 1+	++ + 16.5	28	3.7%	+	+	÷		
	The second se	27.5	35	5.9%	4-44 	21	8.7% + 11 *+1+	+ 16.5	28	3.7%	-+	+	+		
	4	27.5	35 %	5.9% 16	23.29	24	8.7%	11- 16.5 32	28 %	3.7% 40	44	48	+ 52	56	60
	4	27.5	35%	5.9%	23.29 20	28 % 24 m ra	8.7%	11 16.5 32 miza	28 11 11 8 11 11 11 11 11 11 11 11 11 11	3.7%	44 hths	48	• 52	56	60
1	4	27.5	35 % 12	5.9%	23.29 20 20 16	24 m ra	8.7%	16.5 32 miza	28 % 36 tion	3.7% 40 (moi	44 1	48	+ 52	56	60

Perioperative nivolumab vs placebo in patients with resectable NSCLC: clinical update from the phase 3 CheckMate 77T study ESMO 2024; Abstract LBA50

Mariano Provencio Pulla,¹ Mark M. Awad,² Tina Cascone,³ <u>Jonathan D. Spicer</u>,⁴ Jie He,⁵ Shun Lu,⁶ Aurelia Alexandru,⁷ Yasutaka Watanabe,⁸ Robin Cornelissen,⁹ Ludmila de Oliveira Muniz Koch,¹⁰ Jaroslaw Kuzdzal,¹¹ Jean-Louis Pujol,¹² Petra Hoffknecht,¹³ Jhanelle E. Gray,¹⁴ Cinthya Coronado Erdmann,¹⁵ Jaclyn Neely,¹⁵ Vipul Devas,¹⁵ Sumeena Bhatia,¹⁵ Fumihiro Tanaka¹⁶

¹Hospital Universitario Puerta de Hierro, Madrid, Spain; ²Dana-Farber Cancer Institute, Boston, MA, USA; ³The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁴McGill University Health Centre, Montreal, Quebec, Canada; ⁵National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; ⁶Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China; ⁷Institutul Oncologic Bucuresti Prof. Dr. Alexandru Trestioreanu, Bucharest, Romania; ⁸Saitama Cancer Center, Saitama, Japan; ⁹Erasmus MC Cancer Institute, Rotterdam, Netherlands; ¹⁰Hospital Israelita Albert Einstein, Sao Paulo, Brazil; ¹¹John Paul II Hospital, Krakow, Poland; ¹²Montpellier Regional University Hospital, Montpellier, France; ¹³Franziskus-Hospital Harderberg, Niels-Stensen-Kliniken, Georgsmarienhutte, Germany; ¹⁴Moffitt Cancer Center, Tampa, FL, USA; ¹⁵Bristol Myers Squibb, Princeton, NJ, USA; ¹⁶University of Occupational and Environmental Health, Kitakyushu, Japan

Neoadjuvant nivolumab plus chemotherapy vs chemotherapy in patients with resectable Abstra NSCLC: 4-year update from CheckMate 816

ASCO 2024; Abstract LBA8010

Jonathan D. Spicer,¹ Nicolas Girard,² Mariano Provencio Pulla,³ Changli Wang,⁴ Tetsuya Mitsudomi,⁵ Mark M. Awad,⁶ Everett E. Vokes,⁷ Janis M. Taube,⁸ Lorena Lupinacci,⁹ Gene B. Saylors,¹⁰ Fumihiro Tanaka,¹¹ Moishe Liberman,¹² Sung Yong Lee,¹³ Aurelia Alexandru,¹⁴ Manolo D'Arcangelo,¹⁵ Phuong Tran,¹⁶ Javed Mahmood,¹⁶ Vishwanath Gharpure,¹⁶ Apurva Bhingare,¹⁶ Patrick M. Forde⁸

¹McGill University Health Centre, Montreal, Quebec, Canada; ²Institut du Thorax Curie-Montsouris, Institut Curie, Paris, France; ³Hospital Universitario Puerta de Hierro, Madrid, Spain; ⁴Tianjin Lung Cancer Center, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China; ³Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Japan; ⁶Dana-Farber Cancer Institute, Boston, MA; ⁷University of Chicago Medicine, Chicago, IL; ⁸The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; ⁹Hospital Italiano de Buenos Aires, Buenos Aires, Argentina; ¹⁰Charleston Oncology, Charleston, SC; ¹¹University of Occupational and Environmental Health, Kitakyushu, Japan; ¹²Centre Hospitalier de l'Universite de Montreal, Montreal, Quebec, Canada; ¹³Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea; ¹⁴Institutul Oncologic București Prof. Dr. Alexandru Trestioreanu, Bucharest, Romania; ¹⁵Azienda Unita Sanitaria Locale della Romagna, Ravenna, Italy; ¹⁶Bristol Myers Squibb, Princeton, NJ

Phase III CheckMate 77T Study: Primary Endpoint (EFS per BICR) with Perioperative Nivolumab

EFS = event-free survival; BICR = blinded independent central review

Pulla MP et al. ESMO 2024; Abstract LBA50.

Lancet 2024;404(10459):1240-52.

Articles

Neoadjuvant pembrolizumab plus chemotherapy followed by adjuvant pembrolizumab compared with neoadjuvant chemotherapy alone in patients with early-stage non-small-cell lung cancer (KEYNOTE-671): a randomised, double-blind, placebo-controlled, phase 3 trial

Jonathan D Spicer*, Marina C Garassino*, Heather Wakelee, Moishe Liberman, Terufumi Kato, Masahiro Tsuboi, Se-Hoon Lee, Ke-Neng Chen, Christophe Dooms, Margarita Majem, Ekkehard Eigendorff, Gastón L Martinengo, Olivier Bylicki, Delvys Rodríguez-Abreu, Jamie E Chaft, Silvia Novello, Jing Yang, Ashwini Arunachalam, Steven M Keller, Ayman Samkari, Shugeng Gao, on behalf of the KEYNOTE-671 Investigators†

KEYNOTE-671: Dual Primary Endpoints OS and EFS with Perioperative Pembrolizumab

Overall survival

Event-free survival

Spicer JD et al. Lancet 2024;404(10459):1240-52.

ESMO Immuno-Oncology 2023;Abstract 120MO

Adjuvant Pembrolizumab versus Placebo for Early-Stage NSCLC After Resection and Optional Chemotherapy: Updated Results From PEARLS/KEYNOTE-091

<u>Benjamin Besse</u>¹; Libor Havel²; Solange Peters³; Sandrine Marreaud⁴; Nitish Jha⁴; Kersti Oselin⁵; Emilio Esteban⁶; Dolores Isla⁷; Alex Martinez-Marti⁸; Martin Faehling⁹; Jong-Seok Lee¹⁰; Yiwen Luo¹¹; Steven M. Keller¹¹; Urania Dafni¹²; Murielle Mauer⁴; Rolf Stahel¹³; Mary O'Brien¹⁴; Masahiro Tsuboi¹⁵; Luis Paz-Ares¹⁶

¹Paris Saclay University, Institut Gustave Roussy, Villejuif, France; ²First Faculty of Medicine, Charles University, Thomayer Hospital, Prague, Czech Republic; ³Lausanne University Hospital, Lausanne, Switzerland; ⁴European Organisation for Research and Treatment of Cancer, Brussels, Belgium; ⁵North Estonia Medical Centre, Tallinn, Estonia; ⁶Hospital Universitario Central de Asturias, Oviedo, Spain; ⁷University Hospital Lozano Blesa, IIS Aragon, Zaragoza, Spain; ⁸Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain; ⁹Klinik für Kardiologie und Pneumologie, Klinikum Esslingen, Esslingen, Germany; ¹⁰Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea; ¹¹Merck & Co., Inc., Rahway, NJ, USA; ¹²ETOP Statistical Center, Frontier Science Foundation Hellas and National and Kapodistrian University of Athens, Athens, Greece; ¹³ETOP IBCSG Partners Foundation, Berne, Switzerland; ¹⁴Royal Marsden Hospital, London, UK; ¹⁵National Cancer Center Hospital East, Kashiwa, Japan; ¹⁶Hospital Universitario 12 de Octubre, CNIO, Ciberonc & Universidad Complutense, Madrid, Spain

PEARLS/KEYNOTE-091: Adjuvant Pembrolizumab — Final Disease-Free Survival Analysis at Third Interim Analysis

^aBased on multivariate Cox regression model with treatment adjusted by randomization stratification factors, histology (squamous vs nonsquamous), and smoking status (never vs former/current). ^b1-sided; based on permutation test with multivariate Cox regression model. ^cBased on Cox model with treatment as a covariate. Data cutoff date: January 24, 2023.

IMpower010: Final disease-free survival (DFS) and second overall survival (OS) interim results after \geq 5 years of follow up of a phase III study of adjuvant atezo-lizumab vs best supportive care in resected stage IB-IIIA non-small cell lung cancer (NSCLC).

Heather A. Wakelee, Nasser K. Altorki, Caicun Zhou, Tibor Csőszi, Ihor O. Vynnychenko, Oleksandr Goloborodko, Achim Rittmeyer, Martin Reck, Alex Martinez-Marti, Hirotsugu Kenmotsu, Yuh-Min Chen, Antonio Chella, Shunichi Sugawara, Chenqi Fu, Marcus Ballinger, Yu Deng, Minu K Srivastava, Elizabeth Bennett, Barbara Jenifer Gitlitz, Enriqueta Felip; Stanford University Medical Center, Stanford, CA; NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY; Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China; Jasz-Nagykun-Szolnok Megyei Hetenyi Geza Korhaz-Rend.Int., Szolnok, Hungary; Regional Municipal Institution Sumy Regional Clinical Oncology Dispensary, Sumy, Ukraine; MI Zaporizhzhia Regional Clinical Oncological Dispensary Zaporizhzhia SMU Ch of Oncology, Zaporizhzhya, Ukraine; LKI Lungenfachklinik Immenhausen, Immenhausen, Germany; LungenClinic Grosshansdorf, German Center for Lung Research, Grosshansdorf, Germany; Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain; Shizuoka Cancer Center, Shizuoka, Japan; Taipei Veterans General Hospital, Taipei, Taiwan; Pneumology Unit, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy; Sendai Kousei Hospital, Miyagi, Japan; Genentech, Inc., South San Francisco, CA; Medical Oncology Service, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain

ASCO 2024; Abstract LBA8035.

IMpower010 Phase III Study of Adjuvant Atezolizumab for Resected Stage IB to IIIA NSCLC: Disease-Free Survival (DFS) at ≥5 Years of Follow-Up

Wakelee HA et al. ASCO 2024; Abstract LBA8035.

HARMONi-2: Phase 3 Study of Ivonescimab vs. Pembrolizumab as 1L Treatment for PD-L1-positive Advanced NSCLC – Study Design

Ivonescimab (AK112/SMT112) is an anti-PD-1/VEGF bispecific antibody displaying cooperative binding characteristics.

A randomized, double-blind, phase 3 study^a

Patient Population

- Stage IIIB-IV aNSCLC
- No prior systemic therapy
- No *EGFR* mutations or *ALK* rearrangements
- ECOG PS 0 or 1
- PD-L1 TPS $\geq 1\%$

Stratification

- Clinical stage (IIIB/C vs. IV)
- Histology (SQ vs. non-SQ)
- PD-L1 TPS (≥50% vs. 1-49%)

Endpoints

Primary: PFS by blind IRRC per RECIST v1.1 Secondary: OS, PFS assessed by INVs, ORR, DoR, TTR and safety Exploratory: QoL

Zhang L et al. ASCO 2024;Abstract 8508. Zhou C et al. WCLC 2024;Abstract PL02.04. HARMONi-2: Phase 3 Study of Ivonescimab vs. Pembrolizumab as 1L Treatment for PD-L1-positive Advanced NSCLC – PFS Primary endpoint: PFS per IRRC

Ivonescimab demonstrated a statistically significant improvement in PFS vs. pembrolizumab with HR = 0.51, and a 5.3 months improvement in mPFS.

Zhou C et al. WCLC 2024; Abstract PL02.04.

HARMONi-2: Phase 3 Study of Ivonescimab vs. Pembrolizumab as 1L Treatment for PD-L1-positive Advanced NSCLC – Subgroups

Key PFS Subgroup Analyses

Ivonescimab showed meaningful improvement in PFS vs. pembrolizumab in patients with both low and high PD-L1, with squamous or non-squamous advanced NSCLC.

Zhou C et al. WCLC 2024; Abstract PL02.04.

HARMONi-2: Phase 3 Study of Ivonescimab vs. Pembrolizumab as 1L Treatment for PD-L1-positive Advanced NSCLC – Safety

TRAEs

Safety Summary, n (%)	Ivonescimab (n = 197 ^a)	Pembrolizumab (n = 199 ^a)	
TRAEs (all grades)	177 (89.8)	163 (81.9)	
Grade≥3	58 (29.4)	31 (15.6)	A
Serious TRAEs	41 (20.8)	32 (16.1)	
Leading to discontinuation	3 (1.5)	6 (3.0)	
Leading to death	1 (0.5)	2 (1.0)	

Ivonescimab showed a manageable safety profile, which was consistent with previous studies.

TRAEs in SQ Subgroup

Safety Summary, n (%)	Ivonescimab (n = 90ª)	Pembrolizumab (n = 91 ^a)	
TRAEs (all grades)	77 (85.6)	73 (80.2)	
Grade≥3	20 (22.2)	17 (18.7)	
Serious TRAEs	17 (18.9)	17 (18.7)	
Leading to discontinuation	2 (2.2)	3 (3.3)	
Leading to death	0	1 (1.1)	

Ivonescimab also demonstrated a tolerable safety profile in SQ patients.

The Most Common TRAEs (incidence ≥10%)

The differences in AEs were predominantly proteinuria, hypertension, and laboratory abnormalities.

Zhou C et al. WCLC 2024; Abstract PL02.04.

Ivonescimab combined with chemotherapy in patients with EGFR-mutant non-squamous non-small cell lung cancer who progressed on EGFR-TKIs treatment: a randomized, double-blind, multi-center, phase 3 trial (HARMONi-A study)

Li Zhang¹, Wenfeng Fang¹, Yuanyuan Zhao¹, Yongzhong Luo², Runxiang Yang³, Yan Huang¹, Zhiyong He⁴, Hui Zhao⁵, Mingjun Li⁶, Kai Li⁷, Qibing Song⁸, Xiaobo Du⁹, Yulan Sun¹⁰, Wei Li¹¹, Fei Xu¹², Zhiyu Wang¹³, Kunning Yang¹⁴, Yun Fan¹⁵, Wenting Li¹⁶, Michelle Xia¹⁶

¹Sun Yat-sen University Cancer Center, Guangzhou, China; ²Hunan Cancer Hospital, Changsha, China; ³Yunnan Cancer Hospital, Kunming, China; ⁴Fujian Provincial Tumor Hospital, Fuzhou, China; ⁵The Second Hospital of Anhui Medical University, Hefel, China; ⁶The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; ⁷Tianjin Medical University Cancer Institute&Hospital. Tianjin, China; ⁸Renmin Hospital of Wuhan University, Wuhan, China; ⁹Mianyang Central Hospital, Mianyang, China; ¹⁰Shandong Cancer Prevention and Treatment Institute, Jinan, China; ¹¹The First Affiliated Hospital of Bengbu Medical University, Bengbu, China; ¹²The First Affiliated Hospital of Nanchang University, Nanchang, China; ¹³The Fourth Hospital of Hebei Medical University, Shijiazhuang, China; ¹²Weifang No.2 People's Hospital, Weifang, China; ¹⁵Zhejiang Cancer Hospital, Hangzhou, China; ¹⁵Akeso Biopharma, Inc., Zhongshan, China

FDA Approves Tumor Treating Fields (TTFields) for the Treatment of Metastatic Non-Small Cell Lung Cancer (NSCLC) Press Release: October 15, 2024

The FDA has approved TTFields for concurrent use with PD-1/PD-L1 inhibitors or docetaxel in the treatment of metastatic NSCLC for adult patients who have experienced disease progression on or after a platinum-based regimen.

Approval was based on results of the Phase III LUNAR trial that compared TTFields concurrent with PD-1/PD-L1 inhibitors or docetaxel (experimental arm) to PD-1/PD-L1 inhibitors or docetaxel alone (control arm) for patients with metastatic NSCLC whose disease progressed during or after platinum-based therapy.

The primary endpoint of the study was achieved demonstrating a statistically significant and clinically meaningful 3.3-month (p = 0.04) extension in median overall survival (OS) for patients who received TTFields concurrently with a PD-1/PD-L1 inhibitor or docetaxel (n = 145). The group treated with TTFields concurrently with a PD-1/PD-L1 inhibitor or docetaxel had a median OS of 13.2 months (95% CI, 10.3 to 15.5 months) compared to a median OS of 9.9 months (95% CI, 8.2 to 12.2 months) in the group who received a PD-1/PD-L1 inhibitor or docetaxel (n = 146).

https://www.novocure.com/fda-approves-novocures-optune-lua-for-the-treatment-of-metastatic-non-small-cell-lung-cancer/

TTFields Mechanism of Action

LUNAR: A Phase III Study of TTFields for Metastatic NSCLC Progressing on Platinum-Based Therapy

SOC = standard of care; ICI = immune checkpoint inhibitor

LUNAR: Response and Progression-Free Survival Outcomes

LUNAR: Overall Survival Outcomes in the Intention-to-Treat Population

LUNAR: TTFields with ICI vs TTFields with Docetaxel – OS Outcomes

LUNAR: Safety Outcomes

	TTFields (n=1	TTFields + SOC (n=133)		SOC (n=134)	
	All grades	Grade ≥3	All grades	Grade ≥3	
Any AE*	97%	59%	91%	56%	
Most frequent AEs					
Dermatitis	43%	2%	2%	0%	
Fatigue	28%	4%	37%	8%	
Musculoskeletal pain	36%	3%	27%	4%	
Dyspnea	20%	7%	25%	3%	
Anemia	23%	8%	22%	8%	
Diarrhea	19%	2%	19%	0%	
Cough	18%	0%	19%	1%	
Nausea	19%	0%	16%	1%	
Leukopenia	17%	14%	18%	14%	
Pneumonia	15%	11%	17%	11%	
Alopecia	10%	0%	17%	1%	
Respiratory tract infection	15%	3%	16%	0%	
Localized edema	15%	1%	16%	2%	
Any serious AE	53	%	38	%	
Any AE leading to discontinuation	36	%	20	%	
Any AE leading to death	10	%	89	6	

METIS: An International, Multicenter Phase III Randomized Study of TTFields for NSCLC with Brain Metastases

SRS = stereotactic radiosurgery; BSC = best supportive care; BM = brain metastases; WBRT = whole brain radiotherapy; QoL = quality of life

RTP RESEARCH

Mehta MP et al. ASCO 2024; Abstract 2008.

METIS: Primary Endpoint of Time to First Intracranial Progression or Neurologic Death

METIS: Overall Survival Outcomes

METIS: Quality of Life

		Median (N	lonths
Scale	<i>P</i> -value	TTFields therapy with BSC	BS
Global Health Status	(0.52-0.98) 0.0356	4.4	3.3
Physical Functioning 0.710	(0.51-098) 0.0373	5.1	3.7
Fatigue 0.705	(0.51-0.97) 0.0319	4.3	2.2
Headaches	0.0770	7.6	5.3
Visual Disorder	0.1285	6.7	5.3
Insomnia	0.1359	7.1	4.3
Drowsiness	0.2275	7.1	5.3
Communication Deficit	0.3070	7.4	5.8
Emotional Functioning	0.3306	4.5	4.2
Nausea and Vomiting	0.3648	6.5	5.3
Appetite Loss	0.3898	4.6	3.9
Seizures	0.4504	11.1	9.5
Motor Dysfunction	0.5143	7.1	5.3
Role Functioning	0.7282	4.3	3.9
Cognitive Functioning	H 0.7612	4.5	4.1
Weakness of Legs	0.9829	4.9	5.4
Bladder Control	0.9978	8.7	9.0
Social Functioning	0.7049	3.9	4.1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 Hazard Ratio (95% CI)	1.4 1.6 1.8 2.0		

- Overall positive trend in most of the 18 scales and items assessed by EORTC QLQ-C30 and -BN20*
- Improvement of global health status, physical functioning, and fatigue
- Similar time to neurocognitive failure in both arms (low number of subjects at risk in both arms beyond 3 months), subset analysis pending

*Evaluable patients as per deterioration-free survival analysis

BN, brain neoplasm; BSC, best supportive care, patients in both arms could receive systemic NSCLC treatment; EORTC QLQ-C30, European Organisation for Research and Treatment of Cancer Core Quality of Life questionnaire; TTFields, Tumor Treating Fields.

METIS: Safety Profile

	TTFields + BSC (n=127)		BSC (n=160)	
	All grades	Grade ≥3	All grades	Grade ≥3
Any AE (BSC +- TTFields)*	95%	60%	88%	64%
Most frequent AEs (≥10%)	89%	60%	81%	64%
Anaemia	26%	7%	24%	10%
Headache	24%	1%	19%	3%
Fatigue	22%	3%	20%	4%
Oedema peripheral	22%	1%	14%	1%
Nausea	20%	2%	18%	3%
Constipation	17%	1%	16%	1%
Decreased appetite	16%	0%	13%	2%
Pneumonia	14%	9%	13%	10%
Skin irritation	13%	0%	1%	0%
Pruritus	13%	1%	4%	0%
Muscular weakness	13%	2%	9%	1%
Cough	13%	0%	11%	1%
Metastases to central nervous system	13%	10%	10%	9%
Dyspnoea	13%	2%	13%	3%
Dermatitis	12%	0%	2%	0%
Pyrexia	12%	0%	8%	0%
Dizziness	12%	0%	9%	1%
Hypokalaemia	11%	2%	8%	1%
Diarrhoea	10%	0%	8%	3%
White blood cell count decreased	10%	2%	6%	2%
Alanine aminotransferase increased	10%	1%	4%	0%
Insomnia	9%	0%	11%	1%
Any serious AE	51	%	59	%
Any AE leading to discontinuation	17	%	49	6
Any AE leading to death	15	%	24	%

- 66 (52%) TTFields patients developed device-related AE (any grade, mostly G1/2 skin), of which only 3 (2.4%) were Grade ≥3 (1 was G5, ascribed to seizures/tumor progression and scored as device-related by the investigator)
- Of the 15 cross over patients, one device related grade 3 (headache) was reported
- Comparable incidence of grade ≥3 SAEs between arms (TTFields + BSC [n=63], 49.6%; BSC [n=87], 54.4%)

AE, adverse event; BSC, best supportive care, patients in both arms could receive systemic NSCLC treatment; G, grade; SAE, serious adverse event; TTFields, Tumor Treating Fields.

LUNAR-2 Trial: Front-Line TTFields with an Immune Checkpoint Inhibitor and Chemotherapy for mNSCLC

Inclusion criteria

- Histologically/cytologically confirmed stage IV NSCLC
- No prior systemic treatment for mNSCLC
- Evaluable (measurable or non-measurable) disease in the thorax per RECIST v1.1
- ≥18 years old (≥22 years in the US)

• ECOG PS 0-1

Endpoints	
Primary*	OS and PFS per RECIST v1.1 as assessed by a BICR
Secondary	 OS and PFS (by histology and PD-L1 TPS) per RECIST v1.1 as assessed by BICR ORR, DoR, and DCR (all per RECIST v1.1 as assessed by BICR and by investigator) PFS rates at 6, 12, 24 and 36 months per RECIST v1.1 as assessed by BICR 1-, 2-, and 3-year survival rates Safety profile
Exploratory	PFS and OS according to in-field or out-of-field location of the disease

TPS = tumor proportion score; OS = overall survival; PFS = progression-free survival; BICR = blinded independent central review; ORR = objective response rate; DoR = duration of response; DCR = disease control rate

Eaton M et al. ASCO 2024; Abstract TPS8665.

FDA Approves Osimertinib for Locally Advanced, Unresectable (Stage III) NCSLC After Chemoradiation Therapy Press Release: September 25, 2024

The FDA has approved osimertinib for adult patients with locally advanced, unresectable (Stage III) NSCLC whose disease has not progressed during or after concurrent or sequential platinum-based chemoradiation therapy and whose tumors have EGFR exon 19 deletions or exon 21 L858R mutations, as detected by an FDA-approved test.

Efficacy was evaluated in LAURA (NCT03521154), a double-blind, randomized, placebo-controlled trial of 216 adult patients with locally advanced, unresectable Stage III NSCLC with EGFR exon 19 deletions or exon 21 L858R mutations who had not experienced disease progression during or after definitive platinum-based chemoradiation within 42 days prior to study randomization. Patients were randomized (2:1) to receive either osimertinib 80 mg orally once daily or placebo until disease progression or unacceptable toxicity.

The major efficacy outcome measure was progression-free survival (PFS) as assessed by blinded independent central review (BICR). Additional efficacy outcome measures included overall survival (OS). Osimertinib demonstrated a statistically significant improvement in PFS compared to placebo with a hazard ratio of 0.16 (95% CI: 0.10, 0.24; *p*-value <0.001). The median PFS was 39.1 months (95% CI: 31.5, NE) in the osimertinib arm and 5.6 months (95% CI: 3.7, 7.4) in the placebo arm.

FDA Approves Lazertinib with Amivantamab-vmjw for NSCLC Press Release: August 19, 2024

The FDA has approved lazertinib in combination with amivantamab-vmjw for the first-line treatment of locally advanced or metastatic NSCLC with EGFR exon 19 deletions or exon 21 L858R substitution mutations, as detected by an FDA-approved test.

Efficacy was evaluated in MARIPOSA (NCT04487080), a randomized, active-controlled, multicenter trial of 1,074 patients with locally advanced or metastatic NSCLC with an exon 19 deletion or exon 21 L858R substitution mutation and no prior systemic therapy for advanced disease. Patients were randomized (2:2:1) to receive lazertinib in combination with amivantamab, osimertinib monotherapy or lazertinib monotherapy (an unapproved regimen for NSCLC) until disease progression or unacceptable toxicity.

The major efficacy outcome measure was PFS as assessed by BICR between lazertinib with amivantamab and osimertinib. OS was a key secondary outcome measure. Lazertinib with amivantamab demonstrated a statistically significant improvement in PFS compared to osimertinib with a hazard ratio of 0.70 (95% Cl): 0.58, 0.85; *p*-value = 0.0002). The median PFS was 23.7 months (95% Cl: 19.1, 27.7) in the lazertinib with amivantamab arm and 16.6 months (95% Cl: 14.8, 18.5) in the osimertinib arm.

Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

A CME/MOC-, ACPE- and NCPD-Accredited Event

Saturday, October 26, 2024 7:15 AM – 12:30 PM ET

Targeted Therapy for Non-Small Cell Lung Cancer

Joshua K Sabari, MD

Attending Physician Thoracic Medical Oncology Assistant Professor of Medicine NYU Langone Health Perlmutter Cancer Center New York, New York

Outline

- EGFR

- FLAURA
- FLAURA2
- MARIPOSA
- Strategies to overcome resistance
- HER2
- MET
- ALK

FLAURA2 Trial: Progression-Free Survival with Osimertinib and Chemotherapy for Advanced NSCLC with EGFR Mutations

Planchard D et al. *N Engl J Med* 2023;389(21):1935-48.

FLAURA2: Second Interim Overall Survival (OS) Analysis with Osimertinib and Chemotherapy for Advanced NSCLC with EGFR Mutations

tA p-value of ≤0.000001 was required for statistical significance at this second interim analysis

CI, confidence interval; CTx, chemotherapy; HR, hazard ratio; mono, monotherapy; NC, not calculable; NR, not reached; OS, overall survival; osi, osimertinib

Valdiviezo N et al. ELCC 2024; Abstract 40.

Amivantamab Mechanism of Action

- Secondary resistance is a major cause of TKI resistance (secondary EGFR mutations and met mutations/amp)

Courtesy of Alexander I Spira, MD, PhD

MARIPOSA Trial: Progression-Free Survival with Amivantamab and Lazertinib for Previously Untreated Advanced NSCLC with EGFR Mutations

Cho BC et al. N Engl J Med 2024 June 26; [Online ahead of print].

MARIPOSA: Longer Follow-Up with First-Line Amivantamab and Lazertinib for Advanced NSCLC with EGFR Mutations

A strong OS trend favoring amivantamab + lazertinib was observed

•This analysis was requested by health authorities and heal nominal alpha spend. A P-value of ≤0.00001 was required for statistical significance. P-value was calculated from a log-rank test statistical by mutation type (Ex19del or Exon 21 L858R), race (Asian or Non-Asian), and history of brain metastasis (present or absent). Hazard ratio was calculated from a stratified proportional hazards model.

- Three-year intracranial PFS was double for amivantamab with lazertinib versus osimertinib (38% vs 18%)
- Amivantamab with lazertinib showed a favorable trend for intracranial duration of response (NE vs 24.4 months)
- Postprogression outcomes (time to deterioration, time to symptomatic progression, progression-free survival after first subsequent therapy) were significantly improved with first-line amivantamab and lazertinib versus osimertinib

Gadgeel S et al. WCLC 2024; Abstract OA02.03.

PALOMA-3: Subcutaneous vs IV Amivantamab + Lazertinib in Advanced EGFRm NSCLC

Leighl NB et al JCO 2024 42; 3593-3605

Acquired Resistance to EGFR Tyrosine Kinase Inhibitors

Resistance to First Line Osimertinib

- 1. Leonetti A et al. Br J Cancer. 2019;121:725-737
- 2. Sequist LV et al. Lancet Oncol. 2020;21:373-386

• Histologic transformation: up to 15%

- Tissue biopsy is critical in the evaluation of osimertinib resistance
- **On-target resistance** (*EGFR* C797S, G724S, etc): 5%-10%
- Bypass pathway activation (most notably *MET*amp): up to 15% pts
- 50%-60% patients don't have a targetable resistance mechanism
Targeting *EGFR* C797S

- Limited data for 1st-gen EGFR TKIs
- "4th-gen" EGFR TKIs with activity against C797S are now entering the clinic

	1G	3G	4G		Potential Combinations	
EGFR Mutational Coverage ^a	Gefitinib	Osimertinib	BLU-701	BLU-945	BLU-701 + Osimertinib	BLU-701 + BLU-945
L858R (LR)						
ex19del						
LR or ex19del/T790M						
LR or ex19del/C797S						
LR or ex19del/T790M/C797S						

 Other novel agents, including amivantamab and patritumab deruxtecan, may have activity

IC₅₀ ≤10 nM
 10 nM <IC₅₀ ≤50 nM
 IC₅₀ >50 nM

ORCHARD: Biomarker-Directed Study in Patients with Advanced EGFRm NSCLC Progressing on 1L Osimertinib

• Open-label, multicenter, multidrug, biomarker-directed phase 2 platform trial

Group A: Treatment Based on Resistance Mechanism Detected

- **Group B**: Nonmatched arm for patients without a detectable resistance mechanism will sequentially be assigned to durvalumab + chemotherapy > osimertinib + necitumumab > others
- Group C: Observational arm for patients whose optimal treatment falls outside of group A or B (eg, transformation to SCLC)
- Patients with failed baseline NGS results go directly to follow-up

1. Cho BC et al. J Thorac Oncol. 2021;16:S598. 2. Yu H et al. Clin Lung Cancer. 2021;22:601. 3. Yu H et al. ESMO 2021. Abstract 1239P.

Patritumab Deruxtecan (HER3-DXd; U3-1402): A Novel Anti-HER3 ADC¹

Patritumab (Anti-HER3 Antibody)

Payload (DXd) Exatecan derivative

Yonemori K et al. Ann Oncol. 2019;30(suppl 3)

HERTHENA-Lung01: Patritumab Deruxtecan (HER3-DXd) in Patients

with Diverse Mechanisms of EGFR TKI Resistance

BICR, blinded independent central review; CR, complete response; HER, human epidermal growth factor receptor; IHC, immunohistochemistry; NE, not evaluable; PD, progressive disease; PR, partial response; SD, stable disease; TKI, tyrosine kinase inhibitor. *210 patients had evaluable target lesion measurements at both baseline and post baseline and are included. b T790M was not included as an EGFR-dependent mechanism of EGFR TKI resistance.

Yu et al., WCLC 2023. Yu et al., J Clin Oncol 2023;41(35):5363-5375.

HERTHENA-Lung02: 2L Patritumab Deruxtecan (HER3-DXd) vs Chemotherapy in EGFRm NSCLC

Patritumab Deruxtecan Demonstrated Statistically Significant Improvement in Progression-Free Survival Versus Doublet Chemotherapy in Patients with Locally Advanced or Metastatic EGFR-Mutated Non-Small Cell Lung Cancer in HERTHENA-Lung02 Phase 3 Trial

September 17, 2024 6:00 am ET

•••• patritumab deruxtecan demonstrates a statistically significant progression-free survival improvement in this EGFR-mutated non-small cell lung cancer population with high unmet need following prior EGFR TKI treatment

HER2 Alterations in NSCLC

HER2-Targeted ADC: Trastuzumab Deruxtecan (T-DXd)

- High drug to antibody ratio: ~8
- Stable linker-payload
- Tumor-selectable cleavable linker
- High potency, membrane-permeable payload with short systemic half-life
- Bystander killing effect

Nakada. Chem Pharm Bull (Tokyo). 2019;67:173. Trail. Pharmacol Ther. 2018;181:126. Ogitani. Cancer Sci. 2016;107:1039.

Efficacy: DESTINY-Lung01: T-DXd

Li et al., NEJM 2022.

DESTINY-Lung01: Lessons in Biomarker Selection

- In wild-type, HER2 overexpressed NSCLC, response rates to T-DXd were much lower.
 - Little correlation was observed between response and IHC score.
- Mutant HER2 receptors have a much more efficient internalization capacity.
- Biomarker selection is not straightforward.

Recent FDA approval: Pan-tumor IHC 3+

Response Assessment by ICR	IHC 3+ (n = 10)	IHC 2+ (n = 39)	Overall (N = 49)	
Confirmed ORR,	20.0%	25.6%%	24.5%	
n (95% CI)	2 (2.5-55.6)	10 (13.0-42.1)	12 (13.3-38.9)	
CR, n (%)	0	1 (2.6%)	1 (2.0%)	
PR, n (%)	2 (20.0%)	9 (23.1%)	11 (22.4%)	
SD, n (%)	6 (60.0%)	16 (41.0%)	22 (44.9%)	
PD, n (%)	1 (10.0%)	10 (25.6%)	11 (22.4%)	
Not evaluable, n (%)	1 (10.0%)	3 (7.7%)	4 (8.2%)	
DCR,	80.0%	66.7%	69.4%	
n (95% CI)	8 (44.4-97.5)	26 (49.8-80.9)	34 (54.6-81.8)	
Median DOR, months (95% CI)	6.0 (NE-NE)	5.8 (3.2-NE)	6.0 (3.2-NE)	

Smit EF et al. *Lancet Oncol* 2024;25(4):439-454.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-fam-trastuzumab-deruxtecan-nxki-unresectable-or-metastatic-her2

MET Alterations in NSCLC

- MET activation occurs via
 - *METex14* skipping and *MET* amplification
- Type of MET aberrations
 - Single nucleotide variants
 - Amplification
 - Exon 14 skipping alterations
 - Fusions

Van der Steen et al J Thorac Oncol 2016; Drilon et al J Thorac Oncol 2017; Comoglio et al Nat Rev Cancer 2018

PROFILE 1001: Crizotinib in MET exon 14 Skip NSCLC

- Open-label, multicohort phase I study evaluating efficacy, safety of crizotinib in NSCLC
 - METex14 cohort (N = 69)
- ORR 32%
- mPFS 7.3m
- mOS 20.5m

*n = 13 not evaluable for response. [†]Positive for *MET*ex14 by local testing but WT for *MET*ex14 and positive for *ROS1* rearrangement by central testing.

GEOMETRY mono-1: Capmatinib

- Previously treated:
 - ORR 44%
 - mDOR 9.7m
 - mPFS 5.5m
 - mOS 16.8m

- Treatment naïve
 - ORR 68%
 - mDOR 16.6 months
 - mPFS 12.5m
 - mOS 21.4m

Intracranial response rate: 57%

Wolf J et al. *Lancet Oncol* 2024;25(10):1357-1370.

VISION: Tepotinib

B Previously treated 40 Change in sum of target lesion diameters, % 20 -20 Best objective response (IRC) -40 Complete response Partial response -60 Stable disease Progressive disease -80 Not evaluable -100 A Treatment-naive 40 % Change in sum of target lesion diameters, 20 -20 -40 -60 -80 -100

Intracranial response rate 56%

- Previously treated:
 - ORR 45%
 - mDOR 12.6m
 - mPFS 11.0m
 - mOS 19.3m
- Treatment naïve:
 - ORR 57%
 - mDOR 46.4m
 - mPFS 12.6m
 - mOS 21.3m

MET TKI Toxicities

Cortot et al. Clinical Lung Cancer. 2022

ALK Rearranged NSCLC

- Alectinib, Lorlatinib and Brigatinib FDA approved
 - Studied vs Crizotinib
- CROWN Trial
 - Lorlatinib vs Crizotinib
- PFS favored lorlatinib vs crizotinib
- HR for PFS (95% CI): 0.19 (0.13 0.27)
 - With BL brain mets: 0.08 (0.04-0.19)
 - Without BL brain mets: 0.24 (0.16-0.36)

OS immature

Crown Trial: 5-year Update PFS

Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

A CME/MOC-, ACPE- and NCPD-Accredited Event

Saturday, October 26, 2024 7:15 AM – 12:30 PM ET

Agenda

Module 1 — HR-Positive Breast Cancer: Drs O'Shaughnessy and Wander

Module 2 — Prostate Cancer: Drs M Smith and Srinivas

Module 3 — Lung Cancer: Drs Goldberg and Sabari

Module 4 — Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia: Drs Kahl and S Smith

Module 5 — Multiple Myeloma: Drs Lonial and Raje

Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia Faculty

Brad S Kahl, MD Professor of Medicine Washington University School of Medicine Director, Lymphoma Program Siteman Cancer Center St Louis, Missouri

Sonali M Smith, MD

Elwood V Jensen Professor of Medicine Chief, Section of Hematology/Oncology Co-Leader, Cancer Service Line Co-Director, Lymphoma Program The University of Chicago Chicago, Illinois

Updates in Chronic Lymphocytic Leukemia and Mantle Cell Lymphoma

Brad Kahl, MD

NCCN National Comprehensive Cancer Network®

Novel agents are superior to CIT in first line

Patients	Study	Investigational arm	Control arm	Primary endpoint	Winner
1	E1912	Ibrutinib + R	FCR	PFS	Ibrutinib + R
	A041202	Ibrutinib ± R	BR	PFS	Ibrutinib ± R
	SEQUOIA	Zanubrutinib	BR	PFS	Zanubrutinib
	ILLUMINATE	Ibrutinib + G	CHL+G	PFS	Ibrutinib + G
	ELEVATE-TN	Acalabrutinib ± G	CHL+G	PFS	Acalabrutinib ± G
	CLL14	Venetoclax + G	CHL+G	PFS	Venetoclax + G
	GLOW	Venetoclax + Ibrutinib	CHL+G	PFS	Venetoclax + Ibrutinib

Acalabrutinib ± G vs. Clb+G:(ELEVATE-TN)

Sharman et al. Lancet. 2020 Apr 18;395(10232):1278-1291.

SITEMAN CANCER CENTER

Acalabrutinib ± G vs Clb + G: ELEVATE-TN – 6-Year Update

Sharman et al. ASH 2023; Abstract 636

SEQUOIA (BGB-3111-304)

Tam et al. Lancet Oncol. 2022 Aug;23(8):1031-1043.

Cohort 1: PFS in Patients Without del(17p)

Median follow-up: 43.7 months

Munir et al. EHA 2023; Abstract P639

Venetoclax + G vs Clb + G: (CLL-14)

Primary endpoint:

 PFS as assessed by investigator³

Secondary endpoints³:

- PFS as assessed by IRC
- MRD
- ORR
- CR rate
- DOR

EFS
OS
TTNT
Safety

Venetoclax + G vs Clb + G: CLL-14 – 6-Year Follow-Up

Median PFS Ven-Obi: 76.2 months Clb-Obi: 36.4 months

6-year PFS rate Ven-Obi: 53.1% Clb-Obi: 21.7%

HR 0.40, 95% CI (0.31–0.52) *P* <.0001

Al-Sawaf et al. EHA 2023; Abstract S145

PROGRESSION-FREE SURVIVAL – IGHV status

Median observation time 76.4 months

Time to Event [PFS] from Randomization (months)

Median PFS Ven-Obi & IGHVmut: NR Ven-Obi & IGHVunmut: 64.8 m HR 0.38, 95%CI [0.23-0.61], p<0.001

Clb-Obi & IGHVmut: 62.2 m Clb-Obi & IGHVunmut: 26.9 m HR 0.33, 95% Cl [0.23-0.47], p<0.001

Al-Sawaf et al. EHA 2023; Abstract S145.

BTKi vs. Ven-Obin for first-line treatment in CLL patients with abnormal TP53

Zanubrutinib

Venetoclax + Obinutuzumab

Factors guiding therapy

- Does your patient prefer time limited therapy?
 - If yes, then Venetoclax-Obinutuzumab is done in 12 months
- Does your patient wish to avoid infusions and frequent monitoring?
 - BTKi is simpler than VO
- Does your patient have an underlying bleeding risk or need for anticoagulation?
 - Perhaps wish to avoid BTKi
- Does your patient have significant underlying renal impairment?
 - Increases risk for TLS, may wish to avoid VO and opt for BTKi
- Does your patient have a 17p del or p53 mutation?
 - BTKi appears to control disease better than time limited options

Ongoing questions

- 1. What about novel-novel combinations?
 - Acalabrutinib plus Venetoclax x 1 year (AMPLIFY trial)
- 2. Could MRD assessments guide therapy duration in a rational way?
 - CAPTIVATE and MAJIC may inform on this question
- 3. Are there newer "better" targeted agents on the horizon?
 - 3rd generation BTK inhibitors looking promising

Fixed-duration acalabrutinib plus venetoclax, with or without obinutuzumab, significantly improved progression-free survival in 1st-line chronic lymphocytic leukaemia in AMPLIFY Phase III trial

PUBLISHED 29 July 2024

Pirtobrutinib for R/R CLL

A third generation BTKi Reversible (non-covalent) BTKi High selectivity for BTK Potency against WT & C481-mutant BTK in cell and enzyme assays

Phase 1/2 study included high-risk patients (n=261):

Prior BTKi 100% ; BTKi PD 77% Prior Venetoclax 41% Prior CAR-T 6% BTK C481 mutant 38% PLCG2 mutant 8% Abnormal TP53 46% ; both del and mut 28% Unmutated IGHV 84%

Mato et al. N Engl J Med 2023;389:33-44

Kinome selectivity Highly selective for BTK

Pirtobrutinib for R/R CLL

ORR: 82% in BTKi exposed

Mato et al. N Engl J Med 2023;389:33-44; Woyach et al. ASH 2023;Abstract 325

MCL: Reasonable Standards of Care in 2024

FRONTLINE MANAGEMENT

- Younger/Fit
 - High dose cytarabine containing induction
 - ASCT in 1st remission
 - Maintenance Rituximab for 3 years
 - Did the TRIANGLE Study Just Change Everything?
- Older/Less Fit
 - Bendamustine-Rituximab (BR) Induction + Maintenance Rituximab
 - Will the ECHO Study Change SOC?

The difference between intensive and non intensive

Can be quite a decision for a 65 year old with typical MCL

TRIANGLE Trial (European MCL Network)

- Target 870 pts (290 per arm)
- Activated Oct 2017
- Completed accrual Dec 2020
- 1st results ASH 2022
- Published 2024

TRIANGLE Trial

- Ibrutinib containing arms improved FFS
- Not enough events to compare FFS of A+I to I
- Visually- curves very similar at 3 yrs
- Suggests that 2 years of BTKi obviates the need for ASCT for FFS benefit
- More toxicity/infections in A+I arm
- What should one do with this information?

Dreyling et al. Lancet 2024; 403: 2293-306

TRIANGLE Trial Impact

- Some US centers converted to BTKi minus ASCT immediately after ASH 2022
- Some US centers added BTKi and continued ASCT (A+I)
- My strategy was to wait for publication (May 2024)
 - I have converted to BTKi and no ASCT
 - Admittedly do not have true LTFU at this point
 - I anticipate more centers adopting this strategy (personal communication)
- Caveats
 - Ibrutinib pulled from US market in spring 2023
 - Must substitute acalabrutinib or zanubrutinib (NCCN guidelines just say BTKi)
 - I am comfortable with this extrapolation
- A major appeal here is the BTKi exposure is **TIME LIMITED**

ACALABRUTINIB PLUS BR IN MANTLE CELL LYMPHOMA: RESULTS FROM THE PHASE 3 ECHO TRIAL.

Wang et al. EHA 2024; Abstract LB3439

ECHO... ECHO...

Wang et al. EHA 2024; Abstract LB3439

ECHO Results in MCL

- No difference in OS
 - Fewer MCL deaths on Acala arm
 - More COVID deaths on Acala arm
- If Acalabrutinib gets approval in older MCL first-line, should you use it?
 - Tough call. PFS benefit without OS benefit
 - BTKi given until PD, meaning not available for 2nd line
 - Although now have Pirtobrutinib
- I do not see myself adopting this strategy
 - More appealing if time limited...

MCL Frontline Summary

MCL Younger

• Transplant may not be needed if adding 2 years of BTKi (TRIANGLE Trial)

MCL Older

- BR with R maintenance remains a good SOC
- Unclear if ECHO will change SOC

Why is BTKi OK in younger but not older MCL?

- Allowed subtraction of ASCT
- Was time limited in TRIANGLE

Novel Approaches for R/R MCL

Agent	Ν	Response Rate	mDOR
Bortezomib	155	33%	9.2 months
Lenalidomide	134	28%	16.6 months
Lenalidomide-rituximab	52	57%	18.9 months
lbrutinib*	111	68%	18 months
Acalabrutinib	124	81%	24 months
Zanubrutinib	86	84%	36 months
Pirtobrutinib**	124	49%	18 months
Venetoclax*	28	75%	12 months
Ibrutinib-Venetoclax*	134	82%	42 months

*Not FDA approved in MCL

**Approved after covalent BTK failure

Pirtobrutinib: Responses in R/R MCL

Data cutoff date of 29 Jul 2022. Data for 18 patients are not shown in the waterfall plot due to no measurable target lesions identified by CT at baseline, discontinuation prior to first response assessment, or lack of adequate imaging in follow-up. *Indicates patients with >100% increase in SPD

Wang et al. J Clin Oncol 2023 January 20;41(3):555-67; Wang et al. ASH 2022; Abstract 4218; Shah et al. ASCO 2023; Abstract 7514.

SYMPATICO Study Design

• SYMPATICO (NCT03112174) is multinational, randomized, double-blind, placebo-controlled, phase 3 study

Stratification: ECOG PS, prior lines of therapy, TLS risk^a

- Primary endpoint:
 - PFS by investigator assessment using Lugano criteria
- Secondary endpoints (tested hierarchically in the following order):
 - CR rate by investigator assessment
 - TTNT^b
 - OS (interim analysis)
 - ORR by investigator assessment

Management of R/R MCL

- I typically start patients on BTKi (Zanu or Acala)
 - If achieve CR by 6 months, keep going
 - If only PR, start looking at CAR-T options
- Options not great when relapse after CAR-T
 - Pirtobrutinib
 - Trials
 - Glofitamab showing some activity
 - ORR 85%. CR 78%.
 - mPFS 16.8 months
- We definitely need more options for R/R MCL

Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

A CME/MOC-, ACPE- and NCPD-Accredited Event

Saturday, October 26, 2024 7:15 AM – 12:30 PM ET

Updates in Diffuse Large B-Cell Lymphoma and Follicular Lymphoma

Sonali Smith, MD FASCO Elwood V. Jensen Professor of Medicine Chief, Section of Hematology/Oncology Co-Leader, Cancer Service Line

Frontline DLBCL: RCHOP has been the standard of care since 2002

POLARIX: randomized, double-blind, placebo-controlled phase 3 international trial of Pola-RCHP vs. R-CHOP in high-risk TN DLBCL

POLARIX: primary endpoint of inv-assessed PFS was met (***1st positive trial in TN DLBCL since 2002***)

HR 0.73 (P<0.02) 95% CI: 0.57, 0.95

 Pola-R-CHP demonstrated a 27% reduction in the relative risk of disease progression, relapse, or death versus R-CHOP

24-month PFS: 76.7% with Pola-R-CHP versus 70.2% with R-CHOP (Δ=6.5%)

Med f/u 28m No difference in OS

Pola-RCHP vs R-CHOP by cell of origin

CAVEATS:

- 25% of enrolled patients did not have COO assessment
- Not clear that COO designation for the primary publication was centrally determined
- Only ~one-third of patients had ABC subtype

Is cell-of-origin guided treatment selection ready for prime time?

Peripheral Neuropathy: on-target effect of both polatuzumab vedotin AND vinca alkaloids

	Pola-RCHP	R-CHOP
PN any grade	52.9%	53.9%
PN > grade 1	13.8%	16.7%
Time to onset of PN	2.3m	1.9m
Time to resolution of PN	4m	4.6m
Discontinuation d/t PN	0.2%	0.9%
Dose reduction d/t PN	4.4%	8.0%

Rel/Ref large B-cell lymphoma

Second line DLBCL: More is better...until it's not

PARMA Trial:

High dose chemotherapy/autoHCT is better than standard

CORAL Trial:

prior rituximab and early relapse make HDT/autoHCT less effective

RP3 Trials comparing CAR-T vs autoHCT in 2L DLBCL

NCT03391466. NCT03570892. NCT03575351.

Locke FL, et al. N Engl J Med. 2021; Dec 11. Kamdar M, et al. Blood. 2021;138(suppl 1):91. Bishop MR, et al. N Engl J Med. 2021;Dec 14.

ZUMA-7 med EFS 2m vs 8.3m OS 32% vs 65% TRANSFORM med EFS 2.3m vs 10.1m

Does CAR-T retain superiority in 2L DLBCL with long-term follow up?

ZUMA-7: With med f/u 47.2m, superior OS for axi-cel over autoHCT

	Liso-cel Arm (n = 92)	SOC Arm (n = 92)
EFS ^b	29.5	2.4
	(9.5–NR)	(2.2-4.9)
36-mo rate ^c	45.8	` 19.1 ´
	(35.2-56.5)	(11.0-27.3)
ORR ^d	80 (87)	45 (49)(38.3-59.6)
	(78.3–93.1)	
CR rate ^d	68 (74)	40 (43)
	(63.7-82.5)	(33.2-54.2)
PFS ^b	NR	6.2
	(12.6-NR)	(4.3-8.6)
36-mo rate ^c	50.9	26.5
	(39.9–62.0)	(15.9–37.1)
OS ^b	NR	NR
	(42.8-NR)	(18.2–NR)
36-mo rate ^c	62.8	51.8
	(52.7-72.9)	(41.2-62.4)
DOR [®]	NR (16.9–NR)	9.1 (5.1–NR)

Efficiency outcomes (intent to treat out)

TRANSFORM: 3y EFS 29.5m vs 2.4m 3y PFS NR vs 6.2m OS NR for both arms

A new algorithm for rel/ref DLBCL

Slide courtesy of Michael Bishop

Options for rel/ref DLBCL if CAR-T is not an option

Polatuzumab vedotin (antiCD79 ADC) plus BR

Selinexor (XPO1 inhibitor)

Tafasitamab (enhanced anti-CD19 moAb) plus lenalidomide

Loncastuximab tesirine (Anti-CD19 with PBD dimer payload)

Subcutaneous epcoritamab in rel/ref DLBCL (phase I/II trial)

- ~76% refractory to at least 2 lines of treatment
- ~40% with prior CAR-T
- 75% of prior CAR-T recipients progressed within 6 months

Epcoritamab SC in aggressive B-cell lymphoma (med f/u 20m)

• The most common AE was CRS in 51% of patients (mostly grade 1-2), followed by neutropenia in 25% of patients.

Glofitamab in 3L+ DLBCL: phase II

CRS Mitigation: C1D1 Obinu 1000mg IV pretreatment C1D8 glofit 2.5mg C1D15 glofit 10mg

C2D1+ glofit 30mg

Intravenous infusion Fixed duration (12 cycles) Obinutuzumab pre-treatment

Landmark analysis by response at Cycle 3

Landmark analysis by response at EOT

Hutchings ASH 2023, Abstract 433; Dickinson December 15, 2022 N Engl J Med 2022; 387:2220-2231

Odronextamab: phase II trial in rel/ref DLBCL (ELM-2)

Key eligibility criteria

Secondary endpoints:

Safety and tolerability

- DLBCL per WHO 2016 classification¹ ٠
- ECOG PS 0 or 1 ٠
- Refractory to or relapsed after ≥2 prior lines of therapy, including an anti-CD20 antibody and . an alkylator

Measures taken to facilitate diverse, inclusive enrollment:

- Diverse trial sites
- Translated consents for under-represented populations
- Extended screening windows for patients with access restraints
- Broad eligibility criteria to include patients with controlled HIV, hepatitis B and C
- Lower thresholds for those with compromised organ function

- Med age 67y (range, 24-88) ۲
- 24% <u>></u> 75y ٠
- Prior tx 2 (range, 2-8)
- 86% refractory to last line of treatment •

٠

Odronextamab in 3L+ DLBCL: PFS and OS (med f/u 26.2m)

- PR

ELM-2: Progression-free survival

Median PFS was 20.4 months in complete responders versus 5.8 months in partial responders

ELM-2: Overall survival

Median OS was not reached in complete responders versus 17.0 months in partial responders

- IV treatment with 21d cycles, mandatory steroid use
- Step-up doses of 0.7/4/20 mg during C1, followed by 160 mg on Days 1, 8, and 15 of C2-4
- C4+: 320 mg every 2 weeks until PD or intolerance •
- (If there is CR that is durable for ≥9 months, can dose q4 weeks

STARGLO: RP3 Trial of GEMOX vs. glofit-GEMOX in rel/ref LBCL

Abramson EHA 2024; Abstract LB3438

Final 5-year analysis: tafasitamab-lenalidomide in rel/ref LBCL (med f/u 44m)

DR by line of therapy

OS by CR vs PR

- Depth of response matters more
 - than line of therapy
 - Some durable responses
 - Toxicity: cytopenias

Loncastuximab tesirine: Long-term efficacy and safety data from the phase II LOTIS-2 trial in rel/ref LBCL (n=145)

1 0 0 0 0 0

- Lonca 0.15mg/kg q21d x 2 cycles, then 0.075mg/kg q21d up to 1 year
- Median f/u 7.8m all pts, >35m for responders
- <u>Toxicity</u>: increased GGT, cytopenias

34

Subset of patients with PR

LOTIS-2: Overall response rate and long-term PFS with loncastuximab tesirine in rel/ref DLBCL

Progression-free survival

Caimi et al ICML 2023; Caimi Haematologica. 2024 Apr 1;109(4):1184-1193.

Follicular Lymphoma

Treatment options for rel/ref FL

<u>2L Options</u>

Chemo + rituximab or obinutuzumab

Len + ritux or obin

Anti-CD20 monotherapy +/maintenance

(tazemetostat)

(autoHCT)

3L+ Options

Bispecific antibody Mosunetuzumab Epcoritamab **Odronextamab (not approved)

CAR-T Axi-cel

Tisa-cel Liso-cel

Tazemetostat

Zanubrutinib + obin

(alloHCT)

inMIND trial: RP3 double-blind len-rituximab +/tafasitamab in rel/ref FL

- Primary endpoint of inv-assessed PFS was met
- A total of 654 patients aged 18 years and older with relapsed or refractory FL deemed grade 1 to 3a or relapsed or refractory nodal, splenic, or extranodal marginal zone lymphoma (MZL) were enrolled
- QUESTIONS:

value of dual anti-CD19/CD20? Patient characteristics (relapsed versus refractory)?

Mosun in FL

Mosunetuzumab administration				
 IV mosunetuzumab administered in 21-day cycles with step-up dosing in C1 	D15: 60mg D1: 60mg D1: 30mg D1: 3			
 Fixed-duration treatment: 8 cycles if CR after C8; 17 cycles if PR/SD after C8 	D8: 2mg			
 Retreatment with mosunetuzumab permitted at relapse for patients who achieved CR 	D1: 1mg			
No mandatory hospitalization	C1 C2 C3 ···• C			

Baseline patient characteristics

n, unless stated	N=90
Median age, years (range)	60 (29–90)
Male	55 (61%)
ECOG PS 0 1	53 (59%) 37 (41%)
Ann Arbor stage I/II III/IV	21 (23%) 69 (77%)
Median lines of prior therapy, (range)	3 (2–10)
Prior autologous stem cell transplant	28 (31%)*
Refractory to last prior therapy	62 (69%)
Refractory to any prior anti-CD20 therapy	71 (79%)
POD24	47 (52%)
Double refractory to prior anti-CD20 and alkylator therapy	48 (53%)

Schuster ASH 2023; Abstract 603.

Anti-CD20 Anti-CD3

Mosunetuzumab (IV/SC)

Mosun in r/r FL: 3-year follow up

PFS and OS; median follow-up >36 months

Median PFS, months (95% CI) 24.0 (12.0-NE) 36-month PFS, months (95% CI) 43.2% (31.3-55.2)

atients at risk 90 89 87 86 85 84 81 80 78 76 76 74	72 70 68 62 56 51 39 26 21 14 8
	N=90
Median OS, months (95% CI)	NR (NE-NE)
36-month OS, months (95% CI)	82.4% (73.8-91.0

- All patients (N=90)

CRS summary

CRS by ASTCT criteria ¹	N=90		CRS	by cycle	and grade		
CRS (any grade), n Grade 1 Grade 2 Grade 3 Grade 4	40 (44%) 23 (26%) 15 (17%) 1 (1%) 1 (1%)	50 - 40 -	Grade 1	Grade : C1	2 Grade	3 ∎Grad	le 4
Median time to CRS onset, hours (range) C1D1 C1D15	5 (1–24) 27 (0–391)	tients (%) 0 20 -	23%				
Median CRS duration, days (range)	3 (1-29)	Pa				10%	
Corticosteroids for CRS management, n	10 (11%)*	10 -		6%			2%
Tocilizumab for CRS management, n	7 (8%)*	0 -	C1D1-7	C1D8-14	C1D15-21	C2	C3+
Events resolved	100%	Mosunetuzumati dose	1mg	2mg	60mg	60mg	30mg

CRS was predominantly low-grade and occurred during C1 All CRS events resolved; no new events have been reported in this extended follow-up

EPCORE NHL-1: epco in r/r FL

Epcoritamab (SC)

TRIAL DESIGN: PIVOTAL EPCORE™ NHL-1 STUDY

Phase 1/2 trial. *Patients enrolled in this trial (and excluded from trials of other T-cell-engaging therapies) included those with worse anemia, lymphopenia, and/or renal function. *Step-up dosing (SUD; priming [SUD 1] 0.16 mg and intermediate [SUD 2] 0.8 mg dosing before first full dose) and corticosteroid prophylaxis were used to mitigate CRS. *s2 measurable (by CT/MRI) and FDG PET-positive lesions; radiographic disease evaluation was performed every 6 wk for the first 24 wk (6, 12, 18, and 24 wk), then every 12 wk (36 and 48 wk), and every 6 mo thereafter. *MRD was assessed in perpheral blood using the clonoSEO® (Adaptive Biotechnologies, Seattle, WA) next-positive lasions; radiographic disease evaluation sequencing assay. Chincal Trial.scov: NCTM82(3) and FDG PET-positive lasions; radiographic disease evaluation sequencing assay. Chincal Trial.scov: NCTM84:36.

Key clinical features:

- Med age 65y
- FLIPI 3-5 61%
- Med prior Rx = 3
- POD24 42%
- Double refractory 70%
- Primary refractory 54%
- Refractory to last Rx 69%

EPCORE NHL-1: epco in r/r FL results

Efficacy Results

ORRs and CR Rates Were High Regardless of Subgroup

C1 Optimization Reduced Risk and Severity of CRS

	Pivotal Cohort N=128	C1 Optimization Cohort" N=50
CRS, n (%) ⁿ	85 (66)	24 (48)
Grade 1	51 (40)	20 (40)
Grade 2	32 (25)	4 (8)
Grade 3	2 (2)	0
Treated with tocilizumab, n/n (%)	31/85 (36)	6/24 (25)
Leading to epcoritamab discontinuation, n (%)	0	0
CRS resolution, n/n (%)	85/85 (100)	24/24 (100)
Median time to resolution, d (range)	2 (1-54)	3 (1-14)

Odronextamab (ELM-2 trial)

Primary endpt: ORR

Patient and disease	characteristics	N=128
Median age, years (ra	ange)	61.0 (22-84)
Age ≥75 years, %		9.4
Male, %		53.1
Race, %	White / Asian / other / unknown / not reported	61.7 / 26.6 / 0.8 / 1.6 / 9.4
ECOG PS, %	0/1/2	50.8 / 48.4 / 0.8
Ann Arbor stage III-I	V, %	85.2
FLIPI risk score, %	0-1/2/3-5	16.4 / 25.8 / 57.8
Bulky disease, invest	tigator assessment, %	14.1
Median prior lines, n	(range)	3 (2–13)
Prior PI3K inhibitor,	Vo	14.1
Prior R ² , %		13.3
Prior ASCT, %		30.5
Refractory to last line	e of therapy, %	71.9
Refractory to anti-CE	020 antibody, %	74.2
Double refractory to	alkylator/anti-CD20 antibody, %	41.4
POD24, %		49.2

Odronextamab in r/r FL: outcomes

Table 5. CRS			
		0.7/4/20 mg N=60	
Any grade, n (%)		34 (56.7)	
Grade 1/2		27 (45.0) / 6 (10.0)	
Grade 3/4		1 (1.7) / 0	
Median time to CRS onset, hours (ra	nge)	19.7 (0.7-159.0)	
Median CRS duration, days (range)		2.00 (1.0-10.0)	
CRS management, n (%)	Systemic steroids / tocilizumab	20 (33.3) / 10 (16.7)	
CRS per Lee 2019 criteria ⁵ . CRS, cytokine release	e syndrome.		

Conclusions

 Heavily pretreated patients with R/R FL achieved deep and durable responses with continued odronextamab treatment

- ORR, 81%; CR, 73%; 2-year CR rate, 49%
- Median PFS, 20.7 months; median OS, NR
- PROs were maintained from baseline to Week 50
- The safety profile of odronextamab was generally manageable
 - CRS was mostly Grade 1/2 and one low-grade ICANS event was reported with 0.7/4/20 mg Cycle 1 step-up
 - Any-grade infection TEAEs were reported in 80% of patients, and over a third of patients had COVID-19 infection, reflective of a study conducted during the pandemic in a patient population with increased underlying risk for infections
- Phase 3 randomized trials are ongoing in FL patients in earlier lines of therapy
 - OLYMPIA-1 (NCT06091254), OLYMPIA-2 (NCT06097364), OLYMPIA-5 (NCT06149286)

OTHER TARGETED AGENTS

Tazemetostat Phase II Study: Response

Tazemetostat Phase II Study: PFS (by IRC)

Well-tolerated; no sig AE's

Morschhauser Lancet Oncol. 2020;21:1433.

ROSEWOOD: RP2 (2:1) trial of zanu-obin vs. obin in R/R FL

Pt features	ZO (n=145)	O (n=72)	P value
Med age	63y	65.5y	
Prior Tx	3 (2-11)	3 (2-9)	
High FLIPI	53%	51%	
POD24	34%	42%	
Ref to last Tx	32%	40%	
	Res	ults	
ORR	69%	46%	0.001
CR	39%	19%	0.004
Med DOR	NE	14m	
Med PFS	28m	10.4m	<0.001
Med OS	NE	34.6m	0.085

Zinzani JCO 41, 5107-5117(2023).

ROSEWOOD: RP2 (2:1) zanu-obin versus obin

Zinzani JCO 41, 5107-5117(2023).

Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

A CME/MOC-, ACPE- and NCPD-Accredited Event

Saturday, October 26, 2024 7:15 AM – 12:30 PM ET

Agenda

Module 1 — HR-Positive Breast Cancer: Drs O'Shaughnessy and Wander

Module 2 — Prostate Cancer: Drs M Smith and Srinivas

Module 3 — Lung Cancer: Drs Goldberg and Sabari

Module 4 — Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia: Drs Kahl and S Smith

Module 5 — Multiple Myeloma: Drs Lonial and Raje

Multiple Myeloma Faculty

Sagar Lonial, MD

Chair and Professor Department of Hematology and Medical Oncology Anne and Bernard Gray Family Chair in Cancer Chief Medical Officer Winship Cancer Institute Emory University School of Medicine Atlanta, Georgia

Noopur Raje, MD

Director, Center for Multiple Myeloma Massachusetts General Hospital Cancer Center Professor of Medicine Harvard Medical School Boston, Massachusetts

Current Therapeutic Approaches for Multiple Myeloma

Sagar Lonial, MD

Chair and Professor Department of Hematology and Medical Oncology Anne and Bernard Gray Family Chair in Cancer Chief Medical Officer Winship Cancer Institute Emory University School of Medicine Atlanta, Georgia

Newly Diagnosed MM-ASCT eligible

Courtesy of Shaji K Kumar, MD

FDA Approves Daratumumab and Hyaluronidase-fihj with Bortezomib, Lenalidomide and Dexamethasone for Multiple Myeloma Press Release: July 30, 2024

The FDA approved daratumumab and hyaluronidase-fihj in combination with bortezomib, lenalidomide and dexamethasone for induction and consolidation for newly diagnosed multiple myeloma in patients who are eligible for autologous stem cell transplant (ASCT).

Efficacy was evaluated in PERSEUS (NCT03710603), an open-label, randomized, active-controlled trial in patients with newly diagnosed multiple myeloma eligible for ASCT. Enrollment was limited to patients 70 years of age and younger. A total of 709 patients were randomized: 355 to the daratumumab with bortezomib, lenalidomide and dexamethasone arm and 354 to the bortezomib, lenalidomide and dexamethasone arm and 354 to the bortezomib, lenalidomide arm.

PERSEUS demonstrated an improvement in progression-free survival (PFS) in the daratumumab arm as compared to the VRd arm; the median PFS had not been reached in either arm. Treatment with daratumumab-VRd resulted in a reduction in the risk of disease progression or death by 60% compared to VRd alone (HR [95% CI]: 0.40 [0.29, 0.57]; *p*-value < 0.0001).

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-daratumumaband-hyaluronidase-fihj-bortezomib-lenalidomide-and-dexamethasone-multiple

PERSEUS: Study Design

Presented by P Sonneveld at the 65th American Society of Hematology (ASH) Annual Meeting; December 9-12, 2023; San Diego, CA, USA

Courtesy of Shaji K Kumar, MD 🔲 🖪

PERSEUS: Overall ≥CR Rates

Overall ≥CR rate was significantly higher with D-VRd versus VRd
 ≥CR rate was improved with D-VRd versus VRd across subgroups

Presented by P Sonneveld at the 65th American Society of Hematology (ASH) Annual Meeting; December 9-12, 2023; San Diego, CA, USA

Courtesy of Shaji K Kumar, MD 🔳

PERSEUS: Progression-free Survival

58% reduction in the risk of progression or death in patients receiving D-VRd

HR, hazard ratio; CI, confidence interval.

Presented by P Sonneveld at the 65th American Society of Hematology (ASH) Annual Meeting; December 9-12, 2023; San Diego, CA, USA

PERSEUS: PFS in Prespecified Subgroups

	D-VRd	VRd		
Subgroup	no. of progression eve	ents or deaths/total no.	HR (95% CI)	
Sex				
Male	36/211	61/205	⊢ ● ¦	0.51 (0.34-0.77)
Female	14/144	42/149	⊢ ↓	0.29 (0.16-0.53)
Age			I	
<65 y	30/261	84/267	⊢–●––┤ ¦	0.30 (0.20-0.46)
≥65 y	20/94	19/87	⊢	0.97 (0.52-1.81)
Race				
White	47/330	95/323	⊢–●––i	0.42 (0.30-0.60)
Other	3/25	8/31		0.40 (0.11-1.50)
ISS stage				
I	18/186	35/178		0.46 (0.26-0.81)
II	19/114	43/125		0.37 (0.22-0.64)
III	13/55	25/50		0.42 (0.22-0.83)
Type of MM				
lgG	28/204	58/185		0.36 (0.23-0.57)
Non-IgG	13/78	31/96		0.46 (0.24-0.88)
Cytogenetic risk				
Standard risk	25/264	62/266		0.35 (0.22-0.56)
Highrisk	24/76	38/78		0.59 (0.36-0.99)
Indeterminate	1/15	3/10		0.16 (0.02-1.56)
ECOG PS			i i	
0	28/221	60/230		0.42 (0.27-0.66)
≥1	22/134	43/124		0.41 (0.25-0.69)
		-		
			0.1 1	10
		•		
			Favors D-VRd Favors VRd	

PFS was improved with D-VRd versus VRd across clinically relevant subgroups

The subgroup analysis for type of MM was performed on data from patients who had measurable disease in serum. Cytogenetic risk was assessed by fluorescence in situ hybridization; high risk was defined as the presence of del(17p), t(4;14), and/or t(14;16).

Presented by P Sonneveld at the 65th American Society of Hematology (ASH) Annual Meeting; December 9-12, 2023; San Diego, CA, USA

PERSEUS: Overall Survival

OS data trend favorably for D-VRd

Presented by P Sonneveld at the 65th American Society of Hematology (ASH) Annual Meeting; December 9-12, 2023; San Diego, CA, USA

Lenalidomide maintenance

McCarthy et al, JCO 2017

Courtesy of Shaji K Kumar, MD

Daratumumab maintenance: CASSIOPEIA

Courtesy of Shaji K Kumar, MD

Subcutaneous Daratumumab Plus Lenalidomide Versus Lenalidomide Alone as Maintenance Therapy in Newly Diagnosed Multiple Myeloma After Transplant: Primary Results From the Phase 3 AURIGA Study

Ashraf Badros¹, Laahn Foster², Larry D Anderson Jr³, Chakra P Chaulagain⁴, Erin Pettijohn⁵, Andrew J Cowan⁶, Caitlin Costello⁷, Sarah Larson⁸, Douglas W Sborov⁹, Kenneth H Shain¹⁰, Rebecca Silbermann¹¹, Nina Shah^{12,*}, Alfred Chung¹², Maria Krevvata¹³, Huiling Pei¹⁴, Sharmila Patel¹⁵, Vipin Khare¹⁵, Annelore Cortoos¹⁵, Robin Carson¹³, Thomas S Lin¹⁵, Peter Voorhees¹⁶

¹Greenebaum Cancer Center, University of Maryland, Baltimore, MD, USA; ²Division of Hematology Oncology, University of Virginia, Charlottesville, VA, USA; ³Myeloma, Waldenstrom's and Amyloidosis Program, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ⁴Department of Hematology and Oncology, Myeloma and Amyloidosis Program, Cleveland Clinic Florida, Weston, FL, USA; ⁵Cancer and Hematology Centers of Western Michigan, Grand Rapids, MI, USA; ⁶Division of Medical Oncology, University of Washington, Seattle, WA, USA; ⁷Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; ⁸Division of Hematology and Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ⁹Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; ¹⁰Department of Malignant Hematology, H Lee Moffitt Cancer Center, Tampa, FL, USA; ¹¹Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; ¹²Department of Medicine, University of California San Francisco, San Francisco, CA, USA; ¹³Janssen Research & Development, LLC, Spring House, PA, USA; ¹⁴Janssen Research & Development, LLC, Titusville, NJ, USA; ¹⁵Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Horsham, PA, USA; ¹⁶Levine Cancer Institute, Atrium Health Wake Forest University School of Medicine, Charlotte, NC, USA

*Affiliation at the time of the study.

Presented by A Badros at the 21st International Myeloma Society (IMS) Annual Meeting; September 25-28, 2024; Rio de Janeiro, Brazil

https://www.congresshub.com/Oncology/IMS2024/ Daratumumab/Badros

> The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way

AURIGA: Study Design

Objective: To determine the impact of adding DARA to R maintenance on MRD-negative conversion

MRD^b obtained after 12, 18, 24, and 36 cycles

VGPR, very good partial response; D, daratumumab; SC, subcutaneous; QW, weekly; Q2W, every 2 weeks; Q4W, every 4 weeks; PO, orally; CR, complete response. ^aAs assessed by International Myeloma Working Group 2016 criteria. ^bMRD based upon NGS (clonoSEQ[®]; Adaptive Biotechnologies). ^cFor stratification, cytogenetic risk was evaluated per investigator assessment, in which high risk was defined as the presence of ≥1 of the following cytogenetic abnormalities: del[17p], t[4;14], or t[14;16]. ^dStudy treatment continued for a planned maximum duration of 36 cycles or until progressive disease, unacceptable toxicity, or withdrawal of consent. After the end of the study treatment period of 36 months and after the end of the study, patients benefiting from treatment with DARA and/or R could continue receiving treatment per the investigator's discretion. ^eDARA SC (DARA 1,800 mg co-formulated with recombinant human hyaluronidase PH20 [rHuPH20; 2,000 U/mL; ENHANZE[®] drug delivery technology; Halozyme, Inc., San Diego, CA, USA]).

Presented by A Badros at the 21st International Society of Myeloma (IMS) Annual Meeting: September 25-28, 2024; Rio de Janeiro, Brazil

AURIGA: MRD-negative (10⁻⁵) Conversion Rate From Baseline to 12 Months of Maintenance Treatment^a

- The addition of DARA to R more than doubled the MRD-negative conversion rate by 12 months
 - Similar benefits were seen in supplemental MRD analyses

OR, odds ratio; CI, confidence interval. ^aDefined as the proportion of patients who achieved MRD-negative status (at 10⁻⁵) by NGS by 12 months after maintenance treatment and prior to progressive disease or subsequent antimyeloma therapy. ^bMantel–Haenszel estimate of the common OR for stratified tables was used. The stratification factor was baseline cytogenetic risk per investigator assessment (high vs standard/unknown), as used for randomization. An OR ≥1 indicates an advantage for D-R. ^cP <0.0001 from Fisher's exact test. ^dITT analysis set is defined as all patients who were randomized to treatment. ^ePatients who achieved ≥CR at any time during the study per International Myeloma Working Group computerized algorithm. ^fMRD-evaluable analysis set included all randomized patients who had an MRD assessment at baseline and had ≥1 post-baseline MRD evaluation. ^gDefined as the proportion of patients who achieved ≥CR response and had MRD negative status (at 10⁻⁵) by NGS by 12 months after maintenance and prior to progressive disease and subsequent anti-myeloma therapy.

Presented by A Badros at the 21st International Society of Myeloma (IMS) Annual Meeting; September 25-28, 2024; Rio de Janeiro, Brazil

AURIGA: PFS in the ITT Population

PFS favored D-R versus R, with a 47% reduction in the risk of disease progression or death

HR, hazard ratio. *Per study protocol, disease assessments stopped at the end of study treatment (Cycle 36), after which patients were only followed for survival. At the time of this analysis, the number of patients who reached end of study treatment was low, thus resulting in a low number of patients at risk.

Presented by A Badros at the 21st International Society of Myeloma (IMS) Annual Meeting; September 25-28, 2024; Rio de Janeiro, Brazil

FORTE trial: KR vs. R maintenance

Gay F et al. Lancet Oncol. 2021;22(12):1705-1720. Mina R et al. Lancet Oncol. 2023;24(1):64-76.

Courtesy of Shaji K Kumar, MD

Newly Diagnosed MM-ASCT ineligible

Courtesy of Shaji K Kumar, MD

FDA Approves Isatuximab-irfc with Bortezomib, Lenalidomide and Dexamethasone for Newly Diagnosed Multiple Myeloma Press Release: September 20, 2024

The FDA approved isatuximab-irfc with bortezomib, lenalidomide and dexamethasone for newly diagnosed multiple myeloma in adults who are not eligible for autologous stem cell transplant (ASCT).

Efficacy was evaluated in IMROZ (NCT03319667), an open-label, randomized, active-controlled Phase III trial in patients with newly diagnosed multiple myeloma who were not eligible for ASCT. Enrollment was limited to patients 80 years of age and younger. A total of 446 patients were randomized (3:2) to receive either isatuximab-irfc with bortezomib, lenalidomide and dexamethasone (Isa-VRd) or bortezomib, lenalidomide and dexamethasone (VRd).

The main efficacy outcome measure was progression-free survival (PFS) as assessed by an independent review committee based on International Myeloma Working Group criteria. IMROZ demonstrated an improvement in PFS in the Isa-VRd arm with a 40% reduction in risk of disease progression or death (hazard ratio 0.60 [95% CI: 0.44, 0.81]; *p*-value 0.0009); the median PFS was not reached (NR) (95% CI: NR, NR) in the Isa-VRd arm and was 54.3 months (95% CI: 45.2, NR) in the VRd arm.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-isatuximab-irfc-bortezomib-lenalidomide-and-dexamethasone-newly-diagnosed-multiple

IMROZ – Isa-VRd - Study design

Courtesy of Shaji K Kumar, MD

IMROZ – Treatment Response

Facon et al, ASCO 2024

IMROZ – Progression Free Survival

162 PFS events: 84 (31.7%) in Isa-VRd; 78 (43.1%) in VRd*

BENEFIT - Study design: Isa-VRd vs Isa-Rd

Leleu et al, ASCO 2024

BENEFIT: MRD- rate at 18 months

BENEFIT - Survival

Estimated 24 months PFS

85.2% (95%Cl 79.2–91.7) for Isa-VRd 80.0% (95% Cl 73.3–87.4) for Isa-Rd

Estimated 24 months OS

91.1% (95%Cl 86.1–96.4) for Isa-VRd 91.5% (95%Cl 86.5–96.8) for Isa-Rd

CEPHEUS

CEPHEUS - Response

Overall MRD-negativity rate (10⁻⁵)

Usmani et al, IMS Annual Meeting, 2024

CEPHEUS - PFS

Usmani et al, IMS Annual Meeting, 2024

Courtesy of Shaji K Kumar, MD

CEPHEUS - Overall Survival

Usmani et al, IMS Annual Meeting, 2024

Courtesy of Shaji K Kumar, MD

BOSTON Trial

,		Selinexor (oral) 100 mg Days 1, 8, 15, 22, 29			Selinexor, bortezomib, and dexamethasone group (n=195)	Bortezomib and dexamethasone group (n=207)
tion 1	35-day cycles	SVd Weekly Bortezomib (SC) 1.3 mg/m ² Days 1, 8, 15, 22 35-day cycles Dexamethasone (oral) 20 mg Days 1, 2, 8, 9, 15, 16, 22, 2		Overall response rate*	149 (76·4% [69·8–82·2])	129 (62-3% [55-3-68-9])
zai				Best overall response†		
ï	Vd Twice Weekly 21-day cycles			Stringent complete response	19 (10%)	13 (6%)
opu		kly Bortezomib (SC) 1.3 mg/m ² Days 1, 4, 8, 11 Dexamethasone (oral) 20 mg Days 1, 2, 4, 5, 8, 9, 11, 12 If IRC confirmed PD: crossover to SVd or Sd permitted	Vd Weekly* 35-Day cycles	Complete response	14 (7%)	9 (4%)
Rar				Very good partial response	54 (28%)	45 (22%)
	Cycles 1-8		Cycles 25	Partial response	62 (32%)	62 (30%)
	Diannod 40%	lower bortezemib and 25% lower devement	Minimal response	16 (8%)	20 (10%)	
	Planneu 40%	Tower bortezonnb and 25% tower dexamet	Stable disease	25 (13%)	40 (19%)	
	dose at 24 we	dose at 24 weeks (8 cycles) in SVd arm vs. Vd arm		Progressive disease	1 (1%)	10 (5%)
	Stratification:	Stratification:Prior PI therapies (Yes vs No)Number of prior anti-MM regimens (1 vs >1)R-ISS stage at study entry (Stage III vs Stage I/II)		Non-evaluable	4 (2%)	8 (4%)
				Negative status for minimal residual disease‡	9 (5%)	8 (4%)

BOSTON Trial: PFS

Courtesy of Shaji K Kumar, MD

Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

A CME/MOC-, ACPE- and NCPD-Accredited Event

Saturday, October 26, 2024 7:15 AM – 12:30 PM ET

Chimeric Antigen Receptor (CAR) T-Cell Therapy, Bispecific Antibodies and Antibody-Drug Conjugates

> Noopur Raje, MD Center for Multiple Myeloma MGH Cancer Center

Professor of Medicine Harvard Medical School

Ide-cel and Cilta-cel Constructs

Tumor Cell Viral Vector Tumor Binding Domain Signaling Domains T Cell AXAXAV/

Idecabtagene Vicleucel (ide-cel) CAR T

Second-generation CAR construct¹

Ciltacabtagene Autoleucel (cilta-cel) CAR T

Dual epitope-binding CAR construct^{1,2}

- BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; CD, cluster of differentiation; ide-cel, idecabtagene vicleucel; MM, multiple myeloma; MND, murine leukemia-derived promoter; scFv, single-chain variable fragment.
- 1. Raje N et al. N Engl J Med. 2019;380(18):1726-1737. 2. Friedman KM et al. Hum Gene Ther. 2018;29(5):585-601. 3. Song DG et al. Cancer Res. 2011;71(13):4617-4627. 4. Zhao WH et al. J Hematol Oncol. 2018;11(1):141. 5. Berdeja JG et al. ASCO 2020. Abstract 8505.

KarMMa: Ide-cel Registration Study

Trial design

Response

- Primary (ORR > 50%) and key secondary (CRR >10%) endpoints met in the Ide-cel treated population
 - ORR of 73% (95% CI, 65.8-81.1; P<0.0001)
 - CRR (CR/sCR) of 33% (95% CI, 24.7-40.9; P<0.0001)
- Median time to first response of 1.0 mo (range, 0.5-8.8); median time to CR of 2.8 mo (range, 1.0-11.8)
- Median follow-up of 13.3 mo across target dose levels

KarMMa: PFS and MRD-negativity

100

80

18

MRD Status,

CAR+ T

cells:

PFS by Target Dose

٠

PFS by Best Response

PFS increased by depth of response ٠

- Median PFS was 12 mo at 450 x 10⁶ CAR+ T cells
- Median PFS was 20 mo in patients with CR/sCR ٠
- mOS 24.8 months (95% CI: 19.9-31.2) among all treated patients ٠

MRD-negativity by target dose

Target Dose, CAR+ T cells	150 x 10 ⁶	300 x 10 ⁶	450 x 10 ⁶	Total
All ide-cel treated	N=4	N=70	N=54	N=128
MRD-negative and >CR, n(%) [95% CI]	1 (25) [0.6-80.6]	17 (24) [14.8-36.0]	15 (28) [16.5-41.6]	33 (26) [18.5- 34.3]
MRD-negative and >VGPR, n(%) [95% CI]	2 (50) [6.8-93.2]	22 (31) [20.9-43.6]	26 (48) [34.4-62.2]	50 (39) [30.6- 48.1]

CARTITUDE-1: Cilta-cel Registration Study

Trial design

Primary objectives

- Phase 1b: Characterize the safety of cilta-cel and confirm the recommended phase 2 dose
- · Phase 2: Evaluate the efficacy of cilta-cel by ORR

Key eligibility criteria

- Progressive MM per IMWG criteria
- ECOG PS ≤1
- Measurable disease
- ≥3 prior therapies or double refractory
- Prior PI, IMiD, anti-CD38 therapy
- Median administered dose: 0.71x10⁶ (0.51–0.95x10⁶) CAR+ viable T cells/kg

Response

CARTITUDE-1 Follow Up

~27 months

~3 years

PFS by CR and sustained MRD negativity

Subgroups	mPFS (95% CI), mo	30-mo PFS rate	36-mo PFS rate
All patients	34.9 (25.2–NE)	54.2%	47.5%
≥CRª	38.2 (34.9-NE)	66.8%	59.8%
12-mo sustained MRD negativity ^b	NR (NE-NE)	74.9%	NE
12-mo sustained MRD-negative ≥CR ^b	NR (NE-NE)	78.5%	NE

Berdeja et al. Lancet 2021; 398: 314–24 Lin et al. ASCO 2023;Abstract 8009.

KarMMa and CARTITUDE-1 CRS and NT

	lde-cel	Cilta-cel
FDA approval Trial, Reference Publication	KarMMa (n=124) Munshi NEJM 2021	CARTITUDE-1 (n=97) Berdeja Lancet 2021
Safety		
CRS (all; grades 3–4)	84% (5%)	95% (5%)
Median onset of CRS	1 day	7 days
ICANS (all; grades 3–4)	18% (3%)	17% (2%)
Delayed neurotoxicity (all; grades 3-4)	None	12% (9%)
Infections (all; grades 3–4)	69% (22%)	58% (20%)
Grades 3–4 neutropenia > 1 month Grades 3–4 thrombocytopenia > 1 month	41% 48%	10% 25%

CAR T-cell therapy in earlier lines

KarMMa-3: Ide-cel vs SOC After 2-4 Lines

Baseline characteristics

Median age	63 yrs
Median time since diagnosis	4.1 yrs
Median prior therapies	N=3
Triple-class refractoriness	66%
Daratumumab refractoriness	95%
High-risk cytogenetics	44%

Phase 3 KarMMa-3 study compared ide-cel vs SOC in R/R patients MM after 2-4 prior lines

KarMMa-3: Response and PFS

Response PFS VGPR PR sCR 1.0-Probability of Progression-free Survival 0.9-Difference in ORR, 29.6% 100 P<0.0001 0.8-90 0.73 Median Progression-free 0.7-Survival (95% CI) Overall 80 0.6response, 71.3 mo 0.55 70 Ide-cel 13.3 (11.8-16.1) 0.5-**Standard Regimen** 4.4 (3.4-5.9) Response, % 0.40 0.4-60 0.30 Hazard ratio for disease progression Ide-ce CR rate 10.0 0.3-Overall 50 or death, 0.49 (95% CI, 0.38-0.65) 38.6 response, 41.7 P<0.001 0.2-CR rate 40 5.3 0.1-0.8 Standard regimen MIR-30 0.0-15 18 21 24 27 30 33 12 0 2811 20 Months since Randomization No. at Risk 10 Ide-cel 254 206 178 149 110 62 22 40 14 0 7 6 Standard regimen 132 75 42 32 25 13 10 2 0 0 Standard Regimen Ide-cel (n=254) (n=132)

Phase 3 KarMMa-3 study compared ide-cel vs SOC in R/R patients MM after 2-4 prior lines

CARTITUDE-4: Cilta-cel vs DPd/PVd After 1-3 Lines

Trial design Screening SOC arm Randomization Key inclusion criteria: Age ≥18 years 1:1 with MM randomization 1–3 prior LOT Day 1: Day 1-112: Bridging (including PI + IMiD) Cilta-cel Collect safety. PVd or Follow-up efficacy. infusion Stratified by: Len refractory DPdP (Target: 0.75×10⁶ PK/PD data Choice of ≥1 cycle ECOG PS ≤1 CAR+ T cells/kg) every 28 days PVd/DPd Key exclusion criteria: ISS stage Number of Cilta-cel arm Prior CAR-T or Lymphodepletion prior LOT **BCMA-targeting** Apheresis therapy (start of study treatment) T-cell transduction and expansion Secondary endpoints Primary endpoint Efficacy: ≥CR, ORR, MRD negativity, OS PFS^c Safety PROs

Baseline characteristics

Median age	61.5 yrs
Median time since diagnosis	3 yrs
Median prior therapies	N=2
Triple-class refractoriness	14.4%
Daratumumab refractoriness	23.1%
High-risk cytogenetics	59.4%

Phase 3 CARTITUDE-4 compared cilta-cel vs SOC in R/R patients MM after 1-3 prior lines

CARTITUDE-4: Response and PFS

Phase 3 CARTITUDE-4 compared cilta-cel vs SOC in R/R patients MM after 1-3 prior lines

CARTITUDE-4 Study Update: Overall Survival with Ciltacabtagene Autoleucel in Lenalidomide-Refractory MM

Mateos M-V et al. Oral presentation at IMS 2024, September 25-28 2024, Rio de Janeiro, Brazil.

ess Relationships

Watch Audio

dio Live TV (

FDA warns of secondary cancer risk tied to CAR-T therapies that treat cancer

By Jacqueline Howard, CNN

④ 5 minute read · Updated 4:36 PM EST, Wed January 24, 2024

MORE FROM CNN

Global cancer cases will jump 77% by 2050, WHO report ...

FDA looking into reports of hair loss, suicidal thoughts in ...

FDA urges consumers not to buy tianeptine

Second Primary Cancers after CAR T Cells

BCMA-Targeting Bispecific Antibodies

1. Nooka AK et al. ASCO 2022. Abstract 8007. 2. Lesokhin AM et al., Nat Med 2023. 3. Voorhees PM et al. *Blood*. 2022;140(Supplement 1):4401-4404. 4. Hans CL et al. ASCO 2023. Abstract 8006. 5. Wong S et al. ASH 2019. Abstract 162. 6. Suvannasankha A et al. AACR 2023. Abstract CT013. 7. Abdallah AO et al. *Blood*. 2022;140(Supplement 1):7284-7285

Teclistamab: MajesTEC-1 in relapsed/refractory myeloma

Eligibility

≥3 prior lines Prior PI, IMiD, and anti-CD38 therapy No prior BCMA therapy

Patient demographics

Treatment history	N = 165
Prior lines of therapy, median (range)	5 (2-14)
Triple-class exposed refractory	100% 77.6%
Penta-drug exposed refractory	70.3% 30.3%
Refractory to last line of therapy	89.7%

Treatment

Step-up doses, subcutaneous: 0.06 and 0.3 mg/kg in week 1 1.5 mg/kg sc weekly 48 hour hospitalization after step up doses and first full dose to monitor for CRS

Step up dosing to mitigate risk of severe CRS CRS generally observed during step up and first full doses of teclistamab Subcutaneous injection: greater convenience and may delay CRS due to more gradual absorption (trial initially used iv route before moving to sc route)

Teclistamab continued

Median PFS 11.4 months

Belantamab mafodotin, ORR 31%, median PFS 2.9 months Lonial S et al., *Lancet Oncol* 2019

Promising ORR 63% and median PFS 11.4 months in tripleclass treated patients in an off-the-shelf treatment, requiring monitoring for CRS (72.1% of patients)

Moreau P et al., ASCO 2022; Moreau P et al., N Engl J Med 2022; Garfall A et al, ASCO 2024

Parameter	N = 165				
Cytokine release syndrome					
Any CRS	72.1%				
Grade 1	50.3%				
Grade 2	21.2%				
Grade 3	0.6%				
≥2 CRS events	32.7%				
Time to onset, median (range)	2 (1-6)				
Tocilizumab	36.4%				
Supplemental oxygen	12.7%				
Corticosteroids	8.5%				
Single vasopressor	0.6%				
Neurotoxicity					
Headache	8.5%				
ICANS	3%				

CRS in cycle 2+ 3.6%

Among patients with CRS and times recorded (N = 59), median time to CRS was 29 hours (range 4-72) after step up dose 1 and 31 hours (range 9-72) after step up dose 2

Adverse events related to infection Grade 3-4 infections, 44.8% 123 patients, 74.5% had hypogammaglobulinemia 65 of these patients received IVIG at physician discretion PCP pneumonia: 6 patients Serious COV/ID10 infections: 24 patients (includes 12 dec

Serious COVID19 infections: 24 patients (includes 12 deaths) *Trial enrolled patients between March 2020 and August 2021*

Elranatamab, 2nd anti-BCMA bispecific antibody approved (Aug 2023)

MagnetisMM-3

Phase 2 study in triple class refractory patients Cohort A (N = 123), BCMA naive

PFS at 15 months, 50.9%

Lesokhin AM et al., Nat Med 2023

Linvoseltamab induced high response rate and deep responses

117 patients enrolled into the 200 mg dosing cohorts* was 14.3 months.
> ORR was 71%, with 49.6% of patients achieving

CR or better.

Median duration of follow-up for the

S6 phase II patients switched to Q4W dosing after ≥24 weeks treatment.**

➤ Among patients with ≥CR and MRD evaluable (threshold 10⁻⁵) by either EuroFlow⁺ or clonoSEQ⁺, 92.6% (25/27) were MRD negative.

*phase 1: 12 patients; phase 2: 105 patients.

**In the Phase 2 portion of the trial (n=105), 62 patients who had \geq 24 weeks of therapy; 56/62 achieved \geq VGPR and switched to Q4W therapy.

⁺EuroFlow, N=6, clonoSEQ, N=21.

CR, complete response; IRC, independent review committee; MRD, minimal residual disease; ORR, overall response rate; PR, partial response;

sCR, stringent CR; VGPR, very good partial response.

Responses to linvoseltamab were durable

CI, confidence interval; DOR, duration of response; NE, not evaluable.

Bumma N et al. J Clin Oncol 2024;42(22):2702-2712.

Talquetamab: MonumenTAL-1

	0.4 mg/kg SC qW N = 143	0.8 mg/kg SC q2W N = 145	Prior TCR N = 151
Triple class exp refractory	100% 74%	100% 69%	100 84%
BCMA	0%	0%	100%
ORR	74%	72%	65%
12 m PFS	34.9%	54.4%	38.1%
12 m OS	76.4%	77.4%	62.9%

Prior TCR = CAR T-cells (N = 36) and prior bispecific antibody (N = 18); patients were on either dosing schedule

Schinke C et al., ASCO 2023

Dysgeusia, skin, and nail changes are notable adverse events with anti-GPRC5D therapy

MonumenTAL-1

Less infections than with e.g. teclistamab

AEs (≥30% in any	0.4 mg/kg SC QW (n=143)		0.8 mg/kg SC Q2W (n=145)		Prior TCR (n=51)	
cohort), n (%)	Any Grade	Grade 3/4	Any Grade	Grade 3/4	Any Grade	Grade 3/4
Nonhematologic AE	S					
CRS ^b	113 (79.0)	3 (2.1)	108 (74.5)	1 (0.7)	39 (76.5)	1 (2.0)
Dysgeusia ^c	103 (72.0)	NA	103 (71.0)	NA	39 (76.5)	NA
Infections ^d	84 (58.7)	28 (19.6)	96 (66.2)	21 (14.5)	37 (72.5)	14 (27.5)
Skin related ^e	80 (55.9)	0	106 (73.1)	1 (0.7)	35 (68.6)	0
Nail related ^f	78 (54.5)	0	78 (53.8)	0	32 (62.7)	0
Weight decreased	59 (41.3)	3 (2.1)	60 (41.4)	8 (5.5)	15 (29.4)	0
Rash related ^g	57 (39.9)	2 (1.4)	43 (29.7)	8 (5.5)	18 (35.3)	2 (3.9)
Pyrexia	56 (39.2)	4 (2.8)	40 (27.6)	2 (1.4)	16 (31.4)	0
Dry mouth	38 (26.6)	0	58 (40.0)	0	26 (51.0)	0
Fatigue	35 (24.5)	5 (3.5)	40 (27.6)	1 (0.7)	23 (45.1)	1 (2.0)

Belantamab Mafodotin: Come back kid?

- B-cell maturation antigen (BCMA)
 - Selectively expressed on plasmablasts and plasma cells
 - Requisite for long-lived plasma cell survival
- Belantamab mafodotin
 - Humanized afucosylated IgG1 ADC targeting BCMA
 - Multimodal mechanisms of action (MOA)
 - Convenient IV 0.5-1—hour outpatient infusion

IV = intravenous.

DREAMM-7: BVd led to a significant increase in PFS vs DVd

PFS benefit with a median PFS that was 23 months longer than DVd (36.6 vs 13.4 months)

HR, hazard ratio; IRC, independent review committee; mPFS, median PFS; NR, not reached.

ASCO Plenary Series

^a Two patients in the ITT population were randomized, not treated, re-screened, and re-randomized. They are counted as 4 unique patients in this output. ^b Cls were estimated using the Brookmeyer Crowley method. ^c HRs were estimated using a Cox proportional hazards model stratified by the number of lines of prior therapy (1 vs 2 or 3 vs ≥4), prior bortezomib, and R-ISS at screening (I vs II/III), with a covariate of treatment. ^d P value from 1-sided stratified log-rank test.

#ASCOPIenarySeries PRESENTED BY: María Victoria Mateos Manteca, MD, PhD

BPd Led to a Significant PFS Benefit vs PVd

Median follow-up, 21.8 months (range, 0.03-39.23 months)

#ASCO24

The treatment effect (HR and corresponding 95% CIs) was estimated using the stratified Cox proportional hazards model, and the *P* value was produced based on the 1-sided stratified log-rank test. Stratified analyses were adjusted for number of prior lines of therapy and prior bortezomib use.

BPd, belamaf, pomalidomide, and dexamethasone; HR, hazard ratio; NR, not reported; PFS, progression-free survival; PVd, pomalidomide, bortezomib, and dexamethasone

PRESENTED BY: SUZANNE Trudel, MD

a

DREAMM-8 Belantamab

Mafodotin

+ Pd

Questions and Challenges

- Moving therapies early
- Sequencing
- Duration
- Combinations

Sequencing: CAR-T Cell Therapy After BCMA-Targeted Therapy

CARTITUDE-2, Cohort C: Cilta-cel Patients with RRMM with previous exposure to PI, IMiD agent, anti-CD38 mAb, and a non-cellular BCMA-targeting therapy¹

	Median PFS					
	Full cohort (N = 20)	ADC exposed (n = 13)	BsAb exposed (n = 7)			
PFS, mo (95% CI)	9.1 (1.5-13.2)	9.5 (1.0-15.2)	5.3 (0.6-NE)			

Real-world experience of patients with multiple myeloma receiving idecel after a prior BCMA-targeted therapy²

15

1. Cohen et al. *Blood*. 2023;141(3):219-230. 2. Ferreri CJ et al. *Blood Cancer J*. 2023;13:117; abstract 766.
Outcomes With Bispecific Antibodies After Prior BCMA-Directed Therapy

- Moving therapies early can impact later therapies
- Sequencing and maintenance?
- With early—no more one and done?
- Combinations

Questions over the next 5 years

- Can we use fixed duration treatment based on MRD?
- Can we use immunotherapy early and replace transplant with immunotherapies?
- Can we use risk adapted approaches?
- Can we combine TCRs?
- Where will belamaf fit?
- Will we compare CARs versus Bispecifics?

Oncology Today – Managing Peripheral T-Cell Lymphoma

Steven Horwitz, MD

DR LOVE: Any thoughts about the T-cell lymphomas reported after patients receive CAR T-cell therapy?

DR HORWITZ: Some of those cases are probably people who had underlying angioimmunoblastic T-cell lymphoma that wasn't appreciated, because sometimes the large B-cell lymphoma is the dominant process at diagnosis and you'll treat those people with R-CHOP and then at recurrence you see the T-cell lymphoma. And when we see those people, often we've been able to go back and find evidence of a T-cell lymphoma in the genetics from the baseline sample. So we think those are probably people who had both a follicular helper T-cell lymphoma and an EBV-driven large B-cell lymphoma. So some of those cases the T-cell lymphoma we think was preexisting and not just CAR if that makes sense. The follicular helper biology is interesting.

Thank you for joining us!

CME/MOC, ACPE and NCPD credit information will be emailed to each participant within 5 business days.

