Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

A CME/MOC-, ACPE- and NCPD-Accredited Event

Saturday, October 26, 2024 7:15 AM – 12:30 PM ET

Welcome FCS Members!

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the premeeting survey.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Clinicians Attending via Zoom

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the premeeting surveys.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME/ACPE/NCPD Credit: A credit link will be provided in the chat room at the conclusion of the program.

This educational activity contains discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.

Join Us In Person or Virtually

Cases from the Community: Integrating New Research Findings into Practice

A Multitumor Educational Symposium in Partnership with the American Oncology Network Saturday, November 16, 2024

Lung Cancer Update: Antibody-Drug Conjugates and New Approaches Faculty Edward B Garon, MD, MS

Leukemia and Myelodysplastic Syndromes Faculty Harry Paul Erba, MD, PhD

Moderator Stephen "Fred" Divers, MD

Join Us In Person or Virtually

Cases from the Community: Integrating New Research Findings into Practice

A Multitumor Educational Symposium in Partnership with the American Oncology Network Saturday, November 16, 2024

Myelofibrosis Faculty Faculty to be announced.

Gynecologic Cancers Faculty Kathleen N Moore, MD, MS

Moderator Stephen "Fred" Divers, MD

Join Us In Person or Virtually

Cases from the Community: Integrating New Research Findings into Practice

A Multitumor Educational Symposium in Partnership with the American Oncology Network Saturday, November 16, 2024

Hepatobiliary Cancers Faculty Daneng Li, MD Colorectal and Gastroesophageal Cancers Faculty Christopher Lieu, MD

Moderator Stephen "Fred" Divers, MD

Exploring the Current Management Paradigm for Patients with Metastatic Triple-Negative Breast Cancer

A CME/MOC-Accredited Live Webinar

In Partnership with Florida Cancer Specialists & Research Institute

Monday, November 18, 2024 5:00 PM – 6:00 PM ET

Faculty Priyanka Sharma, MD Sara M Tolaney, MD, MPH

> Moderator Neil Love, MD

Metastatic Triple-Negative Breast Cancer Survey for Florida Cancer Specialists Members

Dear Dr,

On behalf of Dr Neil Love and Research To Practice, I am pleased to extend an invitation to participate in a survey focused on your usual treatment approaches for metastatic triple-negative breast cancer (mTNBC). We are conducting this survey in conjunction with a webinar we are hosting in November. Note, if you have already received this email, and not completed the survey, it has been slightly revised.

For this survey, we will ask for de-identified information on a minimum of 2 and up to 4 patients from your practice with mTNBC whom you have treated within the past 18 months. Additionally, we will ask that you provide 1 question to the faculty related to each case. You will also have the opportunity to weigh in on your preferred treatment options for a number of mTNBC scenarios.

The survey will take approximately <u>30 minutes</u> to complete, and you will receive a <u>\$400</u> <u>honorarium</u> for your participation and providing 2 cases, and up to \$500 for providing information related to 4 cases from your practice. If you would like to participate, we ask that you please complete the survey no later than <u>Friday</u>, <u>November 8, 2024</u>.

To get started, click the link below:

CLINICAL SURVEY

V a	What Clinicians Want to Knows nd Controversies in the Manag	Addressing Current Questions gement of Hematologic Cancers
	A CME Friday Satellite Symp Preceding the 66 th ASH Ann	oosium and Webcast Series ual Meeting and Exposition
	Friday, Decer	nber 6, 2024
	Chronic Myeloid Leukemia 7:30 AM – 9:00 AM PT	Myelofibrosis 11:30 AM – 1:30 PM PT
	Chronic Lymphocytic Leukemia 7:30 AM – 9:30 AM PT	Acute Myeloid Leukemia 3:15 PM – 5:15 PM PT
	CAR T-Cell Therapy and Bispecific Antibodies in Lymphoma 11:30 AM – 1:30 PM PT	Multiple Myeloma 3:15 PM – 5:15 PM PT
		DTD

RESEARCH TO PRACTICE Rounds with the Investigators: Compelling Teaching Cases Focused on the Management of Breast Cancer A 3-Part CME Hybrid Satellite Symposium Series in Partnership with the 2024 San Antonio Breast Cancer Symposium®

HER2-Low and HER2-Ultralow Breast Cancer Tuesday, December 10, 2024 7:15 PM – 8:45 PM CT New Developments in Endocrine Treatment for Breast Cancer Wednesday, December 11, 2024 7:15 PM – 9:15 PM CT

Management of Metastatic Breast Cancer Thursday, December 12, 2024 7:15 PM – 9:15 PM CT

> Moderator Neil Love, MD

Save The Date

Fourth Annual National General Medical Oncology Summit

A Multitumor CME/MOC-, ACPE- and NCPD-Accredited Educational Conference Developed in Partnership with Florida Cancer Specialists & Research Institute

Friday to Sunday, February 28 to March 2, 2025

Fontainebleau Hotel, Miami Beach, Florida

Moderated by Neil Love, MD

Agenda

Module 1 — HR-Positive Breast Cancer: Drs O'Shaughnessy and Wander

Module 2 — Prostate Cancer: Drs M Smith and Srinivas

Module 3 — Lung Cancer: Drs Goldberg and Sabari

Module 4 — Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia: Drs Kahl and S Smith

Module 5 — Multiple Myeloma: Drs Lonial and Raje

Agenda

Module 1 — HR-Positive Breast Cancer: Drs O'Shaughnessy and Wander

Module 2 — Prostate Cancer: Drs M Smith and Srinivas

Module 3 — Lung Cancer: Drs Goldberg and Sabari

Module 4 — Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia: Drs Kahl and S Smith

Module 5 — Multiple Myeloma: Drs Lonial and Raje

HR-Positive Breast Cancer Faculty

Joyce O'Shaughnessy, MD

Celebrating Women Chair in Breast Cancer Research Baylor University Medical Center Chair, Breast Disease Committee Sarah Cannon Research Institute Dallas, Texas

Seth Wander, MD, PhD

Assistant Professor of Medicine Harvard Medical School Attending Physician Massachusetts General Hospital Boston, Massachusetts

Module 1 Hormone Receptor-Positive Breast Cancer

Joyce O'Shaughnessy, MD

Celebrating Women Chair in Breast Cancer Research Baylor University Medical Center Texas Oncology Sarah Cannon Research Institute Dallas TX

Which HR+ HER2- EBC Patients Benefit from Chemotherapy?

Courtesy of Peter Schmid, FRCP, MD, PhD	NO			N+ 1-3LN			N ≥4LN
	0-10	11-25	>25	0-10	11-25	>25	
Premenopausal	ET	11-15 16-20 21-25 ET ET Low risk CET CET high risk	CET	ET	СЕТ	CET	CET
Postmenopausal	0-10 ET	11-25 ET	>25 CET	0-10 ET	11-25 ET	>25 CET	CET

70-gene Signature

Clinical High Risk + Genomic Low Risk 0-3+ nodes

Postmenopausal ET Premenopausal CET

< 20% premen HR+ pts TAILORx, RxPONDER and MINDACT had LHRH agonist

T1aN0: ER+ and HER2+/-: Endocrine therapy only and ER- HER2+ and TN no chemoRx T1bN0: Consider chemoRx (+ trastuzumab and ET as appropriate)

Ovarian ablation/suppression vs not: Recurrence by method (B) No chemotherapy or premenopausal after

Gray R, et al. EBCTCG, ASCO 2023

RxPONDER Subset Analysis: iDFS by Menopausal Status

Premenopausal, HR+ HER2- EBC, 1-3 LN+ (SLND or ALND), Oncotype RS <25, candidate for chemo

- No significant iDFS difference for postmenopausal women
- Assessed benefit chemotherapy in pts <55 yrs of age using serum markers of ovarian function/reserve
- Less iDFS benefit in "premenopausal" women ≥50 to 55 yrs of age
- Low serum anti-Müllerian hormone and inhibin B are markers of diminished ovarian reserve and lack of benefit from adjuvant chemotherapy

BR009: Schema

* Tamoxifen can be used if AI is not tolerated

BCI: predicting benefit from extended ET

H/I – Measure of ET-sensitivity; how driven by ER BC is

- In patients with node negative or 1-3 LN+, can consider using Breast Cancer Index or other tests (e.g., CTS5 Dowsett, JCO 2018; <u>https://cts5-calculator.com</u>) to help guide decisions about extended ET
- All patients with >4 nodes should receive extended ET (no evidence to use BCI or other tools). ASCO, Andre F et al. JCO 2022

Zhang Y. et al. Clin Cancer Res. 2013;19(15):4196-4205. 2. Sgroi DC, et al. J Natl Cancer Inst. 2013;105(14):1036-1042. 3. Bartlett JMS, et al. Ann Oncol. 2019;300(11):1776-1783. 4. Noordhoek I, et al. Clin Cancer Res. 2021;27(1):311-319. 5. Mamounas EP, et al. Abstract 501: ASCO June 2021. 6. Simon RM, et al. J Natl Cancer Inst. 2009;101(21):1446-1452.

Pratt discussion, ESMO 2022

NCCN Guidelines: Gene Expression Assays for Consideration of Adjuvant Systemic Therapy

Assay	Predictive	Prognostic	NCCN Category of Preference	NCCN Category of Evidence and Consensus	
21-gene (Oncotype Dx) (for pN0)	Yes	Yes	Preferred	1	
21-gene (Oncotype Dx)		Mas	Postmenopausal: Preferred	1	
for pN1 (1-3 positive nodes)	Yes	res	Premenopausal: Other	2A	
70-gene (MammaPrint) for pN0 and pN1 (1-3 positive nodes)	Not determined	Yes	Other	1	
50-gene (Prosigna) for pN0 and pN1 (1–3 positive nodes)	Not determined	Yes	Other	2A	
12-gene (EndoPredict) for pN0 and pN1 (1-3 positive nodes)	Not determined	Yes	Other	2A	
Breast Cancer Index (BCI)	Predictive of benefit of extended adjuvant endocrine therapy	Yes	Other	2A	

National Comprehensive Cancer Network (NCCN[®]). NCCN clinical practice guidelines in oncology. Breast cancer — Version 5.2024. https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Accessed October 2024.

Adjuvant Abemaciclib in HR+/HER2-, Node-Positive, High-Risk EBC Phase 3 monarchE Study Design

91%

Key eligibility criteria:

- HR-positive/HER2negative high-risk EBC
- Women or men
- Premenopausal/ postmenopausal
- With or without prior neoadjuvant and/or adjuvant chemotherapy
- No metastatic disease **9%**
- Maximum of 16 mo from surgery to randomization and 12 wks of ET after last non-ET

- Cohort 1: High-risk based on clinical pathological features
- \geq 4 ALN or
- 1-3 ALN and \geq 1 of the below:
- Grade 3 disease
- Tumor size \geq 5 cm

ITT includes both Cohort 1 and Cohort 2

Cohort 2: High-risk based on Ki-67

- 1-3 ALN and
- Ki-67 ≥ 20% and
- No grade ≥ 3 tumor and tumor size not ≥ 5 cm

Secondary objectives: IDFS (high Ki-67), DRFS, OS, safety, PK, PROs

monarchE: 5-Yr Update Adjuvant Abemaciclib in HR+/HER2- EBC IDFS and OS in ITT

monarchE: Dose Reductions and Efficacy of Adjuvant Abemaciclib

- Dose reductions were not associated with decreased benefit
- Similar efficacy for maintaining full dose vs reducing dose when accounting for timing of dose reductions

FDA Approves Ribociclib with an Aromatase Inhibitor and Ribociclib in Combination with Letrozole for Localized High-Risk Breast Cancer Press Release: September 14, 2024

"The Food and Drug Administration approved ribociclib with an aromatase inhibitor for the adjuvant treatment of adults with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative stage II and III early breast cancer at high risk of recurrence. Additionally, FDA also approved the ribociclib and letrozole co-pack for the same indication.

Efficacy of ribociclib with a non-steroidal aromatase inhibitor (NSAI) was evaluated in NATALEE (NCT03701334), a randomized, open-label, multicenter trial in 5101 adults with HR-positive, HER2-negative early breast cancer. The trial included patients with any lymph node involvement (excluding microscopic nodal involvement), or if there was no nodal involvement, either tumor size > 5 cm, or tumor size 2 to 5 cm with either Grade 2 (and high genomic risk or Ki67 \ge 20%) or Grade 3. The main efficacy outcome measure was invasive disease-free survival (iDFS). A statistically significant improvement in iDFS was observed in the intent-to-treat patient population at an interim analysis. Efficacy results at the final iDFS analysis showed that iDFS at 36 months was 90.7% in the ribociclib + NSAI arm and 87.6% in the NSAI arm, with a hazard ratio of 0.749. At the time of the iDFS final analysis, OS was immature.

In the adjuvant treatment setting, the recommended ribociclib dose is 400 mg (two 200 mg film-coated tablets) taken orally, once daily for 21 consecutive days followed by 7 days off in 28-day treatment cycles. Refer to the prescribing information for the recommended dosage of the aromatase inhibitor. Ribociclib has newly updated storage conditions. Ribociclib should now be refrigerated until dispensed to patients. After dispensing, healthcare providers should advise patients to store ribociclib at room temperature for up to 2 months."

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ribociclib-aromatase-inhibitor-and-ribocicliband-letrozole-co-pack-early-high-risk-0

NATALEE: Study Design and Methods

^a Enrollment of patients with stage II disease was capped at 40%. ^b 5101 patients were randomized from 10 Jan 2019 to 20 April 2021. ^c Open-label design. ^d Per investigator choice.

1. ClinicalTrials.gov. Accessed March 15, 2024. https://clinicaltrials.gov/ct2/show/NCT03701334. 2. Slamon DJ, et al. Poster presented at: ASCO 2019. Poster TPS597. 3. Slamon DJ, et al. Ther Adv Med Oncol. 2023;15:1-16. 4. Hortobagyi, G, et al. Oral presentation at: SABCS 2023. Oral GS03-03.

All patients are off RIB, and 62.8% completed the 3-year duration

n (%)	RIB + NSAI n=2549		NSAI alone n=2552	
Randomized	2549 (100)		2552 (100)	
Treated	2526 (99.1)		2441 (95.7)	
NSAI treatment ongoing	1794 (70.4)		1628 (63.8)	
Completed 3 y RIB treatment	1601 (62.8)		_	
Completed 5y study treatment	10 (0.4)		9 (0.4)	
	RIB	NSAI	NSAI	÷
Early discontinuation	923 (36.2)	722 (28.3)	804 (31.5)	
Primary reason for early discontinuation				A
AE	509 (20.0)	136 (5.3)	124 (4.9)	n à li
Disease relapse	127 (5.0)	196 (7.7)	267 (10.5)	
Patient/physician decision	160 (6.3)	206 (8.1)	189 (7.4)	
Lost to follow-up	8 (0.3)	15 (0.6)	21 (0.8)	
Death	5 (0.2)	9 (0.4)	6 (0.2)	
Other ^a	114 (4.5)	160 (6.2)	197 (7.7)	

 At the data cutoff, median duration of exposure to study treatment was 45.1 months in the RIB + NSAI arm vs 45.0 months in the NSAI alone arm

AE, adverse event; NSAI, nonsteroidal aromatase inhibitor; RIB, ribocidib. ^a Other includes withdrawal by patient, protocol deviation, among other reasons.

EXAMPLES NOTION NATALEE: iDFS in ITT Population

Significant iDFS benefit with RIB + NSAI after the planned 3-year treatment

iDFS, invasive disease–free survival; ITT, intent to treat; NSAI, nonsteroidal aromatase inhibitor; RIB, ribociclib. ^a An additional 10.9 months of follow-up compared with the protocol-specified final iDFS analysis.

Peter A. Fasching

EXAMPLE IN ATALEE: iDFS by Nodal Status

RIB + NSAI showed an increasing magnitude of iDFS benefit over time for patients with N0 or N1-3 disease

iDFS, invasive disease-free survival; N, node; NSAI, nonsteroidal aromatase inhibitor; RIB, ribociclib.

NATALEE: IDFS BY DOSE REDUCTIONS

Landmark analysis revealed that RIB dose reduction due to AEs did not impact efficacy

^a Of dose reduction time, calculated from randomization

AE, adverse event; iDFS, invasive disease-free survival; RIB, ribociclib.

Carlos Barrios, MD

Overall Survival in MBC Patients Treated with CDK4/6i

		Treatment Arm: OS, Median, Mo	Placebo Arm: OS, Median, Mo	Hazard Ratio	Hazard Ratio (95% CI)	P Value	Significance reached vs placebo ^a
۲	PALOMA-2 ¹ Palbociclib + letrozole	53.9	51.2		0.956 (0.777-1.177)	0.3378	×
2	PALOMA-3 ² Palbociclib + fulvestrant	34.9	28.0	I	0.81 (0.64-1.03)	.09	×
Ш	MONARCH 2 ³ Abemaciclib + fulvestrant	46.7	37.3	⊢	0.76 (0.61-0.95)	.01	✓
Ā	MONARCH 3 Abemaciclib + NSAI	66.8	53.7	⊢−−−	0.804 (0.637-1.015)	.0664	×
	MONALEESA-2 ^{4,5} Ribociclib + letrozole	63.9	51.4	⊢	0.76 (0.63-0.93)	.004	\checkmark
RIBO	MONALEESA-7 ⁶ Ribociclib + goserelin + tamoxifen/NSAI	NR	40.9	⊢−−− ■−−−−−1	0.71 (0.54-0.95)	.00973	~
	MONALEESA-3 ⁷ Ribociclib + fulvestrant	NR	40.0	⊢−− ■−−−−−1	0.72 (0.57-0.92)	.00455	\checkmark
			0	.4 0.6 0.8 1.0 1.2 Favors CDK4/6i Favors PBO	•		

^a The red × denotes trials that did not report significant median OS compared with placebo. ABC, advanced breast cancer; ABE, abemaciclib; NR, not reached; NSAI, non-steroidal aromatase inhibitor; OS, overall survival; RIBO, ribociclib; PAL, palbociclib. 1. Finn RS, et al. J Clin Oncol. 2022; 40 (suppl 17; abstr LBA1003). 2. Turner NC, et al. *N Engl J Med.* 2018;379:1926-1936. 3. Sledge GW, et al. *JAMA Oncol.* 2020;6:116-124. 4. Hortobagyi GN, et al. *N Engl J Med.* 2022;386:942-950. 5. Hortobagyi GN, et al. ESMO 2021. Oral LBA17_PR. 6. Im SA, et al. *N Engl J Med.* 2019;381:307-316. 7. Slamon DJ, et al. *N Engl J Med.* 2020;382:514-524.

postMONARCH as 2L ER+ MBC Investigator-Assessed PFS

S		+ Fulvestrant N=182 (%)	Fulvestrant N=186 (%)
Measurable Disease		72	68
Visceral metastasis		62	59
Site of Metastasis	Liver	37	38
	Bone-Only	18	23
Prior CDK4/6i Setting	ABC	100	98
	Adjuvant	0	2
Prior CDK4/6i	Palbociclib	59	59
	Ribociclib	34	33
	Abemaciclib	8	8
Prior CDK4/6i Duration	≥12 months*	71	77
	<12 months*	29	22

Abemaciclib

Placebo+

			Abemaciclib Arm Placebo Arm		
	n	events	HR	(95% CI)	Interaction p-value
Overall	368	258	0.73 (0	0.57, 0.95	10
Age					0.38
<65 years	244	173	0.79	(0.59, 1.07)	
≥65 years	124	85	0.63	(0.41, 0.97)	
Region					0.82
Other	267	193	0.71	(0.53, 0.94)	
USA	56	31	0.89	(0.44, 1.80)	
East Asia	45	34	0.80	(0.41, 1.58)	
Measurable Disease					0.98
Yes	258	192	0.72	(0.54.0.95)	
No	110	66	0.71	(0.44, 1.16)	
/isceral Metastasis					0.07
Yes	221	173	0.87	(0.64, 1.17)	
No	147	85	0.53	(0.34, 0.83)	
Liver Metastasis					0.40
Yes	139	115	0.63	(0.44, 0.91)	
No	229	143	0.78	(0.56, 1.09)	
Bone-Only Disease					0.23
Yes	74	46	0.51	(0.28, 0.95)	
No	294	212	0.78	(0.59, 1.02)	
PR Status					0.95
Positive	294	201	0.75	(0.57, 0.99)	
Negative	69	53	0.73	(0.43, 1.26)	
Prior CDK4/6i Duration			1	Contraction of the	0.63
ABC ≥12 mo, or after adjuvant CDK4/6i	273	188	0.70	(0.52, 0.94)	
ABC <12 mo. or during adjuvant CDK4/6i	93	69	0.80	0 50 1 29)	
Prior CDK4/6i			,,		0.19
Palbociclib	217	145	0.62	(0 44 0.86)	0.10
Ribociclib	122	94	101	0 67 1 51)	
Abemaciclib	28	19 1	0.66	0 27 1 64)	
Abemaciclib	28	19		(0.27, 1.64)	

2024 ASCO #ASCO24

postMONARCH as 2L ER+ MBC Investigator-Assessed PFS

No visceral metastasis

Prior CDK4/6i Duration ≥ 12 months*

#ASCO24 PRESENTED BY: Antonio C. Wolff, MD, FACP, FASCO

2024 ASCO

ANNUAL MEETING

FDA Approves Inavolisib for Endocrine-Resistant, HR-Positive, HER2-Negative Metastatic Breast Cancer with a PIK3CA Mutation Press Release: October 10, 2024

"The Food and Drug Administration approved inavolisib with palbociclib and fulvestrant for adults with endocrineresistant, PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth-factor receptor 2 (HER2)negative, locally advanced or metastatic breast cancer, as detected by an FDA-approved test, following recurrence on or after completing adjuvant endocrine therapy. FDA also approved the FoundationOne Liquid CDx assay as a companion diagnostic device to identify patients with breast cancer for treatment with inavolisib with palbociclib and fulvestrant.

Efficacy was evaluated in INAVO120 (NCT04191499), a randomized, double-blind, placebo-controlled, multicenter trial in 325 patients with endocrine-resistant, PIK3CA-mutated HR-positive, HER2-negative locally advanced or metastatic breast cancer whose disease progressed during or within 12 months of completing adjuvant endocrine therapy and who had not received prior systemic therapy for locally advanced or metastatic disease. Median PFS was 15.0 months in the inavolisib + palbociclib + fulvestrant arm and 7.3 months in the placebo + palbociclib + fulvestrant arm (Hazard ratio 0.43, *p*-value <0.0001). Interim analysis of overall survival based on 63% information fraction did not reach statistical significance but was supportive of the overall benefit risk assessment with a HR of 0.64.

The recommended inavolisib dose is 9 mg taken orally once daily, with or without food, until disease progression or unacceptable toxicity."

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-inavolisib-palbociclib-and-fulvestrant-endocrine-resistant-pik3ca-mutated-hr-positive

SABCS 2023: INAVO120 Primary Analysis

- More effective treatments for patients with PIK3CA mutations are needed
- Inavolisib is a highly potent and <u>selective PIK3α inhibitor</u> that also promotes degradation of mutant p110α, which may improve the therapeutic window

Stratification factors:

- Visceral Disease (Yes vs. No)
- Endocrine Resistance (Primary vs. Secondary)[†]
- Region (North America/Western Europe; Asia; Other)

Endpoints

- Primary: PFS by Investigator
- Secondary: OS[‡], ORR, BOR, CBR, DOR, PROs

Komal Jhaveri, SABCS 2023

SABCS 2023: INAVO120 ORR and CBR

* Patients with a CR or PR on two consecutive occasions ≥4 weeks apart per RECIST v1.1.† Seven patients with CR, 87 patients with PR. [‡] One patient with CR, 40 patients with PR, 79 patients with SD, 34 patients with PD, and 10 with missing status. § Patients with a CR, PR, and/or SD for ≥24 weeks per RECIST v1.1. CBR, clinical benefit rate; CR, complete response; Fulv, fulvestrant; Inavo, inavolisib; ORR, objective response rate; Palbo, palbociclib; Pbo, placebo; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease.

SABCS 2023: INAVO120 PFS

CCOD: 29th September 2023

CI, confidence interval; Fulv, fulvestrant; Inavo, inavolisib; mo, months; Palbo, palbociclib; Pbo, placebo; PFS, progression-free survival.

Komal Jhaveri, SABCS 2023

INAVO120 Phase 3

Discontinuation rate of inavolisib due to any AE was 6.2%¹

Patients, n (%)	Hyperglycemia	Diarrhea	Rash	Stomatitis/ mucosal inflammation
Inavolisib interruption due to AE	44 (27.2)	11 (6.8)	2 (1.2)	16 (9.9)
Inavolisib reduction due to AE	4 (2.5)	2 (1.2)	1 (0.6)	6 (3.7)
Inavolisib discontinuation due to AE	1 (0.6)*	0	0	1 (0.6)

Juric D, et al. ASCO 2024. Abstract 1003

Updates on Endocrine Therapy

- 3 yrs of ribociclib in high/intermediate risk pts improves iDFS and DRFS
- Adjuvant abemaciclib increasing improvement in IDFS at 5 years
- 2L MBC abemaciclib plus fulvestrant had superior PFS to fulvestrant alone – may be an option for 2L therapy after 1L CDK 4/6 inhibitor for patients who are not candidates for *mESR1, PIK3CA, AKT or PTEN*directed therapy
- PI3K inhibitor inavolisib + fulvestrant + palbociclib in ET-resistant MBC approved by FDA for ET-resistant 1L pts with *PIK3CA*-mutant MBC and HgbA1c < 6%

Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

A CME/MOC-, ACPE- and NCPD-Accredited Event

Saturday, October 26, 2024 7:15 AM – 12:30 PM ET

Mass General Brigham Mass General Cancer Center

Module 1: Management of Relapsed/Refractory HR-Positive Metastatic Breast Cancer

October 26th, 2024

Florida Cancer Specialists Retreat

Research To Practice

Orlando, FL

Seth A. Wander, MD, PhD

Assistant Professor of Medicine

Harvard Medical School

Massachusetts General Hospital

swander@mgh.harvard.edu

Management of Refractory HR+ MBC

- Evolving Therapeutic Landscape and Resistance Mechanisms
- EMERALD: Elacestrant (oral SERD) for Endocrine Refractory HR+ MBC
- Emerging Oral SERDS: Imlunestrant and Camizestrant
- CAPItello-291: Capivasertib (AKTi) for HR+ MBC with PI3K Pathway Alterations
- DESTINY-Breast06: Trastuzumab deruxtecan (ADC) for HER2-low MBC
- TROPiCS-02: Sacituzumab govitecan (ADC) for refractory HR+ MBC
- TROPION-Breast01: Datopotamab deruxtecan (novel ADC) for refractory HR+ MBC
- Shifting Therapeutic Approaches and Future Directions

Metastatic Breast Cancer: The Road to Personalized Therapy

(PIK3CAm) – 1L Triplet

Targeted Therapies:

- CDK4/6 inhibitors Palbociclib, Ribociclib, Abemaciclib
- PI3K, mTOR, AKT inhibitors Everolimus, Alpelisib, Capivasertib, Inavolisib

Signal Transduction via CDK-Rb-E2F

Resistance Drivers Define New Therapeutic Targets

Cell cycle regulators

CCNE/CDK2 RB1/AURKA FAT1/CDK6

Oncogenic growth signaling mediators

Receptor tyrosine kinases RAS / MAPK pathway PI3K/AKT/mTOR pathway

EMERALD: Elacestrant, Phase III

- **Primary endpoint:** PFS by BICR in all patients and in patients with mutant *ESR1*
 - Overall population (power \ge 90% for HR of 0.667) or *ESR1*-mutated subset (power \ge 80% for HR 0.610) at an overall α level of 5%
- Secondary endpoints: OS, PFS by BIRC in patients with WT ESR1, PFS by investigator review, ORR, DoR, CBR, safety, PK, and QOL

*Investigator's choice of fulvestrant 500 mg IM on days 1 and 15 of cycle 1 and then on day 1 of 28-day cycles or an AI (continuous dosing of anastrozole 1 mg/day, letrozole 2.5 mg/day, or exemestane 25 mg/day). BIRC, blinded independent review committee; CBR, clinical benefit rate; IM, intramuscular; PD, progressive disease; PK, pharmacokinetics; QOL, quality of life.

Bardia A, et al. J Clin Oncol. 2020;38(suppl): Abstract TPS1104.

EMERALD: Elacestrant Efficacy

Patient Characteristics: Elacestrant vs. Control

- Prior Chemotherapy: 20% vs 24%
- ESR1m: 48% vs 47%
- Two prior lines of ET: 46% vs 41%

Median PFS Improvements:

ITT: 1.94 > 2.79m; HR (95%Cl) 0.68 (0.52-0.90), p=0.0049 ESR1m: 1.87 > 3.78m; HR (95%Cl) 0.50 (0.34-0.74), p=0.0005

Bidard FC et al JCO 2022

EMERALD: Elacestrant Efficacy in ESR1m

Bardia et al SABCS 2022 and CCR 2024

SERENA-2: Phase II, Camizestrant vs Fulvestrant

- Primary Endpoint: PFS
- Secondary Endpoints: CBR, ORR, OS, safety
- **Translational Endpoints:** ctDNA analysis, including *ESR1* mutations, CTC analysis

Oliveira et al SABCS 2022

SERENA-2: Camizestrant vs Fulvestrant PFS

Overall population: Improvements in PFS with both 75mg and 150mg doses ~3.7m > 7-8m

*HR adjusted for prior CDK4/6i and for lung/liver metastases.

Oliveira et al SABCS 2022

SERENA-2: PFS Outcomes by ESR1 Status

ESR1m Detectable at Baseline

ESR1m Not Detectable at Baseline

Camizestrant provokes benefit in the ESR1m subpopulation compared to fulvestrant Median PFS ~2.2m>6.3m>9.2m

*HRs adjusted for prior use of CDK4/6i and liver/lung metastases.

Oliveira et al SABCS 2022

Key Ongoing/Completed Metastatic Antiestrogen Trials

Agent	Elacestrant	Camizestrant	Imlunestrant +/- Abema	Vepdegestrant	Lasofoxifene + Abema	Amcenestrant	Giredestrant
Mechanism	SERD	SERD	SERD	PROTAC	SERM	SERD	SERD
Study	EMERALD ¹	SERENA-2 ^{2,3}	EMBER-3 ⁴	VERITAC-2 ⁵	ELAINE-3 ⁶	AMEERA-3 ^{7,8}	acelERA ^{9,10}
Control	Fulvestrant/AI	Fulvestrant	Fulvestrant/AI	Fulvestrant	Fulvestrant + Abema	Fulvestrant/AI/Tam	Fulvestrant/AI
Phase (N)	Phase III (477)	Phase II (240)	Phase III (860)	Phase III (560)	Phase III (400)	Phase II (290)	Phase II (303)
Prior CDK4/6i	Required	Permitted	Permitted	Required	Required	Permitted	Permitted
Prior Fulvestrant	Allowed	Excluded	Excluded	Excluded	Excluded	Allowed	Allowed
Results	Positive	Positive	Ongoing	Ongoing	Ongoing	Negative	Negative

1. Bidard et al JCO. 2022. 2. NCT04214288. 3. Oliveira et al SABCS 2022. 4. NCT04975308. 5. NCT05654623 6. NCT05696626 7. NCT04059484 8. Tolaney et al JCO. 2023 9. NCT04576455. 10. Jimenez et al. ESMO 2022.

Resistance Drivers Define New Therapeutic Targets

Oncogenic growth signaling mediators

Receptor tyrosine kinases RAS / MAPK pathway PI3K/AKT/mTOR pathway

Lloyd MR et al CCR 2022

CAPItello-291: Study overview

Phase III, randomized, double-blind, placebo-controlled study (NCT04305496)

Patients with HR+/HER2-ABC

- · Men and pre-/post-menopausal women
- Recurrence while on or <12 months from end of adjuvant AI, or progression while on prior AI for ABC
- ≤2 lines of prior endocrine therapy for ABC
- ≤1 line of chemotherapy for ABC
- Prior CDK4/6 inhibitors allowed (at least 51% required)
- No prior SERD, mTOR inhibitor, PI3K inhibitor, or AKT inhibitor
- HbA1c <8.0% (63.9 mmol/mol) and diabetes not requiring insulin allowed
- FFPE tumor sample from the primary/recurrent cancer available for retrospective central molecular testing

Dual primary endpoints

PFS by investigator assessment

- Overall
- AKT pathway-altered tumors (≥1 qualifying *PIK3CA*, *AKT1*, or *PTEN* alteration)

Key secondary endpoints

Overall survival

- Overall
- AKT pathway-altered tumors

Objective response rate

- Overall
- AKT pathway-altered tumors

HER2- was defined as IHC 0 or 1+, or IHC 2+/ISH-. *Region 1: United States, Canada, Western Europe, Australia, and Israel, Region 2: Latin America, Eastern Europe and Russia vs Region 3: Asia. ABC, advanced (locally advanced [inoperable] or metastatic) breast cancer.

Pre- or peri-menopausal women also received a luteinizing hormone-releasing hormone agonist for the duration of the study treatment

CAPItello-291: Capivasertib for HR+ MBC, PFS

DESTINY-Breasto6: T-DXd in Chemo-Naïve HR+ MBC

DESTINY-Breast06: a Phase 3, randomized, multicenter, open-label study (NCT04494425)

- HER2 expression (IHC 1+ vs IHC 2+/ISH- vs IHC 0 with membrane staining)
- Prior taxane in the non-metastatic setting (yes vs no)

DB-06: PFS (BICR) in HER2-low primary endpoint

T-DXd demonstrated a statistically significant and clinically meaningful improvement in PFS compared with standard-of-care chemotherapy in HER2-low

*P-value of <0.05 required for statistical significance

BICR, blinded independent central review; CI, confidence interval; HER2, human epidermal growth factor receptor 2; mo, months; (m)PFS, (median) progression-free survival; T-DXd, trastuzumab deruxtecan; TPC, chemotherapy treatment of physician's choice

Bardia A et al. *N Engl J Med* 2024 Sep 15;Online ahead of print Curigliano G et al ASCO 2024

DB-6: OS in HER2-low and ITT HER2-low*

20.1% of patients in the TPC group received T-DXd post treatment discontinuation (HER2-low)

17.9% of patients in the TPC group received T-DXd post treatment discontinuation (ITT)

Curigliano G et al ASCO 2024

*39.6% maturity (of total N for population) at this first interim analysis. Median duration of follow up was 18.6 months (HER2-low); [†]P-value of <0.0046 required for statistical significance; [‡]no test of significance was performed in line with the multiple testing procedure. Median duration of follow up was 18.2 months (IIIT)

CI, confidence interval; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; ITT, intent-to-treat; mo, months; OS, overall survival; T-DXd, trastuzumab deruxtecan; TPC, chemotherapy treatment of physician's choice

TROPiCS-02: Sacituzumab Govitecan in HR+/HER2- MBC

NCT03901339

Metastatic or locally recurrent inoperable HR+/HER2- breast cancer that progressed after^a:

- At least 1 endocrine therapy, taxane, and CDK4/6i in any setting
- At least 2, but no more than 4, lines of chemotherapy for metastatic disease
 - (Neo)adjuvant therapy for early-stage disease qualified as a prior line of chemotherapy if disease recurred within 12 months
- Measurable disease by RECIST 1.1

N=543

- Visceral metastases (yes/no)
- Endocrine therapy in metastatic setting ≥6 months (yes/no)

Treatment was continued until progression

Prior lines of chemotherapies (2 vs 3/4)

Rugo HS, et al. J Clin Oncol. 2022 Rugo HS, et al. ASCO 2022. Abstract LBA 1001

TROPiCS-02: Clinical Outcomes

SG (4.2-7.0)	TPC	Hazard Ratio	Hazard Ratio (95% CI)
(4.2-7.0)			
	4.0 (3.1-4.4)	н	0.66 (0.53-0.82)
(4.2–7.0)	4.0 (3.1–4.4)		0.66 (0.53–0.83)
(1.3–NE)	5.6 (1.6–NE)		0.78 (0.25–2.40)
(4.4–7.4)	4.1 (3.1–4.4)		0.61 (0.48–0.78)
(2.5–5.8)	3.5 (1.6–7.7)		1.13 (0.61–2.07)
(4.2–8.3)	4.2 (2.8–5.5)	⊢⊖⊣	0.62 (0.45–0.85)
(4.0–6.9)	3.7 (2.7–4.4)	⊨⊖⊣	0.70 (0.52–0.95)
(4.1–6.9)	4.1 (3.0–4.4)	+ ● +	0.69 (0.53–0.89)
(4.2–9.0)	3.5 (1.7–5.6)	- ●	0.59 (0.38–0.93)
(4.2–8.5)	4.1 (2.7–5.7)		0.61 (0.44–0.86)
(4.0–7.1)	4.0 (2.8–4.4)		0.70 (0.53–0.94)
(4.6–8.3)	4.0 (2.8–4.4)	H∎-I	0.59 (0.44–0.78)
(3.3–7.0)	4.2 (2.7–5.6)		0.77 (0.54–1.10)
	(4.2–7.0) (1.3–NE) (4.4–7.4) (2.5–5.8) (4.2–8.3) (4.0–6.9) (4.2–9.0) (4.2–9.0) (4.2–8.5) (4.0–7.1) (4.6–8.3) (3.3–7.0)	$\begin{array}{ccccc} (4.2-7.0) & 4.0 (3.1-4.4) \\ (1.3-NE) & 5.6 (1.6-NE) \\ (4.4-7.4) & 4.1 (3.1-4.4) \\ (2.5-5.8) & 3.5 (1.6-7.7) \\ (4.2-8.3) & 4.2 (2.8-5.5) \\ (4.0-6.9) & 3.7 (2.7-4.4) \\ (4.1-6.9) & 4.1 (3.0-4.4) \\ (4.2-9.0) & 3.5 (1.7-5.6) \\ (4.2-8.5) & 4.1 (2.7-5.7) \\ (4.0-7.1) & 4.0 (2.8-4.4) \\ (4.6-8.3) & 4.0 (2.8-4.4) \\ (3.3-7.0) & 4.2 (2.7-5.6) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

SG Better +

TPC Better

BICR analysis	SG (n=272)	TPC (n=271)
Median PFS, mo (95% CI)	5.5 (4.2–7.0)	4.0 (3.1-4.4)
Stratified HR (95% CI)	0.66 (0.53–0.83)	
Stratified Log Rank P value	0.0003	
6-month PFS rate, % (95% CI)	46.1 (39.4–52.6)	30.3 (23.6–37.3)
9-month PFS rate, % (95% CI)	32.5 (25.9–39.2)	17.3 (11.5–24.2)
12-month PFS rate, % (95% CI)	21.3 (15.2–28.1)	7.1 (2.8–13.9)

Rugo HS, et al. J Clin Oncol. 2022 Rugo HS, et al. ASCO 2022. Abstract LBA 1001

TROPiCS-02: Clinical Outcomes

Rugo HS, et al. Lancet 2023 Oct 21;402(10411):1423-33 Rugo HS, et al. ESMO 2022. Abstract LBA76

TROPION-Breast01 Study Design¹

Randomized, phase 3, open-label, global study (NCT05104866)

Randomization stratified by:

- Lines of chemotherapy in unresectable/metastatic setting (1 vs 2)
- Geographic location (US/Canada/Europe vs ROW)
- Previous CDK4/6 inhibitor (yes vs no)

Bardia A et al SABCS 2023

 Treatment continued until PD, unacceptable tolerability, or other discontinuation criteria

Detailed description of the statistical methods published previously.¹ *Per American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) guidelines. [†]ICC was administered as follows: eribulin mesylate, 1.4 mg/m² IV on Days 1 and 8, Q3W; vinorelbine, 25 mg/m² IV on Days 1 and 8, Q3W; or gencitabine, 1000 mg/m² IV on Days 1 and 8, Q3W; capecitabine, 1000 or 1250 mg/m² orally twice daily on Days 1 to 14, Q3W (dose per standard institutional practice). CDK4/6, cyclin-dependent kinase 4/6; D, day; ECOG PS, Eastern Cooperative Oncology Group performance status; ET, endocrine therapy; IHC, immunohistochemistry; ISH, in-situ hybridization; IV, intravenous; PD, progressive disease; PROs, patient-reported outcomes; Q3W, every 3 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; ROW, rest of world; TFST, time to first subsequent therapy.

1. Bardia A, et al. *Future Oncol* 2023; doi: 10.2217/fon-2023-0188.

Progression-Free Survival

PFS by BICR (primary endpoint)¹: Median 6.9 vs 4.9 months; HR 0.63 (95% CI 0.52–0.76); P<0.0001

Data cut-off: 17 July 2023.

1. Bardia A, et al. Oral Presentation at ESMO 2023; Abstract LBA11.

Bardia A et al. J Clin Oncol 2024 Sep 12; Online ahead of print Bardia A et al SABCS 2023

Overall Safety Summary

TRAEs, n (%) ¹	Dato-DXd (n=360)	ICC (n=351)
All grades	337 (94)	303 (86)
Grade ≥3	75 (21)	157 (45)
Associated with dose reduction	75 (21)	106 (30)
Associated with dose interruption	43 (12)	86 (25)
Associated with discontinuation	9 (3)	9 (3)
Associated with death	0	1 (0.3)
Serious TRAEs	21 (6)	32 (9)
Grade ≥3	17 (5)	31 (8)

- Most common TRAEs leading to dose interruption:
 - Dato-DXd: fatigue*, infusion-related reaction, ILD, stomatitis (each 1%)
 - ICC: neutropenia[†] (17%), leukopenia[‡] (3%)
- No TRAEs led to discontinuation in ≥1% of patients in either arm
- One treatment-related death in the ICC arm due to febrile neutropenia

*Fatigue includes the preferred terms of fatigue, asthenia, and malaise. †Neutropenia includes the preferred terms neutropenia and neutrophil count decreased. ‡Leukopenia includes the preferred terms of white blood cell count decreased and leukopenia.

ILD, interstitial lung disease; TRAEs, treatment-related adverse events.

1. Bardia A, et al. Oral Presentation at ESMO 2023; Abstract LBA11.

Metastatic Breast Cancer: Case Summary and Approach

45 yo > de novo metastatic HR+/HER2- breast cancer with bone involvement

Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

A CME/MOC-, ACPE- and NCPD-Accredited Event

Saturday, October 26, 2024 7:15 AM – 12:30 PM ET

Agenda

Module 1 — HR-Positive Breast Cancer: Drs O'Shaughnessy and Wander

Module 2 — Prostate Cancer: Drs M Smith and Srinivas

Module 3 — Lung Cancer: Drs Goldberg and Sabari

Module 4 — Non-Hodgkin Lymphoma and Chronic Lymphocytic Leukemia: Drs Kahl and S Smith

Module 5 — Multiple Myeloma: Drs Lonial and Raje

Prostate Cancer Faculty

Matthew R Smith, MD, PhD Claire and John Bertucci Endowed Chair in Genitourinary Cancers Professor of Medicine Harvard Medical School Director, Genitourinary Malignancies Program Massachusetts General Hospital Cancer Center Boston, Massachusetts

Sandy Srinivas, MD Professor of Oncology Clinical Research Leader, GU Oncology Stanford University Stanford, California

AUA-2023 CHICAGO * APR 28-MAY 1 Key secondary endpoint — Time to PSA progression for enzalutamide combination vs. leuprolide acetate

Data cutoff: January 31, 2023. Symbols indicate censored data. ^aThe HR was based on a Cox regression model with treatment as the only covariate stratified by screening PSA, PSADT, and prior hormonal therapy as reported in the IWRS; relative to leuprolide acetate <1 favoring enzalutamide combination; the two-sided *P*-value is based on a stratified log-rank test.

Role of Hormonal Therapy in Prostate Cancer (PC) Management

Matthew R. Smith, M.D., Ph.D. Professor of Medicine, Harvard Medical School Director, MGH Genitourinary Malignancies Program

CANCER CENTER

Level 1 Evidence for Improved Overall Survival in mCSPC

Studies	Intervention	Control	Comments
GETUG-15 CHAARTED STAMPEDE-C	Docetaxel + ADT	ADT	Benefit in high-volume subgroup
LATITUDE STAMPEDE-G	Abiraterone + ADT	ADT	Similar benefits by risk group
ARCHES ENZAMET	Enzalutamide + ADT	ADT	Similar benefits by risk group
TITAN	Apalutamide + ADT	ADT	Similar benefits by risk group
ARASENS	Darolutamide + ADT + docetaxel	ADT + docetaxel	Similar benefits for recurrent and de novo metastatic disease
PEACE-1	Abiraterone +ADT + docetaxel (+/- prostate radiation)	ADT + docetaxel (+/- prostate radiation)	Subgroup analysis

Parker et al *Lancet* 2018; Armstrong et al *JCO* 2021; Davis et al *NEJM* 2019; James N et al *Lancet* 2015; Sweeney et al *NEJM* 2015; Chi KN et al *NEJM* 2019; Fizazi K et al *NEJM* 2017; James et al *NEJM* 2017; Smith MR et al *NEJM* 2022; Fizazi K et al *Lancet* 2022

LATITUDE: Abiraterone Acetate for mCSPC

Fizazi et al (2017) *N Engl J Med 377*: 352-60

STAMPEDE: Docetaxel vs Abiraterone Comparison

Sydes et al (2018) Annals of Oncology 29:1235-1248

TITAN: Apalutamide for mCSPC

Radiographic Progression-Free Survival

Overall Survival

Chi et al (2019) N Engl J Med 381: 13-24

ARCHES: Enzalutamide for mCSPC

Armstrong et al (2019) J Clin Oncol 37(32): 2974-2986; Armstrong et al (2022) J Clin Oncol 2022 40(15):1616-1622.

ARASENS Study Design

Global, randomized, double-blind, placebo-controlled phase III study (NCT02799602)

- The primary analysis was planned to occur after ~509 deaths
- · Secondary efficacy endpoints were tested hierarchically

*One enrolled patient was excluded from all analysis sets because of Good Clinical Practice violations. ALP, alkaline phosphatase; CRPC, castration-resistant prostate cancer; ECOG PS, Eastern Cooperative Oncology Group performance status; FPFV, first patient first visit; LPFV, last patient first visit; M1a, nonregional lymph node metastases only; M1b, bone metastases ± lymph node metastases; M1c, visceral metastases ± lymph node or bone metastases; Q3W, every 3 weeks; SSE, symptomatic skeletal event; ULN, upper limit of normal.

Smith et al (2022) N Engl J Med 2022;386:1132-1142

ARASENS Primary Endpoint: Overall Survival

No. at Risk

 Darolutamide
 651
 645
 637
 627
 608
 593
 570
 548
 525
 509
 486
 468
 452
 436
 402
 267
 139
 56
 9
 0
 0

 Placebo
 654
 646
 630
 607
 580
 565
 535
 510
 488
 470
 441
 424
 402
 383
 340
 218
 107
 37
 6
 1
 0

Smith et al (2022) N Engl J Med 2022;386:1132-1142

ARASENS: Overall Survival by Disease Volume

High-Volume Metastatic Disease

Low-Volume Metastatic Disease

Hussain et al (2023) J Clin Oncol 41, 3595-3607(2023).

ARASENS: Overall Survival by Risk Group

High-Risk Group

Low-Risk Group

Hussain et al (2023) J Clin Oncol **41**, 3595-3607(2023).

ARANOTE Study Design

A randomized, double-blind, placebo-controlled phase 3 study

ClinicalTrials.gov: NCT04736199

Metastatic disease confirmed by conventional imaging method either by a positive ⁹⁹mTc-phosphonate bone scan, or soft tissue or visceral metastases, either by contrast-enhanced abdominal/pelvic/chest CT or MRI scan assessed by central review.

ADT, androgen deprivation therapy; bid, twice a day; AE, adverse event; BPI-SF, Brief Pain Inventory-Short Form; CRPC, castration-resistant prostate cancer; CT, computed tomography; ECOG PS, Eastern Cooperative Oncology Group performance status; mHSPC, metastatic hormone-sensitive prostate cancer; MRI, magnetic resonance imaging; OS, overall survival; PSA, prostate specific antigen; rPFS, radiological progression-free survival. 1. Clinicaltrials.gov/dentifier: NCT04736199. Accessed September 2024. https://clinicaltrials.gov/ct2/show/NCT04736199. 2. Saad F, et al. Presented at: European Society for Medical Oncology Congress 2024. September 13-17, 2024; Barcelona, Spain. Abstract LBA68.

Saad et al (2024) *J Clin Oncol* **0**, JCO-24-01798

ARANOTE Primary Endpoint: rPFS

Saad et al (2024) *J Clin Oncol* **0**, JCO-24-01798

EMBARK Study Design

Patient population:

 Screening PSA ≥1 ng/mL after RP and at least 2 ng/mL above the nadir for primary EBRT

PSADT ≤9 mo

- No metastases on bone scan or CT/MRI per central read
- Testosterone ≥150 ng/dL
- Prior hormonal therapy ≥9 mo prior to R (neoadjuvant/adjuvant for ≤36 mo OR ≤6 mo for rising PSA)

Stratification factors:

- Screening PSA (≤10 ng/mL vs. >10 ng/mL)
- PSADT (≤3 mo vs. >3 to ≤9 mo)
- Prior hormonal therapy (yes vs. no)

^aStudy treatment was suspended once at week 37 if PSA was <0.2 ng/mL and restarted when PSA was \geq 5.0 ng/mL (without prior RP) and \geq 2 ng/mL (prior RP). ^bIntent-to-treat population. ^cPrimary endpoint and key secondary endpoints for enzalutamide combination and enzalutamide monotherapy are alpha-protected. *P*-value to determine significance for OS of combination and monotherapy treatment comparisons was dependent on outcomes of primary endpoint and key secondary endpoints. ^dSafety population. BICR, blinded independent central review; CT, computed tomography; d, day; EBRT, external beam radiotherapy; IM, intramuscular; MFS, metastasis-free survival; mo, month; MRI, magnetic resonance imaging; OS, overall survival; PROs, patient-reported outcomes; PSA, prostate-specific antigen; PSADT, PSA doubling time; q, every; R, randomization; RP, radical prostatectomy; w, weeks.

Freedland et al (2023) N Engl J Med 2023;389:1453-1465

EMBARK Primary Endpoint:

MFS for Enzalutamide Combination vs. Leuprolide

Enzalutamide + 355 339 331 330 324 324 318 317 304 303 292 290 281 270 265 252 251 236 234 183 180 119 116 83 60 51 24 22 6 5 0 0 leuprolide Leuprolide alone 358 344 335 334 321 320 303 301 280 276 259 256 238 226 221 205 203 185 183 141 138 93 88 66 32 27 15 13 6 5 1 1 0

Freedland et al (2023) N Engl J Med 2023;389:1453-1465

EMBARK Key Secondary Endpoint: MFS for Enzalutamide Monotherapy vs. Leuprolide

No. at Risk

Enzalutamide 355 350 342 341 328 326 309 309 287 287 273 269 260 248 247 235 228 211 209 172 171 109 108 76 52 49 26 24 5 5 0 0 0 monotherapy Leuprolide alone 358 344 335 334 321 320 303 301 280 276 259 256 238 226 221 205 203 185 183 141 138 93 88 66 32 27 15 13 6 5 1 1 0

Freedland et al (2023) N Engl J Med 2023;389:1453-1465

Phase III EMBARK Trial: Common Adverse Events

Event	Enzalutamide + (N = 35)	Leuprolide 53)	Leuprolide Alone Enzalutarr (N=354)		Enzalutamide (N = 3	nide Monotherapy (N = 354)	
	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Most common adverse events‡							
Hot flash	243 (68.8)∬	2 (0.6)	203 (57.3)§	3 (0.8)	77 (21.8)	1 (0.3)	
Fatigue	151 (42.8)∬	12 (3.4)	116 (32.8)	5 (1.4)	165 (46.6) §	14 (4.0)	
Arthralgia	97 (27.5)	7 (2.0)	75 (21.2)	1 (0.3)	81 (22.9)	2 (0.6)	
Hypertension	82 (23.2)	24 (6.8)	69 (19.5)	18 (5.1)	67 (18.9)	19 (5.4)	
Fall	74 (21.0)	4 (1.1)	51 (14.4)	4 (1.1)	56 (15.8)	7 (2.0)	
Back pain	60 (17.0)	3 (0.8)	54 (15.3)	1 (0.3)	62 (17.5)	3 (0.8)	
Diarrhea	49 (13.9)	2 (0.6)	31 (8.8)	1 (0.3)	46 (13.0)	1 (0.3)	
Constipation	46 (13.0)	1 (0.3)	31 (8.8)	0	34 (9.6)	1 (0.3)	
Hematuria	42 (11.9)	8 (2.3)	44 (12.4)	4 (1.1)	45 (12.7)	9 (2.5)	
Insomnia	42 (11.9)	2 (0.6)	37 (10.5)	0	25 (7.1)	0	
Nausea	42 (11.9)	1 (0.3)	29 (8.2)	1 (0.3)	54 (15.3)	2 (0.6)	
Pain in arm or leg	41 (11.6)	3 (0.8)	36 (10.2)	2 (0.6)	40 (11.3)	1 (0.3)	
Asthenia	39 (11.0)	2 (0.6)	21 (5.9)	1 (0.3)	39 (11.0)	3 (0.8)	
Dizziness	39 (11.0)	2 (0.6)	37 (10.5)	2 (0.6)	41 (11.6)	3 (0.8)	
Headache	39 (11.0)	3 (0.8)	32 (9.0)	0	41 (11.6)	1 (0.3)	
Urinary incontinence	34 (9.6)	4 (1.1)	28 (7.9)	3 (0.8)	36 (10.2)	6 (1.7)	
Gynecomastia	29 (8.2)	0	32 (9.0)	0	159 (44.9)§	3 (0.8)	
Coronavirus disease 2019	27 (7.6)	2 (0.6)	36 (10.2)	4 (1.1)	44 (12.4)	2 (0.6)	
Peripheral edema	27 (7.6)	1 (0.3)	37 (10.5)	1 (0.3)	31 (8.8)	1 (0.3)	
Urinary tract infection	27 (7.6)	1 (0.3)	26 (7.3)	2 (0.6)	37 (10.5)	7 (2.0)	
Weight decreased	24 (6.8)	1 (0.3)	12 (3.4)	0	39 (11.0)	1 (0.3)	
Nipple pain	11 (3.1)	0	4 (1.1)	0	54 (15.3)	0	
Breast tenderness	5 (1.4)	0	4 (1.1)	0	51 (14.4)	0	

Freedland et al. *N Engl J Med* 2023;389:1453-65.

HR 0.52 [95% CI, 0.35 to 0.77]; P=0.00047

ADT vs ADT + apalutamide

HR 0.48 [95% CI, 0.32 to 0.71]; P=0.0008

0

0

ADT vs ADT + apalutamide + abiraterone

Aggarwal et al (2024) J Clin Oncol 42:1114-1123

MASSACHUSETTS GENERAL HOSPITAL

Role of AR Pathway Inhibitors in Non-Metastatic Castration-Resistant Prostate Cancer (nmCRPC)

- 72% reduction of distant progression or death
- Median MFS: APA 40.5 vs PBO 16.2 months
- 24-month MFS benefit

- 71% reduction of distant progression or death
- Median MFS: ENZA 36.6 vs PBO 14.7 months
- 22-month MFS benefit

- 59% reduction of distant progression or death
- Median MFS: DARO 40.4 vs PBO 18.4 months
- 22-month MFS benefit

1. Smith MR et al. *N Engl J Med*. 2018;378:1408-1418. 2. Hussain M et al. *N Engl J Med*. 2018;378:2465-2474. 3. Fizazi K et al. *N Engl J Med*. 2019;380:1235-1246.

Role of AR Pathway Inhibitors in Non-Metastatic Castration-Resistant Prostate Cancer (nmCRPC)

- 22% reduction in risk of death
- Median follow-up of 52.0 mo
- Median OS was significantly longer for apalutamide vs placebo
 - 73.9 mo vs 59.9 mo
 - HR = 0.78 (95% CI 0.64-0.96); P = .016
- 27% reduction in risk of death
- Median follow-up of 48 mo
- Median OS was significantly longer for enzalutamide vs placebo
 - 67.0 mo vs 56.3 mo
 - HR = 0.73 (95% CI 0.61-0.89); P = .001
- 31% reduction in risk of death
- Median follow-up of 29.0 mo
- Median OS was significantly longer for darolutamide vs placebo
 - HR = 0.69 (95% Cl, 0.53-0.88); P = .003

1. Smith MR et al. *Eur Urol*. 2020;79:150-158. 2. Sternberg CN et al. *N Engl J Med*. 2020; 382:2197-2206. 3. Fizazi K et al. *N Engl J Med*. 2020;383:1040-1049.

Conclusions

AR pathway inhibitors (ARPIs) have an important role across a broad range of prostate cancer disease states:

- Abiraterone and enzalutamide improve rPFS and OS in mCRPC, either before or after chemotherapy
- Apalutamide, enzalutamide and darolutamide improve MFS and OS in nmCRPC
- Abiraterone, apalutamide, enzalutamide and darolutamide improve OS in mCSPC
- Abiraterone improves MFS and OS in high-risk primary and recurrent nmCSPC
- Enzalutamide improves MFS in recurrent nmCSPC

Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

A CME/MOC-, ACPE- and NCPD-Accredited Event

Saturday, October 26, 2024 7:15 AM – 12:30 PM ET

CRPC: Module 2 Other Available and Emerging Therapeutic Approaches

Sandy Srinivas, MD

Mutational Landscape by Disease State

Locoregional Metastatic Noncastrate **Metastatic Castration Resistant** 45 Mutation # Sample Type 18% PTEN RB1 10% BRCA2 BRCA1 2% Repair ATM 2% 2% 11% FANCA 3% 7% DNA CDK12 4% MSH2 0% 3% MLH1 1% PIK3CA 4% PI3K 1) 1 1 PIK3R1 2% ath AKT1 0% AKT3 0% APC 4% 14% Wnt Pathw CTNNB1 2% RNF43 39 11 5% = BRAF MAPK HRAS 1% 1% KRAS 2% | Chromatin Remodeling KMT2A 5% KMT2C 1 10 4% 1 11 KMT2D 7% KDM6A 29 3% IDH1 FOXA1 Genetic alteration Amplification Deep deletion Missense mutation Inframe mutation Truncating mutation Rearrangement Sample type | Prostate | Metastasis

Genomic progression from localized disease to mCRPC

- BRCA1: 1% to 2%
- BRCA2: 6% to 10%
- ATM: 2% to 11%
- FANCA: 1% to 7%

Abida. JCO Precision Oncol. 2017; PO.17.00029; Pritchard. NEJM. 2016; 375:443

Overall: 23%

Phase III PROfound: Olaparib vs Physician's Choice in Progressing Metastatic CRPC

Stratified by previous taxane (yes vs no) and measurable disease (yes vs no)

*Enzalutamide 160 mg QD or abiraterone acetate 100 mg QD plus prednisone 5 mg BID.

⁺BRCA1/2, ATM, BRIP1, BARD1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RA51D, or RAD54L.

- Primary endpoint: radiographic PFS in Cohort A using RECIST 1.1 and PCWG3 by BICR
- Secondary endpoints: radiographic PFS in both cohorts, confirmed radiographic ORR in Cohort A, time to pain progression in Cohort A, OS in Cohort A

Primary Endpoint: rPFS

Sec EP: Pain Progression

DeBono NEJM 2020

PROfound OS: Cohorts A/B/Overall

FDA approval May 19, 2020 for patients with HRR mutations who have progressed after abiraterone/enzalutamide

TRITON3: Rucaparib vs Physician's Choice in Progressing mCRPC With *BRCA1/2* or *ATM* Alterations

• Randomized, ongoing, multicenter, open-label phase III study Stratification by ECOG PS (0 or 1), hepatic metastases (yes or no), and genetic alteration (BRCA1, BRCA2, or ATM)

Patients with mCRPC; deleterious somatic or germline alteration in BRCA1/2 or ATM; progression on ARPI in any setting; ECOG PS 0/1; no prior PARPi or CT for CRPC (N = 405)

Until radiographic progression or discontinuation for other reason

Crossover from CT to rucaparib optional following PD

*Docetaxel 75 mg/m² in 21-day cycles (max 10 cycles) or abiraterone 1000 mg QD or enzalutamide 160 mg QD. Prednisone coadministered with docetaxel or abiraterone.

- Primary endpoint: rPFS by IRR
- Key secondary endpoints: OS, ORR by IRR
- Subgroup analyses: OS and rPFS for rucaparib vs docetaxel or second-generation ARPI

TRITON3 : Results

May 15 2020 approval in mCRPC post NHT/docetaxel with BRCA mutation

Fizazi NEJM 2023

PARP Combinations

	PROpel	MAGNITUDE	TALAPRO-2
Genes	ATM, BRCA, BARD1, BRP1,CDK12,CHK1/2; FANCL, PALB2, RAD51B/C,D/54L	ATM, BRCA, BRP1, CDK12, CHK2, FANCA, HDAC2, PALB2	ATM, ATR, BRCA, CK2, FANCL, MLH1, MRE11A, NBN, PALB2, RAD51C
Selection of Patients	UNSELECTED	Biomarker positive Cohort	All Comers/HRR positive patients
HRRm rPFS OS	<mark>NR vs NR ; HR-0.5(.37)*</mark> NR vs 28.5 HR 0.66(.49)*	<mark>16.5 vs 13.7 HR-0.72(.59)*</mark> 29.3 vs 32.2 HR-1.01 (.7-1.3)	<mark>27.9 vs 16.4 HR-0.46(.30.7)*</mark> NR vs 33.7 HR-0.69 (.4-1.0)
Non HRRm rPFS OS	24.1 vs 19 HR-0.76 (.69)* 42.1 vs 38.9 HR 0.89(.7-1.1)	NR vs NR HR-1.09 (.7-1.5)	NR vs 22.5 HR-0.7 (.58)* NR vs 38.7 HR-0.9 (.7-1.1)
BRCA rPFS OS	NR vs 8.4 HR-0.23 (.14) * NR vs 23 HR-0.29 (.15)*	<mark>16.6 vs 10.9 HR -0.53 (.37)*</mark> 30.4 vs 28.6 HR-0.79 (.5-1.1)	NR vs NR_HR- 0.23 (.15)* NR vs NR HR 0.61 (.3-1.2)
Non BRCA rPFS OS	24.1 vs 19 HR-0.76 (.69)* 39.6 vs 38 HR-0.91 (.7-1.1)		NR vs NR HR-0.66 (.3-1.1)
Prior ARPI	0.15%	3	8
Prior Docetaxel	24	19	29
FDA label	BRCA mutated CRPC	BRCA mutated CRPC	HRR mutated CRPC

Talazoparib in Combination with Enzalutamide Prolongs Overall Survival (OS) in Phase III TALAPRO-2 Trial Press Release: October 10, 2024

"The manufacturer announced positive topline results from the final prespecified OS analysis of the TALAPRO-2 study of talazoparib, an oral poly ADP-ribose polymerase inhibitor, in combination with enzalutamide, an androgen receptor pathway inhibitor, for patients with metastatic castration-resistant prostate cancer (mCRPC). Results showed a statistically significant and clinically meaningful improvement in the final OS in all-comers (cohort 1) as well as in those patients with mCRPC with a homologous recombination repair gene mutation (cohort 2), compared to enzalutamide alone.

At the time of the final analysis, the clinically meaningful improvement in radiographic progression-free survival was maintained in both cohorts from the prior primary analysis previously reported and published in *The Lancet*. In addition, the safety profile of talazoparib in combination with enzalutamide was generally consistent with the known safety profile of each medicine. Detailed results from TALAPRO-2 will be submitted for presentation at an upcoming medical congress."

Differential Efficacy of PARP Inhibitors in mCRPC With DNA Repair Defects

Naqvi. ASCO GU 2022. Abstr 134.

BRCAAway: DESIGN

BRCAAway: Results

	Abiraterone	Olaparib	Combination	
	Arm I (n = 19)	Arm II (n = 21)	Arm III (n = 21)	
Median PFS, months (95% CI)	8.4 (2.9, 17)	14 (8.4, 20)	39 (22, NR)	
Objective RR, % (95% CI)	22 (6.4, 48)	14 (3, 36)	33 (15, 57)	
PSA RR, % (95% CI)	61 (36, 83)	67 (43, 85)	95 (76, 100)	
Undetectable PSA RR, % (95% CI)	17 (3.6, 41)	14 (3, 36)	33 (15, 57)	

Crossover

		PFS (mos)	PFS2 (mos)	ORR	PSA50
Abi- Olaparib	8/1 9	8.3	16	38	50
Olaparib -Abi	8/2 1	7.2	21	25	63

Significant Cross Resistance with NHT: Results of the control arm

Contemporary trials looking at alternate NHT in the control arm

	PSA50 (%)	rPFS (mos)	OS	Ref
PROFOUND	8	3.5	19.1 HR-0.69	DeBono NEJM 2020
CONTACT-02	12	4.2	-	Agarwal GUASCO 2023
IMbassador250	3	4.1	-	Powles Nat Med 2022
PSMAfore	20	5.5	-	Sartor ESMO 2023

Low response of monoRx ARSI Does a combo with PARPi add to just more toxicity?

NCCN Guidelines 2024

No prior docetaxel/no prior novel hormone therapy qqq	Progression on prior novel hormone therapy/no prior docetaxel ^{qqq}		NILIT.	L	NILITI
 Preferred regimens Abiraterone^{y,rrr} (category 1^{sss}) ▶ Docetaxel^{III} (category 1) ▶ Enzalutamide^y (category 1) 	 Preferred regimens Docetaxel (category 1)^{III} Olaparib for <i>BRCA</i> mutation^{yyy} (category 1) Rucaparib for <i>BRCA</i> mutation^{zzz} (category 1) 			-	Doce+
Useful in certain circumstances Niraparib/abirateroney. ^{III,III,III} for <i>BRCA</i> mutation (category 1) Olaparib/abiraterone ^{y,III,rrr,uuu} for <i>BRCA</i> mutation (category 1) Pembrolizumab for MSI-high (MSI-H)/dMMR ^{III} (category 2B) Radium-223 ^{U,VVV} for symptomatic bone metastases (category 1) Sipuleucei-T ^{III,www} (category 1) Talazoparib/enzalutamide for HRR mutation ^{y,III,xxx} (category 1) Other recommended regimens Other secondary hormone therapy ^y	Useful in certain circumstances Cabazitaxel/carboplatin ^{III,mmm} Niraparib/abiraterone ^{y,III,ttt} for <i>BRCA</i> mutation (category 2B) Olaparib for HRR mutation other than <i>BRCA1/2^{yyyy}</i> Pembrolizumab for MSI-H/dMMR ^{III} (category 2B) Radium-223 ^{U,YVY} for symptomatic bone metastases (category 1) Sipuleucel-T ^{III,WWW} Talazoparib/enzalutamide for HRR mutation ^{y,III,xxx} (category 2B) Other recommended regimens Other secondary hormone therapy ^{aaaa}	Olaparib- BRCA	1		
		Olaparib-HF	R 2A		1
Progression on prior docetaxel/no prior novel hormone therapy qqq	Progression on prior docetaxel and a novel hormone therapy qqq	Rucaparib	1		2A
 Preferred regimens Abiraterone^{y,rrr} (category 1) Cabazitaxel^{III} Enzalutamide^y (category 1) Useful in certain circumstances Cabazitaxel/carboplatin^{III,mmm} Mitoxantrone for palliation in symptomatic patients who cannot tolerate other therapies^{III} Niraparib/abiraterone^{y,III,ttt} for <i>BRCA</i> mutation Olaparib/abiraterone^{y,III,ttt} for <i>BRCA</i> mutation Pembrolizumab for MSI-H/dMMR^{III} (category 2B) Radium-223^{U,VVV} for symptomatic bone metastases (category 1) Sipuleucel-T^{III,www} Talazoparib/enzalutamide for HRR mutation^{y,III,xxx} Other recommended regimens Other secondary hormone therapy^y 	Preferred regimens Cabazitaxel ^{III} (category 1)	jimens			
	 Docetaxel rechallenge^{III} Useful in certain circumstances Cabazitaxel/carboplatin^{III,mmm} Lutetium Lu 177 vipivotide tetraxetan (Lu-177–PSMA-617) for PSMA-positive metastases^{bbbb} (category 1) Mitoxantrone for palliation in symptomatic patients who cannot tolerate 		NHT Doc	NHT— Doc-+	NHT-+ Doc +
	• Olaparib for HRR mutation ^{yyy} (category 1) • Pembrolizumab for MSI-H, dMMR, or TMB ≥10 mut/Mb ^{III} • Radium-223 ^{U,vvv} for symptomatic bone metastases (category 1) • Rucaparib for <i>BRCA</i> mutation ^{zzz} • Other recommended regimens	Nira/Abi- BRCA12AOla/Abi- BRCA12A	2A	2B	
	Other secondary hormone therapy ^{adaa}		2A		
		Tala/Enza	1	2A	2B

-HRR

Ongoing trials in mHSPC

Trial	Estimated #	Control arm	Experimental arm	Estimated completion date
AMPLITUDE NCT04497844	696	ADT/Abi/pred	ADT/Abi/pred/ Niraparib	11/2024
TALAPRO-3 NCT04821622	599	ADT/enza	ADT/enza/ Talazoparib	9/2025

VISION: Phase 3 randomized study Lu177

Primary Endpoints: Improved Overall survival/rPFS

Primary endpoints: ¹⁷⁷Lu-PSMA-617 improved rPFS

Secondary Endpoints: Measurable Disease and PSA responses

FDA approved in heavily pre-treated patients post NHT and post taxanes

Secondary endpoint: PSA responses favored the ¹⁷⁷Lu-PSMA-617 arm among evaluable patients

PSMAfore: A Phase III Study of Lutetium Lu 177 Vipivotide Tetraxetan versus a Change of Androgen Receptor Pathway Inhibitor (ARPI) for Patients with Taxane-Naïve Progressive mCRPC

Eligible adults

- Confirmed progressive mCRPC
- ≥ 1 PSMA-positive metastatic lesion on [⁶⁸Ga]Ga-PSMA-11 PET/CT and no exclusionary PSMA-negative lesions
- Progressed once on prior second-generation ARPI
- Candidates for change in ARPI
- Taxane-naive (except [neo]adjuvant > 12 months ago)
- Not candidates for PARPi
- ECOG performance status 0–1

Stratification factors

- Prior ARPI setting (castration-resistant vs hormone-sensitive)
- BPI-SF worst pain intensity score (0–3 vs > 3)

Morris MJ et al. Lancet 2024;404(10459):1227-39. Sartor O et al. ESMO 2023;Abstract LBA13.

PSMAfore: A Phase III Study of Lutetium Lu 177 Vipivotide Tetraxetan versus a Change of ARPI for Patients with Taxane-Naïve Progressive mCRPC – Progression-Free Survival

Morris MJ et al. Lancet 2024;404(10459):1227-39.

Lutetium Lu 177 Vipivotide Tetraxetan versus a Change of ARPI: Changes in PSA and Responses in Soft Tissue in PSMAfore

Lutetium Lu 177 Vipivotide Tetraxetan versus a Change of ARPI: Safety Profile in PSMAfore

	All grades		Grades 3–5	
AEs, n (%)	¹⁷⁷ Lu-PSMA-617 (n = 227)	ARPI change (n = 232)	¹⁷⁷ Lu-PSMA-617 (n = 227)	ARPI change (n = 232)
Dry mouth	130 (57.3)	5 (2.2)	3 (1.3)	0
Asthenia	72 (31.7)	67 (28.9)	1 (0.4)	8 (3.4)
Nausea	71 (31.3)	28 (12.1)	0	1 (0.4)
Anaemia	55 (24.2)	39 (16.8)	14 (6.2)	14 (6.0)
Fatigue	52 (22.9)	59 (25.4)	0	4 (1.7)
Constipation	50 (22.0)	31 (13.4)	1 (0.4)	0
Decreased appetite	48 (21.1)	42 (18.1)	0	1 (0.4)
Arthralgia	43 (18.9)	48 (20.7)	0	1 (0.4)
COVID-19	37 (16.3)	26 (11.2)	1 (0.4)	1 (0.4)
Diarrhoea	37 (16.3)	20 (8.6)	0	1 (0.4)
Back pain	28 (12.3)	38 (16.4)	2 (0.9)	5 (2.2)
Vomiting	26 (11.5)	11 (4.7)	0	0
Peripheral oedema	19 (8.4)	26 (11.2)	0	0
Weight loss	15 (6.6)	28 (12.1)	2 (0.9)	5 (2.2)

AEs = adverse events

Morris MJ et al. Lancet 2024;404(10459):1227-39. Sartor O et al. ESMO 2023;Abstract LBA13.

SPLASH: PSMAfore

SPLASH (I&T) – comparable with PSMAfore (617): rPFS

Sartor ESMO 2024; Sartor ESMO 2023

PEACE-3: Radium 223+Enza vs Enza in mCRPC

Overall Survival at interim analysis (80% of OS events)

Arm	n/N	Median (95%CI)	
Enzalutamide + Ra223	110/222	42.3 (36.8-49.1) mo	
Enzalutamide	129/224	35.0 (28.8-38.9) mo	
HR (95%CI)	0.69 (0.52-0.90)		
Log-Rank p- value	0.0031	<0.0034	
 Pre-set level was ≤ 0.0034 	of significand	ce for interim analysis	
Due to non-p	roportional h	azards plus lack of	

Due to non-proportional hazards plus lack of unequivocal significance for RMST (restricted mean survival time) sensitivity analysis, study will continue to final OS analysis

Targeting the AKT pathway

Phase III CAPItello-281: Capivasertib + Abiraterone vs Placebo + Abiraterone in de Novo, PTEN^{def} mHSPC¹

• IPATential150: ipatasertib+abi vs abiraterone in mCRPC

Data + Perspectives: Clinical Investigators Explore the Application of Recent Datasets in Current Oncology Care

A CME/MOC-, ACPE- and NCPD-Accredited Event

Saturday, October 26, 2024 7:15 AM – 12:30 PM ET

We are taking a short break!

The program will resume at 9:30 AM ET

Up Next ...

Drs Sarah Goldberg and Joshua Sabari discuss the management of lung cancer

Please complete Part 2 of the premeeting survey

