Consensus or Controversy? Investigator Perspectives on the Current and Future Role of Immune Checkpoint Inhibitors in the Management of Hepatobiliary Cancers

> A CME-Accredited Virtual Event Held in Conjunction with the 2024 ASCO Gastrointestinal Cancers Symposium

Saturday, January 20, 2024 8:30 AM – 9:30 AM ET (5:30 AM – 6:30 AM PT)

Faculty

Ahmed Omar Kaseb, MD, CMQ

Arndt Vogel, MD, PhD

Moderator Neil Love, MD

Faculty

Ahmed Omar Kaseb, MD, CMQ John E and Dorothy J Harris Professor in Gastrointestinal Cancer Research Member, National Hepatobiliary Task Force, NCI, USA

Tenured Professor and Director, Hepatocellular Carcinoma Program Director, MD Anderson HCC SPORE Editor-in-Chief, *Journal of Hepatocellular Carcinoma* Department of Gastrointestinal Medical Oncology

MODERATOR Neil Love, MD Research To Practice Miami, Florida

Arndt Vogel, MD, PhD

MD Anderson Cancer Center

The University of Texas

Houston, Texas

Professor of Medicine, University of Toronto Longo Family Chair in Liver Cancer Research Division of Gastroenterology and Hepatology Toronto General Hospital Medical Oncology Princess Margaret Cancer Centre Toronto General Hospital Research Institute Schwartz Reisman Liver Research Centre Toronto, Ontario, Canada

Commercial Support

This activity is supported by an educational grant from AstraZeneca Pharmaceuticals LP.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI Biopharma, a Sobi company, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab US Inc, Gilead Sciences Inc, Grail Inc, GSK, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Legend Biotech, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, R-Pharm US, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc, and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Kaseb — Disclosures Faculty

Advisory Committees,	AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals,
Consulting Agreements and	Bristol Myers Squibb, Eisai Inc, Exelixis Inc, Genentech, a member of
Contracted Research	the Roche Group, Merck

Prof Vogel — Disclosures Faculty

Consultancy and Advisory; Speaker	Amgen Inc, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Boehringer Mannheim, Bristol Myers Squibb, Eisai Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, MSD, Pierre Fabre, Roche Laboratories Inc, Servier Pharmaceuticals LLC, Taiho Oncology Inc
--------------------------------------	---

Dr Abou-Alfa — Disclosures Survey Participant

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Autem Therapeutics, Berry Genomics, BioNTech SE, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Merck, Merus BV, Neogene Therapeutics, Novartis, Servier Pharmaceuticals LLC, Tempus, Vector Pharma, Yiviva
Contracted Research	Agenus Inc, Arcus Biosciences, AstraZeneca Pharmaceuticals LP, BioNTech SE, Bristol Myers Squibb, Digestive Care Inc, Elicio Therapeutics, Genentech, a member of the Roche Group, Helsinn Healthcare SA, Puma Biotechnology Inc, QED Therapeutics, Yiviva
Nonrelevant Financial Relationship	Parker Institute for Cancer Immunotherapy

Dr Abrams — Disclosures Survey Participant

Advisory Committee	AstraZeneca Pharmaceuticals LP
Consulting Agreements	Eisai Inc, Exelixis Inc, HistoSonics
Contracted Research	AbbVie Inc, AstraZeneca Pharmaceuticals LP

Dr Kelley — Disclosures Survey Participant

Advisory Committees (Payments to Insitution)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Exelixis Inc, Ipsen Biopharmaceuticals Inc, Merck
Consulting Agreements (Payments to Self)	Compass Therapeutics, Exact Sciences Corporation, J-Pharma Co Ltd, Kinnate Biopharma, Regeneron Pharmaceuticals Inc, Tyra Biosciences
Contracted Research (Payment to Institution for Trial Conduct)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol Myers Squibb, Compass Therapeutics, EMD Serono Inc, Exelixis Inc, Genentech, a member of the Roche Group, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Partner Therapeutics, QED Therapeutics, Servier Pharmaceuticals LLC, Surface Oncology, Taiho Oncology Inc, Tyra Biosciences
Independent Data Monitoring Committee (Unpaid Service)	Genentech, a member of the Roche Group, Merck

Dr Stein — Disclosures Survey Participant

Advisory Committees	AbbVie Inc, Eisai Inc, Genentech, a member of the Roche Group
Consulting Agreements	AstraZeneca Pharmaceuticals LP, Merck
Data and Safety Monitoring Boards/ Committees	Aethlon Medical Inc, Genentech, a member of the Roche Group

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration.

Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY

WITH DR NEIL LOVE

Inside the Issue: Targeted and Immunotherapeutic Approaches for Biliary Tract Cancers

DR LIPIKA GOYAL STANFORD CANCER CENTER

PROF MILIND JAVLE

THE UNIVERSITY OF TEXAS MD ANDERSON CANCER CENTER

Dr Lipika Goyal and Prof Milind Javle Oncology Today with Dr Neil Love —

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Prostate Cancer

Part 1 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Genitourinary Cancers Symposium

Thursday, January 25, 2024 6:15 PM – 8:15 PM PT (9:15 PM – 11:15 PM ET)

Faculty

Rahul Aggarwal, MD Emmanuel S Antonarakis, MD Elisabeth I Heath, MD A Oliver Sartor, MD

Moderator Alan H Bryce, MD

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Urothelial Bladder Cancer

Part 2 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Genitourinary Cancers Symposium

Friday, January 26, 2024 7:00 PM – 9:00 PM PT (10:00 PM – 12:00 AM ET)

Faculty

Matthew Milowsky, MD, FASCO Peter H O'Donnell, MD

Jonathan E Rosenberg, MD Arlene Siefker-Radtke, MD

Moderator Evan Y Yu, MD

Year in Review: Clinical Investigator Perspectives on the Most Relevant New Data Sets and Advances in Oncology

A Multitumor CME/MOC-Accredited Live Webinar Series

HER2-Positive and Triple-Negative Breast Cancer

Tuesday, January 30, 2024 5:00 PM – 6:00 PM ET

Faculty Ian E Krop, MD, PhD Priyanka Sharma, MD

> Moderator Neil Love, MD

Meet The Professor Optimizing the Management of Myelofibrosis

Thursday, February 1, 2024 5:00 PM – 6:00 PM ET

> Faculty Stephen Oh, MD, PhD

> > Moderator Neil Love, MD

JOIN US IN MARCH FOR THE RETURN OF

The Annual National General Medical Oncology Summit

A Multitumor CME/MOC- and NCPD-Accredited Educational Conference Developed in Partnership with Florida Cancer Specialists & Research Institute

MARCH 22-24, 2024

JW Marriott Miami Turnberry

To Learn More or to Register, Visit www.ResearchToPractice.com/Meetings/GMO2024

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Consensus or Controversy? Investigator Perspectives on the Current and Future Role of Immune Checkpoint Inhibitors in the Management of Hepatobiliary Cancers

> A CME-Accredited Virtual Event Held in Conjunction with the 2024 ASCO Gastrointestinal Cancers Symposium

Saturday, January 20, 2024 8:30 AM – 9:30 AM ET (5:30 AM – 6:30 AM PT)

Faculty

Ahmed Omar Kaseb, MD, CMQ

Arndt Vogel, MD, PhD

Moderator Neil Love, MD

Faculty

Ahmed Omar Kaseb, MD, CMQ John E and Dorothy J Harris Professor in Gastrointestinal Cancer Research Member, National Hepatobiliary Task Force, NCI, USA

Tenured Professor and Director, Hepatocellular Carcinoma Program Director, MD Anderson HCC SPORE Editor-in-Chief, *Journal of Hepatocellular Carcinoma* Department of Gastrointestinal Medical Oncology

MODERATOR Neil Love, MD Research To Practice Miami, Florida

Arndt Vogel, MD, PhD

MD Anderson Cancer Center

The University of Texas

Houston, Texas

Professor of Medicine, University of Toronto Longo Family Chair in Liver Cancer Research Division of Gastroenterology and Hepatology Toronto General Hospital Medical Oncology Princess Margaret Cancer Centre Toronto General Hospital Research Institute Schwartz Reisman Liver Research Centre Toronto, Ontario, Canada

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Prostate Cancer

Part 1 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Genitourinary Cancers Symposium

Thursday, January 25, 2024 6:15 PM – 8:15 PM PT (9:15 PM – 11:15 PM ET)

Faculty

Rahul Aggarwal, MD Emmanuel S Antonarakis, MD Elisabeth I Heath, MD A Oliver Sartor, MD

Moderator Alan H Bryce, MD

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Urothelial Bladder Cancer

Part 2 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Genitourinary Cancers Symposium

Friday, January 26, 2024 7:00 PM – 9:00 PM PT (10:00 PM – 12:00 AM ET)

Faculty

Matthew Milowsky, MD, FASCO Peter H O'Donnell, MD

Jonathan E Rosenberg, MD Arlene Siefker-Radtke, MD

Moderator Evan Y Yu, MD

Year in Review: Clinical Investigator Perspectives on the Most Relevant New Data Sets and Advances in Oncology

A Multitumor CME/MOC-Accredited Live Webinar Series

HER2-Positive and Triple-Negative Breast Cancer

Tuesday, January 30, 2024 5:00 PM – 6:00 PM ET

Faculty Ian E Krop, MD, PhD Priyanka Sharma, MD

> Moderator Neil Love, MD

Meet The Professor Optimizing the Management of Myelofibrosis

Thursday, February 1, 2024 5:00 PM – 6:00 PM ET

> Faculty Stephen Oh, MD, PhD

> > Moderator Neil Love, MD

JOIN US IN MARCH FOR THE RETURN OF

The Annual National General Medical Oncology Summit

A Multitumor CME/MOC- and NCPD-Accredited Educational Conference Developed in Partnership with Florida Cancer Specialists & Research Institute

MARCH 22-24, 2024

JW Marriott Miami Turnberry

To Learn More or to Register, Visit www.ResearchToPractice.com/Meetings/GMO2024

Friday, March 22, 2024

```
6:00 PM – 6:30 PM
Welcome Reception
```

```
6:30 PM - 8:30 PM
```

Keynote Session: ER-Positive Metastatic Breast Cancer

Erika Hamilton, MD Kevin Kalinsky, MD, MS Joyce O'Shaughnessy, MD Hope S Rugo, MD

Saturday, March 23, 2024

7:30 AM – 9:10 AM

Hodgkin and Non-Hodgkin Lymphoma

Ann S LaCasce, MD, MMSc Matthew Lunning, DO Kami Maddocks, MD Andrew D Zelenetz, MD, PhD

9:30 AM - 10:20 AM

Gynecologic Cancers

Bradley J Monk, MD David M O'Malley, MD

10:20 AM - 11:10 AM

Localized Breast Cancer; SABCS 2023 Review

Virginia Kaklamani, MD, DSc Kevin Kalinsky, MD, MS Joyce O'Shaughnessy, MD

11:10 AM - 12:00 PM

Metastatic Breast Cancer, Triple-Negative Breast Cancer, HER2-Positive Breast Cancer; SABCS 2023 Review

Erika Hamilton, MD Virginia Kaklamani, MD, DSc Hope S Rugo, MD

Saturday, March 23, 2024

12:30 PM – 1:20 PM

Prostate Cancer

Emanuel S Antonarakis, MD Rana R McKay, MD

1:20 PM – 2:10 PM

Urothelial Bladder Cancer

Matthew D Galsky, MD Jonathan E Rosenberg, MD

2:10 PM - 3:00 PM

Renal Cell Carcinoma

Eric Jonasch, MD Brian Rini, MD

3:20 PM - 4:10 PM

Targeted Therapy for Non-Small Cell Lung Cancer

Ibiayi Dagogo-Jack, MD Helena Yu, MD

4:10 PM - 5:00 PM

Nontargeted Treatments for Lung Cancer Edward B Garon, MD, MS Corey J Langer, MD

Sunday, March 24, 2024

7:30 AM – 8:20 AM

Multiple Myeloma

Natalie S Callander, MD Paul G Richardson, MD

8:20 AM - 9:10 AM

Gastroesophageal Cancers

Yelena Y Janjigian, MD Samuel J Klempner, MD

9:30 AM - 10:20 AM

Hepatobiliary Cancers

Ghassan Abou-Alfa, MD, MBA Richard S Finn, MD

10:20 AM - 11:10 AM

Colorectal Cancer

Kristen K Ciombor, MD, MSCI John Strickler, MD

11:10 AM – 12:00 PM Topic and faculty to be announced
ONCOLOGY TODAY

WITH DR NEIL LOVE

Inside the Issue: Targeted and Immunotherapeutic Approaches for Biliary Tract Cancers

DR LIPIKA GOYAL STANFORD CANCER CENTER

PROF MILIND JAVLE

THE UNIVERSITY OF TEXAS MD ANDERSON CANCER CENTER

Dr Lipika Goyal and Prof Milind Javle Oncology Today with Dr Neil Love —

Consensus or Controversy? Investigator Perspectives on the Current and Future Role of Immune Checkpoint Inhibitors in the Management of Hepatobiliary Cancers

> A CME-Accredited Virtual Event Held in Conjunction with the 2024 ASCO Gastrointestinal Cancers Symposium

Saturday, January 20, 2024 8:30 AM – 9:30 AM ET (5:30 AM – 6:30 AM PT)

Faculty

Ahmed Omar Kaseb, MD, CMQ

Arndt Vogel, MD, PhD

Moderator Neil Love, MD

Commercial Support

This activity is supported by an educational grant from AstraZeneca Pharmaceuticals LP.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Kaseb — Disclosures Faculty

Advisory Committees,	AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals,
Consulting Agreements and	Bristol Myers Squibb, Eisai Inc, Exelixis Inc, Genentech, a member of
Contracted Research	the Roche Group, Merck

Prof Vogel — Disclosures Faculty

Consultancy and Advisory; Speaker	Amgen Inc, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Boehringer Mannheim, Bristol Myers Squibb, Eisai Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, MSD, Pierre Fabre, Roche Laboratories Inc, Servier Pharmaceuticals LLC, Taiho Oncology Inc
--------------------------------------	---

Dr Abou-Alfa — Disclosures Survey Participant

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Autem Therapeutics, Berry Genomics, BioNTech SE, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Merck, Merus BV, Neogene Therapeutics, Novartis, Servier Pharmaceuticals LLC, Tempus, Vector Pharma, Yiviva
Contracted Research	Agenus Inc, Arcus Biosciences, AstraZeneca Pharmaceuticals LP, BioNTech SE, Bristol Myers Squibb, Digestive Care Inc, Elicio Therapeutics, Genentech, a member of the Roche Group, Helsinn Healthcare SA, Puma Biotechnology Inc, QED Therapeutics, Yiviva
Nonrelevant Financial Relationship	Parker Institute for Cancer Immunotherapy

Dr Abrams — Disclosures Survey Participant

Advisory Committee	AstraZeneca Pharmaceuticals LP
Consulting Agreements	Eisai Inc, Exelixis Inc, HistoSonics
Contracted Research	AbbVie Inc, AstraZeneca Pharmaceuticals LP

Dr Kelley — Disclosures Survey Participant

Advisory Committees (Payments to Insitution)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Exelixis Inc, Ipsen Biopharmaceuticals Inc, Merck
Consulting Agreements (Payments to Self)	Compass Therapeutics, Exact Sciences Corporation, J-Pharma Co Ltd, Kinnate Biopharma, Regeneron Pharmaceuticals Inc, Tyra Biosciences
Contracted Research (Payment to Institution for Trial Conduct)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol Myers Squibb, Compass Therapeutics, EMD Serono Inc, Exelixis Inc, Genentech, a member of the Roche Group, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Partner Therapeutics, QED Therapeutics, Servier Pharmaceuticals LLC, Surface Oncology, Taiho Oncology Inc, Tyra Biosciences
Independent Data Monitoring Committee (Unpaid Service)	Genentech, a member of the Roche Group, Merck

Dr Stein — Disclosures Survey Participant

Advisory Committees	AbbVie Inc, Eisai Inc, Genentech, a member of the Roche Group
Consulting Agreements	AstraZeneca Pharmaceuticals LP, Merck
Data and Safety Monitoring Boards/ Committees	Aethlon Medical Inc, Genentech, a member of the Roche Group

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration.

Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

Consulting Faculty

Thomas A Abrams, MD Institute Physician Dana-Farber Cancer Institute Assistant Professor of Medicine Harvard Medical School Director, Liver Tumor Center Boston, Massachusetts

Stacey Stein, MD
Associate Professor of Medicine
Assistant Medical Director of the Clinical Trials Office
Yale Cancer Center
Yale School of Medicine
New Haven, Connecticut

Agenda

INTRODUCTION: EMERALD-1 – Immune Checkpoint Inhibitor-Based Therapy for Localized HCC Eligible for Embolization

MODULE 1: Optimal Utilization of Immune Checkpoint Inhibitors as First-Line Therapy for Advanced HCC — Dr Kaseb

MODULE 2: Incorporation of Anti-PD-1/PD-L1 Antibody-Based Approaches for Advanced Biliary Tract Cancers (BTCs) — Prof Vogel

Agenda

INTRODUCTION: EMERALD-1 – Immune Checkpoint Inhibitor-Based Therapy for Localized HCC Eligible for Embolization

MODULE 1: Optimal Utilization of Immune Checkpoint Inhibitors as First-Line Therapy for Advanced HCC — Dr Kaseb

MODULE 2: Incorporation of Anti-PD-1/PD-L1 Antibody-Based Approaches for Advanced Biliary Tract Cancers (BTCs) — Prof Vogel

EMERALD-1: a Phase 3, randomized, placebocontrolled study of transarterial chemoembolization combined with durvalumab with or without bevacizumab in participants with unresectable hepatocellular carcinoma eligible for embolization

Riccardo Lencioni^{*1}, Masatoshi Kudo², Joseph Erinjeri³, Shukui Qin⁴, Zhenggang Ren⁵, Stephen L Chan⁶, Yasuaki Arai⁷, Jeong Heo⁸, Anh Mai⁹, Jose Escobar¹⁰, Yamil Alonso Lopez Chuken¹¹, Jung-Hwan Yoon¹², Won Young Tak¹³, Tanita Suttichaimongkol¹⁴, Mohamed Bouattour¹⁵, Shi-Ming Lin¹⁶, Magdalena Żotkiewicz¹⁷, Stephanie Udoye¹⁸, Gordon J Cohen¹⁸, **Bruno Sangro^{*19}**

¹Department of Diagnostic and Interventional Radiology, University of Pisa School of Medicine, Pisa, Italy; ²Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan; ³Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁴Cancer Center of Nanjing, Jinling Hospital, Nanjing, China; ⁵Department of Hepatic Oncology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; ⁶State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir Yue-Kong Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China; ⁷Department of Diagnostic Radiology, National Cancer Center, Chuo-ku, Tokyo, Japan; ⁸Department of Internal Medicine, College of Medicine, Pusan National University and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea; ⁹General Surgery Department, Nhan Dan Gia Dinh Hospital, Ho Chi Minh City, Vietnam; ¹⁰Hospital San Lucas Cardiológica del Sureste, Chiapas, Mexico; ¹¹I Can Oncology Centre, New León, Mexico; ¹²Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; ¹³Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; ¹⁴Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; ¹⁵Medical Oncology, AP-HP Hôpital Beaujon, Paris, France; ¹⁶Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; ¹⁷Oncology Biometrics, Late Oncology Statistics, AstraZeneca, Warsaw, Poland; ¹⁸Global Medicines Development, AstraZeneca, Gaithersburg, MD, USA; ¹⁹Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra and CIBEREHD, Pamplona, Spain

*Co-principal investigators

ASCO Gastrointestinal Cancers Symposium

PRESENTED BY: Riccardo Lencioni, MD Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

EMERALD-1 study design

EMERALD-1 was a global, double-blind, placebo-controlled Phase 3 study

*Upper endoscopy to evaluate varices and risk of bleeding was required within 6 months of randomization. †Prior use of TACE or TAE is acceptable if it was used as part of therapy with curative intent, but not if it was used as the sole modality in curative therapy. ‡Durvalumab / placebo started ≥7 days after TACE. \$DEB-TACE or cTACE. Participants will receive up to 4 TACE procedures within the 16 weeks following Day 1 of their first TACE procedure. ^{II}Only new lesions consistent with progression that were not eligible for TACE occurring prior to the first on study imaging at 12 weeks were considered progression events; standard mRECIST progression criteria were used after the 12-week imaging.

BICR, blinded independent central review; cTACE, conventional transarterial chemoembolization; ECOG, Eastern Cooperative Oncology Group; DEB-TACE, drug-eluting bead-transarterial chemoembolization; HCC, hepatocellular carcinoma; mRECIST, modified Response Evaluation Criteria in Solid Tumors; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PS, performance status; Q3W / Q4W, every 3 / 4 weeks; QoL, quality of life; RECIST, Response Evaluation Criteria in Solid Tumors; TACE, transarterial embolization; TACE, tr

ASCO[•] Gastrointestinal Cancers Symposium

PRESENTED BY: Riccardo Lencioni, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

PFS with D+B + TACE versus placebos + TACE: primary endpoint

Median PFS was improved by 6.8 months with D+B + TACE versus placebos + TACE

Median (range) duration of follow-up in censored participants, D+B + TACE 16.7 (0.03–47.1) months, Placebos + TACE 10.3 (0.03–44.3) months. Median (95% CI) duration of follow-up in all participants using the reverse Kaplan-Meier method, D+B + TACE 22.2 (16.7–27.3) months, Placebos + TACE 26.3 (16.7–30.4) months. PFS was assessed by BICR (RECIST v1.1)

*The threshold of significance for this analysis was 0.0435 based on the α spend at the PFS interim analysis (2.27%) and the actual number of events at PFS final analysis

B, bevacizumab; BICR, blinded independent central review; CI, confidence interval; D, durvalumab; HR, hazard ratio; mo, months, PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors; TACE, transarterial chemoembolization.

#GI24 PRES

PRESENTED BY: Riccardo Lencioni, MD

8

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

PFS with D + TACE versus placebos + TACE: secondary endpoint

PFS was not significantly improved with **D** + **TACE** versus placebos + **TACE**

Placebos + TACE 26.3 (16.7–30.4) months.

PFS was assessed by BICR (RECIST v1.1)

#GI24

B, bevacizumab; BICR, blinded independent central review; CI, confidence interval; D, durvalumab; HR, hazard ratio; mo, months, PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors; TACE, transarterial chemoembolization.

PRESENTED BY: Riccardo Lencioni, MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

TTP Median TTP was improved by 12 months with D+B + TACE versus placebos + TACE

TTP was assessed by BICR (RECIST v1.1)

B. bevacizumab: BICR, blinded independent central review; CI, confidence interval: D, durvalumab: mo, months: RECIST, Response Evaluation Criteria in Solid Tumors; TACE, transarterial chemoembolization; TTP, time to progression

ASCO Gastrointestinal **Cancers Symposium**

PRESENTED BY: Riccardo Lencioni, MD

11

Most common maximum Grade 3 or 4 TEAEs

Incidence of maximum Grade 3 or 4 AEs was low across all arms, with no unexpected safety signals

AE, n (%)	D + TACE (n=232)	D+B + TACE (n=154)	Placebos + TACE (n=200)
Hypertension	5 (2.2)	9 (5.8)	1 (0.5)
Anemia	10 (4.3)	7 (4.5)	3 (1.5)
Acute kidney injury	4 (1.7)	6 (3.9)	0
Proteinuria	0	6 (3.9)	0
Post-embolization syndrome	8 (3.4)	5 (3.2)	8 (4.0)
Hepatic encephalopathy	1 (0.4)	5 (3.2)	3 (1.5)
Ascites	4 (1.7)	4 (2.6)	3 (1.5)
Hyponatremia	1 (0.4)	4 (2.6)	0
Esophageal varices hemorrhage	0	4 (2.6)	1 (0.5)

AEs occurring in \geq 2% of participants by preferred term in any arm.

AE, adverse event; B, bevacizumab; D, durvalumab; TACE, transarterial chemoembolization; TEAE, treatment-emergent adverse event.

PRESENTED BY: Riccardo Lencioni, MD Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Agenda

INTRODUCTION: EMERALD-1 – Immune Checkpoint Inhibitor-Based Therapy for Localized HCC Eligible for Embolization

MODULE 1: Optimal Utilization of Immune Checkpoint Inhibitors as First-Line Therapy for Advanced HCC — Dr Kaseb

MODULE 2: Incorporation of Anti-PD-1/PD-L1 Antibody-Based Approaches for Advanced Biliary Tract Cancers (BTCs) — Prof Vogel

Therapy for patients with viral and nonviral HCC etiology

Stacey Stein, MD

First-line management of advanced HCC

Thomas A Abrams, MD

Stacey M Stein, MD

Treatment options for patients with Child-Pugh C advanced HCC

Thomas A Abrams, MD

Transplant and other possible contraindications to immunotherapy

Stacey Stein, MD

Second-line treatment selection for advanced HCC

Thomas A Abrams, MD

Regulatory and reimbursement issues aside, which first-line systemic treatment would you most likely recommend for a 65-year-old patient with HCC, a Child-Pugh A score and a PS of 0?

Dr Kaseb	Atezolizumab/bevacizumab
Prof Vogel	Atezolizumab/bevacizumab
Dr Abou-Alfa	Durvalumab/tremelimumab
Dr Abrams	Durvalumab/tremelimumab
Dr Kelley	Atezolizumab/bevacizumab or durvalumab/tremelimumab
Dr Stein	Atezolizumab/bevacizumab

Regulatory and reimbursement issues aside, which first-line systemic treatment would you most likely recommend for a 65-year-old patient with HCC, a Child-Pugh A score and Grade 1 esophageal varices being managed with a beta blocker?

Regulatory and reimbursement issues aside, which first-line systemic treatment would you most likely recommend for a 78-year-old patient with HCC, a <u>Child-Pugh B7 score</u> and a PS of 1?

Dr Kaseb	Durvalumab/tremelimumab
Prof Vogel	Durvalumab +/- tremelimumab
Dr Abou-Alfa	Durvalumab/tremelimumab
Dr Abrams	Durvalumab/tremelimumab
Dr Kelley	Durvalumab +/- tremelimumab
Dr Stein	Atezolizumab/bevacizumab

In general, in which situations do you use durvalumab/tremelimumab as first-line treatment for patients with advanced HCC?

Dr Kaseb	If patient has borderline PS or borderline LFTs or large varices at risk for bleeding or just got banded
Prof Vogel	Pts with contraindication to bev, ALBI ≥2, elderly patients, pts with history of liver decompensation
Dr Abou-Alfa	All patients, except if contraindication for immune therapy
Dr Abrams	Most first-line cases of advanced HCC
Dr Kelley	Pts with peripheral vascular disease, on anticoagulation, recent/significant CAD, poorly controlled DM-2 or HTN, recent VTE, wound healing or bleeding issues
Dr Stein	If there is a risk of bleeding

Based on current clinical trial data and/or your personal experience, how would you compare the global efficacy/treatment benefit of durvalumab/tremelimumab to that of atezolizumab/bevacizumab?

Dr Kaseb	Atezolizumab/bevacizumab is more efficacious
Prof Vogel	Atezolizumab/bevacizumab may be more efficacious (depending on endpoint)
Dr Abou-Alfa	Durvalumab/tremelimumab is more efficacious
Dr Abrams	Durvalumab/tremelimumab is more efficacious
Dr Kelley	About the same
Dr Stein	About the same

Based on current clinical trial data and/or your personal experience, how would you compare the global tolerability/toxicity of durvalumab/tremelimumab to that of atezolizumab/bevacizumab?

Dr Kaseb	Durvalumab/tremelimumab is more tolerable
Prof Vogel	About the same
Dr Abou-Alfa	Durvalumab/tremelimumab is more tolerable
Dr Abrams	About the same
Dr Kelley	Durvalumab/tremelimumab is more tolerable
Dr Stein	Atezolizumab/bevacizumab is more tolerable

For a patient who has received atezolizumab/bevacizumab in the up-front setting and experienced disease progression, are there any circumstances in which you will recommend an anti-PD-1/PD-L1 antibody later in the treatment course?

Optimal Utilization of Immune Checkpoint Inhibitors as First-Line Therapy for Advanced HCC

RTP Hepatobiliary Cancers Webinar – ASCO GI January 20th, 2024

Ahmed O Kaseb, MD

Professor and Director, HCC Program Director, MD Anderson HCC SPORE

Department of GI Medical Oncology, MD Anderson

Editor-in-Chief: Journal of Hepatocellular Carcinoma

Making Cancer History®

2 Major Pathognomonic Features in HCC call for Charting systemic therapy

HCC + Cirrhosis → Limited surgical role HCC with no Cirrhosis → Surgical options \rightarrow Angiogenesis-driven & immunogenic* \rightarrow High recurrence rates

Dilemma 1: No hypothesis-driven personalized tx and CTP is the only hepatic reserve assessment tool poor outcome in advanced HCC

Dilemma 2: No standard neoadjuvant or adjuvant approaches Recurrence rate is very high

* Around 30% of HCC microenvironment is immune favorable

Educational Objectives

- •Learn current standard and evolving systemic therapies in HCC
- •Understand key factors affecting the selection of first-line treatment for advanced HCC
- Present regimen-specific factors affecting efficacy and safety outcomes
- Discuss tx sequencing and evolving real-world data in advanced HCC
- Conclusion

The ever-changing Landscape of Systemic Therapy in HCC

Educational Objectives

- Learn current standard and evolving systemic therapies in HCC
- •Understand key factors affecting the selection of first-line treatment for advanced HCC
- Present regimen-specific factors affecting efficacy and safety outcomes
- Discuss tx sequencing and evolving real-world data in advanced HCC
- Conclusion

<u>Towards Selection and Sequencing of</u> <u>Systemic tx in HCC</u>

Question: do we have response predictors of systemic therapy in HCC?

.... Such as biomarkers, risk factors, demographics, or liver function status?

Impact of Viral Status on Survival in Patients Receiving Sorafenib for Advanced HCC: A Meta-Analysis of Randomized Phase III Trials

Phase 3 COSMIC-312 Trial (Cabo/Atezo V sor):

subset analysis¹: Region, EHD/MVI, and Hepatitis status

A. Ev	ents/n Median (95% Cl) pr	ogression-free survival, mo	
Ca	bozantinib plus atezolizum	ab Sorafenib	HR (95% CI)
Overall	174/250 6.8 (5.6-8.3)*	78/122 4·2 (2·8–7·0)*	- 1 0.63 (0.44–0.91) [†]
Region			
Asia	44/63 6.7 (4.3-8.3)	25/33 2.7 (1.4-4.0)	- 1 0·56 (0·34–0·92)
Other regions	130/187 6.9 (5.7-8.5)	53/89 5.6 (3.3-7.4)	0.74 (0.54–1.02)
EHD and/or MVI			
Yes	119/175 6.7 (5.4-8.3)	57/85 2.9 (2.6–4.2)	0.57 (0.41–0.78)
No	55/75 6.9 (5.7–9.7)	21/37 7.0 (4.3–9.6)	0.97 (0.59–1.61)
Aetiology			
HBV	52/74 6.7 (5.6–8.3)	$28/35 2 \cdot 7 (1 \cdot 5 - 4 \cdot 0)$	0.46(0.29-0.73)
Non viral	70/105 5.8 (4.3 0.3)	21/34 5.6 (2.9-10.0)	
NON-VII al	79/103 5/8 (4/5–9/5)	29/33 7.0 (3.0-9.3)	0.92 (0.00-1.41)
		0.25 0.5	1 2
		· · · · · · · · · · · · · · · · · · ·	- ·
		Favours cabozantii plus atezolizum	nib Favours nab sorafenib
В.	Events/n Median (95% (CI) overall survival, mo	
Ca	bozantinib plus atezolizum	ab Sorafenib	HR (95% CI)
Overall	183/432 15.4 (13.7-17.7)	[‡] 90/217 15·5 (12·1–NE) [‡]	0.90 (0.69–1.18)§
Region	, , ,		
Asia	39/120 NE (13·7-NE)	24/63 14·9 (10·6–NE)	0.70 (0.42-1.17)
Other regions	144/312 14.9 (12.9-17.0)	66/154 15·5 (12·1–NE)	- 1.03 (0.77–1.38)
	131/208 14.0 (12.0 17.2)	70/148 12:0 (9:6 17:4)	0.78 (0.58 1.04)
No	52/134 15-8 (14-5_NE)	20/69 NE (15:0_NE)	1:45 (0:86-2:43)
140	52/154 15 6 (14 5-14E)	20/03 NE (10 0-NE)	1 43 (0 00-2 43)
Aetiology			
HBV	41/127 18·2 (15·4–NE)	28/64 14·9 (7·9–NE)	0.53 (0.33–0.87)
HCV without HB	66/136 13.6 (10.8–17.0)	31/67 14·0 (10·6–NE)	<u> </u>
Non-viral	76/169 15·2 (12·5–NE)	31/86 NE (14·9–NE)	1.18 (0.78–1.79)
		0.25 0.5 1	2 4
		Favours cabozantinib Fa	vours

Kelly, RK, et al. Lancet Oncol 2022

LEAP-002 (Lenvatinib plus Pembro Vs Lenvatinib) : Overall Survival Subgroup Analysis

	Events/Patients		HR (95% CI)	
Overall	534/794			0.84 (0.71-1.00)
Age				
<65 yrs	242/370		_	0.97 (0.76-1.25)
≥65 yrs	292/424			0.75 (0.60-0.95)
Sex				
Female	102/150			0.96 (0.65-1.41)
Male	432/644		0	0.82 (0.68-0.99)
Geographic region				
Asian (without Japan)	156/244		•	0.80 (0.58-1.09)
Japan + Western region	s 378/550			0.86 (0.71-1.06)
MPVI/extrahepatic sprea	ad			
Yes	373/530			0.78 (0.63-0.95)
No	160/262			1.00 (0.73-1.36)
Macrovascular invasion				
Yes	103/133 -			0.77 (0.53-1.14)
No	430/659			0.85 (0.70-1.03)
Extrahepatic spread				
Yes	344/492			0.78 (0.63-0.96)
No	189/300			0.97 (0.73-1.29)
				ן ז
	0.5	1		2
				→ .
	Favors Len	+ pembro	Favors Len +	placebo

Ev	ents/Patie	ents	HR (95% CI)	
Overall	534/794	-8-		0.84 (0.71-1.00)
HBV etiology				
Yes	241/385			0.75 (0.58-0.97)
No	284/400			0.95 (0.75-1.19)
HCV etiology				
Yes	118/181			0.86 (0.60-1.24)
No	409/605			0.84 (0.70-1.03)
Viral etiology				
Yes	312/484		-	0.84 (0.67-1.05)
No	212/299			0.86 (0.66-1.13)
AFP status		_		
>400 ng/mL	177/251			0.67 (0.50-0.90)
≤400 ng/mL	356/541			0.95 (0.77-1.17)
ECOG PS				
0	351/538		-	0.84 (0.68-1.04)
1	181/253			0.83 (0.62-1.11)
Overall BCLC stage				
В	102/180			0.85 (0.58-1.26)
С	431/612			0.83 (0.69-1.01)
Child-Pugh Score				
5	421/654	-∎+		0.85 (0.70-1.03)
6	111/136			0.79 (0.54-1.15)
		0.5 1	. 2	
		←		→
		Favors Len + pembro	Favors Len +	placebo

Meta-analysis of Randomized Controlled Trials (2002–2020)

REACH-1: randomized, double-blind, phase 3 trial of THE UNIVERSITY OF TEXAS MDAnderson Ramucirumab Vs placebo as 2nd line tx in HCC Cancer Center "VEGF pathway"

Zhu AX, et al. Lancet Oncology 2015

Making Cancer History'

	AB	STRIDE			
	Demographics				
	Region (%)				
Asia (excluding Japan)	40.0	39.7			
Rest of world	60.0	60.3			
ECOG	performance status score (%)				
0	62.0	62.1			
1	38.0	37.7			
Chi	ild-Pugh classification (%)				
A	100.0	98.5			
В7	0	1.0			
l l	BCLC disease stage (%)				
В	15.0	19.6			
С	82.0	80.4			
	High-risk features (%)				
$AFP \ge 400 \text{ ng/mL}$	38.0	36.9			
Macrovascular invasion	38.0	26.2			
Extrahepatic disease	63.0	53.2			
Main portal vein thrombosis	15.0	0			
HCC etiology (%)					
Hepatitis B	49.0	31.0			
Hepatitis C	21.0	28.0			
Nonviral	30.0	41.0			
Prior local therapy for HCC (%)	49.0	12.2			
	Efficacy				
ORR (%)					
RECIST 1.1	30.0	20.1			
mRECIST	35.0	N/A			
Complete response rate (%)	8.0	3.1			
Disease control rate (%)	74.0	60.1			
mPFS (months)	6.9 (5.7, 8.6; <i>P</i> = .0001)	3.8			
mOS (months)	19.2 (17, 23.7; <i>P</i> = .0009)	16.4			
	Safety				
TRAEs (%)					
All grades	86.0	75.8			
Grades 3/4	43.0	25.8			
Grade 5	2.0	2.3			
Leading to dose delay/modification	59.0	21.4			
Leading to treatment discontinuation	22.0	8.2			

IMbrave150 Vs HIMALAYA pt demographics

- Similar geographic region, ECOG status, baseline AFP level, and LFTs (CP-A).
- However, different **high-risk features**: IMbrave-150: higher proportions of macrovascular invasion (approximately 40% vs 25%) and extrahepatic disease (approximately 60% vs 50%).
- Furthermore, the HIMALAYA trial excluded patients with main trunk portal vein thrombosis (Vp4 HCC), whereas the IMbrave-150 trial did not.
- IMbrave150 mandated EGD within 6 months before tx.

https://dailynews.ascopubs.org/do/himalaya-and-imbrave-150-hepatocellular-carcinoma-critical-comparison

Answer:

- > AFP>400 as an indication for <u>ramucirumab</u>
- A hint of better outcome to <u>sorafenib</u> in HCV-HCC and <u>immunotherapy</u> in viral hepatitis-HCC
- A hint of better outcome to <u>Cabo/Atezo</u>, and <u>Pembro/Len</u> in HBV-HCC
- Caution in patients with borderline LFTs or overall condition (also main PVTT, tumors occupying almost entire liver, or large varices)

Educational Objectives

 Learn current standard and evolving systemic therapies in HCC

•Understand key factors affecting the selection of first-line treatment for advanced HCC

•Present regimen-specific factors affecting efficacy and safety outcomes

 Discuss tx sequencing and evolving real-world data in advanced HCC

•Conclusion

Understanding the clinical implications of ADA-positive status following treatment with checkpoint inhibitors¹

 Antidrug antibodies (ADAs) can cause a decrease in the amount of drug available and may result in decreased antitumor activity.

Figure Legend:

Highest published incidences of ADAs developing with different immune checkpoint inhibitors.

FDA: Food and Drug Administration; EMA: European Medicines Agency; n: Total Number of Patients Tested for ADA; ADA: Antidrug Antibodies; NR: Not Reached

1. Enrico, D., Paci, A., Chaput, N., Karamouza, E. and Besse, B., 2019. Antidrug Antibodies Against Immune Checkpoint Blockers: Impairment of Drug Efficacy or Indication of Immune Activation?. Clinical Cancer Research, 26(4), pp.787-792

Patients with high ADA levels at C2D1 found to have a decreased response rate, shorter PFS and OS, and reduced atezolizumab serum concentration vs. those with low ADA levels

ADA levels at C2D1

Atezolizumab serum concentration at varying ADA levels

Conclusions: Highly elevated ADA at C2D1 was associated with unfavourable clinical outcomes <u>and</u> reduced atezolizumab exposure, thereby limiting the drug's anti-cancer efficacy, in advanced HCC patients treated with atezolizumab-bevacizumab combination

ADA=anti-drug-antibody; CR=complete response; HCC=hepatocellular carcinoma; HR=hazard ratio; OS=overall survival; PD=progressive disease; PFS=progression-free survival; PR=partial response; SD=stable disease Jae Chon H, et al. Presented at ASCO 2022. Abstract #4105

CheckMate 040: Nivolumab + Ipilimumab in advanced HCC: treatment-related AEs

Making Cancer History®

	Arm A n = 49		Arm B	Arm B n = 49		
	Any grade	Grade 3-4	Any grade	Grade 3-4	Any grade	Grade 3-4
Any treatment-related adverse event, ^a No. (%)	46 (94)	26 (53)	35 (71)	14 (29)	38 (79)	15 (31)
Pruritus	22 (45)	2 (4)	16 (33)	0	14 (29)	0
Rash	14 (29)	2 (4)	11 (22)	2 (4)	8 (17)	0
Diarrhea	12 (24)	2 (4)	6 (12)	1 (2)	8 (17)	1 (2)
AST increase	10 (20)	8 (16)	10 (20)	<mark>4 (</mark> 8)	6 (13)	2 (4)
Hypothyroidism	10 (20)	0	4 (8)	0	4 (8)	0
Fatigue	9 (18)	1 (2)	6 (12)	0	5 (10)	0
ALT increase	8 (16)	4 (8)	7 (14)	3 (6)	4 (8)	0
Lipase increased	7 (14)	6 (12)	6 (12)	3 (6)	8 (17)	4 (8)
Adrenal insufficiency	7 (14)	1 (2)	3 (6)	0	2 (4)	0
Rash maculo-papular	7 (14)	2 (4)	4 (8)	0	3 (6)	0
Decreased appetite	6 (12)	0	4 (8)	0	3 (6)	0
Malaise	6 (12)	1 (2)	3 (6)	0	3 (6)	0
Nausea	5 (10)	0	4 (8)	0	1 (2)	0
Pyrexia	2 (4)	0	4 (8)	0	5 (10)	0
Immune-mediated adverse events requiring immune modulating medication, ^b No. (%)						
Rash	17 (35)	3 (6)	14 (29)	2 (4)	8 (17)	0
Hepatitis	10 (20)	10 (20)	6 (12)	5 (10)	3 (6)	3 (6)
Hypothyroidism	10 (20)	0	5 (10)	0	6 (13)	0
Adrenal insufficiency	9 (18)	2 (4)	3 (6)	0	3 (6)	0
Diarrhea/colitis	5 (10)	3 (6)	1 (2)	1 (2)	1 (2)	1 (2)
Pneumonitis	5 (10)	3 (6)	0	0	0	0
Hyperthyroidism	5 (10)	0	4 (8)	0	3 (6)	0
Hypophysitis	2 (4)	0	1 (2)	1 (2)	1 (2)	1 (2)

Modified from - Yau T, et al. JAMA Oncology 2020

Camrelizumab plus rivoceranib vs. sorafenib as first-line therapy for unresectable HCC: a randomized, phase 3 trial

TRAEs with Incidence of $\geq 20\%^*$

Preferred term	Camrelizumab + ri	voceranib (N=272)	Sorafeni	b (N=269)
	Any grade	Grade ≥3	Any grade	Grade ≥3
Hypertension	189 (69.5)	102 (37.5)	116 (43.1)	40 (14.9)
AST increased	147 (54.0)	45 (16.5)	99 (36.8)	14 (5.2)
Proteinuria	134 (49.3)	16 (5.9)	72 (26.8)	5 (1.9)
ALT increased	127 (46.7)	35 (12.9)	80 (29.7)	8 (3.0)
Platelet count decreased	126 (46.3)	32 (11.8)	89 (33.1)	4 (1.5)
Blood bilirubin increased	116 (42.6)	24 (8.8)	75 (27.9)	4 (1.5)
PPE syndrome	102 (37.5)	33 (12.1)	163 (60.6)	41 (15.2)
Diarrhoea	83 (30.5)	6 (2.2)	105 (39.0)	14 (5.2)
RCEP	79 (29.0)	7 (2.6)	0	0
Neutrophil count decreased	73 (26.8)	16 (5.9)	27 (10.0)	3 (1.1)
White blood cell count decreased	73 (26.8)	7 (2.6)	38 (14.1)	3 (1.1)
GGT increased	66 (24.3)	27 (9.9)	49 (18.2)	20 (7.4)
Hypothyroidism	58 (21.3)	0	16 (5.9)	0

THE UNIVERSITY OF TEXAS MDAnderson ancer Center

IMbrave150: Adverse events of Special Interests (AESI) – focus on Atezo related

Making Cancer History®

AESIs, n (%) ^a	Atezo + Be	v n = 329	Sor n = 1	56
	All	G3-4	All	G3-4
For atezo				
Pts with ≥ 1	226 (69)	85 (26)	128 (82)	47 (30)
Hepatic events ^b	142 (43)	70 (21)	62 (40)	26 (17)
Inc AST	64 (20)	23 (7)	26 (17)	8 (5)
Inc blood bilirubin	43 (13)	8 (2)	22 (14)	10 (6)
Inc ALT	46 (14)	12 (4)	14 (9)	2 (1)
Ascites	23 (7)	6 (2)	9 (6)	2 (1)
Rash	64 (20)	2 (1)	96 (62)	21 (14)
Hypothyroidism	36 (11)	0	4 (3)	0
Infusion-related reactions	36 (11)	8 (2)	0	0
For bev				
Pts with ≥ 1	190 (58)	76 (23)	76 (49)	29 (19)
Hypertension	102 (31)	50 (15)	40 (26)	19 (12)
Bleeding/haemorrhage	83 (25)	21 (6)	27 (17)	9 (6)
Epistaxis	34 (10)	0	7 (5)	1 (1)
Upper GI bleeding ^c	24 (7)	15 (5)	8 (5)	8 (5)
Proteinuria	70 (21)	10 (3)	13 (8)	1 (1)

Inc, increased. ^a In \geq 5% of pts. ^b \geq 1 category possible. ^c Grouped MedDRA PT

Kudo M et al, Ann of Oncol Abstract only Volume 31, SUPPLEMENT 6, S1304-S1305, Nov 01, 2020

IMbrave150: OS for Atezo/Bev versus sorafenib by ALBI grade

OS by ALBI grade

Clinical cutoff: August 31, 2020; median follow-up: 15.6 mo. NE, not estimable. * HR is unstratified.

Kudo M, et al. *Liver Cancer*. 2023;12(5):479-493. Published 2023 Mar 4.

ALBI Grade 2

OS for HIMALAYA (Durva/Treme) versus sorafenib by ALBI grade

 OS HRs for T300+D versus sorafenib in the ALBI grade 1 and ALBI grade 2/3 subgroups were generally consistent with the full analysis set (0.78; 96% CI, 0.65–0.93)

*OS HRs and 95% CIs were calculated using a Cox proportional hazards model adjusting for treatment, aetiology, ECOG performance status, and macrovascular invasion ALBI, albumin-bilirubin; CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; HR, hazard ratio; mo, months; OS, overall survival; T300+D, tremelimumab 300 mg × 1 dose + durvalumab 1500 mg Q4W 1. Abou-Alfa GK, et al. NEJM Evid Published online 6 June 2022. doi:10.1056/EVIDoa2100070

*ESMO conference presentation 2022

Four-year overall survival update from the phase 3 HIMALAYA study of Durvalumab plus tremelimumab in uHCC

Sangro B, et al. ESMO GI 2023

Educational Objectives

- Learn current standard and evolving systemic therapies in HCC
- •Understand key factors affecting the selection of first-line treatment for advanced HCC
- Present regimen-specific factors affecting efficacy and safety outcomes
- •Discuss tx sequencing and evolving real-world data in advanced HCC
- Conclusion

Sequencing Systemic Therapy in 2024 (Approved Therapy)

- EGD within 6 months required → caution with varices and portal HTN (Portal vein thrombosis and/or anticoagulation)
- ** Trend for better tolerance with **poor hepatic reserve** (Albi score study)

<u>General Consideration</u> \rightarrow in absence of trial options \rightarrow assess demographics and risk factors

Patient Receives Frontline Therapy for Advanced HCC ... What Happens in Real life?

Global study of Atezo/Bev in beyond frontline therapy in HCC

Efficacy and Safety of Atezolizumab and Bevacizumab in Patients with Hepatocellular Carcinoma After Prior Systemic Therapy

Joerg, Scheiner, et al. Hepatol Commun. 2023.

Evolving data – post Atezo/Bev

Lenvatinib demonstrated a PFS of 3.7 mo; mOS of 12.8 mo (N = 53)

- Cabozantinib demonstrated a PFS of 2.1 mo; mOS of 7.7 mo (N = 26)
- Other studies are currently underway to evaluate other 2L options post atezo-bev (eg, regorafenib³)

Real World Data of Immunotherapy Efficacy and Safety in Advanced HCC

Reference	Arm-I	Median OS/ Median PFS (Months)	Arm-2	Median OS/ Median PFS (Months)	Comments
DeCastro et al 2022 ⁶³	IMBrave-in	15/ 8.7	IMBrave-out	6/ 3.7	IMBrave-out group showed increased risk for ascites and hepatic encephalopathy
Rimini et al, 2023 ⁶⁴	IMBrave-in	16.3/ 8.3	IMBrave-out	14.3/6	No statistically significant difference in safety profile
Tanaka et al, 2022 ⁶⁵	Atezolizumab + Bevacizumab in CP-A	NR/ 9.5	Atezolizumab + Bevacizumab in CP-B	14/ 5.1	Therapeutic efficacy correlated with worsening liver function (mALBI score grade 2b-3).
Kim et al, 2022 ⁶⁶	Atezolizumab + Bevacizumab in CP-A	NR/ 6	Atezolizumab + Bevacizumab in CP-B	6/3	CP-B showed increase rate of grade 3 adverse effects compared to CP-A
D'Alessio et al, 2022 ⁶⁷	Atezolizumab + Bevacizumab in CP-A	16.8/ 7.6	Atezolizumab + Bevacizumab in CP-B	6.7/ 3.4	
Cheon et al, 2023 ⁶⁸	Atezolizumab + Bevacizumab in CP-A	NR/ 9.6	Atezolizumab + Bevacizumab in CP-B	7.7/ 3	CP-B showed increase rate of grade 3 adverse effects compared to CP-A
Rimini et al, 2023 ⁶⁹	Atezolizumab + Bevacizumab in CP-B	8.2/ 6.9	Lenvatinib in CP-B	13.8/ 8.2	No statistically significant difference in PFS
Casadei- Gardini et al, 2023 ⁷⁰	Atezolizumab + Bevacizumab	16.4 (OS)	Lenvatinib	16.1 (OS)	ATE/BEV improved OS in HCC patients with viral etiology. Lenvatinib improved OS in HCC patients with NASH/ NAFLD etiology.
Wong et al, 2021 ⁷¹	Single agent Nivolumab/ Pembrolizumab in CP-B	3.1 (OS)	Single agent Nivolumab/ Pembrolizumab in CP-C	1.7 (OS)	ORR for CP-B and CP-C was 6.8% and 0% respectively. TTP 2.1 and 1.4 months, respectively.
Fessas et al, 2020 ⁷²	Nivolumab in CP-A	16.3 (OS)	Nivolumab in CP-B	7.3 (OS)	
Chapin et al, 2023 ⁷³	Nivolumab in CP-B	5 (OS)	Sorafenib in CP-B	4 (OS)	Decreased hazard of death with nivolumab compared to sorafenib HR: 0.69

Sara A, and Pawlik T, et al. Pragmatic and Observational Research. 2023

Educational Objectives

- Learn current standard and evolving systemic therapies in HCC
- •Understand key factors affecting the selection of first-line treatment for advanced HCC
- Present regimen-specific factors affecting efficacy and safety outcomes
- Discuss tx sequencing and evolving real-world data in advanced HCC
- Conclusion

Conclusion

- Refining 1L therapy in advanced HCC requires an understanding of benefit-risk ratio and patients' demographics and clinical features
- Despite recent approval of multiple systemic tx in HCC → prospective evidence-based medicine supporting specific sequences is lacking and is still dependent on clinical scenarios
- However, advances in combining IO+IO and IO+targeted therapies are being translated into higher response rates and longer TTP → Predictive biomarkers are needed
- Notably, <u>designing future trials should be customized</u> based on disease etiology, underlying liver disease, and tumor characteristics for early, intermediate and advanced stages of HCC and require <u>global participation to address disparity in healthcare/trials access</u>

Agenda

INTRODUCTION: EMERALD-1 – Immune Checkpoint Inhibitor-Based Therapy for Localized HCC Eligible for Embolization

MODULE 1: Optimal Utilization of Immune Checkpoint Inhibitors as First-Line Therapy for Advanced HCC — Dr Kaseb

MODULE 2: Incorporation of Anti-PD-1/PD-L1 Antibody-Based Approaches for Advanced Biliary Tract Cancers (BTCs) — Prof Vogel

KEYNOTE-966 and TOPAZ-1: Selecting first-line therapy for advanced BTC

Stacey Stein, MD

Challenges with the chemotherapy portion of the TOPAZ-1 regimen for patients with advanced BTC

Thomas A Abrams, MD

Experience with futibatinib as second-line treatment for BTC

Stacey Stein, MD

Use of targeted agents as part of up-front therapy for BTC

Thomas A Abrams, MD

Use of FGFR2 inhibitors as part of front-line therapy for BTC

Stacey Stein, MD

Prevention and management of hyperphosphatemia associated with FGFR2 inhibitors

Stacey Stein, MD

HER2-directed therapy for BTC

Thomas A Abrams, MD

What was the age of the last patient in your practice with metastatic biliary tract cancer who received <u>durvalumab/chemotherapy</u> as first-line treatment? What was the treatment schedule, and how much benefit, if any, did the patient derive from treatment?

	Age	Tx schedule	Tx benefit
Dr Kaseb	69 years	Gem/cis q2wk, durvalumab q4wk	Some benefit
Prof Vogel	65 years	TOPAZ-1	Partial response
Dr Abou-Alfa	65 years	TOPAZ-1	A great deal of benefit
Dr Abrams	34 years	TOPAZ-1	Some benefit
Dr Kelley	60 years	TOPAZ-1	Some benefit
Dr Stein	67 years	TOPAZ-1	Too early to determine

TOPAZ-1 schedule: gemcitabine/cisplatin d1 and d8, q21 days; durvalumab d1, q21 days

Regulatory and reimbursement issues aside, what would be your preferred first- and second-line systemic treatments for a 65-year-old patient with <u>metastatic biliary tract</u> <u>cancer</u>, <u>no targetable mutations</u> on NGS and PS 0?

	First-line Tx	Second-line Tx
Dr Kaseb	Durvalumab + cisplatin/gemcitabine	FOLFOX
Prof Vogel	Durvalumab + cisplatin/gemcitabine	FOLFIRI
Dr Abou-Alfa	Durvalumab + cisplatin/gemcitabine	Durvalumab + nal-IRI/5-FU/LV
Dr Abrams	Durvalumab + cisplatin/gemcitabine	FOLFOX
Dr Kelley	Pembrolizumab + cisplatin/gemcitabine*	FOLFIRI
Dr Stein	Durvalumab + cisplatin/gemcitabine	FOLFIRI

LV = leucovorin

*Institutional preference for pembrolizumab
Regulatory and reimbursement issues aside, what would be your preferred first- and second-line systemic treatments for a 65-year-old patient with <u>metastatic biliary tract</u> <u>cancer</u> and an <u>IDH1 mutation</u> (PS 0)?

	First-line Tx	Second-line Tx
Dr Kaseb	Durvalumab + cisplatin/gemcitabine	Ivosidenib
Prof Vogel	Durvalumab + cisplatin/gemcitabine	Ivosidenib
Dr Abou-Alfa	Durvalumab + cisplatin/gemcitabine	Ivosidenib
Dr Abrams	Durvalumab + cisplatin/gemcitabine	Ivosidenib
Dr Kelley	Pembrolizumab + cisplatin/gemcitabine*	Ivosidenib
Dr Stein	Durvalumab + cisplatin/gemcitabine	Ivosidenib

*Institutional preference for pembrolizumab

Regulatory and reimbursement issues aside, what would be your preferred first- and second-line systemic treatments for a 65-year-old patient with <u>metastatic biliary tract</u> <u>cancer</u> and an <u>FGFR alteration</u> (PS 0)?

	First-line Tx	Second-line Tx
Dr Kaseb	Durvalumab + cisplatin/gemcitabine	Pemigatinib
Prof Vogel	Durvalumab + cisplatin/gemcitabine	Futibatinib or pemigatinib
Dr Abou-Alfa	Durvalumab + cisplatin/gemcitabine	Pemigatinib
Dr Abrams	Durvalumab + cisplatin/gemcitabine	Futibatinib
Dr Kelley	Pembrolizumab + cisplatin/gemcitabine*	Futibatinib
Dr Stein	Durvalumab + cisplatin/gemcitabine	Pemigatinib

*Institutional preference for pembrolizumab

Regulatory and reimbursement issues aside, what would be your preferred first- and second-line systemic treatments for a 65-year-old patient with <u>HER2-overexpressing</u> (IHC 3+) advanced biliary tract cancer (PS 0)?

	First-line Tx	Second-line Tx		
Dr Kaseb	Durvalumab + cisplatin/gemcitabine	Trastuzumab/pertuzumab		
Prof Vogel	Durvalumab + cisplatin/gemcitabine	Trastuzumab deruxtecan or tucatinib/trastuzumab or zanidatamab		
Dr Abou-Alfa	Durvalumab + cisplatin/gemcitabine	Trastuzumab deruxtecan or zanidatamab		
Dr Abrams	Durvalumab + cisplatin/gemcitabine	Trastuzumab/pertuzumab		
Dr Kelley	Pembrolizumab + cisplatin/gemcitabine*	Zanidatamab		
Dr Stein	Durvalumab + cisplatin/gemcitabine	Tucatinib/trastuzumab		

*Institutional preference for pembrolizumab

Incorporation of Anti-PD-1/PD-L1 Antibody-Based Approaches for Advanced Biliary Tract Cancers (BTCs)

Arndt Vogel

ESMO Clinical Practice Guideline 2022

BTC: low prevalence of established IO biomarkers

TMB^{high} 226/6130 iCCAs (3.7%)

MSI^{high} 75/6130 iCCAs (1.2%)

Vogel/Saborowski Journal of Hepatology 2002

Biliary Tract Cancers: 10%-30% with "immunogenic" phenotype according to "multi-omic" classification

Extrahepatic CCA, n= ; \rightarrow 11% immune subclass

	Metabolic (18.7%)	Proliferation (22.5%)	Mesenchymal (47.3%)	Immune (11.5%)	
ment	Bile-acid metabolism	ERBB2 mutations / overexpression	EMT	High lymphocyte infiltration (CD8+)	
oenviron features	HDAC6 overexpression mTOR signaling		Hedgehog signaling		
and micn olecular	HNF4A upstream regulation	Cell cycle signaling	TNF-α signaling TGF-β1 upstream	overexpression	
Tumor 8	Hepatocyte-like	DNA repair signaling	regulation High desmoplastic	IFN-γ upstream regulation	
istics		Papillary histology			
Clinic		Precursor lesions (IPNB) dCCA	Poor outcome (Overall survival)		
therapies andation Strong*		ERBB2 mAb/inhibitors		PD-1/PD-L1 inhibitors	
Targeted recomme Weak**	Nuclear receptor modulators and HDAC6 and SK2 inhibitors	mTOR, CDK4/6 and Casein kinase II inhibitors	Hyaluronidase, Hedgehog antagonists and TGF-β inhibitors		

Montal et al, J. Hepatol 2020

Intrahepatic CCA, n=900 \rightarrow 10% immune classical

Martin-Serrano et al, GUT 2022

Intrahepatic, n=566 \rightarrow 13% immunogenic

Job et al. Hepatology 2020

Intra- and extrahepatic, n=217 \rightarrow 30% "immun-responsive"

Deng et al, Hepatology 2022

Pembrolizumab in Advanced BTC with Proficient MMR/MSS: KEYNOTE-158

N=104, multicenter basket trial biliary tract cancer (BTC) cohort with planned biomarker analyses

 \geq 1 prior line of therapy, median 2

ICC, ECC, GBC % not reported

PD-L1+ (CPS ≥1, 22C3) 59%

99 with proficient mismatch repair (pMMR), 5 unknown

Treatment-related AE Grade 3-5 in 13.5% Confirmed PR (central) in 5.8% overall 6.6% for PD-L1+ 2.9% PD-L1mPFS 2.0 months mOS 7.4 months

ICI + mTKI Pembrolizumab and Lenvatinib

Percentage change from baseline in target lesion size^b 100

Biliary tract cancer: LEAP-005

OS: 8.6 months

Severe AE: Grade ≥3: 48%

Villanueva et al. ASCO 2022

Ipi + Nivo ORR, PFS and OS

Immune-related AE:

 Overall:
 49%

 Grade ≥3:
 15%

Progression free survival

Klein et al. JAMA Oncology 2020

MEDITREME Study: Checkpoint Inhibition + CTx in BTC

- Objective response rates were similar in the GemCis + D cohort and GemCis + D + T cohort, and were higher compared with the BMC.
- Complete response rates were lower in GemCis + D + T cohort, whereas BMC and GemCis + D cohorts exhibited similar CR rates.
- GemCis + D + T cohort had the highest partial response rate among the three cohorts.
- The Biomarker cohort had the highest rate of stable disease among the three cohorts.
- Disease progression was not observed in the GemCis + D cohort.

Oh D-Y et al. @ASCO Virtual Annual Meeting 2020

IO-Phase-III studies in BTC: TOPAZ-1 & KEYNOTE-966

IO-Phase-III studies in BTC: TOPAZ-1 & KEYNOTE-966

Published June 1, 2022 NEJM Evid 2022; 1 (8) DOI: 10.1056/EVIDoa2200015

ORIGINAL ARTICLE

Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer

Do-Youn Oh, M.D., Ph.D.,¹ Aiwu Ruth He, M.D., Ph.D.,² Shukui Qin, M.D.,³ Li-Tzong Chen, M.D., Ph.D.,^{4,5,6} Takuji Okusaka, M.D., Ph.D.,⁷ Arndt Vogel, M.D.,⁸ Jin Won Kim, M.D., Ph.D.,⁹ Thatthan Suksombooncharoen, M.D.,¹⁰ Myung Ah Lee, M.D., Ph.D.,¹¹ Masayuki Kitano, M.D., Ph.D.,¹² Howard Burris, M.D.,¹³ Mohamed Bouattour, M.D.,¹⁴ Suebpong Tanasanvimon, M.D.,¹⁵ Mairéad G. McNamara, M.B., Ph.D.,¹⁶ Renata Zaucha, M.D., Ph.D.,¹⁷ Antonio Avallone, M.D.,¹⁸ Benjamin Tan, M.D.,¹⁹ Juan Cundom, M.D.,²⁰ Choong-kun Lee, M.D., Ph.D.,²¹ Hidenori Takahashi, M.D., Ph.D.,²² Masafumi Ikeda, M.D., Ph.D.,²³ Jen-Shi Chen, M.D.,²⁴ Julie Wang, Ph.D.,²⁵ Mallory Makowsky, Pharm.D.,²⁵ Nana Rokutanda, M.D., Ph.D.,²⁵ Philip He, Ph.D.,^{25,26} John F. Kurland, Ph.D.,²⁵ Gordon Cohen, M.D., M.P.H.,²⁵

1.0 0.9 0.8 Probability of Overall Survival 0.7 0.6 0.5 Durva + Gem + Cis 0.3 0.2 Placebo + Gem + Cis 0.1 0.0 12 15 18 21 24 27 Time from Randomization (mo)

Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): a randomised, double-blind, placebo-controlled, phase 3 trial

℈ℛ⅍ℿ

Robin Kate Kelley*, Makoto Ueno*, Changhoon Yoo, Richard S Finn, Junji Furuse, Zhenggang Ren, Thomas Yau, Heinz-Josef Klümpen, Stephen L Chan, Masato Ozaka, Chris Verslype, Mohamed Bouattour, Joon Oh Park, Olga Barajas, Uwe Pelzer, Juan W Valle, Li Yu, Usha Malhotra, Abby B Siegel, Julien Edeline, Arndt Vogel*, on behalf of the KEYNOTE-966 Investigators†

ORR: 26.7% vs 18.7%

ORR: 29% vs 29%

Summary of Primary Results – Safety Summary TOPAZ-1 KEYNOTE-966

	Durvalumab + Gem-Cis (n=338)	Placebo + Gem· Cis (n=342)	
Event,ª n (%)			
Any AE	336 (99.4)	338 (98.8)	
Any Grade 3/4 AE	256 (75.7)	266 (77.8)	
Any serious AE	160 (47.3)	149 (43.6)	
Any AE leading to discontinuation	44 (13.0)	52 (15.2)	
Any AE leading to death	12 (3.6)	14 (4.1)	
Any TRAE	314 (92.9)	308 (90.1)	
Any Grade 3/4 TRAE	212 (62.7)	222 (64.9)	
Any serious TRAE	53 (15.7)	59 (17.3)	
Any TRAE leading to discontinuation	30 (8.9)	39 (11.4)	
Any TRAE leading to death	2 (0.6)	1 (0.3)	
Any imAE	43 (12.7)	16 (4.7)	
Any Grade 3/4 imAE	8 (2.4)	5 (1.5)	

Oh D-Y et al. NEJM Evid. 2022

	Pembro + Gem/Cis (n = 529)	Placebo + Gem/Cis (n = 534)
Any	524 (99%)	532 (<100%)
Treatment-related	493 (93%)	500 (94%)
Grade 3-4 as maximum grade	420 (79%)	400 (75%)
Treatment-related	369 (70%)	367 (69%)
Led to death	31 (6%)	49 (9%)
Treatment-related	8 (2%) ^a	3 (1%) ^b
Led to discontinuation of ≥1 study medication	138 (26%)	122 (23%)
Treatment-related	102 (19%)	81 (15%)
Led to discontinuation of all study medication	35 (7%)	39 (7%)
Treatment-related	18 (3%)	14 (3%)

Kelley et al. AACR 2023

TOPAZ-1: Immune-Mediated Adverse Events

Event, n (%)	Durvalumal (n=:	b + GemCis 338)	Placebo + GemCis (n=342)	
	Any Grade	Any Grade Grade ≥3		Grade ≥3
Any immune-mediated AE ^a	43 (12.7)	8 (2.4)	16 (4.7)	5 (1.5)
Hypothyroid events	20 (5.9)	0	5 (1.5)	0
Dermatitis/Rash	12 (3.6)	3 (0.9)	1 (0.3)	0
Pneumonitis	3 (0.9)	1 (0.3)	2 (0.6)	1 (0.3)
Hepatic events	4 (1.2)	2 (0.6)	2 (0.6)	1 (0.3)
Adrenal insufficiency	4 (1.2)	0	1 (0.3)	0
Diarrhea/Colitis	2 (0.6)	1 (0.3)	1 (0.3)	1 (0.3)
Hyperthyroid events	2 (0.6)	0	0	0
Type 1 diabetes mellitus	1 (0.3)	1 (0.3)	0	0
Pancreatic events	1 (0.3)	0	2 (0.6)	1 (0.3)
Hypophysitis	1 (0.3)	0	0	0
Thyroiditis	1 (0.3)	0	0	0
Renal events	0	0	2 (0.6)	0
Myositis	0	0	1 (0.3)	1 (0.3)
Other rare/Miscellaneous ^b	1 (0.3)	1 (0.3)	1 (0.3)	1 (0.3)

KEYNOTE-966: Immune-Mediated Adverse Events

Kelley et al. AACR 2023

IO + Chemo in BTC 1st line: TOPAZ-1 Phase 3

OS in subgroups by Region

Durvalumab performed similarly across subregions; placebo performed better in South America (median OS was not reached) than in other subregions

Overall Survival HR (95% CI) by Subregion

Vogel A et al. @ASCO Annual Meeting 2022

IO + Chemo in BTC 1st line: TOPAZ-1 Phase 3

OS in subgroups by Anatomic location

		Events, n/N (%)	Median OS (95% Cl), mo	Events, n/N (%)	Median OS (95% Cl), mo	(95% CI)
Full analysis set ¹	p=0.021*	198/341 (58.1)	12.8 (11.1–14.0)	226/344 (65.7)	11.5 (10.1–12.5)	0.80 (0.66-0.97)‡
Intrahepatic cholangiocarcin	oma 🛏 🕂	105/190 (55.3)	13.5 (11.9–15.1)	126/193 (65.3)	11.5 (9.8–12.8)	0.76 (0.58-0.98)§
Asia	F	60/100 (60.0)	13.0 (9.8–14.6)	81/111 (73.0)	11.4 (9.2–12.5)	0.73 (0.52–1.02)§
Europe	⊢ → → →	31/61 (50.8)	13.5 (9.5–18.8)	35/61 (57.4)	14.0 (8.0–18.3)	0.87 (0.53–1.42)§
North America	⊢	11/21 (52.4)	15.1 (6.8–NC)	9/18 (50.0)	13.3 (5.3–NC)	0.83 (0.33–2.12)§
South America	NC	3/8 (37.5)	NR (2.3–NC)	1/3 (33.3)	NR (8.0–NC)	NCI
Europe + North America	⊢	42/82 (51.2)	13.7 (10.9–18.1)	44/79 (55.7)	13.6 (8.5–17.7)	0.85 (0.55–1.30)§
Extrahepatic cholangiocarcir	noma 🛏 🔶 🕂	38/66 (57.6)	12.7 (9.8–16.6)	42/65 (64.6)	12.1 (7.8–14.4)	0.76 (0.49–1.19)§
Asia	F	18/35 (51.4)	16.6 (12.6–NC)	27/42 (65.3)	12.8 (7.7–17.3)	0.66 (0.36–1.20)§
Europe	• • • •	┥ 14/23 (60.9)	9.1 (8.7–NC)	12/19 (63.2)	14.4 (7.0–NC)	0.86 (0.39–1.90)§
North America	NC	5/6 (83.3)	11.0 (0.9–NC)	3/4 (75.0)	9.6 (3.4–NC)	NC
South America	NC	1/2 (50.0)	NR (10.0–NC)	0	NC	NCI
Europe + North America	⊢	н 19/29 (65.5)	9.8 (8.7–16.2)	15/23 (65.2)	12.1 (7.0–14.4)	0.86 (0.43–1.73)§
Gallbladder cancer	⊢	55/85 (64.7)	10.7 (8.9–13.2)	58/86 (67.4)	11.0 (8.7–12.8)	0.94 (0.65–1.37)§
Asia	⊢	25/43 (58.1)	13.3 (9.0–20.1)	29/43 (67.4)	12.6 (8.4-17.7)	0.82 (0.48–1.40)§
Europe	⊢	18/24 (75.0)	9.6 (5.2–11.1)	22/27 (81.5)	8.1 (4.9–11.0)	0.80 (0.42–1.51)§
North America	NC	5/10 (50.0)	12.2 (2.6–NC)	4/6 (66.7)	10.2 (5.7–NC)	NCI
South America	NC	7/8 (87.5)	8.1 (0.9–NC)	3/10 (30.0)¶	NR (2.0-NC)	NC
Europe + North America	⊢	23/34 (67.6)	10.3 (6.6–12.2)	26/33 (78.8)	8.7 (6.0–11.0)	<mark>0.78 (0.44–</mark> 1.37)§

Durvalumab + GemCis (N=341)

0,13 0,25 0,50 1,00 2,00 OS HR (95% CI)

He et al. @ESMO-GI 2022

Placebo + GemCis (N=344)

OS HR[†]

IO + Chemo in BTC 1st line: TOPAZ-1 Phase 3

OS in subgroups by PD-L1 expression

Tumor Area Positivity (TAP) score using the Ventana PD-L1 (SP263) Assay

IO + Chemo in BTC 1st line: KEYNOTE-966 Phase 3

	No. E No. Par	vents/ ticipants			
Subgroup	Pembro + Gem/Cis	Placebo + Gem/Cis	Haz	ard Ratio (95	% CI)
Overall	414/533	443/536	_ + _		0.83 (0.72-0.95)
Age					
<65 years	210/269	242/298			0.88 (0.73-1.05)
≥65 years	204/264	201/238			0.79 (0.65-0.97)
Sex					
Female	200/253	220/264			0.85 (0.70-1.03)
Male	214/280	223/272	'		0.83 (0.69-1.00)
Geographic regio	on				
Asia	185/242	201/244	• ·		0.88 (0.72-1.08)
Not Asia	229/291	242/292	_ _		0.80 (0.67-0.96)
ECOG performan	ce status				
0	186/258	177/228	• !		0.87 (0.71-1.07)
1	227/274	266/308			0.84 (0.70-1.00)
Smoking status					
Current	42/56	38/49			0.90 (0.58-1.40)
Former	160/205	160/191	•		0.87 (0.70-1.09)
Never	212/272	244/295			0.82 (0.68-0.98)
Antibiotic use wit	thin 1 month	of study start			
No	190/242	213/263			0.86 (0.71-1.05)
Yes	224/291	230/273			0.81 (0.68-0.98)
		-	0.5 0.7 1	1.5	_
		•	Pembro + Gem/Cis Better	Placebo + Gem/Cis Better	•

	No. E No. Part	vents/ ticipants					
Subgroup	Pembro + Gem/Cis	Placebo + Gem/Cis	Hazard	Ratio (95% CI)			
Overall	414/533	443/536	_	0.83 (0.72-0.95)			
Site of origin							
Extrahepatic	78/98	83/105		— 0.99 (0.73-1.35)			
Gallbladder	102/115	104/118		0.96 (0.73-1.26)			
Intrahepatic	234/320	256/313	_ -	0.76 (0.64-0.91)			
Disease status							
Locally advance	ced 37/60	52/66		0.69 (0.45-1.06)			
Metastatic	377/473	391/470	- •	0.85 (0.74-0.98)			
Biliary stent or dr	ain						
No	388/500	406/495		0.85 (0.74-0.98)			
Yes	26/33	37/41		0.72 (0.43-1.19)			
Prior chemothera	ру						
No	382/483	408/488	-	0.86 (0.75-0.99)			
Yes	32/50	35/48		0.66 (0.41-1.08)			
PD-L1 combined	positive scor	e					
<1	86/113	87/110		0.84 (0.62-1.14)			
≥1	287/363	309/365		0.85 (0.72-1.00)			
Unknown	41/57	47/61		0.77 (0.51-1.18)			
			0.5 0.7 1	1.5			
			Pembro + P Gem/Cis 0 Better	lacebo + Gem/Cis Better			

TOPAZ-1 Exploratory Analysis of Long-term Survivors: Baseline Demographics and Disease Characteristics

	Long-term	survivors	Full analysis set		
	(n=	153)	(N=685)		
Characteristic	D + Gem-Cis	P + Gem-Cis	D + Gem-Cis	P + Gem-Cis	
	(n=88)	(n=65)	(n=341)	(n=344)	
Neutrophil-to-lymphocyte ratio, n (%) ^a <3 ≥3 Missing	45 (51.1) 41 (46.6) 2 (2.3)	43 (66.2) 21 (32.3) 1 (1.5)	131 (38.4) 205 (60.1) 5 (1.5)	138 (40.1) 200 (58.1) 6 (1.7)	
Cancer antigen 19-9, n (%)ª <500 U/mL ≥500 U/mL Missing	68 (77.3) 14 (15.9) 6 (6.8)	50 (76.9) 11 (16.9) 4 (6.2)	196 (57.5) 116 (34.0) 29 (8.5)	202 (58.7) 111 (32.3) 31 (9.0)	
Carcinoembryonic antigen, n (%)ª <5 ng/mL ≥5 ng/mL Missing	60 (68.2) 22 (25.0) 6 (6.8)	42 (64.6) 19 (29.2) 4 (6.2)	170 (49.9) 138 (40.5) 33 (9.7)	176 (51.2) 136 (39.5) 32 (9.3)	
Subsequent anticancer therapy, n (%)	51 (58.0)	53 (81.5)	173 (50.7)	185 (53.8)	
Immunotherapy	3 (3.4)	12 (18.5)	9 (2.6)	24 (7.0)	
Cytotoxic chemotherapy	49 (55.7)	47 (72.3)	160 (46.9)	169 (49.1)	
Targeted therapy	10 (11.4)	9 (13.8)	22 (6.5)	24 (7.0)	
Taxane chemotherapy	5 (5.7)	4 (6.2)	11 (3.2)	12 (3.5)	
Other	5 (5.7)	9 (13.8)	21 (6.2)	36 (10.5)	
Antiangiogenic therapy	0	0	1 (0.3)	1 (0.3)	
Unknown	0	0	1 (0.3)	0	

- Compared with the FAS, long-term survivors more frequently (≥10% difference) had a NL ratio <3, a cancer antigen 19-9 level <500 U/mL, and a CEA level <5 ng/mL
- A higher proportion of long-term survivors in the placebo + Gem-Cis arm received subsequent anticancer therapy compared with the durvalumab + Gem-Cis arm
 - The most common subsequent anticancer therapy in the placebo + Gem-Cis arm was cytotoxic chemotherapy, followed by immunotherapy

TOPAZ-1 Exploratory Analysis of Long-term Survivors: Genomic Profile in Biomarker-evaluable Patients

Genomic profiling was performed in the BEP in the FAS; 115/441 (26.1%) patients in the BEP were long-term survivors

 The most common alterations were TP53 mutation, CDKN2A/CDKN2B/MTAP loss, KRAS mutation, ARID1A mutation and SMAD4 mutation

Bouattour et al ASCO-GI 2023

ESMO Clinical Practice Guideline 2022

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Prostate Cancer

Part 1 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Genitourinary Cancers Symposium

Thursday, January 25, 2024 6:15 PM – 8:15 PM PT (9:15 PM – 11:15 PM ET)

Faculty

Rahul Aggarwal, MD Emmanuel S Antonarakis, MD Elisabeth I Heath, MD A Oliver Sartor, MD

Moderator Alan H Bryce, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

