Consensus or Controversy? Investigator Perspectives on the Current and Future Role of Immune Checkpoint Inhibitors in the Management of Hepatobiliary Cancers — A 2024 Post-ASCO Gastrointestinal Cancers Symposium Review

A CME-Accredited Virtual Event

Thursday, February 15, 2024 5:00 PM – 6:00 PM ET

Faculty Robin (Katie) Kelley, MD Mark Yarchoan, MD

> Moderator Neil Love, MD

Faculty

Robin (Katie) Kelley, MD Professor of Clinical Medicine, Division of Hematology/Oncology Helen Diller Family Comprehensive Cancer Center University of California, San Francisco (UCSF) San Francisco, California

MODERATOR Neil Love, MD Research To Practice Miami, Florida

Mark Yarchoan, MD Associate Professor of Medical Oncology Johns Hopkins Sidney Kimmel Cancer Center Washington, DC

Commercial Support

This activity is supported by an educational grant from AstraZeneca Pharmaceuticals LP.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI Biopharma, a Sobi company, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab US Inc, Gilead Sciences Inc, Grail Inc, GSK, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Legend Biotech, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Mural Oncology Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, R-Pharm US, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc, and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Kelley — Disclosures Faculty

Advisory Committees (Payments to Insitution)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Exelixis Inc, Ipsen Biopharmaceuticals Inc, Merck
Consulting Agreements (Payments to Self)	Compass Therapeutics, Exact Sciences Corporation, J-Pharma Co Ltd, Kinnate Biopharma, Regeneron Pharmaceuticals Inc, Tyra Biosciences
Contracted Research (Payment to Institution for Trial Conduct)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol Myers Squibb, Compass Therapeutics, EMD Serono Inc, Exelixis Inc, Genentech, a member of the Roche Group, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Partner Therapeutics, QED Therapeutics, Servier Pharmaceuticals LLC, Surface Oncology, Taiho Oncology Inc, Tyra Biosciences
Independent Data Monitoring Committees (Unpaid Service)	Genentech, a member of the Roche Group, Merck

Dr Yarchoan — Disclosures Faculty

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group
Co-Founder with Equity	Adventris Pharmaceuticals
Research Funding (to Johns Hopkins)	Bristol Myers Squibb, Exelixis Inc, Genentech, a member of the Roche Group, Incyte Corporation

Dr Abrams — Disclosures Video Participant

Advisory Committee	AstraZeneca Pharmaceuticals LP
Consulting Agreements	Eisai Inc, Exelixis Inc, HistoSonics
Contracted Research	AbbVie Inc, AstraZeneca Pharmaceuticals LP

Dr Kaseb — Disclosures Video Participant

Dr Stein — Disclosures Video Participant

Advisory Committees	AbbVie Inc, Eisai Inc, Genentech, a member of the Roche Group
Consulting Agreements	AstraZeneca Pharmaceuticals LP, Merck
Data and Safety Monitoring Boards/Committees	Aethlon Medical Inc, Genentech, a member of the Roche Group

Prof Vogel — Disclosures Video Participant

Consultancy and Advisory; Speaker	Amgen Inc, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Boehringer Mannheim, Bristol Myers Squibb, Eisai Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, MSD, Pierre Fabre, Roche Laboratories Inc, Servier Pharmaceuticals LLC, Taiho Oncology Inc
--------------------------------------	---

Ghassan Abou-Alfa, MD, MBA — Disclosures Survey Participant

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Autem Therapeutics, Berry Genomics, BioNTech SE, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Merck, Merus BV, Neogene Therapeutics, Novartis, Servier Pharmaceuticals LLC, Tempus, Vector Pharma, Yiviva
Contracted Research	Agenus Inc, Arcus Biosciences, AstraZeneca Pharmaceuticals LP, BioNTech SE, Bristol Myers Squibb, Digestive Care Inc, Elicio Therapeutics, Genentech, a member of the Roche Group, Helsinn Healthcare SA, Puma Biotechnology Inc, QED Therapeutics, Yiviva
Nonrelevant Financial Relationship	Parker Institute for Cancer Immunotherapy

Daneng Li, MD — Disclosures Survey Participant

Consulting Agreements	AbbVie Inc, AstraZeneca Pharmaceuticals LP, Delcath Systems Inc, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group, Merck, Sumitomo Dainippon Pharma Oncology Inc, TriSalus Life Sciences
Contracted Research	AstraZeneca Pharmaceuticals LP

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration.

Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY

WITH DR NEIL LOVE

Inside the Issue: Targeted and Immunotherapeutic Approaches for Biliary Tract Cancers

DR LIPIKA GOYAL STANFORD CANCER CENTER

PROF MILIND JAVLE

THE UNIVERSITY OF TEXAS MD ANDERSON CANCER CENTER

Dr Lipika Goyal and Prof Milind Javle Oncology Today with Dr Neil Love —

Year in Review: Clinical Investigator **Perspectives on the Most Relevant New Data Sets** and Advances in Oncology A Multitumor CME/MOC-Accredited Live Webinar Series **Urothelial Bladder Cancer** Thursday, February 22, 2024 5:00 PM - 6:00 PM ET Faculty Shilpa Gupta, MD Thomas Powles, MBBS, MRCP, MD **Moderator** Neil Love, MD

Year in Review: Clinical Investigator Perspectives on the Most Relevant New Data Sets and Advances in Oncology

A Multitumor CME/MOC-Accredited Live Webinar Series

Prostate Cancer

Wednesday, February 28, 2024 5:00 PM – 6:00 PM ET

Faculty Andrew J Armstrong, MD, ScM Maha Hussain, MD, FACP, FASCO

> Moderator Neil Love, MD

Year in Review: Clinical Investigator Perspectives on the Most Relevant New Data Sets and Advances in Oncology

A Multitumor CME/MOC-Accredited Live Webinar Series

Colorectal Cancer

Tuesday, March 5, 2024 5:00 PM – 6:00 PM ET

Faculty Thierry Andre, MD Arvind Dasari, MD, MS

> Moderator Neil Love, MD

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Ovarian Cancer

Part 1 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 Society of Gynecologic Oncology (SGO) Annual Meeting on Women's Cancer®

Monday, March 18, 2024

6:30 AM - 8:00 AM PT (9:30 AM - 11:00 AM ET)

Faculty Joyce F Liu, MD, MPH Mansoor Raza Mirza, MD David M O'Malley, MD

Moderator Kathleen N Moore, MD, MS

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Endometrial Cancer

Part 2 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 Society of Gynecologic Oncology (SGO) Annual Meeting on Women's Cancer®

Monday, March 18, 2024

12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Nicoletta Colombo, MD

Matthew A Powell, MD

Brian M Slomovitz, MD

Moderator Shannon N Westin, MD, MPH, FASCO, FACOG

JOIN US IN MARCH FOR THE RETURN OF

The Annual National General Medical Oncology Summit

A Multitumor CME/MOC-, ACPE- and NCPD-Accredited Educational Conference Developed in Partnership with Florida Cancer Specialists & Research Institute

MARCH 22-24, 2024

JW Marriott Miami Turnberry

To Learn More or to Register, Visit www.ResearchToPractice.com/Meetings/GMO2024

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Consensus or Controversy? Investigator Perspectives on the Current and Future Role of Immune Checkpoint Inhibitors in the Management of Hepatobiliary Cancers — A 2024 Post-ASCO Gastrointestinal Cancers Symposium Review

A CME-Accredited Virtual Event

Thursday, February 15, 2024 5:00 PM – 6:00 PM ET

Faculty Robin (Katie) Kelley, MD Mark Yarchoan, MD

> Moderator Neil Love, MD

Faculty

Robin (Katie) Kelley, MD Professor of Clinical Medicine, Division of Hematology/Oncology Helen Diller Family Comprehensive Cancer Center University of California, San Francisco (UCSF) San Francisco, California

MODERATOR Neil Love, MD Research To Practice Miami, Florida

Mark Yarchoan, MD Associate Professor of Medical Oncology Johns Hopkins Sidney Kimmel Cancer Center Washington, DC

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

Year in Review: Clinical Investigator **Perspectives on the Most Relevant New Data Sets** and Advances in Oncology A Multitumor CME/MOC-Accredited Live Webinar Series **Urothelial Bladder Cancer** Thursday, February 22, 2024 5:00 PM - 6:00 PM ET Faculty Shilpa Gupta, MD Thomas Powles, MBBS, MRCP, MD **Moderator** Neil Love, MD

Year in Review: Clinical Investigator Perspectives on the Most Relevant New Data Sets and Advances in Oncology

A Multitumor CME/MOC-Accredited Live Webinar Series

Prostate Cancer

Wednesday, February 28, 2024 5:00 PM – 6:00 PM ET

Faculty Andrew J Armstrong, MD, ScM Maha Hussain, MD, FACP, FASCO

> Moderator Neil Love, MD

Year in Review: Clinical Investigator Perspectives on the Most Relevant New Data Sets and Advances in Oncology

A Multitumor CME/MOC-Accredited Live Webinar Series

Colorectal Cancer

Tuesday, March 5, 2024 5:00 PM – 6:00 PM ET

Faculty Thierry Andre, MD Arvind Dasari, MD, MS

> Moderator Neil Love, MD

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Ovarian Cancer

Part 1 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 Society of Gynecologic Oncology (SGO) Annual Meeting on Women's Cancer®

Monday, March 18, 2024

6:30 AM - 8:00 AM PT (9:30 AM - 11:00 AM ET)

Faculty Joyce F Liu, MD, MPH Mansoor Raza Mirza, MD David M O'Malley, MD

Moderator Kathleen N Moore, MD, MS

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Endometrial Cancer

Part 2 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 Society of Gynecologic Oncology (SGO) Annual Meeting on Women's Cancer®

Monday, March 18, 2024

12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Nicoletta Colombo, MD

Matthew A Powell, MD

Brian M Slomovitz, MD

Moderator Shannon N Westin, MD, MPH, FASCO, FACOG

JOIN US IN MARCH FOR THE RETURN OF

The Annual National General Medical Oncology Summit

A Multitumor CME/MOC-, ACPE- and NCPD-Accredited Educational Conference Developed in Partnership with Florida Cancer Specialists & Research Institute

MARCH 22-24, 2024

JW Marriott Miami Turnberry

To Learn More or to Register, Visit www.ResearchToPractice.com/Meetings/GMO2024
Friday, March 22, 2024

6:30 PM - 7:00 PM **Welcome Reception** 7:00 PM - 9:00 PM **Keynote Session: ER-Positive Metastatic Breast Cancer** Erika Hamilton, MD Kevin Kalinsky, MD, MS Joyce O'Shaughnessy, MD Hope S Rugo, MD

Special Feature: Clinicians with Breast Cancer

Saturday, March 23, 2024

7:30 AM – 9:10 AM

Hodgkin and Non-Hodgkin Lymphoma

Ann S LaCasce, MD, MMSc Matthew Lunning, DO Kami Maddocks, MD Andrew D Zelenetz, MD, PhD

9:30 AM - 10:20 AM

Gynecologic Cancers

Bradley J Monk, MD David M O'Malley, MD

10:20 AM - 11:10 AM

Localized Breast Cancer; SABCS 2023 Review

Virginia Kaklamani, MD, DSc Kevin Kalinsky, MD, MS Joyce O'Shaughnessy, MD

11:10 AM - 12:00 PM

Metastatic Breast Cancer, Triple-Negative Breast Cancer, HER2-Positive Breast Cancer; SABCS 2023 Review Erika Hamilton, MD

Virginia Kaklamani, MD, DSc Hope S Rugo, MD

Saturday, March 23, 2024

12:30 PM – 1:20 PM

Prostate Cancer

Emmanuel S Antonarakis, MD Rana R McKay, MD

1:20 PM – 2:10 PM

Urothelial Bladder Cancer

Matthew D Galsky, MD Jonathan E Rosenberg, MD

2:10 PM - 3:00 PM

Renal Cell Carcinoma

Eric Jonasch, MD Brian Rini, MD

3:20 PM - 4:10 PM

Targeted Therapy for Non-Small Cell Lung Cancer

Ibiayi Dagogo-Jack, MD Helena Yu, MD

4:10 PM - 5:00 PM

Nontargeted Treatments for Lung Cancer Edward B Garon, MD, MS Corey J Langer, MD

Sunday, March 24, 2024

7:30 AM - 8:20 AM

Multiple Myeloma

Natalie S Callander, MD Paul G Richardson, MD

8:20 AM - 9:10 AM

Gastroesophageal Cancers

Yelena Y Janjigian, MD Samuel J Klempner, MD

9:30 AM - 10:20 AM

Hepatobiliary Cancers Ghassan Abou-Alfa, MD, MBA

Richard S Finn, MD

10:20 AM - 11:10 AM

Colorectal Cancer

Kristen K Ciombor, MD, MSCI John Strickler, MD

11:10 AM - 12:00 PM

Pancreatic Cancer

Andrew H Ko, MD Eileen M O'Reilly, MD

ONCOLOGY TODAY

WITH DR NEIL LOVE

Inside the Issue: Targeted and Immunotherapeutic Approaches for Biliary Tract Cancers

DR LIPIKA GOYAL STANFORD CANCER CENTER

PROF MILIND JAVLE

THE UNIVERSITY OF TEXAS MD ANDERSON CANCER CENTER

Dr Lipika Goyal and Prof Milind Javle Oncology Today with Dr Neil Love —

Consensus or Controversy? Investigator Perspectives on the Current and Future Role of Immune Checkpoint Inhibitors in the Management of Hepatobiliary Cancers — A 2024 Post-ASCO Gastrointestinal Cancers Symposium Review

A CME-Accredited Virtual Event

Thursday, February 15, 2024 5:00 PM – 6:00 PM ET

Faculty Robin (Katie) Kelley, MD Mark Yarchoan, MD

> Moderator Neil Love, MD

Commercial Support

This activity is supported by an educational grant from AstraZeneca Pharmaceuticals LP.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Kelley — Disclosures Faculty

Advisory Committees (Payments to Insitution)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Exelixis Inc, Ipsen Biopharmaceuticals Inc, Merck		
Consulting Agreements (Payments to Self)	Compass Therapeutics, Exact Sciences Corporation, J-Pharma Co Ltd, Kinnate Biopharma, Regeneron Pharmaceuticals Inc, Tyra Biosciences		
Contracted Research (Payment to Institution for Trial Conduct)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol Myers Squibb, Compass Therapeutics, EMD Serono Inc, Exelixis Inc, Genentech, a member of the Roche Group, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Partner Therapeutics, QED Therapeutics, Servier Pharmaceuticals LLC, Surface Oncology, Taiho Oncology Inc, Tyra Biosciences		
Independent Data Monitoring Committees (Unpaid Service)	Genentech, a member of the Roche Group, Merck		

Dr Yarchoan — Disclosures Faculty

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group		
Co-Founder with Equity	Adventris Pharmaceuticals		
Research Funding (to Johns Hopkins)	Bristol Myers Squibb, Exelixis Inc, Genentech, a member of the Roche Group, Incyte Corporation		

Dr Abrams — Disclosures Video Participant

Advisory Committee	AstraZeneca Pharmaceuticals LP		
Consulting Agreements	Eisai Inc, Exelixis Inc, HistoSonics		
Contracted Research	AbbVie Inc, AstraZeneca Pharmaceuticals LP		

Dr Kaseb — Disclosures Video Participant

Dr Stein — Disclosures Video Participant

Advisory Committees	AbbVie Inc, Eisai Inc, Genentech, a member of the Roche Group			
Consulting Agreements	AstraZeneca Pharmaceuticals LP, Merck			
Data and Safety Monitoring Boards/Committees	Aethlon Medical Inc, Genentech, a member of the Roche Group			

Prof Vogel — Disclosures Video Participant

Consultancy and Advisory; Speaker	Amgen Inc, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Boehringer Mannheim, Bristol Myers Squibb, Eisai Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, MSD, Pierre Fabre, Roche Laboratories Inc, Servier Pharmaceuticals LLC, Taiho Oncology Inc
--------------------------------------	---

Ghassan Abou-Alfa, MD, MBA — Disclosures Survey Participant

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Autem Therapeutics, Berry Genomics, BioNTech SE, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Merck, Merus BV, Neogene Therapeutics, Novartis, Servier Pharmaceuticals LLC, Tempus, Vector Pharma, Yiviva		
Contracted Research	Agenus Inc, Arcus Biosciences, AstraZeneca Pharmaceuticals LP, BioNTech SE, Bristol Myers Squibb, Digestive Care Inc, Elicio Therapeutics, Genentech, a member of the Roche Group, Helsinn Healthcare SA, Puma Biotechnology Inc, QED Therapeutics, Yiviva		
Nonrelevant Financial Relationship	Parker Institute for Cancer Immunotherapy		

Daneng Li, MD — Disclosures Survey Participant

Consulting Agreements	AbbVie Inc, AstraZeneca Pharmaceuticals LP, Delcath Systems Inc, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group, Merck, Sumitomo Dainippon Pharma Oncology Inc, TriSalus Life Sciences		
Contracted Research	AstraZeneca Pharmaceuticals LP		

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration.

Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

Consensus or Controversy? Investigator Perspectives on the Current and Future Role of Immune Checkpoint Inhibitors in the Management of Hepatobiliary Cancers

> A CME-Accredited Virtual Event Held in Conjunction with the 2024 ASCO Gastrointestinal Cancers Symposium

Saturday, January 20, 2024 8:30 AM – 9:30 AM ET (5:30 AM – 6:30 AM PT)

Faculty

Ahmed Omar Kaseb, MD, CMQ

Arndt Vogel, MD, PhD

Moderator Neil Love, MD

Consulting Faculty

Thomas A Abrams, MD Institute Physician Dana-Farber Cancer Institute Assistant Professor of Medicine Harvard Medical School Director, Liver Tumor Center Boston, Massachusetts

Stacey Stein, MD Associate Professor of Medicine Assistant Medical Director of the Clinical Trials Office Yale Cancer Center Yale School of Medicine New Haven, Connecticut

Ahmed Omar Kaseb, MD, CMQ John E and Dorothy J Harris Professor in Gastrointestinal Cancer Research Tenured Professor and Director, Hepatocellular Carcinoma Program Department of Gastrointestinal Medical Oncology The University of Texas MD Anderson Cancer Center Houston, Texas

Arndt Vogel, MD, PhD Professor of Medicine, University of Toronto Longo Family Chair in Liver Cancer Research Division of Gastroenterology and Hepatology Toronto General Hospital Medical Oncology

Princess Margaret Cancer Centre Toronto General Hospital Research Institute Schwartz Reisman Liver Research Centre Toronto, Ontario, Canada

Agenda

INTRODUCTION: Interdisciplinary Management of HCC in the Community (General Medical Oncology) Setting — IR, Hepatology, Pathology Support

MODULE 1: Potential Role of Anti-PD-1/PD-L1 Antibodies in the Care of Patients with Early- and Intermediate-Stage HCC — Dr Yarchoan

MODULE 2: HCC Rounds

MODULE 3: Tolerability and Other Practical Considerations with the Use of Immune Checkpoint Inhibitors for Advanced HCC and BTCs — Dr Kelley

MODULE 4: Faculty Survey

MODULE 5: BTC Rounds

Agenda

INTRODUCTION: Interdisciplinary Management of HCC in the Community (General Medical Oncology) Setting — IR, Hepatology, Pathology Support

MODULE 1: Potential Role of Anti-PD-1/PD-L1 Antibodies in the Care of Patients with Early- and Intermediate-Stage HCC — Dr Yarchoan

MODULE 2: HCC Rounds

MODULE 3: Tolerability and Other Practical Considerations with the Use of Immune Checkpoint Inhibitors for Advanced HCC and BTCs — Dr Kelley

MODULE 4: Faculty Survey

MODULE 5: BTC Rounds

Agenda

INTRODUCTION: Interdisciplinary Management of HCC in the Community (General Medical Oncology) Setting — IR, Hepatology, Pathology Support

MODULE 1: Potential Role of Anti-PD-1/PD-L1 Antibodies in the Care of Patients with Early- and Intermediate-Stage HCC — Dr Yarchoan

MODULE 2: HCC Rounds

MODULE 3: Tolerability and Other Practical Considerations with the Use of Immune Checkpoint Inhibitors for Advanced HCC and BTCs — Dr Kelley

MODULE 4: Faculty Survey

MODULE 5: BTC Rounds

Potential Role of Anti-PD-1/PD-L1 Antibodies in the Care of Patients with Early- and Intermediate-Stage Hepatocellular Carcinoma (HCC)

Mark Yarchoan, MD

Rationale for Perioperative Systemic Therapy

- Only 15-20% of HCC is resectable
 - Recurrence after resection is common (~70-80%)
- Perioperative strategies that reduce the primary tumor and occult micrometastatic disease may improve outcomes

STORM Trial (Adjuvant Sorafenib)

Bruix J et al Lancet 2015

IMbrave050

ClinicalTrials.gov, NCT04102098. ECOG PS; Eastern Cooperative Oncology Group performance status; Q3W, every three weeks; R, randomization; TACE, transarterial chemoembolization.

^a High-risk features include: tumor >5 cm, >3 tumors, microvascular invasion, minor macrovascular invasion Vp1/Vp2, or Grade 3/4 pathology. ^b Intrahepatic recurrence defined by EASL criteria. Extrahepatic recurrence defined by RECIST 1.1. Chow et al IMbrave050 https://bit.ly/3ZPKzgM

IMbrave050

Curative treatment	Criteria for high risk of HCC recurrence		
Resection	 ≤3 tumors, with largest tumor >5 cm regardless of vascular invasion, or poor tumor differentiation (Grade 3 or 4) ≥4 tumors, with largest tumor ≤5 cm regardless of vascular invasion, or poor tumor differentiation (Grade 3 or 4) ≤3 tumors, with largest tumor ≤5 cm with vascular invasion, and/or poor tumor differentiation (Grade 3 or 4) 		
Ablation ^b	 1 tumor >2 cm but ≤5 cm Multiple tumors (≤4 tumors), all ≤5 cm 		

IMbrave050

Clinical cutoff: October 21, 2022; median follow-up duration: 17.4 mo. At clinical cutoff, 110 of 334 patients (33%) in the atezo + bev arm and 133 of 334 (40%)

Key Unanswered Questions

- Will RFS benefit translate into improved OS with longer follow up?
 - Did we make the scans look better, or did we cure patients?
 - Ie: Is earlier systemic treatment disease modifying, or trading later benefit for earlier benefit?
- Do we need the BEV?
 - No separation of components
- Could biomarkers (eg ctDNA, AFP) identify patients more likely to benefit?
- Optimal treatment in the setting of relapse after adjuvant BEV/ATEZO?

Notable Ongoing Adjuvant Clinical Trials

Trial	Key Eligibility Criteria	Treatment Arms	Primary Endpoint(s)	Current Status
KEYNOTE- 937	Child-Pugh A, AFP <400 ng/mL, no prior anti–PD-(L)1 or PD-L2 therapy, no anti–CTLA-4 or stimulatory/ coinhibitory T-cell receptor therapy	Pembrolizumab vs placebo	RFS, OS	Active, not recruiting
EMERALD-2	Child-Pugh score of 5 or 6, successful resection or ablation	Durvalumab + bevacizumab vs durvalumab vs placebo	RFS	Active, not recruiting
CheckMate 9DX	Child-Pugh score of 5 or 6	Nivolumab vs placebo	RFS	Active, not recruiting
IMbrave050	Child-Pugh A, no major macrovascular invasion or extrahepatic spread, high risk of recurrence	Atezolizumab + bevacizumab vs active surveillance	RFS	COMPLETED

Neoadjuvant Therapy Is Feasible – Randomized Trials Needed

- ▶ 12 of 15 patients achieved successful margin-negative resections
- ► 5/15 patients achieved major or complete pathologic responses

Won Jin Ho et al. Nature Cancer 2021

Neoadjuvant Therapy Is Feasible – Randomized Trials Needed

- No surgical delays due to AEs, but 4 due to PD
- 20/27 treated underwent surgery
- 6/20 (30%) major pathologic response

Kaseb AO, et al. Lancet Gastroenterol Hepatol. 2022

Discussion

First-line therapy for a patient who received adjuvant atezolizumab/bevacizumab and 18 months later was found to have metastatic disease?

TACE Pooled ORR 52%, Median Survival ~19 Months

	No. of Studies	Estimate	Lower 95% Cl	Upper 95% Cl
Median, mo				
≤2002	19	18.5	14.6	22.4
>2002	44	19.8	15.5	24.1
1-year, %				
≤2002	19	70.7	63.2	78.3
>2002	71	70.4	65.2	75.5
2-year, %				
≤2002	21	51.1	37.1	65.1
>2002	50	52.0	43.9	60.2
3-year, %				
≤2002	13	27.8	18.3	37.4
>2002	53	43.4	34.9	51.8

TACE + Sorafenib (TACE2 Phase 3 Trial)

Meyer T et al. *The Lancet Gastroenterology & Hepatology* 2017;2(8):565-75.

EMERALD-1

EMERALD-1

Presented by Riccardo Lencioni, Gastrointestinal Cancers Symposium 2024
EMERALD-1

Median TTP was improved by 12 months with D+B + TACE versus placebos + TACE

Presented by Riccardo Lencioni, Gastrointestinal Cancers Symposium 2024

EMERALD-1

Presented by Riccardo Lencioni, Gastrointestinal Cancers Symposium 2024

Safety Data

	D + TACE (n=232)*	D+B + TACE (n=154)*	Placebos + TACE (n=200)*
Any AE, n (%)	215 (92.7)	151 (98.1)	186 (93.0)
Possibly related to study treatment	117 (50.4)	124 (80.5)	90 (45.0)
Possibly provoked by TACE	101 (43.5)	78 (50.6)	95 (47.5)
SAEs (including AEs with outcome of death), n (%)	84 (36.2)	74 (48.1)	62 (31.0)
Possibly related to any treatment	13 (5.6)	30 (19.5)	10 (5.0)
Any AE of max CTCAE Grade 3 or 4, n (%)	64 (27.6)	70 (45.5)	46 (23.0)
Any AE possibly related to study treatment of max CTCAE Grade 3 or 4 , n (%)	15 (6.5)	41 (26.6)	12 (6.0)
Any AE possibly provoked by TACE of max CTCAE Grade 3 or 4, n (%)	21 (9.1)	13 (8.4)	17 (8.5)
Any AE with outcome of death, n (%)	21 (9.1)	16 (10.4)	11 (5.5)
Possibly related to study treatment	3 (1.3)	0	3 (1.5)
Possibly related to durvalumab / placebo	2 (0.9)	0	1 (0.5)
Possibly related to bevacizumab / placebo	1 (0.4)	0	2 (1.0)
AE leading to discontinuation, n (%)	28 (12.1)	38 (24.7)	14 (7.0)
Possibly related to study treatment	8 (3.4)	13 (8.4)	6 (3.0)
Possibly related to durvalumab / placebo	6 (2.6)	7 (4.5)	3 (1.5)
Possibly related to bevacizumab / placebo	3 (1.3)	9 (5.8)	4 (2.0)
Possibly provoked by TACE	2 (0.9)	0	2 (1)

*Safety analysis set: all randomized patients who received any amount of study treatment (i.e. durvalumab, bevacizumab, or placebo) regardless of arm randomized to. AE, adverse event; B, bevacizumab; CTCAE, Common Terminology Criteria for Adverse Events; D, durvalumab; NA, not applicable; SAE, serious adverse event; TACE, transarterial chemoembolization.

Key Unanswered Questions

Will PFS benefit translate into improved OS?

- Is earlier systemic treatment disease modifying, or trading later benefit for earlier benefit?
- Why is there a 7 month difference between PFS and TTP?
 More clarity on toxicity and liver function is needed
- Do we need the TACE?
- Can this paradigm be applied to other locoregional therapies (Y90, SBRT, etc)?

Ongoing Phase 3 HCC Clinical Trials: TACE Combinations

Trial	Treatment Arms	Primary Endpoint(s)	Current Status
EMERALD-1	Durvalumab + TACE vs durvalumab + bevacizumab + TACE vs TACE + placebo	PFS	Early Data Presented
EMERALD-3	STRIDE+lenvatinib+TACE vs STRIDE+TACE vs TACE	PFS	Recruiting
LEAP-012	Lenvatinib + pembrolizumab + TACE vs TACE + placebo	PFS, OS	Active, not recruiting
CheckMate 74W	Nivolumab + ipilimumab + TACE vs nivolumab + TACE vs TACE	Time to TACE progression, OS	Terminated (Slow accrual)
ABC-HCC	Atezolizumab + bevacizumab vs TACE	Time to failure of treatment strategy	Recruiting
REPLACE	Regorafenib + pembrolizumab vs TACE/TARE (beyond up-to-7)	PFS	Recruiting

Locoregional and Systemic: An Evolving Gradient

Agenda

INTRODUCTION: Interdisciplinary Management of HCC in the Community (General Medical Oncology) Setting — IR, Hepatology, Pathology Support

MODULE 1: Potential Role of Anti-PD-1/PD-L1 Antibodies in the Care of Patients with Early- and Intermediate-Stage HCC — Dr Yarchoan

MODULE 2: HCC Rounds

MODULE 3: Tolerability and Other Practical Considerations with the Use of Immune Checkpoint Inhibitors for Advanced HCC and BTCs — Dr Kelley

MODULE 4: Faculty Survey

MODULE 5: BTC Rounds

Based on the EMERALD-1 data recently presented in San Francisco, are you currently considering administering durvalumab/bevacizumab with TACE for your patients with HCC (assuming you can access this treatment)?

Dr Kelley	Yes, I am considering using this regimen for the proper patient
Dr Yarchoan	Yes, I am considering using this regimen for the proper patient
Dr Abou-Alfa	Yes, and I have already identified at least one patient in my practice (65-year-old, no prior therapy, extent of disease in the liver: 7 cm seg 4/5 and 3 cm seg 8)
Dr Abrams	Yes, I am considering using this regimen for the proper patient
Dr Li	Yes, I am considering using this regimen for the proper patient
Dr Stein	_

TACE = transarterial chemoembolization

Perspectives on EMERALD-1 data and potential integration of its treatment strategy into clinical practice

Ahmed Omar Kaseb, MD, CMQ

Arndt Vogel, MD, PhD

EMERALD-1: Differentiating between toxicity from TACE and toxicity from immunotherapy

Ahmed Omar Kaseb, MD, CMQ

First-line management of advanced HCC

Stacey Stein, MD

Thomas A Abrams, MD

Arndt Vogel, MD, PhD

Second-line treatment selection for advanced HCC; treatment options for patients with Child-Pugh C advanced disease

Thomas A Abrams, MD

Agenda

INTRODUCTION: Interdisciplinary Management of HCC in the Community (General Medical Oncology) Setting — IR, Hepatology, Pathology Support

MODULE 1: Potential Role of Anti-PD-1/PD-L1 Antibodies in the Care of Patients with Early- and Intermediate-Stage HCC — Dr Yarchoan

MODULE 2: HCC Rounds

MODULE 3: Tolerability and Other Practical Considerations with the Use of Immune Checkpoint Inhibitors for Advanced HCC and BTCs — Dr Kelley

MODULE 4: Faculty Survey

MODULE 5: BTC Rounds

Tolerability and Other Practical Considerations with the Use of Immune Checkpoint Inhibitors for Advanced HCC and Biliary Tract Cancers (BTCs)

Katie Kelley, MD

HIMALAYA: Overall Survival

STRIDE = single tremelimumab regular interval durvalumab

HIMALAYA: 4-Year Update of STRIDE Regimen versus Sorafenib

Clinical endpoint	STRIDE (durvalumab/tremelimumab) (n = 393)	Sorafenib (n = 389)		
Median follow-up duration	49.12 mo	47.31 mo		
Median OS	16.4 mo	13.8 mo		
OS HR (<i>p</i> -value)	0.78 (0.0037)			
48-mo OS rates	25.2%	15.1%		
Serious treatment-related adverse events	17.5%	9.6%		

Sangro B et al. 2023 ESMO World Congress on Gastrointestinal Cancer; Abstract SO-15; Chan SL et al. ESMO Asia Congress 2023; Abstract 147P.

IMbrave150: Updated OS and PFS with Atezolizumab and Bevacizumab (Median Follow-Up = 15.6 Months)

Confirmed objective response rate: 30% with atezolizumab plus bevacizumab, 11% with sorafenib

IMbrave150: Updated OS with Atezolizumab and Bevacizumab (Median Follow-Up = 15.6 Months)

Cheng A-L et al. J Hepatol 2022;76(4):862-73.

Patient characteristics

- IMbrave150
- HIMALAYA

IMbrave150

Baseline characteristics

	Updated analysis				
Characteristic	Atezo + Bev (n = 336)	Sorafenib (n = 165)			
Median age (range), years	64 (26-88)	66 (33-87)			
Male, n (%)	277 (82)	137 (83)			
Region, n (%)					
Asia (excluding Japan ^a)	133 (40)	68 (41)			
Rest of world	203 (60)	97 (59)			
ECOG PS 1, n (%)	127 (38)	62 (38)			
Child-Pugh class, n (%)					
A/B	333 (99) / 1 (< 1)	165 (100) / 0			
BCLC staging at study entry, n (%)					
A/B/C	8 (2) / 51 (15) / 277 (82)	6 (4) / 25 (15) / 134 (81)			
Etiology of HCC, n (%)					
HBV / HCV / Non-viral	164 (49) / 72 (21) / 100 (30)	76 (46) / 36 (22) / 53 (32)			
AFP ≥ 400 ng/mL, n (%)	126 (38)	61 (37)			
EHS, n (%)	212 (63)	93 (56)			
MVI, n (%)	129 (38)	71 (43)			
EHS and/or MVI, n (%)	258 (77)	120 (73)			
Prior TACE, n (%)	131 (39)	70 (42)			
Prior radiotherapy, n (%)	34 (10)	17 (10)			

Clinical cutoff: August 31, 2020; median follow-up: 15.6 mo. ^a Japan is included in rest of world.

PRESENTED AT: Gastr

Gastrointestinal Cancers Symposium PRESENTED BY: Dr Richard S Finn https://bit.ly/3m2WYcl

HIMALAYA Bacolino obaractoristi

Baseline characteristics

Characteristic	STRIDE (n=393)	Durvalumab (n=389)	Sorafenib (n=389)
Male sex, n (%)	327 (83.2)	323 (83.0)	337 (86.6)
Median age (range), years	65.0 (22–86)	64.0 (20–86)	64.0 (18–88)
Region, n (%) Asia (excluding Japan) Rest of world (including Japan)	156 (39.7) 237 (60.3)	167 (42.9) 222 (57.1)	156 (40.1) 233 (59.9)
Viral etiology, ^{*,†} n (%) HBV HCV Nonviral	122 (31.0) 110 (28.0) 161 (41.0)	119 (30.6) 107 (27.5) 163 (41.9)	119 (30.6) 104 (26.7) 166 (42.7)
ECOG PS, n (%) 0 1	244 (62.1) 148 (37.7)	237 (60.9) 150 (38.6)	241 (62.0) 147 (37.8)
MVI,† n (%)	103 (26.2)	94 (24.2)	100 (25.7)
EHS,† n (%)	209 (53.2)	212 (54.5)	203 (52.2)
PD-L1 positive, n (%)	148 (37.7)	154 (39.6)	148 (38.0)
AFP ≥400 ng/ml,† n (%)	145 (36.9)	137 (35.2)	124 (31.9)

Biomarker evaluable samples were collected for all but 20 patients across all treatment arms.

#GI22

ASCO Gastrointestinal

Cancers Symposium

*HBV: patients who tested positive for HBsAg or anti-HBc with detectable HBV DNA; HCV: patients who tested positive for HCV or had history of HCV infection; Nonviral: no active viral hepatitis identified. [†]Determined at screening.

AFP, alfa-fetoprotein; ECOG, Eastern Cooperative Oncology Group; EHS, extrahepatic spread; HBc, hepatitis B core; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; HCV, hepatitis C virus; MVI, macrovascular invasion; PD-L1, programmed cell death ligand-1; PS, performance status; STRIDE, Single Tremelimumab Regular Interval Durvalumab.

Safety overview

- IMbrave150
- HIMALAYA

IMbrave150 **Updated safety summary**^a

	Updated analysis		
	Atezo + Bev (n = 329)	Sorafenib (n = 156)	
Treatment duration, median, mo	Atezo = 8.4; Bev = 7.0	2.8	
All grade AE, any cause, n (%)	322 (98)	154 (99)	
Treatment-related all grade AE	284 (86)	148 (95)	
Grade 3-4 AE, n (%) ^b	207 (63)	89 (57)	
Treatment-related Grade 3-4 AE ^b	143 (43)	72 (46)	
Serious AE, n (%)	160 (49)	51 (33)	
Treatment-related serious AE	76 (23)	25 (16)	
Grade 5 AE, n (%)	23 (7)	9 (6)	
Treatment-related Grade 5 AE	6 (2)	1 (< 1)	
AE leading to withdrawal from any component, n (%)	72 (22)	18 (12)	
AE leading to withdrawal from both components	34 (10)	0	
AE leading to dose interruption of any study treatment, n (%)	195 (59)	68 (44)	
AE leading to dose modification of sorafenib, n (%) ^c	0	58 (37)	

Clinical cutoff: August 31, 2020; median follow-up: 15.6 mo.

^a Safety-evaluable population (defined as patients who received study treatment). ^b Highest grade experienced. ^c No dose modification allowed for atezo + bev arm.

Gastrointestinal PRESENTED AT:

Cancers Symposium

PRESENTED BY: Dr Richard S Finn https://bit.ly/3m2WYcl

IMbrave150 Safety^a ≥ 10% frequency of AEs in either arm and > 5% difference between arms

PPE, palmar-plantar erythrodysaesthesia.

^a Safety-evaluable population.

HIMALAYA Safety and tolerability

Event, n (%)	STRIDE (n=388)	Durvalumab (n=388)	Sorafenib (n=374)
Any AE	378 (97.4)	345 (88.9)	357 (95.5)
Any TRAE*	294 (75.8)	202 (52.1)	317 (84.8)
Any grade 3/4 AE	196 (50.5)	144 (37.1)	196 (52.4)
Any grade 3/4 TRAE	100 (25.8)	50 (12.9)	138 (36.9)
Any serious TRAE	68 (17.5)	32 (8.2)	35 (9.4)
Any TRAE leading to death	9 (2.3) [†]	0	3 (0.8) [‡]
Any TRAE leading to discontinuation	32 (8.2)	16 (4.1)	41 (11.0)
Any grade 3/4 hepatic SMQ TRAE	23 (5.9)	20 (5.2)	17 (4.5)
Any grade 3/4 hemorrhage SMQ TRAE	2 (0.5)	0	4 (1.1)
Any grade 3/4 immune-mediated TRAE	49 (12.6)	24 (6.2)	9 (2.4)
Any immune-mediated AE requiring treatment with high-dose steroids	78 (20.1)	37 (9.5)	7 (1.9)
Any immune-mediated AE leading to discontinuation of study treatment	22 (5.7)	10 (2.6)	6 (1.6)

Includes AEs with onset or increase in severity on or after the date of the first dose through 90 days following the date of the last dose or the date of initiation of the first subsequent therapy.

*Treatment-related was as assessed by investigator. [†]Nervous system disorder (n=1), acute respiratory distress syndrome (n=1), hepatitis (n=1), myocarditis (n=1), immune-mediated hepatitis (n=2), pneumonitis (n=1), hepatic failure (n=1), myocarditis (n=1). [‡]Hematuria (n=1), cerebral hematoma (n=1), hepatic failure (n=1).

AE, adverse event; SMQ, Standardized MedDRA Query; STRIDE, Single Tremelimumab Regular Interval Durvalumab; TRAE, treatment-related adverse event.

ASCO[•] Gastrointestinal Cancers Symposium

HIMALAYA

Treatment-related hepatic or hemorrhage SMQ events

Event, n (%)	STRIDE (n=388)		Durvalumab (n=388)		Sorafenib (n=374)	
	All grades	Grade ≥3	All grades	Grade ≥3	All grades	Grade ≥3
Patients with hepatic SMQ TRAE	66 (17.0)	27 (7.0)	55 (14.2)	20 (5.2)	46 (12.3)	18 (4.8)
Patients with hemorrhage SMQ TRAE	7 (1.8)	2 (0.5)	3 (0.8)	0	18 (4.8)	6 (1.6)
	-			-		
Alanine aminotransferase increased	18 (4.6)	4 (1.0)	22 (5.7)	5 (1.3)	8 (2.1)	3 (0.8)
Aspartate aminotransferase increased	22 (5.7)	9 (2.3)	25 (6.4)	9 (2.3)	10 (2.7)	6 (1.6)
Blood bilirubin increased	6 (1.5)	1 (0.3)	6 (1.5)	0	10 (2.7)	2 (0.5)
Ascites	1 (0.3)	0	0	0	2 (0.5)	0
Hepatic encephalopathy	0	0	0	0	2 (0.5)	1 (0.3)
International normalized ratio increased	4 (1.0)	1 (0.3)	0	0	0	0
Esophageal varices hemorrhage	0	0	0	0	0	0

Includes adverse events with onset or increase in severity on or after the date of the first dose through 90 days following the date of the last dose or the date of initiation of the first subsequent therapy. Treatment-related was as assessed by investigator.

SMQ, Standardized MedDRA Query; STRIDE, Single Tremelimumab Regular Interval Durvalumab; TRAE, treatment-related adverse event.

ASCO[•] Gastrointestinal Cancers Symposium

HIMALAYA Immune-mediated adverse events

Event, n (%)	STRIDE (n=388)				Durva	lumab (n=388)		
	All grades	Grade 3 or 4	Received high- dose steroids	Leading to discontinuation	All grades	Grade 3 or 4	Received high- dose steroids	Leading to discontinuation
Patients with immune-mediated event	139 (35.8)	49 (12.6)	78 (20.1)	22 (5.7)	64 (16.5)	25 (6.4)	37 (9.5)	10 (2.6)
Pneumonitis	5 (1.3)	0	4 (1.0)	1 (0.3)	3 (0.8)	1 (0.3)	3 (0.8)	2 (0.5)
Hepatic events	29 (7.5)	16 (4.1)	29 (7.5)	9 (2.3)	26 (6.7)	17 (4.4)	25 (6.4)	5 (1.3)
Diarrhea/colitis	23 (5.9)	14 (3.6)	20 (5.2)	5 (1.3)	3 (0.8)	1 (0.3)	2 (0.5)	1 (0.3)
Adrenal insufficiency	6 (1.5)	1 (0.3)	1 (0.3)	0	6 (1.5)	3 (0.8)	3 (0.8)	0
Hyperthyroid events	18 (4.6)	1 (0.3)	2 (0.5)	0	4 (1.0)	0	0	0
Hypothyroid events	42 (10.8)	0	1 (0.3)	0	19 (4.9)	0	0	0
Renal events	4 (1.0)	2 (0.5)	3 (0.8)	2 (0.5)	0	0	0	0
Dermatitis/rash	19 (4.9)	7 (1.8)	12 (3.1)	2 (0.5)	3 (0.8)	1 (0.3)	3 (0.8)	1 (0.3)
Pancreatic events	9 (2.3)	7 (1.8)	7 (1.8)	0	2 (0.5)	1 (0.3)	2 (0.5)	0

Includes adverse events with onset or increase in severity on or after the date of the first dose through 90 days following the date of the last dose or the date of initiation of the first subsequent therapy. Patients may have had >1 event. Events include those that occurred in ≥1% of patients in either treatment arm.

STRIDE, Single Tremelimumab Regular Interval Durvalumab.

ASCO[•] Gastrointestinal Cancers Symposium

Immune-Mediated Adverse Events (IMAE) on Durva+Treme *Correlation with Anti-Tumor Immune Response?*

- Median time to IMAE onset was <90 days¹
 - Most IMAE resolved within 60 days
 - Steroids required in 20%²
- Patients with IMAE had higher proportion with OS at 36 months (36.2% vs. 27.7%) on STRIDE regimen in HIMALAYA³
 - Both higher than sorafenib control arm

The world's leading liver cancer meeting

OS by imAE occurrence for STRIDE

A numerical improvement in OS was observed in participants who had an imAE versus those who did not

OS HRs and 95% CIs were calculated using Cox modeling, with imAEs as a time-varying covariate to properly account for immortal time bias and stratified by etiology, ECOG (0 / 1), and macrovascular invasion yes / no) for participants with versus without imAEs of any grade. 1. confidence interval: HR hazard ratio: imAE: immune-mediated adverse event: OS, overall survival.

2023 ASCO #ASCO23

PRESENTED BY: George Lau, MD, FRCP, FAASLD

1. Sangro et al. ILCA Annual Conference 2022, O-28; 2. Abou-Alfa et al. NEJM Evidence 2022;1(8):1-12; 3. Lau et al. ASCO Annual Meeting 2023.

17th Annual Conference
 7-9 September, 2023
 Amsterdam, The Netherlands

ilcalive.org #ILCA23

Association Between IMAE and Improved Outcomes on Anti-PD1/L1 Across Tumor Types

> ILCA conference

ilcalive.org #ILCA23

IMbrave150 vs. HIMALAYA

Key Safety Parameters (All-Cause)

All-Cause AE [‡]	Atezo+Bev ^{1,2}	Durva+Treme ³
SAE	49%	40.5%
Grade 3-4 AE Grade 3-4 bleeding Grade 3-4 A/V thrombosis	63% 6.4% 2.7%	50.5% 3.9% NA (<2%)
IMAE requiring systemic steroids	NA (expect <10% for ICI monotherapy)	20.1%
Grade 5 AE	7%	7.7%
AE requiring discontinuation ≥ 1 drug	22%	13.7%
AE requiring interruption	59%	34.5%

- Numerically higher rates of all-cause grade 3-4 AE and bleeding/thrombotic AE with atezo+bev
- Presume higher rates imAE requiring steroid with durva+treme
- Numerically higher rates of discontinuation and interruption with atezo+bev

1. Finn et al. N Engl J Med 2020;382:1894-905; 2. Cheng et al. J Hepatol 2022;76:862-73; 3. Abou-Alfa et al. NEJM Evidence 2022;1(8):1-12. NA=not available. [‡]Caution with cross-trial comparisons.

ilcalive.org #ILCA23

Selection Factors to Guide Choice of Atezo+Bev vs. STRIDE vs. Other in 1st Line HCC

- In a fit, CPA patient with no significant comorbidity: I discuss both atezo+bev and STRIDE as 1st line options including ORR, PFS, OS, DOR, and landmark 4 year OS data from each regimen as well as AE profile; I believe both of these regimens are reasonable 1st line choices
- I recommend **STRIDE** if:
 - Relative or absolute contraindications to antiangiogenic therapy: High risk varices and/or recent variceal bleed; recent venous or arterial thromboembolic event; active CAD/PVD; anticoagulation; non-healing wound; requirement for surgical/invasive procedure; high risk for cardiovascular comorbidities (e.g. elderly and/or poorly controlled DM-2, proteinuria)
- I recommend atezo+bev if:
 - History of autoimmune disease
 - Bulky tumor burden with high risk for complications of rapid progression
- I recommend **durvalumab** if:
 - Frailty, ECOG 2, CPB8-9, not fit for combination therapy
- I recommend lenvatinib if:
 - Prior transplant and/or active autoimmune disease; any other contraindications to ICI
 - Cannot receive infusional therapy for some reason (e.g. lives far away from an infusion center)
 - Low burden/indolent disease biology and wishes to avoid regular infusion treatments for a window of time (e.g. patient still working or with caregiver responsibilities)

Safety and Tolerability of Chemo-Immunotherapy for BTC

- TOPAZ-1
- KEYNOTE-966

TOPAZ-1: Safety

Table 3. Summary of Safety Data in the Safety Analysis Set.						
Parameter	Durvalumab plus Gemcitabine and Cisplatin (n=338)	Placebo plus Gemcitabine and Cisplatin (n=342)				
Adverse events — no. (%)						
Any grade	336 (99.4)	338 (98.8)				
Serious	160 (47.3)	149 (43.6)				
Grade 3 or 4	256 (75.7)	266 (77.8)				
Leading to discontinuation of any study treatment	44 (13.0)	52 (15.2)				
Leading to death	12 (3.6)	14 (4.1)				
Treatment-related adverse events — no. (%)						
Any grade	314 (92.9)	308 (90.1)				
Serious	53 (15.7)	59 (17.3)				
Grade 3 or 4	212 (62.7)	222 (64.9)				
Leading to discontinuation of any study treatment	30 (8.9)	39 (11.4)				
Leading to death*	2 (0.6)	1 (0.3)				

Treatment-related adverse events leading to death were ischemic stroke and hepatic failure in the durvalumab treatment group and polymyositis in the placebo treatment group.

• Immune-related AE in 12.7% vs. 4.7% for durvalumab vs. placebo arms

Grade 3-4 immune-related AE in 2.4% vs 1.5%

Oh et al. NEJM Evidence 2022;1(8)

TOPAZ-1 Grade 3/4 AEs

Event, n (%)	Durvalumab + GemCis (n=338)	Placebo + GemCis (n=342)
Any grade 3/4 AE (≥5%)		
Anemia	80 (23.7)	77 (22.5)
Neutrophil count decreased	71 (21.0)	88 (25.7)
Neutropenia	68 (20.1)	72 (21.1)
Platelet count decreased	33 (9.8)	29 (8.5)
Cholangitis	22 (6.5)	11 (3.2)
Thrombocytopenia	16 (4.7)	18 (5.3)
White blood cell count decreased	15 (4.4)	20 (5.8)
Any grade 3/4 TRAE (≥2%)		
Neutrophil count decreased	70 (20.7)	87 (25.4)
Neutropenia	65 (19.2)	69 (20.2)
Anemia	64 (18.9)	64 (18.7)
Platelet count decreased	27 (8.0)	26 (7.6)
White blood cell count decreased	14 (4.1)	20 (5.8)
Thrombocytopenia	12 (3.6)	18 (5.3)
Fatigue	9 (2.7)	8 (2.3)
Leukopenia	7 (2.1)	2 (0.6)
Asthenia	4 (1.2)	7 (2.0)

AE, adverse event; GemCis, gemcitabine and cisplatin; TRAE, treatment-related adverse event.

ASCO[•] Gastrointestinal Cancers Symposium

PRESENTED BY: DO-YOUN Oh, MD, PhD

KEYNOTE-966

Adverse Event Summary at Final Analysis

	Pembro + Gem/Cis (n = 529)	Placebo+Gem/Cis (n = 534)
Any	524 (99%)	532 (<100%)
Treatment-related	493 (93%)	500 (94%)
Grade 3-4 as maximum grade	420 (79%)	400 (75%)
Treatment-related	369 (70%)	367 (69%)
Led to death	31 (6%)	49 (9%)
Treatment-related	8 (2%)ª	3 (1%) ^b
Led to discontinuation of ≥1 study medication	138 (26%)	122 (23%)
Treatment-related	102 (19%)	81 (15%)
Led to discontinuation of all study medication	35 (7%)	39 (7%)
Treatment-related	18 (3%)	14 (3%)

^aAEs leading to death (n = 1 each): abdominal abscess, cholangitis, lower respiratory tract infection, malignant neoplasm progression, myocardial infarction, pneumonitis, septic shock, and viral pneumonia. ^bAEs leading to death (n = 1 each): hepatorenal syndrome, sepsis, and upper gastrointestinal hemorrhage. Data cutoff date: December 15, 2022.

KEYNOTE-966

Immune-Mediated Adverse Events and Infusion Reactions at Final Analysis

^aPneumonitis. Data cutoff date: December 15, 2022.
Potential Biomarkers of Benefit from Immune Checkpoint Inhibition in HCC

- There are no established predictive biomarkers for response to ICI in HCC
 - Viral status: Does not predict ORR/PFS on ICI-based therapies; trends towards improved OS with viral status have many confounding variables
 - TMB: No significant relationship between TMB and outcomes on atezo+bev¹ or nivolumab² therapy
 - MSI-H patients (n=12) did not have responses in CheckMate 459²
 - Tumor PD-L1 expression: Non-significant trends towards greater benefit with PD-L1 expression in IMbrave150, pembrolizumab⁴, and nivolumab⁵; no appreciable difference in HIMALAYA⁶

1. Zhu et al. Nat Med 2022;28:1599-1611; 2. Neely et al. AACR 2022; 3. Cheng et al. J. Hep 2022;76:862-73; 4. Zhu et al. Lancet Oncology 2018;19; 5. El-Khoueiry et al. Lancet 2017; 6. Abou-Alfa et al. NEJM Evidence 2022.

Potential Biomarkers of Benefit from Immune Checkpoint Inhibition in BTC

- MSI-high and/or deficient MMR is associated with high ORR on ICI as monotherapy
- High TMB may be associated with ORR but limited data specific to BTC
 - Keynote-016 and -158 showed high ORR (~40%) and prolonged DOR (>24 months) in patients with CCA with MSI-H/dMMR treated with pembrolizumab
- No significant relationship between common mutations and OS; higher ORR observed in BRCA-1/2 mutant BTC

Tumor PD-L1 status did not predict response in TOPAZ-1 or KEYNOTE-966.

1. Le et al Science 2017;357:409-13; 2. Ju et al. Am J Clin Pathol 2020153(5): 598-604; 3. Marabelle et al. J Clin Oncol 2020;38(1):1-10; 4. Marabelle et al. Lancet Oncol 2020;21(10):1353-65; 5. Oh et al. ESMO Asia 2022.

Kelley et al. AACR 2023.

Contraindications/Cautions to ICI-Based Therapy in HCC and BTC

- Active or high-risk autoimmune disease
 - Most clinical trials have excluded patients with active or high-risk autoimmune disease
 - Retrospective studies suggest that patients with underlying autoimmune disease have higher risk for immune-related AE (IRAE)
 - History of IBD: ICI therapy associated with risk of colitis in 20%-40% of patients in retrospective case series^{1,2}
 - Limited data for PSC
 - Use of ICI in patients with active or high-risk autoimmune disease history requires multidisciplinary care and close monitoring with rheumatologist as well as counseling re: potential risk of flare/recurrence/other IRAE
- Post organ transplant
 - Clinical trials exclude patients with prior organ transplant
 - Retrospective case series show high rates of allograft rejection when treated with ICI
 - Liver: Retrospective series report graft loss and/or death in up to ~30% of patients with prior liver transplant treated with ICl³⁻⁵
 - ICI should not be used post-transplant unless under care of multidisciplinary team including liver transplant specialists and with counseling/disclosure of high risk of fatal graft loss

1. Grover et al. JCO Oncol Practice 2020;16(9); 2. Abu-Sbeih et al. JCO 2020;38(6); 3. Runger et al. Eur J Cancer 2022;175; 4. Kayali et al. Liver Int 2023;43(1); 5. Vogel and Lleo. Liver Int 2023;43(1).

Discussion

Regulatory and reimbursement issues aside, what would be your preferred first-line systemic treatment for a 65-year-old patient with metastatic biliary tract cancer, no targetable mutations on next-generation sequencing (NGS) and PS 0?

Regulatory and reimbursement issues aside, what would be your preferred first-line systemic treatment for a 65-year-old patient with metastatic biliary tract cancer, no targetable mutations on NGS, PS 0 and a history of psoriasis for which they were receiving topical treatment only?

Agenda

INTRODUCTION: Interdisciplinary Management of HCC in the Community (General Medical Oncology) Setting — IR, Hepatology, Pathology Support

MODULE 1: Potential Role of Anti-PD-1/PD-L1 Antibodies in the Care of Patients with Early- and Intermediate-Stage HCC — Dr Yarchoan

MODULE 2: HCC Rounds

MODULE 3: Tolerability and Other Practical Considerations with the Use of Immune Checkpoint Inhibitors for Advanced HCC and BTCs — Dr Kelley

MODULE 4: Faculty Survey

MODULE 5: BTC Rounds

Regulatory and reimbursement issues aside, which first-line systemic treatment would you most likely recommend for a 65-year-old patient with HCC, a Child-Pugh A score and a PS of 0?

Dr Kelley	Atezolizumab/bevacizumab or durvalumab/tremelimumab
Dr Yarchoan	Atezolizumab/bevacizumab
Dr Abou-Alfa	Durvalumab/tremelimumab
Dr Abrams	Durvalumab/tremelimumab
Dr Li	Atezolizumab/bevacizumab
Dr Stein	Atezolizumab/bevacizumab

Regulatory and reimbursement issues aside, which first-line systemic treatment would you most likely recommend for a 78-year-old patient with HCC, a <u>Child-Pugh B7 score</u> and a PS of 1?

Dr Kelley	Durvalumab +/- tremelimumab
Dr Yarchoan	Durvalumab/tremelimumab
Dr Abou-Alfa	Durvalumab/tremelimumab
Dr Abrams	Durvalumab/tremelimumab
Dr Li	Atezolizumab/bevacizumab
Dr Stein	Atezolizumab/bevacizumab

For a patient who has received atezolizumab/bevacizumab in the up-front setting and experienced disease progression, are there any circumstances in which you will recommend an anti-PD-1/PD-L1 antibody later in the treatment course?

What was the age of the last patient in your practice with metastatic biliary tract cancer who received <u>durvalumab/chemotherapy</u> as first-line treatment? What was the treatment schedule, and how much benefit, if any, did the patient derive from treatment?

	Age	Tx schedule	Tx benefit
Dr Kelley	60 years	TOPAZ-1	Some benefit
Dr Yarchoan	46 years	TOPAZ-1	Too early to determine
Dr Abou-Alfa	65 years	TOPAZ-1	A great deal of benefit
Dr Abrams	34 years	TOPAZ-1	Some benefit
Dr Li	68 years	TOPAZ-1	A great deal of benefit
Dr Stein	67 years	TOPAZ-1	Too early to determine

TOPAZ-1 schedule: gemcitabine/cisplatin d1 and d8, q21 days; durvalumab d1, q21 days

Regulatory and reimbursement issues aside, what would be your preferred first- and second-line systemic treatments for a 65-year-old patient with <u>metastatic biliary tract</u> cancer, no targetable mutations on NGS and PS 0?

	First-line Tx	Second-line Tx
Dr Kelley	Pembrolizumab + cisplatin/gemcitabine*	FOLFIRI
Dr Yarchoan	Either durvalumab or pembrolizumab combined with cisplatin/gemcitabine	FOLFOX or FOLFIRI
Dr Abou-Alfa	Durvalumab + cisplatin/gemcitabine	Durvalumab + nal-IRI/5-FU/LV
Dr Abrams	Durvalumab + cisplatin/gemcitabine	FOLFOX
Dr Li	Durvalumab + cisplatin/gemcitabine	FOLFOX
Dr Stein	Durvalumab + cisplatin/gemcitabine	FOLFIRI

LV = leucovorin

*Institutional preference for pembrolizumab

Agenda

INTRODUCTION: Interdisciplinary Management of HCC in the Community (General Medical Oncology) Setting — IR, Hepatology, Pathology Support

MODULE 1: Potential Role of Anti-PD-1/PD-L1 Antibodies in the Care of Patients with Early- and Intermediate-Stage HCC — Dr Yarchoan

MODULE 2: HCC Rounds

MODULE 3: Tolerability and Other Practical Considerations with the Use of Immune Checkpoint Inhibitors for Advanced HCC and BTCs — Dr Kelley

MODULE 4: Faculty Survey

MODULE 5: BTC Rounds

KEYNOTE-966 and TOPAZ-1: First-line therapy options for advanced BTC; managing external dwelling catheters during treatment

Stacey Stein, MD

Arndt Vogel, MD, PhD

Thomas A Abrams, MD

TOPAZ-1: Chemotherapy dose/schedule modifications for older patients

Thomas A Abrams, MD

Ahmed Omar Kaseb, MD, CMQ

Experience with first-line treatment of microsatellite instability-high BTC

Stacey Stein, MD

APPENDIX

Based on current clinical trial data and/or your personal experience, how would you compare the global efficacy/treatment benefit of durvalumab/tremelimumab to that of atezolizumab/bevacizumab?

Based on current clinical trial data and/or your personal experience, how would you compare the global tolerability/toxicity of durvalumab/tremelimumab to that of atezolizumab/bevacizumab?

Dr Kelley	Durvalumab/tremelimumab is more tolerable
Dr Yarchoan	About the same
Dr Abou-Alfa	Durvalumab/tremelimumab is more tolerable
Dr Abrams	About the same
Dr Li	About the same
Dr Stein	Atezolizumab/bevacizumab is more tolerable

In general, in which situations do you use durvalumab/tremelimumab as first-line treatment for patients with advanced HCC?

Dr Kelley	Pts with peripheral vascular disease, on anticoagulation, recent/significant CAD, poorly controlled DM-2 or HTN, recent VTE, wound-healing or bleeding issues		
Dr Yarchoan	If contraindications to bevacizumab (varices, CAD, recent bleeds), or low-volume disease likely to receive multiple lines of therapy		
Dr Abou-Alfa	All patients, except if contraindication for immune therapy		
Dr Abrams	Most first-line cases of advanced HCC		
Dr Li	If contraindication to bevacizumab		
Dr Stein	If there is a risk of bleeding		

Regulatory and reimbursement issues aside, which first-line systemic treatment would you most likely recommend for a 65-year-old patient with HCC, a Child-Pugh A score and Grade 1 esophageal varices being managed with a beta blocker?

What was the age of the last patient in your practice with advanced hepatocellular carcinoma (HCC) who received <u>atezolizumab/bevacizumab</u> as first-line treatment? What was their Child-Pugh score?

	Age	Child-Pugh score
Dr Kelley	71 years	A6
Dr Yarchoan	44 years	Α
Dr Abou-Alfa	60 years	Α
Dr Abrams	64 years	Α
Dr Li	84 years	A6
Dr Stein	72 years	A6

For the patient in the previous scenario with advanced HCC who received initial therapy with atezolizumab/bevacizumab, had they undergone prior local treatment? Did they undergo esophagogastroduodenoscopy (EGD)? How much benefit, if any, did the patient derive from treatment?

	Prior local Tx	EGD?	Tx benefit
Dr Kelley	TACE, TARE, ablation	Yes	Some benefit
Dr Yarchoan	No	Yes	Too early to determine
Dr Abou-Alfa	Νο	Νο	Some benefit
Dr Abrams	Νο	Yes	Too early to determine
Dr Li	Νο	Yes	A great deal of benefit
Dr Stein	TACE	Yes	Too early to determine

TACE = transarterial chemoembolization; TARE = transarterial radioembolization

What was the age of the last patient in your practice with advanced HCC who received <u>durvalumab/tremelimumab</u> as first-line treatment? What was their Child-Pugh score?

For the patient in the previous scenario with advanced HCC who received initial therapy with durvalumab/tremelimumab, had they undergone prior local treatment? Did they undergo EGD? How much benefit, if any, did the patient derive from treatment?

	Prior local Tx	EGD?	Tx benefit
Dr Kelley	Νο	Νο	A great deal of benefit
Dr Yarchoan	Νο	Νο	Too early to determine
Dr Abou-Alfa	Νο	Νο	A great deal of benefit
Dr Abrams	Νο	Νο	A great deal of benefit
Dr Li	Νο	Yes	Some benefit
Dr Stein		Yes	Too early to determine

Do you actively screen for varices in your patients with HCC for whom you are considering treatment with atezolizumab/bevacizumab?

Regulatory and reimbursement issues aside, which first-line systemic treatment would you most likely recommend for a 65-year-old patient with HCC, a Child-Pugh A score and a history of transient ischemic attack 3 months ago?

What is your usual first-line systemic therapy for HCC in a patient you have determined to be ineligible for an immune checkpoint inhibitor?

What would be your most likely second-line systemic therapy for a 65-year-old patient with HCC, a Child-Pugh A score and a PS of 0 who received first-line <u>atezolizumab/bevacizumab</u> with minimal toxicity, had stable disease for 14 months and then experienced disease progression with AFP at 2,500 ng/mL? AFP at 200 ng/mL?

	AFP 2,500 ng/mL	AFP 200 ng/mL
Dr Kelley	Lenvatinib	Lenvatinib
Dr Yarchoan	Lenvatinib or cabozantinib	Lenvatinib or cabozantinib
Dr Abou-Alfa	Lenvatinib	Lenvatinib
Dr Abrams	Lenvatinib	Lenvatinib
Dr Li	Lenvatinib	Lenvatinib
Dr Stein	Lenvatinib	Lenvatinib

What would be your most likely second-line systemic therapy for a 65-year-old patient with HCC, a Child-Pugh A score and a PS of 0 who received first-line <u>durvalumab/tremelimumab</u> with minimal toxicity, had stable disease for 14 months and then experienced disease progression with AFP at 2,500 ng/mL? AFP at 200 ng/mL?

	AFP 2,500 ng/mL	AFP 200 ng/mL
Dr Kelley	Lenvatinib	Lenvatinib
Dr Yarchoan	Lenvatinib	Lenvatinib
Dr Abou-Alfa	Booster dose of tremelimumab and maintain durvalumab	Booster dose of tremelimumab and maintain durvalumab
Dr Abrams	Lenvatinib	Lenvatinib
Dr Li	Lenvatinib	Lenvatinib
Dr Stein	Lenvatinib	Lenvatinib

What would be your most likely second-line systemic therapy for a 65-year-old patient with HCC, a <u>Child-Pugh B7 score</u> and a <u>PS of 1</u> who received first-line <u>atezolizumab/bevacizumab</u> with minimal toxicity, had stable disease for 14 months and then experienced disease progression with AFP at 2,500 ng/mL? AFP at 200 ng/mL?

	AFP 2,500 ng/mL	AFP 200 ng/mL
Dr Kelley	Cabozantinib	Cabozantinib
Dr Yarchoan	Lenvatinib or cabozantinib	Lenvatinib or cabozantinib
Dr Abou-Alfa	Lenvatinib	Lenvatinib
Dr Abrams	Lenvatinib	Lenvatinib
Dr Li	Lenvatinib	Lenvatinib
Dr Stein	Lenvatinib	Lenvatinib

What would be your most likely second-line systemic therapy for a 65-year-old patient with HCC, a <u>Child-Pugh B7 score</u> and a <u>PS of 1</u> who received first-line <u>durvalumab/tremelimumab</u> with minimal toxicity, had stable disease for 14 months and then experienced disease progression with AFP at 2,500 ng/mL? AFP at 200 ng/mL?

	AFP 2,500 ng/mL	AFP 200 ng/mL
Dr Kelley	Cabozantinib	Cabozantinib
Dr Yarchoan	Lenvatinib	Lenvatinib
Dr Abou-Alfa	Booster dose of tremelimumab and maintain durvalumab	Booster dose of tremelimumab and maintain durvalumab
Dr Abrams	Lenvatinib	Lenvatinib
Dr Li	Lenvatinib	Lenvatinib
Dr Stein	Lenvatinib	Lenvatinib

Which assay or assays do you generally use to test for targetable mutations in your patients with advanced biliary tract cancer?

NGS = next-generation sequencing

Regulatory and reimbursement issues aside, what would be your preferred first- and second-line systemic treatments for an 80-year-old patient with controlled hypertension and diabetes with metastatic biliary tract cancer and no targetable mutations on NGS?

	First-line Tx	Second-line Tx
Dr Kelley	Pembrolizumab + cisplatin/gemcitabine*	FOLFIRI
Dr Yarchoan	Either durvalumab or pembrolizumab combined with cisplatin/gemcitabine	FOLFOX or FOLFIRI
Dr Abou-Alfa	Durvalumab + cisplatin/gemcitabine	Durvalumab + nal-IRI/5-FU/LV
Dr Abrams	Durvalumab + cisplatin/gemcitabine	FOLFOX
Dr Li	Durvalumab + cisplatin/gemcitabine	FOLFOX
Dr Stein	Durvalumab + cisplatin/gemcitabine	FOLFOX

*Institutional preference for pembrolizumab

What was the age of the last patient in your practice with metastatic biliary tract cancer who received <u>targeted treatment</u>? What specific treatment regimen did the patient receive? How much benefit, if any, did the patient derive from treatment?

	Age	Tx received	Tx benefit
Dr Kelley	32 years	Trastuzumab deruxtecan	Some benefit
Dr Yarchoan	68 years	Futibatinib	Too early to determine
Dr Abou-Alfa	68 years	Ivosidenib	A great deal of benefit
Dr Abrams	25 years	Futibatinib	Some benefit
Dr Li	40 years	Futibatinib	A great deal of benefit
Dr Stein	36 years	Pemigatinib	Seems to have early PD

Regulatory and reimbursement issues aside, what would be your preferred first- and second-line systemic treatments for a 65-year-old patient with <u>HER2-overexpressing</u> (IHC 3+) advanced biliary tract cancer (PS 0)?

	First-line Tx	Second-line Tx
Dr Kelley	Pembrolizumab + cisplatin/gemcitabine*	Zanidatamab
Dr Yarchoan	Would consider anti-PD-1 + anti-HER2 + gemcitabine/cisplatin	Zanidatamab
Dr Abou-Alfa	Durvalumab + cisplatin/gemcitabine	Trastuzumab deruxtecan or zanidatamab
Dr Abrams	Durvalumab + cisplatin/gemcitabine	Trastuzumab/pertuzumab
Dr Li	Durvalumab + cisplatin/gemcitabine	Trastuzumab deruxtecan
Dr Stein	Durvalumab + cisplatin/gemcitabine	Tucatinib/trastuzumab

*Institutional preference for pembrolizumab

Regulatory and reimbursement issues aside, for a patient with advanced biliary tract cancer and HER2 amplification, in which line of therapy would you generally administer anti-HER2 therapy?

Dr Kelley	Second
Dr Yarchoan	Second
Dr Abou-Alfa	I would only administer anti-HER2 therapy as part of a clinical trial
Dr Abrams	Second
Dr Li	Second
Dr Stein	Second

Regulatory and reimbursement issues aside, what would be your preferred first- and second-line systemic treatments for a 65-year-old patient with <u>metastatic biliary tract</u> <u>cancer</u> and an <u>IDH1 mutation</u> (PS 0)?

	First-line Tx	Second-line Tx
Dr Kelley	Pembrolizumab + cisplatin/gemcitabine*	Ivosidenib
Dr Yarchoan	Either durvalumab or pembrolizumab combined with cisplatin/gemcitabine	Ivosidenib
Dr Abou-Alfa	Durvalumab + cisplatin/gemcitabine	Ivosidenib
Dr Abrams	Durvalumab + cisplatin/gemcitabine	Ivosidenib
Dr Li	Durvalumab + cisplatin/gemcitabine	Ivosidenib
Dr Stein	Durvalumab + cisplatin/gemcitabine	Ivosidenib

*Institutional preference for pembrolizumab
Regulatory and reimbursement issues aside, what would be your preferred first- and second-line systemic treatments for a 65-year-old patient with <u>metastatic biliary tract</u> <u>cancer</u> and an <u>IDH2 mutation</u> (PS 0)?

	First-line Tx	Second-line Tx
Dr Kelley	Pembrolizumab + cisplatin/gemcitabine*	FOLFOX or FOLFIRI
Dr Yarchoan	Either durvalumab or pembrolizumab combined with cisplatin/gemcitabine	FOLFOX or FOLFIRI (while trying to get enasidenib)
Dr Abou-Alfa	Durvalumab + cisplatin/gemcitabine	Durvalumab + nal-IRI/5-FU/LV
Dr Abrams	Durvalumab + cisplatin/gemcitabine	Enasidenib
Dr Li	Durvalumab + cisplatin/gemcitabine	FOLFOX
Dr Stein	Durvalumab + cisplatin/gemcitabine	FOLFOX

*Institutional preference for pembrolizumab

Regulatory and reimbursement issues aside, for a patient with advanced biliary tract cancer and an IDH mutation, in which line of therapy would you generally administer anti-IDH therapy?

Regulatory and reimbursement issues aside, what would be your preferred first- and second-line systemic treatments for a 65-year-old patient with <u>metastatic biliary tract</u> <u>cancer</u> and an <u>FGFR alteration</u> (PS 0)?

	First-line Tx	Second-line Tx
Dr Kelley	Pembrolizumab + cisplatin/gemcitabine*	Futibatinib
Dr Yarchoan	Either durvalumab or pembrolizumab combined with cisplatin/gemcitabine	Futibatinib or pemigatinib
Dr Abou-Alfa	Durvalumab + cisplatin/gemcitabine	Pemigatinib
Dr Abrams	Durvalumab + cisplatin/gemcitabine	Futibatinib
Dr Li	Durvalumab + cisplatin/gemcitabine	Pemigatinib
Dr Stein	Durvalumab + cisplatin/gemcitabine	Pemigatinib

*Institutional preference for pembrolizumab

Regulatory and reimbursement issues aside, for a patient with advanced biliary tract cancer and an FGFR alteration, in which line of therapy would you generally administer anti-FGFR therapy?

Dr Kelley	Second
Dr Yarchoan	First (in select cases) and second
Dr Abou-Alfa	Second
Dr Abrams	Second
Dr Li	Second
Dr Stein	Second

Regulatory and reimbursement issues aside, would you consider a second FGFR inhibitor for a patient with <u>metastatic biliary tract cancer</u> who had previously experienced disease progression while receiving a different FGFR inhibitor?

Year in Review: Clinical Investigator **Perspectives on the Most Relevant New Data Sets** and Advances in Oncology A Multitumor CME/MOC-Accredited Live Webinar Series **Urothelial Bladder Cancer** Thursday, February 22, 2024 5:00 PM - 6:00 PM ET Faculty Shilpa Gupta, MD Thomas Powles, MBBS, MRCP, MD **Moderator** Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

