Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Urothelial Bladder Cancer

Part 2 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Genitourinary Cancers Symposium

Friday, January 26, 2024

7:00 PM - 9:00 PM PT (10:00 PM - 12:00 AM ET)

Faculty

Matthew Milowsky, MD, FASCO Peter H O'Donnell, MD Jonathan E Rosenberg, MD Arlene Siefker-Radtke, MD

Moderator Evan Y Yu, MD

Faculty

Matthew Milowsky, MD, FASCO
George Gabriel and Frances Gable Villere
Distinguished Professor
Vice Chief for Research and Education
Section Chief, Genitourinary Oncology
UNC Division of Oncology
Co-Lead, Clinical and Translational Research
Co-Director, Urologic Oncology Program
UNC Lineberger Comprehensive Cancer Center
Chapel Hill, North Carolina

Arlene Siefker-Radtke, MD
Professor
Department of Genitourinary Medical Oncology
Division of Cancer Medicine
The University of Texas
MD Anderson Cancer Center
Houston, Texas

Peter H O'Donnell, MD
Associate Professor of Medicine
Department of Medicine
The University of Chicago
Chicago, Illinois

Moderator

Evan Y Yu, MD
Section Head, Medical Oncology, Clinical Research Division
Fred Hutchinson Cancer Center
Medical Director, Clinical Research Support
Fred Hutchinson Cancer Research Consortium
Professor of Medicine
Division of Hematology and Oncology, Department
of Medicine
University of Washington School of Medicine
Seattle, Washington

Jonathan E Rosenberg, MD
Chief, Genitourinary Medical Oncology Service
Division of Solid Tumor Oncology
Enno W Ercklentz Chair
Memorial Sloan Kettering Cancer Center
New York, New York

Dr Milowsky — Disclosures Faculty

Contracted Research	Accuray, Acrivon Therapeutics, ALX Oncology, Amgen Inc, Arvinas, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Clovis Oncology, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Incyte Corporation, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Mirati Therapeutics Inc, MorphoSys, Novartis, Seagen Inc
Nonrelevant Financial Relationships	Alliance for Clinical Trials in Oncology, Alliance Foundation Trials LLC, Elsevier (Co-Editor-in-Chief, <i>Clinical Genitourinary Cancer</i>), Hoosier Cancer Research Network Inc, Medscape, The Prostate Cancer Clinical Trials Consortium

Dr O'Donnell — Disclosures Faculty

Advisory Committees	Merck, Seagen Inc		
Consulting Agreements	Adept Field Solutions, AmerisourceBergen, Astellas, Axiom Healthcare Strategies, Curio Science, Custom Learning Designs (CLD), EMD Serono Inc, Health Advances, Merck, Pfizer Inc, Seagen Inc, Vaniam Group, Vida Ventures LLC		
Contracted Research (to Institution)	Acerta Pharma — A member of the AstraZeneca Group, Astellas, AstraZeneca Pharmaceuticals LP, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Genentech, a member of the Roche Group, Janssen Biotech Inc, Merck, Seagen Inc		
Data and Safety Monitoring Boards/Committees	Dragonfly Therapeutics, G1 Therapeutics Inc, Janssen Biotech Inc, Nektar		
Sponsored Travel	Astellas, Curio Science, Seagen Inc		
Nonrelevant Financial Relationships	Advarra, FirstWord Pharma, Great Debates & Updates, Hart Wagner LLP, IntrinsiQ Specialy Solutions, ISMIE, Med Learning Group, MJH Life Sciences, NAMCP, O'Brien & Ryan, LLP, Parexel, PeerView, PharmaVision UK, PRIME Education LLC, The Institute for Enquiring Minds		

Dr Rosenberg — Disclosures Faculty

Advisory Committees	Astellas, Seagen Inc, Tyra Biosciences				
Aadi Bioscience, Alligator Bioscience, Astellas, AstraZeneca Pharmaceutica Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, EMD Sei Emergence Therapeutics, Genentech, a member of the Roche Group, Gile Inc, Imvax Inc, Infinity Pharmaceuticals Inc, Jiangsu Hengrui Medicine Co Merck, Mirati Therapeutics Inc, Pfizer Inc, QED Therapeutics, Seagen Inc, Biosciences					
Contracted Research	Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Seagen Inc				
Speakers Bureaus EMD Serono Inc, Pfizer Inc					
Nonrelevant Financial Relationships Clinical Care Options, Medscape, MJH Life Sciences					

Dr Siefker-Radtke — Disclosures Faculty

No relevant conflicts of interest to disclose.

Dr Yu — Disclosures Moderator

Consulting Agreements	Aadi Bioscience, Advanced Accelerator Applications, Bayer HealthCare Pharmaceuticals, Janssen Biotech Inc, Merck, Oncternal Therapeutics
Contracted Research	Bayer HealthCare Pharmaceuticals, Blue Earth Diagnostics, Daiichi Sankyo Inc, Dendreon Pharmaceuticals Inc, Lantheus, Merck, Seagen Inc, Surface Oncology, Taiho Oncology Inc, Tyra Biosciences

Dr Friedlander — Disclosures Survey Participant

Advisory Committees	Aadi Bioscience, Astellas, Seagen Inc
Consulting Agreement	Merck
Contracted Research	Bristol Myers Squibb, Roche Laboratories Inc, Seagen Inc, Trishula Therapeutics Inc
Data and Safety Monitoring Board/Committee	AstraZeneca Pharmaceuticals LP

Dr Plimack — Disclosures Survey Participant

Advisory Committees and Consulting Agreements	Astellas, AstraZeneca Pharmaceuticals LP, Eisai Inc, EMD Serono Inc, IMV Inc, Merck, Pfizer Inc, Seagen Inc, Synthekine
Contracted Research	Merck

Dr Sharma — Disclosures Video Participant

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Genzyme Corporation, Gilead Sciences Inc, GSK, Merck, Novartis, Pfizer Inc, Sanofi		
Contracted Research Gilead Sciences Inc, Merck, Novartis			
Stock Options/Stock — Public Company	Amgen Inc, Janssen Biotech Inc, Johnson & Johnson Pharmaceuticals, Sanofi		

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Bristol Myers Squibb, Daiichi Sankyo Inc, and Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration. Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the premeeting survey.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Complete Your Evaluation: Tap the CME Evaluation button to complete your evaluation electronically to receive credit for your participation.

Clinicians Attending via Zoom

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the pre- and postmeeting surveys.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME Credit: A CME credit link will be provided in the chat room at the conclusion of the program.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

 To learn more about our education programs, visit our website, www.ResearchToPractice.com

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Urothelial Bladder Cancer

Part 2 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Genitourinary Cancers Symposium

Friday, January 26, 2024

7:00 PM - 9:00 PM PT (10:00 PM - 12:00 AM ET)

Faculty

Matthew Milowsky, MD, FASCO Peter H O'Donnell, MD Jonathan E Rosenberg, MD Arlene Siefker-Radtke, MD

Moderator Evan Y Yu, MD

Agenda

Module 1: Role of Anti-PD-1/PD-L1 Antibodies in Therapy for Nonmetastatic Urothelial Bladder Cancer (UBC) — Dr Milowsky

Module 2: Other Novel Strategies Under Investigation for Nonmetastatic UBC — Dr O'Donnell

Module 3: Front-Line Treatment for Metastatic UBC (mUBC)— Dr Rosenberg

Module 4: Emerging Role of HER2-Targeted Therapy for mUBC — Dr Yu

Module 5: Selection and Sequencing of Therapy for Relapsed/Refractory mUBC — Dr Siefker-Radtke

Consulting Faculty

Terence Friedlander, MD

Professor of Medicine and Robert and Virginia O'Reilly Family Endowed Chair Chief, Division of Hematology/Oncology
Zuckerberg San Francisco General Hospital
Helen Diller Family Comprehensive Cancer Center
University of California, San Francisco
San Francisco, California

Elizabeth R Plimack, MD, MS

Professor, Medical Oncology Deputy Director, Fox Chase Cancer Center Temple Health Philadelphia, Pennsylvania

Priyanka Sharma, MD

Frank B Tyler Professor in Cancer Research
Division of Medical Oncology, Department of Internal Medicine
Co-Program Leader
Drug Discovery, Delivery and Experimental Therapeutics Program
The University of Kansas Cancer Center
Westwood, Kansas

MODULE 1: Role of Anti-PD-1/PD-L1 Antibodies in Therapy for Nonmetastatic Urothelial Bladder Cancer (UBC) – Dr Milowsky

Consulting Faculty Questions

Adjuvant nivolumab after neoadjuvant chemoradiation and surgery for muscle-invasive bladder cancer (MIBC); discussing with patients

Neil Love, MD

Elizabeth R Plimack, MD, MS

QUESTIONS FOR THE FACULTY

Elizabeth R Plimack, MD, MS

How do you discuss the benefits and risks of using adjuvant nivolumab with patients receiving neoadjuvant chemoradiation therapy?

Do you use adjuvant nivolumab for patients with upper tract urothelial cancer?

What are your thoughts on the emerging results of the Phase III AMBASSADOR trial of adjuvant pembrolizumab and the potential choice of IO in this setting?

Consulting Faculty Questions

Ongoing evaluation of the role of cell-free DNA assays to enhance adjuvant treatment strategies

Neil Love, MD

Terence Friedlander, MD

QUESTIONS FOR THE FACULTY

Terence Friedlander, MD

Do you anticipate that subcutaneous immune checkpoint inhibitors will soon be available? What impact do you see this having on the patient experience and flow in the oncology clinic?

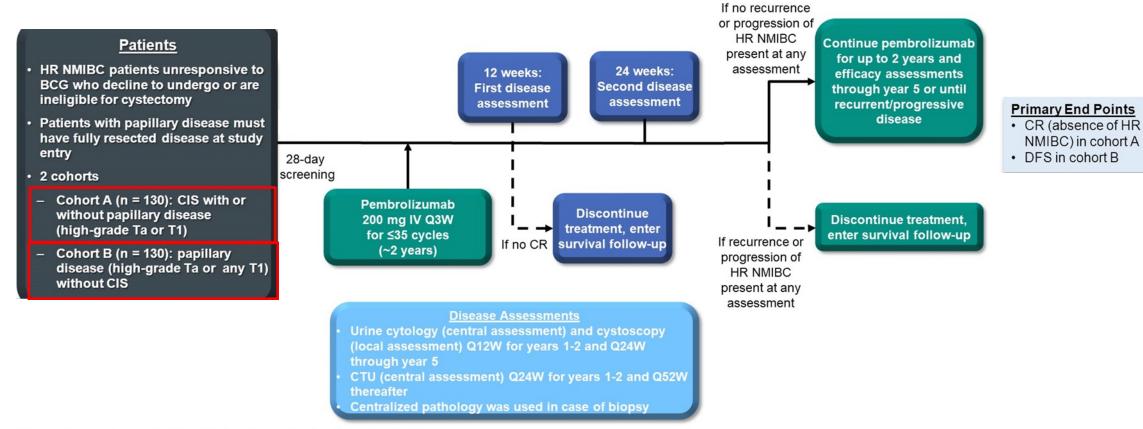
How do you think through the risk-benefit ratio surrounding the use of adjuvant nivolumab? Do you anticipate that ctDNA will eventually be used in UBC, and what are your thoughts about the design of ongoing trials evaluating this strategy?

For a 65-year-old patient who receives neoadjuvant chemotherapy for MIBC and undergoes cystectomy, in general how do presence or absence of residual disease and PD-L1 status affect your decision whether the patient should receive postoperative adjuvant immunotherapy and which immunotherapy to administer? For how long do you generally administer adjuvant nivolumab?

	Presence or absence of residual disease (pCR or not)	PD-L1 status	Treatment duration	
Dr Milowsky	Use eligibility from study – ≥ypT2	Do not routinely check	1 year	
Dr O'Donnell	Residual pT2 disease or greater	Typically no but will order if "on the fence"	1 year	
Dr Rosenberg	Presence of invasive disease is key	No effect	1 year	
Dr Siefker-Radtke	More likely to consider it for ≥T3b or nodes	Not done	1 year	
Dr Yu	Residual pT2 disease or greater	No effect	1 year	
Dr Friedlander	Very important – if T3+ then we offer adjuvant nivolumab	Less important, not a major driver of decision	1 year	
Dr Plimack	Don't offer adjuvant Tx to patient with pCR; nivolumab	Little to no effect	1 year	

Please describe the last patient in your practice diagnosed with muscle-invasive bladder cancer (MIBC) who received adjuvant nivolumab after neoadjuvant therapy and surgery.

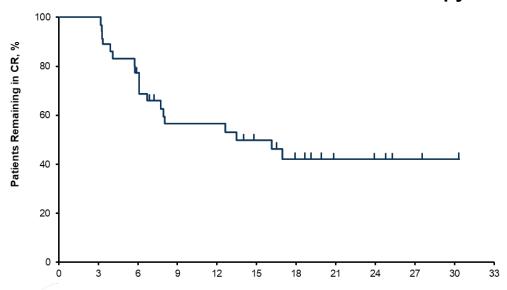
	Age	PD-L1 status	One year of adjuvant nivolumab completed?	IO tolerability issues	
Dr Milowsky	74 years	Unknown	Yes	No irAEs	
Dr O'Donnell	65 years	Unknown	3 weeks in	None	
Dr Rosenberg	80 years	Negative	Yes	None	
Dr Siefker-Radtke	65 years	Unknown	Still on Tx	_	
Dr Yu	67 years	Unknown	4 months in	No significant IO- related, mild rash	
Dr Friedlander	75 years	Negative	4 months in	Infusion reaction	
Dr Plimack	43 years	Unknown	Ongoing	No irAEs	


Role of Anti-PD-1/PD-L1 Antibodies in Nonmetastatic Urothelial Bladder Cancer

Matthew Milowsky, MD
George Gabriel and Frances Gable Villere Distinguished Professor
Section Chief, Genitourinary Oncology

KEYNOTE-057: Single-Arm, Open-Label Phase 2 Study (NCT02625961)

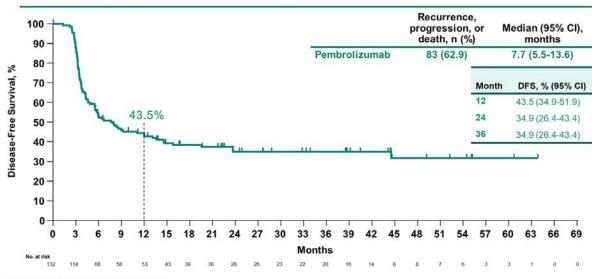
KEYNOTE-057 Study Design


CTU, computed tomography urography; ECOG PS, Eastern Cooperative Oncology Group performance status.

KEYNOTE-057 Cohort A & B Results

COHORT A

KEYNOTE-057: Pembrolizumab Monotherapy



Median follow-up of 36.4 months

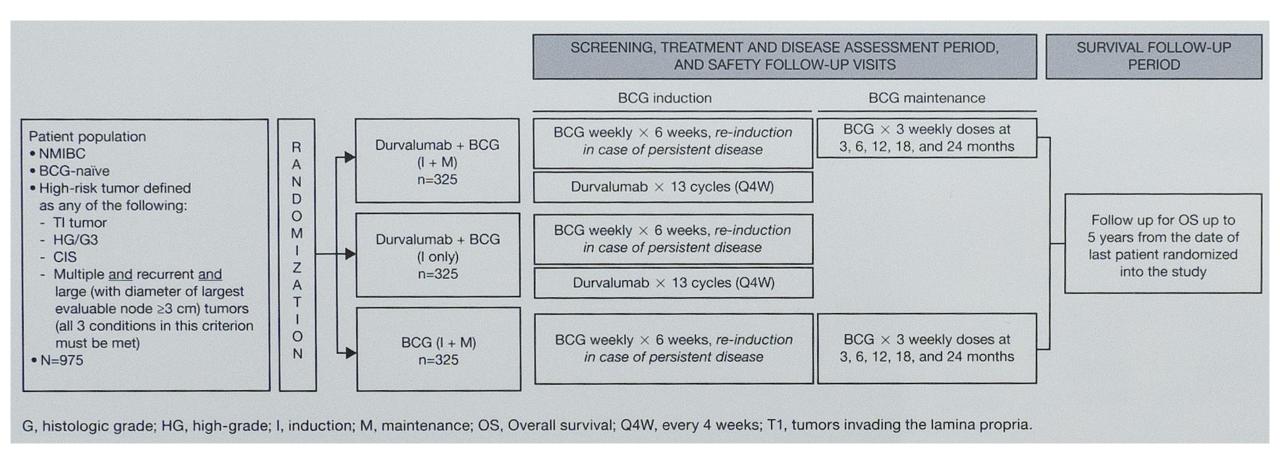
- Of 96 patients with BCG-unresponsive NMIBC, 39 (41%) had a CR at 3 mo
- Median DOR: 16.2 mo
- Of 39 responders, 18 (46%) remained in CR ≥12 mo; 11 (28%) remained in CR at the time of data cutoff

COHORT B

Disease-Free Survival for HR NMIBCa

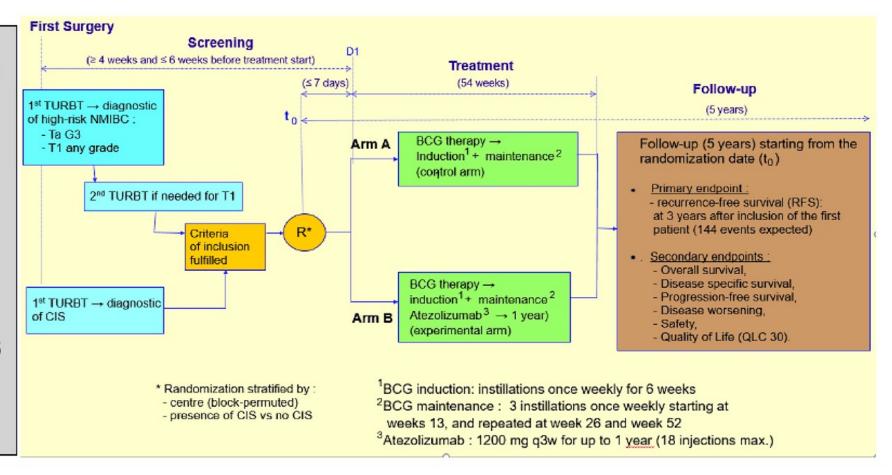
January 2020: Pembrolizumab was FDA approved for the treatment of patients with BCG-unresponsive, high-risk NMIBC with carcinoma in situ with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy

Ongoing phase III trials of anti-PD-(L)1 plus BCG in BCG-naïve NMIBC

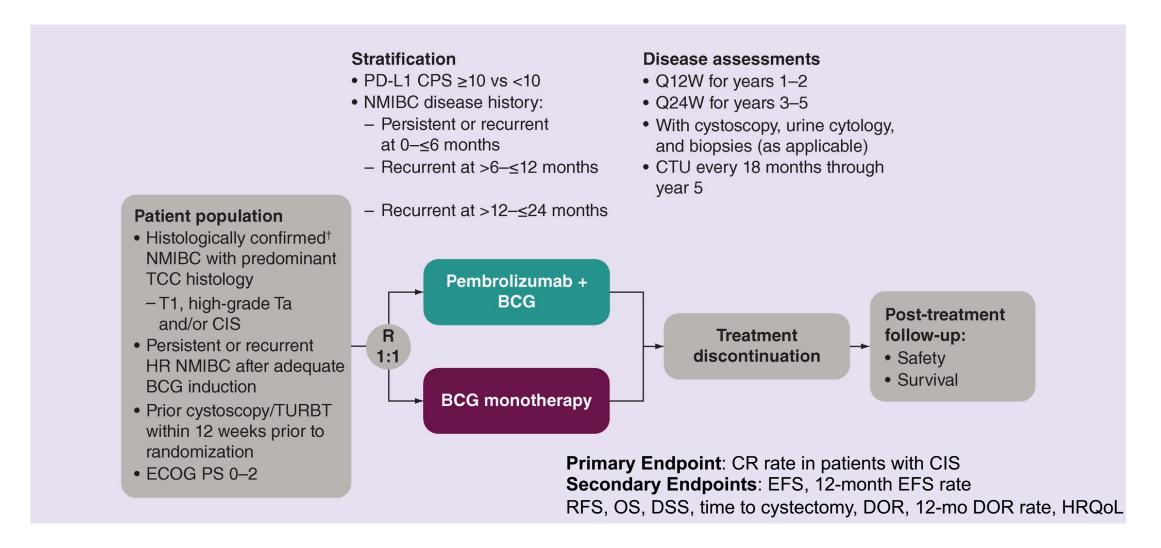

PD-(L)1 inhibitors in phase 3 trials—first-line therapy for BCG-naïve, high-risk NMIBC.

	Durvalumab	Atezolizumab	Sasanlimab	Pembrolizumab
NCT number (familiar name)	NCT03528694 (POTOMAC)	NCT03799835 (ALBAN)	NCT04165317 (CREST)	NCT03711032 (KEYNOTE- 676) ^a
Start/estimated primary completion dates	May 2018/Oct 2024	Jan 2019/Apr 2024	Dec 2019/Jun 2024	Dec 2018/Dec 2025
Trial design	Randomized, open-label, parallel-group, multicenter	Randomized, open-label, parallel-group, multicenter	Randomized, open-label, parallel-group, multicenter	Randomized, open-label, parallel-group, multicenter
Enrolled pts	n = 1018 (actual)	n = 516 (estimated)	n = 1160 (estimated)	n = 1405 (estimated)
Treatment arms	Durvalumab + BCG (IND + MAIN) or + BCG (IND) vs. BCG control	Atezolizumab + BCG (IND + MAIN) vs. BCG control	Sasanlimab + BCG (IND + MAIN) or + BCG (IND) vs. BCG control	Pembrolizumab + BCG (IND + MAIN) or + BCG (IND + reduced MAIN) vs. BCG (IND + MAIN)
PD-(L)1 regimen	Intravenous	Intravenous	Subcutaneous	Intravenous
Primary endpoint	DFS	RFS	EFS	EFS
Secondary endpoints ^b	DFS at 24 months; OS at 5 years	PFS, OS, DSS, CR, DW	OS, CR (pts with CIS), DSS, time to cystectomy	CR, DOR, 12-month DOR (CIS pts), RFS, OS, DSS

POTOMAC: Phase III Study of Durvalumab with BCG versus BCG Alone for High-Risk, BCG-Naïve NMIBC



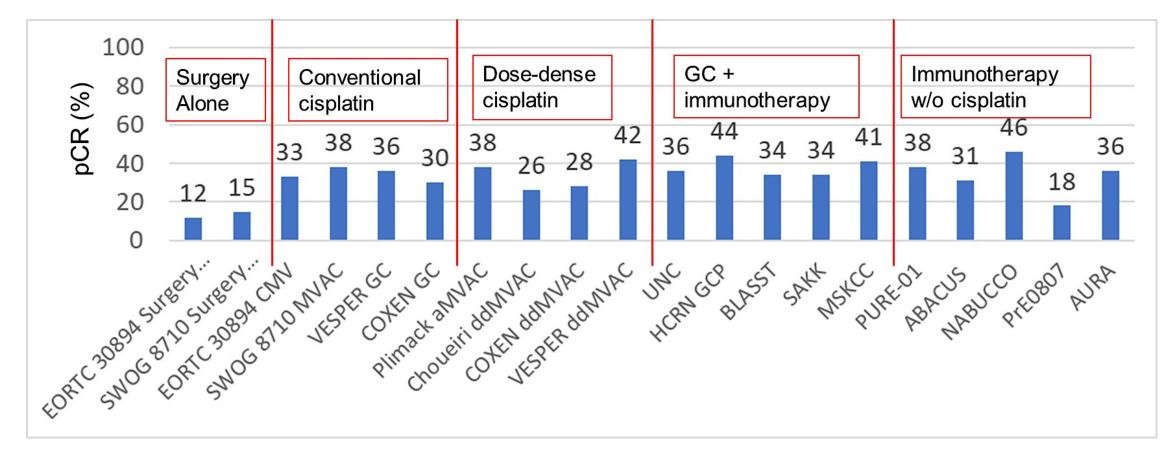
ALBAN: Phase III Trial of Atezolizumab with BCG versus BCG Alone for BCG-Naïve, High-Risk NMIBC


Patient population

N = 614

- Histologicall-confirmed NMIBC with predominant TCC histology
- High risk NMIBC defined
 - High grade and/or
 - T1 and/or
 - In situ carcinoma
- PS 0-2
- BCG naive
- Prior TURBT ≥ 4 weeks but ≤ 6 weeks before therapy
- Tumor samples available for PDL1 status assessment

KEYNOTE-676 – Phase III trial of pembrolizumab plus BCG versus BCG monotherapy in patients with persistent/recurrent high-risk NMIBC after BCG induction


Neoadjuvant ICI in patients with MIBC

Study	PURE-01	ABACUS	NABUCCO	AURA
# patients	50	95	24 (14)	28
IO agent	Pembrolizumab	Atezolizumab	lpilimumab + nivolumab	Avelumab
# cycles	3 (9 weeks)	2 (6 weeks)	3 I -> I+N -> N (3, I+N x 2 -> N)	4 (8 weeks)
pCR (pT0)	38%	31%	46% (43%)	36%*
pRR (<pt2)< th=""><th>54%</th><th>Not reported</th><th>58% (57%)</th><th>39%</th></pt2)<>	54%	Not reported	58% (57%)	39%

^{*} pCR defined as pT0/is

Grossman et al, NEJM 2003 Flaig et al, CCR 2021 Gupta et al, JCO 38,6 supp (Feb 2020) Necchi et al, JCO 2018 Grivas et al, ASCO Annual Mtg 2021, abstr 4518

EORTC 30894, JCO 2011 Rose et al, GU ASCO 2021, abstr 396 Cathomas et al, GU ASCO 2021, abstr 430 Powles et al, Nat Med 2019 Kaimakliotis et al, ASCO Annual Mtg 2020, abstr 5019 Milowsky ASCO Annual Mtg 2022

Pfister et al, Euro Urol 2021 Hoimes et al, ESMO 2018, abstr 5681 Funt et al, ASCO Annual Mtg 2021, abstr 4517 Van Dijk et al, ASCO Annual Mtg 2020, abstr 5020

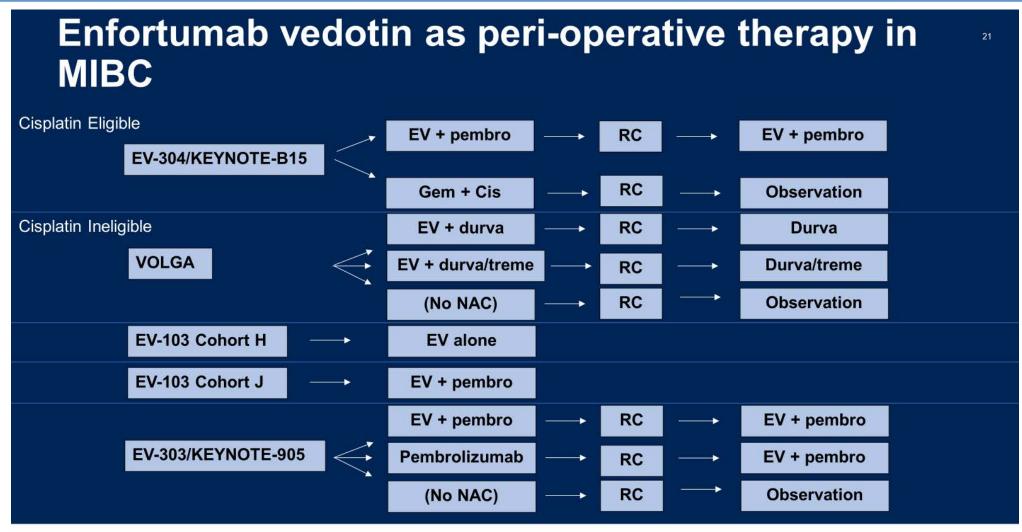
	урТ0	<ypt2< th=""><th>2y PFS/EFS</th><th>2y DFS</th><th>2y OS</th><th>3y PFS</th></ypt2<>	2y PFS/EFS	2y DFS	2y OS	3y PFS
VESPER						
dd-MVAC	42%	63%	~ 77%		~ 88%	66%
GC	36%	50%	~ 62%		~ 79%	56%
SAKK						
GC-D	34%	60%	76%		87%	NA
ABACUS						
Atezo	31%			68% (85% with CR)	77%	

VESPER: PFS at 3 years (time to detection bladder cancer progression or death)

SAKK: EFS at 2 years (PD during neoadjuvant treatment, locoregional or metastatic recurrence or death)

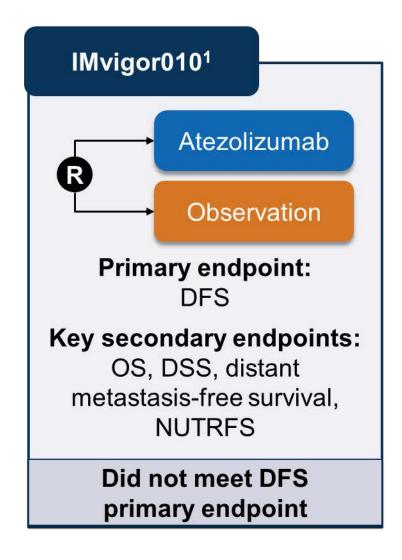
Ongoing Phase III studies – ICI + chemo

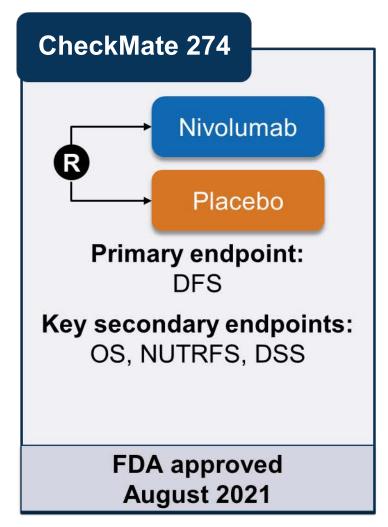
Randomized trials are investigating combination chemo-immunotherapy in MIBC					
Trial	n	Immunotherapy	Chemotherapy	Primary Outcome	Adjuvant?
NIAGARA	1050	Durvalumab	Gemcitabine + Cisplatin	Co: pCR + EFS	Yes – durva arm only
KEYNOTE-866	790	Pembrolizumab	Gemcitabine + Cisplatin	Co: pCR + EFS	Yes – pembro arm only
ENERGIZE	976	Nivolumab or Nivolumab + IDO1-inhibitor linrodostat	Gemcitabine + Cisplatin	Co: pCR + EFS	Yes – nivo arms only

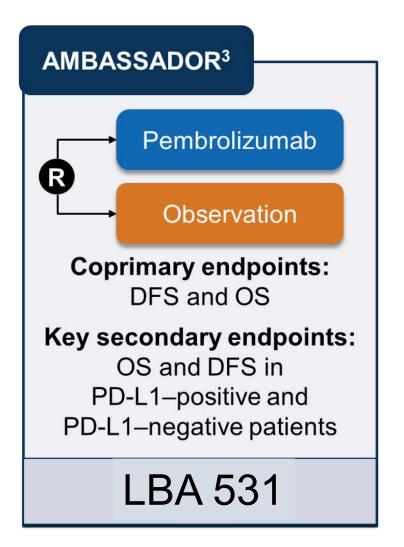


ICI plus EV

PRESENTED BY:
Matthew Milowsky, MD







Adjuvant trials with PD-1/L1 inhibitors

CheckMate 274

CheckMate 274 is a phase 3, randomized, double-blind, multicenter study of adjuvant NIVO versus placebo in patients with high-risk MIUC^a

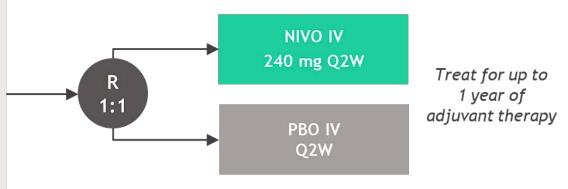
N = 709

Key inclusion criteria

- Patients with ypT2-ypT4a or ypN+ MIUC who had neoadjuvant cisplatin chemotherapy
- Patients with pT3-pT4a or pN+ MIUC without prior neoadjuvant cisplatin chemotherapy and not eligible/refuse adjuvant cisplatin chemotherapy
- Radical surgery within the past 120 days
- Disease-free status within 4 weeks of randomization

Minimum^c/median (range)^d follow-up, months:

ITT population: 31.6/36.1 (0.0-75.3)


All randomized with PD-L1 \geq 1%: 32.1/37.1 (0.0-75.3)

MIBC population: 31.6/34.5 (0.0-75.3) MIBC and PD-L1 ≥ 1%: 32.1/36.7 (0.0-75.3)

Database lock, October 20, 2022

Stratification factors

- Tumor PD-L1 status (≥ 1% vs < 1% or indeterminate)^b
- Prior neoadjuvant cisplatin-based chemotherapy
- Nodal status

Primary endpoints: DFS in all randomized patients (ITT population) and DFS in all randomized patients with tumor PD-L1 > 1%

Secondary endpoints: NUTRFS, DSS, and OSe

Exploratory endpoints included: DMFS, PFS2, and safety

aNCT02632409. Defined by the percent of positive tumor cell membrane staining in a minimum of 100 evaluable tumor cells using the validated Dako PD-L1 IHC 28-8 pharmDx immunohistochemistry assay. Defined as time from clinical cutoff date to last patient's randomization date. Defined as time between randomization date and last known date alive (for patients who are alive) or death. So will be assessed at a future database lock. Os and DSS data are not presented.

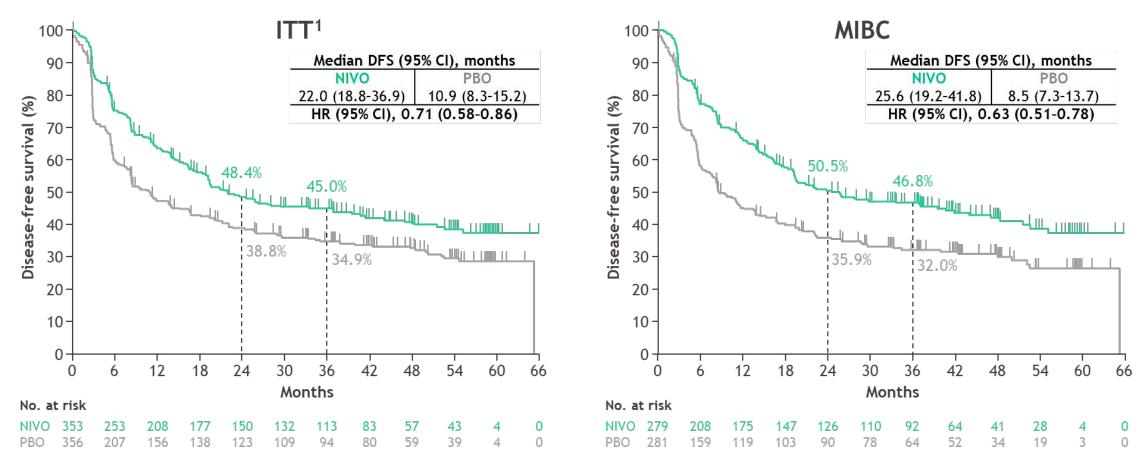
DSS, disease-specific survival; ITT, intent-to-treat; IV, intravenous; OS, overall survival; PD-L1, programmed death ligand 1; PFS2, second progression-free survival; Q2W, every 2 weeks;

R, randomized.

Baseline characteristics

	П	T ¹	MIBC ²		
	NIVO (N = 353)	PBO (N = 356)	NIVO (n = 279)	PBO (n = 281)	
Mean age (range), years	65.3 (30-92)	65.9 (42-88)	64.8 (37-83)	65.7 (42-88)	
Male, %	75	77	78	79	
Race or ethnic group, % White Asian Black Other Unreported	75 23 1 2 0	76 21 1 1 < 1	83 14 < 1 3 0	82 15 1 2 < 1	
ECOG PS, a % 0 1 2	63 35 2	62 35 3	63 35 2	58 39 3	
Tumor origin at initial diagnosis, % Urinary bladder Renal pelvis Ureter Tumor PD-L1 expression ≥ 1% as recorded at randomization, % Prior neoadjuvant cisplatin, %	79 12 8 40 ^b	79 15 6 40 ^b	100 0 0 40° 51	100 0 0 41° 51	
Pathologic T stage at resection, % pTX pT0 pTis pT1 pT2 pT3 pT4a Not reported	1 1 1 4 18 58 16 < 1	0 2 1 4 18 57 17 < 1	2 2 1 3 20 52 19 < 1	0 2 1 5 23 49 20 < 1	
Nodal status at resection, % N+ N0/x with < 10 nodes removed N0 with ≥ 10 nodes removed Not reported	47 27 26 < 1	47 28 25 < 1	53 17 30 < 1	55 16 28 < 1	

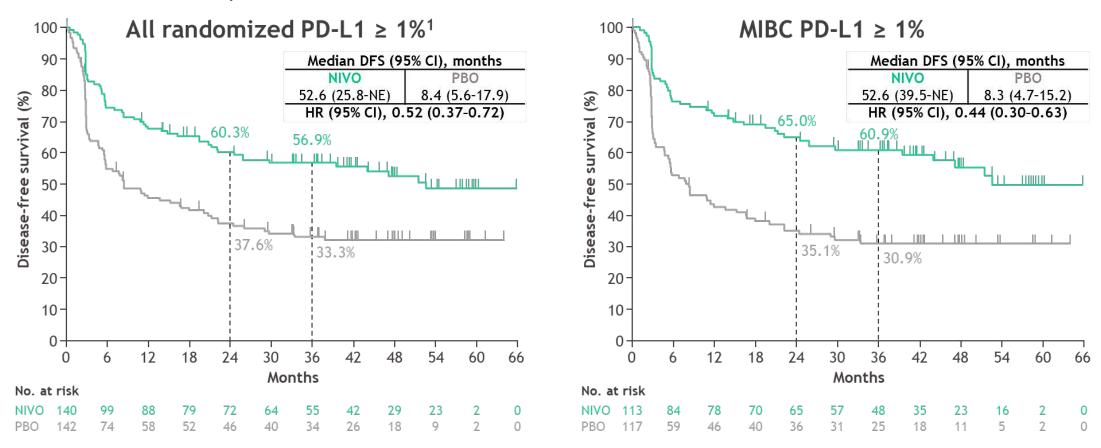
^aNot reported for 1 patient in the PBO arm. ^bBy interactive voice response system. ^cBy clinical source. ECOG PS, Eastern Cooperative Oncology Group performance status.


1. Bajorin DF, et al. *N Engl J Med* 2021;384:2102-2114. 2. Witjes JA, et al. Poster presentation at ASCO 2022. Abstract 4585.

Disease-free survival

Continued DFS benefit was observed with NIVO versus PBO both in the ITT and MIBC populations

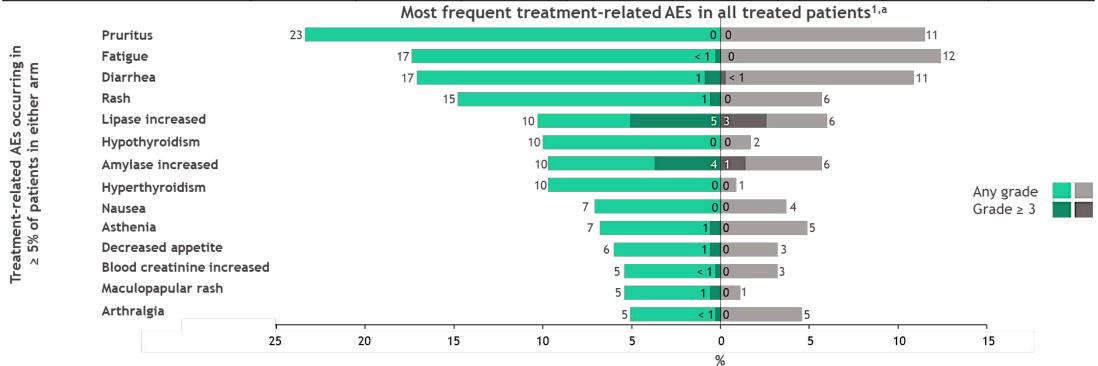
Minimum follow-up in both the ITT and MIBC populations, 31.6 months. DFS was defined as the time between the date of randomization and the date of first recurrence (local urothelial tract, local non-urothelial tract, or distant) or death (of any cause), whichever occurs first. CI, confidence interval; HR, hazard ratio.


1. Galsky MD, et al. Oral presentation at ASCO GU 2023. Abstract LBA443.

Disease-free survival

 Continued DFS benefit with NIVO versus PBO was observed both in all randomized patients with PD-L1 ≥ 1% and in patients with MIBC and PD-L1 ≥ 1%

Minimum follow-up in both the ITT and MIBC populations, 31.6 months. DFS was defined as the time between the date of randomization and the date of first recurrence (local urothelial tract, local non-urothelial tract, or distant) or death (of any cause), whichever occurs first. NE, not estimable.


1. Galsky MD, et al. Oral presentation at ASCO GU 2023. Abstract LBA443.

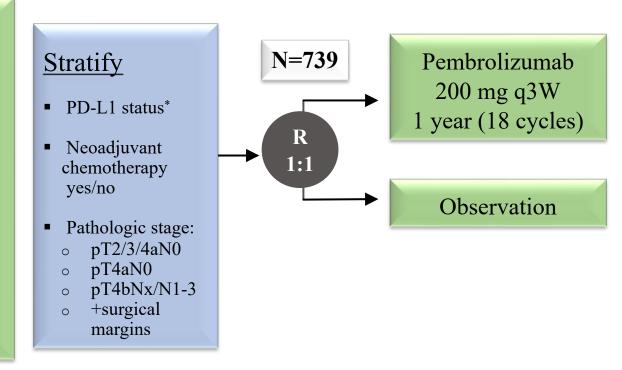
Safety

	All treated patients ¹				All treated patients with MIBC			
	NIVO (n = 351)		PBO (n = 348)		NIVO (n = 277)		PBO (n = 275)	
	Any grade	Grade ≥ 3	Any grade	Grade ≥ 3	Any grade	Grade ≥ 3	Any grade	Grade ≥ 3
Treatment-related AEs, %	79	18	56	7	80	17	56	6
Treatment-related AEs leading to discontinuation, %	14	7	2	1	15	7	2	1

There were 3 treatment-related deaths in the NIVO arm in the ITT population (2 instances of pneumonitis and 1 instance of bowel perforation). alncludes events reported between the first dose and 30 days after the last dose of NIVO or PBO in both the ITT and MIBC populations. Minimum follow-up in both the ITT and MIBC populations, 31.6 months. AE, adverse event.

1. Galsky MD, et al. Oral presentation at ASCO GU 2023. Abstract LBA443.

A031501 AMBASSADOR: Study Design


Phase 3 randomized, open label, multicenter study of adjuvant pembrolizumab vs observation in patients with high-risk muscle-invasive urothelial carcinoma (MIUC)

NCT03244384

Key Eligibility

- Muscle-invasive urothelial carcinoma: bladder, urethra, renal pelvis, ureter
- Post-radical surgery (cystectomy, nephrectomy, nephroureterectomy, or ureterectomy) ≥ 4 but ≤ 16 weeks
- Post-neoadjuvant chemotherapy and ≥ pT2 and/or N+/+margins OR
- ■cisplatin-ineligible or refusing and ≥ pT3 or pN+/+margins

*PD-L1 status was tested centrally and defined using the combined positive score: percentage of PD-L1-positive tumor cells and infiltrating immune cells relative to the total number of tumor cells. PD-L1 positive = CPS ≥ 10%, Dako PD-L1 immunohistochemistry 22C3 pharmDx assay. DFS: disease-free survival (defined as new MIUC, metastatic disease, or death without recurrence); OS: overall survival

Dual Primary Endpoints

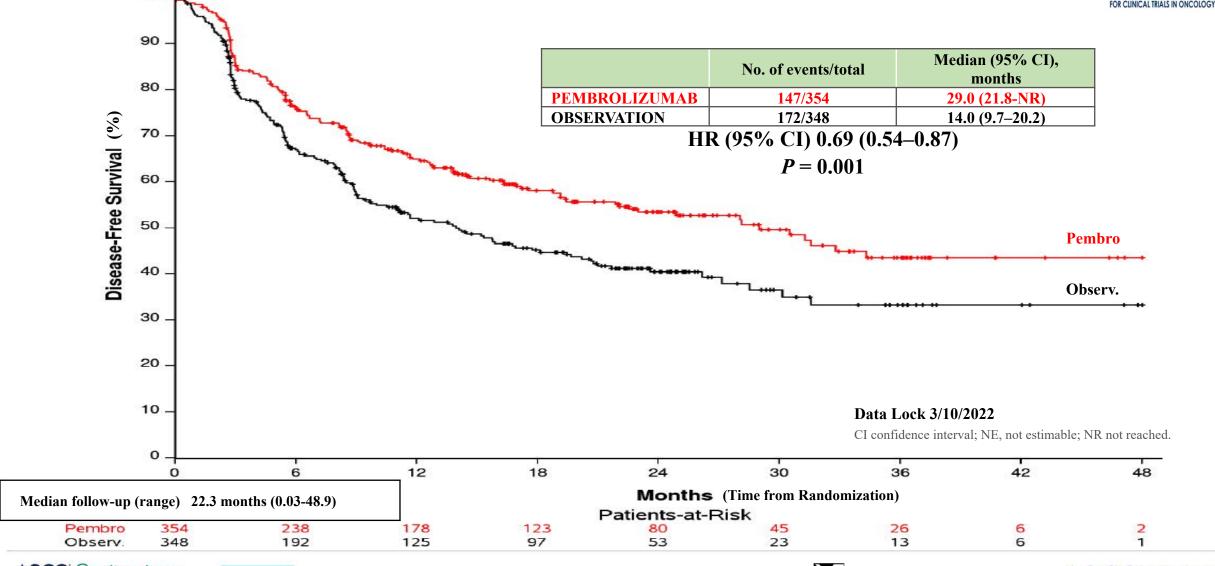
- Disease-free survival
- Overall survival

Key Secondary Endpoints

- DFS/OS PD-L1 +/-
- Safety

Correlative Endpoints

- DFS/OS ctDNA +/-
- DFS/OS immune gene signatures
- DFS/OS tumor molecular subtype
- DFS/OS TCR clonality
- QOL



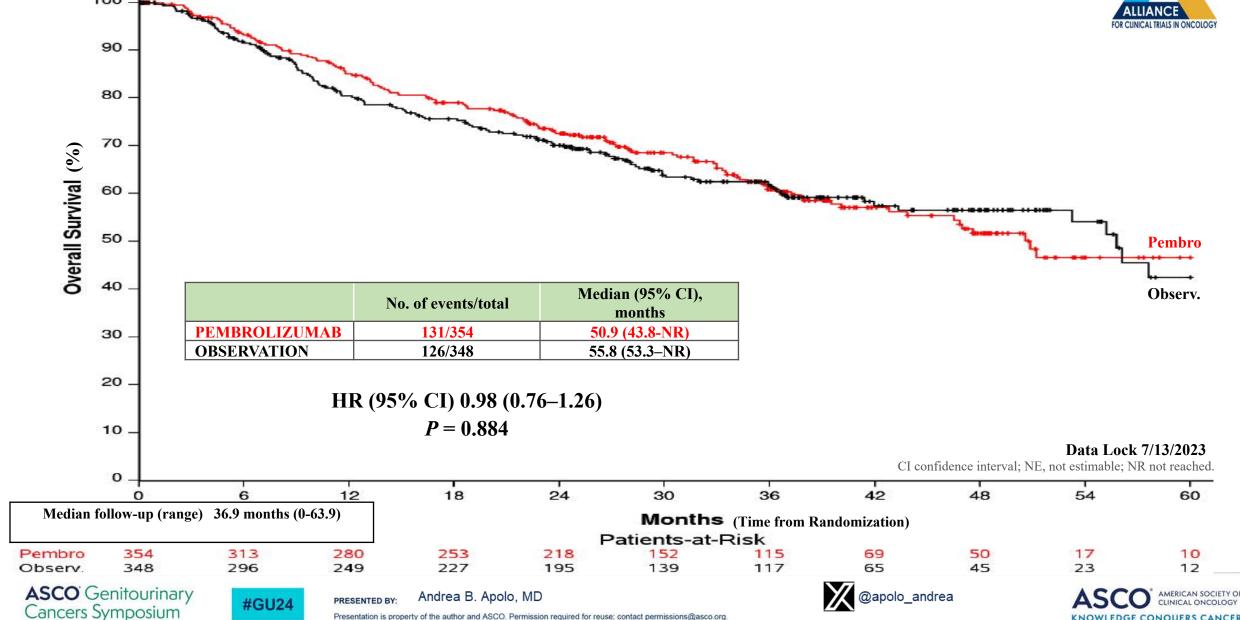
A031501 AMBASSADOR: Disease-Free Survival

ASCO Genitourinary Cancers Symposium

100

#GU24

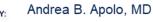
PRESENTED BY: Andrea B. Apolo, MD



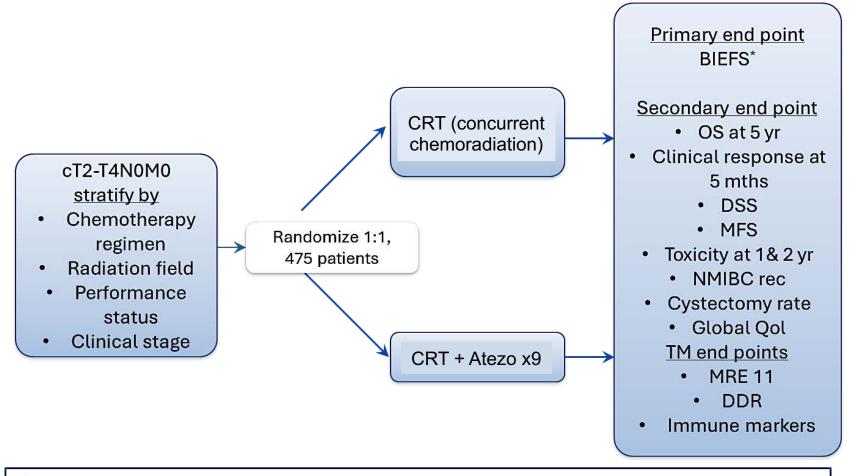
A031501 AMBASSADOR: Overall Survival (interim)

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

KNOWLEDGE CONQUERS CANCER


A031501 AMBASSADOR: Safety Summary

A 11 A E - (11 £ - 44 :1)	Pembrolizumab		(Observation	
All AEs (regardless of attribution)	N=345			N=343	
Adverse Events (any)		N (%)		N (%)	
Grade 3		133 (38.6%)		80 (23.3%)	
Grade 4	Grade ≥3	17 (4.9%)	Grade ≥3	13 (3.8%)	
Grade 5	167 (48.4)	17 (4.9%)	109 (31.8)	16 (4.7%)	
Hematologic Adverse Events					
Grade 3		19 (5.5%)		9 (2.6%)	
Grade 4		3 (0.9%)		0 (0.0%)	
Grade 5		0 (0.0%)		0 (0.0%)	
Non-Hematologic Adverse Events					
Grade 3		130 (37.7%)		78 (22.7%)	
Grade 4		16 (4.6%)		13 (3.8%)	
Grade 5		17 (4.9%)		16 (4.7%)	



Phase III trial of concurrent chemoradiation with or without atezolizumab for localized MIBC: SWOG/NRG Intergroup Trial (S1806) (NCT03775265)

*BIEFS (bladder intact event free survival) includes: muscle invasive recurrence in the bladder, regional pelvic soft tissue or nodal recurrence, distant metastases, bladder cancer or toxicity related death or cystectomy

Conclusion

- Pembrolizumab monotherapy is a treatment option for patients with high-risk BCG-unresponsive NMIBC
- Additional studies are needed prior to the incorporation of ICIs into neoadjuvant treatment of patients with MIBC
- Adjuvant ICI is a standard of care in patients with high-risk MIBC
- Ongoing phase 3 clinical trials with ICI in combination with chemotherapy, immunotherapy, and chemoradiation may change the treatment landscape for patients with nonmetastatic UC

MODULE 2: Other Novel Strategies Under Investigation for Nonmetastatic UBC – Dr O'Donnell

Consulting Faculty Questions

Perspectives on bladder preservation and the evolution of systemic therapies for patients with MIBC

Neil Love, MD

Elizabeth R Plimack, MD, MS

QUESTIONS FOR THE FACULTY

Elizabeth R Plimack, MD, MS

What novel approaches to neoadjuvant therapy do you find particularly promising?

As neoadjuvant systemic therapy improves, can we identify more patients who can avoid cystectomy? What is your experience with bladder-sparing strategies in MIBC?

Consulting Faculty Questions

Pembrolizumab as treatment for BCG-unresponsive, high-risk NMIBC; intravesical drug delivery systems for MIBC

Neil Love, MD

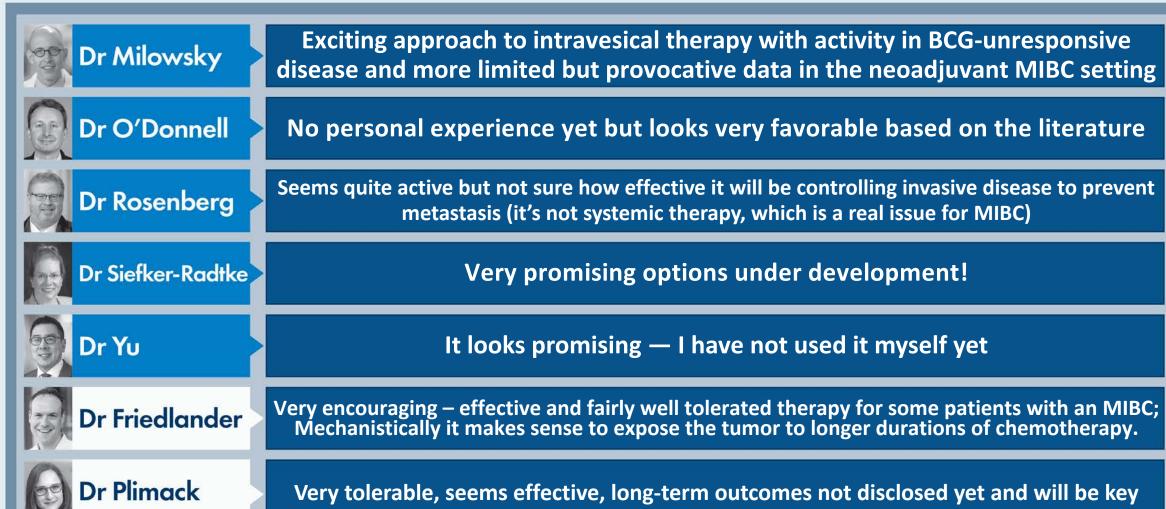
Terence Friedlander, MD

QUESTIONS FOR THE FACULTY

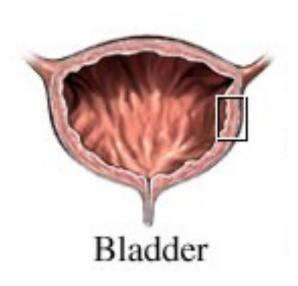
Terence Friedlander, MD

What are the unique challenges associated with cystectomy in elderly patients with comorbidities?

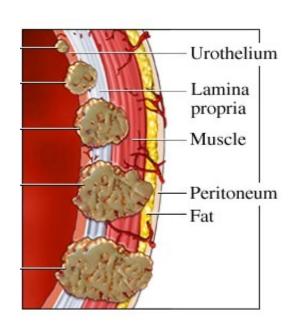
Do you believe novel intravesical approaches such as TAR-200 and TAR-210 will provide meaningful improvements in outcomes over current standard therapies for patients with NMIBC and MIBC?


How are these strategies tolerated, and how do you anticipate they will be used in the future?

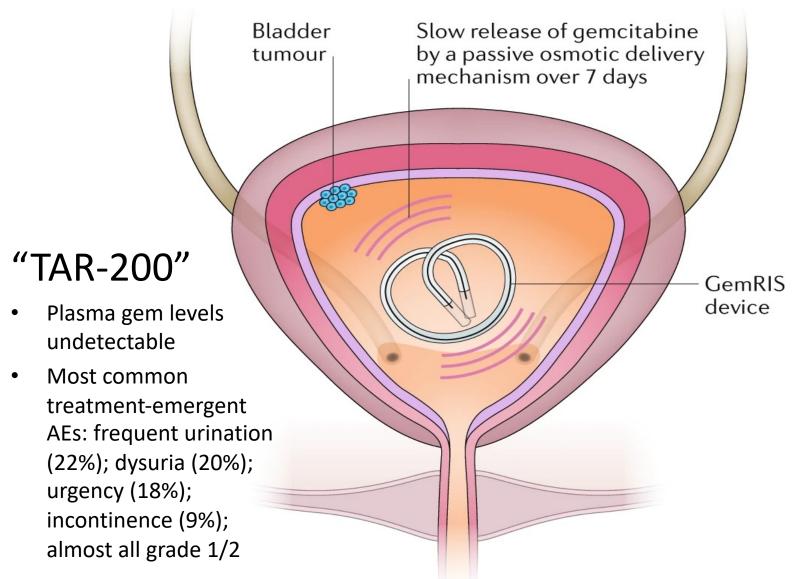
Please describe the last patient in your practice with <u>localized</u> UBC (muscle invasive or not muscle invasive) who was enrolled on a clinical trial.


	Age	Clinical trial	Assigned Tx arm (if applicable)	Response	Tolerability
Dr Milowsky	78 years	Alliance A031803	N/A	Pending	Probable IO- related arthritis
Dr O'Donnell	71 years	KN-905/EV-303	O3 Awaiting Pending Pending Pe		Pending
Dr Rosenberg	77 years	EV monotherapy for upper tract tumors	N/A	Pending	Similar to expected
Dr Siefker-Radtke	65 years	Neoadjuvant chemo with IO	Ю	Still free of disease	_
Dr Yu	69 years	Neoadjuvant variant trial with MVAC/pembro	N/A	Tx ongoing	Tx ongoing
Dr Friedlander	65 years	EV-304/B15	EV + pembro	Pending	Pending
Dr Plimack	70 years	RETAIN-2	N/A	Tx ongoing	Tx ongoing

Based on your personal clinical experience and/or knowledge of available data, what is your global perspective on the overall efficacy and tolerability of the TAR-200 delivery system?

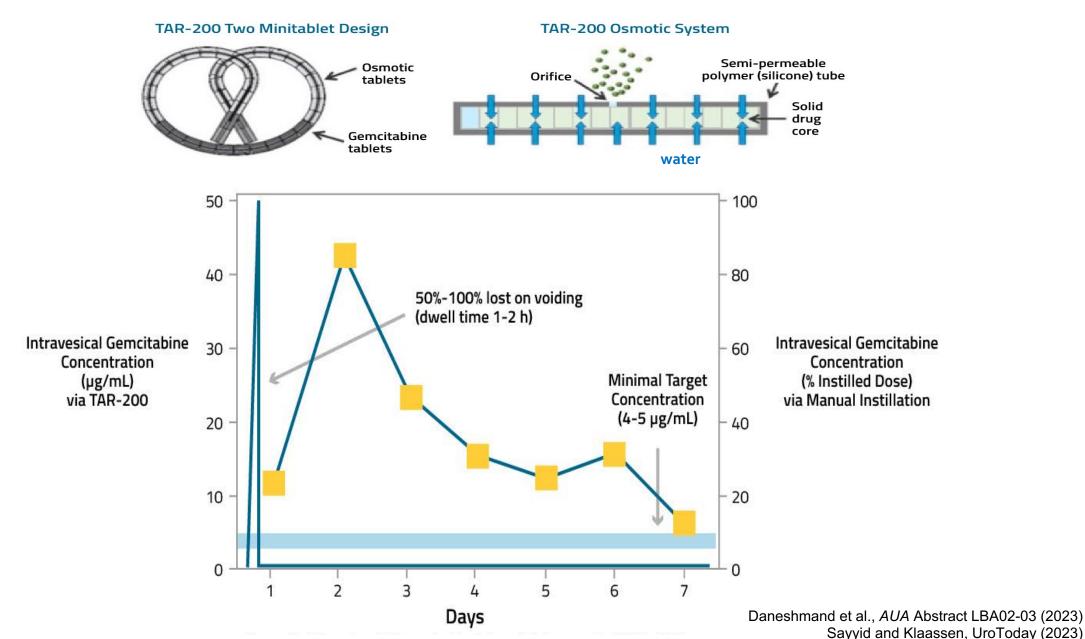


Other Novel Strategies Under Investigation for Nonmetastatic Urothelial Bladder Cancer (UBC)



Peter H. O'Donnell, M.D.

Section of Hematology/Oncology Genitourinary Oncology Program Committee on Clinical Pharmacology and Pharmacogenomics The University of Chicago

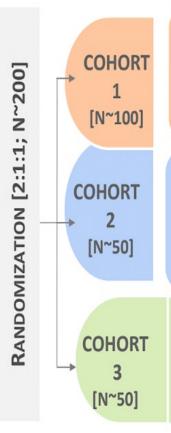

Intravesical Depot Delivery System

Tan and Kelly, *Nat Rev Urol* (2018)
Daneshmand et al., *Urol Oncol* (2022)

Necchi et al., ESMO Abstract LBA105 (2023)

Intravesical Drug Levels

SunRISe-1: TAR-200 in NMIBC



KEY ELIGIBILITY CRITERIA

- BCG Unresponsive Carcinoma In Situ [CIS]
- Patients Ineligible for or Refusing Radical Cystectomy

STRATIFICATION

 Presence or absence of concomitant papillary disease

TAR-200 [225 mg Gemcitabine]

Q3W [24 wks.], Quarterly → 2 years

+ CETRELIMAB

for 18 Months

TAR-200 Alone

[225 mg Gemcitabine] Q3W [24 wks.], Quarterly → 2 years

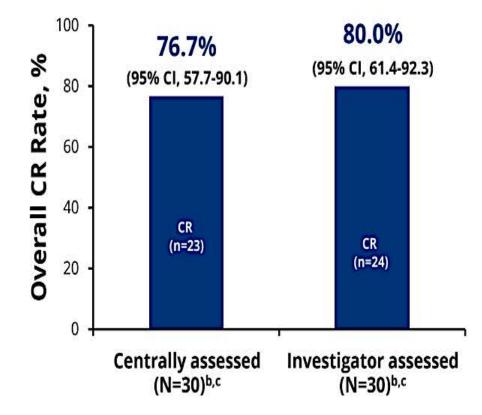
CETRELIMAB Alone [360 mg] for 18 Months

PRIMARY ENDPOINT

- Complete Response [CR]
 Rate in CIS patients at any time point
 - Assessment via Cystoscopy, Urine Cytology, and Bladder Biopsy

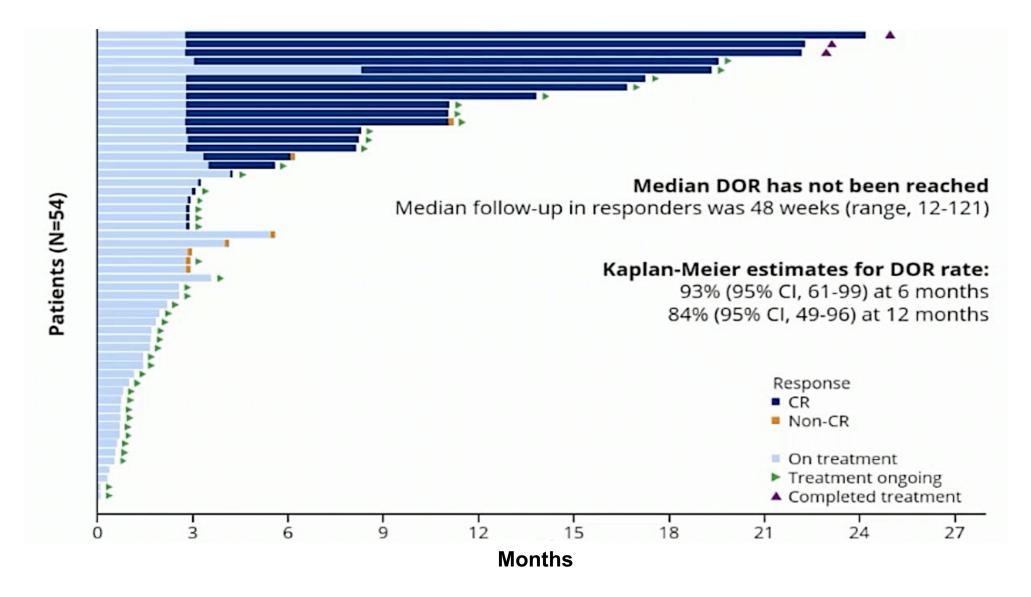
SECONDARY ENDPOINTS

- Duration of CR from Achievement of CR
- Overall Survival [OS] measured as time from cohort assignment to death

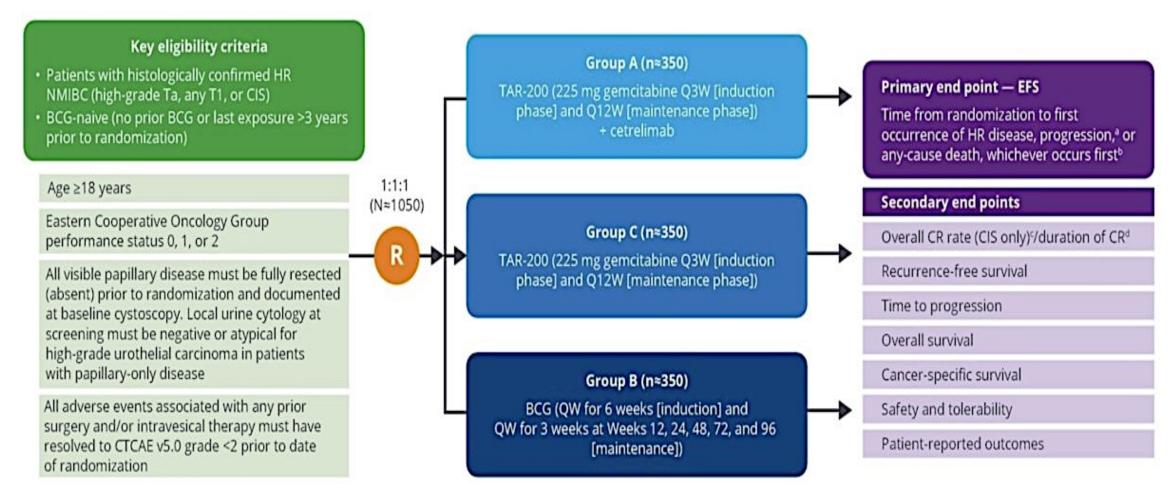

Historical benchmarks for 12-month CR rates:

- Pembrolizumab (19%)
- Atezolizumab (15%)
- Nadofaragene firadenovec (23%)

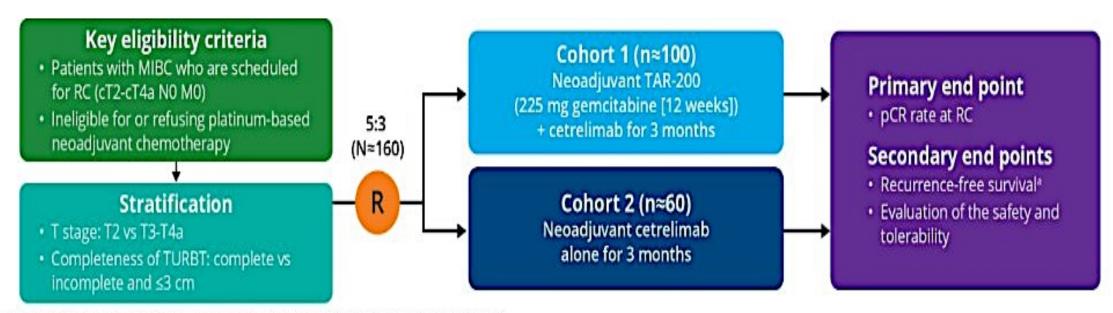
TAR-200 Intravesical Results


Characteristics	TAR-200 (N=54)
ECOG performance status 0, %	96.3
Tumor stage, %	
CIS only	66.7
CIS + papillary disease	33.3
Total doses of prior BCG, n, median (range)	12 (7-42)
Time from last BCG to CIS diagnosis, months, median (range)	3.0 (0.2-22.4)a
Reason for not receiving radical cystectomy, %	
Declined	94.4
Ineligible	5.6

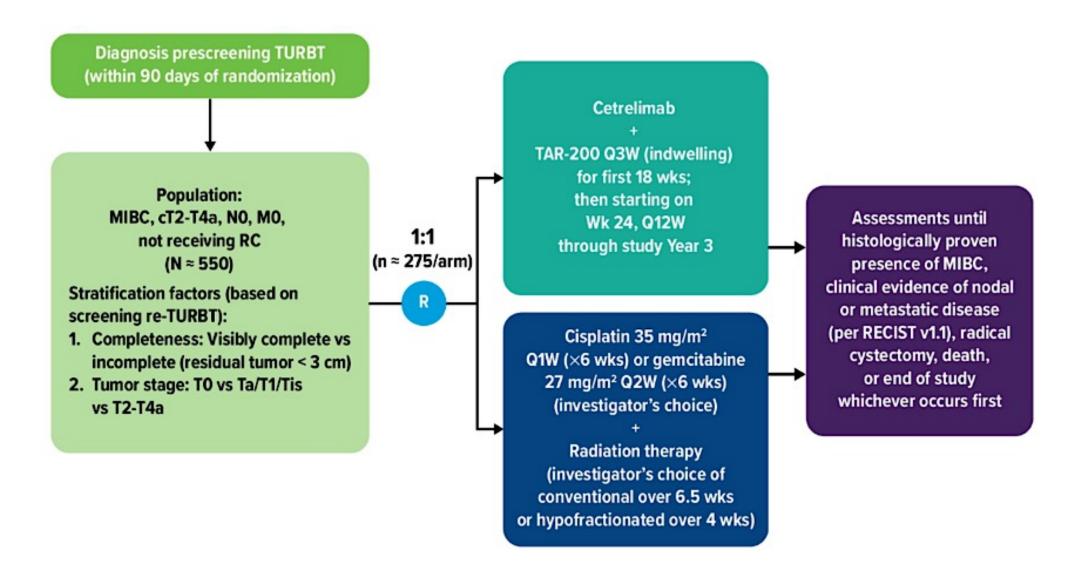
CR Rate in Patients With HR NMIBC CIS (Cohort 2)


cystoscopy/biopsy/cytology/imaging assessed at 24 and 48 weeks

Duration of Response – TAR-200

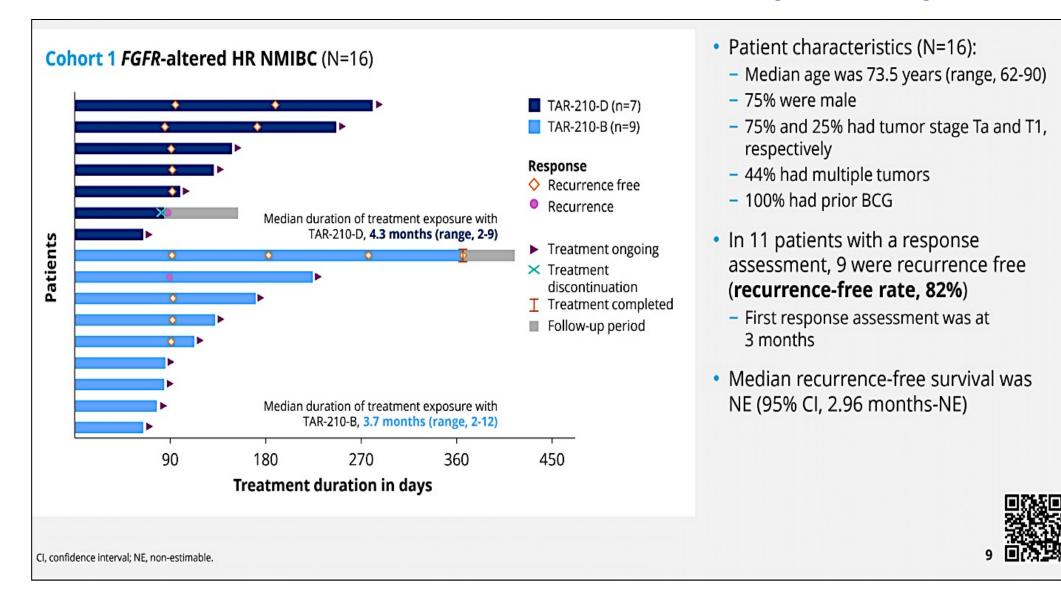


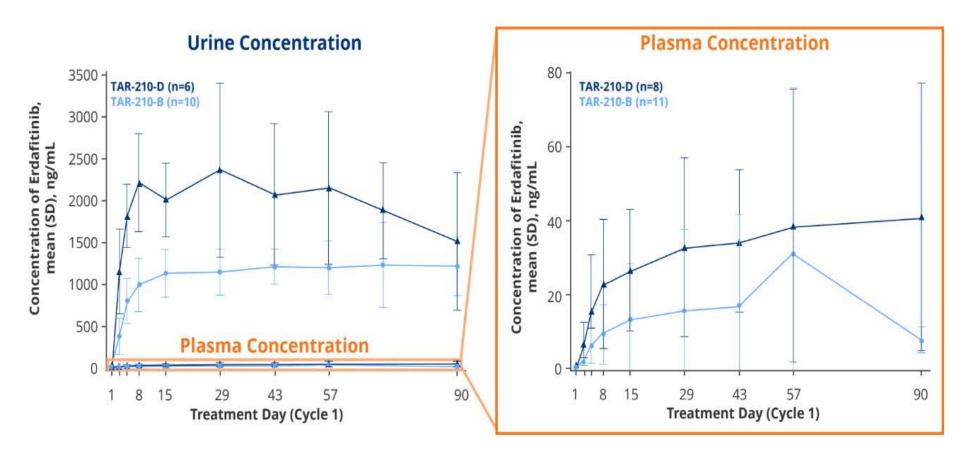
SunRISe-3: TAR-200 +/Cetrelimab vs BCG


TAR-200 + Cetrelimab vs Cetrelimab Alone as Neoadjuvant Therapy in MIBC

pCR, pathologic complete response; TURBT, transurethral resection of bladder tumor.

^{*}Per Response Evaluation Criteria In Solid Tumors 1.1 or histologic evidence.

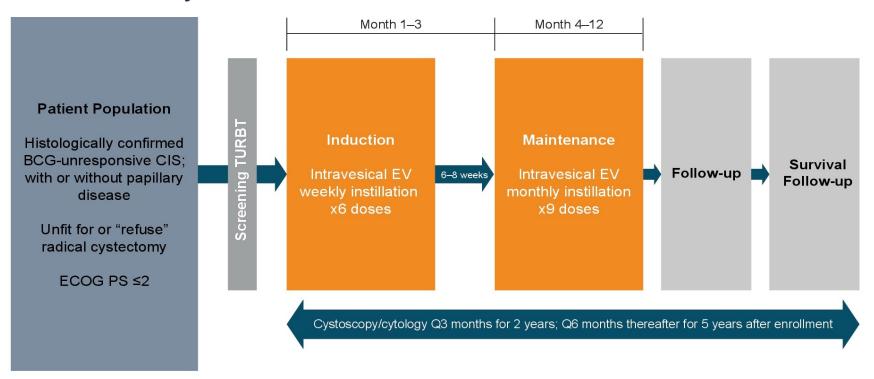

TAR-200 + Cetrelimab vs ChemoRT in MIBC


TAR-210: Erdafitinib Intravesical Delivery System in FGFR-Altered NMIBC

Cohort 1 HR NMIBC (high-grade Ta/T1, no CIS, papillary only), BCG-**Molecular Eligibility** Part 1: Dose Escalation Part 2: Dose Expansion experienced/unresponsive and A flexible molecular not undergoing RC BOIN^{1,2} eligibility strategy is used to TAR-210-D TURBT with complete resection detect FGFR alterations: Dose level 2ª of all visible disease prior to **Expansion Cohort 1** Local or central fresh/ treatment TAR-210-B archival tissue-based **Expansion Cohort 3** Dose level 1^a testing by NGS or PCR Cohort 3 -or- IR NMIBC, recurrent, history of Urine cell-free DNA NGS Placement every 3 months Expansion of both dose levels low-grade only Ta/T1 disease testing Visible target lesions prior to treatment (chemoablation Response is assessed every 3 months with continued treatment for design) up to 1 year if recurrence-free (Cohort 1) or in complete response (Cohort 3). NCT05316155 Clinical cutoff date: August 29, 2023.

TAR-210: Erdafitinib-RIS Results (NMIBC)

Sustained Urinary Erdafitinib Release Over 90 Days, with Low Systemic Exposure



- >50 x lower mean [plasma] than oral erdafitinib 9mg daily
- No hyperphosphatemia

Intravesical Enfortumab Vedotin

EV-104 Study Design

EV-104 (NCT05014139) is a Phase 1, open-label, multicenter, dose-escalation and dose-expansion study designed to evaluate the safety, tolerability, PK, and antitumor activity of intravesical enfortumab vedotin in adults with NMIBC

 The study treatment regimen will include an induction phase where patients will receive intravesical enfortumab vedotin weekly for 6 weeks followed by monthly maintenance for a total of 9 additional enfortumab vedotin doses

Select Ongoing Trials Evaluating Other Novel Therapies for Patients with High-Risk NMIBC

Trial	Phase	n	Population	Intervention
NCT05704244	III	24	BCG unresponsive	Nadofaragene firadenovec
CREST NCT04165317	III	1,070	BCG naïve, BCG unresponsive	SasanlimabSasanlimab + BCGBCG
QUILT-3.032 NCT03022825	11/111	190	BCG unresponsive	 N-803 (interleukin-15 superagonist complex) + BCG N-803
TRUCE-04 NCT05495724	II	176	HER2 overexpressing	Tislelizumab + disitamab vedotin
ADAPT-BLADDER NCT03317158	1/11	55	BCG unresponsive, BCG relapsing, BCG naïve	 Durvalumab Durvalumab + BCG or radiation therapy or gemcitabine or tremelimumab
NCT04706598	1/11	56	BCG unresponsive	Camrelizumab
NCT05843448	I	30	BCG unresponsive/intolerant	PD-L1/IDO peptide vaccine + pembrolizumab IV

BCG = Bacillus Calmette-Guérin

Summary

- Novel delivery systems and intravesical use of traditionally-systemic agents show promise in early-stage bladder cancer
- TAR-200 granted FDA breakthrough therapy designation in BCG-unresponsive high-risk NMIBC (Dec 2023)
- Combination strategies being explored
- Delay progression / need for cystectomy?

MODULE 3: Front-Line Treatment for Metastatic UBC (mUBC) – Dr Rosenberg

Consulting Faculty Questions

Enfortumab vedotin (EV) with pembrolizumab as first-line treatment for metastatic urothelial bladder cancer (UBC); management of rash and neuropathy associated with EV

Neil Love, MD

Elizabeth R Plimack, MD, MS

Terence Friedlander, MD

QUESTIONS FOR THE FACULTY

Elizabeth R Plimack, MD, MS

Are you using enfortumab vedotin/pembrolizumab as first-line therapy for mUBC regardless of platinum eligibility?

Terence Friedlander, MD

What has been your experience with the tolerability of enfortumab vedotin/pembrolizumab?

How do you manage common side effects (eg, rash, peripheral neuropathy) with this combination?

Consulting Faculty Questions

Autoimmune contraindications to immunotherapy

Neil Love, MD

Terence Friedlander, MD

QUESTIONS FOR THE FACULTY

Terence Friedlander, MD

Which autoimmune conditions do you believe constitute an absolute contraindication to treatment with an immune checkpoint inhibitor?

How do you think through the use of these agents in patients with autoimmune diseases or those who have undergone solid organ transplant?

Please describe the last patient in your practice who received enfortumab vedotin/pembrolizumab as first-line treatment for metastatic UBC.

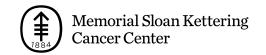
	Age	PD-L1 status	Benefit derived	Side effects
Dr Milowsky	73 years	Unknown	Some	Rash, Grade 1 neuropathy
Dr O'Donnell	65 years	Unknown	Too early to determine	Faring well
Dr Rosenberg	65 years	Unknown	A great deal	Neuropathy, fatigue, dysgeusia
Dr Siefker-Radtke	65 years	Unknown	A great deal	Neuropathy
Dr Yu	72 years	Unknown	A great deal	Peripheral neuropathy, dry skin
Dr Friedlander	72 years	Positive	A great deal	Neuropathy, colitis
Dr Plimack	86 years	Unknown	A great deal	Pruritus/dry skin, fatigue

In general, what is your preferred first-line treatment regimen for an 80-year-old patient with metastatic UBC who has received no prior systemic therapy and <u>is not a candidate for cisplatin?</u> Does PD-L1 level affect your decision-making?

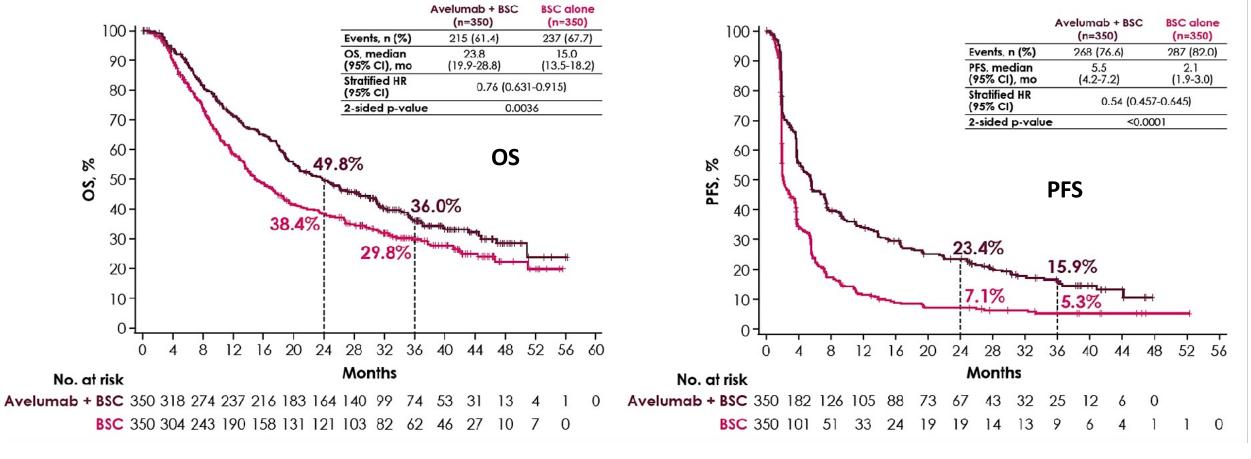
	Preferred first-line regimen	PD-L1 affect decision-making?	
Dr Milowsky	Enfortumab vedotin/pembrolizumab	No	
Dr O'Donnell	Enfortumab vedotin/pembrolizumab	No	
Dr Rosenberg	Enfortumab vedotin/pembrolizumab	No	
Dr Siefker-Radtke	Enfortumab vedotin/pembrolizumab	No	
Dr Yu	Enfortumab vedotin/pembrolizumab	No	
Dr Friedlander	Enfortumab vedotin/pembrolizumab	No	
Dr Plimack	Enfortumab vedotin/pembrolizumab	No	

In general, what is your preferred first-line treatment regimen for an 80-year-old patient with metastatic UBC who has received no prior systemic therapy and is not a candidate for cisplatin or carboplatin? Does PD-L1 level affect your decision-making?

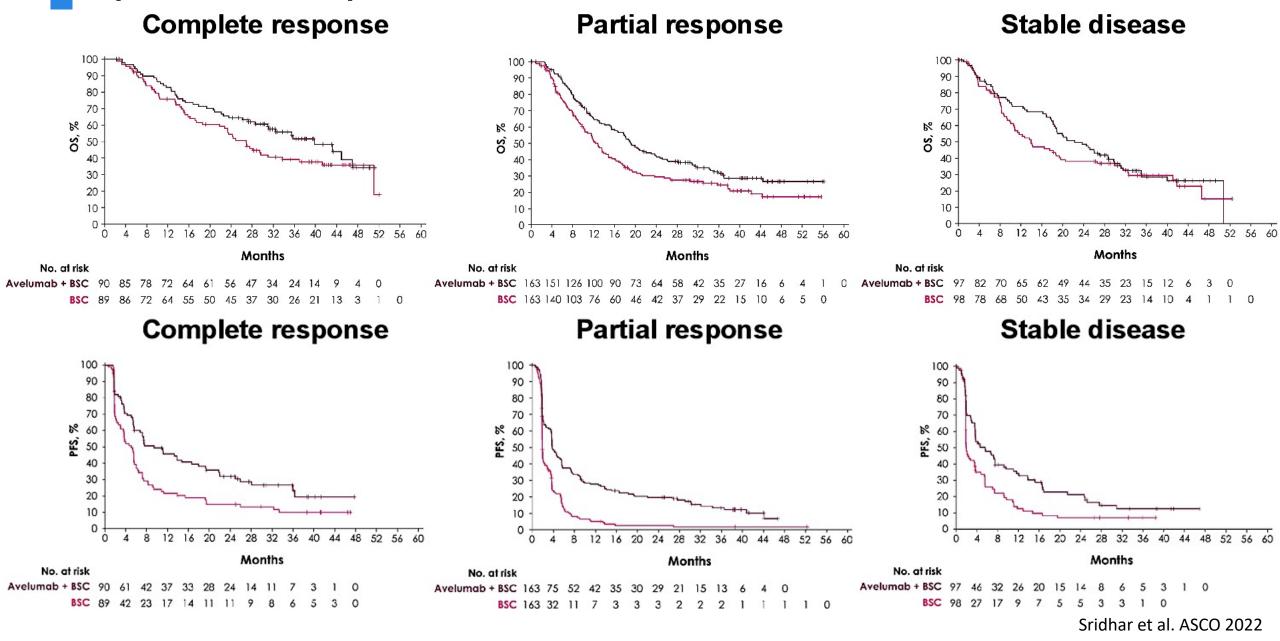
	Preferred first-line regimen	PD-L1 affect decision-making?	
Dr Milowsky	Enfortumab vedotin/pembrolizumab	No	
Dr O'Donnell	Pembrolizumab	Yes	
Dr Rosenberg	Pembrolizumab	Yes	
Dr Siefker-Radtke	Enfortumab vedotin/pembrolizumab	No	
Dr Yu	Enfortumab vedotin/pembrolizumab	No	
Dr Friedlander	Pembrolizumab	Yes, slightly	
Dr Plimack	Atezolizumab	No	

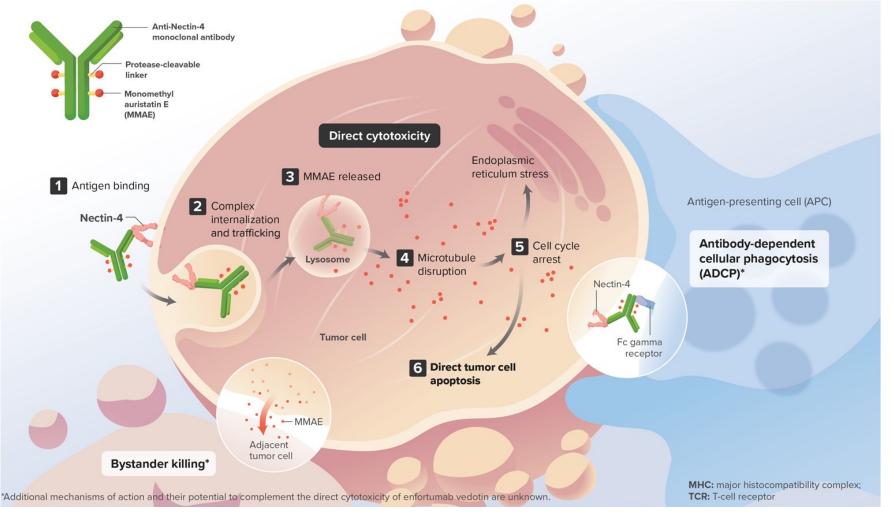

First-line and maintenance therapy for metastatic urothelial cancer

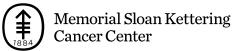
Jonathan Rosenberg, MD

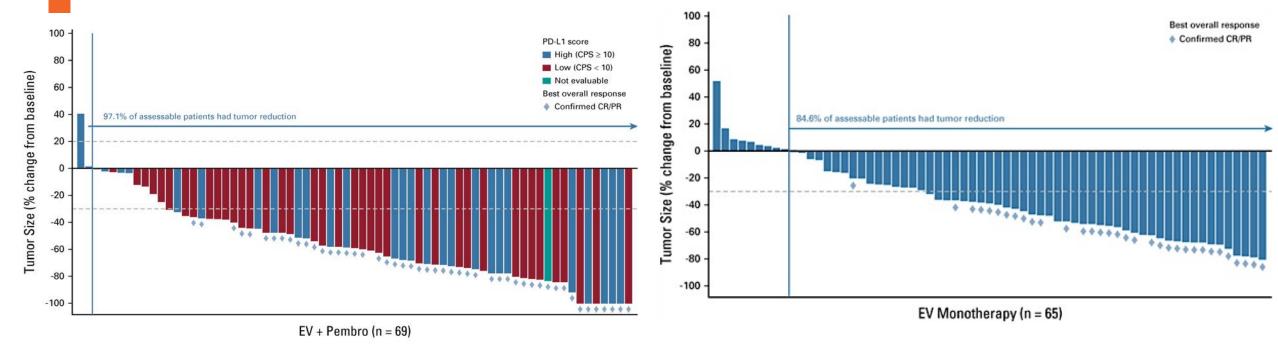

Chief, Genitourinary Oncology Service Enno Ercklentz Chair Department of Medicine Memorial Sloan Kettering Cancer Center Professor of Medicine Weill Cornell Medical College

Treatment Landscape of metastatic UC

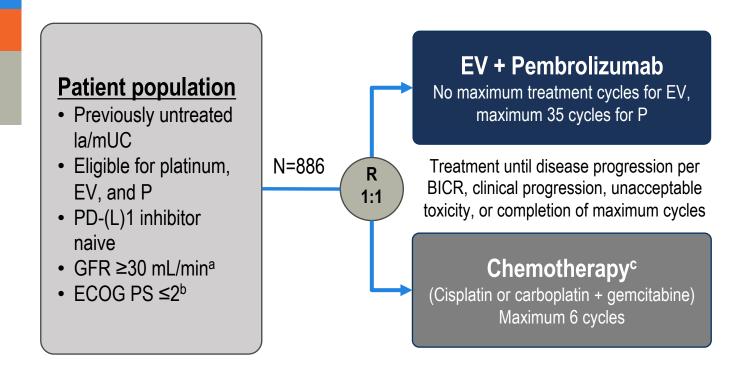

- Enfortumab vedotin and pembrolizumab approved for metastatic UC
- Platinum based chemotherapy is no longer the default option for metastatic UC patients
 - Role of avelumab maintenance is reduced in this new paradigm
- Patients who are not felt to be candidates for cytotoxic agents may receive pembrolizumab monotherapy


JAVELIN Bladder100 trial: Longer term follow-up (≥ 2 years) confirms initial data


JAVELIN Bladder100 trial: Overall, outcomes favor avelumab no matter prior chemo response


Metastatic UC: ADC Therapy with enfortumab vedotin

Targets Nectin-4 which is highly expressed in urothelial cancers


EV-103 Cohort K: EV +/- pembrolizumab

- EV/Pembro activity independent of PD-L1 status
 - o 27/44 (61.4%) cORR in CPS<10
 - o 21/31 (67.7%) cORR in CPS≥10

	EV+Pembro (N=76)	EV Monotherapy (N=73)
Confirmed ORR (95% CI)	64.5% (52.7-75.1)	45.2% (33.5-57.3)
Complete response	10.5%	4.1%
Partial Response	53.9%	41.1%
Progressive Disease	7.9%	9.6%
Not evaluable or no assessment	5.3%	10.9%

EV-302/KEYNOTE-A39 (NCT04223856)

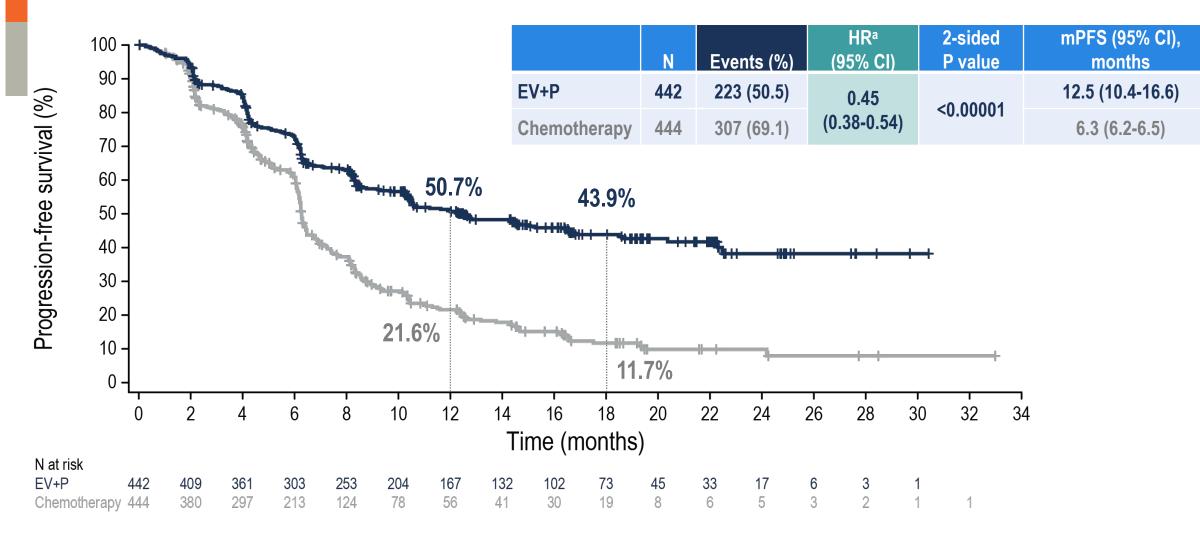
Dual primary endpoints:

- PFS by BICR
- OS

Select secondary endpoints:

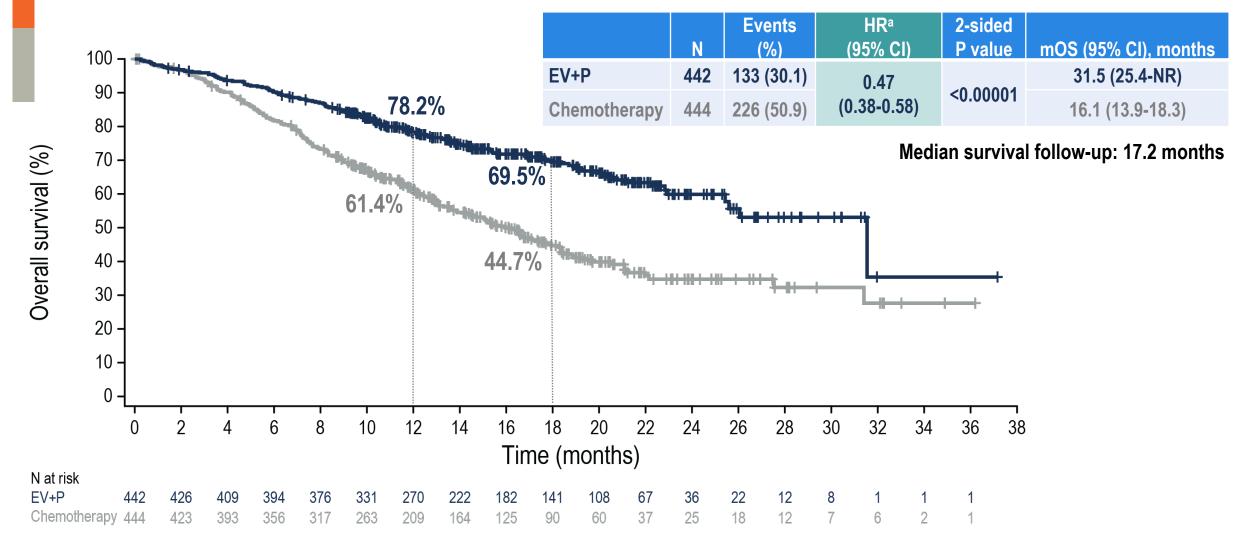
- ORR per RECIST v1.1 by BICR and investigator assessment
- Safety

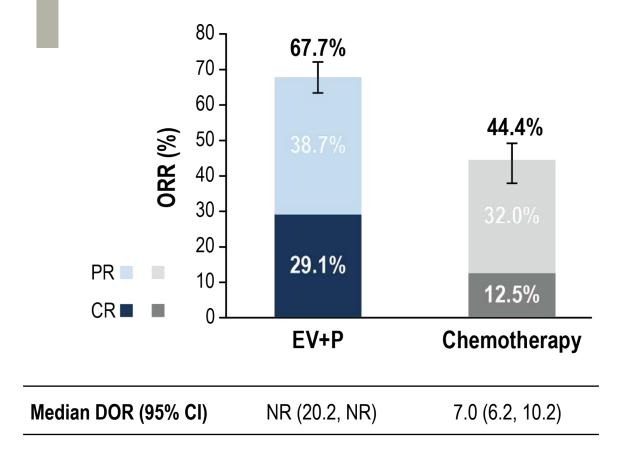
Stratification factors: cisplatin eligibility (eligible/ineligible), PD-L1 expression (high/low), liver metastases (present/absent)


•Cisplatin eligibility and assignment/dosing of cisplatin vs carboplatin were protocol-defined; patients received 3-week cycles of EV (1.25 mg/kg; IV) on Days 1 and 8 and P (200 mg; IV) on Day 1

Statistical plan for analysis: the first planned analysis was performed after approximately 526 PFS (final) and 356 OS events (interim); if OS was positive at interim, the OS interim analysis was considered final

EV-302: Progression-Free Survival per BICR

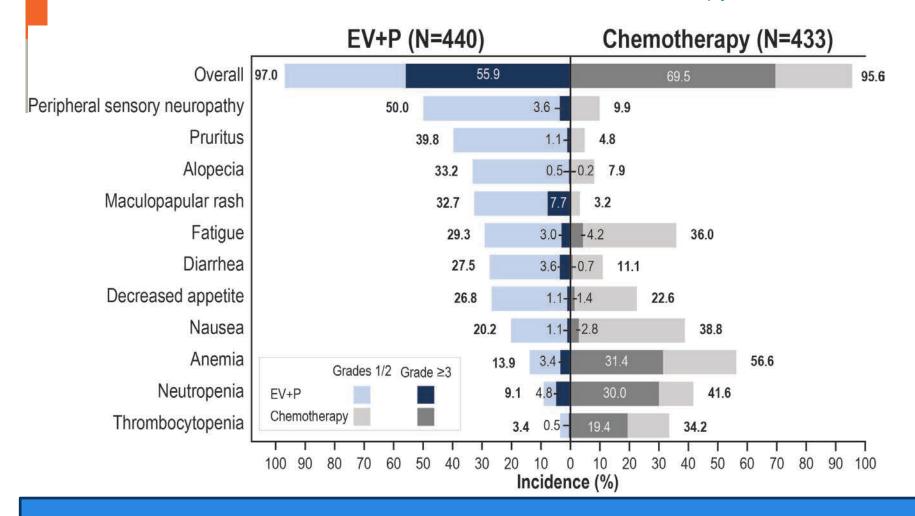

Risk of progression or death was reduced by 55% in patients who received EV+P


EV-302: Overall Survival

Risk of death was reduced by 53% in patients who received EV+P

EV-302: Confirmed Overall Response per BICR

Significant improvement in objective response rate was observed with EV+P


EV+P (N=437)	Chemotherapy (N=441)
296 (67.7) (63.1-72.1)	196 (44.4) (39.7-49.2)
<0.0	0001
127 (29.1)	55 (12.5)
169 (38.7)	141 (32.0)
82 (18.8)	149 (33.8)
38 (8.7)	60 (13.6)
21 (4.8)	36 (8.2)
	(N=437) 296 (67.7) (63.1-72.1) <0.0 127 (29.1) 169 (38.7) 82 (18.8) 38 (8.7)

EV+P ORR is remarkably consistent across studies

EV-302: Treatment-Related Adverse Events

Grade ≥3 events were 56% in EV+P and 70% in chemotherapy

Serious TRAEs:

- 122 (27.7%) EV+P
- 85 (19.6%) chemotherapy

TRAEs leading to death (per investigator):

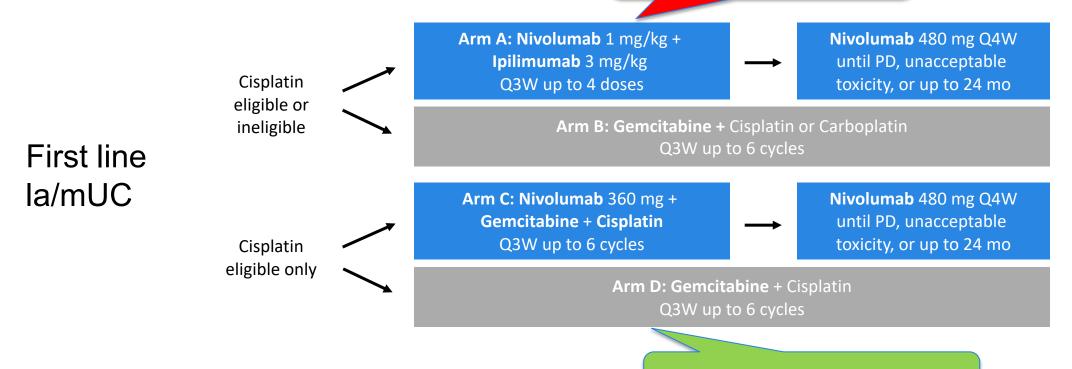
EV+P: 4 (0.9%)

- Asthenia
- Diarrhea
- Immune-mediated lung disease
- Multiple organ dysfunction syndrome

Chemotherapy: 4 (0.9%)

- Febrile neutropenia
- Myocardial infarction
- Neutropenic sepsis
- Sepsis

Median number of cycles (range): 12.0 (1,46) for EV+P; 6.0 (1,6) for chemotherapy


EV-302: Conclusions

- Risk of progression or death reduced by 55% with EV+P
- Risk of death reduced by 53% with EV+P
 - Median OS 31.5 months with EV+P
- All patient subsets seemed to benefit
- Confirmed ORR was 67.7% and 44.4% in the EV+P and chemo arms, respectively
- Transformative data
 - Will replace chemotherapy for most patients with mUC
 - Availability will be limited for some time in certain regions

CheckMate901: two phase 3 trials of immune checkpoint blockade

Press release: negative for OS in PDL1 high Data not presented yet

Positive for PFS and OS

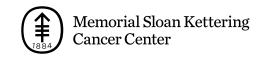


CheckMate 901: Study design

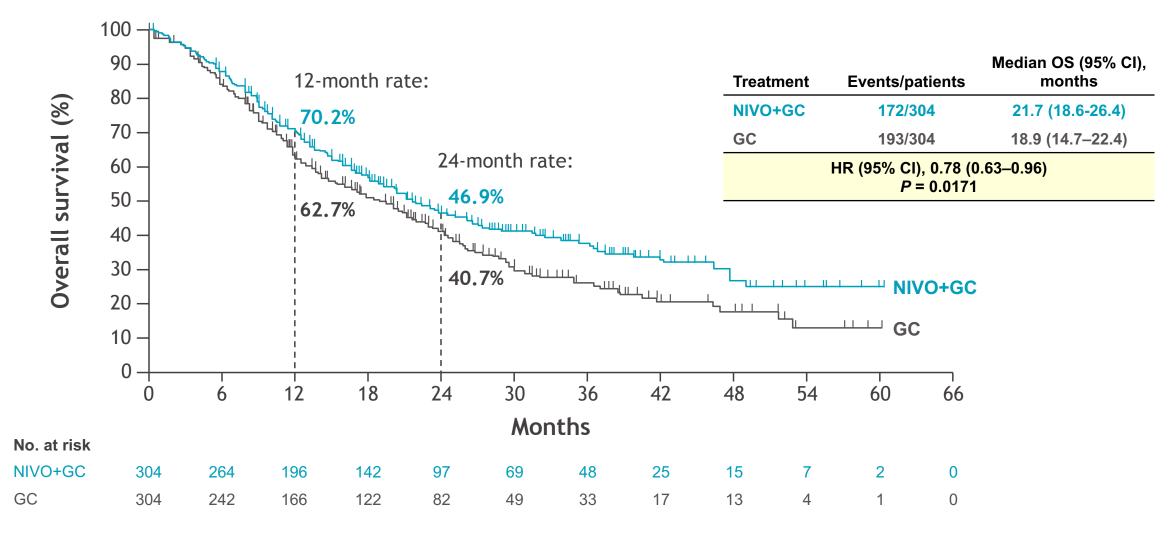
Does Nivolumab improve outcomes when added to gemcitabine-cisplatin?

Key inclusion criteria

- Age ≥ 18 years
- Previously untreated unresectable or mUC involving the renal pelvis, ureter, bladder, or urethra
- Cisplatin eligible
- ECOG PS of 0-1

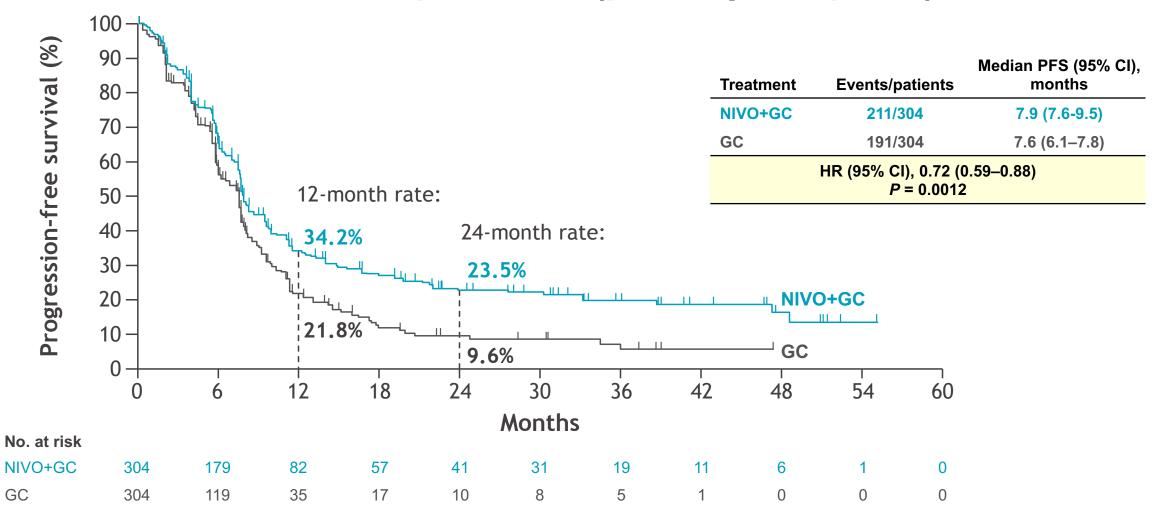


Median (range) study follow-up, 33.6 (7.4-62.4) months

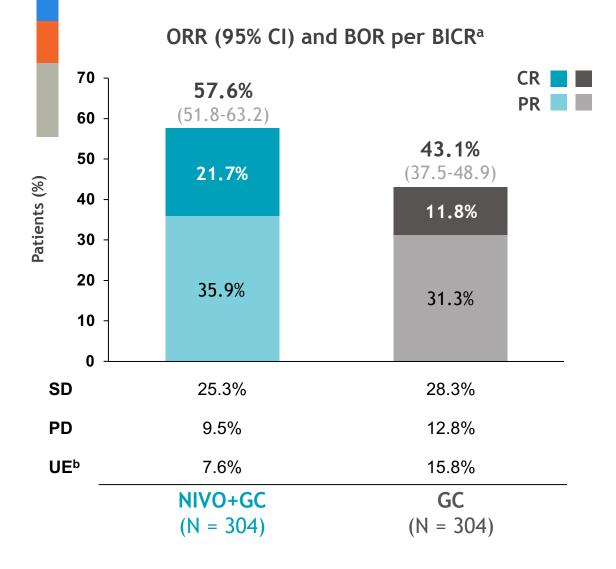

Primary endpoints: OS, PFS per BICR

Key secondary endpoints: OS and PFS by PD-L1 ≥ 1%, d HRQoL

Key exploratory endpoints: ORR per BICR, safety



CheckMate 901: OS (primary endpoint)



CheckMate 901: PFS per BICR (primary endpoint)

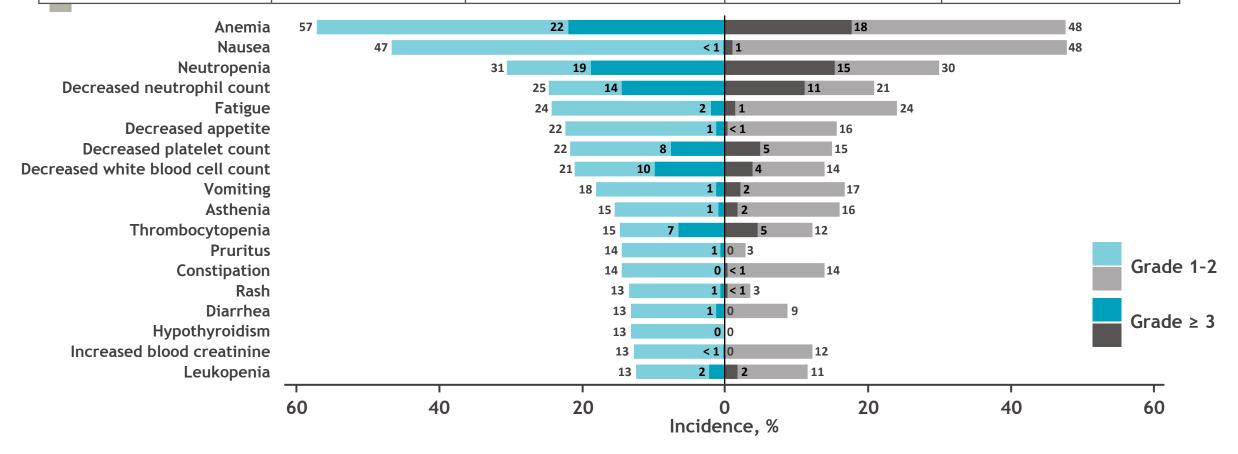
CheckMate 901: Objective response outcomes

Time to and duration of responses

Any objective response ^c	NIVO+GC (n = 175)	GC (n = 131)
Median TTR (Q1-Q3), months	2.1 (2.0–2.3)	2.1 (2.0–2.2)
Median DoR (95% CI), months	9.5 (7.6–15.1)	7.3 (5.7–8.9)

Complete response ^d	NIVO+GC (n = 66)	GC (n = 36)
Median TTCR (Q1-Q3), months	2.1 (1.9-2.2)	2.1 (1.9-2.2)
Median DoCR (95% CI), months	37.1 (18.1-NE)	13.2 (7.3-18.4)

Nivolumab associated with higher ORR, CR rate, and longer DOR



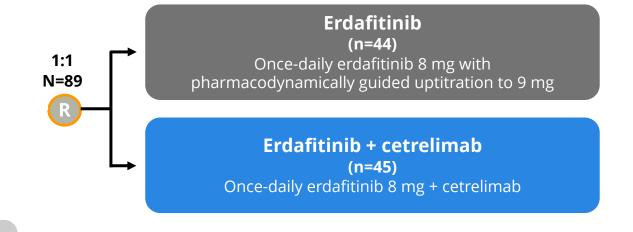
CheckMate 901: Treatment-related AEs in all treated patients

NIVO+GC (n = 304)

GC (n = 288)

Treatment-related AE, %a	Any grade	Grade ≥ 3 ^b	Any grade	Grade ≥ 3 ^b
Any	97	62	93	52
Leading to discontinuation	21	11	17	8

CheckMate 901: Nivolumab + GC


- Higher ORR, DOR and CR rate with addition of nivolumab compared to gem/cis
- Significantly longer PFS and OS
- First study where chemotherapy + checkpoint inhibitor improved outcomes in mUC
- Cisplatin and immunotherapy may have advantages over carboplatin-based combinations
- Is this better than avelumab maintenance strategy?
 - All patients get a checkpoint inhibitor, rather than only those who benefit

NORSE Phase 2 Study Design: 1st line cisplatin ineligible mUC with FGFR3 alterations

Key eligibility criteria

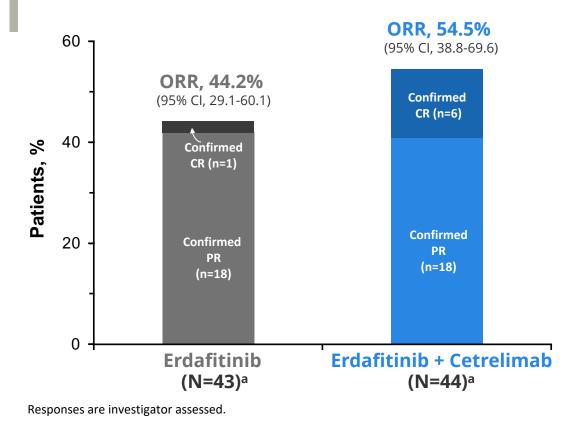
- Age ≥18 years
- mUC diagnosis
- Ineligible for cisplatin^b
- Select *FGFR* alterations (mutation/fusion)^c
- Measurable disease
- No prior systemic therapy for mUC

Patients with any PD-L1 status could be enrolled

Primary end points

- ORR
- Safety

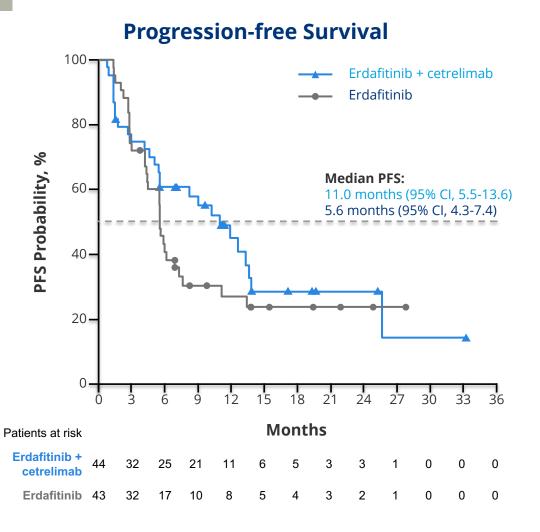
Secondary end points

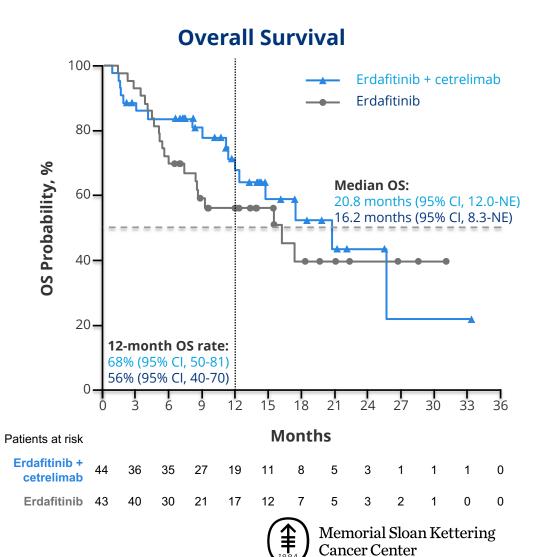

- DCR
- DOR
- Time to response
- PFS
- OS
- Molecular eligibility was determined by central or local testing; a total of 1430 patients underwent central molecular screening^c

Non-comparative phase II study

2/3 were CPS <10

NORSE: ORR of 44% and 55% Was Observed With Erdafitinib and Erdafitinib Plus Cetrelimab, Respectively




- ORR with erdafitinib monotherapy was consistent with previous results in *FGFR*-altered mUC, and responses were durable
- ORR >50% was observed with combination therapy, with a durable DOR
- For patients with a CR in the combination arm (n=6), median DOR was not reached
- In patients with a CPS <10, ORR was 46.4% in monotherapy and 50.0% in the combination arm
 - Data are limited in patients with PD-L1 high status (CPS ≥10)

	Erdafitinib (N=43)	Erdafitinib + Cetrelimab (N=44)
DCR, median (95% CI), %	88.4 (74.9-96.1)	79.5 (64.7-90.2)
DOR, median (95% CI), months	9.72 (4.6-NE)	11.10 (8.8-NE)

NORSE: Longer PFS and OS provocative with combination therapy

First-line therapy for la/mUC is changing finally!

- EV/pembro is now standard for metastatic UC patients in US
 - EV-302 comparing to platinum-based chemotherapy is positive for PFS/OS (OS EV/P 31.5mo vs GP 16.1mo)
- Addition of nivolumab to gem/cis improves PFS and OS (OS NGC 21.7mo vs GC 18.9mo)
 - GC+N will be a first-line option for patients and likely used more frequently outside
 US where EV/P is not as readily available
- Pembrolizumab monotherapy for frail patients
- Avelumab maintenance checkpoint blockade following response to initial platinum-based chemotherapy remains a standard of care today
 - As landscape evolves and CPI is started at initial therapy for metastatic disease, its role will diminish
- Combinations of IO+FGFR3i remain investigational

MODULE 4: Emerging Role of HER2-Targeted Therapy for mUBC – Dr Yu

Consulting Faculty Questions

Perspectives from the breast cancer experience: HER2 testing and durability of responses with trastuzumab deruxtecan (T-DXd)

Neil Love, MD

Priyanka Sharma, MD

QUESTIONS FOR THE FACULTY

Priyanka Sharma, MD

What is your approach to HER2 testing in mUBC?

What is the appropriate threshold for the use of HER2-targeted therapy?

Assuming you could access both T-DXd and disitamab vedotin, how would you integrate these agents into the treatment algorithm for mUBC?

Consulting Faculty Questions

Perspectives from the breast cancer experience: Identification and management of T-DXd-associated side effects

Neil Love, MD

Priyanka Sharma, MD

QUESTIONS FOR THE FACULTY

Priyanka Sharma, MD

What is your approach to the prevention and management of T-DXd-associated nausea and vomiting?

How do you screen for ILD in patients receiving T-DXd?

What is your experience with T-DXd and disitamab vedotin, and have you observed clinically meaningful responses to these agents?

Please describe a patient in your practice with HER2-positive metastatic UBC who received trastuzumab deruxtecan (T-DXd).

	Age	Tx received	Benefit derived	Side effects
Dr Milowsky	N/A	N/A	N/A	N/A
Dr O'Donnell	65 years	T-DXd	Not much	Well tolerated
Dr Rosenberg	78 years	T-DXd	A great deal	Mild fatigue
Dr Siefker-Radtke	65 years	T-DXd	A great deal	Don't know — treated in Phase I
Dr Yu	58 years	T-DXd + nivolumab	Some	None
Dr Friedlander	68 years	T-DXd	Not much	Fatigue, asthenia, alopecia, lower blood counts, mild nausea
Dr Plimack		No personal experience		

Have you offered or would you offer HER2-targeted therapy to your patients with HER2-positive metastatic UBC outside of a protocol setting?

Dr Milowsky	I have, trastuzumab deruxtecan
Dr O'Donnell	I have, trastuzumab deruxtecan
Dr Rosenberg	I have, trastuzumab deruxtecan
Dr Siefker-Radtke	I have not but would for the right patient
Dr Yu	I have, trastuzumab deruxtecan (FDA approved in other diseases and accessible off label); disitamab vedotin (wish list)
Dr Friedlander	I have, trastuzumab deruxtecan
Dr Plimack	I have not and would not

Should HER2 testing be ordered for patients with metastatic UBC?

Dr Milowsky	Yes
Dr O'Donnell	Yes
Dr Rosenberg	Yes
Dr Siefker-Radtke	Yes
Dr Yu	Yes
Dr Friedlander	Yes
Dr Plimack	Yes

Regulatory and reimbursement issues aside, in which line of therapy would you generally offer targeted treatment to a patient with HER2-positive metastatic UBC?

Dr Milowsky	Third line and beyond
Dr O'Donnell	Beyond third line
Dr Rosenberg	Third line
Dr Siefker-Radtke	Third line
Dr Yu	Beyond third line
Dr Friedlander	Third line
Dr Plimack	Third line and beyond

Based on your personal clinical experience and/or knowledge of available data, for each of the following agents please estimate the chance that a patient will experience toxicity during treatment that will require withholding administration. What is the primary toxicity patients experience that leads to withholding this drug?

	Trastuzumak	deruxtecan	Disitamab vedotin	
	Chance of withholding	Primary toxicity	Chance of withholding	Primary toxicity
Dr Milowsky	30%-40%	Pneumonitis/ neutropenia	40%-50%	Neuropathy
Dr O'Donnell	30%	GI issues	80%	Neuropathy
Dr Rosenberg	20%	Fatigue	40%	Fatigue
Dr Siefker-Radtke	_	_	100%	Neuropathy
Dr Yu	Low	Pneumonitis	Medium	Fatigue
Dr Friedlander	50% Myelosuppression		70%	Neuropathy
Dr Plimack	No personal experience			

CANCER CONSORTIUM

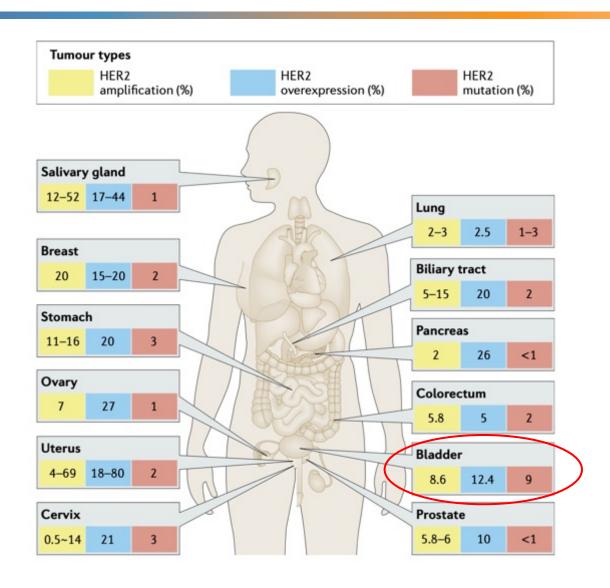
Emerging Role of HER2-Targeted Therapy in Metastatic Urothelial Bladder Cancer

2024 ASCO GU: Urothelial Bladder Cancer Symposium

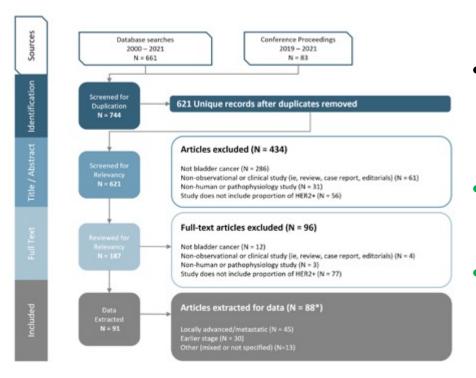
January 26, 2024

Evan Y. Yu, M.D.

Section Head, Medical Oncology, Clinical Research Division Medical Director, Clinical Research Support Fred Hutchinson Cancer Center Professor of Medicine, Division of Hematology & Oncology University of Washington, Seattle, WA



Discussion Topics


- HER2 expression in urothelial bladder cancer
- Antibody drug conjugates (ADCs) e.g. trastuzumab deruxtecan and disitamab vedotin
- Monotherapy
- Combination therapy with ADCs and checkpoint inhibitors

HER2 as a Cancer Specific Target

HER2 Expression in Locally Advanced/Metastatic Urothelial Bladder Cancer (LA/mUC)

- HER2 IHC not typically assessed as part of standard clinical care
- No standardized criteria for defining HER2 expression
- Systemic Literature Review of reported HER2 status in LA/mUC

- A significant proportion of patients with LA/mUC have tumors with HER2 expression based on pre-defined criteria
- HER2+ (IHC 3+ OR IHC 2+ / ISH+): 12.3% weighted avg (6 studies, N=971 pts)
- HER2 low (IHC 2+/ISH- OR IHC 1+): 47.9% weighted avg (4 studies, N=275 pts)

HER2 Expression in Primary Urothelial Bladder Cancer Resection Samples Using Standardized Laboratory Methods

- HER2 expression in n=362 surgical UC samples using a standardized protocol
- Samples were commercially sourced, paraffin-embedded primary UC resections evaluated by trained readers for HER2 expression
- Methods:
 - HER2/neu (4B5) Rabbit Monoclonal Primary Antibody IHC assay used
 - For HER2 gene amplification, used HER2 Dual ISH DNA Probe Cocktail that detects both *ERBB2* and its residing chromosome (17). HER2 gene amplification defined by HER2/Chr17 ratio ≥2.0
 - ➤ HER2 IHC staining scored based on an established algorithm for gastric cancer

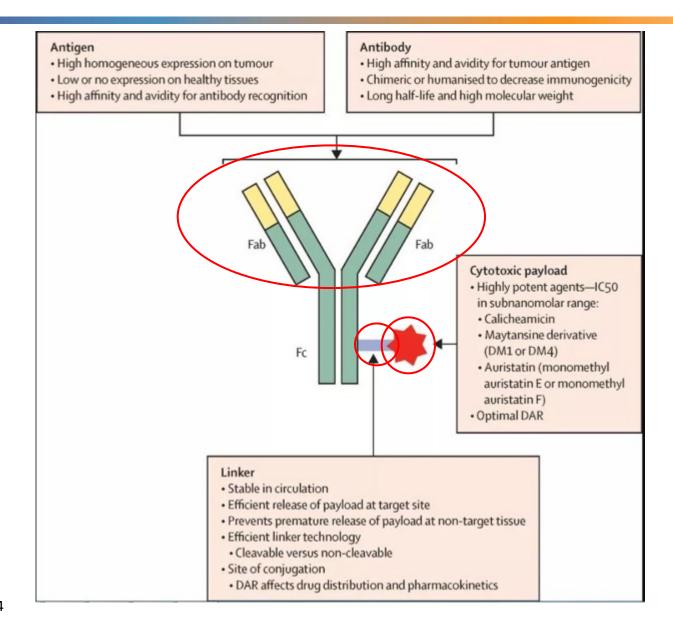
HER2 Status	N	Percentage of samples (95% CI)
HER2+ and HER2-low	160	44.2% (39.2%–49.3%)
HER2+/overexpression	57	15.7% (12.4%–19.9%)
HER2-low	103	28.5% (24.1%–33.3%)
HER2-zero	202	55.8% (50.7%–60.8%)

74		N (row %)	
N	HER2+	HER2-low	HER2-zero
7	1 (14)	0	6 (86)
133	17 (13)	46 (35)	70 (53)
192	37 (19)	50 (26)	102 (55)
30	2 (7)	7 (23)	21 (70)
362	57 (16)	103 (28)	202 (56)
	7 133 192 30	7 1 (14) 133 17 (13) 192 37 (19) 30 2 (7)	N HER2+ HER2-low 7 1 (14) 0 133 17 (13) 46 (35) 192 37 (19) 50 (26) 30 2 (7) 7 (23)

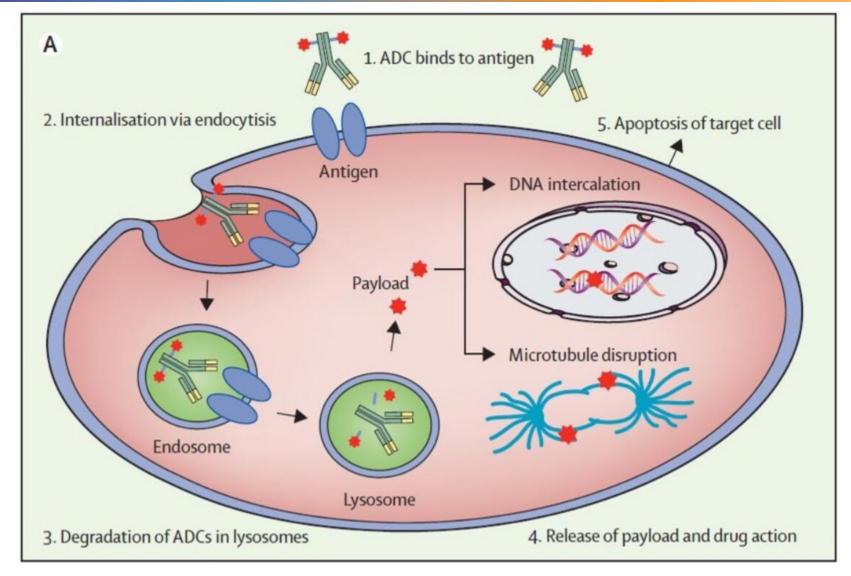
Stage information as supplied by the tissue vendor. Staging may have been based on clinical information or or tissue samples different from those included in the current study.

Disappointing Early Results with HER2 Targeted Therapy in Urothelial Bladder Cancer

Trastuzumab, Paclitaxel, Carboplatin, and Gemcitabine in Advanced Human Epidermal Growth Factor Receptor-2/neu-Positive Urothelial Carcinoma: Results of a Multicenter Phase II National Cancer Institute Trial

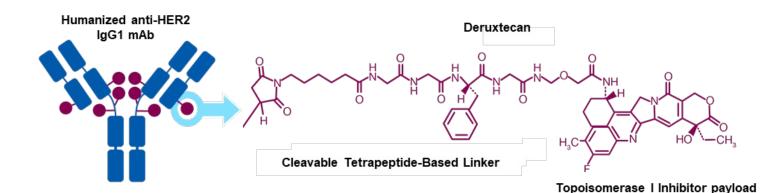

Maha H.A. Hussain, Gary R. MacVicar, Daniel P. Petrylak, Rodney L. Dunn, Ulka Vaishampayan, Primo N. Lara Jr, Gurkamal S. Chatta, David M. Nanus, L. Michael Glode, Donald L. Trump, Helen Chen, and David C. Smith

- Her2/neu overexpression selected by IHC, gene amplification or elevated serum levels
- 31/44 (70%) ORR¹
- 22.7% with grade 1-3 cardiotoxicity


• 3/9 (33%) ORR with HER2 amplified urothelial carcinoma in a trastuzumab/pertuzumab basket trial²

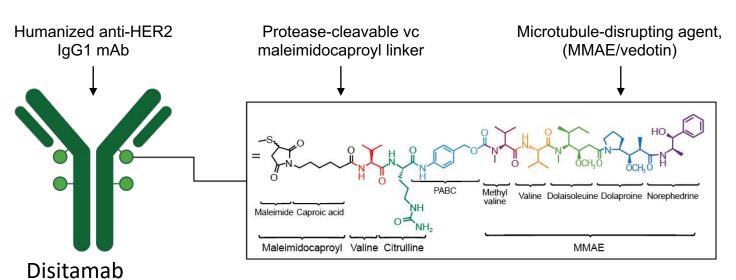
- Other HER2 targeted drugs tested in bladder cancer³
 - DN24-02
 - Lapatinib
 - Afatinib
- 2 ADC basket trials with Adotrastuzumab emtansine (T-DM1) and bladder cancer cohorts
 - KAMELEON (NCT02999672) HER2 overexpression
 - MSKCCC (NCT02675829) HER amplified or mutated
 - 1. Hussain MH, et al. J Clin Oncol 2007; 25:2218-24.
 - 2. Bryce AH, et al. J Clin Oncol 35, 2017 (suppl 6S; abstr 348)
 - 3. Koshkin V, et al. Bladder Cancer 2019; 5:1-12

General Design Elements for an Antibody Drug Conjugate (ADC)

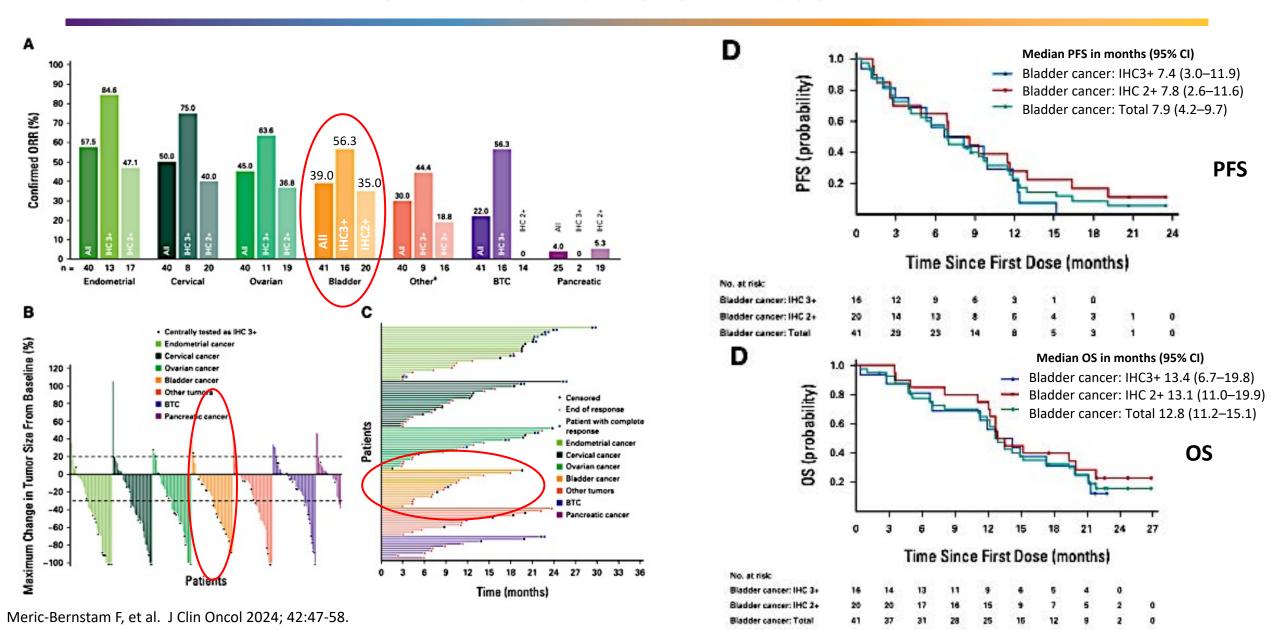


ADC Mechanism of Action

Trastuzumab Deruxtecan and Disitamab Vedotin


(DXd=DX-8951f derivative)

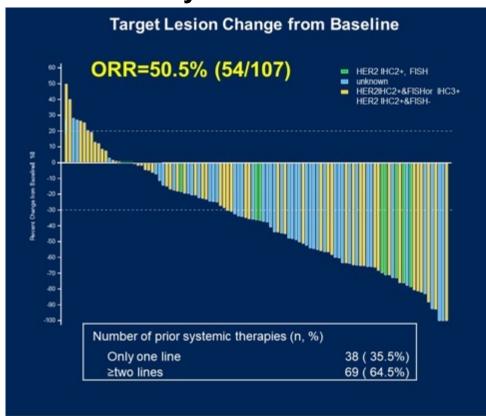
Conjugation chemistry


The tetrapeptide-based cleavable linker is connected to the humanized anti-HER2 IgG1 monoclonal antibody, with the same amino acid sequence as trastuzumab

Trastuzumab Deruxtecan

Disitamab vedotin

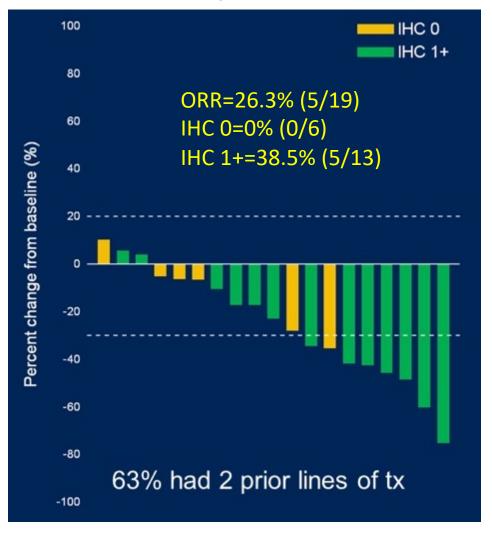
Trastuzumab Deruxtecan Monotherapy from DESTINY-PanTumor02 Phase 2 trial


Trastuzumab Deruxtecan Monotherapy from DESTINY-PanTumor01 Phase 2 trial – Focus on mUC Patients with HER2 Mutations

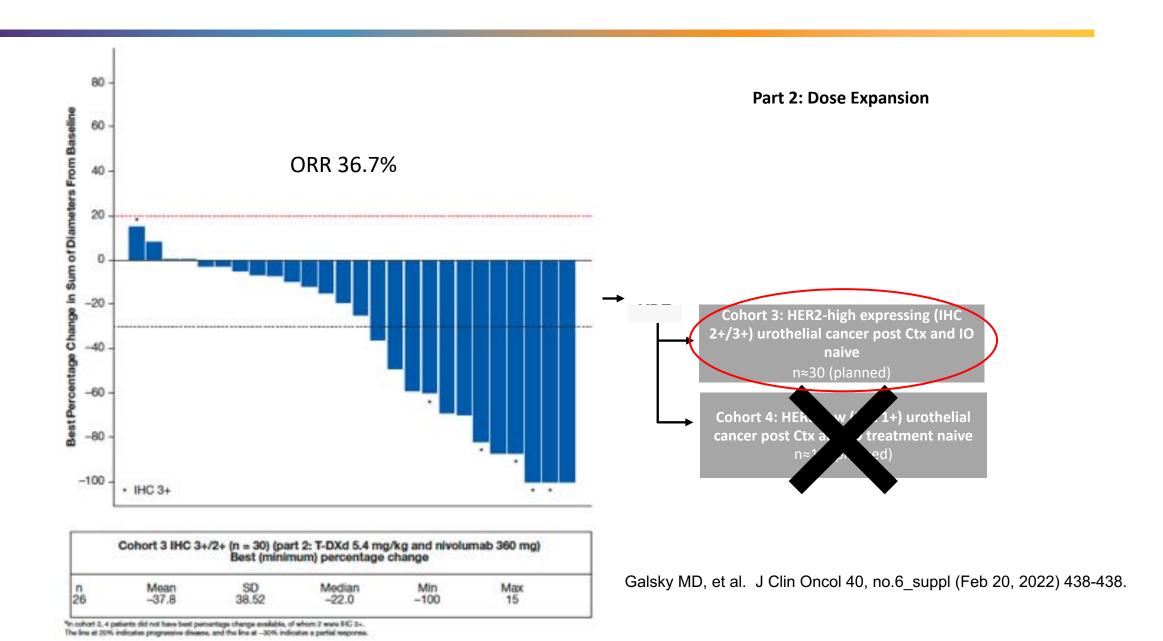
- Patients with advanced solid tumors harboring prespecified HER2 mutations
- Progressed on previous systemic therapy
- Trastuzumab Deruxtecan 5.4 mg/kg q3w

	N	ORR by	ICR
		n	%
All pts	102	30	29.4
Tumor type			
Breast	20	10	50.0
Colorectal	20	4	20.0
Biliary tract	19	2	10.5
Esophageal/esophagogastric	11	1	9.1
Urothelial	7	2	28.6
Salivary gland/head and neck AC	6	4	66.7
Small intestinal AC	5	0	-
Cervical	3	2	66.7
Endometrial	2	2	100
Other neuroendocrine	2	1	50.0
Pancreatic	2	0	-
AC of unknown primary	1	1	100
Extramammary Paget's disease	1	1	100
Melanoma	1	0	0
Ovarian	1	0	0
Urachal	1	0	0
HER2m domain ^a			
Tyrosine kinase ^b	52	19	36.5
Extracellular ^c	34	10	29.4
Transmembrane/juxtamembrane ^d	17	1	5.9

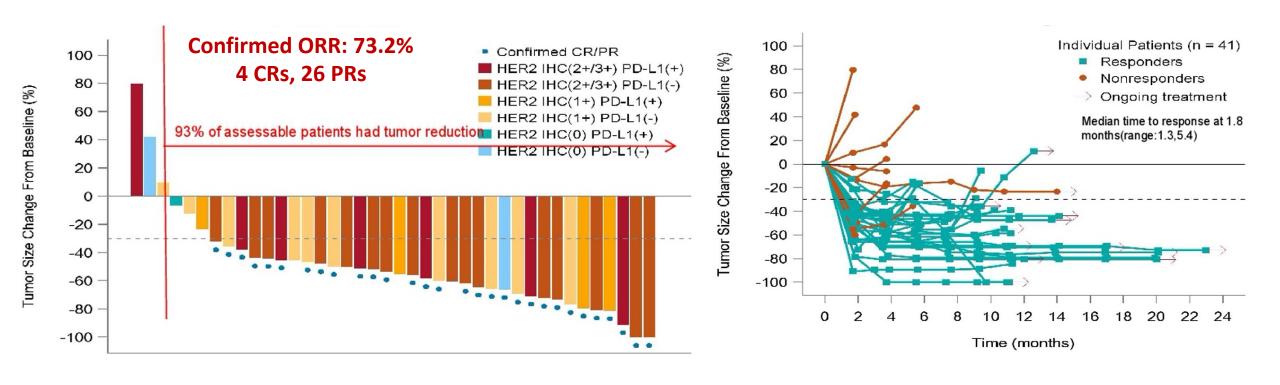
Disitamab Vedotin (RC48) Monotherapy


Activity in HER2 2-3+

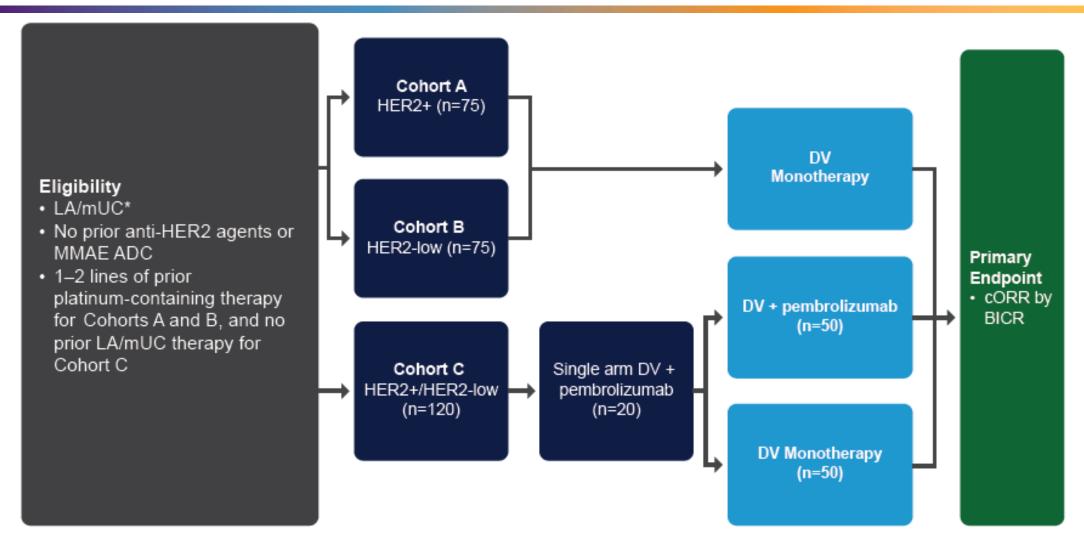
ORR
IHC2+FISH+ or IHC3+ (n=45) = 62.2%
IHC2+FISH- (n=53) = 39.6%


Sheng X, et al. J Clin Oncol 40, no. 16_suppl (June 1, 2022) 4518-4518. Sheng X, et al. J Clin Oncol; epub November 21, 2023.

Activity in HER2 1+



Xu H, et al. J Clin Oncol 40, no. 16_suppl (June 1, 2022) 4519-4519.


Trastuzumab Deruxtecan Combination with Nivolumab Trial Schema

Disitamab Vedotin and Toripalimab

Disitamab Vedotin Bladder Cancer Phase 2 Trial Design

ADC: antibody-drug conjugate; BICR: blinded independent central review; cORR: confirmed objective response rate; DV: disitamab vedotin; HER2: human epidermal growth factor receptor 2; LA/mUC: locally advanced unresectable or metastatic urothelial carcinoma; MMAE: monomethyl auristatin E

^{&#}x27;Histologically-confirmed, including UC originating from the renal pelvis, ureters, bladder, or urethra

Disitamab Vedotin Bladder Cancer Randomized Phase 3 Trial Design

An Open-label, Randomized, Controlled Phase 3 Study of Disitamab Vedotin in Combination with Pembrolizumab Versus

Chemotherapy in Subjects with Previously Untreated Locally Advanced or Metastatic Urothelial Carcinoma that

Expresses HER2 (IHC 1+ and Greater)

Eligibility:

- LA/mUC
- Previously untreated
- Eligible for platinum
- Central lab HER2 status ≥ IHC 1+

(n=700)

DV + Pembrolizumab

*Treatment until progression

Stratification Factors:

- Cisplatin eligibility
- Presence of liver metastasis
- HER2 status

R

1:1

Intent of avelumab maintenance use

Cisplatin/Carboplatin + Gemcitabine

X 4-6 cycles, maintenance therapy as clinically appropriate

289 sites in 30 countries globally

- US, Canada, LATAM, EU, Israel, Turkey, APAC
- Competitive enrollment No site/country cap
- Estimated enrollment start & end date

FPI: Q3 2023

LPI: Q1 2026

NCT05911295

* DV 1.5 mg/kg Q2W until disease progression and pembrolizumab 400 mg Q6W for up to 18 cycles

Dual-Primary Endpoints

- PFS by BICR
- · os

Maintenance therapy in the 1L setting as clinically appropriate and locally approved is allowed.

Avelumab will not be provided by sponsor.

Take Home Points

- HER2 expression is not uncommon for urothelial bladder cancer
- Antibody drug conjugates offer an exciting technology that recently has shown clinical efficacy in many cancers, including bladder cancer
- HER2 is being revisited as a promising drug target for patients with urothelial bladder cancer
- A couple examples of promising ADCs for bladder cancer that target HER2 include trastuzumab deruxtecan and disitamab vedotin, both as monotherapy and in combination with checkpoint inhibitors

MODULE 5: Selection and Sequencing of Therapy for Relapsed/Refractory mUBC – Dr Siefker-Radtke

Consulting Faculty Questions

Selection and sequencing of therapies for relapsed/refractory metastatic UBC; potential integration of erdafitinib for patients with metastatic UBC and FGFR alterations

Neil Love, MD

Elizabeth R Plimack, MD, MS

QUESTIONS FOR THE FACULTY

Elizabeth R Plimack, MD, MS

How do you generally sequence enfortumab vedotin, erdafitinib and sacituzumab govitecan for patients who are eligible to receive all 3 agents?

How do you generally screen for ocular toxicities in patients with mUBC receiving erdafitinib? How often do you recommend consultation with an ophthalmologist? How do you approach the management of ocular AEs?

Consulting Faculty Questions

Efficacy and tolerability of erdafitinib

Neil Love, MD

Terence Friedlander, MD

QUESTIONS FOR THE FACULTY

Terence Friedlander, MD

What other common toxicities (eg, rash, nail changes, hand-foot syndrome, stomatitis) have been reported with erdafitinib, and how do you manage each of these?

How much of an advantage is the oral route of administration of erdafitinib for patients in your practice?

Please describe the last patient in your practice who received erdafitinib for metastatic UBC. What side effects, if any, did the patient experience? How much benefit, if any, did the patient derive from treatment?

	Age	Side effects	Benefit derived
Dr Milowsky	77 years	PPE, nail disorders, diarrhea, stomatitis, decreased appetite, weight loss	A great deal
Dr O'Donnell	60 years	Mouth sores, skin toxicity, nail disorders, failure to thrive	None
Dr Rosenberg	72 years	Dysgeusia, paronychia, nail loss, rash, mucositis	A great deal
Dr Siefker-Radtke	83 years	None so far	A great deal
Dr Yu	58 years	Fatigue, hand-foot syndrome, nail dystrophy	Not much
Dr Friedlander	71 years	Hand-foot syndrome, asthenia/fatigue, CSR	Some
Dr Plimack	72 years	CSR, paronychia, fatigue, cytopenias	Not much

What would you generally recommend as third-line therapy for a 65-year-old patient with <u>FGFR-mutated</u> metastatic UBC whose disease had progressed on first-line pembrolizumab and second-line <u>enfortumab vedotin</u>?

Dr Milowsky	Erdafitinib
Dr O'Donnell	Erdafitinib
Dr Rosenberg	Erdafitinib
Dr Siefker-Radtke	Erdafitinib
Dr Yu	Erdafitinib
Dr Friedlander	Erdafitinib
Dr Plimack	Erdafitinib

Is it reasonable to refer patients about to receive enfortumab vedotin or erdafitinib to an optometrist rather than an ophthalmologist prior to commencing therapy?

Dr Milowsky	Yes
Dr O'Donnell	No
Dr Rosenberg	l'm not sure
Dr Siefker-Radtke	No
Dr Yu	I'm not sure
Dr Friedlander	Yes
Dr Plimack	Yes

How would you generally sequence erdafitinib, enfortumab vedotin and sacituzumab govitecan for a patient with metastatic UBC who is eligible to receive all 3?

Dr Milowsky	Enfortumab vedotin → erdafitinib → sacituzumab govitecan
Dr O'Donnell	Enfortumab vedotin → sacituzumab govitecan → erdafitinib
Dr Rosenberg	Enfortumab vedotin → erdafitinib → sacituzumab govitecan
Dr Siefker-Radtke	Enfortumab vedotin → erdafitinib → sacituzumab govitecan
Dr Yu	Enfortumab vedotin → erdafitinib → sacituzumab govitecan
Dr Friedlander	Enfortumab vedotin → erdafitinib → sacituzumab govitecan
Dr Plimack	Enfortumab vedotin → erdafitinib → sacituzumab govitecan

In general, when you administer erdafitinib, do you preemptively prescribe a steroid mouthwash for the prevention of treatment-related stomatitis?

Dr Milowsky	No
Dr O'Donnell	No
Dr Rosenberg	No
Dr Siefker-Radtke	No
Dr Yu	No
Dr Friedlander	Yes
Dr Plimack	No

MDAnderson Cancer Center

Making Cancer History®

Selection and Sequencing: Optimizing Therapy for Relapsed/Refractory Metastatic Urothelial Cancer

Arlene Siefker-Radtke, MD

Professor

Department of Genitourinary Medical Oncology

Front-line Treatment Metastatic Urothelial Cancer

Cisplatin eligible

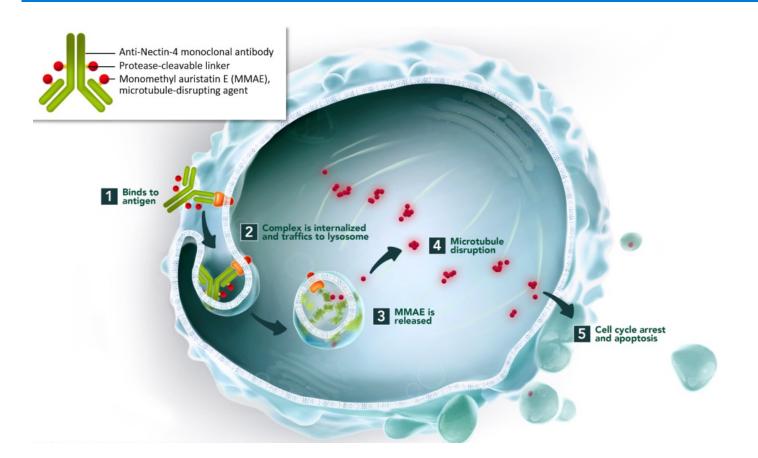
- Enfortumab Vedotin + Pembrolizumab (category 1, new 2023)
- DDMVAC/GC (category 1)
- Gemcitabine and cisplatin + Nivolumab (category 1, new 2023)

Cisplatin ineligible

- Enfortumab Vedotin + Pembrolizumab (category 1, new 2023)
- Gemcitabine and carboplatin
- Atezolizumab or pembrolizumab
 - Those not eligible for any chemotherapy regardless of PDL1 expression

Maintenance (in first response to platinum)

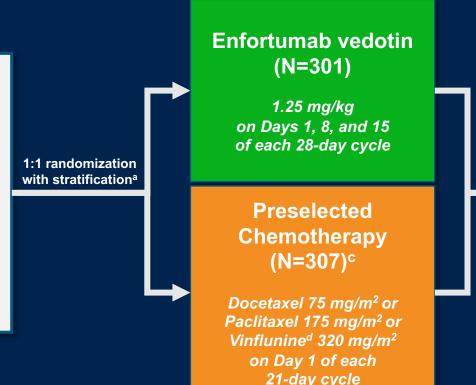
- Avelumab
 - Consider maintenance avelumab for patients with CR/PR, or SD with platinum-based chemotherapy (category 1)



Previously Treated/mUC: Basic Concepts

- Includes those who progress within 12 months of neoadjuvant or adjuvant chemotherapy
- If you've given it before, don't give it again
- No data on the role of additional immunotherapy (for or against)
- Look for mutations
- Limited information on sequencing
 - Erdafitinib
- Decisions often based upon toxicity

Enfortumab Vedotin



- Fully humanized monoclonal antibody targeting Nectin-4
- Nectin-4
 - A transmembrane cell adhesion molecule
 - Expressed in 83% of mUC patient samples
- "Payload" is auristatin-E, a microtubule disrupting agent
- Antibody is conjugated by a protease cleavable linker

EV-301 Open-Label Phase 3 Trial Design

Key eligibility criteria:

- Histologically/cytologically confirmed UC, including with squamous differentiation or mixed cell types
- Radiographic progression or relapse during or after PD-1/L1 treatment for advanced UC
- Prior platinum-containing regimen for advanced UCb
- ECOG PS 0 or 1

Primary endpoint: Overall survival

Secondary endpoints:

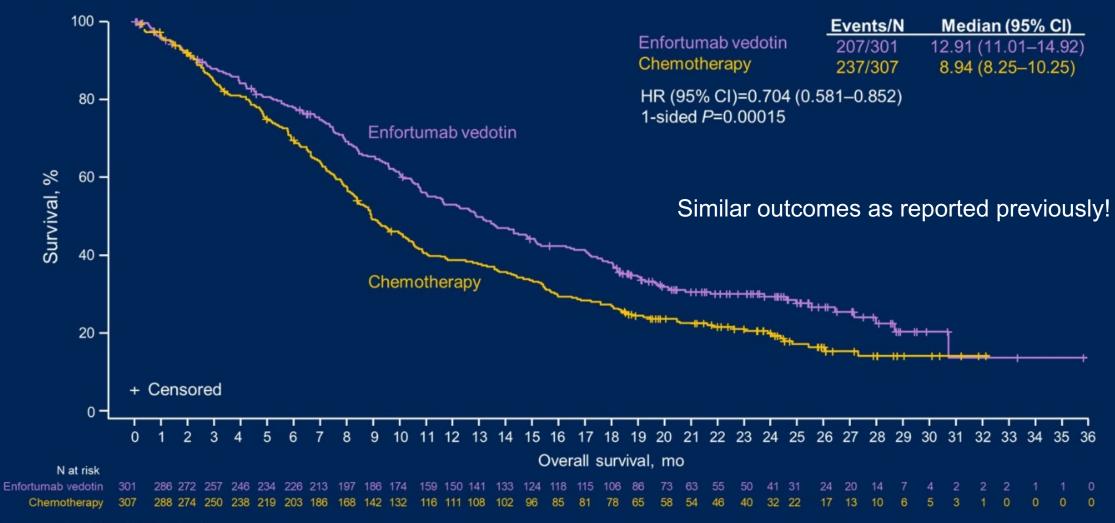
- **Progression-free survival**
- Disease control rate
- Overall response rate
- Safety

Investigatorassessed per

RECIST v1.1

^aStratification variables were ECOG performance status (0 or 1), regions of the world (United States, western Europe, or rest of world), liver metastasis (yes or no).

Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance status; PD-1/L1, programmed cell death protein-1/programmed death-ligand 1; RECIST, Response Evaluation Criteria in Solid Tumors: UC. advanced urothelial carcinoma.


Genitourinary PRESENTED AT: Cancers Symposium Slides are the property of the author, permission required for reuse.

blf used in the adjuvant/neoadjuvant setting, progression must be within 12 months of completion.

clnvestigator selected prior to randomization.

^dIn countries where approved; overall proportion of patients receiving vinflunine capped at 35%.

Overall Survival

Data shown for intention-to-treat population. HR, hazard ratio.

Data cutoff date: July 30, 2021

Adverse Events of Special Interest^a (Safety Population)

	Enfortumab vedotin (N=296)				Chemotherapy (N=291)							
Treatment-related adverse	Grade					Grade						
event, n (%)	Any	1	2	3	4	5	Any	1	2	3	4	5
Rash	133 (44.9)	41 (13.9)	48 (16.2)	43 (14.5)	1 (0.3)	NR	28 (9.6)	21 (7.2)	6 (2.1)	1 (0.3)	0	NR
Severe cutaneous adverse reaction	60 (20.3)	20 (6.8)	25 (8.4)	14 (4.7)	1 (0.3)	NR	22 (7.6)	12 (4.1)	8 (2.7)	2 (0.7)	0	NR
Peripheral neuropathy	142 (48.0)	36 (12.2)	84 (28.4)	22 (7.4)	NR	NR	92 (31.6)	43 (14.8)	41 (14.1)	8 (2.7)	NR	NR
Peripheral neuropathy sensory events	135 (45.6)	35 (11.8)	82 (27.7)	18 (6.1)	NR	NR	89 (30.6)	42 (14.4)	39 (13.4)	8 (2.7)	NR	NR
Peripheral neuropathy motor events	23 (7.8)	6 (2.0)	11 (3.7)	6 (2.0)	NR	NR	7 (2.4)	5 (1.7)	2 (0.7)	0	NR	NR
Dry eye	48 (16.2)	34 (11.5)	12 (4.1)	2 (0.7)	NR	NR	9 (3.1)	6 (2.1)	2 (0.7)	1 (0.3)	NR	NR
Blurred vision	13 (4.4)	11 (3.7)	2 (0.7)	0	NR	NR	6 (2.1)	5 (1.7)	0	1 (0.3)	NR	NR
Corneal disorders	2 (0.7)	2 (0.7)	NR	NR	NR	NR	0	0	NR	NR	NR	NR
Infusion-related reaction	27 (9.1)	12 (4.1)	11 (3.7)	4 (1.4)	NR	NR	14 (4.8)	7 (2.4)	7(2.4)	0	NR	NR
Systemic infusion-related reaction event	24 (8.1)	11 (3.7)	9 (3.0)	4 (1.4)	NR	NR	9 (3.1)	4 (1.4)	5 (1.7)	0	NR	NR
Local infusion-related reaction event	4 (1.4)	2 (0.7)	2 (0.7)	0	NR	NR	7 (2.4)	5 (1.7)	2 (0.7)	0	NR	NR
Infusion-site reaction	2 (0.7)	0	2 (0.7)	0	NR	NR	5 (1.7)	4 (1.4)	1 (0.3)	0	NR	NR
Extravasation-site reaction	4 (1.4)	2 (0.7)	2 (0.7)	0	NR	NR	4 (1.4)	2 (0.7)	2 (0.7)	0	NR	NR
Hyperglycemia	20 (6.8)	3 (1.0)	4 (1.4)	12 (4.1)	0	1 (0.3)	1 (0.3)	0	1 (0.3)	0	0	0

MedDRA, Medical Dictionary for Regulatory Activities; NR, not reported.

³Adverse events of special interest to enfortumab vedotin. Events represent listings by preferred term and are sponsor-specific query/customized medical queries or standard MedDRA queries. Order of adverse events is as it appears in the Supplementary Appendix to the EV-301 primary publication (Powles, et al. N Engl J Med. 2021;384:1125-1135).

Data cutoff date: July 30, 2021

Adverse Events of Special Interesta (Safety Population)

	Enfortumab vedotin (N=296)					Chemotherapy (N=291)						
Treatment-related adverse	Grade Grade							le				
event, n (%)	Any	1	2	3	4	5	Any	1	2	3	4	5
Rash	133 (44.9)	41 (13.9)	48 (16.2)	43 (14.5)	1 (0.3)	NR	28 (9.6)	21 (7.2)	6 (2.1)	1 (0.3)	0	NR
Severe cutaneous adverse reaction		137	A D NIIN	C. SED	IOUS S	VIN DI	FACTION	JC		2 (0.7)	0	NR
Peripheral neuropathy	 WARNING: SERIOUS SKIN REACTIONS See full prescribing information for complete boxed warning. Enfortumab vedotin can cause severe and fatal cutaneous adverse reactions, including Stevens-Johnson syndrome (SJS) and Toxic 								8 (2.7)	NR	NR	
Peripheral neuropathy sensory events									8 (2.7)	NR	NR	
Peripheral neuropathy motor events									0	NR	NR	
Dry eye	Epid	lermal N	lecrolys	is (TEN)	•					1 (0.3)	NR	NR
Blurred vision	• Imm	ediately	withho	ld enfort	tumab y	edotin	and consi	der refe	rral for	1 (0.3)	NR	NR
Corneal disorders		•								NR	NR	NR
Infusion-related reaction	speci	ianzea ca	are for	suspecte	u 272 o	r I LIN (or severe	skin read	ctions.	0	NR	NR
Systemic infusion-related	• Pern	nanently	discon	tinue enf	ortuma	b vedot	tin in pati	ents wit	h	0	NR	NR
reaction event	confi	irmed S.	IS or Tl	$EN \cdot or G$	rade 4	or recili	rrent Gra	de 3 skir	n	J	INIX	INIX
Local infusion-related				,	Tauc T	or recui	irent Gra	uc o sixi	LI.	0	NR	NR
reaction event	react	tions. (<u>2.</u>	<u>2</u>), (<u>5.1</u>)) (<u>6.1</u>)						, o	INIX	INLY
Infusion-site reaction										0	NR	NR
Extravasation-site reaction	4 (1.4)	2 (0.7)	2 (0.7)	0	NR	NR	4 (1.4)	2 (0.7)	2 (0.7)	0	NR	NR
Hyperglycemia	20 (6.8)	3 (1.0)	4 (1.4)	12 (4.1)	0	1 (0.3)	1 (0.3)	0	1 (0.3)	0	0	0

MedDRA, Medical Dictionary for Regulatory Activities; NR, not reported.

aAdverse events of special interest to enfortumab vedotin. Events represent listings by preferred term and are sponsor-specific query/customized medical queries or standard MedDRA queries, Order of adverse events is as it appears in the Supplementary Appendix to the EV-301 primary publication (Powles, et al. N Engl J Med. 2021;384:1125-1135).

PRESENTED BY:

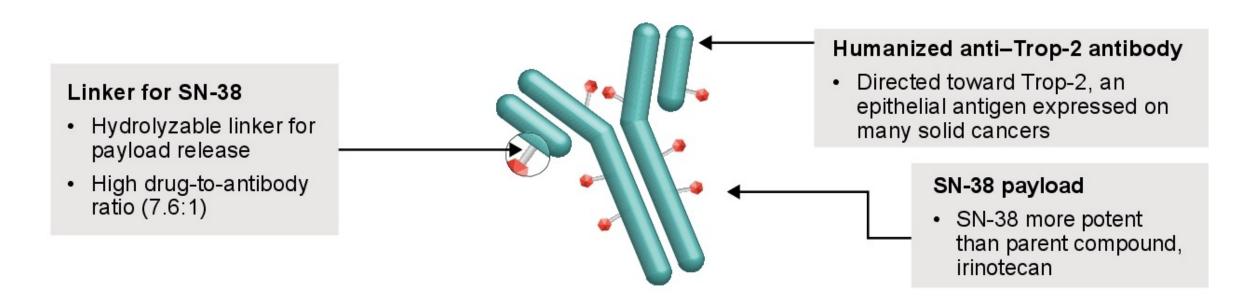
Jonathan E. Rosenberg, MD

Data cutoff date: July 30, 2021

Metabolism of Enfortumab Vedotin

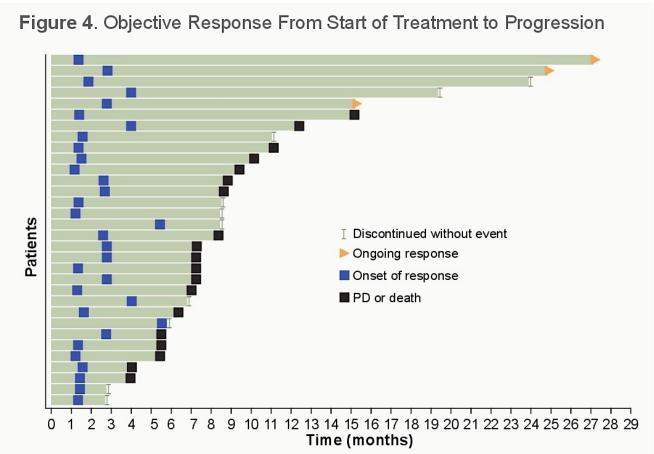
- Metabolite MMAE
 - 17% recovered in feces over 1 week period
 - 6% recovered in urine over 1 week period
- Dose reduction
 - Renal impairment: No differences in AUC for mild-moderate-severe
 - No significant dose reductions
 - Effect on end-stage renal disease/dialysis is unknown
 - Liver impairment: Mild hepatic impairment 48% AUC increase in MMAE
 - Mild hepatic impairment: bilirubin 1-1.5 x ULN with NL AST and ALT or bilirubin ≤ ULN and AST > ULN
 - Frequency of ≥ Grade 3 adverse reactions and deaths in moderate (Child-Pugh B) or severe (Child-Pugh C)
- AVOID use in moderate-severe hepatic impairment

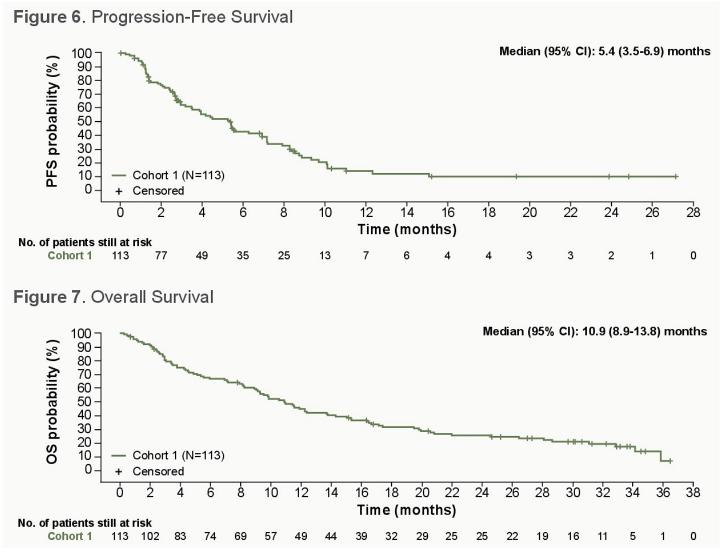
FDA package insert 12/2023


Monitoring Caveats

- Grade 3-4 hyperglycemia increase in greater BMI and higher HgbA1C
 - HgbA1C ≥ 8 excluded
- HOLD for:
 - Glucose > 250 mg/dL
 - Could be a sign of impaired clearance of MMAE
 - Mechanism unknown
 - Personal hypothesis: impaired glycogen storage as a sign of saturation of liver metabolism
 - New Hypothesis: potent tubule stabilization resulting in decreased glucose transport and muscle weakness resulting in decreased glucose utilization and even rhabdomyolysis
 - Peeling skin or bullous skin lesions
 - May have more diffuse rash preceding this
 - Grade 3 diarrhea

FDA package insert 12/2023


Sacituzumab Govitecan (SG)


- Humanized monoclonal antibody targeting Trop-2 expression
- Trop-2
 - Epithelial antigen expressed on many solid cancers
 - Expressed in ~ 83% of mUC patient samples; testing for expression not necessary
- "Payload" is SN-38, the active metabolite of irinotecan, inhibiting topoisomerase 1
- Payload is conjugated by a hydrolyzable linker

TROPHY-U-01 Cohort 1: Phase II Study of Sacituzumab Govitecan for mUC That Progressed After Platinum Chemotherapy and a Checkpoint Inhibitor

	Cohort 1 (N=113)
Best overall response, n (%)	
CR	6 (5)
PR	26 (23)
SD	37 (33)
PD	22 (19)
Not evaluable	8 (7)
Not assessed ^a	14 (12)
Objective response rate (CR + PR), n (%) [95% CI] ^b	32 (28) [20.2-37.6]
Clinical benefit rate (CR + PR + SD ≥6 months), n (%) [95% CI]	43 (38) [29.1-47.7]

TROPHY-U-01 Cohort 1: Phase II Study of Sacituzumab Govitecan for mUC That Progressed After Platinum Chemotherapy and a Checkpoint Inhibitor (cont.)

Tagawa ST et al. Genitourinary Cancers Symposium 2023; Abstract 526.

TROPHY-U-01 Cohort 1: Phase II Study of Sacituzumab Govitecan for mUC That Progressed After Platinum Chemotherapy and a Checkpoint Inhibitor (cont.)

	Cohort 1 (N=113)							
Most Common Grade ≥3 TRAEsª	All Grades, n (%)	Grade 3, n (%)	Grade 4, n (%)					
Neutropenia	53 (47)	25 (22)	14 (12)					
Leukopenia	29 (26)	14 (12)	6 (5)					
Anemia	38 (34)	16 (14)	0					
Diarrhea	73 (65)	10 (9)	1 (1)					
Febrile neutropenia	11 (10)	8 (7)	3 (3)					

^aGrade ≥3 TRAEs that occurred in ≥10% of patients. TRAE, treatment-related adverse events.

Phase 3 THOR Study: Erdafitinib Versus Chemotherapy of Choice in Patients With Advanced Urothelial Cancer and Select *FGFR* Aberrations

Cohort 1

Key eligibility criteria

- Age ≥18 years
- Metastatic or unresectable UC
- Confirmed disease progression
- Prior tx with anti-PD-(L)1
- 1-2 lines of systemic tx
- Select FGFR3/2alt (mutation/fusion)^a
- ECOG PS 0-2

1:1 N=266^b

Erdafitinib (n=136)

Once-daily erdafitinib 8 mg with pharmacodynamically guided uptitration to 9 mg

Chemotherapy of Choice (n=130)

docetaxel or vinflunine once every 3 weeks

Stratification factors: region (North America vs European Union vs rest of world), ECOG PS (0 or 1 vs 2), and disease distribution (presence vs absence of visceral [lung, liver, or bone] metastases)

Primary end point:

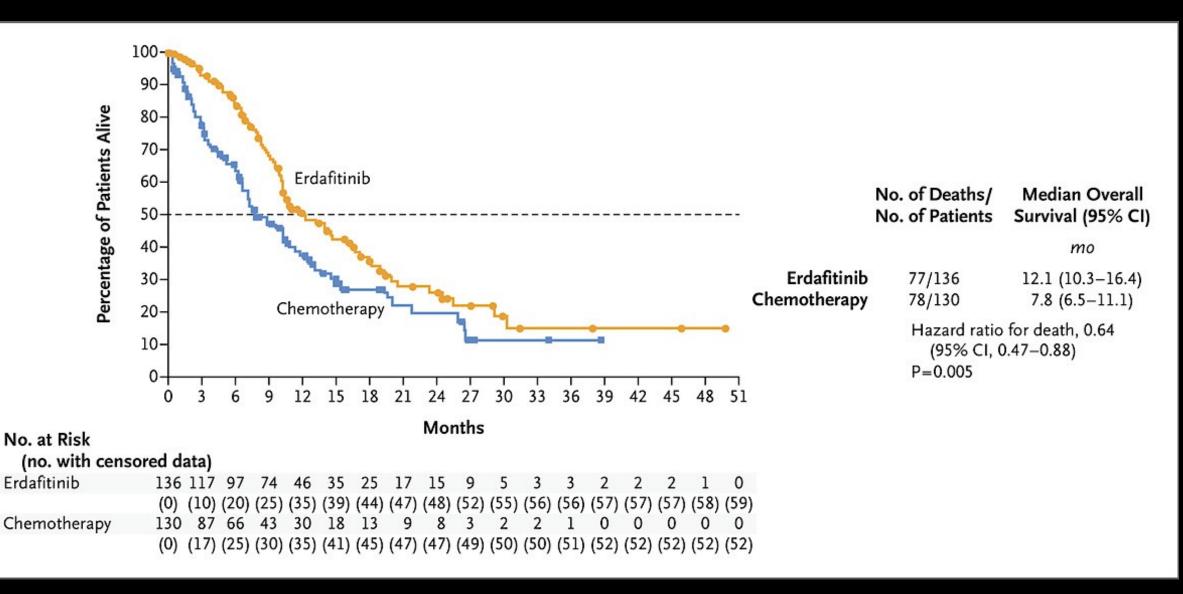
OS

Key secondary end points:

- PFS
- ORR
- Safety

NCT03390504

Loriot Y et al. ASCO 2023; Abstract LBA4619.


^aMolecular eligibility can be confirmed using either central or local historical *FGFR* test results (Qiagen assay). If a patient was enrolled based on local historical testing, a tissue sample must still be submitted at the time of enrollment for retrospective confirmation (by central lab) of *FGFR* status. Tumors must have ≥1 of the following translocations: *FGFR2-BICC1*, *FGFR3-TACC3_V1*, *FGFR3-TACC3_V3*, *FGFR3-BAIAP2L1*; or 1 of the following *FGFR3* gene mutations: R248C, S249C, G370C, Y373C.

^bNumber of patients randomized at the time of the interim analysis (data cutoff January 15, 2023).

ECOG PS, Eastern Cooperative Oncology Group performance status; FGFR, fibroblast growth factor receptor; *FGFR3/2alt*, *FGFR3/2* alterations; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; Q3W, every 3 weeks; tx, treatment; UC, urothelial cancer.

Overall Survival.

The Safety Profiles Were Consistent With the Known Profiles of Erdafitinib and Chemotherapy (2/2)

Patients with AEs of interest, n (%)	Erdafit (n=1)		Chemotherapy (n=112)		
	Any grade	Grade 3-4	Any grade	Grade 3-4	
Nail disorders ^a	90 (66.7)	15 (11.1)	6 (5.4)	0	
Skin disorders ^b	74 (54.8)	16 (11.9)	14 (12.5)	0	
Eye disorders (excluding central serous retinopathy) ^c	57 (42.2)	3 (2.2)	6 (5.4)	0	
Central serous retinopathy ^d	23 (17.0)	3 (2.2)	0	0	

Loriot Y et al. ASCO 2023; Abstract LBA4619.

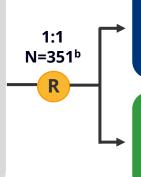
^aNail disorders: nail bed bleeding, nail discoloration, nail disorder, nail dystrophy, nail ridging, nail toxicity, onychalgia, onychoclasis, onycholysis, paronychia, onychomadesis.

^bSkin disorders: blister, dry skin, erythema, hyperkeratosis, palmar erythema, palmar-plantar erythrodysesthesia syndrome, plantar erythema, rash, rash erythematous, rash generalized, rash macular, rash maculopapular, skin atrophy, skin exfoliation, skin fissures, skin lesion, skin ulcer, toxic skin eruption, xeroderma.

Eye disorders (excluding central serous retinopathy): blepharitis, cataract, cataract subcapsular, conjunctival hemorrhage, conjunctival hyperemia, conjunctival irritation, corneal erosion, corneal infiltrates, dry eye, eye inflammation, eye irritation, eye pain, foreign body sensation in eyes, keratitis, lacrimation increased, night blindness, ocular hyperemia, photophobia, vision blurred, visual acuity reduced, visual impairment, xanthopsia, xerophthalmia, chorioretinitis, conjunctivitis, ulcerative keratitis.

dentral serous retinopathy: retinal detachment, vitreous detachment, retinal edema, retinopathy, chorioretinopathy, detachment of retinal pigment epithelium, detachment of macular retinal pigment epithelium, macular detachment, serous retinal detachment, subretinal fluid, retinal thickening, chorioretinitis, serous retinopathy, maculopathy, choroidal effusion.

AE. adverse event.



Phase 3 THOR Study: Erdafitinib Versus Pembrolizumab in Patients With Metastatic Urothelial Carcinoma and Select *FGFR* Alterations

Cohort 2

Key eligibility criteria

- Age ≥18 years
- Metastatic or unresectable UC
- Confirmed disease progression on 1 prior tx
- Naive to anti-PD-(L)1 tx
- Select FGFR3/2alt (mutation/fusion)^a
- ECOG PS 0-2

Erdafitinib (n=175)

Once-daily erdafitinib 8 mg with pharmacodynamically guided uptitration to 9 mg

Pembrolizumab (n=176)

200 mg once every 3 weeks

Stratification factors: region (North America vs European Union vs rest of world), ECOG PS (0 or 1 vs 2), and disease distribution (presence vs absence of visceral [lung, liver, or bone] metastases)

Primary end point

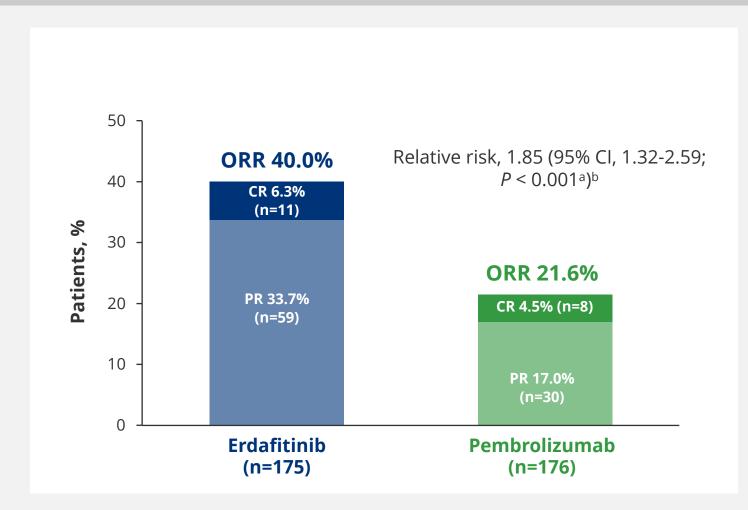
OS

Secondary end points

- PFS
- ORR
- Safety

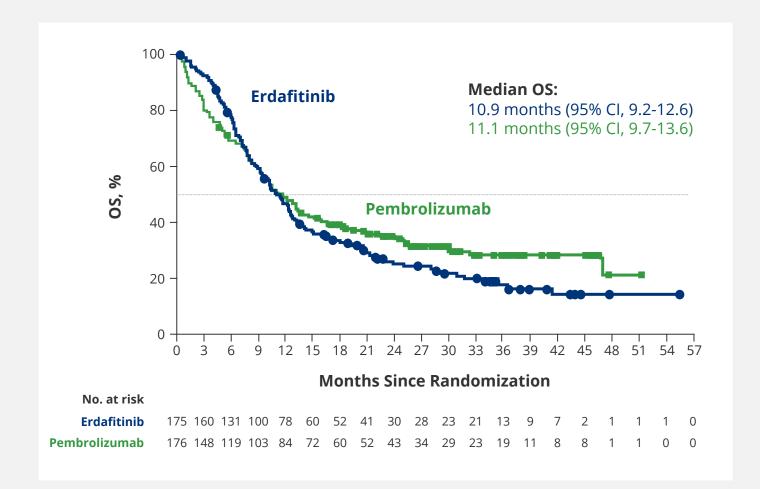
NCT03390504

Siefker-Radtke AO et al. *Ann Oncol* 2024;35(1):107-117.


^aMolecular eligibility was confirmed using either central or local historical *FGFR* test results (Qiagen assay). If a patient was enrolled based on local historical testing, a tissue sample must still be submitted at the time of enrollment for retrospective confirmation (by central lab) of *FGFR* status. Tumors must have ≥1 of the following translocations: *FGFR2-BICC1*, *FGFR3-TACC3_V1*, *FGFR3-TACC3*

^bNumber of patients randomized at the time of the interim analysis (data cutoff January 15, 2023).

ECOG PS, Eastern Cooperative Oncology Group performance status; FGFR3/2alt, FGFR3/2 alterations; ORR, overall response rate; PFS, progression-free survival; R, randomization; tx, treatment; UC, urothelial cancer.


ORR: 40.0% With Erdafitinib and 21.6% With Pembrolizumab

- ORR was 40.0% (95% CI, 32.7-47.7) for erdafitinib and 21.6% (95% CI,15.8-28.4) for pembrolizumab
- Median DOR was 4.3 months (95% CI, 3.7-6.9) for erdafitinib and 14.4 months (95% CI, 7.4-27.8) for pembrolizumab

No Significant Difference Was Found in Overall Survival Between Erdafitinib and Pembrolizumab

- The primary end point was not met
- Median OS was 10.9 months (95% CI, 9.2-12.6) for erdafitinib and 11.1 months (95% CI, 9.7-13.6) for pembrolizumab
 - HR, 1.18 (95% CI, 0.9-1.5; *P* = 0.18)

Previously Treated/mUC: Options

- Checkpoint inhibitors
 - Pembrolizumab, Avelumab, or Nivolumab (pick-one!)
- Antibody-Drug Conjugates
 - Enfortumab Vedotin
 - Sacituzumab Govitecan
- Mutation driven
 - Erdafitinib
 - After immunotherapy, unless need for cytoreductive therapy: visceral crisis

Previously Treated/mUC: Options

- Checkpoint inhibitors
 - Pembrolizumab, Avelumab, or Nivolumab (pick-one!)
- Antibody-Drug Conjugates
 - Enfortumab Vedotin
 - Sacituzumab Govitecan
- Mutation driven
 - Erdafitinib
- Do we need to give platinum???

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Urothelial Bladder Cancer

Part 2 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Genitourinary Cancers Symposium

Friday, January 26, 2024

7:00 PM - 9:00 PM PT (10:00 PM - 12:00 AM ET)

Faculty

Matthew Milowsky, MD, FASCO Peter H O'Donnell, MD Jonathan E Rosenberg, MD Arlene Siefker-Radtke, MD

Moderator Evan Y Yu, MD

Thank you for joining us! Your feedback is very important to us.

Please complete the survey currently up on Zoom for those attending virtually. The survey will remain open up to 5 minutes after the meeting ends.

How to Obtain CME Credit

In-person attendees: Please refer to the program syllabus for the CME credit link or QR code. You may also use the iPads available in the meeting room to complete the course evaluation.

Online/Zoom attendees: The CME credit link is posted in the chat room.

