Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Prostate Cancer

Part 1 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Genitourinary Cancers Symposium

Thursday, January 25, 2024 6:15 PM – 8:15 PM PT (9:15 PM – 11:15 PM ET)

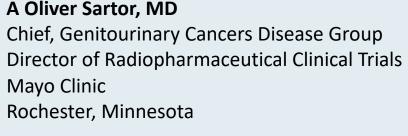
Faculty

Rahul Aggarwal, MD Emmanuel S Antonarakis, MD Elisabeth I Heath, MD A Oliver Sartor, MD

Moderator Alan H Bryce, MD

Faculty

Rahul Aggarwal, MD


Professor of Medicine Director, Genitourinary Medical Oncology University of California, San Francisco Department of Medicine Division of Hematology/Oncology Associate Director for Clinical Research UCSF Helen Diller Family Comprehensive Cancer Center San Francisco, California

Elisabeth I Heath, MD

Associate Center Director, Translational Sciences Chair, Genitourinary Oncology Multidisciplinary Team Professor of Oncology and Medicine Hartmann Endowed Chair for Prostate Cancer Research Director, Prostate Cancer Research Karmanos Cancer Institute Wayne State University School of Medicine Detroit, Michigan

Emmanuel S Antonarakis, MD Clark Endowed Professor of Medicine Division of Hematology, Oncology and Transplantation University of Minnesota Minneapolis, Minnesota

Moderator Alan H Bryce, MD Chief Clinical Officer Professor of Medical Oncology and Therapeutics Research Professor of Molecular Medicine, TGen City of Hope Phoenix, Arizona

Dr Aggarwal — Disclosures Faculty

No relevant conflicts of interest to disclose.

Dr Antonarakis — Disclosures Faculty

Advisory Committees	Aadi Bioscience, Amgen Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Blue Earth Diagnostics, Janssen Biotech Inc, Merck, Pfizer Inc, Sanofi, Tango Therapeutics, Tempus	
Consulting Agreements	Alkido Pharma Inc, Corcept Therapeutics, Foundation Medicine, HOOKIPA Pharma Inc, KeyQuest Health, Lilly, Menarini Silicon Biosystems, Z-Alpha	
Contracted Research	Astellas, Bayer HealthCare Pharmaceuticals, Bristol Myers Squibb, MacroGenics Inc, Merck, Orion Corporation	
Patent Holder	QIAGEN	

Dr Heath — Disclosures Faculty

Advisory Committees	Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Sanofi		
Consulting Agreements	Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Janssen Biotech Inc, Sanofi		
Arvinas, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, BioXcel Therapeutics Inc, Bristol Myers Squibb, Calithera Biosciences, Caris Life Sciences, Corcept Therapeutics, Corvus Pharmaceut Daiichi Sankyo Inc, Eisai Inc, Exelixis Inc, F Hoffmann-La Roche Ltd, Five Pri 			
Honoraria/Paid Travel	Astellas, Bayer HealthCare Pharmaceuticals, Caris Life Sciences, Sanofi, Seagen Inc		
Speakers Bureau	Sanofi		
Nonrelevant Financial Relationship	Calibr		

Dr Sartor — Disclosures Faculty

Consulting Agreements	Fusion Pharmaceuticals, ITM Isotopen Technologien München AG, Janssen Biotech Inc, NorthStar Rx LLC, Novartis, Pfizer Inc, POINT Biopharma, Sanofi, Telix Pharmaceuticals Limited, TeneoBio		
Consulting or Advisory Roles	Advanced Accelerator Applications, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Clarity Pharmaceuticals, Fusion Pharmaceuticals, ITM Isotopen Technologien München AG, Janssen Biotech Inc, NorthStar Rx LLC, Novartis, Pfizer Inc, POINT Biopharma, Sanofi, Telix Pharmaceuticals Limited, TeneoBio		
Data and Safety Monitoring Boards/Committees	AstraZeneca Pharmaceuticals LP, Merck, Pfizer Inc		
Research Funding to Institution	Advanced Accelerator Applications, Amgen Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Invitae, Janssen Biotech Inc, Lantheus, Merck, Novartis, Progenics Pharmaceuticals Inc, TeneoBio		
Stock Options/Ownership — Public Companies	Abbott Laboratories, AbbVie Inc, Fusion Pharmaceuticals, Johnson & Johnson Pharmaceuticals, Lantheus, Lilly, Pfizer Inc, Telix Pharmaceuticals Limited		
Nonrelevant Financial Relationships	ARTBIO, Convergent Therapeutics Inc, Curadh, Ratio Therapeutics		

Dr Bryce — Disclosures Moderator

Advisory Committees	AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Gilead Sciences Inc, Lantheus, Merck, Myovant Sciences, Novartis, Pfizer Inc
Consulting Agreement	MOMA therapeutics
Contracted Research	Astellas, Janssen Biotech Inc
Data and Safety Monitoring Board/Committee	Lantheus

Dr Armstrong — Disclosures Survey Participant

Advisory CommitteesAstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol MyAdvisory CommitteesSquibb, Clovis Oncology, Exelixis Inc, GoodRx, Merck, Myovant Sciences, NovarPfizer Inc, Z-AlphaPfizer Inc, Z-Alpha		
Consulting AgreementsAstellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare PharmaceuticalMyers Squibb, Celgene Corporation, Clovis Oncology, Dendreon PharmaceEpic Sciences, Exact Sciences Corporation, Exelixis Inc, Forma TherapeuticalJanssen Biotech Inc, Merck, Myovant Sciences, Novartis, Pfizer Inc, Z-Alpha		
Contracted Research Amgen Inc, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol Myers Squibb, Celgene Corporation, Dendreon Pharmaceuticals Inc, Forma Therapeutics, Janssen Biotech Inc, Merck, N Pfizer Inc		
Nonrelevant Financial Relationships	National Cancer Institute, National Institutes of Health, Prostate Cancer Foundation/Movember, US Department of Defense	

Dr McKay — Disclosures Survey Participant

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, Blue Earth Diagnostics, Bristol Myers Squibb, Calithera Biosciences, Caris Life Sciences, Dendreon Pharmaceuticals Inc, Eisai Inc, Exelixis Inc, Johnson & Johnson Pharmaceuticals, Lilly, Merck, Myovant Sciences, Novartis, Pfizer Inc, Sanofi, Seagen Inc, Sorrento Therapeutics, Telix Pharmaceuticals Limited, Tempus
Contracted Research	AstraZeneca Pharmaceuticals LP, ArteraAI, Bayer HealthCare Pharmaceuticals, Bristol Myers Squibb, Exelixis Inc, Oncternal Therapeutics

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Exelixis Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Lilly, Merck, and Novartis.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration.

Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Urothelial Bladder Cancer

Part 2 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Genitourinary Cancers Symposium

Friday, January 26, 2024 7:00 PM – 9:00 PM PT (10:00 PM – 12:00 AM ET)

Faculty

Matthew Milowsky, MD, FASCO Peter H O'Donnell, MD

Jonathan E Rosenberg, MD Arlene Siefker-Radtke, MD

Moderator Evan Y Yu, MD

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the premeeting survey.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Complete Your Evaluation: Tap the CME/NCPD Evaluation button to complete your evaluation electronically to receive credit for your participation.

For assistance, please raise your hand. Devices will be collected at the conclusion of the activity.

Clinicians Attending via Zoom

Im

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

	_
<u></u>	

Answer Survey Questions: Complete the premeeting survey at the beginning of each module.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME/NCPD Credit: CME and NCPD credit links will be provided in the chat room at the conclusion of the program. MOC and ONCC credit information will be emailed to attendees within the next 2-3 business days.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

An email will be sent to all attendees when the activity is available.

 To learn more about our education programs, visit our website, <u>www.ResearchToPractice.com</u>

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Prostate Cancer

Part 1 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Genitourinary Cancers Symposium

Thursday, January 25, 2024 6:15 PM – 8:15 PM PT (9:15 PM – 11:15 PM ET)

Faculty

Rahul Aggarwal, MD Emmanuel S Antonarakis, MD Elisabeth I Heath, MD A Oliver Sartor, MD

Moderator Alan H Bryce, MD

Agenda

Module 1: Optimizing the Management of Nonmetastatic Prostate Cancer — Dr Aggarwal

Module 2: Evidence-Based Selection of Treatment for Metastatic Hormone-Sensitive Prostate Cancer — Dr Antonarakis

Module 3: New Considerations with PARP Inhibitors for Metastatic Castration-Resistant Prostate Cancer (mCRPC) — Dr Bryce

Module 4: Role of Novel Radiopharmaceuticals in Therapy for mCRPC — Dr Sartor

Module 5: Promising Investigational Approaches for Patients with Prostate Cancer — Dr Heath

Consulting Faculty

Andrew J Armstrong, MD, ScM

Professor of Medicine, Surgery, Pharmacology and Cancer Biology Director of Research Duke Cancer Institute Center for Prostate and Urologic Cancers Divisions of Medical Oncology and Urology Duke University Durham, North Carolina

Rana R McKay, MD

Associate Professor of Medicine and Urology Associate Director, Translational Sciences Interim Associate Director, Clinical Sciences Co-Lead, Genitourinary Oncology Program University of California San Diego Moores Cancer Center La Jolla, California

MODULE 1: Optimizing the Management of Nonmetastatic Prostate Cancer – Dr Aggarwal

Consulting Faculty Questions

Androgen receptor (AR) inhibitors in the localized (MO) setting

Neil Love, MD

Andrew J Armstrong, MD, ScM

QUESTIONS FOR THE FACULTY

Andrew J Armstrong, MD, ScM

Would you extrapolate from the STAMPEDE data and substitute another AR pathway inhibitor (ie, apalutamide, darolutamide or enzalutamide) for abiraterone for a patient with high-risk localized prostate cancer?

What are your thoughts about ongoing trials evaluating AR pathway inhibitors for high-risk localized disease? Are you already employing any of these strategies in clinical practice while awaiting the results?

Consulting Faculty Questions

Management of biochemically recurrent prostate cancer; EMBARK data and integration of intermittent hormonal therapy

Neil Love, MD

Rana R McKay, MD

Andrew J Armstrong, MD, ScM

QUESTIONS FOR THE FACULTY

Rana R McKay, MD

What would you recommend for a highly functional 90-year-old man with biochemical (M0) recurrence after radical prostatectomy and salvage radiation therapy (PSA 11-13 ng/mL, PSA doubling time 6 months)?

In which situations are you considering enzalutamide and ADT for patients with biochemical recurrence after definitive local therapy? What about enzalutamide monotherapy? Intermittent versus continuous?

What is your opinion about prophylactic breast radiation for patients receiving enzalutamide monotherapy?

Andrew J Armstrong, MD, ScM

How would you approach the management of high-risk localized prostate cancer in a patient with negative CT imaging but PSMA PET suggesting metastatic disease?

Dr Aggarwal	Systemic therapy with ADT + AR signaling inhibitor; treat primary tumor with radiation; MDT to PET-avid sites of disease if oligometastatic in select cases		
Dr Antonarakis	If oligometastatic, treat mets with MDT RT, add 12-24 months of ADT + AR signaling inhibitor, consider RT to the primary prostate gland		
Dr Bryce	Add radiation to metastatic sites		
Dr Heath	PSMA PET-positive data must be considered in the treatment plan; if possible, a tissue biopsy may be indicated to confirm metastatic disease		
Dr Sartor	Treat with SBRT and add abi for the duration of the ADT (typically 2 y)		
Dr Armstrong	Treat as metastatic low-volume mHSPC, still treat primary with RT, routine use of ADT/AR signaling inhibitors		
Dr McKay	If amenable to MDT then definitive radiation and ADT + abi with MDT; if not amenable to MDT, then definitive radiation and ADT + abi		

MDT = metastasis-directed therapy; SBRT = stereotactic body radiation therapy; AR = androgen receptor; abi = abiraterone

What was the age of the last patient in your practice with locally advanced prostate cancer? What was their PSA level?

	Age	PSA
Dr Aggarwal	70 years	45 ng/mL
Dr Antonarakis	58 years	19 ng/mL
Dr Bryce	74 years	8.9 ng/mL
Dr Heath	62 years	23 ng/mL
Dr Sartor	72 years	8 ng/mL
Dr Armstrong	68 years	5 ng/mL
Dr McKay	70 years	15 ng/mL

For the patient in the previous scenario with locally advanced prostate cancer, what were their tumor characteristics? What specific treatment did the patient receive?

	Tumor characteristics Treatment	
Dr Aggarwal	Gleason 4 + 5	ADT + abiraterone x 24 mo, RT to prostate + pelvis
Dr Antonarakis	Gleason 5 + 4 = 9, cT3b, node-negative, PSMA PET-negative	ADT + abiraterone x 24 mo, primary prostatic RT
Dr Bryce	Gleason 4 + 5	RT, ADT + abiraterone x 2 years
Dr Heath	Gleason 8 (4 + 4), cT3b	RT, leuprolide, abiraterone
Dr Sartor	Gleason 4 + 5 = 9, T3b	ADT + abiraterone and XRT
Dr Armstrong	GG5 (Gleason 10) cT1c but PSMA PET with possible ECE/EVI, N0	ADT + abiraterone, RT to prostate and pelvic nodes
Dr McKay	Gleason 4 + 5, cT3a	Abiraterone, ADT + EBRT to prostate and pelvic nodes

XRT = radiation therapy; EBRT = external beam radiation therapy

What was the age of the last patient in your practice who received systemic therapy for biochemical recurrence after local therapy for prostate cancer? What was their PSA level and PSA doubling time?

	Age	PSA	PSA doubling time
Dr Aggarwal	65 years	0.6 ng/mL	3.4 months
Dr Antonarakis	62 years	1.8 ng/mL	5.5 months
Dr Bryce	68 years	3.5 ng/mL	7 months
Dr Heath	70 years	4.8 ng/mL	8 months
Dr Sartor	75 years	0.3 ng/mL	9 months
Dr Armstrong	73 years	6 ng/mL	4 months
Dr McKay	65 years	1.21 ng/mL	3 months

For the patient in the previous scenario who received systemic therapy for biochemical recurrence after local therapy for prostate cancer, what specific treatment did the patient receive? Did the patient receive intermittent or continuous therapy?

	Treatment	Intermittent or continuous	
Dr Aggarwal	MDT RT to PET-avid sites coupled with ADT x 3 mo	Intermittent	
Dr Antonarakis	Leuprolide + enza 160 mg (plan for 12 mo if complete PSA response)	Intermittent	
Dr Bryce	ADT	Intermittent	
Dr Heath	Leuprolide	Intermittent	
Dr Sartor	PSMA PET-directed SBRT with 6 mo of abiraterone monotherapy	_	
Dr Armstrong	ADT + enzalutamide	Intermittent	
Dr McKay	Relugolix + enzalutamide	Intermittent	

MDT = metastasis-directed therapy

Outside of a clinical trial, are you offering <u>enzalutamide monotherapy without ADT</u> as an option to your patients with biochemical recurrence after definitive therapy for prostate cancer?

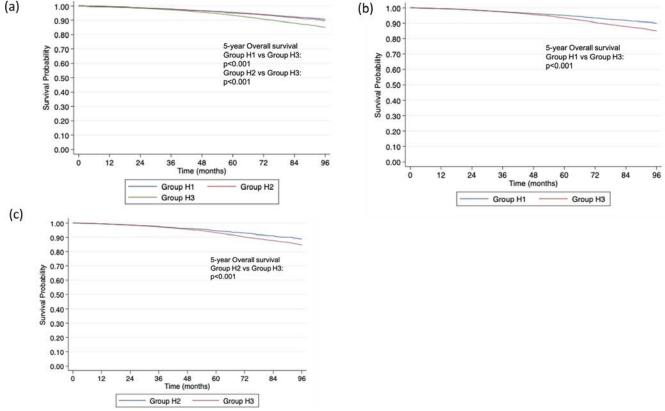
Dr Aggarwal	Νο		
Dr Antonarakis	Yes, if patient asks		
Dr Bryce	No		
Dr Heath	Yes, if patient wants faster recovery from sexual dysfunction		
Dr Sartor	No (may discuss but not using yet)		
Dr Armstrong	Yes, but only for patients unable to tolerate ADT + enzalutamide		
Dr McKay	Yes, if patient prefers to avoid castration therapy		

Helen Diller Family Comprehensive Cancer Center

Optimizing the Management of Nonmetastatic Prostate Cancer

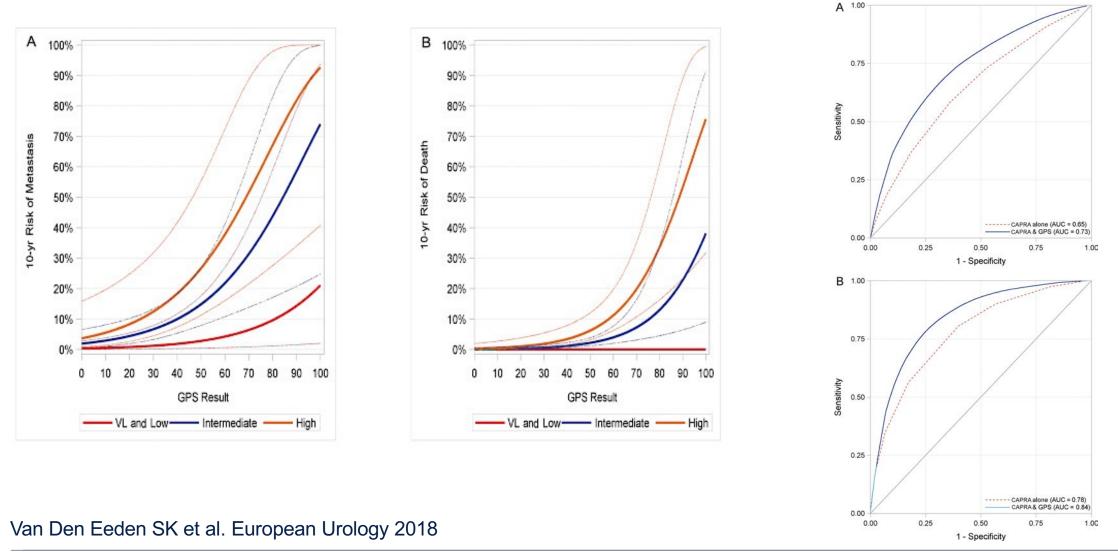
Rahul Aggarwal MD Professor of Medicine University of California San Francisco

Outline


- Risk stratification and staging of patients with newly diagnosed prostate cancer
 - Molecular testing
 - Imaging
- High-risk nonmetastatic prostate cancer
- Biochemically recurrent castration-sensitive prostate cancer
- Nonmetastatic CRPC

Risk Stratification of Newly Diagnosed Prostate Cancer

- NCCN criteria
 - Low
 - Favorable/unfavorable intermediate
 - High
 - Very high



Garg H et al. Prostate Cancer Prostatic Disease 2023

Molecularly Guided Risk Stratification

Comprehensive Cancer Center

Optimizing the Management of Nonmetastatic Prostate Cancer

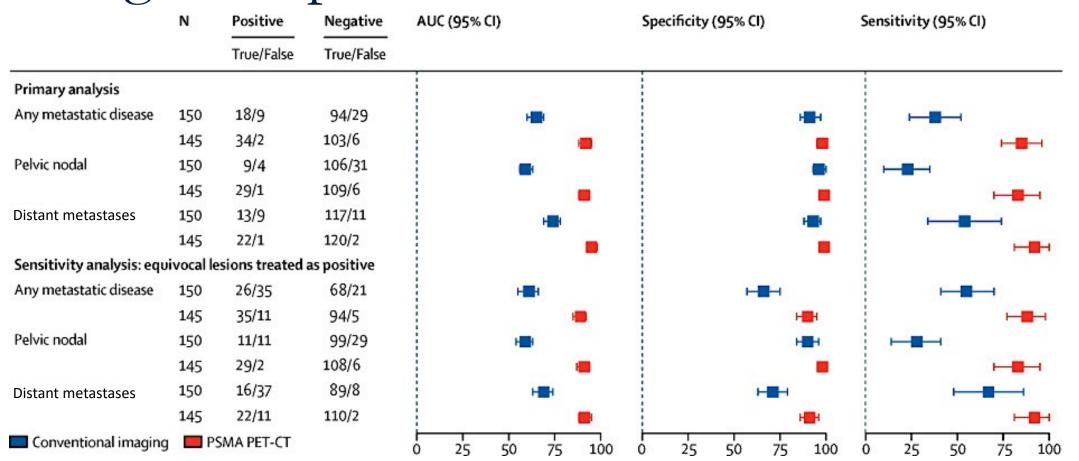
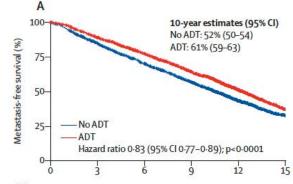

Molecularly Guided Risk Stratification

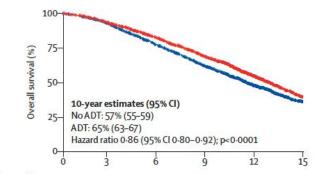
Table 1. Initial Risk Stratification for Clinically Localized Disease					
Category	Tool	Predictive	Prognostic	Endpoint Trained For ^a	Level of Evidence for Validation ^b
Clinical	NCCN	No	Yes	See note ^c	1
	STAR-CAP ²	No	Yes	PCSM	3
	CAPRA ^{11,d}	No	Yes	BCR	3
	MSKCC ¹²	No	Yes	BCR and PCSM ^f	3
AI	ArteraAl Prostate (category 2B) ^{5,e}	No	Yes	BCR, DM, PCSM ^g	1
Gene Expression Testing	Decipher ¹³	No	Yes	DM	1
	Prolaris ¹⁴	No	Yes	See note ^h	3
	Oncotype ¹⁵	No	Yes	Adverse pathology	3
Germline	HRR	No	Uncertain	See note ⁱ	4

NCCN Guidelines Prostate Cancer version 4.2023

UCSF Helen Diller Family Comprehensive Cancer Center

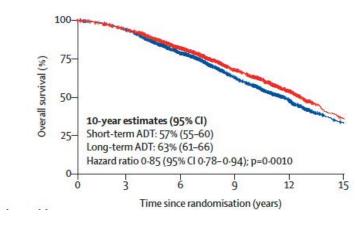

PSMA PET increases the accuracy of staging in high risk prostate cancer

Hofman MS et al. Lancet Oncol 2020


Outcomes with ADT plus radiation: an individualized patient data meta-analysis

Number at risk

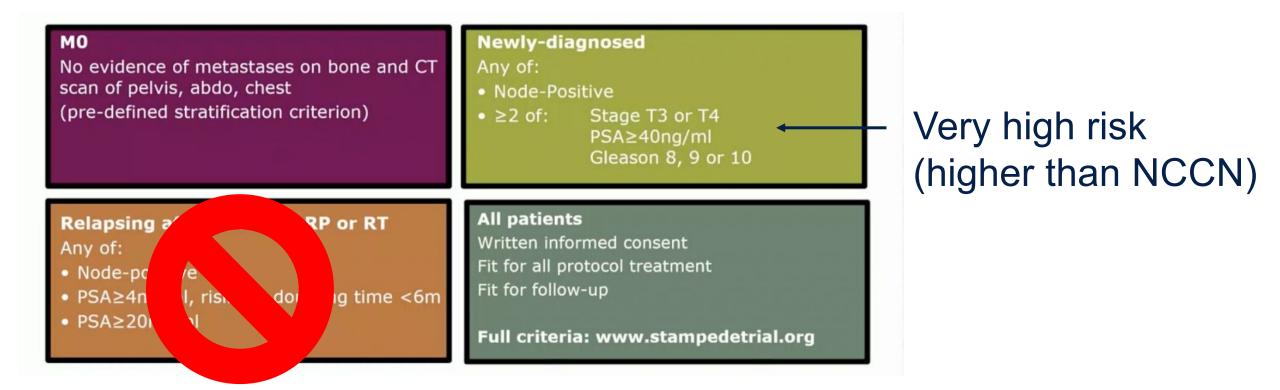
C 100 10-year estimates (95% CI) Short-term ADT: 47% (45-50) Metastasis-free survival (%) Long-term ADT: 55% (53-58) 75-50-— Short-term ADT 25-Long-term ADT Hazard ratio 0.84 (95% CI 0.78-0.91); p<0.0001 0-12 15 0 0 Time since randomisation (years)



ADT versus no ADT

(number censored)

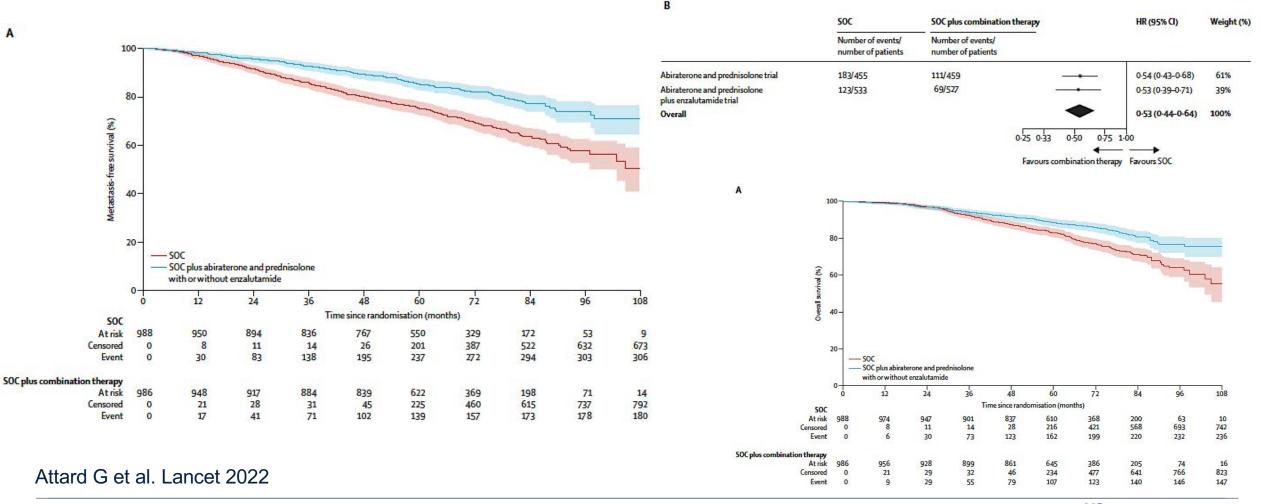
No ADT (1489 events) 2579 (2) 2304 (64) 1848 (147) 1392 (245) 782 (576) 353 (862) ADT (1316 events) 2557 (4) 2314 (58) 1937 (172) 1509 (292) 796 (739) 344 (1024)


Short versus long term ADT

Kishan, AU et al. Lancet Oncol 2022

UCSF Helen Diller Family Comprehensive Cancer Center

Optimizing the Management of Nonmetastatic Prostate Cancer


ADT intensification in very high risk nonmetastatic prostate cancer: STAMPEDE

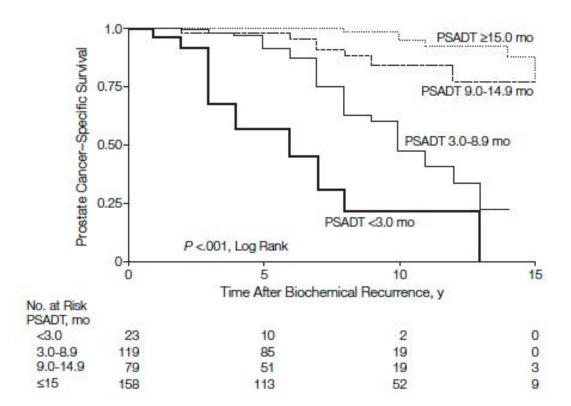
Attard G et al. Lancet 2022

Optimizing the Management of Nonmetastatic Prostate Cancer

ADT intensification with abiraterone improves survival outcomes in newly diagnosed high risk non-metastatic prostate cancer

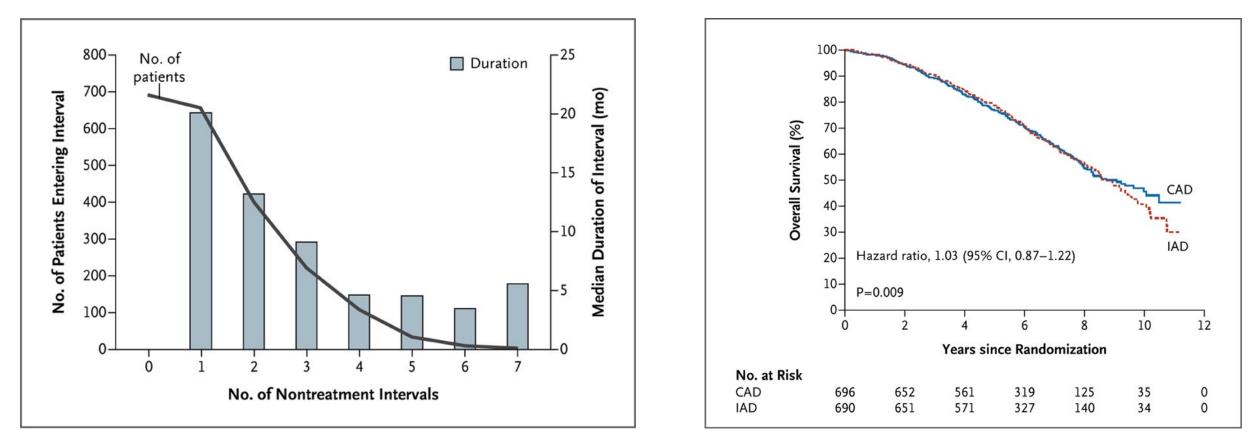
Comprehensive Cancer Center

Optimizing the Management of Nonmetastatic Prostate Cancer

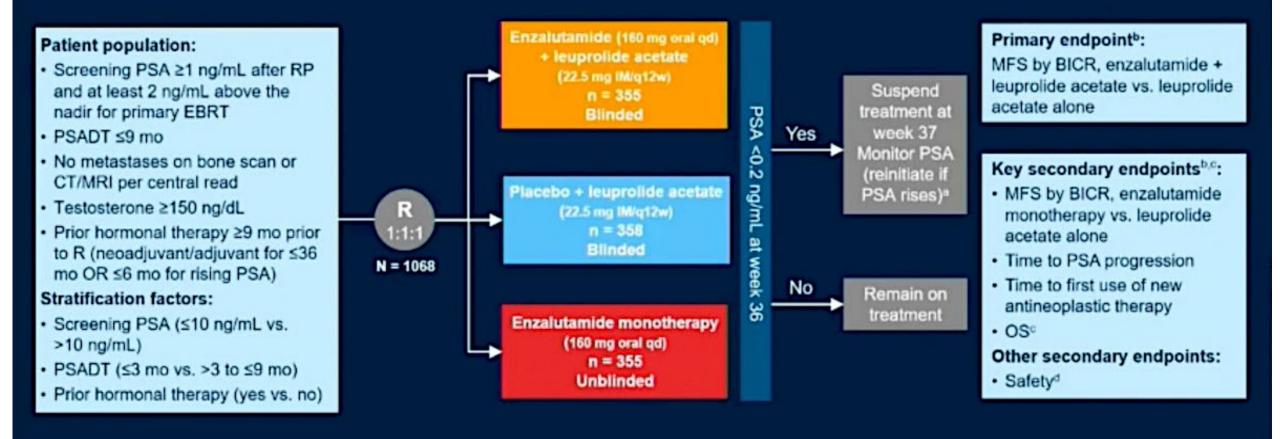

Outline

- Risk stratification and staging of patients with newly diagnosed prostate cancer
 - Molecular testing
 - Imaging
- High-risk nonmetastatic prostate cancer
- Biochemically recurrent castration-sensitive prostate cancer
- Nonmetastatic CRPC

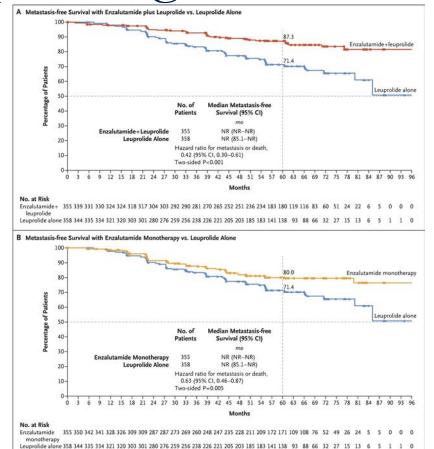
Risk stratification for non-metastatic biochemically recurrent CSPC


- PSA doubling time
- Gleason grade
- Time interval from definitive local tx to relapse
- Emerging factors
 - PSMA PET
 - Molecular features (PTEN loss)

Freedland SJ, et al. JAMA 2005


Intermittent ADT as a framework for the management of nmCSPC

Crook JM, et al. New Engl J Med 2012


Optimizing the Management of Nonmetastatic Prostate Cancer

EMBARK Phase 3 Study

UCSF Helen Diller Family

EMBARK: Metastasis-free survival prolonged with inclusion of enzalutamide

Freedland SJ, et al. New Engl J Med 2023

			Enzalutamide+				Two-Sided
End Point	Leuprolide	Alone	Leuprolide	Alone	Hazard	Ratio (95% CI)	P Value
	no. of pa	tients	no. of e	vents			
Metastasis-free survival (primary end point)	355	358	45	92	H•-1	0.42 (0.30-0.61	<0.001
Overall survival	355	358	33	55	⊢ •−−1	0.59 (0.38-0.91)	0.02
PSA progression	355	358	8	93	ei i	0.07 (0.03-0.14	< 0.001
First use of new antineoplastic therap	y 355	358	58	140	He-H	0.36 (0.26-0.49	< 0.001
Distant metastasis	355	358	30	59	H	0.44 (0.28-0.69)
Resumption of any hormonal therapy	321	240	256	217	H#-1	0.69 (0.58-0.83	1
Castration resistance	355	358	14	120	ei i	0.09 (0.05-0.16)
Symptomatic progression	355	358	104	169	Heri	0.55 (0.43-0.70))
First symptomatic skeletal event	355	358	9	32	H=	0.26 (0.13-0.55)
First deterioration in FACT-P total sco	re 355	358	257	248	H •	1.14 (0.95–1.36)
				0.	0 0.5 1.0	1.5 2.0	

B Secondary End Points, Enzalutamide Monotherapy vs. Leuprolide Alone

	onotherapy	Leuprolide Alone	Enzalutamide Monotherapy	Alone	Haza	ard Ratio (95% CI)	Two-Side P Value
	no. of p	atients	no. of e	vents			
Metastasis-free survival	355	358	63	92		0.63 (0.46-0	87) 0.005
Overall survival	355	358	42	55	► – – – – – – – – – – – – – – – – – – –	0.78 (0.52-1	.17) 0.23
PSA progression	355	358	37	93	HH	0.33 (0.23-0	49) <0.001
First use of new antineoplastic therapy	355	358	84	140	Hen	0.54 (0.41-0	71) <0.001
Distant metastasis	355	358	40	59	H	0.61 (0.41-0	92)
Resumption of any hormonal therapy	304	240	279	217		▶ 1.66 (1.38–1	98)
Symptomatic progression	355	358	117	169	Heri	0.62 (0.49-0	.79)
First symptomatic skeletal event	355	358	14	32	→	0.42 (0.23-0	.79)
First deterioration in FACT-P total sco	re 355	358	263	248	H	1.17 (0.98-1.	39)
				0.0	0.5 1.0	1.5 2.0	
				-		-	

EMBARK: Safety of Enzalutamide + Leuprolide

Event	Enzalutamide + Leuprolide (N = 353)		Leuprolide Alone (N=354)		Enzalutamide Monotherapy (N=354)	
	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Any Grade	Grade ≥3
			number (per	cent)		
Any adverse event	343 (97.2)	164 (46.5)	345 (97.5)	151 (42.7)	347 (98.0)	177 (50.0)
Treatment-related adverse event	305 (86.4)	62 (17.6)	283 (79.9)	31 (8.8)	312 (88.1)	57 (16.1)
Serious adverse event	123 (34.8)	110 (31.2)	112 (31.6)	100 (28.2)	131 (37.0)	116 (32.8)
Treatment-related serious adverse event	26 (7.4)	22 (6.2)	8 (2.3)	7 (2.0)	17 (4.8)	17 (4.8)
Adverse event leading to dose reduction	25 (7.1)	11 (3.1)	16 (4.5)	5 (1.4)	56 (15.8)	14 (4.0)
Adverse event leading to permanent discon- tinuation of treatment	73 (20.7)	31 (8.8)	36 (10.2)	19 (5.4)	63 (17.8)	34 (9.6)
Adverse event leading to death†	6 (1.7)		3 (0.8)		8 (2.3)	_
Most common adverse events‡						
Hot flash	243 (68.8)∬	2 (0.6)	203 (57.3)∬	3 (0.8)	77 (21.8)∬	1 (0.3)
Fatigue	151 (42.8)§	12 (3.4)	116 (32.8)∬	5 (1.4)	165 (46.6)∬	14 (4.0)
Arthralgia	97 (27.5)	5 (1.4)	75 (21.2)	1 (0.3)	81 (22.9)	1 (0.3)
Hypertension	82 (23.2)	2 (0.6)	69 (19.5)	0	67 (18.9)	0
Fall	74 (21.0)	3 (0.8)	51 (14.4)	2 (0.6)	56 (15.8)	5 (1.4)
Back pain	60 (17.0)	1 (0.3)	54 (15.3)	0	62 (17.5)	1 (0.3)
Diarrhea	49 (13.9)	2 (0.6)	31 (8.8)	1 (0.3)	46 (13.0)	0
Constipation	46 (13.0)	0	31 (8.8)	0	34 (9.6)	1 (0.3)
Hematuria	42 (11.9)	7 (2.0)	44 (12.4)	3 (0.8)	45 (12.7)	6 (1.7)

Freedland SJ et al. *N Engl J Med* 2023;389(16):1453-65.

PRESTO Phase 3 Study

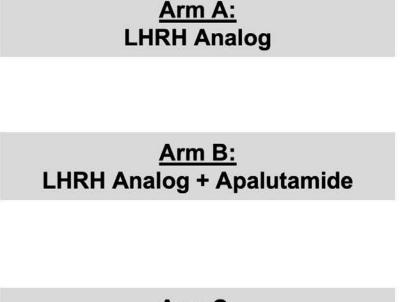
-

Randomize

Prior radical prostatectomy

Biochemical recurrence with PSA > 0.5 ng/mL

PSA-DT ≤ 9 months


No metastases on conventional imaging

Last dose of ADT > 9 months prior to study entry

Prior adjuvant/salvage radiation unless not a candidate for RT

Stratified by PSA doubling time (< 3 months vs. 3 – 9 months)

Aggarwal R et al. ESMO 2022

<u>Arm C:</u> LHRH Analog + Apalutamide + Abiraterone Acetate + Prednisone

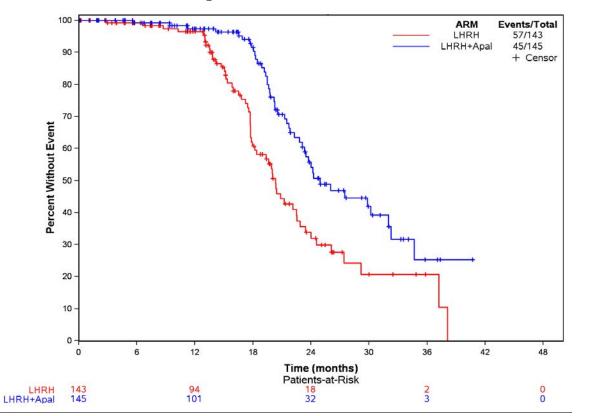
52 Weeks

Long Term Follow Up

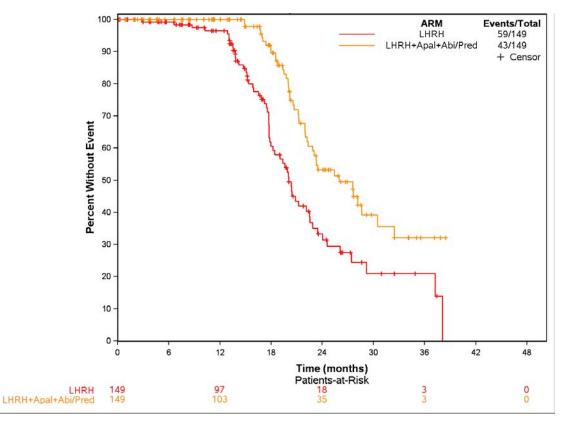
Progression

PS

for


Follow up

Treatment per Investigator


Discretion

PRESTO: ADT intensification prolongs PSA progression-free survival

ADT + Apalutamide vs. ADT

ADT + Apa + AAP vs. ADT

UCSF Helen Diller Family

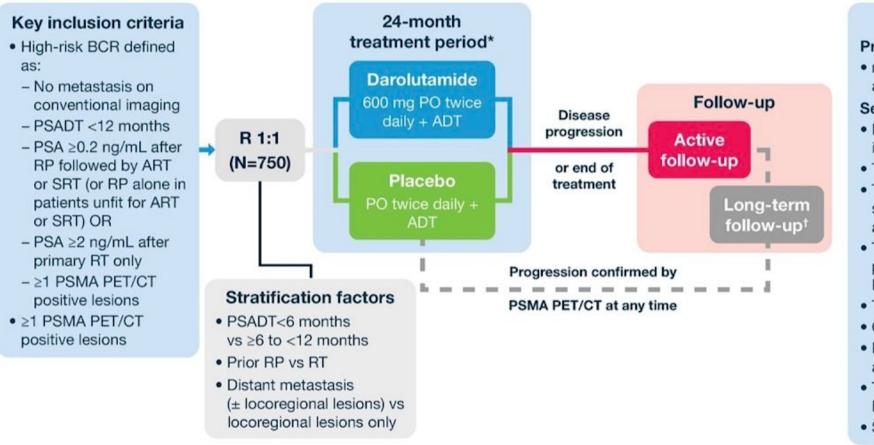
Comprehensive Cancer Center

Aggarwal R et al. ESMO 2022

Optimizing the Management of Nonmetastatic Prostate Cancer

PRESTO: Safety of ADT \pm Apalutamide \pm Abiraterone/Prednisone

	Arm A ADT (n = 160)		ADT ·	n B + APA 163)	Arm C ADT + APA + AAP (n = 161)		
Adverse Events (AE)	Grade 2	Grade ≥ 3	Grade 2	Grade ≥ 3	Grade 2	Grade ≥ 3	
	n (%)		n (n (%)		n (%)	
Hypertension	19 (12)	12 (8)	25 (15)	12 (7)	18 (11)	31 (19)	
Hot flashes	19 (12)	1 (1)	8 (5)	0	23 (14)	0	
Fatigue	14 (9)	0	8 (5)	3 (2)	16 (10)	2 (1)	
Injection site reaction	9 (6)	0	10 (6)	0	11 (7)	0	
Insomnia	9 (6)	0	5 (3)	0	8 (5)	0	
Hyperglycemia	0	3 (2)	6 (4)	2 (1)	6 (4)	5 (3)	
Rash	2 (1)	1 (1)	7 (4)	3 (2)	3 (2)	5 (3)	
Erectile dysfunction	10 (6)	1 (1)	6 (4)	1 (1)	2 (1)	0	
Arthralgia	4 (3)	1 (1)	6 (4)	1 (1)	3 (2)	2 (1)	



Current/Future Directions in nmCSPC

- Other secondary hormonal therapies for management of nmCSPC
- Role of metastasis-directed radiation based upon metabolic imaging
- Non-hormonal therapies (e.g. targeted radioligand therapy)
- Evolution of the MFS endpoint to incorporate metabolic imaging
- Molecularly defined risk stratification

ARASTEP: Phase 3 Trial of Darolutamide in nmCSPC

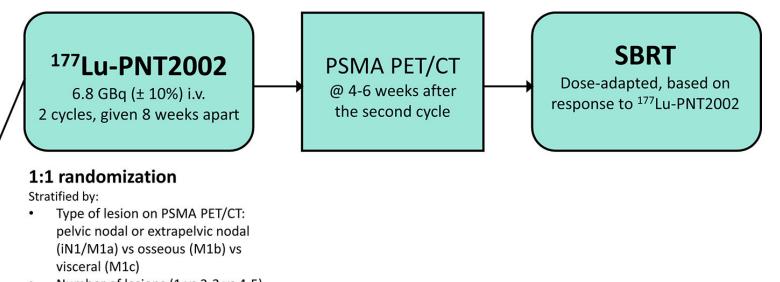
Endpoints Primary:

 rPFS by PSMA PET/CT assessed by BICR

Secondary:

- MFS by conventional imaging by BICR
- Time to CRPC
- Time to initiation of first subsequent systemic antineoplastic therapy
- Time to locoregional progression by PSMA PET/CT
- Time to first SSE
- OS
- PSA <0.2 ng/mL at 12 months
- Time to deterioration in FACT-P total score
- Safety

UCSF Helen Diller Family Comprehensive Cancer Center


ADT-free treatment approach: Metastasisdirected radiation +/- radioligand therapy

ELIGIBILITY

Men with oligorecurrent prostate cancer naïve to ADT within last 6 months or hormone-sensitive disease

PSMA PET/CT

- 1-5 sites of disease outside the prostate or prostate bed
 - ≥10 mm lesion size in the smallest cross-sectional diameter*

Number of lesions (1 vs 2-3 vs 4-5)

SBRT

to all sites of PSMA PET/CT-defined disease

Outline

- Risk stratification and staging of patients with newly diagnosed prostate cancer
 - Molecular testing
 - Imaging
- High-risk nonmetastatic prostate cancer
- Biochemically recurrent castration-sensitive prostate cancer
- Nonmetastatic CRPC

ADT intensification in nmCRPC

	PROSPER	SPARTAN	ARAMIS
Agents	Placebo vs. enzalutamide	Placebo vs. apalutamide	Placebo vs. darolutamide
Entry criteria	nmCRPC, N0, PSA-DT < 10 months, PSA > 2 ng/ml	nmCRPC, N0/N1, PSA- DT < 10 months, PSA > 2 ng/ml	nmCRPC, N0/N1, PSA- DT < 10 months, PSA > 2 ng/ml
Sample size	1401 (468/933)	1207 (401/806)	1509 (554/955)
Metastasis-free survival	14.7 (14.2–15.0) vs. 36.6 months (33.1–NR); HR: 0.29, CI: 0.24–0.35	16.2 vs. 40.5 months; HR: 0.30, CI: 0.24–0.36	18.4 (15.5–22.3) vs. 40.4 (34.3–NR);HR: 0.41, CI: 0.34–0.50
Overall survival	56.3 (54.5–63.0) vs. 67.0 (64.0–NR); HR: 0.73, CI: 0.61–0.89	59.9 (52.8–NR) vs. 73.9 months (61.2–NR); HR: 0.79, CI: 0.65–0.96	NR vs. NR; HR: 0.69, CI: 0.53–0.88
Grade ≥ 3 adverse event	27.0 vs. 48.0%	36.5 vs. 59.0% Wenzel M et al. Prostat	25.1 vs. 30.3% te Cancer Prostatic Diseases 2022

UCSF Helen Diller Family Comprehensive Cancer Center Current/future directions in nmCRPC and oligometastatic CRPC

- What is the optimal definition of oligometastatic/oligorecurrent disease by metabolic imaging?
- What is role of metastasis-directed treatment in CRPC?
- Is there a subset of patients for whom switch in ARSI is reasonable (e.g. low volume of disease by PET)?
- Molecular features to guide treatment sequencing/selection?
- Combination versus sequential treatment?
 - E.g. ARSI + PARPi phase 3 trial data

UCSF Helen Diller Family Comprehensive Cancer Center

Take Home Points

- ADT intensification improves long term outcomes in high risk early stage prostate cancer
 - Very high risk localized newly diagnosed prostate cancer
 - High risk non-metastatic biochemically recurrent disease
- Risk stratification is critical to select patients appropriate for treatment intensification
 - Validation of predictive biomarkers is critical
- ADT-free treatment approaches including metastasis-directed radiation offer promise but require rigorous prospective validation

MODULE 2: Evidence-Based Selection of Treatment for Metastatic Hormone-Sensitive Prostate Cancer (mHSPC) – Dr Antonarakis

Consulting Faculty Questions

Current approaches to the treatment of mHSPC; PSMA-PET imaging as part of the armamentarium

Neil Love, MD

Rana R McKay, MD

QUESTIONS FOR THE FACULTY

Rana R McKay, MD

Is ADT intensification with an AR pathway inhibitor now standard of care? When combining an AR pathway inhibitor with ADT for a patient with mHSPC, do you have a preference for a specific agent?

In what situations do you utilize the ARASENS regimen of ADT/docetaxel/darolutamide?

How would you approach a patient with negative conventional imaging but a PSMA-PET suggestive of metastatic disease?

Consulting Faculty Questions

Real-world experience with side effects associated with AR inhibitors

Neil Love, MD

Andrew J Armstrong, MD, ScM

QUESTIONS FOR THE FACULTY

Andrew J Armstrong, MD, ScM

What has been your experience with the toxicities associated with AR pathway inhibitors (eg, cognitive effects with enzalutamide, rash with apalutamide, cardiovascular/hepatotoxicity and steroid toxicity with abiraterone)?

How do patient age and comorbidities affect your choice among these agents?

What are your usual criteria for using ADT with docetaxel and darolutamide for patients with mHSPC?

Dr Aggarwal	Liver mets or other aggressive variant, clinical and/or genomic features, de novo metastatic disease, younger patient, good PS
Dr Antonarakis	High-volume mets, symptomatic mets, visceral mets, de novo, mutation in TP53/RB1
Dr Bryce	Never for metachronous low volume, occasionally for metachronous high volume, occasionally for de novo low volume, usually for de novo high volume
Dr Heath	De novo presentation, high volume (visceral mets, >4 bone mets with >1 beyond vertebra/pelvis)
Dr Sartor	High-volume disease and liver mets especially
Dr Armstrong	High-volume disease by CHAARTED criteria, not solely based on PSMA PET (BS, CT/MRI), candidate for docetaxel
Dr McKay	High volume, visceral mets, low PSA to tumor burden, TSG alterations

Outside of a clinical trial, have you recommended ADT and darolutamide <u>without</u> docetaxel for a patient with mHSPC?

Dr Aggarwal	Yes
Dr Antonarakis	Yes
Dr Bryce	Yes
Dr Heath	No
Dr Sartor	Yes
Dr Armstrong	Yes
Dr McKay	Yes

Globally, which comorbidities are likely to steer you away from choosing ADT and abiraterone?

Dr Aggarwal	Poorly controlled diabetes or CHF
Dr Antonarakis	Severe heart failure, severe diabetes, more than 2+ peripheral edema
Dr Bryce	Diabetes
Dr Heath	Brittle diabetes, history of ulcer
Dr Sartor	Liver dysfunction
Dr Armstrong	Diabetes, steroid intolerance, severe obesity, CHF, severe HTN uncontrolled, cardiac arrhythmias, hypokalemia
Dr McKay	CHF, HTN, liver dysfunction

Globally, which comorbidities are likely to steer you away from choosing ADT and apalutamide?

Dr Aggarwal	History of seizure or multiple falls/gait instability
Dr Antonarakis	Skin conditions (rash), ataxia/imbalance
Dr Bryce	CNS disease, history of CVA
Dr Heath	Uncontrolled hypertension
Dr Sartor	Rash
Dr Armstrong	Drug-drug interactions
Dr McKay	Arrhythmias, falls

Globally, which comorbidities are likely to steer you away from choosing ADT and enzalutamide?

Dr Aggarwal	History of seizure or multiple falls/gait instability, baseline cognitive dysfunction or situations where patient requires high cognitive function
Dr Antonarakis	Seizure disorder, severe fatigue, severe diarrhea, ataxia/imbalance
Dr Bryce	CNS disease, history of CVA
Dr Heath	History of seizure
Dr Sartor	Age, cognitive concerns, fatigue, fall risk
Dr Armstrong	Drug-drug interactions, age >75 or severe frailty, cognitive concerns/memory loss
Dr McKay	Falls, seizure, drug-drug interaction

Globally, which comorbidities are likely to steer you away from choosing ADT and darolutamide?

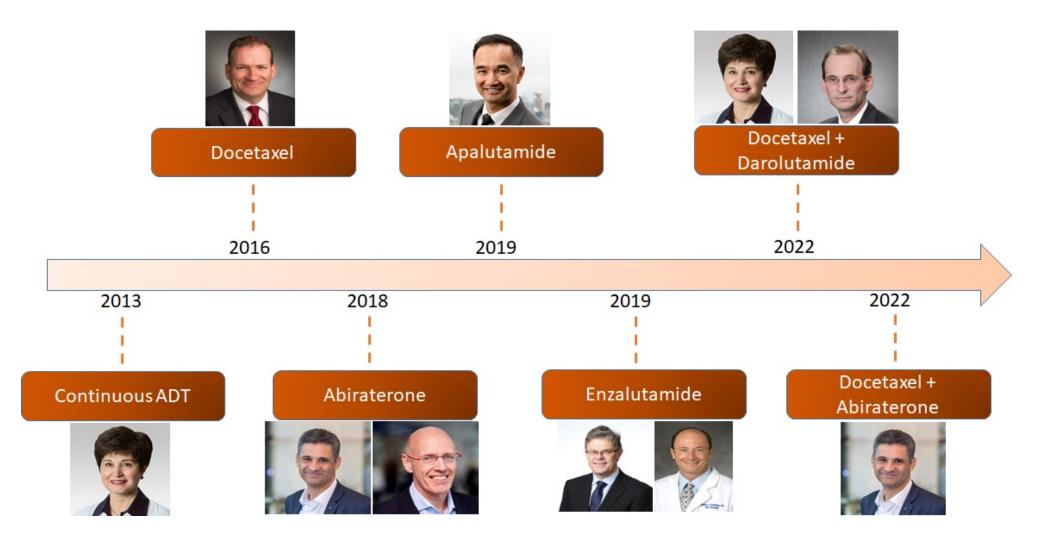
Dr Aggarwal	None
Dr Antonarakis	None
Dr Bryce	None
Dr Heath	None
Dr Sartor	None
Dr Armstrong	None
Dr McKay	None

Research To Practice


January 25, 2024

Evidenced-Based Treatment for Metastatic Hormone-Sensitive Prostate Cancer (mHSPC)

Emmanuel S. Antonarakis, M.D.

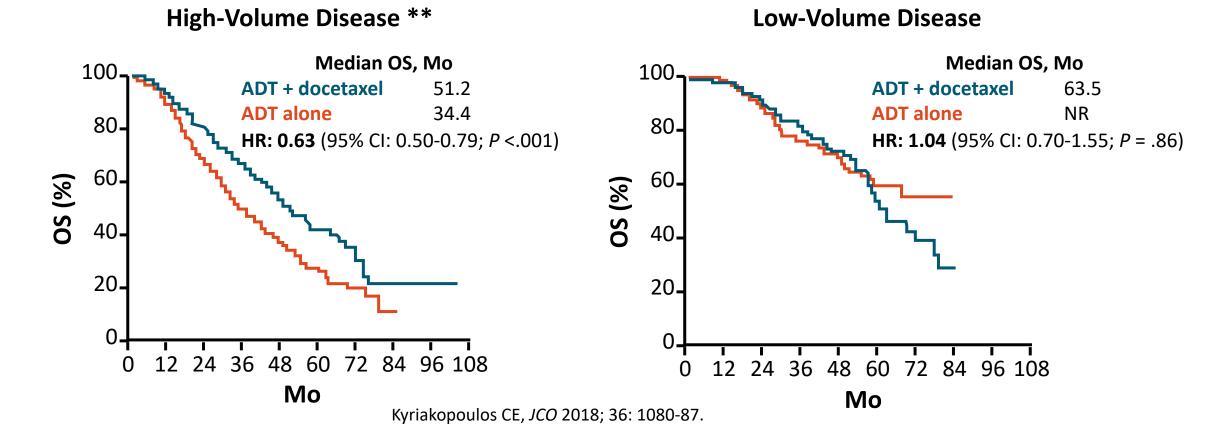

Clark Endowed Professor of Medicine Division of Hematology/Oncology & Transplantation, University of Minnesota Associate Director of Translation, Masonic Cancer Center

Incidence of de novo mHSPC around the globe

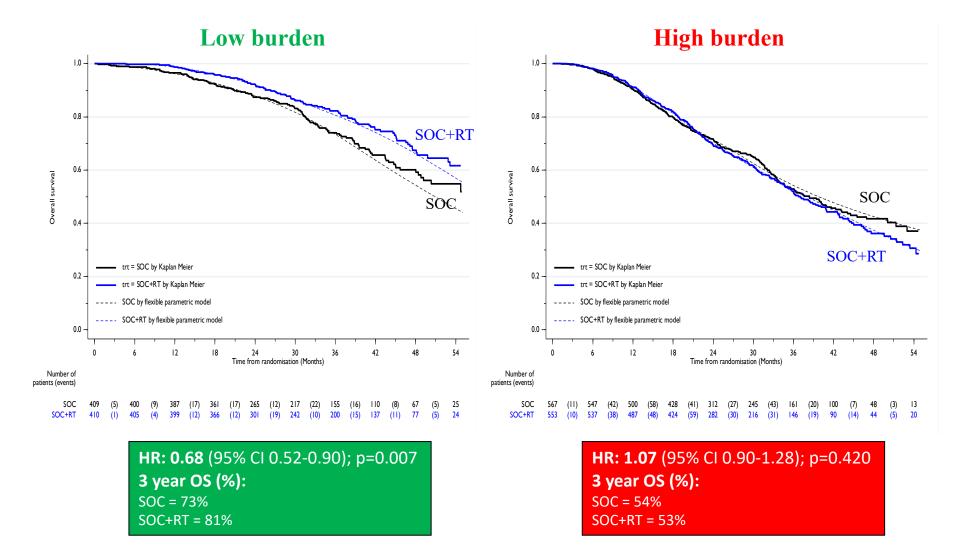
Wu JN, Cancer 2014; 120: 818-823.

Evolving Paradigm of mHSPC Management

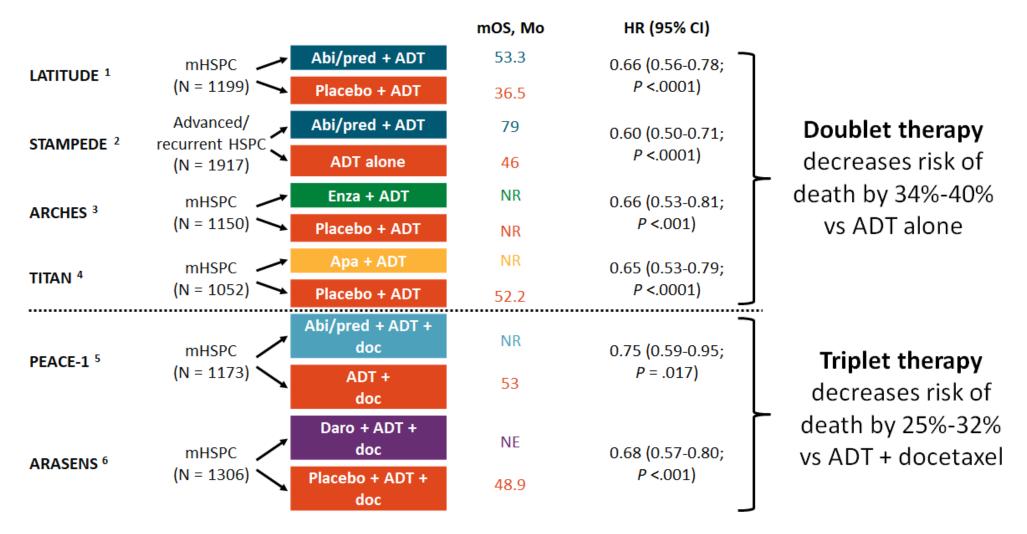
Hussein M. et al. *NEJM* 2013; Fizazi K et al. *NEJM* 2017; James N.D. et al. *NEJM* 2017; Davis I.D. et al. *NEJM* 2017; Armstrong A. et al. *JCO* 2019; Chi K.N. et al. *NEJM* 2019; Smith MR. et al *NEJM* 2022; Fizazi K. et al *Lancet* 2022.


Courtesy of Neeraj Agarwal

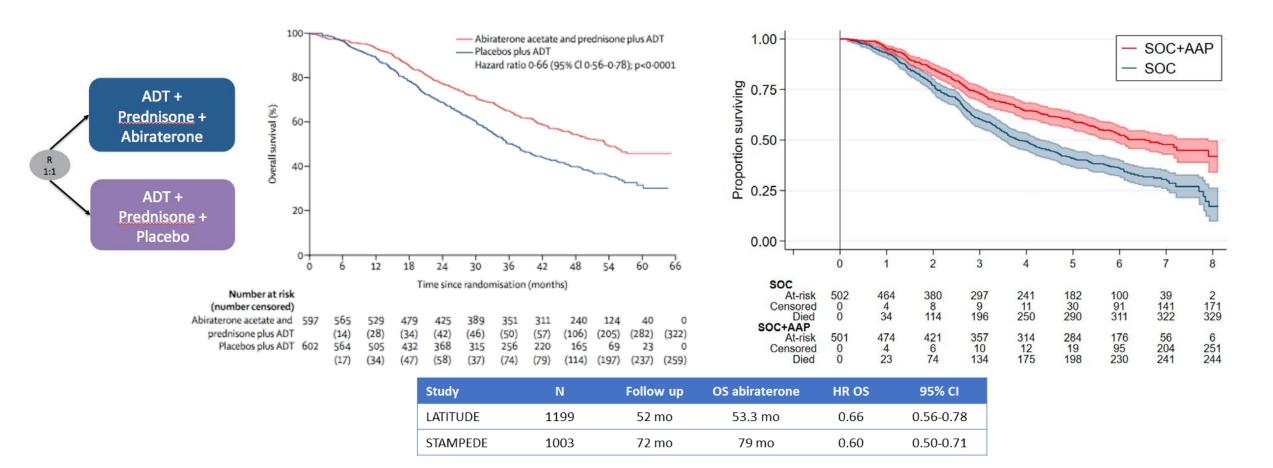
Metastatic HSPC: Overview of Treatment Options


- Androgen-deprivation therapy is the mainstay of managing mHSPC
- Intensifying therapy beyond ADT alone is associated with improved OS
 - Doublet therapy: ADT + ARPI (abiraterone/prednisone, apalutamide, enzalutamide)
 - <u>NOTE</u>: **Doublet** of ADT + docetaxel is no longer recommended!
 - Triplet therapy: ADT + chemotherapy (docetaxel) + ARPI (abiraterone/pred, darolutamide, enzalutamide?)
 - Radiation therapy to the prostate in the setting of low-volume disease

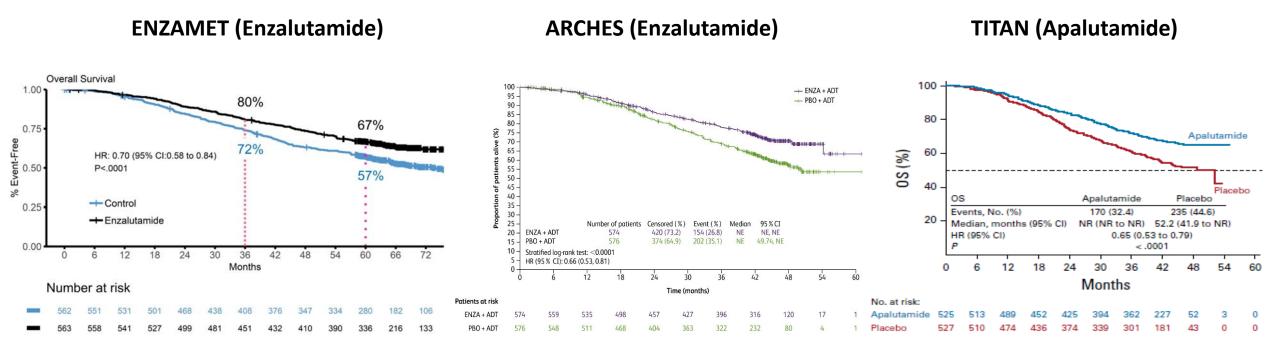
Historical data: CHAARTED, ADT ± Docetaxel in mHSPC: High-volume vs Low-volume


Adding docetaxel to ADT showed greater benefit in high- (vs. low-) volume disease

Role of Prostate XRT: STAMPEDE – H



OS with Doublet and Triplet Therapy in mHSPC


1. Fizazi. *Lancet Oncol.* 2019;20:686. 2. James. *Int J Cancer.* 2022;151:422. 3. *Armstrong. JCO.* 2022;40:1616. 4. Chi. *JCO.* 2021;39:2294. 5. Fizazi. *Lancet.* 2022;399:1695. 6. Smith. *NEJM.* 2022;386:1132.

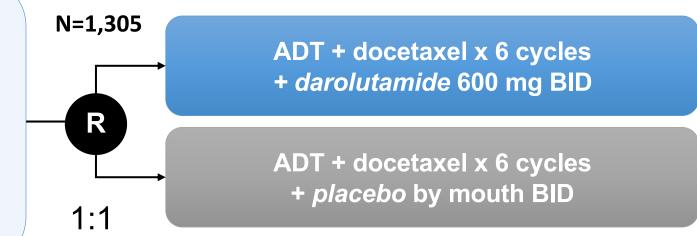
ADT + Abiraterone > ADT alone in mHSPC

Fizazi K, N Engl J Med 2017; 377: 352-60. James ND, N Engl J Med 2017; 377: 338-51. Fizazi K, et al. Lancet Oncol 2019; 20: 686-700. James ND, et al. Ann Oncol 2020; 31: S507-S549. Attard G et al. Lancet Oncol. 2023;24(5):443-456.

ADT + ARPI > ADT alone in mHSPC

Davis I et al. *NEJM* 2019;381:121-31. Davis I et al. ASCO 2022; Abstract LBA5004. Armstrong A et al. ESMO 2021; Abstract LBA25. Armstrong A et al. *J Clin Oncol* 2022;40(15):1616-22.

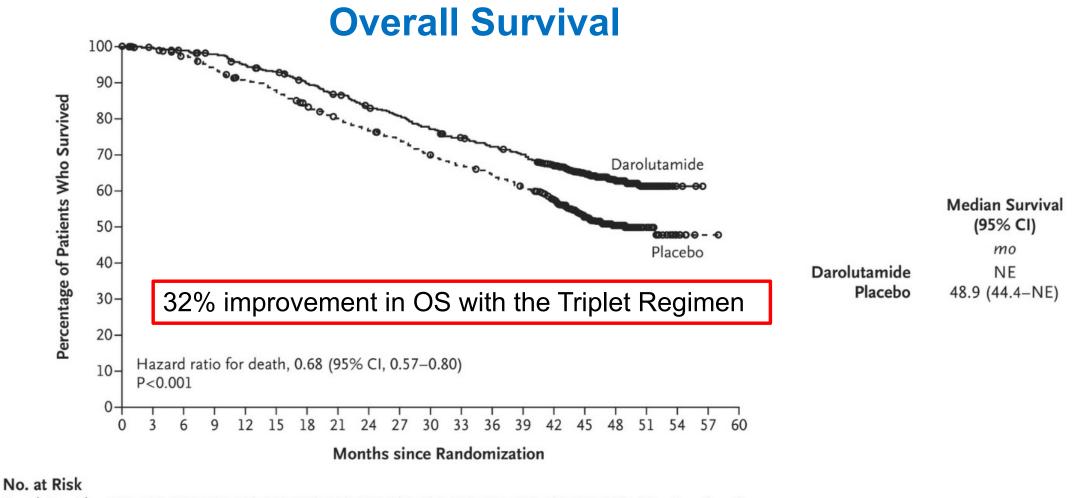
Chi K et al. J Clin Oncol 2021;39(20):2294-303


Triplet Therapy: ARASENS trial (ADT/doce/daro)

Key Eligibility Criteria

- mHSPC
- ECOG 0 or 1
- Candidates for ADT + docetaxel

Stratification Factors

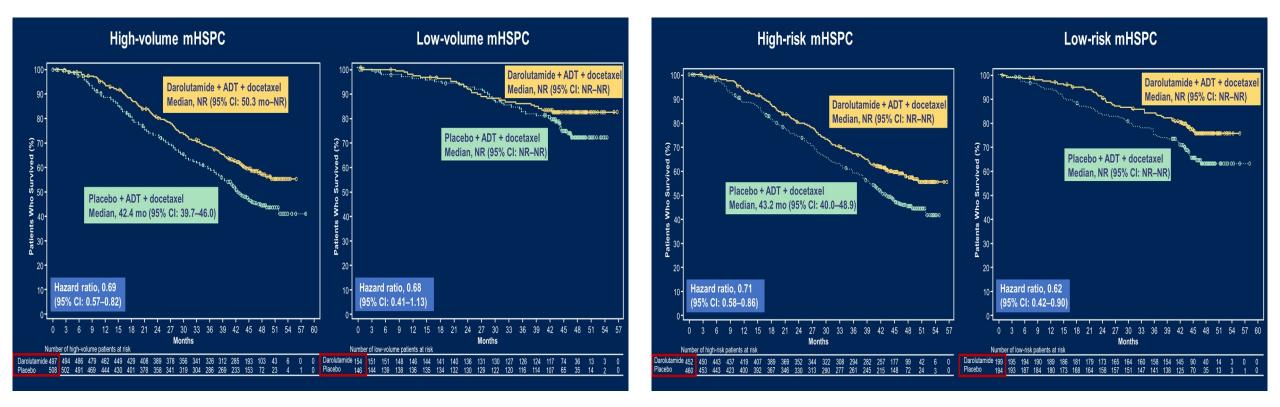

- Extent of disease (M1a vs 1b vs 1c)
- ALP level (< vs > ULN)

- Primary endpoint: OS
- Key secondary endpoints: time to mCRPC, time to initiation of subsequent anticancer therapy, time to SSE-free survival, time to first SSE, time initiation of subsequent RX, time to pain progression

Smith MR, et al. N Engl J Med. 2022 Mar 24;386(12):1132-1142.

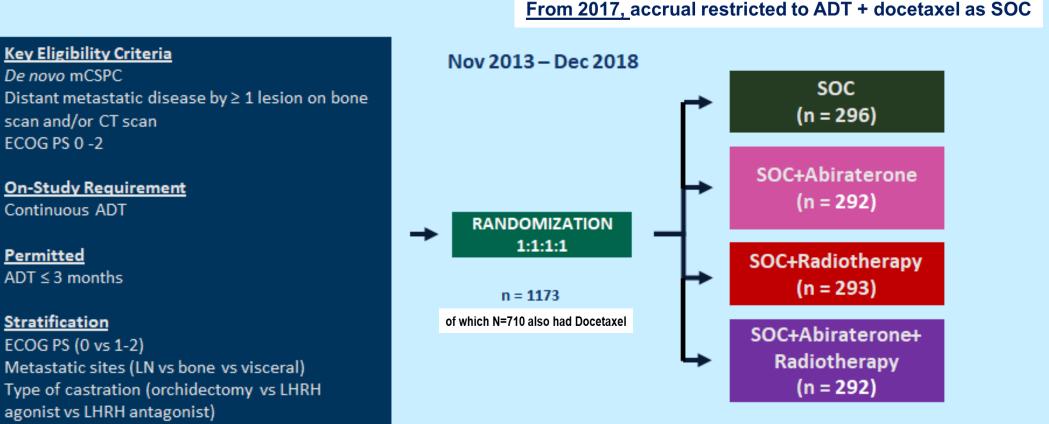
ARASENS trial (ADT/doce ± darolutamide)

 Darolutamide
 651
 645
 637
 627
 608
 593
 570
 548
 525
 509
 486
 468
 452
 436
 402
 267
 139
 56
 9
 0
 0


 Placebo
 654
 646
 630
 607
 580
 565
 535
 510
 488
 470
 441
 424
 402
 383
 340
 218
 107
 37
 6
 1
 0

Smith MR, et al. NEJM 2022;386:1132-42.

ARASENS trial: Two important subsets


VOLUME Subgroups: Overall Survival

RISK Subgroups: Overall Survival

Hussain M, et al. *ASCO GU.* 2023. Hussain M et al. *J Clin Oncol* 2023;41(20):3595-3607.

Triplet Therapy: Design of PEACE-1 (2x2)

ECOG PS, Eastern Cooperative Oncology Group performance status

Bossi A, ASCO Annual 2023

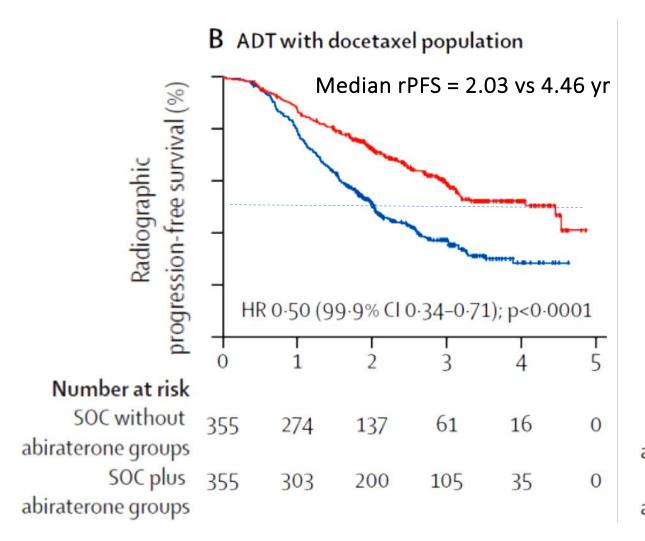
De novo mCSPC

ECOG PS 0 -2

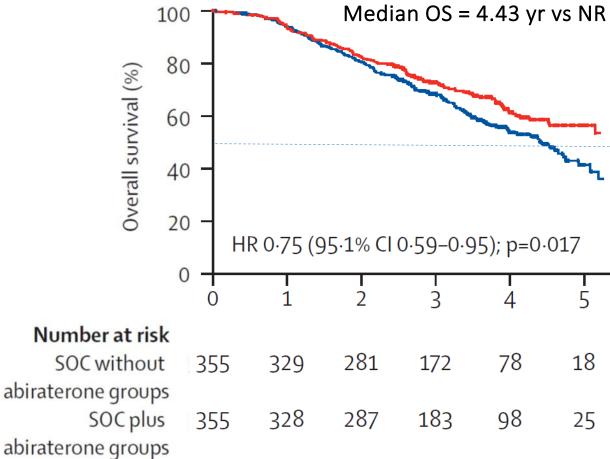
Continuous ADT

 $ADT \leq 3 months$

Stratification


ECOG PS (0 vs 1-2)

Docetaxel (yes vs no)

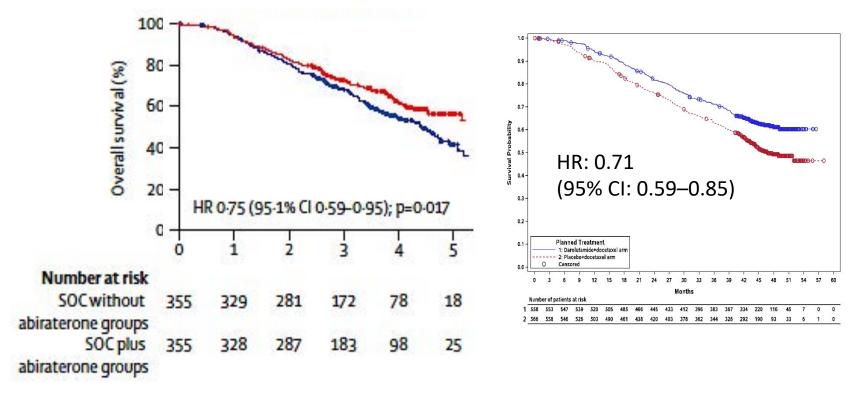

Permitted

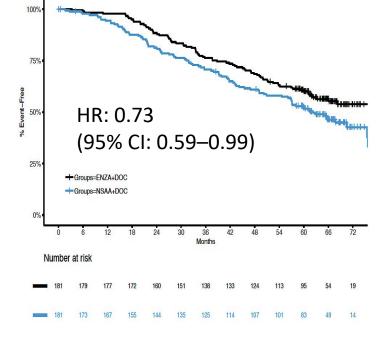
scan and/or CT scan

PEACE-1: ADT/doce + Abiraterone > ADT/doce

D ADT with docetaxel population

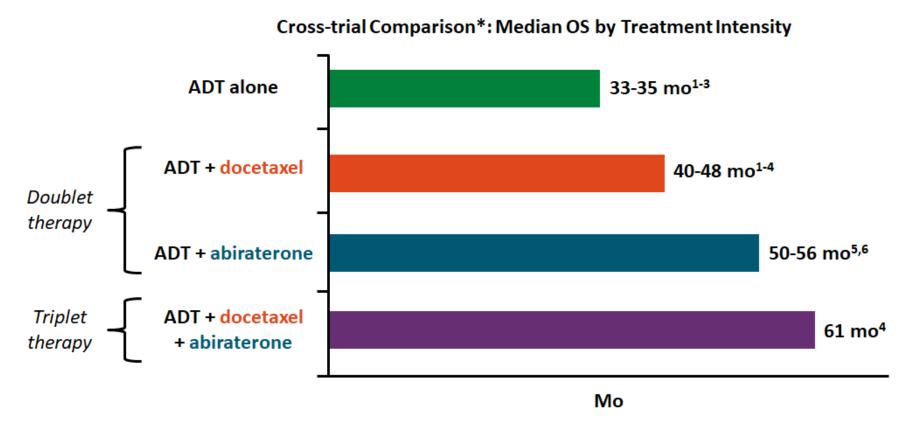
PEACE-1 (Abiraterone): OS Subsets


	SOC plus abiraterone groups, n/N	SOC without abiraterone groups, n/N		Overall survival HR (95·1% Cl)	p value
Radiotherapy					0.86
No				0.84 (0.65-1.08)	
Yes			- -	0.81 (0.63-1.04)	
Docetaxel					0.33
No (not yet SOC)	71/135	81/138		0.85 (0.61-1.17)	
No (physician decision)	36/93	36/96		■ → 1·11 (0·70-1·76)	
Yes (as SOC)	121/355	151/355	8 <u></u>	0.75 (0.59-0.95)	
ECOG performance state	JS				0.39
0	144/412	173/412		0.78 (0.62-0.97)	
1-2	84/171	95/177		0.91 (0.68-1.22)	
ADT type					0.52
GnRH agonist	144/392	171/392		0.77 (0.62-0.97)	
GnRH antagonist	82/189	95/195		0.93 (0.69-1.25)	
Surgical castration	2/2	2/2	-	▶ 0.46 (0.06-3.31)	
Metastatic burden					0.33
High	152/331	183/336	- -	0.77 (0.62-0.96)	
Low	76/252	85/253		0.93 (0.69–1.28)	
Overall	228/583	268/589	1. 	0.82 (0.69-0.98)
		0.0	0.5 1	.0 1.5	
			Favours SOC plus abiraterone	Favours SOC without abiraterone	

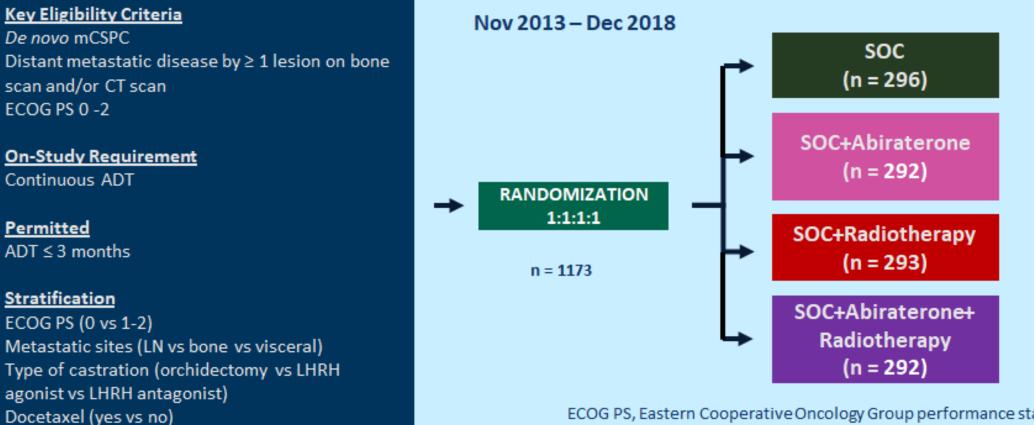

Fizazi K, Lancet 2022

Triplet: Consistent benefit in *de novo* mHSPC

ADT + Doc + Abi > ADT + Doc PEACE-1 (all *De novo*) ADT + Doc + Daro > ADT + Doc ARASENS (*De novo* subset) ADT <u>+ Doc</u> + Enza > ADT <u>+ Doc</u> ENZAMET (*De novo* subset)


M1 Synchronous

Fizazi K Lancet 2022; Smith M NEJM 2022; Davis I ASCO 2022

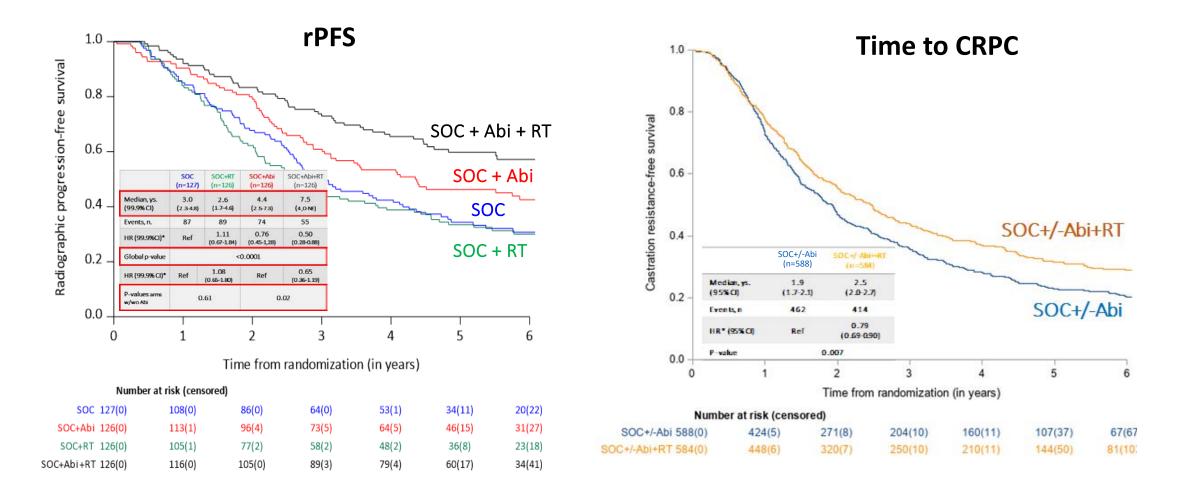

Median OS with Treatment Intensification in *de novo* High-Volume mHSPC

*Cross-trial comparisons have significant limitations. Data are shown here to generate discussion, not directly compare between trials.

1. Kyriakopoulos. JCO. 2018;36:1080. 2. Gravis. Eur Urol. 2018;73:847. 3. Clarke. Ann Oncol. 2019;30:1992. 4. Fizazi. Lancet. 2022;399:1695. 5. Fizazi. Lancet Oncol. 2019;20:686. 6. James. Int J Cancer. 2022;151:422.

Role of Prostatic XRT: PEACE-1 (2x2)

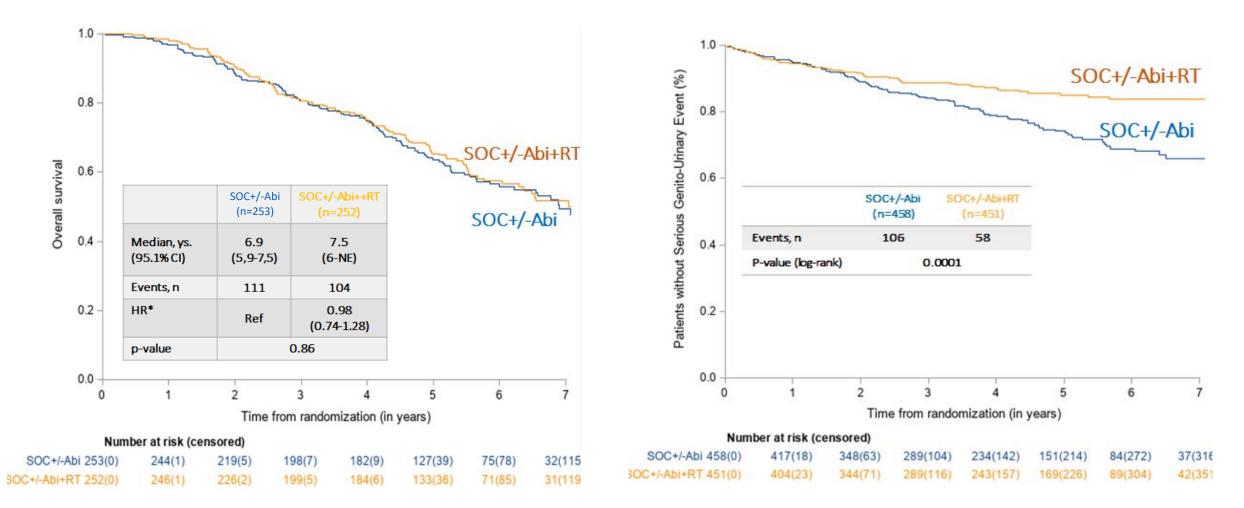
ECOG PS, Eastern Cooperative Oncology Group performance status


Bossi A, ASCO Annual 2023

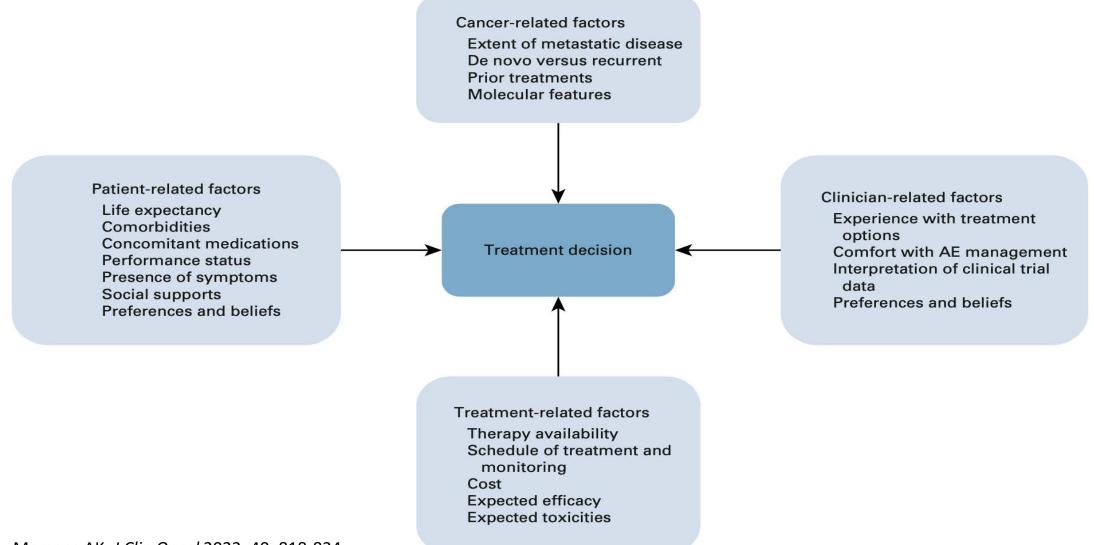
ECOG PS 0 -2

Permitted

Stratification


Role of Prostate XRT: Efficacy outcomes

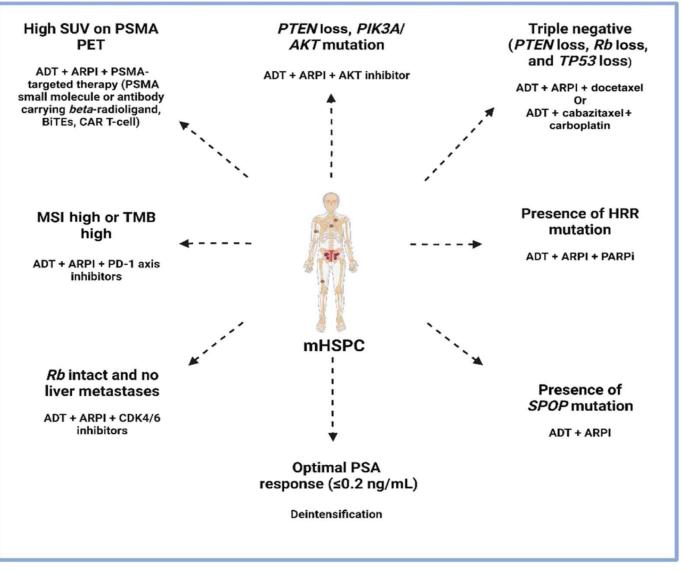
Role of Prostate XRT: OS, and GU events


OS (low-volume pts)

Time to serious GU event

Bossi A, ASCO Annual 2023

Factors Contributing to Treatment Choice



Morgans AK, J Clin Oncol 2022; 40: 818-824.

Selected Ongoing Phase III Trials in mHSPC

Trial	Regimens	Population
ARANOTE (NCT04736199)	ADT ± darolutamide (without docetaxel)	mHSPC, unselected (N = 662)
KEYNOTE-991 (NCT04191096)	ADT + enzalutamide ± pembrolizumab	mHSPC, unselected (N = 1,232)
CAPItello-281 (NCT04493853)	ADT + abiraterone acetate ± capivasertib	<i>De novo</i> mHSPC, PTEN loss on IHC (N = 1000)
CYCLONE 03 (NCT05288166)	ADT + abemaciclib + abiraterone/prednisone	High-risk mHSPC, unselected (N = 900)
TALAPRO-3 (NCT04821622)	Enzalutamide ± talazoparib	mHSPC, HRR gene mutation (N = 550)
AMPLITUDE (NCT04497844)	Abiraterone/prednisone ± niraparib	mHSPC, HRR gene mutation (N = 788)
PSMAddition (NCT04720157)	AR-directed tx + ADT ± ¹⁷⁷ Lu-PSMA-617	mHSPC, PSMA-PET positive (N = 1,126)

The future of mHSPC treatment

Hamid A, et al. Am Soc Clin Oncol Educ Book, 2023, e390166.

Treatment of mHSPC: Conclusions

- Almost no role for ADT alone (except in exceptional cases *e.g.* life expectancy < 2 yrs)
- Doublets of ADT + ARPI are applicable to most (except those with visceral metastasis or other high-risk genomic or clinical features)
- No role of ADT + docetaxel doublet (given superiority of ADT+ doce + ARPI triplets). Triplets have replaced ADT+ docetaxel
- Clearest benefit of triplet: *De novo* high-volume mHSPC
- Prostate XRT may improve OS, delay GU events in low-volume HSPC
- Biomarkers may guide treatment decisions in the near future

MODULE 3: New Considerations with PARP Inhibitors for Metastatic Castration-Resistant Prostate Cancer (mCRPC) – Dr Bryce

Consulting Faculty Questions

Selection of optimal PARP inhibitor for mCRPC; use of PARP inhibitors for patients with non-BRCA mutations

Neil Love, MD

Andrew J Armstrong, MD, ScM

Rana R McKay, MD

QUESTIONS FOR THE FACULTY

Andrew J Armstrong, MD, ScM

For a patient with BRCA-mutated mCRPC, how do you choose among the 3 approved PARP inhibitor-based combinations?

In which situations would you offer one of these combinations to a patient with mCRPC and an HRR mutation other than BRCA? What about patients without a documented HRR gene mutation?

Rana R McKay, MD

Consulting Faculty Questions

PARP inhibitor-associated side effects; risk of second cancer with prolonged exposure to PARP inhibitors

Neil Love, MD

Rana R McKay, MD

QUESTIONS FOR THE FACULTY

Rana R McKay, MD

How do you typically manage the fatigue and anemia associated with PARP inhibitors? What is your threshold for dose reduction?

How do you integrate the increased risk of AML/MDS in clinical decision-making?

What is your usual approach to mutation testing for possible use of a PARP inhibitor for a patient with mCRPC?

Dr Aggarwal	Multigene germline and somatic/NGS
Dr Antonarakis	Multigene germline and somatic/NGS
Dr Bryce	Multigene germline and somatic/NGS
Dr Heath	Multigene germline and somatic/NGS
Dr Sartor	Multigene germline and somatic/NGS
Dr Armstrong	Multigene germline and somatic/NGS
Dr McKay	Multigene germline and somatic/NGS

In addition to BRCA1/2, what other homologous recombination repair (HRR) mutations will lead you to attempt to use a PARP inhibitor for mCRPC? What about LOH?

Dr Aggarwal	PALB2, RAD51
Dr Antonarakis	PALB2, RAD51B/C/D, RAD54L; perhaps CDK12 or really high gLOH (eg, >20%)
Dr Bryce	PALB2, FANCA
Dr Heath	CHEK2, CDK12, BARD1, BRIP1, PALB2, RAD51b, RAD51c, RAD51d
Dr Sartor	PALB2, RAD54L, RAD51 family members
Dr Armstrong	ATM, CDK12, CHEK2, PALB2, RAD51 family members
Dr McKay	PALB2

What was the age of the last patient in your practice with mCRPC who received a PARP inhibitor in combination with ADT and a secondary hormonal agent? What HRR gene mutation did the patient have? Which specific regimen did the patient receive?

	Age	HRR gene mutation	Treatment
Dr Aggarwal	73 years	gBRCA2	Talazoparib + enzalutamide
Dr Antonarakis	62 years	BRCA2 (somatic)	Talazoparib + enzalutamide
Dr Bryce	No patient	Not applicable	Not applicable
Dr Heath	74 years	BRCA2	Talazoparib + enzalutamide
Dr Sartor	59 years	BRCA2	Olaparib + abiraterone
Dr Armstrong	63 years	BRCA2 (somatic)	Olaparib + abiraterone
Dr McKay	65 years	PALB2	Talazoparib + enzalutamide

A 65-year-old man with a <u>germline BRCA2 mutation</u> presents with HSPC metastatic to the bone and receives <u>docetaxel and ADT</u>, experiencing response then progression (PSMA-positive). Regulatory and reimbursement issues aside, what systemic treatment would you most likely recommend?

Dr Aggarwal	Olaparib + abiraterone
Dr Antonarakis	Olaparib + abiraterone
Dr Bryce	Talazoparib + enzalutamide
Dr Heath	Lutetium Lu 177 vipivotide tetraxetan
Dr Sartor	Olaparib + abiraterone
Dr Armstrong	Olaparib + abiraterone
Dr McKay	Talazoparib + enzalutamide

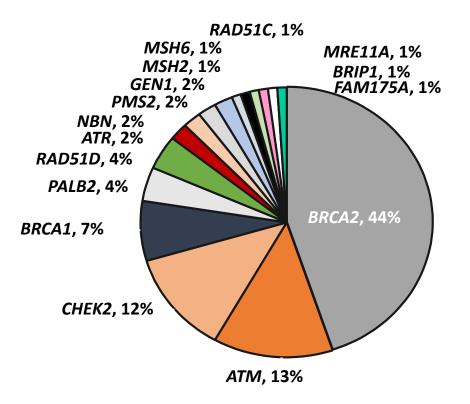
A 65-year-old man with a <u>germline BRCA2 mutation</u> presents with HSPC metastatic to the bone and receives <u>enzalutamide and ADT</u>, experiencing response then progression (PSMA-positive). Regulatory and reimbursement issues aside, what systemic treatment would you most likely recommend?

Dr Aggarwal	Olaparib
Dr Antonarakis	Olaparib
Dr Bryce	Olaparib
Dr Heath	Lutetium Lu 177 vipivotide tetraxetan
Dr Sartor	Olaparib + abiraterone
Dr Armstrong	Olaparib
Dr McKay	Olaparib

New Considerations with the Use of PARP Inhibitors for Metastatic CRPC (mCRPC)

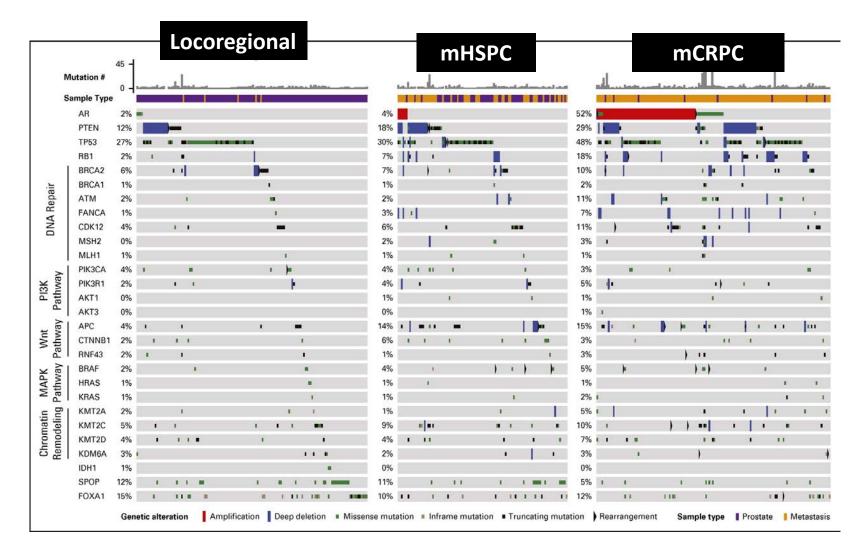
Research to Practice Prostate Cancer Symposium GU ASCO 2024

Alan H. Bryce, M.D.


Chief Clinical Officer, City of Hope Cancer Center, Phoenix Clinical Professor, Department of Medical Oncology and Therapeutics Research Professor of Molecular Medicine, TGen Research Institute

@AlanBryce9

Inherited DNA-repair gene mutations in men with metastatic prostate cancer


Case series of men with metastatic prostate cancer, unselected for family history of cancer or age at diagnosis

Case Series	Description	Patients, n	Patients With Mutations, n (%)
1	Stand Up to Cancer: Prostate Cancer Foundation discovery series	150	15 (10.0)
2	Stand Up to Cancer: Foundation validation series	84	9 (10.7)
3	Royal Marsden Hospital	131	16 (12.2)
4	University of Washington	91	8 (8.8)
5	Weill Cornell Medical College	69	7 (10.1)
6	University of Michigan	43	4 (9.3)
7	Memorial Sloan Kettering Cancer Center	124	23 (18.5)
Total		692	82 (11.8)

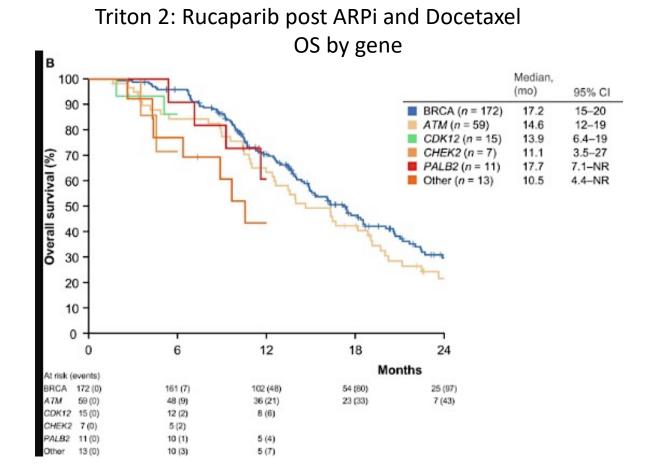
Pritchard. NEJM. 2016;375:443.

Cancer Evolution Mutational Landscape By Disease State

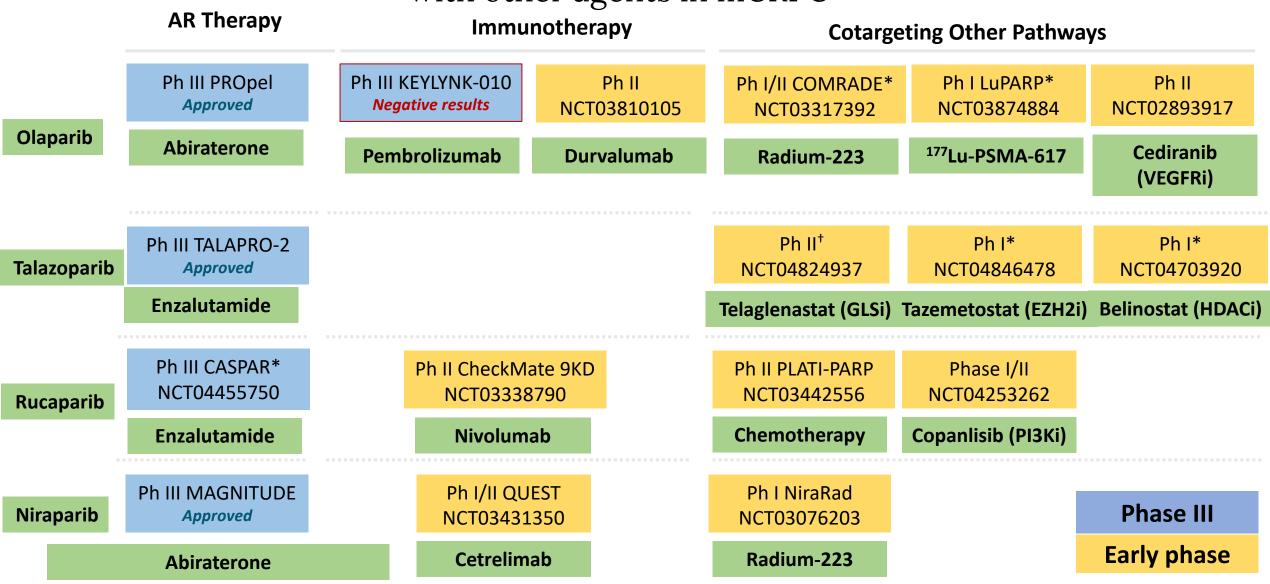
Genomic progression from localized disease to mCRPC

- BRCA1: 1% to 2%
- BRCA2: 6% to 10%
- FANCA: 1% to 7%

Cumulative incidence of pathogenic DDR variants (excluding ATM) ~25%


- 10-15% germline
- 10-15% somatic

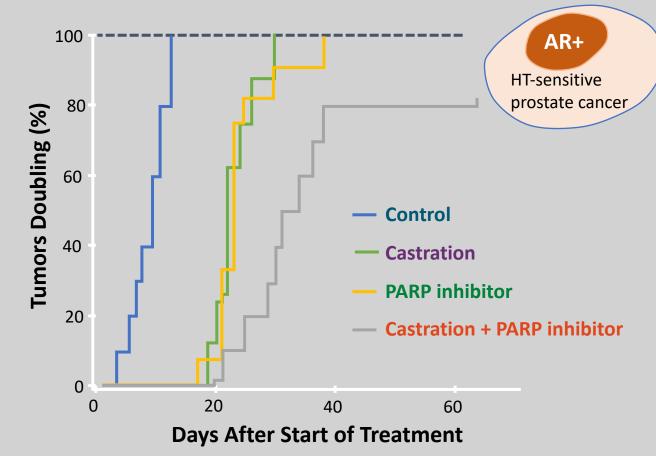
PARP Monotherapy Overall survival


PROFOUND: Olaparib post ARPi, versus ARPi Cohort A: *BRCA1, BRCA2, or ATM*

	Cohort A		Overall population	
	Olaparib n=162	Control n=83	Olaparib n=256	Control n=131
Events, n (%)	91 (56)	57 (69)	160 (63)	88 (67)
Median (95% CI) OS (months)	19.1 (17.4, 23.4)	14.7 (11.9, 18.8)	17.3 (15.5, 18.6)	14.0 (11.5, 17.1)
HR (95% CI)	0.69 (0.50, 0.97)		0.79 (0.61, 1.03)	
P value (2-sided)	0.0175*		0.0515 [†]	
OS rate (%)				
12-month	73	61	67	56
18-month	54	42	47	39
Median follow-up (months) [‡]	21.9	21.0	20.7	20.5

*0.047 alpha spent at final OS analysis; [†]Nominal; [‡]Censored pts. CI, confidence interval; HR, hazard ratio; OS overall survival

Select studies combining PARP Inhibitors with other agents in mCRPC

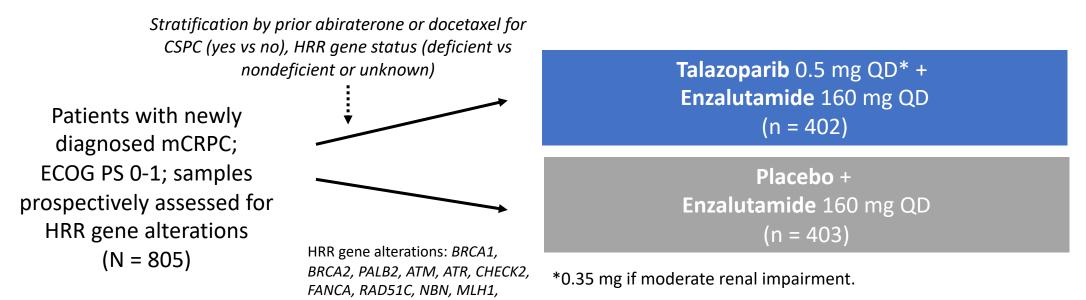


Trials active as of January 2024. *Recruiting. [†]Not yet recruiting.

Rationale for Cotargeting AR Signaling and PARP

- Preclinical evidence for potential synthetic lethality
- PARP-1 interacts with androgen signaling
- Castration-resistant tumor cells exhibit increased PARP-1 activity
- Preclinically, PARP-1—inhibition synergizes with AR-targeted therapy
- NHAs inhibit transcription of several HRR genes, inducing HRR deficiency and increasing sensitivity to PARP inhibition

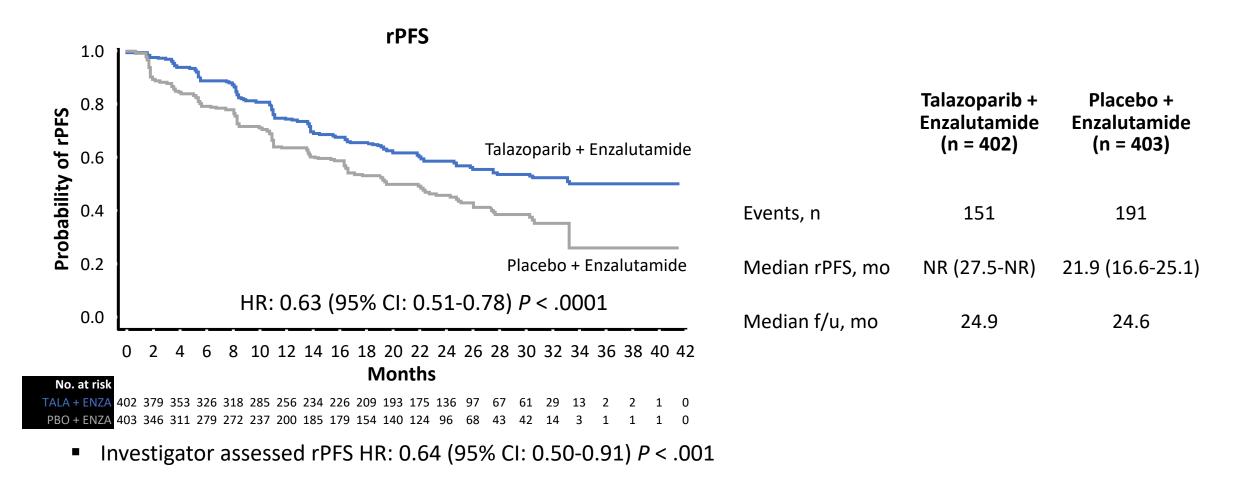
PARP Inhibitor Synergizes With Castration in Mouse Xenograft Models of Prostate Cancer

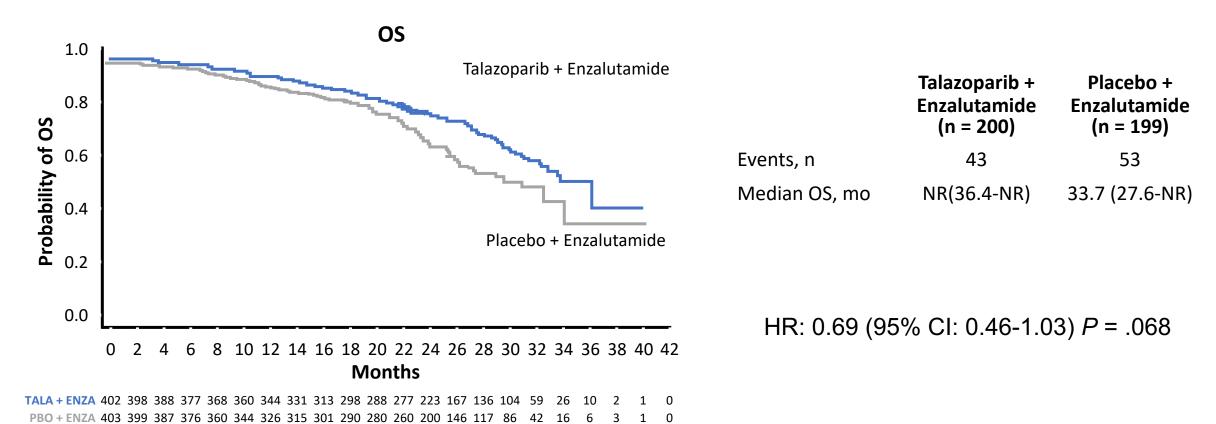

Polkinghorn. Cancer Discov. 2013;3:1245. Schiewer. Cancer Discov. 2012;2:1134. Asim. Nat Commun. 2017;29:374. Li. Sci Signal. 2017;10:eaam7479. Schiewer. Cancer Discov. 2012;2:1134.

TALAPRO-2

First-Line Enzalutamide ± Talazoparib for mCRPC

• Randomized, double-blind, placebo-controlled phase III trial


MRE11A, CDK12


- Primary endpoint: rPFS by BICR
- Key secondary endpoint: OS

 Other secondary endpoints: time to cytotoxic chemotherapy, PFS2 (by investigator), ORR, PROs, safety

TALAPRO-2 rPFS by BICR

TALAPRO-2 Overall survival in HRR MUT+ subgroup

OS data at 24% mature; additional follow-up is needed

Agarwal N et al. The Lancet. 2023. doi.org/10.1016/S0140-6736(23)01055-3

TALAPRO-2 Safety

TEAE, n (%)	Talazoparib + Enzalutamide (n = 398)	Placebo + Enzalutamide (n = 401)
Any TEAE Treatment related	392 (98.0) 357 (90.0)	379 (95.0) 279 (70.0)
Serious AE Treatment related 	157 (39.0) 78 (20.0)	107 (27.0) 11 (3.0)
Any grade 3-4 TEAE	299 (75.0)	181 (45)
Any grade 5 TEAE Treatment related	13 (3.3) 0	18 (4.5) 2 (0.5)
Dose interruption of talazoparib or placebo due to AE	247 (62.0)	84 (21.0)
Dose reduction of talazoparib or placebo due to AE	210 (53.0)	27 (7.0)
Discontinuation of talazoparib or placebo due to AE	75 (19.0)	49 (12.0)

TEAEs of Special Interest

- MDS: 1 patient receiving talazoparib during safety reporting period
- AML: 1 patient receiving talazoparib during follow-up period
- Pulmonary embolism: 10

 (3.0%) patients with
 talazoparib +
 enzalutamide and 3
 (0.7%) patients with
 placebo + enzalutamide

- Median relative dose intensity remained >83.5% in dose-reduced patients
- Most common TEAEs leading to dose reduction: anemia (43.0%), neutropenia (15.0%), thrombocytopenia

TALAPRO-2 HRR-Deficient: rPFS by BICR by Selected Gene Subgroups

Broad treatment effect with talazoparib plus enzalutamide seen across gene subgroups

	Enzalutamide	Enzalutamide				Ľ.		
Subgroup	Even	ts/N	Median, mo				HR (95% CI)	2-Sided P Valu
All HRR-deficient	65/198	104/197	NR/13.8			•	0.44 (0.32–0.60)	<0.0001
Only BRCA1	2/8	5/9	20.0/11.7	·	•		0.17 (0.02–1.51)	0.074
Only BRCA2	11/55	40/60	NR/11.0		⊢ ●−	-	0.19 (0.10–0.38)	<0.0001
Only PALB2	3/6	4/5	NR/8.6		μ		0.56 (0.12–2.51)	0.44
Only CDK12	12/28	18/30	21.9/13.8				0.49 (0.23–1.02)	0.055
Only ATM	12/35	7/22	NR/27.7		ŀ		0.76 (0.30–1.94)	0.58
Only CHEK2	8/24	8/24	22.1/NR				0.90 (0.34–2.39)	0.83
BRCA cluster	15/71	54/84	NR/11.0		⊢ ●−	1	0.20 (0.11–0.36)	<0.0001
PALB2 cluster	3/7	6/8	NR/8.3			•	0.46 (0.12–1.87)	0.27
CDK12 cluster	13/35	23/36	21.9 /13.8			•	0.38 (0.19–0.76)	0.0045
ATM cluster	16/43	9/29	27.9 /27.7			·	0.90 (0.39–2.04)	0.80
Other gene cluster	18/42	12/40	22.1/NR				1.51 (0.73–3.15)	0.26
				0.01	0.1	1.0	10.0	

Favors Talazoparib + Enzalutamide Favors Placebo + Enzalutamide

Gene clustering alteration dominance hierarchy is any BRCA1/2 alteration (BRCA cluster), then any PALB2 (PALB2 cluster), then any CDK12 (CDK12 cluster), then any ATM (ATM cluster), then any of all other HRR12 genes (with each patient counted only once).

2023 ASCO ANNUAL MEETING #ASCO23

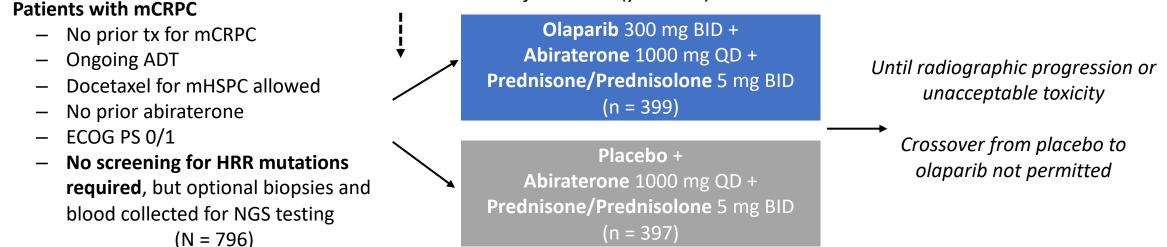
PRESENTED BY: Professor Karim Fizazi

Talazonarih +

Placebo

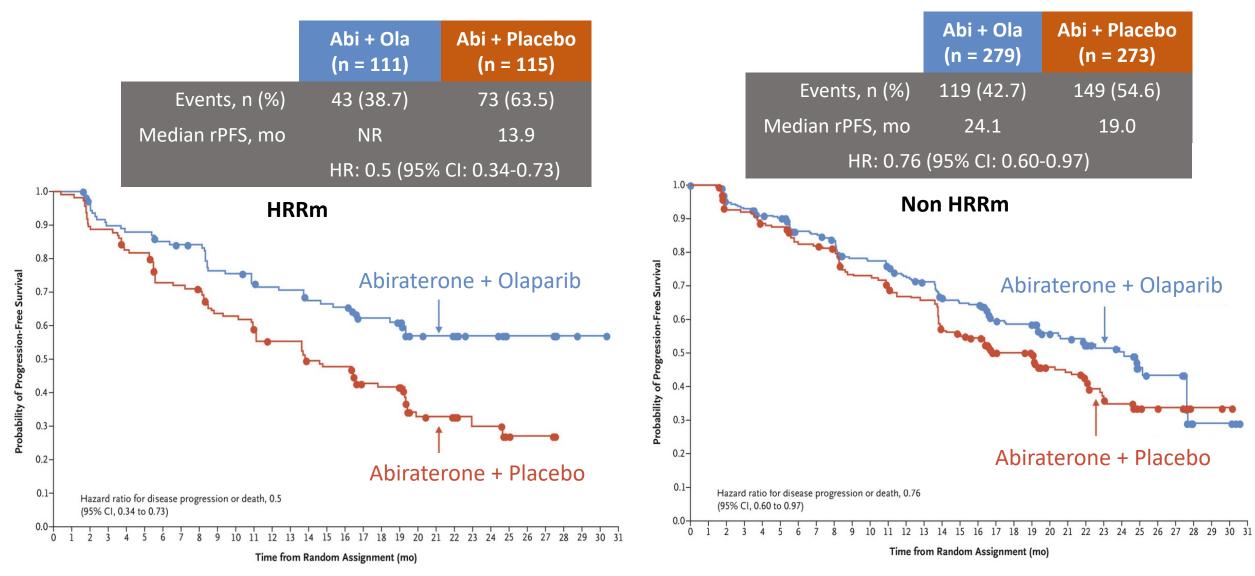
Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Reproduced with Permission Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.


Hierarchy

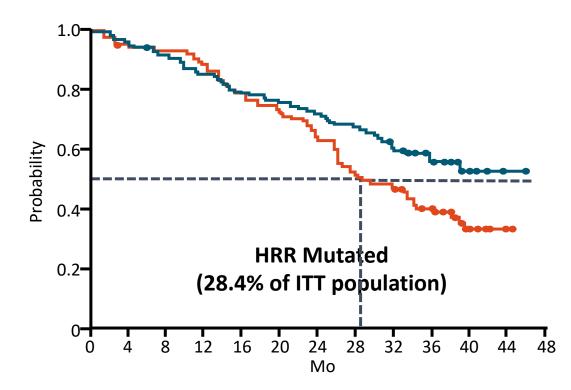
PROpel

First-line Abiraterone/Prednisone ± Olaparib in mCRPC


International, randomized, double-blind phase III study

Stratified by metastatic disease sites (bone only vs visceral vs other); taxane for mHSPC (yes vs no)

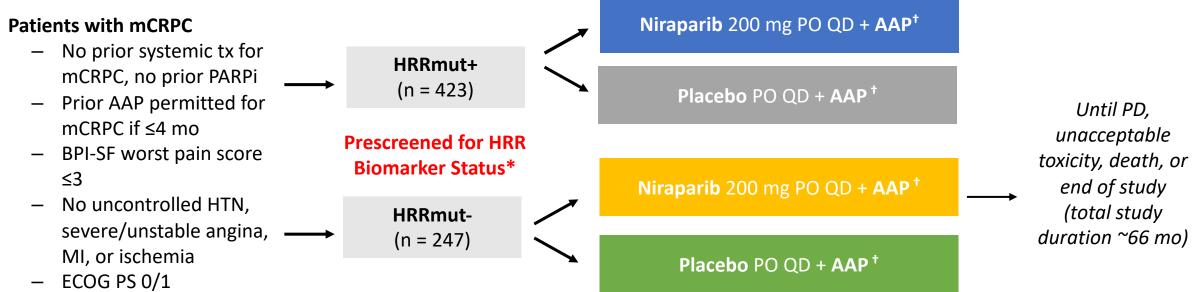

- Primary endpoint: rPFS by investigator
- Key secondary endpoints: OS, time to subsequent therapy or death, PFS2, ORR, HRRm prevalence (retrospectively assessed), HRQoL, safety


PROpel rPFS by HRR status

Clarke. NEJM Evid. 2022;1.

PROpel OS by HRR status

Clarke. ASCO GU 2023. Abstr LBA16.



AE, n (%)	Abiraterone + Olaparib (n = 398)	Abiraterone + Placebo (n = 396)	
Any AE	389 (97.7)	380 (96.0)	
Any AE grade ≥3	222 (55.8)	171 (43.2)	
Death due to AE	26 (6.5)	20 (5.1)	
 Any AE leading to: Dose interruption of olaparib or placebo Dose reduction of olaparib or placebo Discontinuation of olaparib or placebo Discontinuation of abiraterone 	195 (49.0) 90 (22.6) 69 (17.3) 45 (11.3)	112 (28.3) 24 (6.1) 34 (8.6) 37 (9.3)	
2 cases of MDS/AML in abiraterone + olaparib arm	primary malignancies,	HRQoL assessed by FACT-P was similar between treatment arms	

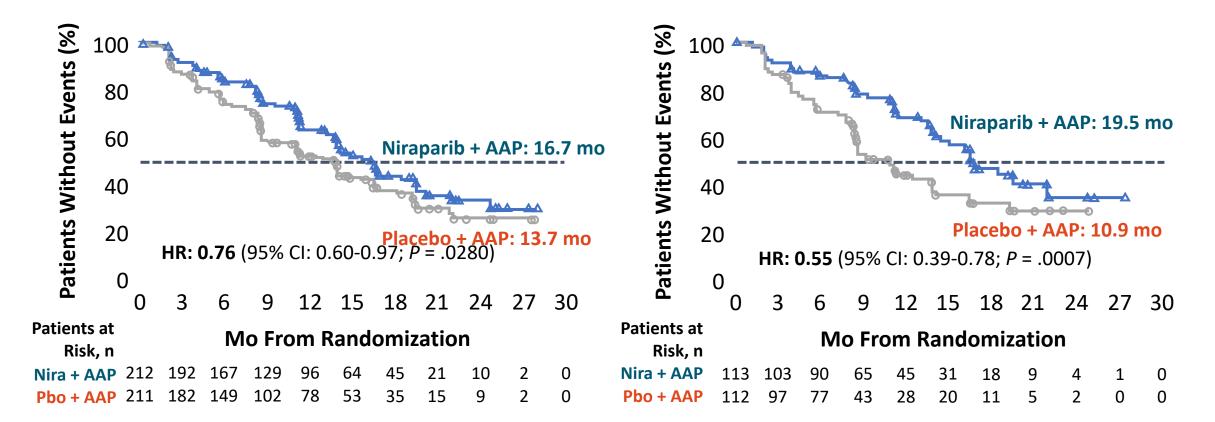
MAGNITUDE

First-line Abiraterone/Prednisone ± Niraparib in mCRPC

• International, randomized, double-blind phase III trial

(N = 670)

*HRRmut+ per tissue and/or plasma assays for *ATM, BRCA1, BRCA2, BRIP1, CDK12, CHEK2, FANCA, HDAC2, PALB2*. [†]AAP: abiraterone acetate 1000 mg PO QD + prednisone 10 mg PO QD.


 Primary endpoint: radiographic PFS by central review Secondary endpoints: OS, time to symptomatic progression, time to cytotoxic chemotherapy

MAGNITUDE Primary Endpoint rPFS by Central Review

HRRmut+ Cohort Median follow-up: 26.8 mo

BRCA1/2-Mutated Cohort

Median follow-up: 24.8 mo

Chi. J Clin Oncol. 2023; JCO2201649. Chi. ASCO GU 2022. Abstr 12.

MAGNITUDE TEAEs in HRR MUT+ Cohort

Safety Outcome, n (%)	Niraparib + AAP (n = 212)	Placebo + AAP (n = 211)
All TEAEs Drug related 	211 (99.5) 165 (77.8)	203 (96.2) 121 (57.3)
Grade 3/4 TEAEs	153 (72.1)	104 (49.2)
Serious AEs Drug related	93 (43.9) 24 (11.3)	61 (28.9) 6 (2.8)
Dose reduction due to AE	42 (20.3)	7 (3.8)
Discontinuation of niraparib/placebo due to AE	23 (15.1)	10 (5.7)
All deaths within 30 d of last dose	29 (13.7)	23 (10.9)
 Death due to prostate cancer 	10 (4.7)	14 (6.6)
AE	19 (9.0)	9(4.3)

- AEs most frequently leading to dose reduction in niraparib arm:
- Anemia, 50%
- Thrombocytopenia, 23.1%
- Median relative dose intensity in niraparib arm: 99%

MAGNITUDE: Common TEAEs of Clinical Interest in HRR MUT+ Cohort

TEAEs Occurring in >10% of Niraparib	Niraparib + A	AP (n = 212)	Placebo + AAP (n = 211)	
Arm or of Clinical Interest, n (%)	All Grades	Grade ≥3	All Grades	Grade ≥3
Hematologic				
 Anemia 	106 (50.0)	64 (30.1)	48 (22.7)	18 (8.5)
 Thrombocytopenia 	49 (23.1)	16 (2.4)	20 (9.5)	5 (2.4)
 Neutropenia 	32 (15.1)	14 (6.6)	15 (7.1)	5 (2.3)
 AML/MDS 	0	0	1 (0.5)	1 (0.5)
Cardiovascular				
 Hypertension 	70 (33.0)	33 (15.6)	47 (22.3)	26 (12.3)
 Arrhythmia 	27 (12.7)	6 (2.8)*	12 (5.7)	3 (1.4)
Cardiac failure	4 (1.9)	3 (1.4)*	4 (1.9)	1 (0.5)
 Ischemic heart disease 	4 (1.9)	4 (1.9)	8 (3.8)	6 (2.8) ⁺
General disorders				
 Fatigue 	63 (29.7)	8 (3.7)	40 (19.0)	11(2.5)
Gastrointestinal				
 Constipation 	70 (33.0)	1(0.5)	33 (15.6)	
Nausea	52 (24.5)	1 (0.5)	31 (14.7)	0
Hepatotoxicity	25 (11.8)	4 (1.9)	26 (12.3)	10 (4.7)
Cerebrovascular disorders	6 (2.8)	2 (0.9)	2 (0.9)	1 (0.5)*

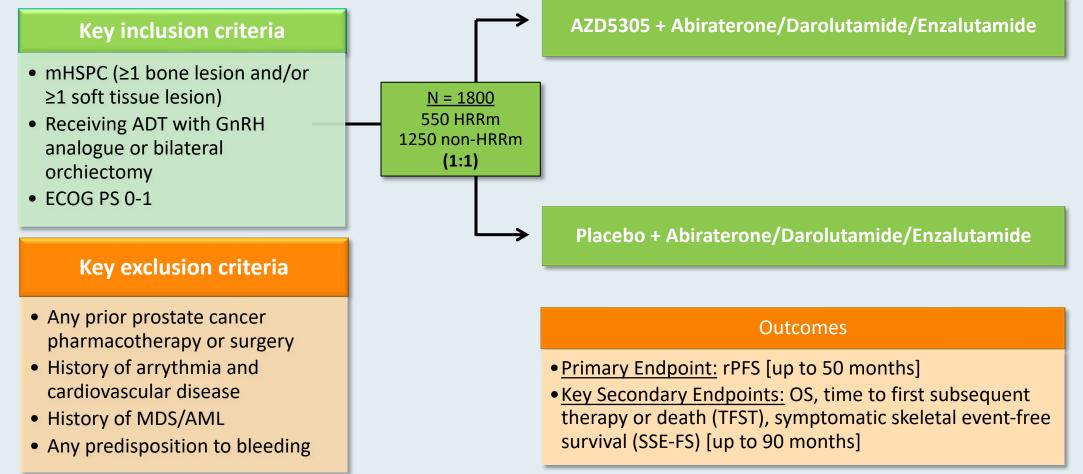
Chi. J Clin Oncol. 2023; JCO2201649. Chi. ASCO GU 2022. Abstr 12.

Summary of Completed Trials with PARP Inhibitors and AR Signaling Inhibitors

	PROpel	MAGNITUDE	TALAPRO-2
Radiographic PFS			
All-comers, ITT population	24.8 vs 16.6 mo HR 0.66, 95% Cl 0.54–0.81	Not assessed	NR vs 21.9 mo HR 0.63, 95% Cl 0.51–0.78
HRR gene aberration present	NR vs 13.9 mo HR 0.50, 95% CI 0.34–0.73	HR 0.76, 95% CI 0.60–0.97	HR 0.46, 95% CI 0.30–0.70
HRR gene aberration absent/unknown	24.1 vs 19.0 mo HR 0.76, 95% Cl 0.60–0.97	HR 1.09, 95% CI 0.75–1.57	HR 0.70, 95% CI 0.54–0.89
BRCA1/2 gene aberration	NR	HR 0.55, 95% CI 0.39–0.78	NR
Overall survival			
ITT population	47.9% at maturity 42.1 vs 34.7 mo HR 0.81, 95% CI 0.67–1.00	Not assessed	31% at maturity HR 0.89, 95% CI 0.69–1.14
HRR gene aberration present	NR vs 28.5 mo HR 0.66, 95% Cl 0.45–0.95	27% at maturity HR 1.01, 95% CI 0.75–1.36	NR
HRR gene aberration absent	42.1 vs 38.9 mo HR 0.89, 95% Cl 0.70–1.14	NR	NR

Safety Summary

	PROPEL Olaparib + Abiraterone	MAGNITUDE Niraparib + Abiraterone	TALAPRO-2 Talazoparib + Enzaluatmide
Select G3-4 Toxicities % (all grades %)			
Anemia <mark>Transfusion Rate</mark>	16.3 (50) <mark>18%</mark>	30.1 (50.0) <mark>27.4%</mark>	46 (66) <mark>39%</mark>
Fatigue	2.5 (39.0)	3.3 (29.7)	4 (34)
Nausea	0.3 (31.0)	0.5 (24.5)	<1 (21)
Hypertension	3.8 (15.0)	33 (15.6)	5 (14)
Pulmonary Embolism	7.3%	1.9%	2.5%
Outcomes			
PARP interruption	<mark>49%</mark>	<mark>49.1%</mark>	<mark>62.0%</mark>
PARP dose reduction	<mark>22.6%</mark>	<mark>20.3%</mark>	<mark>53.0%</mark>
PARP discontinuation	<mark>17.3%</mark>	<mark>15.1%</mark>	<mark>19.0%</mark>


- Toxicities are largely a class effect of PARPi's. Myelosuppression and GI toxicity are most prominent.
- AE's of special interest include MDS/AML and PE.

Ongoing Ph3 studies of PARPi in mHSPC

Trial	Design	Treatment	Control	Setting	Primary endpoint	Estimated/actual enrollment
AMPLITUDE NCT04497844	Phase-III randomized controlled trial	Niraparib + Abiraterone Acetate + Prednisone	Abiraterone Acetate + Prednisone	mHSPC Deleterious germline or somatic homologous recombination repair gene mutations Previous docetaxel in mHSPC <i>allowed</i>	rPFS	778
TALAPRO-3 NCT04821622	Phase-III randomized controlled trial	Talazoparib + Enzalutamide	Enzalutamide	mHSPC Deleterious germline or somatic homologous recombination repair gene mutations Previous docetaxel in mHSPC <i>not</i> <i>allowed</i>	rPFS	550
	AMPLITU	DE		TALAPRO	-3	
Volume	ed 778 1:1	Primary en rPFS		DDR gene mutated 550 mHSPC	zoparib + alutamide Pri alutamide	mary endpoint rPFS

EvoPAR-PR01: Phase III Study of AZD5305 vs Placebo in mHSPC Receiving Physician's Choice of New Hormonal Agents

Trial Identifier: NCT06120491

mHSPC = metastatic hormone-sensitive prostate cancer; ADT = androgen deprivation therapy; GnRH = gonadotropin releasing hormone; ECOG PS = Eastern Cooperative Oncology Group Performance Status; HRRm = homologous recombination repair mutated; MDS = myelodysplastic syndrome; AML = acute myeloid leukemia; rPFS = radiographic progression-free survival OS = overall survival

www.clinicaltrials.gov; Accessed January 2024.

Summary

- PARP inhibitors continue to prove effective in patients with metastatic PC harboring HRR mutations
- Combinations with ARPi's are manageable and effective
- Toxicities vary across the different combinations and require careful management
- Data in earlier lines of therapy are expected in the near future

MODULE 4: Role of Novel Radiopharmaceuticals in Therapy for mCRPC – Dr Sartor

Consulting Faculty Questions

Optimal candidates for lutetium Lu 177 vipivotide tetraxetan (¹⁷⁷Lu-PSMA-617); monitoring disease and treatment options after ¹⁷⁷Lu-PSMA-617

Neil Love, MD

Andrew J Armstrong, MD, ScM

Rana R McKay, MD

QUESTIONS FOR THE FACULTY

Andrew J Armstrong, MD, ScM

Rana R McKay, MD

Do you use PSMA-PET characteristics to identify patients who may fare better with lutetium Lu 177 vipivotide tetraxetan than with cabazitaxel?

How do you approach follow-up imaging for patients receiving PSMA radioligand therapy? Do you follow with PSMA-PET or conventional imaging?

Is there any role for re-treatment with lutetium Lu 177 vipivotide tetraxetan? What about the combination of lutetium Lu 177 vipivotide tetraxetan with other systemic therapies?

Consulting Faculty Questions

Prevention and management of side effects associated with lutetium Lu 177 vipivotide tetraxetan

Neil Love, MD

Rana R McKay, MD

Andrew J Armstrong, MD, ScM

QUESTIONS FOR THE FACULTY

How do you approach radiation protection precautions for patients with external urine collection devices who are receiving lutetium Lu 177 vipivotide tetraxetan?

Andrew J Armstrong, MD, ScM

What strategies do you use to prevent and manage the xerostomia and dry eye associated with lutetium Lu 177 vipivotide tetraxetan?

Rana R McKay, MD

Consulting Faculty Questions

Sequencing lutetium Lu 177 vipivotide tetraxetan and radium Ra 223 dichloride

Neil Love, MD

Andrew J Armstrong, MD, ScM

Rana R McKay, MD

QUESTIONS FOR THE FACULTY

Andrew J Armstrong, MD, ScM

Rana R McKay, MD

In which clinical situations are you currently prioritizing radium-223 for patients with mCRPC?

Do you generally use lutetium Lu 177 vipivotide tetraxetan or radium-223 first for patients with PSMA-positive mCRPC and bone-only metastases?

What investigational radioligand therapies with targets beyond PSMA seem most promising?

What was the age of the last patient in your practice with mCRPC who received lutetium Lu 177 vipivotide tetraxetan? What prior treatment or treatments did the patient receive?

	Age	Prior treatment
Dr Aggarwal	72 years	Abiraterone, docetaxel
Dr Antonarakis	78 years	ADT, abi, docetaxel, daro
Dr Bryce	78 years	ADT, abi, docetaxel
Dr Heath	72 years	Enzalutamide, docetaxel
Dr Sartor	62 years	ADT/abi/enza/docetaxel
Dr Armstrong	66 years	Abi, enza, docetaxel, sip-T
Dr McKay	83 years	Docetaxel

A 65-year-old man receiving <u>ADT and abiraterone/prednisone</u> for mHSPC develops new bone metastases (PSMA-positive). Genetic testing is negative for HRR mutations. Regulatory and reimbursement issues aside, what systemic treatment would you most likely recommend?

Dr Aggarwal	Docetaxel
Dr Antonarakis	Docetaxel
Dr Bryce	Docetaxel
Dr Heath	Lutetium Lu 177 vipivotide tetraxetan
Dr Sartor	Lutetium Lu 177 vipivotide tetraxetan
Dr Armstrong	Docetaxel or radium-223
Dr McKay	Docetaxel

Regulatory and reimbursement issues aside, what would you generally recommend first for a patient with PSMA-positive mCRPC (chemotherapy or ¹⁷⁷Lu-PSMA-617)?

Dr Aggarwal	Chemotherapy
Dr Antonarakis	Lutetium Lu 177 vipivotide tetraxetan
Dr Bryce	Lutetium Lu 177 vipivotide tetraxetan
Dr Heath	Lutetium Lu 177 vipivotide tetraxetan
Dr Sartor	Lutetium Lu 177 vipivotide tetraxetan
Dr Armstrong	Lutetium Lu 177 vipivotide tetraxetan
Dr McKay	Chemotherapy

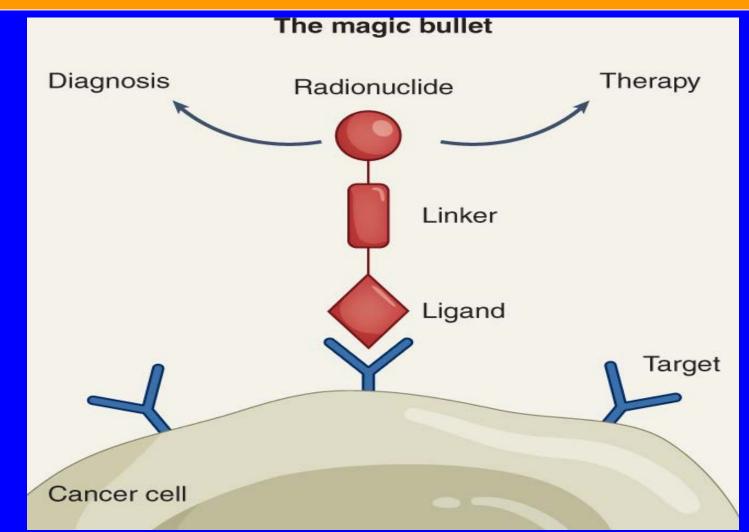
Regulatory and reimbursement issues aside, what would you generally prefer for a patient with PSMA-positive mCRPC and bone-only metastases (radium-223 or ¹⁷⁷Lu-PSMA-617)?

Dr Aggarwal	Lutetium Lu 177 vipivotide tetraxetan
Dr Antonarakis	Lutetium Lu 177 vipivotide tetraxetan
Dr Bryce	Lutetium Lu 177 vipivotide tetraxetan
Dr Heath	Lutetium Lu 177 vipivotide tetraxetan
Dr Sartor	Lutetium Lu 177 vipivotide tetraxetan
Dr Armstrong	Lutetium Lu 177 vipivotide tetraxetan
Dr McKay	Lutetium Lu 177 vipivotide tetraxetan

Based on current clinical trial data and your personal experience, to what extent do you believe the xerostomia associated with lutetium Lu 177 vipivotide tetraxetan is problematic for patients?

Dr Aggarwal	Not very problematic
Dr Antonarakis	Somewhat problematic
Dr Bryce	Not very problematic
Dr Heath	Not very problematic
Dr Sartor	Not very problematic
Dr Armstrong	Somewhat problematic
Dr McKay	Not very problematic

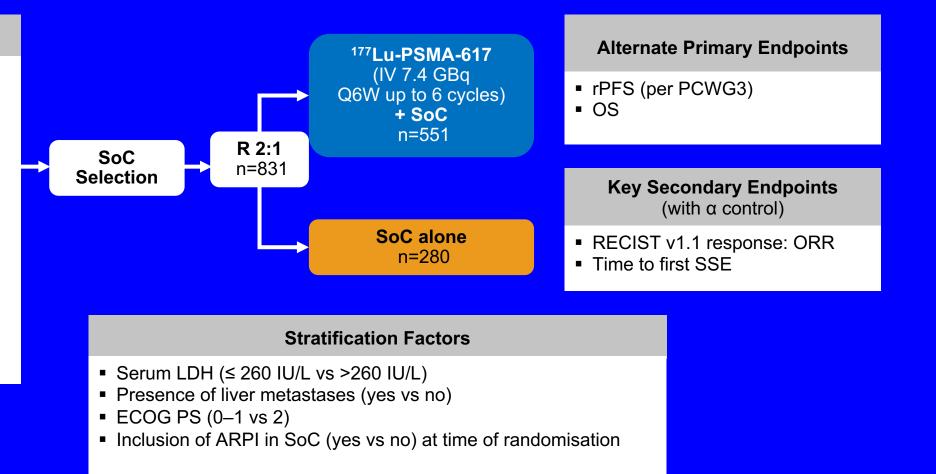
What strategies do you use to prevent and manage the xerostomia associated with lutetium Lu 177 vipivotide tetraxetan?


Dr Aggarwal	Mouth rinse 3 to 4 times per day
Dr Antonarakis	Saliva supplements, mouth rinse
Dr Bryce	Hydration
Dr Heath	Hydration, OTC medications for dry mouth
Dr Sartor	Water and mints
Dr Armstrong	Ice packs to salivary glands (preventive), hydration pre- and post-therapy and long term, chewing gum
Dr McKay	Hydration, mouth rinse

Role of novel radiopharmaceuticals in prostate cancer

> Oliver Sartor, MD Chief, GU Cancers Disease Group Director, Radiopharmaceutical Trials Mayo Clinic

Theranostics: See it.... Treat it....Love it!

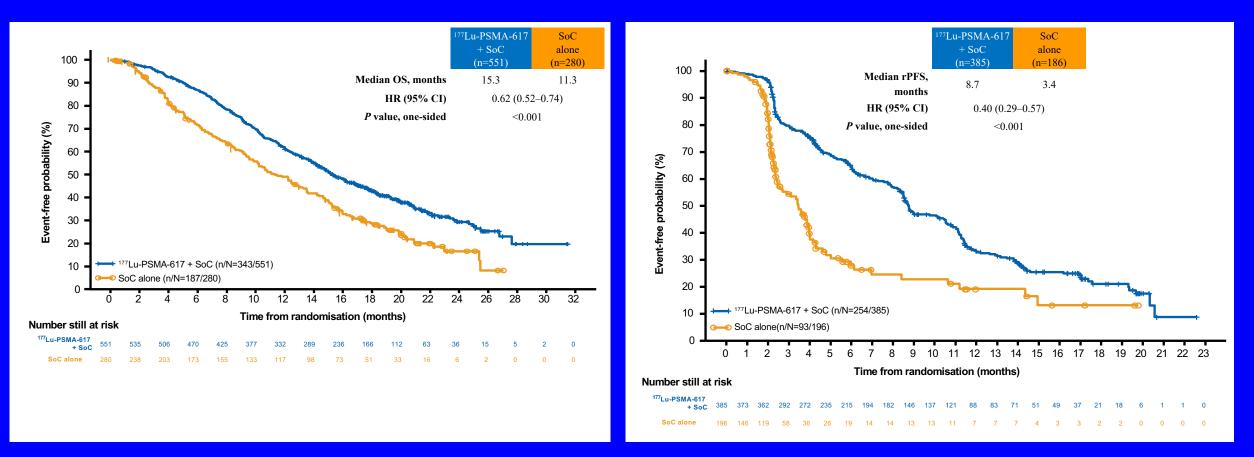

Cell surface target, a ligand, a linker, and an isotope

VISION: ¹⁷⁷Lu-PSMA-617 Phase III trial

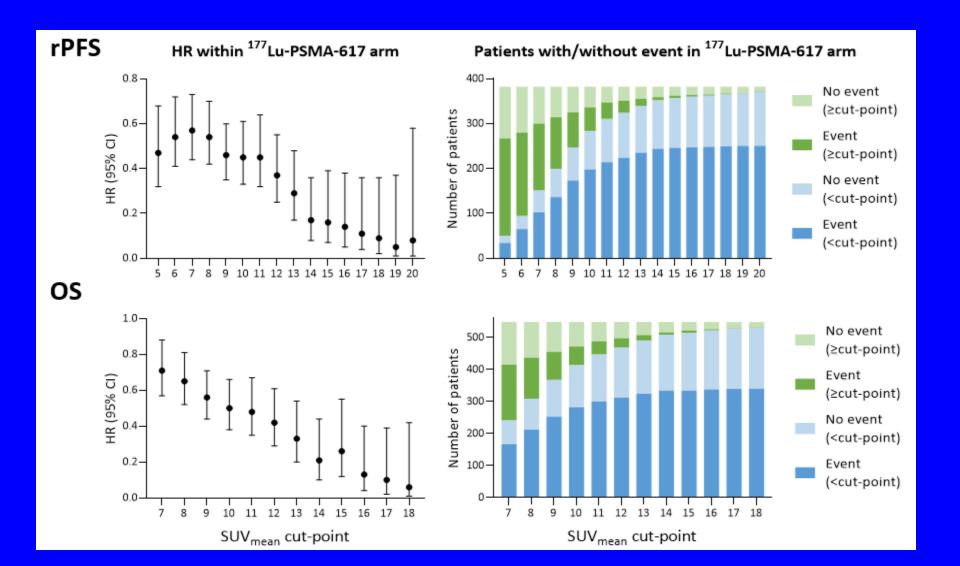
Study Design

Population

- Progressive mCRPC
- PSMA-positive with ⁶⁸Ga-PSMA-11 PET/CT scan (uptake more than liver)
- Previous taxane (≤2 regimens) therapy and previous abiraterone/ enzalutamide^a (≥1 regimen)
- ECOG PS 0–2
- Life expectancy >6 months



VISION: ¹⁷⁷Lu-PSMA-617 Phase III trial

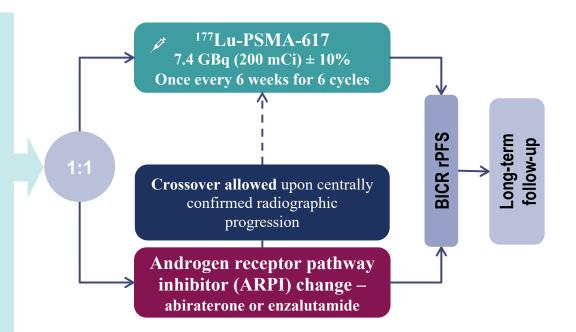

VISION met both primary endpoints of OS and rPFS Sartor et al NEJM 2021

OS: HR 0.62 (95% CI 0.52-0.74)

rPFS: HR 0.40 (95% CI 0.29-57)

SUV^{mean} on baseline PSMA PET predicts rPFS and OS Kuo et al. EANM 2023

Overall Survival Nomogram from VISION

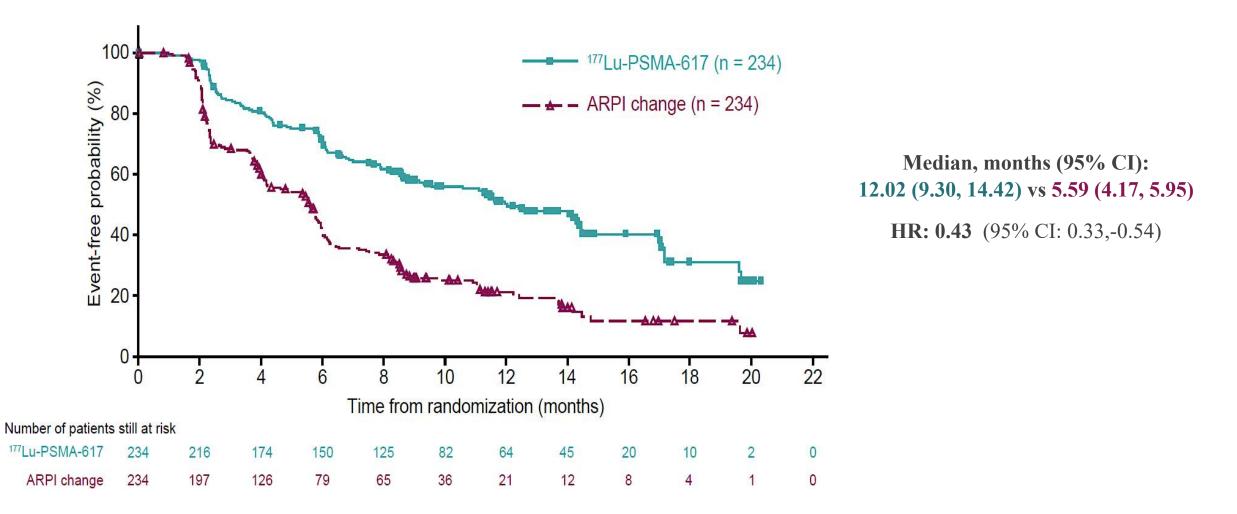

Herrmann et al. ASCO 2023

Points	0 10 20 30 40 50 60 70 80 90 100
Whole-body SUV _{max}	350 300 250 200 150 100 50 0
Time since prostate cancer diagnosis (years)	26 22 18 14 10 6 4 2 0
Opioid analgesic use	Ň
Aspartate aminotransferase (U/L)	04090
Hemoglobin (g/L)	160 150 140 130 120 110 100 90 80 70
Lymphocyte count (× 10 ⁹ cells/L)	3.5 3 2.5 2 1.5 1 0.5 0
Presence of PSMA-positive lesions in lymph nodes	мY
Lactate dehydrogenase (U/L)	≥ 280
Alkaline phosphatase (U/L)	< 140
Neutrophil count (× 10 ⁹ cells/L)	<7
Total points	0 50 100 150 200 250 300
12-month survival probability	
24-month survival probability	0.9 0.8 0.7 0.5 0.3 0.1

PSMAfore: phase 3, randomized, study of ¹⁷⁷Lu-PSMA-617 versus ARPI change in taxane-naive patients with PSMA-positive mCRPC

Eligible patients

- Adults with confirmed progressive mCRPC
- ≥ 1 PSMA-positive metastatic lesion on [⁶⁸Ga]Ga-PSMA-11 PET/CT and no PSMAnegative lesions that meet specific size exclusion criteria
- Progressed once on prior second-generation ARPI
- Candidates for change in ARPI
- Taxane-naive (except adjuvant/neoadjuvant
 - > 12 months ago)
- No prior treatment with immunotherapy (except sipuleucel-T) or systemic radiotherapy (within 6 months)
- Not candidates for PARP inhibition
- ECOG performance status 0–1



Randomization stratification factors

- Prior ARPI setting (castration-resistant vs hormone-sensitive prostate cancer)
- BPI-SF worst pain intensity score (0-3 vs > 3)

Updated rPFS analysis for PSMAfore

Sartor et al. ESMO 2023

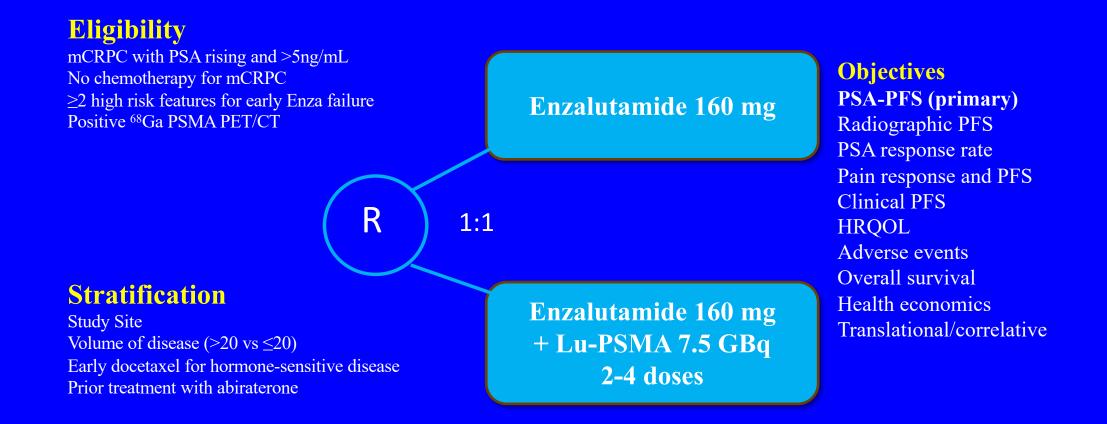
Intent-to-treat analysis OS for PSMAfore

Sartor et al. ESMO 2023

HR: 1.16 (95% CI: 0.83, 1.64) ¹⁷⁷Lu-PSMA-617 **ARPI change** (n = 234)(n = 234)100 Median follow-up **12.72 months 13.08** months Event-free probability (%) 69 (29.5%)^a **65 (27.8%)** Events, n 80 Median OS **19.25 months 19.71** months (95% CI) (16.95, NE) (17.81, NE) 60 Crossover: 123/146 (84.2%) patients who discontinued with 40 radiographic progression 20 ¹⁷⁷Lu-PSMA-617 **ARPI** change 0 12 18 0 24 30 6

Time from randomization (months)

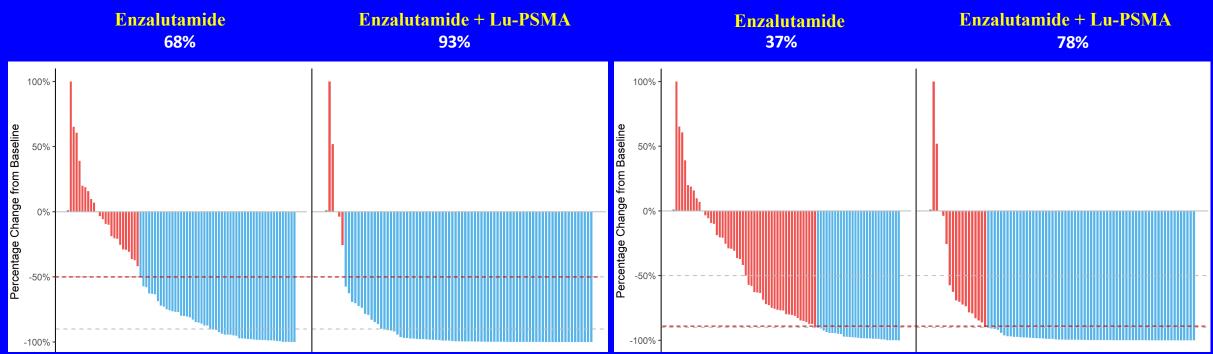
¹⁷⁷Lu-PNT2002 Demonstrates Initial Safety and Efficacy for mCRPC Press Release: December 18, 2023


"Topline results from the phase 3 SPLASH trial (NCT04647526) show initial safety and efficacy of ¹⁷⁷Lu-PNT2002, an investigational prostate-specific membrane antigen (PSMA)-targeted radioligand therapy, in patients with metastatic castration-resistant prostate cancer (mCRPC) who have progressed following treatment with androgen receptor pathway inhibitor (ARPI).

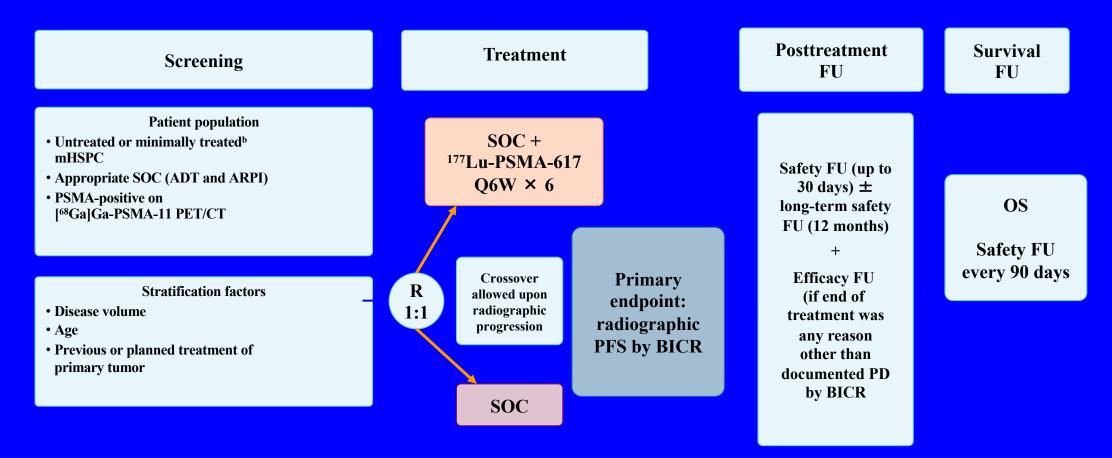
The trial met its primary end point of radiographic progression-free survival (rPFS) per blinded independent central review and demonstrated a favorable safety profile in this patient population.

Overall, ¹⁷⁷Lu-PNT2002 demonstrated a median rPFS of 9.5 months, compared with 6.0 months among patients in the control arm, who were treated with an ARPI. This translates to a 29% reduction in the risk of radiographic progression or death with ¹⁷⁷Lu-PNT2002 (HR, 0.71; P = 0.0088)."

ENZA-p randomized phase II in mCRPC Emmett et al, ESMO 2023

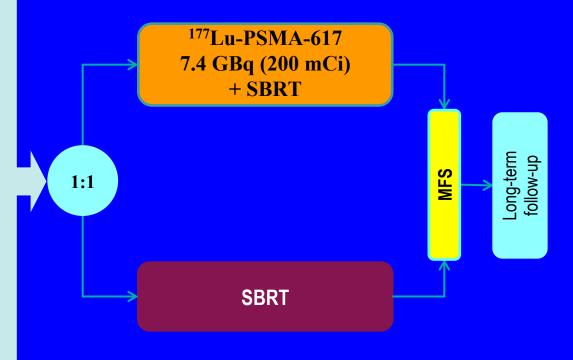


ENZA-p PSA Response Rates


Emmett et al. ESMO 2023

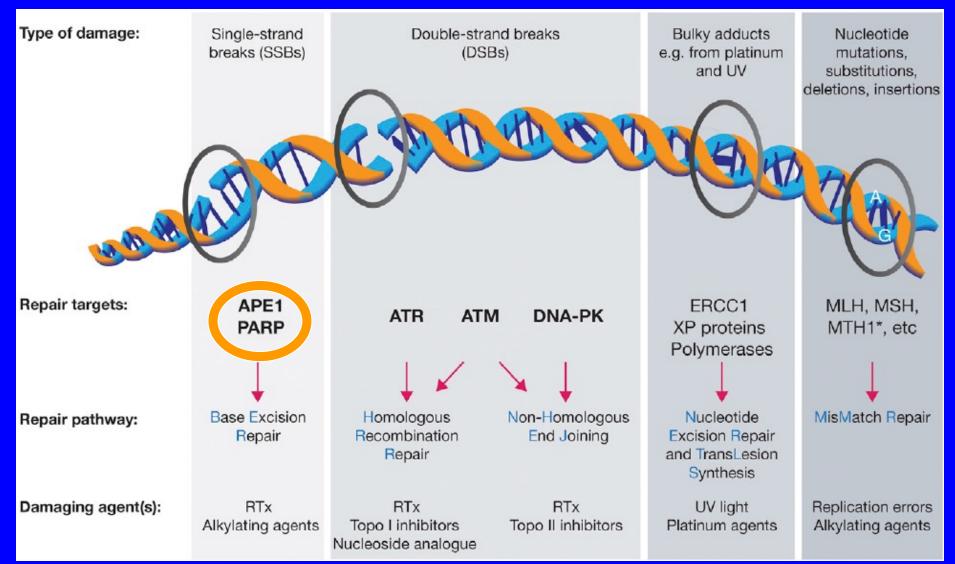
PSA 50% RR

PSMAddition: Design for Metastatic Castrate-Sensitive Prostate Cancer



SOC = ADT and ARPI of choice (abiraterone or enzalutamide or apalutamide)

A Phase III Open-label Study Comparing Lutetium (177Lu) Vipivotide Tetraxetan Versus Observation in PSMA Positive Oligometastatic Prostate Cancer (PSMA-DC)


Eligible patients

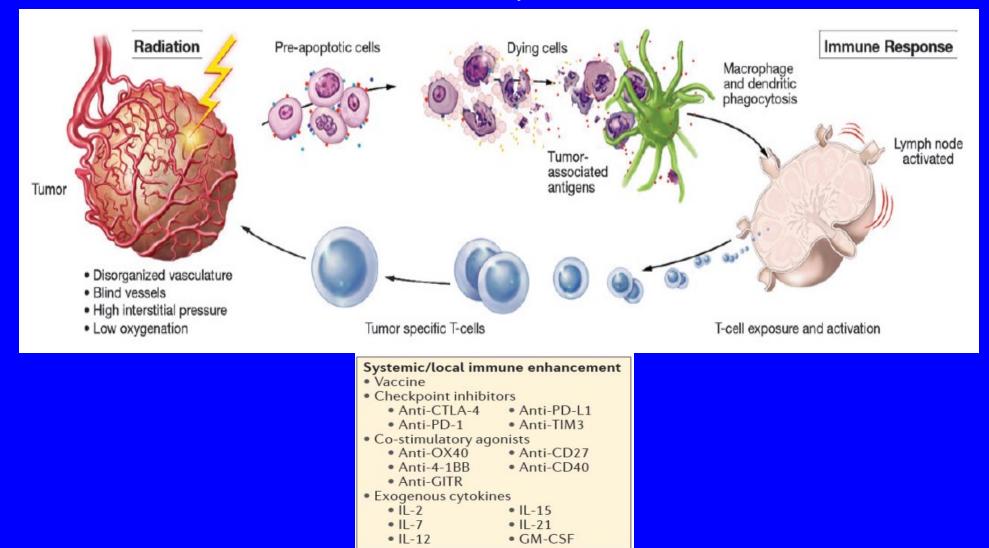
- Adults with progressive castratesensitive prostate cancer
- 1-5 PSMA-positive M1 lesion on PSMA PET and negative conventional imaging
- All metastatic lesions amenable to SBRT
- PSADT ≤ 10 months
- Prior treatment of the prostate by RP or XRT
- Non-castrate T at baseline
- Prior adjuvant ADT allowed if <a>12 months in past
- ECOG performance status 0–1

MFS by conventional imaging primary endpoint makes it FDA approvable

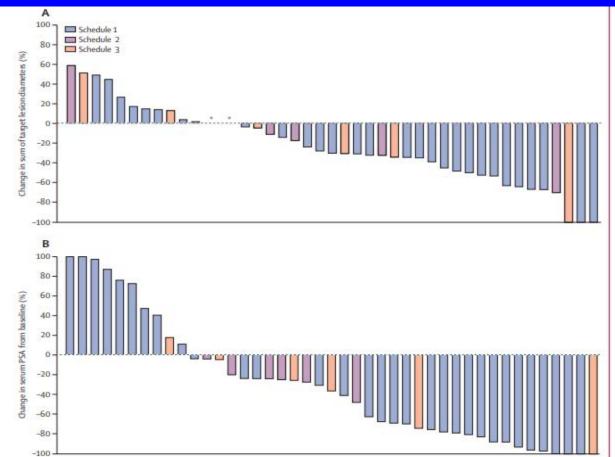
Targeting DNA damage repair pathways in combination with radionuclides

O'Connor, Molecular Cell 60, November 19, 2015

Phase I LuPARP study: ¹⁷⁷Lu-PSMA-617 and olaparib


Sandhu et al. ASCO 2023

LuPARP results: PSA Response


Antigen release from radiated tumor: Synergy with immunotherapies?

Kamrava et al., Molecular Biosystems: 5:1249–1372, 2009

Single-dose ¹⁷⁷Lu-PSMA-617 followed by maintenance pembrolizumab in patients with metastatic castrationresistant prostate cancer: an open-label, dose-expansion, phase 1 trial

Lancet Oncol 2023; 24: 1266–76

Alpha Particles

(Ra-223, Ac-225, Pb-212, At-211)

Critical differences in α and β Particles: Short range, high LET and lethal!

	α	β
Relative particle mass	7300	1
Speed of light	6%	98%
Initial energy (MeV) per particle	3–8	0.01–2.5
Range in tissue (µm)	40–100	50–5000
* LET (KeV/μm)	60–230	0.015–0.4
DNA hits to kill cells	1–10	100–1000

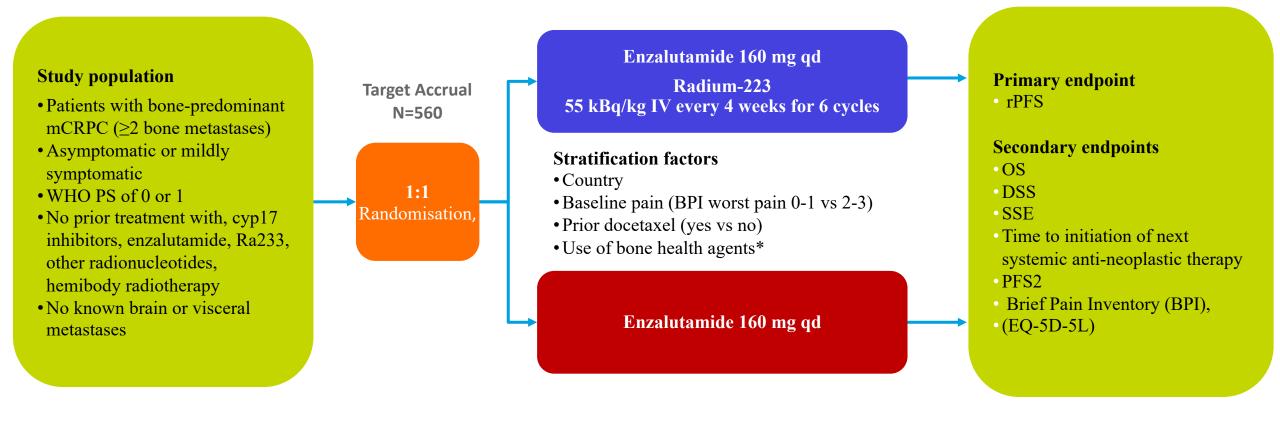
*LET, linear energy transfer adapted from Henriksen G, et al. J Nucl Med. 2003;44(2):252-9

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 18, 2013

VOL. 369 NO. 3


Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer

C. Parker, S. Nilsson, D. Heinrich, S.I. Helle, J.M. O'Sullivan, S.D. Fosså, A. Chodacki, P. Wiechno, J. Logue, M. Seke,
 A. Widmark, D.C. Johannessen, P. Hoskin, D. Bottomley, N.D. James, A. Solberg, I. Syndikus, J. Kliment, S. Wedel,
 S. Boehmer, M. Dall'Oglio, L. Franzén, R. Coleman, N.J. Vogelzang, C.G. O'Bryan-Tear, K. Staudacher,
 J. Garcia-Vargas, M. Shan, Ø.S. Bruland, and O. Sartor, for the ALSYMPCA Investigators*

Radium-223 targets osteoblastic bone lesions

EORTC GUCG 1333 (PEACE III)

DORA

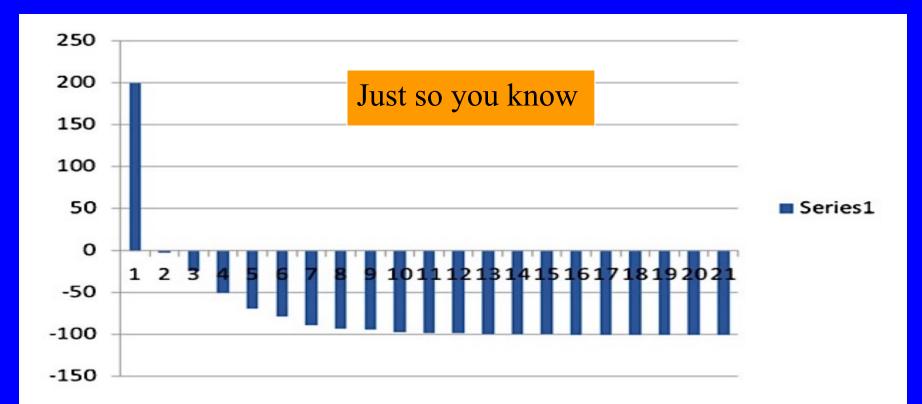
Phase III Trial of Docetaxel vs. Docetaxel and Radium-223 for Metastatic Castration-Resistant Prostate Cancer

AlphaBet:

Combination of Radium-223 and ¹⁷⁷Lu-PSMA-I&T in men with metastatic castration-resistant prostate cancer

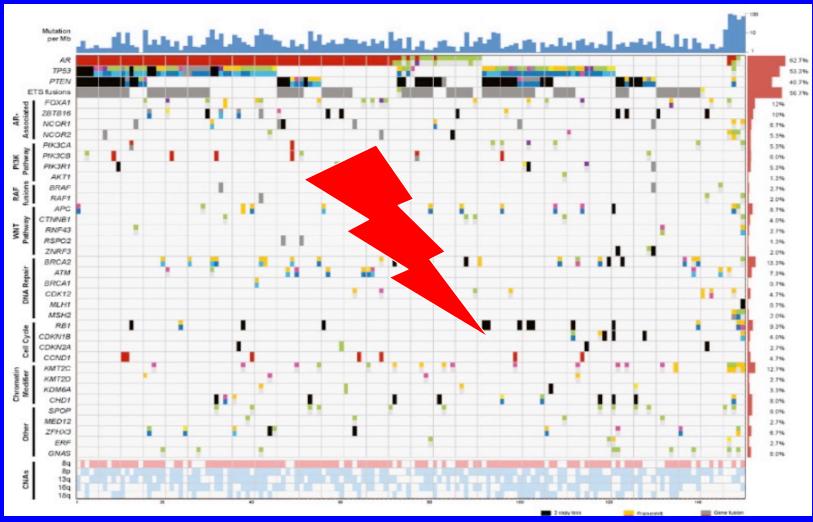
> Kostos et al. Front Med https://doi.org/10.3389/fmed.2022.1059122

> > NCT05383079


BAT-RAD

Bipolar Androgen Therapy (BAT) and Radium-223 (RAD) in Metastatic Castrationresistant Prostate Cancer (mCRPC)

NCT04704505


Metastatic Hormone-Sensitive Prostate Cancer with ²²⁵Ac-PSMA-617 <u>and No Hormones</u>

Sathegke et al. EJNMMI 2023 https://doi.org/10.1007/s00259-023-06165-9

Fig. 1 Waterfall plot demonstrating percentage change in PSA levels after treatment with 225 Ac-PSMA-617 in studied patients (*x*-axis= number of patients, *y*-axis= percentage change)

Challenges: Metastatic prostate cancer is a genetically heterogeneous group of diseases but radiation can kill them all!

Robinson et al. Cell 161:1215, 2015

MODULE 5: Promising Investigational Approaches for Patients with Prostate Cancer – Dr Heath

Consulting Faculty Questions

Promising treatment strategies under investigation — immunotherapy, cabozantinib, abemaciclib and others

Neil Love, MD

Rana R McKay, MD

QUESTIONS FOR THE FACULTY

What novel investigational strategies are you most excited about for patients with metastatic prostate cancer? What drug classes do you believe are most likely to be approved in the near future?

Rana R McKay, MD

What are your thoughts about recent data on the combination of nivolumab and cabozantinib and on the use of CDK4/6 inhibitors (abemaciclib)?

Consulting Faculty Questions

Approach to endocrine therapy for patients with disease progression on prior AR inhibitor; potential role of targeted therapies

Neil Love, MD

Andrew J Armstrong, MD, ScM

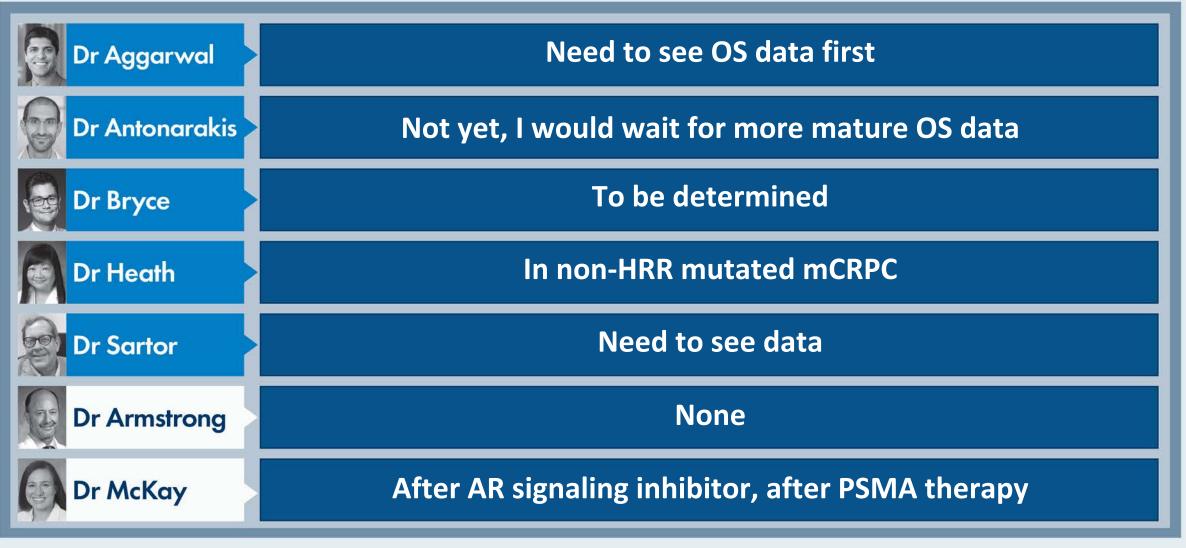
QUESTIONS FOR THE FACULTY

Andrew J Armstrong, MD, ScM

Do you routinely offer a second AR pathway inhibitor after disease progression on one of these agents?

Does a change in AR pathway inhibitor after prior treatment with one of these drugs represent a reasonable control arm for future clinical trials?

Do you order AR-V7 testing for your patients experiencing disease progression on secondary hormonal therapy?


What are your thoughts about the future role of oral targeted agents such as capivasertib and cabozantinib in this disease?

What was the age of the last patient in your practice with metastatic prostate cancer who was enrolled on a clinical trial? On which clinical trial was the patient enrolled and what treatment did they receive?

	Age	Clinical trial treatment
Dr Aggarwal	68 years	Lu-PSMA + pembrolizumab
Dr Antonarakis	75 years	PSMA x CD3 + bispecific antibody
Dr Bryce	64 years	Trial of PT-112
Dr Heath	66 years	Darolutamide + AZD5305 on PETRANHA study
Dr Sartor	72 years	About to enroll on trial of ²²⁵ Ac-PSMA-617
Dr Armstrong	56 years	Ph II CHAMP trial of cabazitaxel, carboplatin, nivolumab and ipilimumab
Dr McKay	63 years	Ph II single-arm trial of nivolumab + cabozantinib

Based on emerging positive findings from the Phase III CONTACT-02 study, in which situations, if any, would you use the combination of cabozantinib and atezolizumab?

Do you believe one or more CDK4/6 inhibitors (eg, abemaciclib) will someday be endorsed for use in metastatic prostate cancer?

Dr Aggarwal	No
Dr Antonarakis	Yes
Dr Bryce	Yes
Dr Heath	No
Dr Sartor	No
Dr Armstrong	No
Dr McKay	Yes

What type(s) of tolerability issues would you anticipate with CDK4/6 inhibitors in metastatic prostate cancer?

Dr Aggarwal	Neutropenia, GI toxicities
Dr Antonarakis	Myelosuppression, LFT abnormalities, small but scary risk of ILD
Dr Bryce	Myelosuppression, GI toxicity
Dr Heath	Neutropenia, anemia, fatigue, diarrhea
Dr Sartor	GI side effects and low blood counts
Dr Armstrong	Diarrhea and some marrow suppressive effects, nausea, fatigue
Dr McKay	Diarrhea

ILD = interstitial lung disease

Which investigational approaches do you believe hold the most therapeutic promise in metastatic prostate cancer?

Dr Aggarwal	Bispecific T-cell engagers (eg, xaluritamig [AMG 509]), emerging ADCs (B7-H3, ARX517)
Dr Antonarakis	STEAP1-directed engagers (xaluritamig), alpha particle radioligands, B7-H3 targeting drugs
Dr Bryce	BiTEs and RLT
Dr Heath	Bicyclic peptides, PROTACs, BET inhibitors
Dr Sartor	Targeted alpha particle therapies (both Ac-225 and Pb-212), novel ADCs (PSMA and beyond), STEAP1-targeted BiTEs, selected AR degraders
Dr Armstrong	BiTEs, CAR T combinations, ADCs, alpha particle therapies, AR degraders, CBP/p300 inhibitors, EZH2 inhibitor combinations, combinations with dual checkpoint blockade
Dr McKay	PSMA ADC, B7-H3 ADC, AR degraders, alternate radioligand

Karmanos

I PI PI PI PI

RAANN

CANCER INSTITUTE

Prostate Cancer Treatment Updates

Elisabeth I. Heath, MD FACP

Professor of Oncology Associate Center Director, Translational Sciences Chair, Genitourinary Oncology Multidisciplinary Team Detroit, MI

WAYNE STATE UNIVERSITY

CONTACT-02: Scientific Rationale

- Prostate cancer associated with immune-suppressive tumor microenvironment (TME)
 - Tregs and immunosuppressive M2 macrophages recruited to TME, limited
 CD8+ T cells, and correlated with worse prognosis
 - Promotion of immune-permissive TME is potential therapeutic strategy
- Immune checkpoint inhibitors (ICI) alone has limited activity in prostate cancer
- ICI in combination with receptor tyrosine kinase (RTK) inhibitors against Tyro3, Axl, and Mer (TAM) kinases has increased efficacy in preclinical studies
- Cabozantinib, RTK inhibitor against TAM promotes an immune-permissive environment that consists of decreased Tregs and increased cytokines
- ICI in combination with RTK inhibitor effective in other cancers such as renal cell carcinoma

Lundholm M et al. Sci. Rep. 5, 15651(2015). Kiniwa Y et al. Clin Cancer Res. 13(23),6947-6958 (2007). Hansen AR et al. Ann. Oncol. 29(8), 1807-1813(2018). Davidsen K et al. Cancer Res. 78(suppl.13), abstract 3774(2018). Axelrod HD et al. Mol. Cancer Res. 17(2), 356-369(2019). Choueri TK et al. N. Engl. J. Med. 373(19), 1814-1823 (2015).

CONTACT-02: Clinical Background Data

- COMET-1
 - Phase III randomized, double-blind study of cabozantinib versus prednisone
 - No OS improvement in overall population (11 vs 9.8 months, HR=0.9, p=0.213)
 - Higher OS rate with cabozantinib with visceral metastasis
- COSMIC-021
 - Phase Ib open-label study of cabozantinib and atezolizumab in multiple solid tumors including renal and prostate cancer
 - Cohort 6 in mCRPC with prior NHT
 - 44 patients with ORR 32%, 2 patients (CR), 12 patients (PR), 50% with PSA decrease
 - 36 patients with visceral or extrapelvic lymph node metastasis, ORR 33%

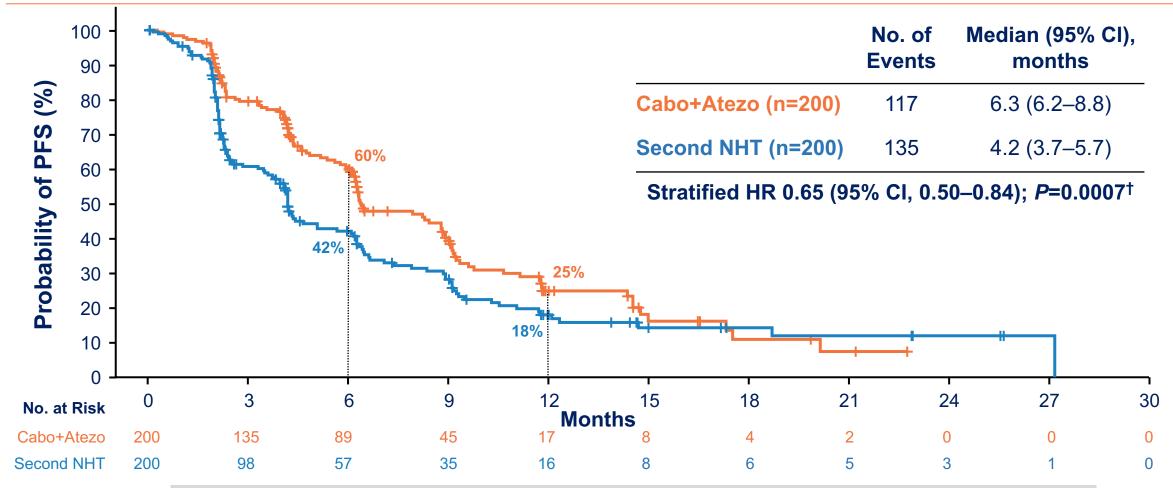
Smith MR et al. J. Clin.Oncol. 34(25), 3005-2013 (2016). Paul SK et al. J. Clin. Oncol. 39(33), 3725-3736 (2021). Agarwal N et al. J. Clin. Oncol.8(suppl.15), abstract 5564 (2020).


Cabozantinib Plus Atezolizumab vs Second Novel Hormonal Therapy in Patients With Metastatic Castration-Resistant Prostate Cancer (mCRPC): Primary Analyses From the Phase 3 CONTACT-02 Study

Neeraj Agarwal,¹ Arun A. Azad,² Joan Carles,³ Nobuaki Matsubara,⁴ Stephane Oudard,⁵ Fred Saad,⁶ Axel Merseburger,⁷ Andrey Soares,⁸ Bradley McGregor,⁹ Bogdan Zurawski,¹⁰ Scott North,¹¹ Marinos Tsiatas,¹² Igor Bondarenko,¹³ Margarita Alfie,¹⁴ Lena Evilevitch,¹⁵ Keerti Sharma,¹⁶ Prachi Nandoskar,¹⁷ Roberta Ferraldeschi,¹⁸ Fong Wang,¹⁷ Sumanta Pal¹⁹

¹Department of Medicine, Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA; ²Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; ³Oncology Department, Vall d'Hebron Institute of Oncology at Vall d'Hebron University Hospital, Barcelona, Spain; ⁴Department of Medical Oncology, National Cancer Center Hospital East, Chiba, Japan; ⁵Medical Oncology Department, Georges Pompidou European Hospital and University Paris Cité, Paris, France; ⁶Division of Urology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Canada; ⁷Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; ⁸Department of Oncology, Centro Paulista de Oncologia/Oncoclínicas, São Paulo, Brazil, and Hospital Albert Einstein, São Paulo, Brazil; ⁹Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁰Department of Outpatient Chemotherapy, Ambulatorium Chemioterapii, Bydgoszcz, Poland; ¹¹Department of Oncology, Cross Cancer Institute, Alberta, Canada; ¹²Department of Medical Oncology, Athens Medical Center, Marousi, Greece; ¹³Oncology and Medical Radiology Department, Dnipro State Medical University, Dnipro, Ukraine; ¹⁴Department of Medical Oncology, Organización Medica de Investigación, Buenos Aires, Argentina; ¹⁵Department of Clinical Science, Exelixis, Inc., Alameda, CA, USA; ¹⁶Department of Biometrics, Exelixis, Inc., Alameda, CA, USA; ¹⁷Department of Clinical Development, Exelixis, Inc., Alameda, CA, USA; ¹⁸Product Development Oncology, Roche, Inc., Basel, Switzerland; ¹⁹Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA

CONTACT-02 Study Design

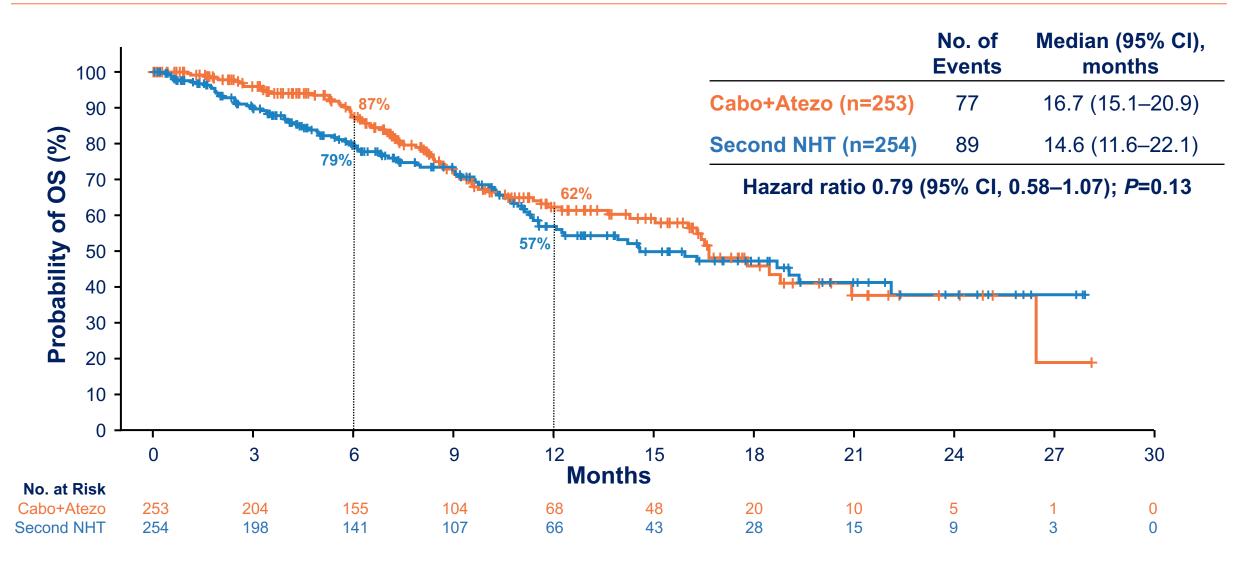

Stratification

- Liver metastasis (yes / no)
- Prior docetaxel treatment for locally advanced or metastatic CSPC (yes / no)
- Disease stage for which the first NHT was given (mCSPC / M0 CRPC / mCRPC)
- Tumor assessments (RECIST v1.1) were performed at baseline, every 9 weeks for 28 weeks, then every 12 weeks thereafter
- Treatment was continued until loss of clinical benefit[§] or intolerable toxicity

BID, twice daily; BIRC, Blinded Independent Radiology Committee; CSPC, castration-sensitive prostate cancer; ECOG PS, Eastern Cooperative Oncology Group performance status; ITT, intention-to-treat; IV, intravenous; M0 CRPC, non-metastatic CRPC; mCSPC, metastatic CSPC; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PO, orally; PSA, prostate specific antigen; QD, once daily; Q3W, every 3 weeks; PCWG3, Prostate Cancer Working Group 3; RECIST, Response Evaluation Criteria in Solid Tumors. *NHT for the treatment of mCSPC, M0 CRPC, or mCRPC. †Bone scan assessment not included in analysis.‡Time to symptomatic skeletal event is defined as time from randomization to earliest of any of the following: radiation therapy to bone, surgery to bone, spinal cord compression, or symptomatic fracture. [§]Patients may be treated beyond progression if there is clinical benefit in the opinion of the investigator.

PFS per BIRC* (PFS ITT Population[†])

Cabo+Atezo Reduced the Risk of Progression or Death by 35% vs Second NHT


• Median PFS per BIRC (ITT): 6.3 vs 4.2 mo (HR 0.64 [95% CI, 0.50–0.81]; *P*=0.0002)

• Median rPFS per PCWG3 in PFS ITT population: 6.3 vs 4.1 mo (HR, 0.62 [95% CI, 0.48–0.81])

CI, confidence interval; HR, hazard ratio. *PFS per RECIST v1.1 by BIRC or death. †Critical P value=0.002. †First 400 randomized patients.

Interim OS (ITT Population)

49% of Target Number of Events

Critical P value for OS is 0.002675 at this interim analysis using a prespecified Lan-DeMets O'Brien-Fleming (LD-OF) alpha-spending function.

CONTACT-02

CYCLONE-1: Scientific Rationale

- Cyclin-dependent Kinases 4 and 6 (CDK4 and CDK6) are enzymes that primarily function in the transition from the G1 phase to the S phase of the cell cycle
- Kinases are activated when they bind to specific regulatory proteins called cyclins, particularly Cyclin D1
- Once activated, CDK4 and CDK6 phosphorylate the retinoblastoma protein (Rb)
- Phosphorylated Rb releases transcription factor E2F, activating genes necessary for DNA synthesis and progression into S phase
- Targeting CDK4 and CDK6 can prevent uncontrolled proliferation of cancer cells
- Three FDA approved CDK4/6 inhibitors for metastatic breast cancer
 - Palbociclib
 - Ribociclib
 - Abemaciclib

Comstock CES et al. Oncogene (2013) 32, 5481-5491. Kase AM et al. Onco Targets Ther 2020;13:10499-10513.

CYCLONE-1: Scientific Rationale

- AR acts as a master regulator of G1-S phase progression in prostate cancer
- AR activates CDK4 and CDK6
- CDK4 and CDK6 are direct transcriptional targets of c-Myc which is upregulated in mCRPC
- Resistance to AR signaling inhibitors have been associated with CDK6 and MYC amplifications and cyclin D1 upregulation
- Abemaciclib is oral selective inhibitor of CDK4 and CDK6

Balk SP et al. Nucl Recept Signal 2008 Feb 1;6: e001. Cho H et al. Cancer Discov 2014;4:318-33. Quigley DA et al. Cell 2018;174:758-69. Han GC et al. JCO Preci Oncol 2017;1-11. Pal SK et al. Cancer 2018:124:1216-24.

CYCLONE-1: Study Design

Patient Population

- mCRPC
- ECOG 0-1
- Progressed after <u>>1 NHA</u>
- Progressed after 2 taxanes

Treatment

- Abemaciclib 200 mg
 - PO BID
- Cycle = 28 days
- Planned 40 patients

Treatment until unacceptable adverse events or disease progression

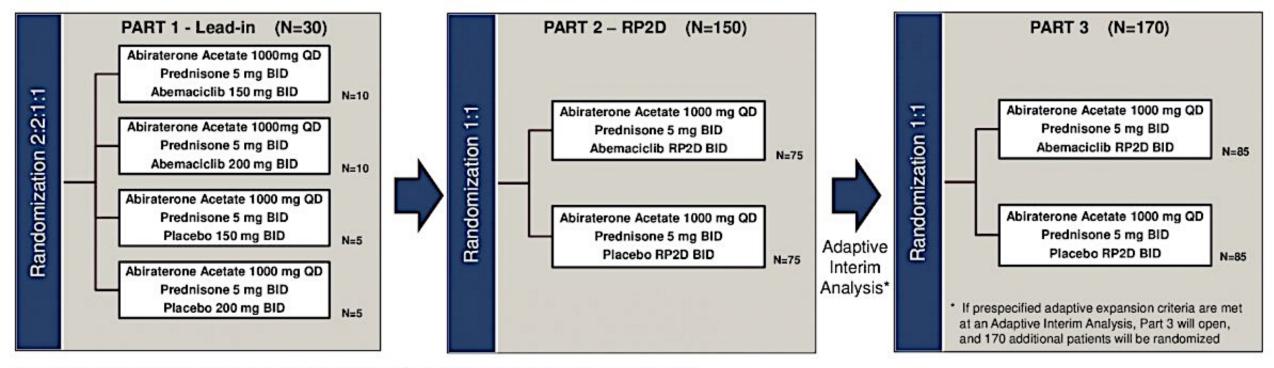
Endpoints and Assessments

- Primary Objective: ORR
- Secondary Objectives: safety, rPFS, OS,
 - PSA response, Ki-67 expression

Agarwal N et al. 2021 ASCO Annual Meeting. TPS5086.

CYCLONE-1: Results

- 44 patients enrolled, median age 68, PS=1, at least 3 metastatic sites, 47% with visceral metastasis, 28% liver metastasis
- Primary endpoint of ORR NOT met (6.8% compared to target ORR of 12.5%)
- Disease control rate 45% with 38% of patients with stable disease
- Median rPFS 2.7 months, median OS 7.6 months
- Grade 3 treatment related AEs: neutropenia, anemia, fatigue, diarrhea
- Conclusion: Abemaciclib demonstrated modest but objective single agent activity in heavily pretreated mCRPC



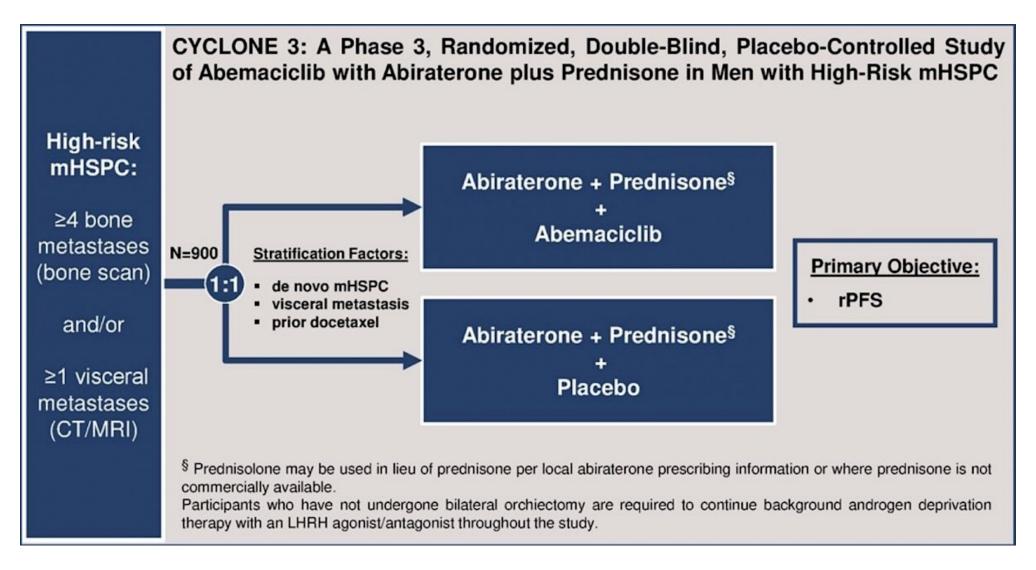
Karmanos

CYCLONE-2: Study Design (mCRPC)

STUDY DESIGN

Phase 2/3, randomized, double blind, placebo-controlled study

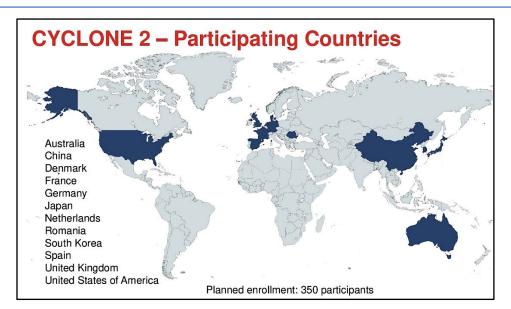
Patients who have not undergone bilateral orchiectomy will continue ADT (LHRH agonist/antagonist) throughout the study.


Patients are stratified by radiographic progression at time of study entry, measurable disease and prior docetaxel for mHSCP

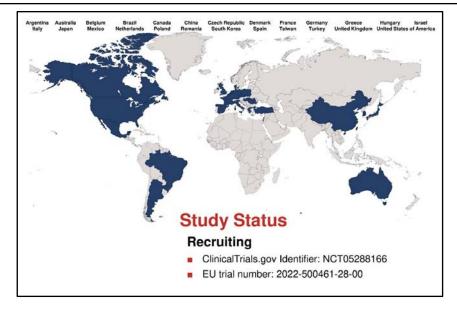
Prednisolone may be used in lieu of prednisone per local regulation. For sites in the USA, the fine-particle formulation of abiraterone (500 mg QD) can be used with methylprednisolone (4 mg BID)

CYCLONE-3: Study Design (mHSPC)

McKay R et al. 2022 ESMO Annual Meeting.



Study Design

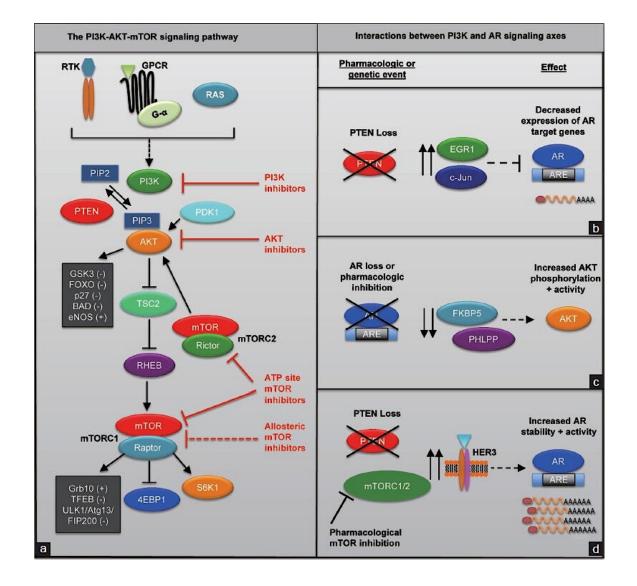

CYCLONE-2 (mCRPC)

- No prior NHA, chemotherapy, radiopharmaceuticals
- Primary Objective: rPFS
- Secondary Objectives: safety, ORR, OS

CYCLONE-3 (mHSPC)

- No prior ADT, NHA, chemotherapy
- Primary Objective: rPFS
- Secondary Objectives: safety, castration-resistant prostate cancerfree survival, OS

Additional Clinical Trials


- A Phase 1b Study of Abemaciclib Plus Darolutamide in Men With Metastatic Castration-Resistant Prostate Cancer (NCT05999968)
- Phase II Abemaciclib With or Without Atezolizumab for mCRPC (NCT04751929)
- Phase II Abemaciclib in Combination With Androgen Deprivation Therapy for Locally Advanced Prostate Cancer (RAD 1805) (NCT04298983)
- Phase I/II Neo-DAB: Darolutamide and Abemaciclib in Prostate Cancer (NCT05617885)
- Phase II Palbociclib in Patients With Metastatic Castration-Resistant Prostate Cancer (NCT02905318)
- Phase I/II Enzalutamide With and Without Ribociclib for Metastatic, Castrate-Resistant, Chemotherapy-Naive Prostate Cancer That Retains RB Expression (NCT02555189)

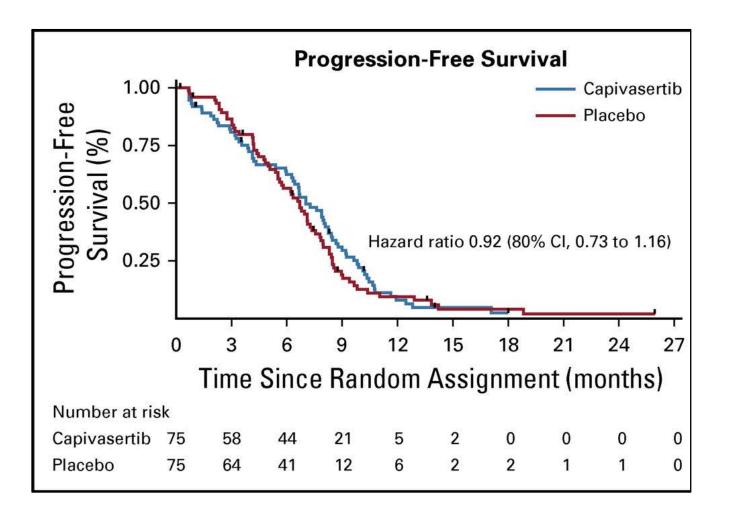
Karmanos

Capivasertib: Scientific Rationale

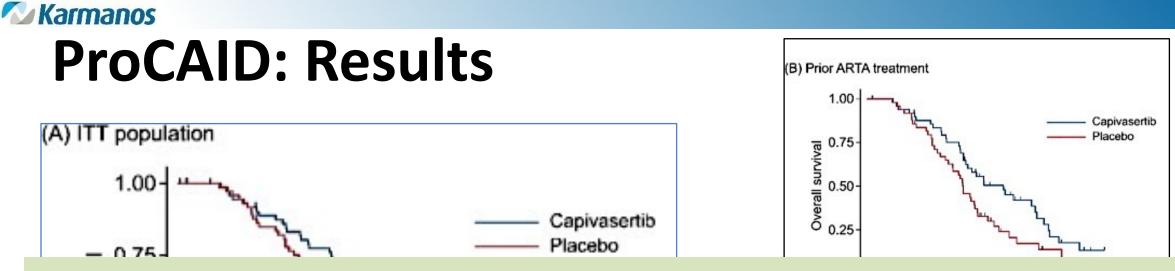
- AKT protein (protein kinase B, PKB) plays an important part in the PI3K/AKT/mTOR signaling pathway in prostate cancer
- Pathway becomes dysregulated leading to prostate cancer progression
- AKT plays a role in inhibiting apoptosis and overactivation of AKT has been linked to hormone resistance

Shorning BY et al. Int. J.Mol.Sci.2020,21,4507. Edlind MP et al. Asian J Androl. 2014:16(3):378-386.

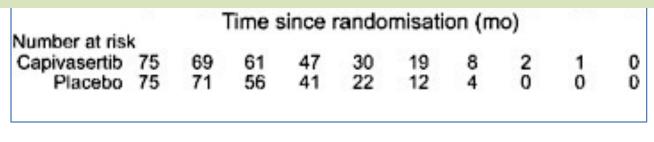
ProCAID: Results

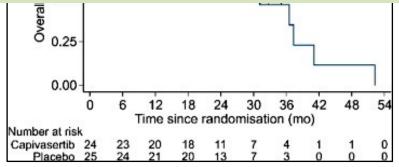

- Capivasertib is a potent selective inhibitor of all three AKT isoforms (AKT1/2/3)
- Phase II, randomized, double-blind, placebo-controlled trial in mCRPC patients
- Eligibility: no restrictions on prior NHA but previous chemotherapy not allowed
- All patients received docetaxel and prednisolone
- Patients also received capivasertib 320 mg PO BID or matched placebo PO BID on a 4 days on/3 days off schedule
- Dose was determined based on Phase Ib portion of ProCAID
- Primary outcome: investigator-assessed composite PFS

Crabb SJ et al. Journal of Clinical Oncology 39, no. 3 (January 20, 2021) 190-201. Crabb SJ et al. Invest New Drugs 35:599-607, 2017.



ProCAID: Results




- 150 patients enrolled
- Median cPFS 7.03 months versus 6.7 months
- Addition of capivasertib to chemotherapy did not meet primary endpoint

- Updated OS analysis shows that adding capivasertib to docetaxel in mCRPC improves survival (25.3 mos vs 20.3 mos)
- OS benefit seen in patients who received ARTA (25.3 mos vs. 17.6 mos)
- Prior data showed that there was no relationship between OS and biomarker status for PI3K/AKT/PTEN pathway activation

Crabb SJ et al. Eur Urol. 2022 Nov;82(5):512-515. doi: 10.1016/j.eururo.2022.05.019. Epub 2022 Jun 7. Crabb et al. J Clin Oncol, 39(2021),pp190-201.

Additional Clinical Trials

- Phase III Study of Capivasertib + Docetaxel vs Placebo + Docetaxel as Treatment for Metastatic Castration Resistant Prostate Cancer (mCRPC) (CAPItello-280) (NCT05348577)
- Phase III Study Capivasertib + Abiraterone as Treatment for Patients With Metastatic Hormone-sensitive Prostate Cancer and PTEN Deficiency (CAPItello-281) (NCT04493853)
- A Single-Arm Phase II Study of Neoadjuvant Intensified Androgen Deprivation (Leuprolide and Abiraterone Acetate) in Combination With AKT Inhibition (Capivasertib) for High-Risk Localized Prostate Cancer With PTEN Loss (SNARE) (NCT05593497)

Novel Targets in Clinical Trials

- Chimeric antigen receptor (CAR) T cells, based on genetic engineering of the patient's own T cells for targeted tumor cell lysis
- Bromodomain (BET) inhibitors
- Androgen Receptor (AR) degraders (PROTAC)
- Bicyclic peptides or drug conjugates (synthetic short peptides that are chemically bonded to form a two-loop structure, resembling a bicycle)
- 877 interventional and accruing clinical trials for patients with prostate cancer

Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Urothelial Bladder Cancer

Part 2 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Genitourinary Cancers Symposium

Friday, January 26, 2024 7:00 PM – 9:00 PM PT (10:00 PM – 12:00 AM ET)

Faculty

Matthew Milowsky, MD, FASCO Peter H O'Donnell, MD

Jonathan E Rosenberg, MD Arlene Siefker-Radtke, MD

Moderator Evan Y Yu, MD

Thank you for joining us! Your feedback is very important to us.

Please complete the survey currently up on the iPads for attendees in the room and on Zoom for those attending virtually. The survey will remain open up to 5 minutes after the meeting ends.

How to Obtain CME Credit

In-person attendees: Please refer to the program syllabus for the CME credit link or QR code. You may also use the iPads available in the meeting room to complete the course evaluation. Online/Zoom attendees: The CME credit link is posted in the chat room.

