Consensus or Controversy? Clinical Investigators Provide Perspectives on Biomarker Assessment and Related Treatment Decision-Making for Patients with Colorectal Cancer

> Part 2 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Gastrointestinal Cancers Symposium

Friday, January 19, 2024 6:15 PM – 8:15 PM PT (9:15 PM – 11:15 PM ET)

Faculty

Tanios Bekaii-Saab, MD Andrea Cercek, MD Cathy Eng, MD John Strickler, MD

Moderator Christopher Lieu, MD

Faculty

Tanios Bekaii-Saab, MD Professor, Mayo Clinic College of Medicine and Science

Program Leader, Gastrointestinal Cancer Mayo Clinic Cancer Center Consultant, Mayo Clinic in Arizona Chair, ACCRU Research Consortium Phoenix, Arizona

Cathy Eng, MD

Professor of Medicine, Hematology and Oncology David H Johnson Endowed Chair in Surgical and Medical Oncology Director for Strategic Relations Co-Chairman, NCI GI Steering Committee Co-Director, GI Oncology Co-Leader, GI Cancer Research Program Director, Young Adult Cancers Program Vanderbilt-Ingram Cancer Center Nashville, Tennessee

John Strickler, MD Associate Professor Associate Director, Clinical Research – GI Duke University Durham, North Carolina

Moderator Christopher Lieu, MD Associate Professor of Medicine Associate Director for Clinical Research Co-Director, GI Medical Oncology University of Colorado Cancer Center Aurora, Colorado

Andrea Cercek, MD

Section Head, Colorectal Cancer Co-Director, Center for Young Onset Colorectal and Gastrointestinal Cancers Associate Attending Gastrointestinal Oncology Service Department of Medicine Memorial Sloan Kettering Cancer Center New York, New York

Dr Bekaii-Saab — Disclosures Faculty

Consulting Agreements (to Institution)	 Arcus Biosciences, Bayer HealthCare Pharmaceuticals, Eisai Inc, Genentech, a member of the Roche Group, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Merck, Merck KgaA, Merus BV, Pfizer Inc, Seagen Inc, Servier Pharmaceuticals LLC 	
Consulting Agreements (to Self)	 AbbVie Inc, Aptitude Health, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Caladrius Biosciences, Celularity, Daiich Sankyo Inc, Deciphera Pharmaceuticals Inc, Exact Sciences Corporation, Exelixis Inc, Foundatio Medicine, GSK, Illumina, Janssen Biotech Inc, Kanaph Therapeutics, Natera Inc, Sanofi, Sobi, Stemline Therapeutics Inc, Treos Bio Ltd, Zai Lab 	
Data and Safety Monitoring Board/Committee	1Globe Health Institute, AstraZeneca Pharmaceuticals LP, Eisai Inc, Exelixis Inc, FibroGen Inc, Merck, Suzhou Kintor	
Inventions/Patents	WO/2018/183488 licensed to Imugene, WO/2019/055687 licensed to Recursion	
Research Funding (to Institution)	AbGenomics, Agios Pharmaceuticals Inc, Arcus Biosciences, Arrys Therapeutics, a wholly owned subsidiary of Kyn Therapeutics, Atreca, Bayer HealthCare Pharmaceuticals, Bristol Myers Squibb, Celgene Corporation, Clovis Oncology, Eisai Inc, Genentech, a member of the Roche Group, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Lilly, Merus BV, Mirati Therapeutics Inc, Novartis, Pfizer Inc, Seagen Inc, Sumitomo Dainippon Pharma Oncology Inc	
Scientific Advisory Board	Artiva Biotherapeutics Inc, Immuneering Corporation, Imugene, Panbela Therapeutics Inc, Replimune, Xilis	
Nonrelevant Financial Relationship	MJH Life Sciences, Pancreatic Cancer Action Network, The Valley Hospital, UpToDate	

Dr Cercek — Disclosures Faculty

Advisory Committee	Bayer HealthCare Pharmaceuticals, GSK, Janssen Biotech Inc, Merck, Pfizer Inc, Roche Laboratories Inc, Seagen Inc
Contracted Research	GSK, Seagen Inc

Dr Eng — Disclosures Faculty

Consulting Agreements	Amgen Inc, Elevation Oncology, GE Healthcare, GSK, HOOKIPA Pharma Inc, IGM Biosciences Inc, Merck, Natera Inc, Pfizer Inc, Seagen Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc	
Contracted Research (Paid to Vanderbilt)	Gritstone bio, Hutchison MediPharma, Janssen Biotech Inc, Merck	
Data and Safety Monitoring Board/Committee	Mirati Therapeutics Inc	

Dr Strickler — Disclosures Faculty

Advisory Committee	AbbVie Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, GSK, Janssen Biotech Inc, Jazz Pharmaceuticals Inc, Lilly, Merck, Natera Inc, Pfizer Inc, Regeneron Pharmaceuticals Inc, Seagen Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, Xilio Therapeutics	
Contracted Research	AbbVie Inc, Amgen Inc, AStar D3, Bayer HealthCare Pharmaceuticals, BeiGene td, Curegenix, Daiichi Sankyo Inc, Erasca, Genentech, a member of the Roche Group, GSK, Leap Therapeutics Inc, Lilly, Seagen Inc	
Data and Safety Monitoring Board/Committee	BeiGene Ltd, Seagen Inc	
Stock Options — Private Company	Triumvira Immunologics	

Dr Lieu — Disclosures Moderator

No relevant conflicts of interest to disclose.

Dr Ciombor — Disclosures Survey Participant

Advisory Committee	Bayer HealthCare Pharmaceuticals, Exelixis Inc, Incyte Corporation, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Personalis, Pfizer Inc, Replimune, Seagen Inc
Consulting Agreements	Merck, Pfizer Inc
Contracted Research	Array BioPharma Inc, a subsidiary of Pfizer Inc, Bristol Myers Squibb, Calithera Biosciences, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Incyte Corporation, Merck, NuCana, Pfizer Inc, Seagen Inc

Dr Dasari — Disclosures Survey Participant

Advisory Committee	HUTCHMED, Illumina, Personalis, Takeda Pharmaceuticals USA Inc
Contracted Research	Eisai Inc, Enterome, Guardant Health, HUTCHMED, Xencor

Commercial Support

This activity is supported by educational grants from Bristol Myers Squibb, Natera Inc, and Pfizer Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration.

Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

Consensus or Controversy? Investigator Perspectives on the Current and Future Role of Immune Checkpoint Inhibitors in the Management of Hepatobiliary Cancers

> A CME-Accredited Virtual Event Held in Conjunction with the 2024 ASCO Gastrointestinal Cancers Symposium

Saturday, January 20, 2024 5:30 AM – 6:30 AM PT (8:30 AM – 9:30 AM ET)

Faculty

Ahmed Omar Kaseb, MD, CMQ

Arndt Vogel, MD, PhD

Moderator Neil Love, MD

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the premeeting survey.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Complete Your Evaluation: Tap the CME/NCPD Evaluation button to complete your evaluation electronically to receive credit for your participation.

For assistance, please raise your hand. Devices will be collected at the conclusion of the activity.

Clinicians Attending via Zoom

|--|

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

	_
<u></u>	

Answer Survey Questions: Complete the premeeting survey at the beginning of each module.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME/NCPD Credit: CME and NCPD credit links will be provided in the chat room at the conclusion of the program. MOC and ONCC credit information will be emailed to attendees within the next 2-3 business days.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

An email will be sent to all attendees when the activity is available.

 To learn more about our education programs, visit our website, <u>www.ResearchToPractice.com</u>

Consensus or Controversy? Clinical Investigators Provide Perspectives on Biomarker Assessment and Related Treatment Decision-Making for Patients with Colorectal Cancer

> Part 2 of a 2-Part CME Symposium Series Held in Conjunction with the 2024 ASCO Gastrointestinal Cancers Symposium

Friday, January 19, 2024 6:15 PM – 8:15 PM PT (9:15 PM – 11:15 PM ET)

Faculty

Tanios Bekaii-Saab, MD Andrea Cercek, MD Cathy Eng, MD John Strickler, MD

Moderator Christopher Lieu, MD

Agenda

Module 1 – Optimizing Biomarker Assessment and Treatment for Patients with Metastatic Colorectal Cancer (mCRC) – Dr Eng

Module 2 – Emerging Role of Biomarker-Based Decision-Making for Patients with Localized CRC – Dr Lieu

Module 3 – Identification and Clinical Care of Patients with mCRC and a BRAF V600E Mutation – Dr Bekaii-Saab

Module 4 – Integration of Immune Checkpoint Inhibitors into the Management of MSI-High/MMR-Deficient mCRC – Dr Cercek

Module 5 – HER2 and Other Emerging Biomarkers for Targeted Therapy in mCRC – Dr Strickler

Consulting Faculty

Kristen K Ciombor, MD, MSCI Associate Professor of Medicine Division of Hematology/Oncology Vanderbilt-Ingram Cancer Center Nashville, Tennessee

Arvind Dasari, MD, MS Associate Professor Department of Gastrointestinal Medical Oncology The University of Texas MD Anderson Cancer Center Houston, Texas

MODULE 1: Optimizing Biomarker Assessment and Treatment for Patients with Metastatic Colorectal Cancer (mCRC) – Dr Eng

Biomarker assessment for patients with CRC

Arvind N Dasari, MD, MS

Kristen K Ciombor, MD, MSCI

QUESTIONS FOR THE FACULTY

Arvind N Dasari, MD, MS

Kristen K Ciombor, MD, MSCI

What biomarker testing platform(s)/assay(s) do you generally employ for patients with newly diagnosed mCRC? Which specific alterations do you routinely assess?

How does liquid biopsy integrate into the assessment?

How long does it typically take to obtain biomarker results in your practice, and how important do you believe it is to wait for the results before initiating therapy?

Do you repeat biomarker assessment for patients with progressive disease (eg, prior to EGFR antibody rechallenge)?

Initial therapy for RAS WT mCRC; anti-EGFR antibodies, sidedness

Kristen K Ciombor, MD, MSCI

QUESTIONS FOR THE FACULTY

Kristen K Ciombor, MD, MSCI

What is your preferred first-line therapy for patients with RAS wild-type mCRC?

Do you recommend EGFR antibodies to all patients with left-sided tumors based on the results of the PARADIGM study, or are there patients for whom you still prefer bevacizumab?

Do you conduct extended biomarker testing to look for mutations such as PIK3CA or PTEN loss to inform the use of first-line EGFR antibody therapy?

What was the age of the last patient in your practice with newly diagnosed metastatic colorectal cancer (mCRC) who started treatment? What was their biomarker profile, and what treatment did they receive?

	Age	Biomarker profile (Positive biomarkers)	Treatment
Dr Bekaii-Saab	59 years	KRAS G12V	FOLFOXIRI/bev
Dr Cercek	43 years	Wild type	FOLFOX
Dr Eng	32 years	RAS, HER2	Clinical trial of BRAF-targeted tx
Dr Lieu	32 years	RAS, left sided	mFOLFOX6/bev
Dr Strickler	44 years	RAS	FOLFOX/bev
Dr Ciombor	41 years	RAS, TP53, APC	FOLFOX/bev
Dr Dasari	38 years	RAS, TP53, APC	FOLFOX/bev

FOLFOXIRI = FOLFIRI with oxaliplatin; bev = bevacizumab

What is your usual first-line treatment recommendation for a 60-year-old patient with microsatellite stable (MSS), pan-RAS wild-type, BRAF wild-type mCRC if their tumor is right sided? Left sided?

	Right side	Left side
Dr Bekaii-Saab	FOLFOXIRI + bevacizumab	FOLFOXIRI + bevacizumab
Dr Cercek	FOLFOX/CAPOX + bevacizumab	FOLFOX/CAPOX
Dr Eng	FOLFOX/CAPOX + bev or FOLFIRI/CAPIRI + bev	FOLFOX/CAPOX + bev or EGFR Ab OR FOLFIRI/CAPIRI + bev or EGFR Ab
Dr Lieu	FOLFOX/CAPOX + bevacizumab	FOLFOX/CAPOX + panitumumab
Dr Strickler	FOLFOXIRI + bevacizumab	FOLFOX/CAPOX + panitumumab
Dr Ciombor	FOLFIRI + bevacizumab	FOLFIRI + bevacizumab
Dr Dasari	FOLFOX/CAPOX + bevacizumab	FOLFOX/CAPOX + EGFR antibody

Ab = antibody

For a patient with mCRC who has received EGFR antibody-containing therapy and experienced disease progression, under what circumstances, if any, would you rechallenge with the same or a different EGFR antibody later in the treatment course?

Dr Bekaii-Saab	At least 1 line of therapy as bridge before rechallenge; liquid biopsy confirming absences of plasma RAS and BRAF V600E mutations
Dr Cercek	If more than 6 months has passed and ctDNA is negative for RAS mutations
Dr Eng	If NGS confirms RAS wildtype
Dr Lieu	Potentially at 3rd line or later if ctDNA reveals no resistance mutations
Dr Strickler	Exhausted standard chemotherapy and ctDNA shows absence of resistance variants (absence of KRAS, NRAS, BRAF variants)
Dr Ciombor	If initial response noted to anti-EGFR therapy, repeat NGS shows RAS WT, at least 4 months since last anti-EGFR therapy
Dr Dasari	No resistance alterations on liquid biopsy after EGFR treatment holiday

Topics of Interest for Future CME Programs

Use of circulating tumor DNA assays to inform clinical decision-making for patients with CRC

Potential role of immune checkpoint inhibitors in therapy for nonmetastatic CRC

Optimal biomarker analysis for patients with CRC

Potential role of KRAS G12C inhibitors in the treatment of mCRC

Appropriate integration of HER2-targeted therapy for patients with HER2-positive mCRC

Selection of first-line therapy for microsatellite instabilityhigh or mismatch repair-deficient mCRC

Appropriate integration of BRAF-targeted therapy for patients with BRAF V600E-mutated metastatic CRC (mCRC)

RTP RESEARCH TO PRACTICE How comfortable/familiar are you with the published data sets, available guidelines, investigator perspectives and ongoing research studies pertaining to <u>optimal biomarker analysis for</u> <u>patients with CRC</u>?

Well informed

Uninformed

Questions from General Medical Oncologists

- Is ERBB alteration on NGS equivalent to HER2 amplification on IHC/FISH when making treatment decisions?
- What other rare mutations do investigators see apart from KRAS, NRAS, BRAF, MSI high, and HER2 in colorectal cancer? Do they see any other targetable alteration or any success with targeted therapies?
- How often should NGS be done on CRC cases?
- If ERBB2 is negative in NGS, should we run IHC for HER2?
- I have a 57-year-old man with HNPCC and BRAF-mutated CRC. Would you opt for first-line IO or chemo prior to BRAF targeted therapy?
- In patients with CRC with ERBB2 (HER2) amplification, do you need to serially assess ERBB2 status? What do you do if ERBB2 (HER2) amplification is lost?
- Do biomarkers change during the disease progression and [what is] the impact on treatment selections?
- Can you use MRD testing to decide on giving adjuvant therapy?
- Would like to be able to select stage II patients who may need adjuvant chemo
- What is the sensitivity of ctDNA testing, depending upon site of metastasis?

Questions from General Medical Oncologists

- Is there a role for biomarker testing outside of MSI high testing in patients with earlier stage colon cancer?
- Is there a role for targeted therapy in nonmetastatic CRC? In patients with metastatic disease, do you recommend doing a second biopsy of the primary to run NGS, as metastatic sites are not uncommonly poorly differentiated with negative testing?
- What biomarker to test for
- How do we optimize adjuvant treatment in early colorectal cancer with KRAS positivity?
- MSI-H vs TMB Significance of each?
- Do you need to serially check biomarkers to see if pts develop resistance or new mutations while they're on treatment the way you do for metastatic HR+ breast cancer?
- Discrepancy between different test methods, for example amplification in blood tests and IHC staining: which one should be used to make treatment decision?
- What is the optimal treatment sequence for KRAS mutated mCRC?
- Is there a biomarker analysis in a flow chart/algorithm pattern that allows selection of treatment for newly diagnosed and relapsed/refractory CRC?

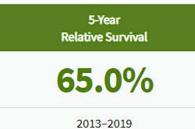
Questions from General Medical Oncologists

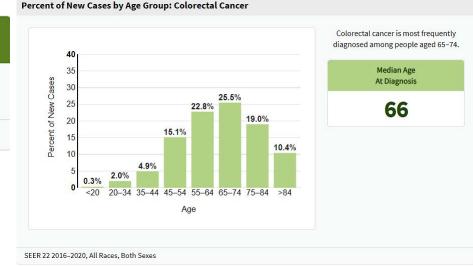
- Do you think that an "extended NGS panel" is enough, or should we do Foundation One[®] or similar with each patient?
- How to manage a patient with positive ctDNA but negative scans
- Can ctDNA pick up resistance mutations in progressing CRC?
- Colorectal cancer therapy is still primarily based on 5-FU-based therapies. Is there adequate data to continue FU in second-line therapy?
- What is the role of rechecking NGS panels in pts with progression?
- Clinical experience and selection of patients for fruquintinib? What line?

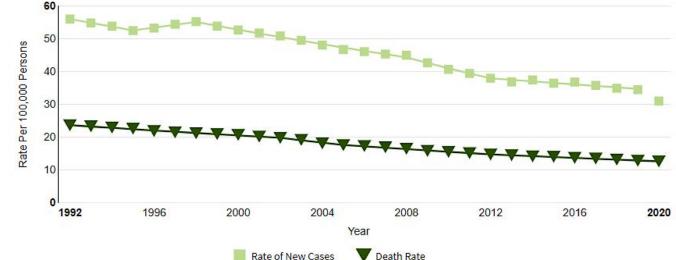
Optimizing Biomarker Assessment for Patients with Colorectal Cancer (CRC)

Cathy Eng, MD, FACP, FASCO David H. Johnson Endowed Chair in Surgical and Medical Oncology Professor of Medicine, Hematology and Oncology Director for Strategic Relations Co-Director, GI Oncology Co-Leader, Gastrointestinal Cancer Research Program Director, Young Adults Cancer Program January 19, 2024

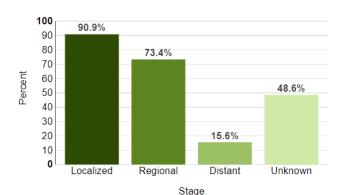
<u>Contact Info</u>: <u>cathy.eng@vumc.org</u> Twitter: @cathyengmd FB: cathy eng-mdcancer www.youngadultswithcancer.com

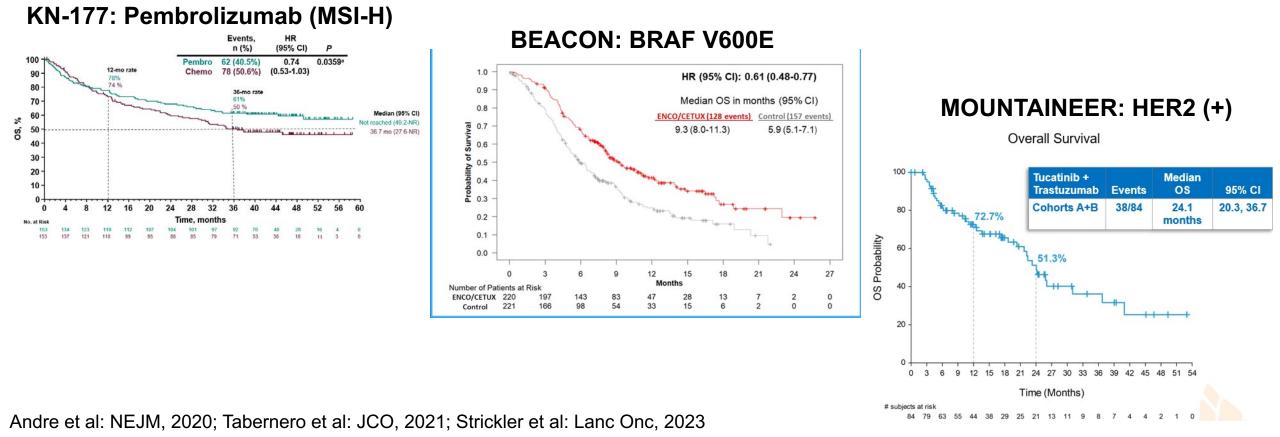



Discussion Points

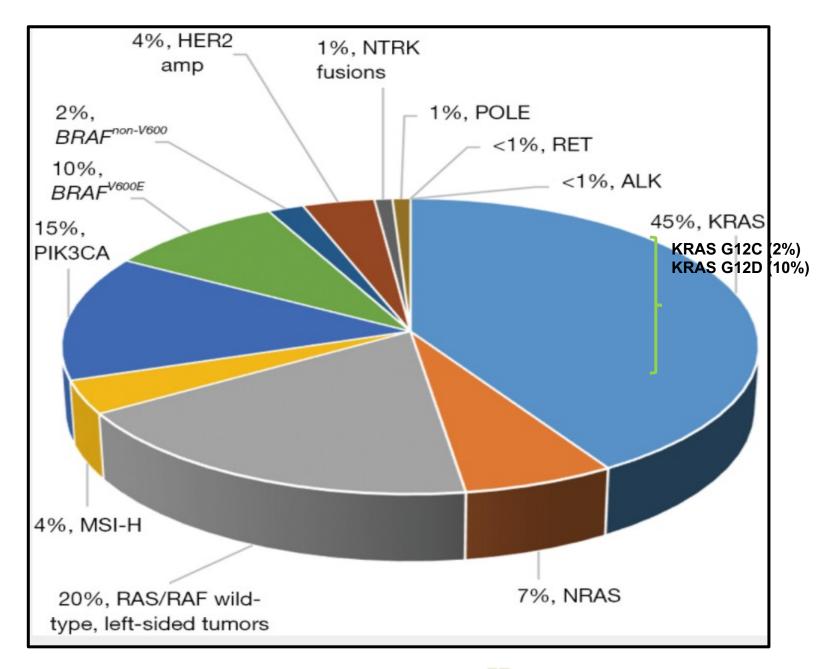

- Prevalence of validated biomarkers
- . Benefits and limitations of available testing platforms
- . Appropriate timing of biomarker assessment
- Real-world implementation of biomarker analysis and current barriers to testing
- Published clinical research findings establishing the correlation between the location of the primary tumor (right versus left side) and outcomes in mCRC

Incidence and Mortality of Colorectal CA in the US: 2023 (2024: Pending)


Estimated New Cases in 2023	153,020
% of All New Cancer Cases	7.8%
Estimated Deaths in 2023	52,550
% of All Cancer Deaths	8.6%



5-Year Relative Survival



Background: The Promise of Precision Oncology

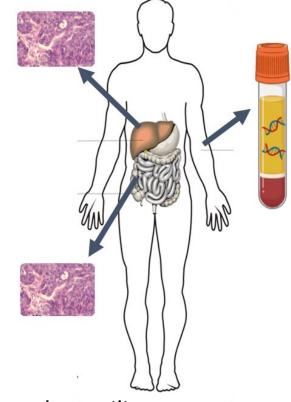
- Until recently, standard 5-FU based therapies served as the foundation for mCRC
- Pivotal trials over the past 3 years have resulted in FDA approved indications

Additional Molecular Subsets: Precision Oncology

Henry et al, CCO, 2019

VANDERBILT-INGRAM CANCER CENTER

Benefits and Limitations


Tumor Tissue vs. Blood NGS Testing

Tumor Tissue Assay

- Delayed results
- Invasive, biopsy risk, serial biopsy more difficult
- Represent one small tumor region
- Uses existing tissue processing approaches
- No assessment of tumor load
- Larger panel
- Limitations: Accessibility, quality, and quantity

*Excellent concordance previously demonstrated

Acknowledgement: Jeanne Tie, ASCO 2022; Bardelli et al: Cell Press, 2022

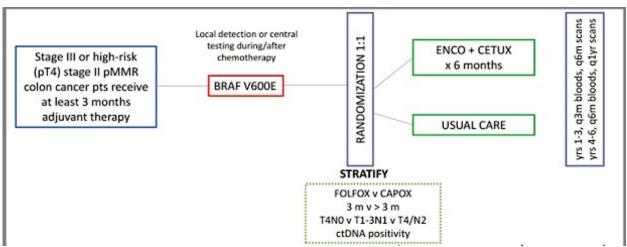
ctDNA Assay

- Quick results
- Less invasive, easy serial testing
- More representative of whole tumor or all metastatic sites
- Requires special processing or use cell stabilizing tubes
- Quantitative analysis correlates with tumor load
- Reduced logistics
- Smaller biomarker panel

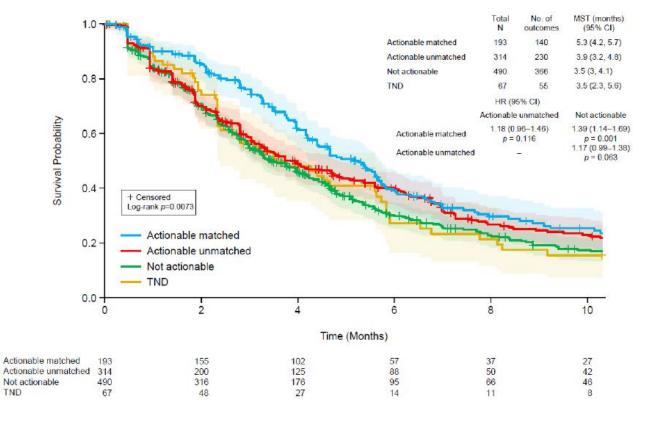
Tissue IHC/FISH vs Tissue NGS vs ctDNA

	<i>ERBB2</i> gene amp	HER2 over- expression
IHC		•
FISH	•	
Tissue NGS	•	
ctDNA (NGS)	٠	

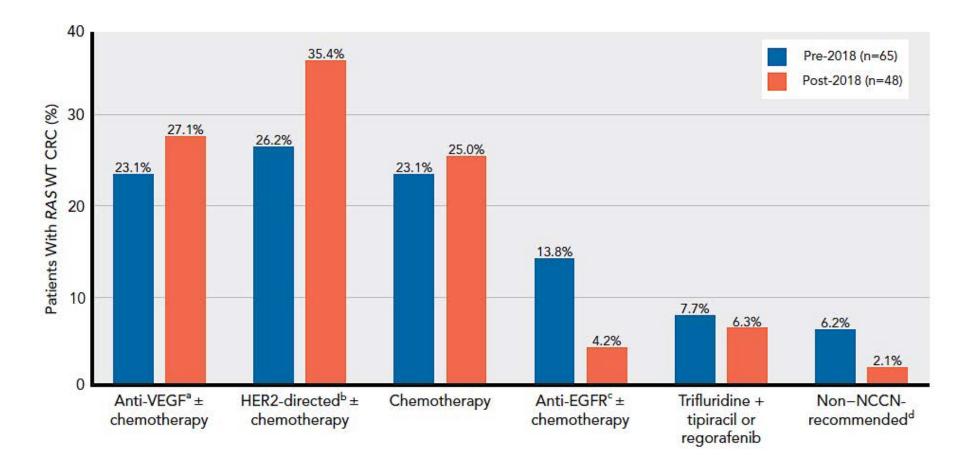
	Blood NGS vs tissue NGS	IHC/FISH vs tissue NGS	IHC/FISH vs blood NGS
n/N	47/58	63/68	66/83
%	81.0	92.6	79.5
90% CI	68.6-90.1	83.7-97.6	69.2-87.6


Strickler JH, et al, presented at ASCO 2023

Timing of Biomarker Assessment


Timing of Biomarker Assessment

- MSI testing should be completed on <u>ALL</u> patients <u>regardless of</u> <u>stage</u>
- Locally advanced disease: No role for other biomarker testing <u>at</u> <u>this time</u> in locally advanced colorectal cancer unless indicated for a clinical trial [e.g., BRAF V600E MT (stage II/III) colon CA] A022004 (see schema)
- Metastatic disease
 - Immediately upon diagnosis or initial patient visit
 - RAS status: Rechallenge

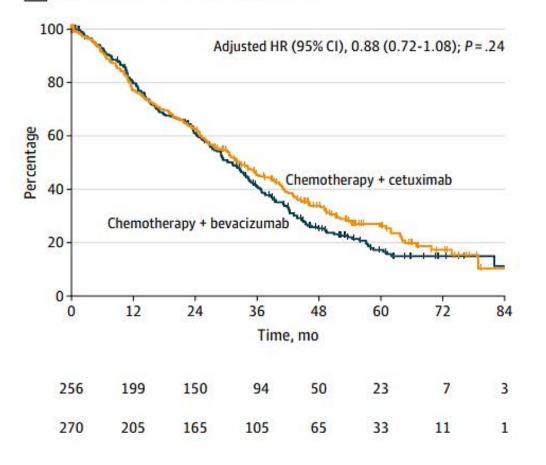

Real World Impact of NGS Testing

	Second-Line Cohort (n = 642)		Third-Line	Cohort (n = 422)
Class of Treatment	n	Informed, n (%)	n	Informed, n (%)
Chemotherapy only	184	96 (52.2%)	105	68 (64.8%)
VEGF inhibitor (with or				
without chemotherapy, no	275	148 (53.8%)	162	96 (59.3%)
targeted treatment)				
Any non-targeted *	459	244 (53.2%)	267	164 (61.4%)
EGFR-targeted	132	77 (58.3%)	101	79 (78.2%)
BRAF-targeted	9	8 (88.9%)	7	5 (71.4%)
ERBB2-targeted	11	11 (100%)	10	8 (80.0%)
Other targeted	1	1 (100%)	0	0
Immune checkpoint inhibitor	37	11 (32.4%)	41 +	5 (12.2%)
Any treatment	642	346 (53.9%)	422	257 (60.9%)

Real World Barriers: Provider and Patient Education for New Indications

Despite NCCN Guidelines in 2019: Continued underutilization of HER2 directed therapy

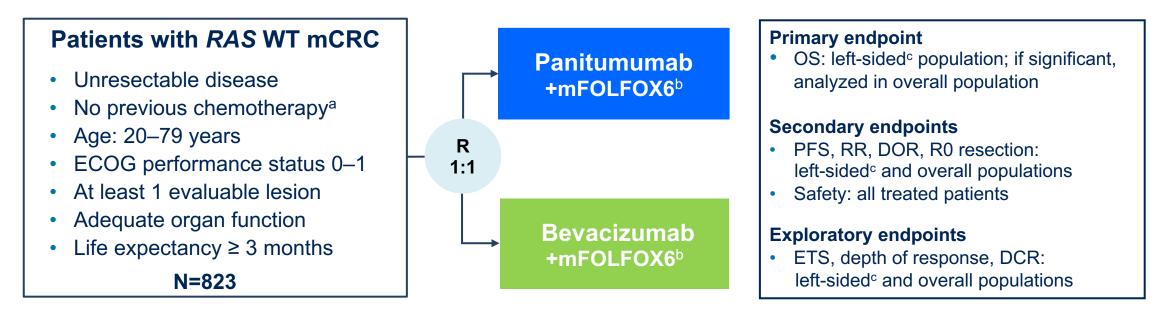
Disparities in NGS Testing


CRC Biomarker Testing	White (n = 4,803) No. (%)	Black/AA (n = 838) No. (%)	Pa
Ever tested, any biomarker test	4,031 (83.9)	707 (84.4)	.7500
Any biomarker test before first-line therapy	3,253 (67.7)	601 (71.7)	.0200
Ever NGS tested	2,478 (51.6)	350 (41.8)	< .0001
NGS tested before first-line therapy	876 (18.2)	130 (15.5)	.0600

Clinical Trial Participation	White	Black/AA	Pa
NSCLC	385/9,793 (3.9%)	24/1,288 (1.9%)	.0002
NS NSCLC	261/6,705 (3.9%)	19/922 (2.1%)	.0060
CRC	141/4,803 (2.9%)	24/838 (2.9%)	.9100
BC	193/3,314 (5.8%)	26/593 (4.4%)	.1600

Sidedness and Impact on OS

CALGB-80405: Sidedness and OS Among Patients Randomized to Bevacizumab or Cetuximab

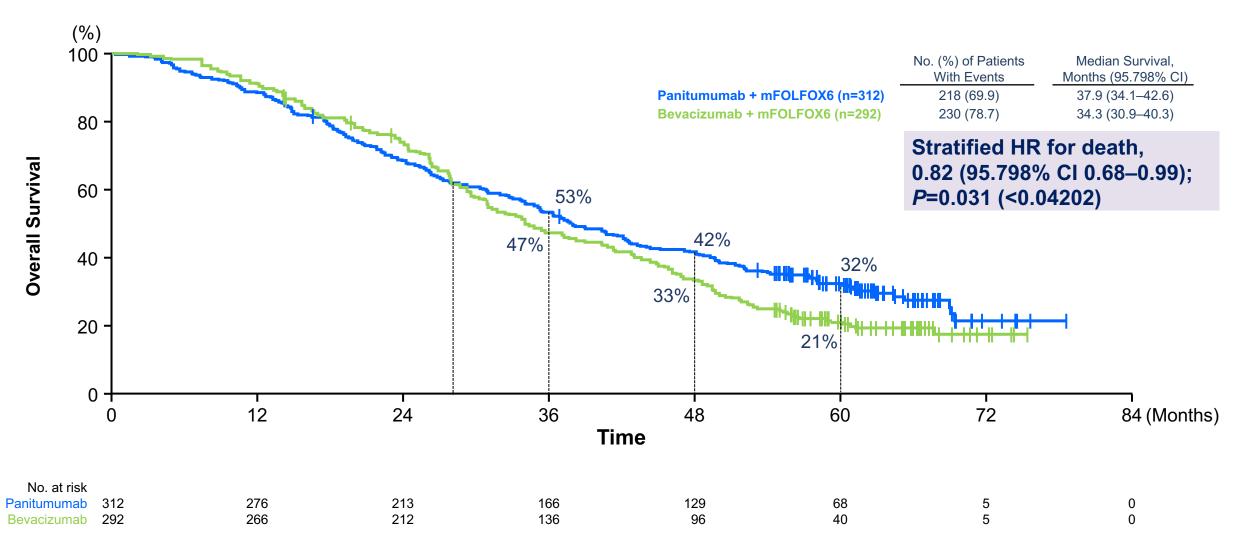

B Overall survival in expanded RAS analysis

<i>KRAS</i> wt N = 1025	Left	Right	Hazard Ratio 95% Cl	P (adjusted*)					
	Overall Survival								
All pts	33.3M	19.4M	1.55 (1.32,1.82)	P < 0.0001					
Cetuximab	36.0M (N=355)	16.7 M	1.87 (1.48, 2.32)	P < 0.0001					
Bev	31.4M (N=334)	24.2M	1.32 (1.05, 1.65)	P = 0.01					

PARADIGM Trial Design: All RAS in Left-sided Tumors

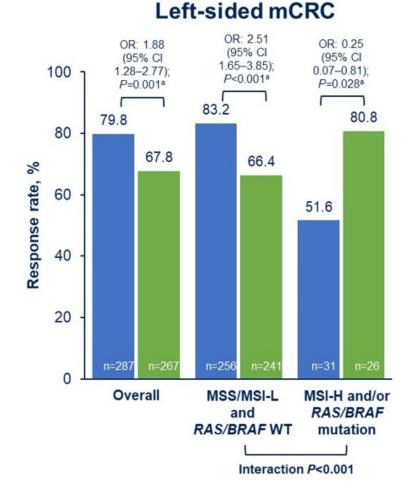
Phase 3, randomized, open-label, multicenter study (NCT02394795)

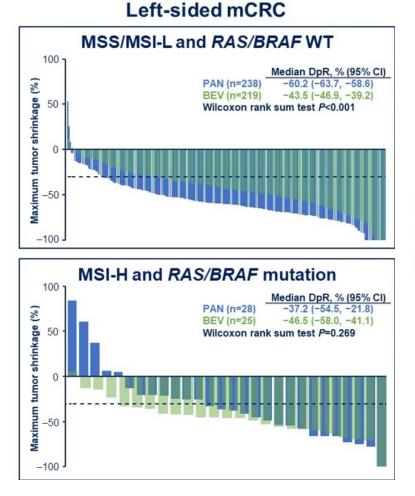
Stratification factors

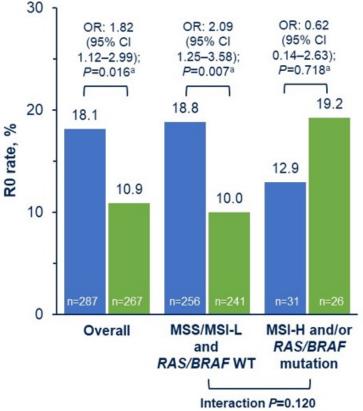

- Institution
- Age: 20–64 vs 65–79 years
- Liver metastases: present vs absent

DCR, disease control rate; DOR; duration of response; ECOG, Eastern Cooperative Oncology Group; ETS, early tumor shrinkage; mCRC, metastatic colorectal cancer; OS, overall survival; PFS, progression free survival; RR, response rate; R0, curative resection; WT, wild type.

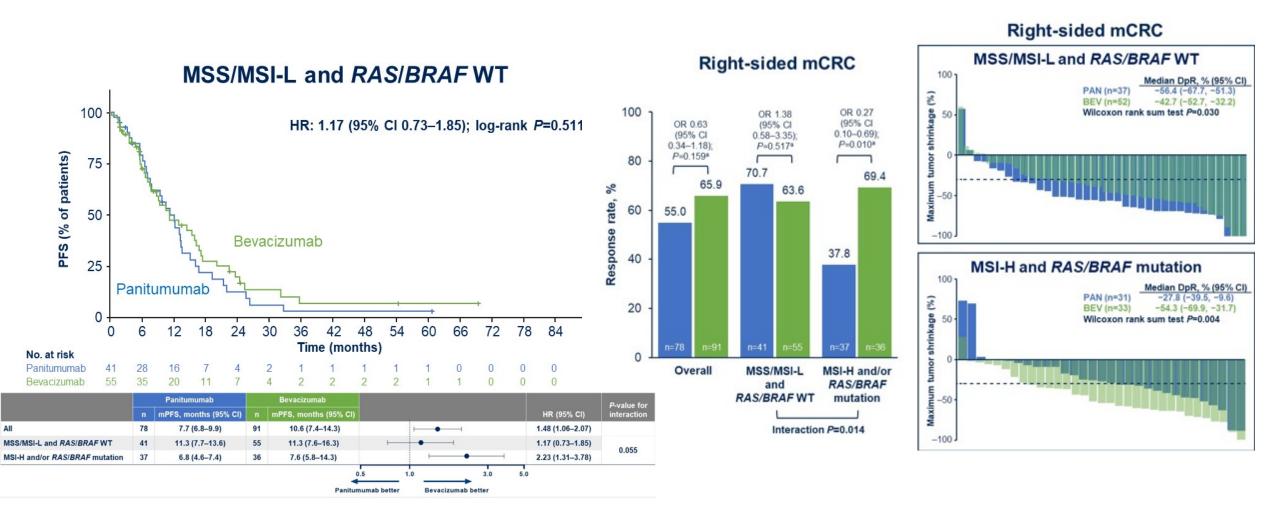
^aAdjuvant fluoropyrimidine monotherapy allowed if completed > 6 months before enrollment. ^bUntil disease progression, unacceptable toxicity, withdrawal of consent or investigator's judgement or curative intent resection. ^cPrimary tumor in descending colon, sigmoid colon, rectosigmoid, and rectum.


Watanabe et al: Jama Network, 2023

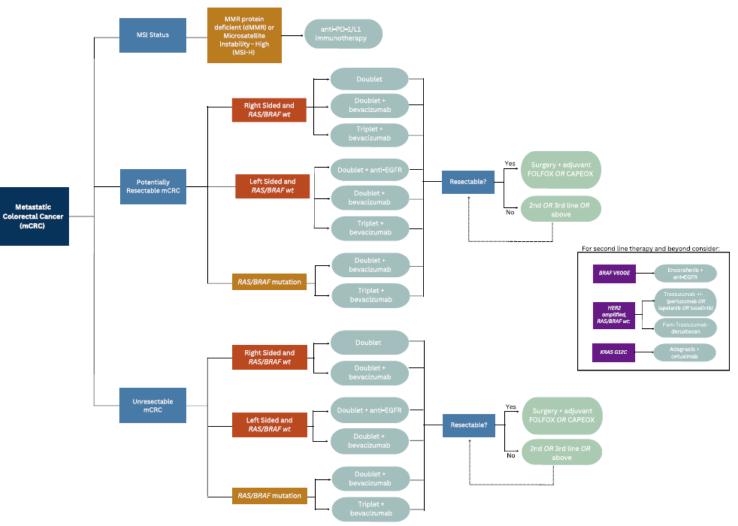

Primary Endpoint 1; Overall Survival in Left-sided Population


Watanabe et al: Jama Network, 2023

PARADIGM Updated Molecular Analysis: ORR, Depth of Response and R0 resection



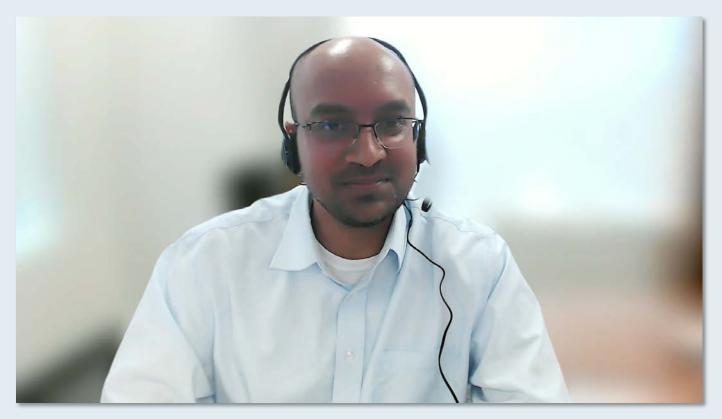
Left-sided mCRC


Yamazaki et al: ASCO 2023

PARADIGM Hyperselected Molecular Analysis: Right-sided: PFS, ORR, Depth of Response

Yamazaki et al: ASCO 2023

Biomarker-Based Treatment Algorithm



Cann et al: Frontiers in Oncology, 2023

MODULE 2: Emerging Role of Biomarker-Based Decision-Making for Patients with Localized CRC – Dr Lieu

Integration of ctDNA assays for the management of CRC

Arvind N Dasari, MD, MS

QUESTIONS FOR THE FACULTY

Arvind N Dasari, MD, MS

In what settings are you ordering ctDNA assays in your practice, and in which of these are you comfortable using the results to inform treatment decision-making?

Which ctDNA assay do you prefer?

ctDNA assays in treatment decision-making in the localized and metastatic disease settings

Arvind N Dasari, MD, MS

QUESTIONS FOR THE FACULTY

Arvind N Dasari, MD, MS

What adjuvant systemic therapy would you recommend for a patient with Stage III (T3N1) CRC for whom a tumor-informed ctDNA assay returned negative for MRD?

How would you approach a patient who has undergone (neo)adjuvant chemotherapy and resection of oligometastatic disease to the liver with a negative postoperative tumor-informed ctDNA assay that turns positive after 9 months of surveillance?

What was the age and disease stage of the last patient in your practice with localized colorectal cancer (CRC) for whom you ordered a circulating tumor DNA (ctDNA) assay outside of a clinical trial? Which ctDNA assay did you order?

	Age	Disease stage	ctDNA assay
Dr Bekaii-Saab	27 years	IIB	Signatera [™]
Dr Cercek	53 years	IV (resection)	Signatera
Dr Eng	52 years	IV (resection)	Signatera
Dr Lieu	65 years	II (low risk)	Signatera
Dr Strickler	78 years	IIIA (T2N1)	Signatera
Dr Ciombor	50 years	II (T3N0)	Signatera
Dr Dasari	48 years	IIIB	Signatera

For the patient with localized CRC in the previous scenario, what were the results of the ctDNA assay? How did these results affect your treatment approach?

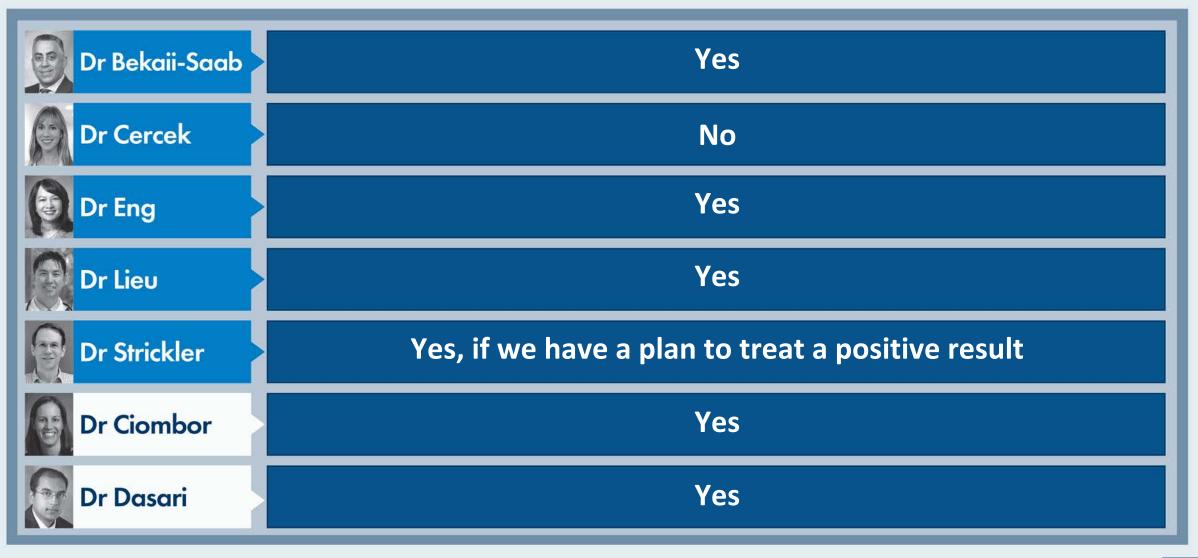
	Results of ctDNA assay	Effect on Tx approach
Dr Bekaii-Saab	Negative	Facilitated decision of observation only
Dr Cercek	Initially negative, then positive	Follow-up was more challenging due to ctDNA positivity and NED on imaging
Dr Eng	Positive	Earlier imaging and eventual PET
Dr Lieu	Negative	Continued with original plan to not administer chemotherapy
Dr Strickler	Negative	Reinforced patient's decision to pursue active surveillance
Dr Ciombor	Negative	Felt a little better about decision not to administer adjuvant chemotherapy
Dr Dasari	Negative	Continued with adjuvant chemotherapy

NED = no evidence of disease

In general, in which settings, if any, do you order a ctDNA assay for your patients with CRC outside of a clinical trial?

Dr Bekaii-Saab	Stage II, III and resected oligometastatic disease
Dr Cercek	None
Dr Eng	Metastatic CRC
Dr Lieu	Stage II and metastatic CRC
Dr Strickler	Stage II and select cases of Stage III CRC, elevated CEA with negative imaging
Dr Ciombor	Stage II and III, and resected metastatic CRC
Dr Dasari	Stage II

CEA = carcinoembryonic antigen



Based on current available data and/or your personal clinical experience, what is your global view of tumor-informed versus tumor-uninformed ctDNA assays for patients with localized CRC (eg, ease of use, accuracy)?

Dr Bekaii-Saab	Tumor-informed has better sensitivity and predictive value overall
Dr Cercek	I prefer tumor-informed assay
Dr Eng	Signatera is my preferred assay
Dr Lieu	Tumor-informed provides greater sensitivity, but tumor-uninformed is much easier to perform (due to lack of tissue testing) and is much faster
Dr Strickler	Head-to-head data aren't available, have most data with tumor-informed assays, however, sometimes these assays are too slow to return results or not available
Dr Ciombor	Tumor-informed assays take longer to result, but I tend to trust them more for MRD purposes; tumor-uninformed assays good for NGS
Dr Dasari	Tumor-informed appear to be more sensitive, but turnaround time is longer with the initial test

For a patient with CRC and a solitary hepatic metastasis who received neoadjuvant FOLFOX and underwent hepatic resection, would you assess ctDNA as part of the postoperative workup?

Cancer Center

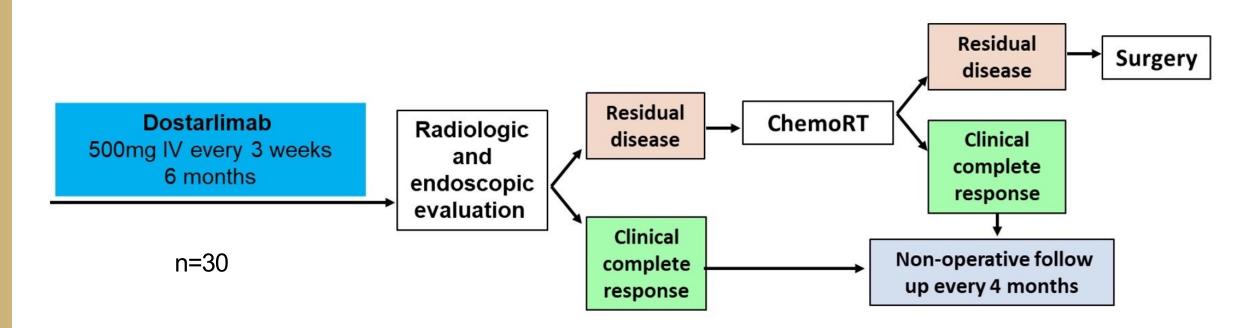
NCI-DESIGNATED CONSORTIUM COMPREHENSIVE CANCER CENTER

Emerging Role of Biomarker-Based Decision-Making for Patients with Localized CRC

Christopher Lieu, MD Director, GI Medical Oncology Associate Director for Clinical Research University of Colorado

Designated Comprehensive Cancer Center

Topics for Discussion


- Early data with the use of immune checkpoint inhibitors for patients with non-metastatic CRC
- Rationale for the use of ctDNA-based MRD monitoring in earlystage CRC

Immune checkpoint inhibitors for patients with non-metastatic CRC

Dostarlimab for MSI-H Stage II-III RectalCancer

Primary endpoints

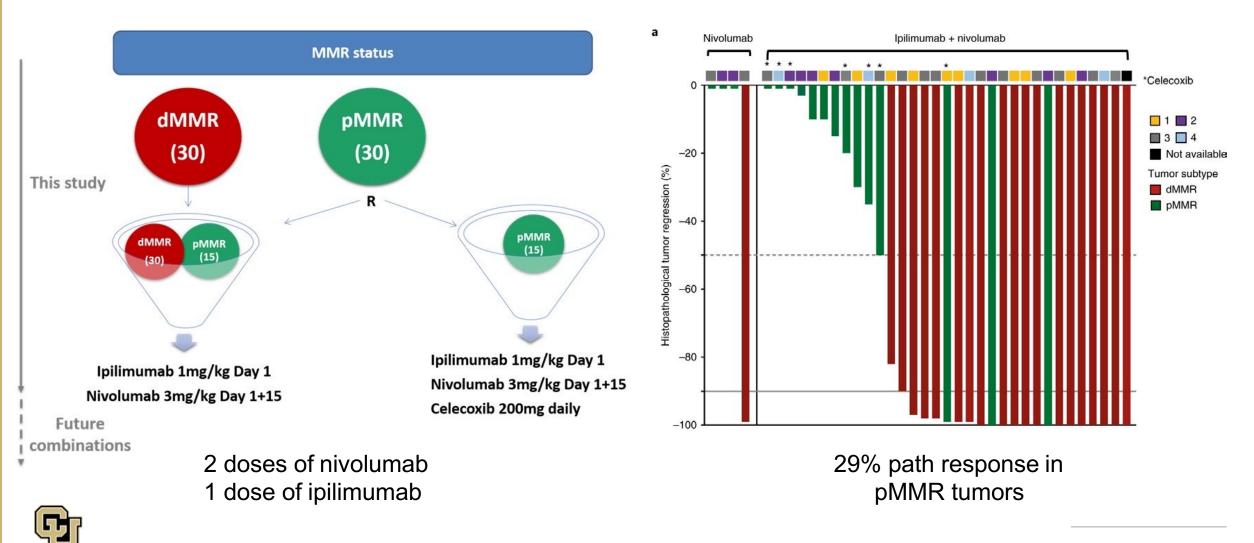
- Overall response rate at 6 months per MSKCC regression criteria
- pCR or cCR rate at 12 months

Secondary endpoint

• Safety and tolerability

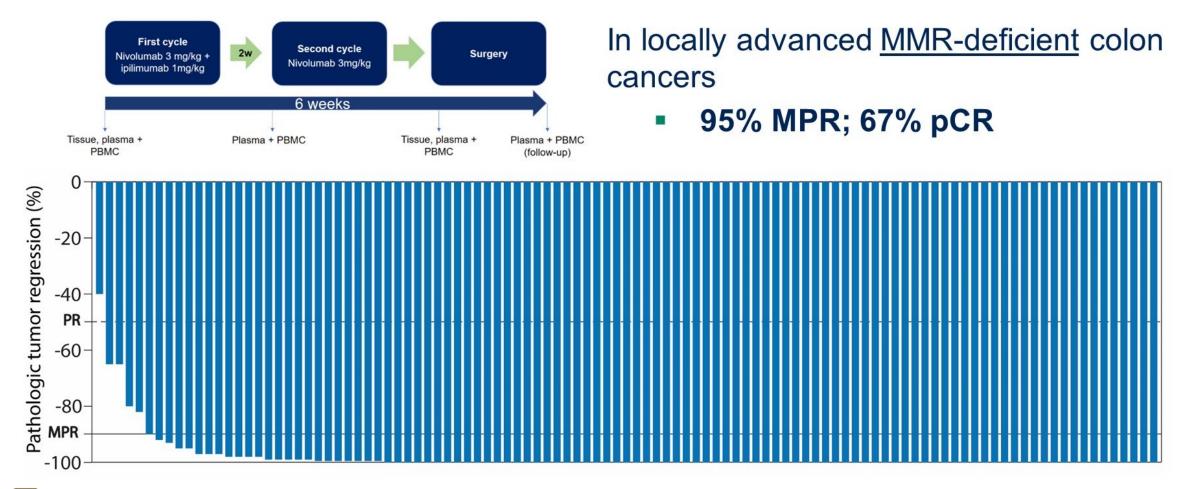
Cercek A, et al. N Engl J Med 2022.

Dostarlimab Led to a 100% Clinical CR Rate


ID	Age	Stage T	Stage N	FU (months)	Digitalrectal exam response	Endoscopic best response	Rectal MRI best response	Overall response
1	38	T4	N+	23.8	CR	CR	CR	cCR
2	30	Т3	N+	20.5	CR	CR	CR	cCR
3	61	T1/2	N+	20.6	CR	CR	CR	cCR
4	28	T4	N+	20.5	CR	CR	CR	cCR
5	53	T1/2	N+	9.1	CR	CR	CR	cCR
6	77	T1/2	N+	11.0	CR	CR	CR	cCR
7	77	T1/2	N+	8.7	CR	CR	CR	cCR
8	55	Т3	N+	5.0	CR	CR	CR	cCR
9	68	Т3	N+	4.9	CR	CR	CR	cCR
10	78	Т3	N-	1.7	CR	CR	CR	cCR
11	55	Т3	N+	4.7	CR	CR	CR	cCR
12	27	Т3	N+	4.4	CR	CR	CR	cCR
13	26	Т3	N+	0.8	CR	CR	CR	cCR
14	43	Т3	N+	0.7	CR	CR	CR	cCR

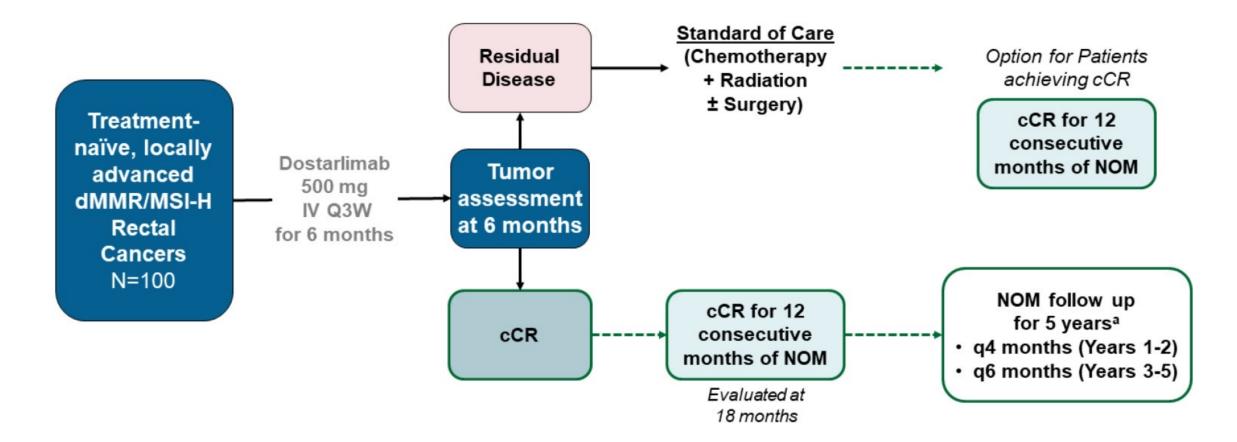
Cercek A, et al. *N Engl J Med* 2022.

NICHE Study:

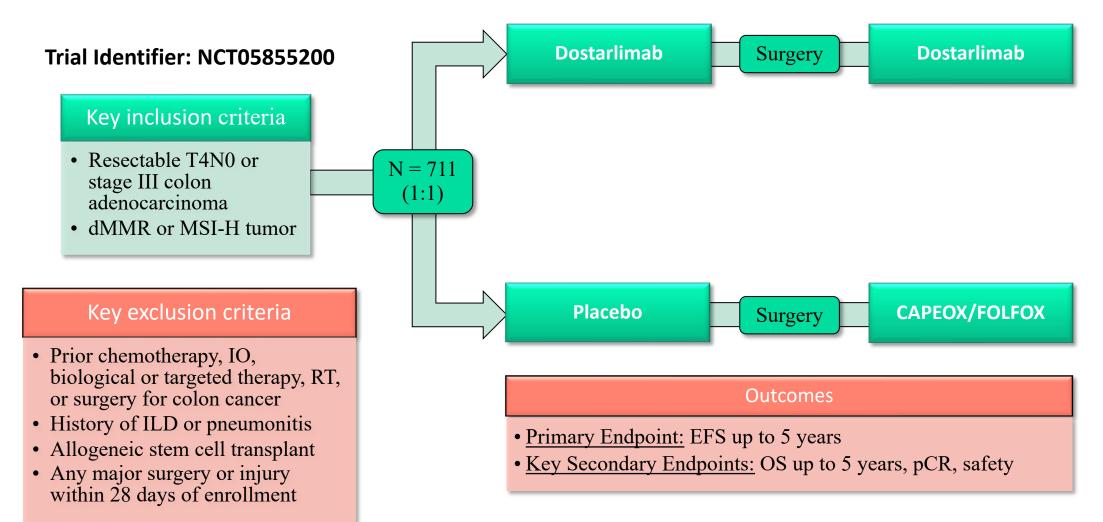

Nivolumab and Ipilimumab Neoadjuvant Therapy

Verschoor YL et al. ASCO 2022; Abstract 3511. Cha

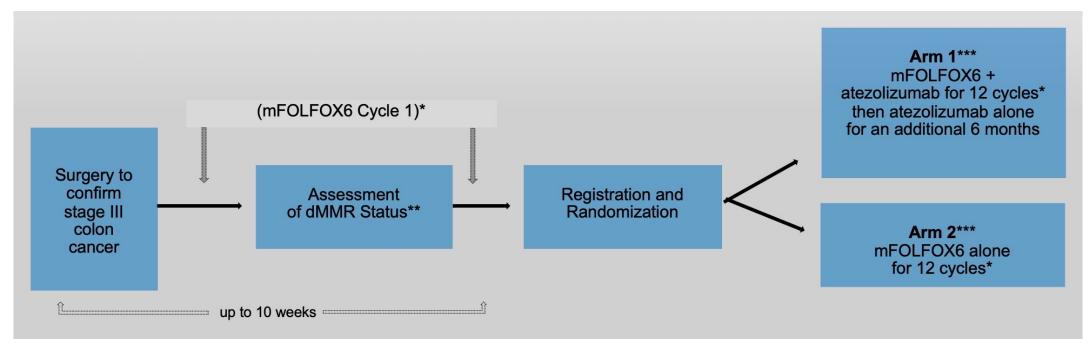
Chalabi M et al. Nat Med 2020;26(4):566-576.


NICHE-2 Study: Nivo/Ipi dMMR colon cancer

Chalabi et al. LBA7 2022 ESMO Annual Meeting.


AZUR-1: Dostarlimab in dMMR/MSI-H Locally Advanced Rectal Cancer

NCT05723562 Cercek A et al. *J Clin Oncol* 2023;41(16 suppl):TPS3639.


AZUR-2: Ongoing Phase III Study of Perioperative Dostarlimab in Untreated T4N0 or Stage III dMMR/MSI-H Resectable Colon Cancer

dMMR = defective mismatch repair MSI-H = microsatellite instability high IO = immunotherapy RT = radiation therapy ILD = interstitial lung disease CAPEOX = capecitabine/oxaliplatin FOLFOX = fluorouracil/leucovorin/oxaliplatin EFS = event-free survival OS = overall survival pCR = pathological complete response

www.clinicaltrials.gov; Accessed January 2024.

Alliance A021502 (ATOMIC): A Phase III Study of Adjuvant Atezolizumab

* 1 cycle = 14 days. One cycle of mFOLFOX6 is allowed prior to registration. If Cycle 1 is started prior to registration, then the first postregistration cycle will be mFOLFOX6 Cycle 2. For patients who started Cycle 1 prior to registration and who are randomized to Arm 1, atezolizumab will start with Cycle 2.

** Assessment of dMMR status may be performed locally or at a reference laboratory. Retrospective central confirmation of dMMR testing is required for all patients. See Section 6.2.2 for specimen submission requirements and instructions.

*** The standard of care for the time window between the end of mFOLFOX6 Cycle 1 and the start of mFOLFOX6 Cycle 2 is 14 days; however, up to 28 days are allowed between the end of Cycle 1 and the start of Cycle 2 if delays are made due to toxicity.

Patients will be followed for recurrence every 6 months for two years after registration, and then annually for an additional 3 years. Patients will be followed for survival every 6 months for 8 years after registration.

NCT02912559 Sinicrope FA et al. ASCO 2019; Abstract e15169. https://www.allianceforclinicaltrialsinoncology.org/main/public/standard.xhtml?path=%2FPublic%2FA021502

Selected Ongoing Clinical Trials:

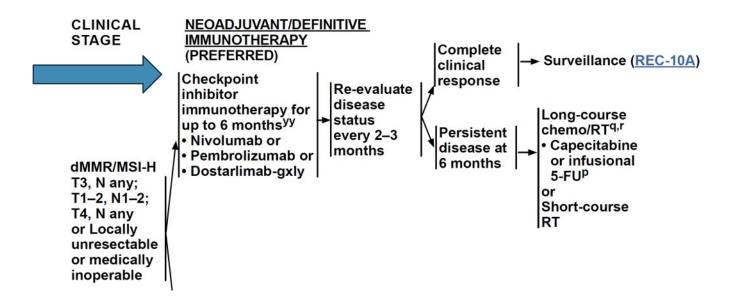
Immune Checkpoint Inhibitors for Early-Stage Colorectal Cancer

Study	Design	Study Population	Intervention	End Points of Study
NCT04357587	Phase I	Patients with MMR-D rectal cancer	Pembrolizumab in combination with capecitabine-based chemoradiation as neoadjuvant therapy	Safety, feasibility, and radiologic and pathologic tumor regression
NCT03926338	Phase II	Patients with resectable MMR-D locally advanced colon and rectal cancers	Toripalimab with or without celecoxib as neoadjuvant therapy	Pathologic complete response
NCT05116085	Phase II	Patients with stage II-III MMR-D colon cancer	Tislelizumab monotherapy as neoadjuvant therapy	Pathologic complete response
NCT05231850	Phase II	Patients with high-risk stage II-III colon cancer	Tislelizumab monotherapy as adjuvant therapy	Disease-free survival and overall survival
NCT05118724	Phase II	Patients who are oxaliplatin-ineligible with stage III colon and rectal cancer	Atezolizumab with/without IMM-101 (immune-stimulating molecule) as perioperative therapy	Disease-free survival and overall survival

Abbreviations: MMR-D, mismatch repair-deficient.

Sahin et al. *JCO Onc Prac* 2023;19:251-259.

TAKE HOME POINTS:

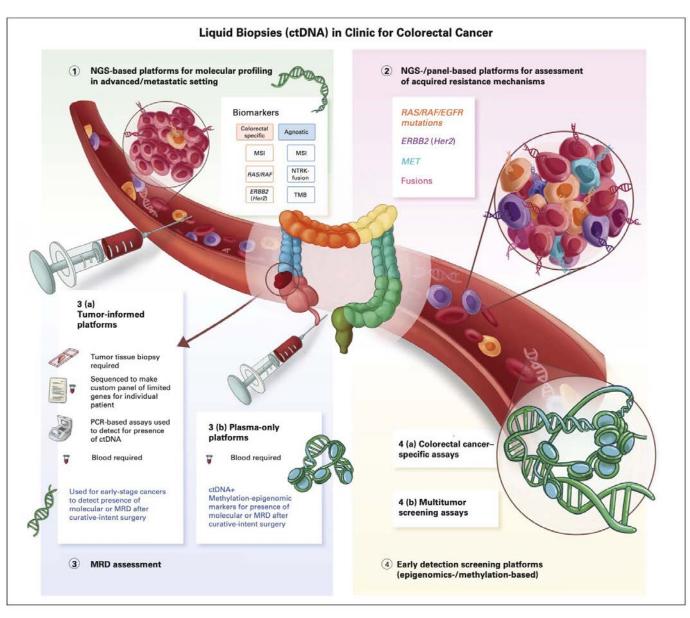

Neoadjuvant immune checkpoint inhibition appears ready for primetime for dMMR/MSI-H

QUESTIONS:

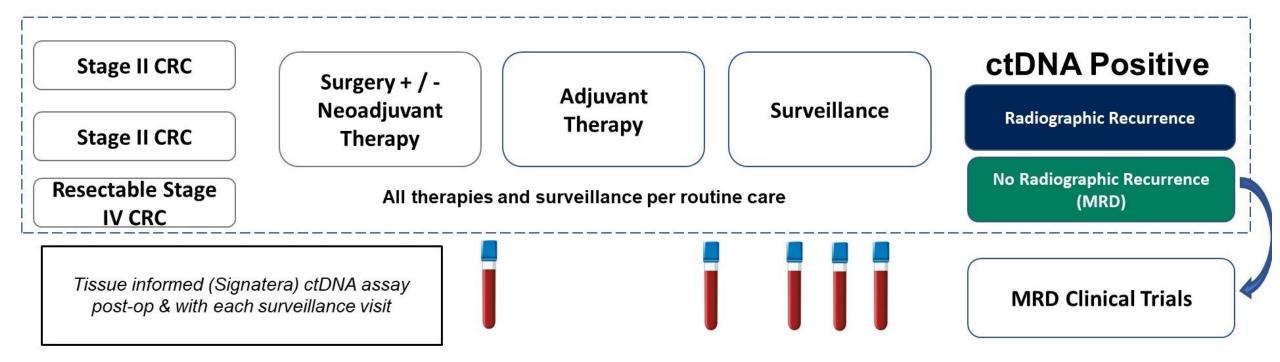
What do long-term outcomes look like?

Does pCR mean cure?

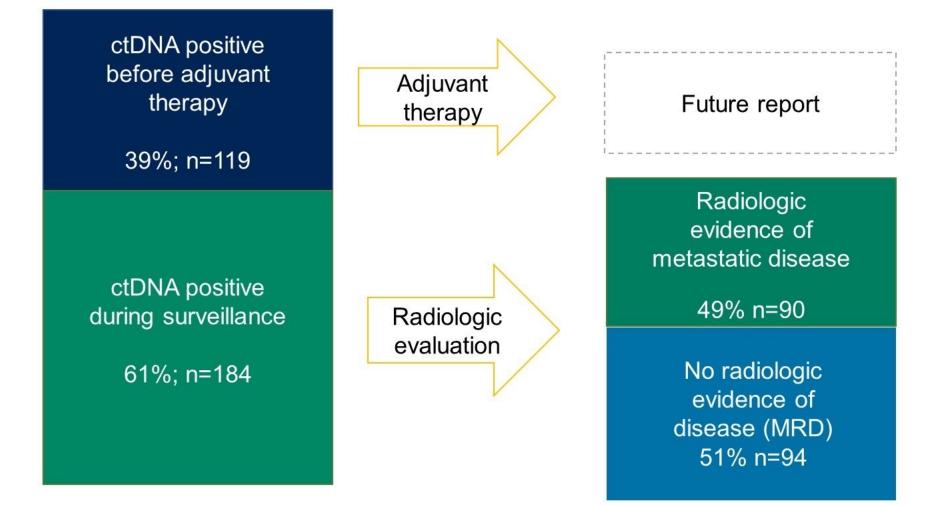
What is the impact on pMMR/MSS patients?



Is ctDNA ready for primetime?



Rationale for ctDNA-Based MRD Monitoring in Localized CRC



Malla M et al. J Clin Oncol 2022;40(24):2846-57.

INTERCEPT Study Design

Clinical Utility: Radiographic Findings of Patients ctDNA+ During Surveillance, n = 184

Roughly half of patients with positive ctDNA will have radiologic evidence of metastatic disease

DYNAMIC Study Design

Plasma Collections

Week 4 + 7 post-op

R

2:1

ACTRN12615000381583

Stage II Colon Cancer

- R0 resection
- ECOG 0 2
- Staging CT within 8 weeks
- Provision of adequate tumor tissue within 4 weeks post-op
- No synchronous colorectal cancer

Stratification Factors

- T stage (T3 vs T4)
- Type of participating center (metropolitan vs regional)

ctDNA-Guided Management

- ctDNA-Positive → Adjuvant Chemo (oxaliplatin-based or single agent FP)
- ctDNA-Negative \rightarrow Observation

ctDNA-Positive = Positive result at week 4 and/or 7

Standard Management

 Adjuvant treatment decisions based on conventional clinico-pathologic criteria

Endpoints

Primary

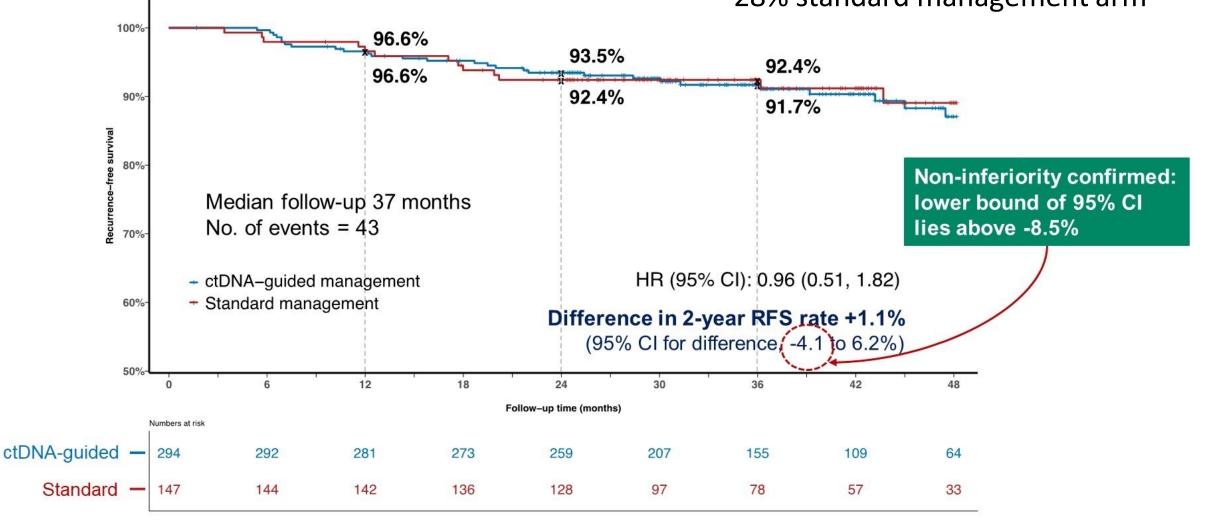
RFS rate at 2 years

Key Secondary

 Proportion receiving adjuvant chemo

Secondary

- RFS by ctDNA status for ctDNA-guided arm
- TTR
- OS

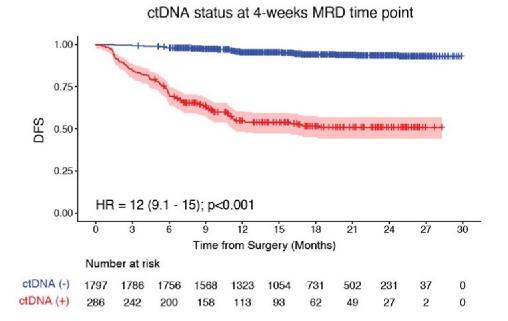

Surveillance:

- CEA \rightarrow 3-monthly for 24M, then 6-monthly for 36M
- CT C/A/P → 6-monthly for 24M, then at 36M

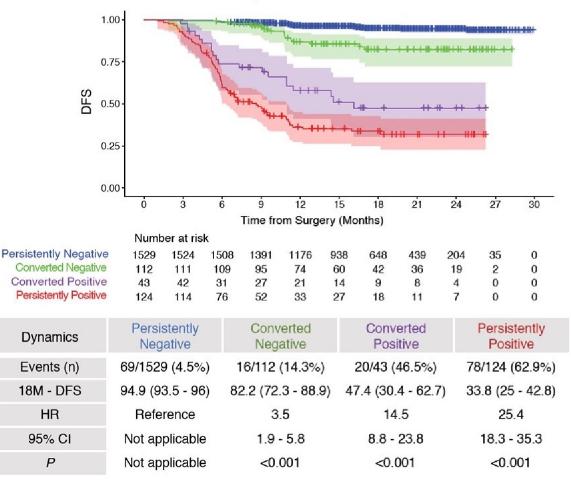
Recurrence-Free Survival

Adjuvant therapy received:

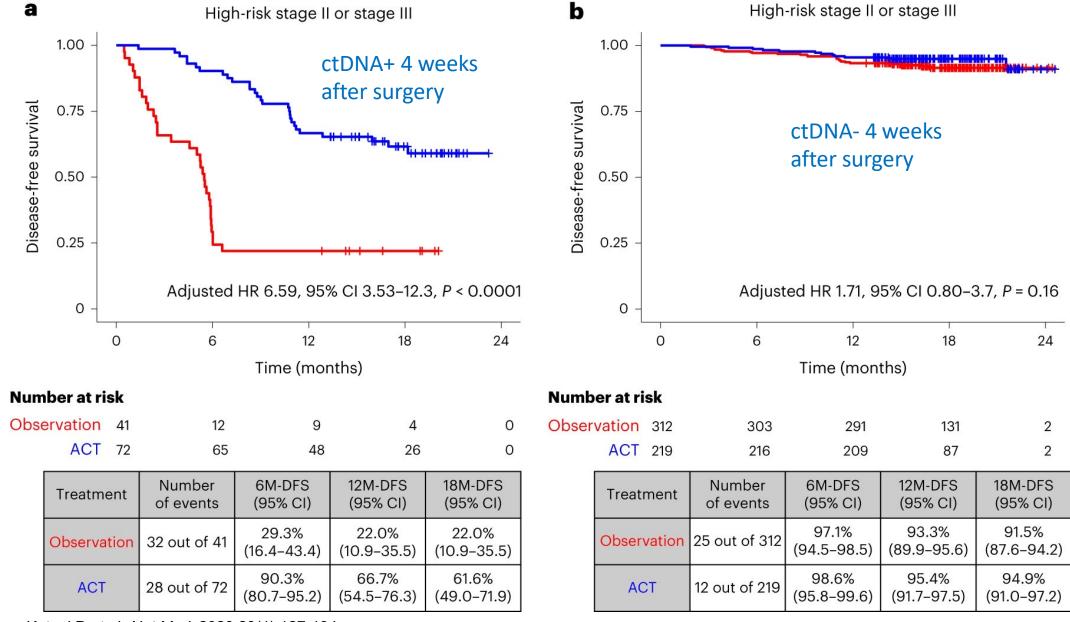
15% ctDNA-guided arm28% standard management arm


Tie J et al. 2022 ASCO Annual Meeting. LBA100. Tie J et al. *N Engl J Med*. 2022;386(24):2261-2272.

CIRCULATE-Japan Overview


IRCU

ctDNA dynamics between weeks 4 and 12 post surgery is prognostic of DFS

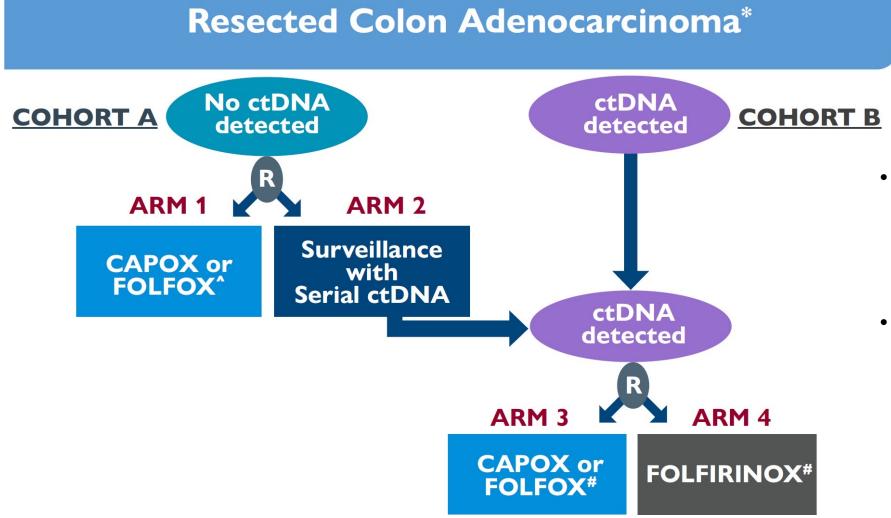

Dynamics	ctDNA Negative	ctDNA Positive
Events (n)	96/1797 (5.3%)	130/286 (45.5%)
18M - DFS	93.9 (92.5 - 95)	51.6 (45.2 - 57.6)
HR	Reference	12
95% CI	Not applicable	9.1 - 15
Р	Not applicable	<0.001

ctDNA Dynamics from 4 weeks to 12 weeks

Oki E et al. 2023 ASCO Annual Meeting. Abstract 3521.

ctDNA Testing Predicts Response to Adjuvant Therapy

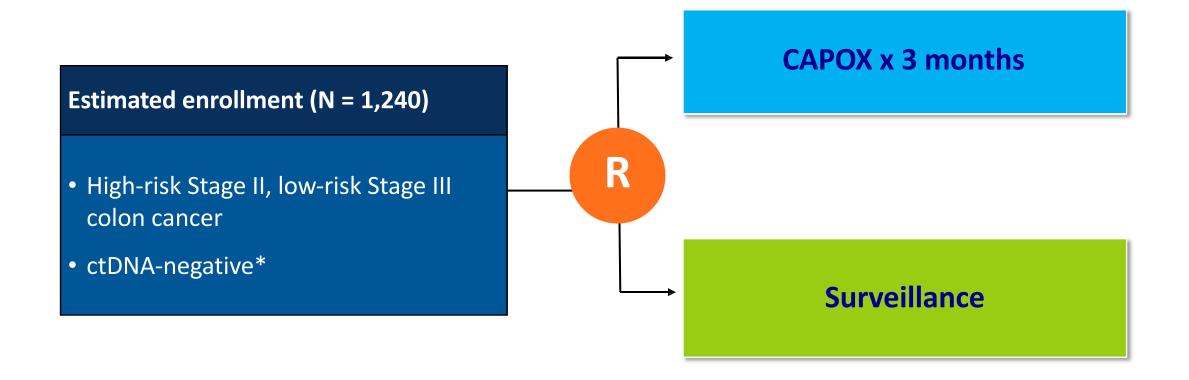
Kotani D et al. Nat Med. 2023;29(1):127-134.


ctDNA clearance rate (stages I-IV)

68% with adjuvant chemotherapy versus 12% without

Kotani D et al. Nat Med. 2023;29(1):127-134.

CIRCULATE North America: Stage III Colon Cancer Study Amended Schema



- Study population amended to include <u>all</u> patients with Stage IIB, IIC, and Stage III colon adenocarcinoma
- One dose of chemotherapy allowed while awaiting Step 2 randomization

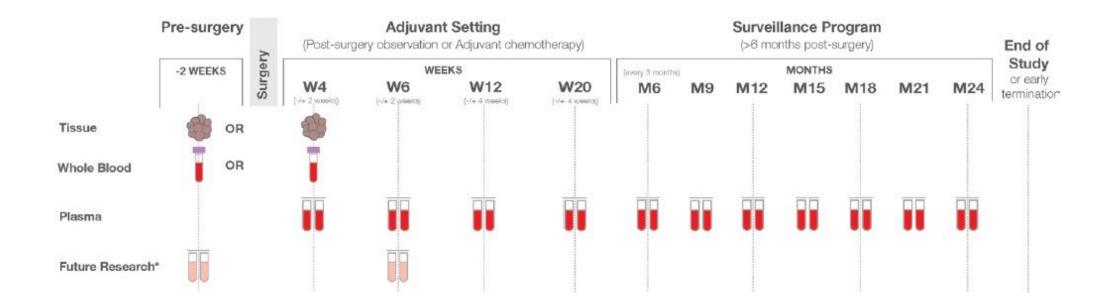
Pls: Dasari and Lieu (NRG-GI008 – NCT0517416)

VEGA Phase III Study Schema

* Patients to be enrolled in the ALTAIR study if ctDNA becomes positive at 3 months

Naidoo M et al. Cancers 2021;13(2):346.

ALTAIR Phase III Study Schema in the CIRCULATE Platform


Secondary Endpoints: ctDNA clearance rate, OS, Others

Shirasu H et al. Gastrointestinal Cancers Symposium 2022; Abstract TPS215.

BESPOKE CRC: A Prospective, Case-Controlled Observational Study

Estimated enrollment (N = 2,000)

• Stage I-IV CRC or Stage IV CRC with oligometastatic disease eligible for post-operative systemic therapy

Take Home Points:

- Stage II Colon Cancer:
 - ctDNA may be ready for primetime for low-risk stage II colon cancer
 - If ctDNA is positive, who would not offer adjuvant chemotherapy?

• Stage III Colon Cancer:

- Adjuvant chemotherapy can clear ctDNA and outcomes appear improved in patients with negative ctDNA
- Ongoing studies are critically needed to determine if ctDNA can be used to guide the management of patients with stage III colon cancer

MODULE 3: Identification and Clinical Care of Patients with mCRC and a BRAF V600E Mutation – Dr Bekaii-Saab

Treatment of BRAF mutation-positive mCRC

Arvind N Dasari, MD, MS

Kristen K Ciombor, MD, MSCI

QUESTIONS FOR THE FACULTY

Arvind N Dasari, MD, MS

What is your preferred first-line therapy for patients with mCRC and BRAF V600E mutations, and do you ever offer up-front targeted therapy?

Are there any situations in which you prefer triplet (eg, encorafenib/binimetinib/EGFR antibody) over doublet (eg, encorafenib/EGFR antibody) targeted therapy for patients with mCRC and BRAF V600E mutations?

Kristen K Ciombor, MD, MSCI

How often do you see patients with atypical BRAF mutations, and how do you approach their treatment?

Experience with BRAF-targeted therapy as first-line treatment for mCRC

Kristen K Ciombor, MD, MSCI

QUESTIONS FOR THE FACULTY

Kristen K Ciombor, MD, MSCI

Would you offer up-front targeted therapy to an older patient with comorbidities and BRAF-mutant mCRC who was not a candidate for chemotherapy?

What are the key tolerability issues with encorafenib/EGFR antibody therapy?

Regulatory and reimbursement issues aside, for a patient with pan-RAS wild-type mCRC with a BRAF V600E mutation, in which line of therapy would you generally administer BRAF-targeted therapy?

Dr Bekaii-Saab	Second
Dr Cercek	Second
Dr Eng	Second
Dr Lieu	Second
Dr Strickler	Second
Dr Ciombor	Second
Dr Dasari	Second

Have you administered or would you administer a BRAF inhibitor in combination with an EGFR antibody as first-line therapy for a patient with mCRC with a BRAF V600E mutation who could not tolerate or did not wish to receive chemotherapy?

Dr Bekaii-Saab	I have
Dr Cercek	I have not but would for the right patient
Dr Eng	I have not but would for the right patient
Dr Lieu	I have
Dr Strickler	I have not but would for the right patient
Dr Ciombor	I have not but would for the right patient
Dr Dasari	I have

Regulatory and reimbursement issues aside, for a patient with mCRC with a BRAF V600E mutation to whom you would administer BRAF-targeted therapy, what would be your preferred treatment?

Dr Bekaii-Saab	Encorafenib/cetuximab
Dr Cercek	Encorafenib/panitumumab
Dr Eng	Encorafenib + EGFR antibody
Dr Lieu	Encorafenib/cetuximab
Dr Strickler	Encorafenib/panitumumab
Dr Ciombor	Encorafenib/panitumumab
Dr Dasari	Encorafenib/cetuximab

Based on currently available data and/or your own clinical experience, which subsets of patients with mCRC with a BRAF V600E mutation, if any, might derive greater benefit from triplet (eg, encorafenib/ binimetinib/EGFR antibody) than from doublet (eg, encorafenib/EGFR antibody) targeted therapy?

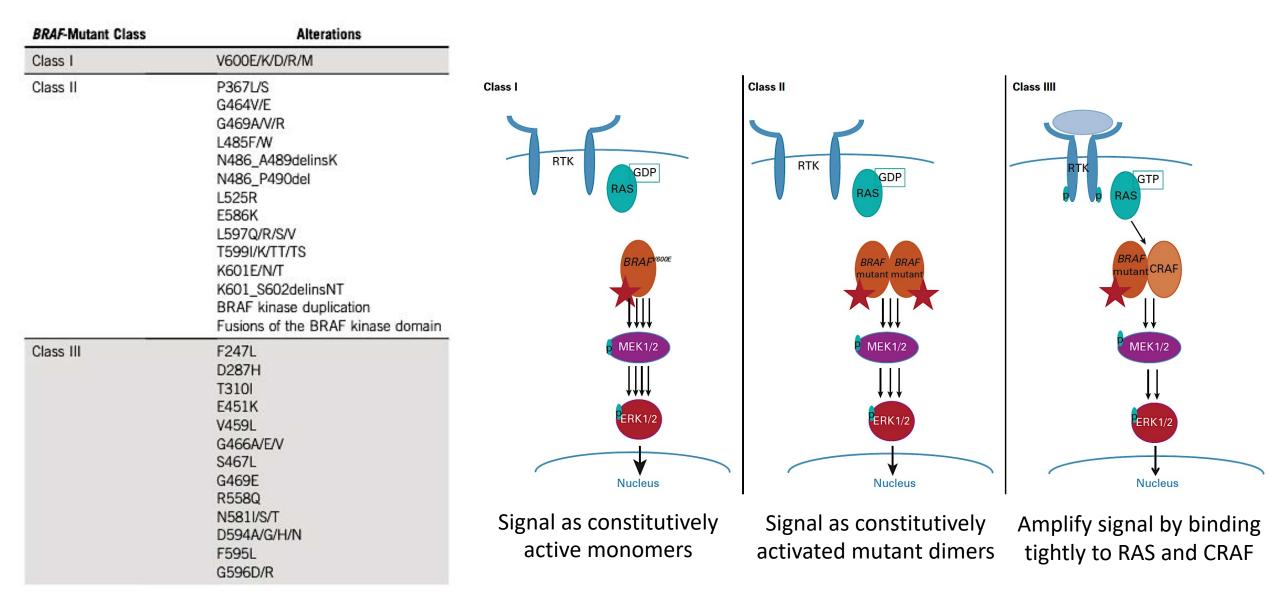
Dr Bekaii-Saab	None
Dr Cercek	None
Dr Eng	None
Dr Lieu	In patients needing a response, either for palliation or for possible resection
Dr Strickler	To my knowledge there is no patient subpopulation that derives greater benefit from the triplet compared to the doublet
Dr Ciombor	Unclear – I wonder if adding a MEK inhibitor would help overcome developing resistance to anti-EGFR/BRAF but no data here
Dr Dasari	Have not used triplet or a MEK inhibitor for mCRC outside of clinical trial

What is the longest duration of response that you have observed in a patient with mCRC with a BRAF V600E mutation who received doublet therapy with encorafenib and an EGFR inhibitor?

Dr Bekaii-Saab	14 months
Dr Cercek	22 months
Dr Eng	4 months
Dr Lieu	12 months
Dr Strickler	8 months
Dr Ciombor	24 months
Dr Dasari	14 months

What other BRAF mutations, beyond V600E, have you observed in your patients with mCRC?

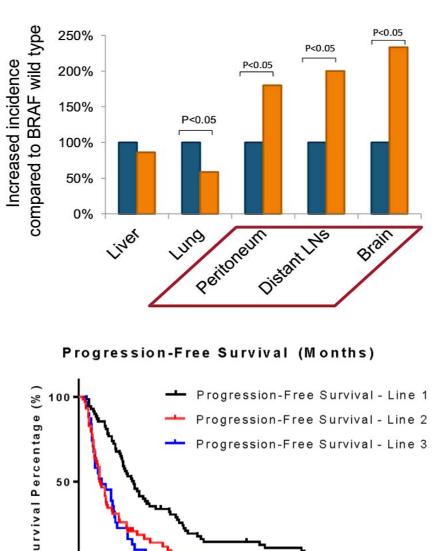
Dr Bekaii-Saab	Multiple non-V600E
Dr Cercek	All the others
Dr Eng	Cannot recall
Dr Lieu	G469A, G469V, L597R
Dr Strickler	Non-V600E BRAF mutations are seen with regularity
Dr Ciombor	D594, G469
Dr Dasari	D594G, D594N, G466V, G469A


Identification and Management of Patients with mCRC and a BRAF V600E Mutation

Tanios Bekaii-Saab, MD

Professor, Mayo Clinic College of Medicine and Science Chair, Hematology and Medical Oncology Consultant, Mayo Clinic AZ

Characteristics of Classes of BRAF Mutations



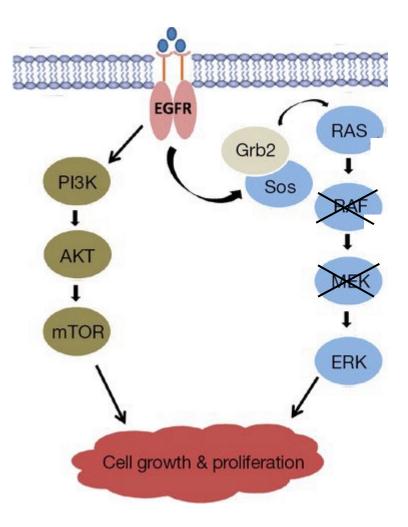
Ciombor KK et al. J Clin Oncol 2022;40:2706-15.

BRAF^{V600E} mCRC: Unique Clinical & Pathologic Features

Tie J, et al. *Int J Canc.* 2010 Tran B, et al. *Cancer.* 2011;117:4623-32 Morris VK, et al. *Clin Colorectal Cancer.* 2014

10

20


Time (Months)

30

S

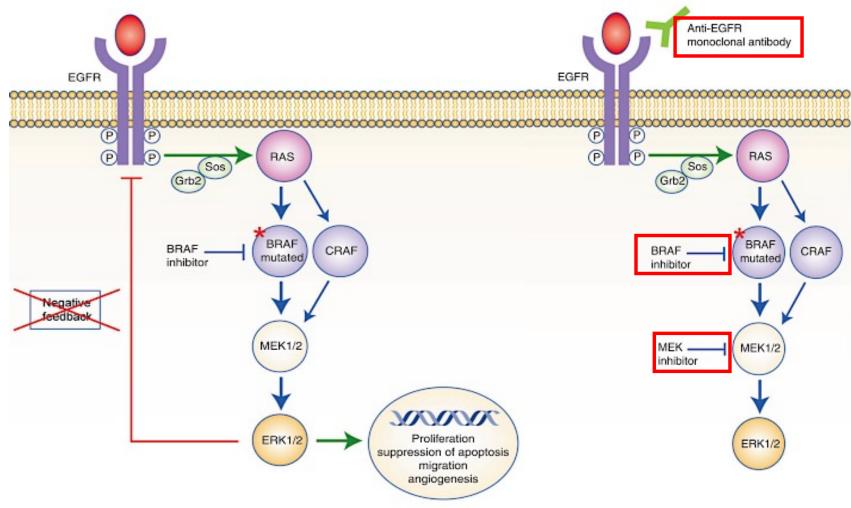
0

BRAF^{V600E} as a Therapeutic Target in Cancer

- Activated BRAF perpetuates MAPK activity, leading to cell cycle progression and tumor cell proliferation
- Single Agent BRAF inhibitors have activity in:
 - Melanoma (RR 34-53%)
 - NSCLC (RR 42%)

~5% CRC

~10% CRC


- Papillary thyroid cancer (RR 29%)
- Refr. hairy cell leukemia (RR 85-100%)

• BRAF + MEK targeted therapies have activity in:

- metastatic melanoma (RR 64-69%)
- metastatic NSCLC (RR 63%)
- anaplastic thyroid cancer (RR 69%)
- low grade gliomas (69%)
- cholangiocarcinoma (50%)

In 131 patients from 3 basket studies, 41% RR with dabrafenib and trametinib

Co-targeting EGFR overcomes resistance to BRAF +/- MEK inhibitors

Adapted from Taieb J et al, Br J Cancer. 2019;121:434-442.

Completed Trials in BRAF V600E Mutant mCRC

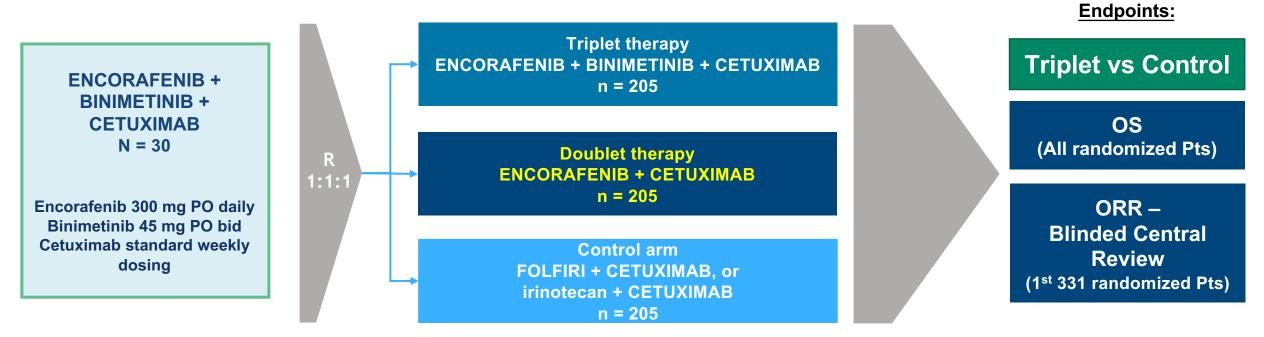

Name/ClinicalTrials.gov Identifier	Study Design	Line of Therapy	Agents Investigated	Key Eligibility	Key Efficacy Outcomes
NCT0040558741	Phase II	2L+	Vemurafenib	BRAF ^{veoce} mutation, RAS WT	ORR 4.8%, mPFS 2.1 months, mOS 7.7 months
NCT0107217542	Phase I/II	1L+	Dabrafenib plus trametinib	BRAF ^{veoor} mutation	ORR 11.6%, mPFS 3.5 months
NCT0479044844	Phase Ib	2L+	MC	BRAF ^{VEODE} mutation, KRAS/NRAS WT	ORR 35.3%, mPFS 7.7 months
SWOG 1406/ NCT0216491645	Phase II	2L, 3L	VIC v IC	BRAF ^{VEOOE} mutation, NRAS/KRAS WT	VIC: ORR 17%, mPFS 4.2 months IC: ORR 4%, mPFS 2.0 months
FIRE 4.5 (AIO KRK-0116)/ NCT04034459 ⁴⁰	Phase II	1L	FOLFOXIRI plus bevacizumab (arm A) v FOLFOXIRI plus cetuximab (arm B)	BRAF ^{V600E} mutation, RAS WT	Arm A: ORR 66.7%, mPFS ATP 10.1 months, mOS 17.1 months Arm B: ORR 52.0%, mPFS ATP 6.3 months, mOS 15.2 months
BEACON CRC/ Phase III 2L, 3L NCT02928224 ⁴⁶		Binimetinib plus encorafenib plus cetuximab (triplet) v encorafenib plus cetuximab (doublet) v investigator's choice (cetuximab plus irinotecan or cetuximab plus FOLFIRI; control)	BRAF ^{VEODE} mutation	Triplet: ORR 26.8%, mPFS 4.5 months, mOS 9.3 months Doublet: ORR 19.5%, mPFS 4.3 months, mOS 9.3 months Control: ORR 1.8%, mPFS 1.5 months, mOS 5.9 months	
ANCHOR/ NCT0369317048	Phase II	1L	Binimetinib plus encorafenib plus cetuximab	BRAF ^{V600E} mutation	ORR 47.8%, mPFS 5.8 months, mOS 17.2 months

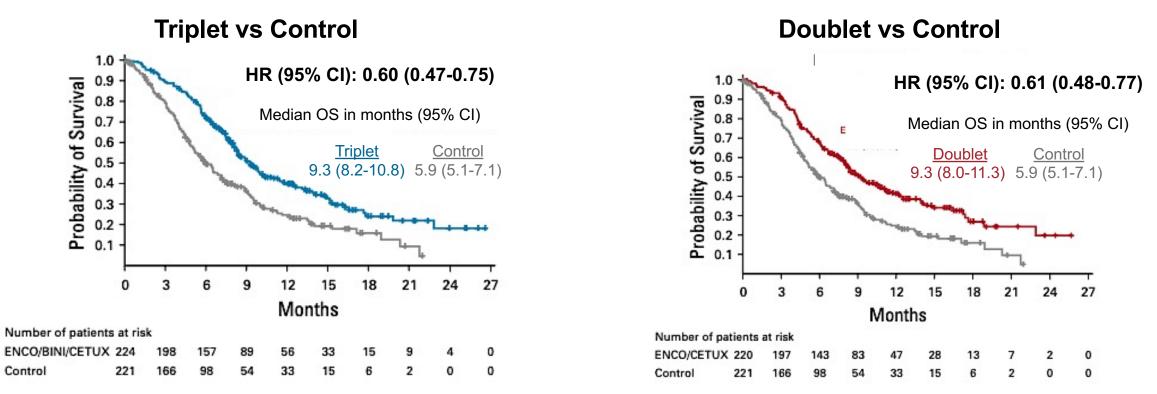
TABLE 2. Key Completed Clinical Trials for BRAFVEOOE-Mutant Metastatic Colorectal Cancer

Abbreviations: ATP, according to protocol; FOLFIRI, fluorouracil, leucovorin, and irinotecan; FOLFOXIRI, fluorouracil, leucovorin, oxaliplatin, and irinotecan; IC, irinotecan plus cetuximab; mCRC, metastatic colorectal cancer; mOS, median overall survival; mPFS, median progression-free survival; ORR, objective response rate; VIC, vemurafenib plus cetuximab plus irinotecan; WT, wild-type.

BEACON CRC: Phase 3 in 2nd/ 3rd Line *BRAF* V600E mut mCRC

Patients with *BRAF*^{V600E} mCRC with disease progression after 1 or 2 prior regimens; ECOG PS of 0 or 1; and no prior treatment with any RAF inhibitor, MEK inhibitor, or EGFR inhibitor

Primary


Randomization was stratified by ECOG PS (0 vs. 1), prior use of irinotecan (yes vs. no), and cetuximab source (US-licensed vs. EU-approved)

Secondary Endpoints: Doublet vs Control and Triplet vs Doublet - OS & ORR, PFS, Safety

QOL Assessments: EORTC QOL Questionnaire (QLQ C30), Functional Assessment of Cancer Therapy Colon Cancer, EuroQol 5D5L, and Patient Global Impression of Change).

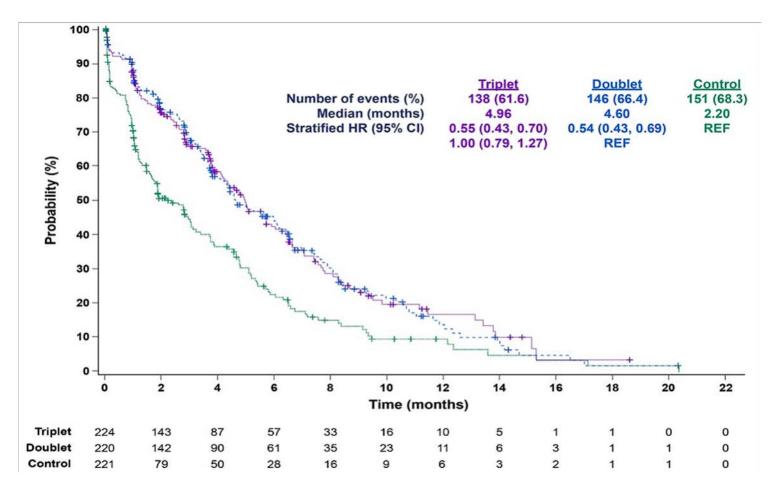
Kopetz et al., NEJM 2019

BEACON CRC: Overall Survival and Objective Response Rate

Objective Response Rate (first 331 randomized patients)

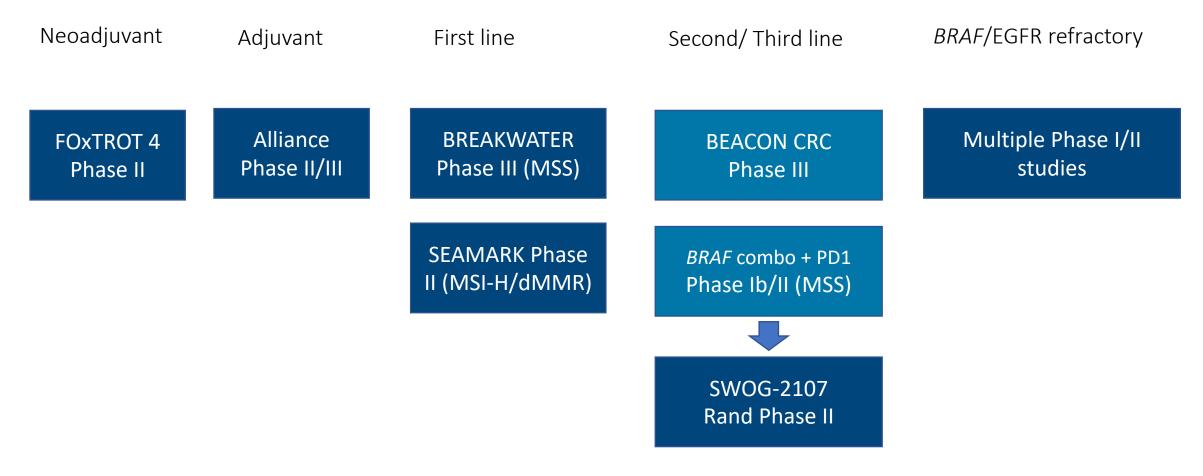
Confirmed Response by BICR	Triplet N = 111	Doublet N = 113	Control N = 107	
Objective response rate	26%	20%	2%	
(95% CI)	(18–35)	(13–29)	(<1–7)	
P value vs control	<.0001	<.0001		

Tabernero J, Grothey A, et al. JCO 2021; Kopetz S, Grothey A, et al. N Engl J Med. 2019;381:1632-1643.


BEACON CRC: Adverse Events

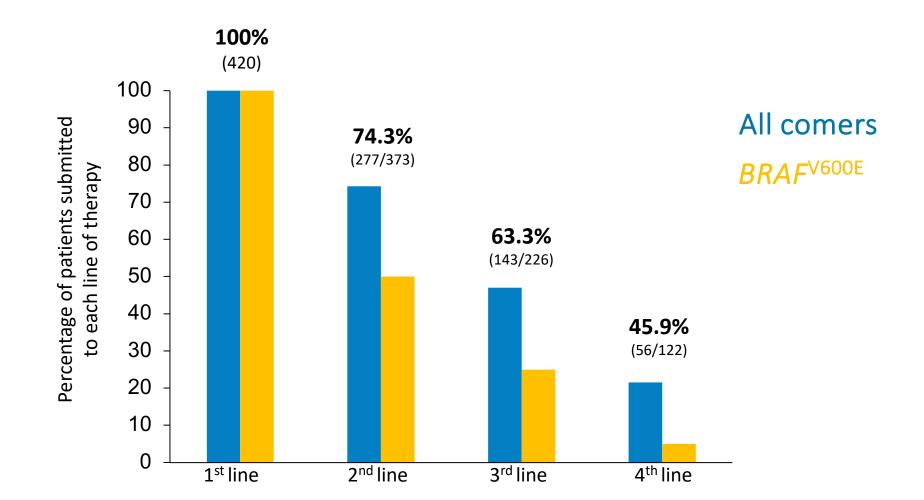
Variable	Triplet Regimen (N=222)		Doublet Regimen (N = 216)		Control (N = 193)	
	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Any Grade	Grade ≥3
			number of pat	ients (percent)		
Adverse events						
Any adverse event	217 (98)	128 (58)	212 (98)	108 (50)	188 (97)	117 (61)
Diarrhea	137 (62)	22 (10)	72 (33)	4 (2)	93 (48)	19 (10)
Acneiform dermatitis	108 (49)	5 (2)	63 (29)	1 (<1)	76 (39)	5 (3)
Nausea	100 (45)	10 (5)	74 (34)	1 (<1)	80 (41)	2 (1)
Vomiting	85 (38)	9 (4)	46 (21)	3 (1)	56 (29)	5 (3)
Fatigue	73 (33)	5 (2)	65 (30)	9 (4)	53 (27)	8 (4)
Abdominal pain	65 (29)	13 (6)	49 (23)	5 (2)	48 (25)	9 (5)
Decreased appetite	63 (28)	4 (2)	58 (27)	3 (1)	52 (27)	6 (3)
Asthenia	55 (25)	7 (3)	46 (21)	7 (3)	49 (25)	9 (5)
Constipation	55 (25)	0	33 (15)	0	35 (18)	2 (1)
Dry skin	46 (21)	2 (1)	24 (11)	0	13 (7)	1 (1)
Pyrexia	45 (20)	4 (2)	35 (16)	2 (1)	27 (14)	1 (1)
Rash	42 (19)	1 (<1)	25 (12)	0	27 (14)	3 (2)
Stomatitis	31 (14)	1 (<1)	12 (6)	0	44 (23)	4 (2)
Palmar-plantar erythrodysesthesia syndrome	28 (13)	0	9 (4)	1 (<1)	14 (7)	0
Pruritus	28 (13)	0	20 (9)	0	9 (5)	0
Back pain	25 (11)	2 (1)	22 (10)	2 (1)	23 (12)	2 (1)
Blurred vision	25 (11)	0	8 (4)	0	1 (1)	0
Peripheral edema	24 (11)	1 (<1)	18 (8)	0	13 (7)	1 (1)
Weight decreased	24 (11)	1 (<1)	21 (10)	1 (<1)	11 (6)	0
Arthralgia	23 (10)	0	41 (19)	2 (1)	1 (1)	0
Cough	23 (10)	0	16 (7)	1 (<1)	10 (5)	0
Myalgia	18 (8)	0	29 (13)	1 (<1)	4 (2)	0
Dyspnea	17 (8)	2 (1)	23 (11)	2 (1)	17 (9)	5 (3)
Headache	16 (7)	0	42 (19)	0	5 (3)	0
Pain in extremity	15 (7)	0	22 (10)	0	1 (1)	0
Insomnia	11 (5)	0	24 (11)	0	11 (6)	0
Musculoskeletal pain	6 (3)	0	27 (12)	0	3 (2)	0
Melanocytic nevus	1 (<1)	0	31 (14)	0	0	0
Abnormal laboratory values						
Alanine aminotransferase	51 (23)	4 (2)	36 (17)	0	50 (26)	5 (3)
Aspartate aminotransferase	50 (23)	4 (2)	31 (14)	3 (1)	38 (20)	3 (2)
Bilirubin	12 (5)	5 (2)	16 (7)	5 (2)	16 (8)	6 (3)
Creatine kinase	52 (23)	6 (3)	6 (3)	0	13 (7)	0
Creatinine	166 (75)	10 (5)	109 (50)	5 (2)	65 (34)	2 (1)
Hemoglobin	125 (56)	24 (11)	70 (32)	9 (4)	85 (44)	8 (4)

Kopetz S, et al. N Engl J Med. 2019;381:1632-1643.


Maintenance of Quality of Life: EORTC QLQ-C30

Time to Definitive Deterioration in EORTC QLQ-C30 Global Health Status

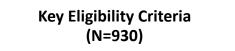
*The time to definitive deterioration is defined as the time from the date of randomization to the date of event, which is defined as at least 10% worsening relative to baseline of the corresponding scale score with no later improvement above this threshold observed during the course of the study or death due to any cause. Presented by Scott Kopetz, MD


Where is the field going from here?

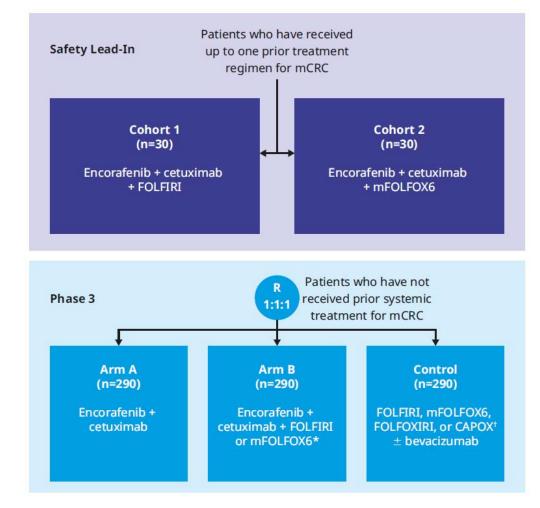
Enrolling

Need your best option early for *BRAF*^{V600E} Probability of receiving therapy beyond 1st line drop, especially for patients with *BRAF*

Tampellini M, et al. *Clin Colorectal Cancer*. 2017;16:372-76, integrated with Morris, et al. *Clin Colorectal Cancer*. 2014;13(3):164-71


Early *BRAF* Combination Treatment *May* Result in Better Outcomes

Response Rates	First line (ANCHOR)	Second line (BEACON CRC)	Third line (BEACON CRC)	
Triplet of <i>BRAF</i> + EGFR + MEK	48%	34%	22%	
Doublet of <i>BRAF</i> + EGFR	N/A	14%	16%	


If this is confirmed, treatment earlier in the disease course may be beneficial. Why do we see this effect?

BREAKWATER: First-line Encorafenib + Cetuximab ± Chemotherapy Versus SOC in Patients With *BRAF* V600E–Mutant mCRC

- Patients aged ≥ 16 (phase 3)
- Measurable, histologically or cytologically confirmed CRC adenocarcinoma (phase 3)
- Presence of metastatic disease
- BRAF V600E mutation present in tumor tissue or blood
- No dMMR/MSI-H disease
- Participants who received ≤1 (safety lead-in) or no (phase 3) prior systemic regimens for metastatic disease; No previous treatment with BRAFi or EGFRi
- ECOG PS of 0 or 1

Primary Endpoints

- Safety lead-in: Incidence of doselimiting toxicities
- Phase 3: PFS by BICR of Arm A vs Arm C and Arm B vs Arm C

NCT04607421

A multicenter, open-label, randomized, interventional study to determine the safety, tolerability, and efficacy of encorafenib + cetuximab with or without chemotherapy versus standard of care chemotherapy in patients with previously untreated *BRAF* V600E-mutant mCRC. Prior to the phase 3 portion, a safety lead-in will be conducted to evaluate the safety/tolerability and PK of encorafenib + cetuximab in combination with either mFOLFOX6 or FOLFIRI

1. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04607421. Accessed October 29, 2020.

BREAKWATER Safety Lead-In: Safety Summary

Primary endpoint: Frequency of DLTs

 One patient in the EC + FOLFIRI cohort had a DLT of grade 4 neutropenia lasting >7 days; no other DLTs were reported

Secondary endpoint: Safety

	EC + mF	OLFOX6	EC + F	OLFIRI
	n=	n=27		30
All causality, n (%)				
TEAEs	27 (10	00.0)	30 (1	00.0)
SAEs	13 (4	8.1)	10 (3	33.3)
Grade ≥3 TEAEs	21 (7	7.8)	13 (4	13.3)
TEAEs leading to dose reduction (any drug)	18 (6	6.7)	10 (3	33.3)
TEAEs leading to permanent discontinuation (any drug)	5 (1	8.5)	5 (1	6.7)
Treatment-related, n (%)				
TEAEs related to any drug	27 (100.0)		27 (90.0)	
SAEs related to any drug	7 (2	5.9)	4 (1	3.3)
Deaths related to TEAEs	C)	0	
	Any grade	Grade ≥3	Any grade	Grade ≥3
Most frequent (≥30%) all causality TEAEsª	27 (100.0)	21 (77.8)	30 (100.0)	13 (43.3)
Nausea	20 (74.1)	0	13 (43.3)	0
Pyrexia	13 (48.1)	1 (3.7)	7 (23.3)	0
Vomiting	11 (40.7)	1 (3.7)	4 (13.3)	0
Diarrhea	10 (37.0)	2 (7.4)	13 (43.3)	1 (3.3)
Peripheral sensory neuropathy	9 (33.3)	1 (3.7)	2 (6.7)	0
Fatigue	8 (29.6)	0	13 (43.3)	1 (3.3)
Constipation	7 (25.9)	0	13 (43.3)	1 (3.3)
Dermatitis acneiform	7 (25.9)	0	12 (40.0)	1 (3.3)

Data cutoff: 16 May 2022

^aAll grade in ≥30% of participants in either the EC + mFOLFOX6 arm or the EC + FOLFIRI arm.

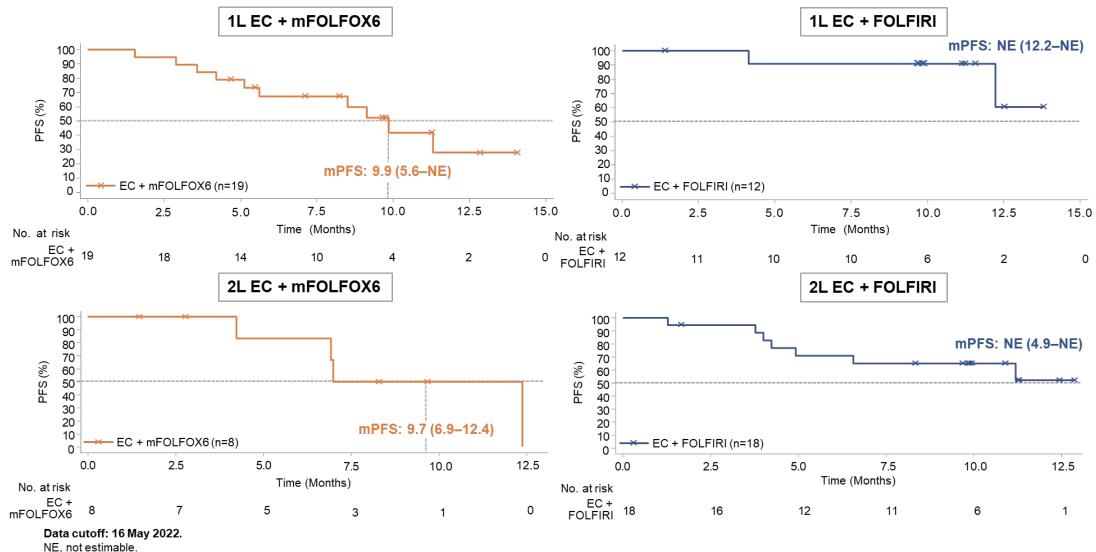
AE, adverse event; DLT, dose-limiting toxicity; EC, encorafenib + cetuximab; SAE, serious adverse event; TEAE, treatment-emergent adverse event.

Tabernero et al., presented at ESMO 2022

BREAKWATER Safety Lead-In: Overview of response

				1L		2L
			EC + mFOLFOX6		EC + mFOLFOX6	EC + FOLFIRI
	ed best overall response	by investigator, n (%		n=12	n=8	n=18
ORR,	% (95% Cl)		68.4 (46.0–84.6)	66.7 (39.1–86.2)	50.0 (21.5–78.5)	61.1 (38.6–79.7)
CR			0	1 (8.3)	0	0
PR			13 (68.4)	7 (58.3)	4 (50.0)	11 (61.1)
SD			3 (15.8)	3 (25.0)	4 (50.0)	6 (33.3)
PD			1 (5.3)	0	0	0
	CR/non-PD		1 (5.3)	1 (8.3)	0	0
	valuable ^a		1 (5.3)	0	0	1 (5.6)
Respon			n=13	n=8	n=4	n=11
mTTR, v	veeks (range)		6.9 (5.9–25.9)	6.6 (6.1–7.0)	9.4 (6.4–18.9)	12.9 (6.1–37.0)
mDOR,	months (95% Cl)		7.6	Not estimable	Not estimable	Not estimable
	х <i>у</i>		(4.1-not estimable		(2.7-not estimable)	(3.4–not estimable)
≥0 m	onths, n (%)		6 (46.2)	7 (87.5)	2 (50.0)	6 (54.5)
	EC + mFOLFOX6 n=18 ^b	1L	EC + FOLFIRI n=11 ^b	EC + mFOLFOX6 n=8 ^b	2L	EC + FOLFIRI n=17 ^b
uns 25		25 -		25 -		· · · · · · · · · · · · · ·
		0		0		
st change from baseline in sum diameters for target lesions (%) -22 - -22 - -2						
arge -52 -		-25 -		-25	-25 -	
110 10 -50		-50 -		-50	50	
erst					-50 -	
PD	(n=1) (n=3)	-75 - SD (n=3)		-75	-75	
dia	(n=13)	■ PR (n=7)		■ SD (n=4)	■ SD (n=6)	
not ∎ Not	evaluable ^a (n=1)	-100 🚽 📕 CRº (n=1)	Deuticia ente	-100 PR (n=4)	-100 PR (n=11)	Participants
	Participants		Participants	Participants		Fanicipants

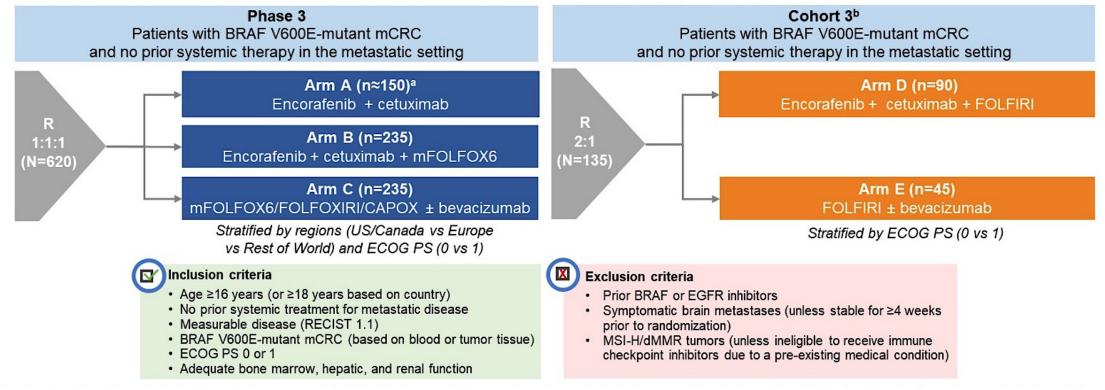
Data cutoff: 16 May 2022

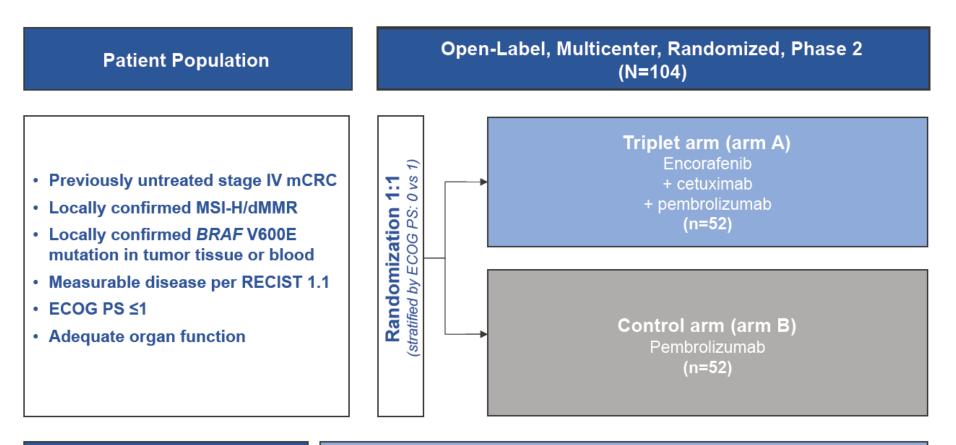

aReasons included SD <6 weeks after treatment start date (1 patient in the EC + mFOLFOX6 arm in the 1L setting) and early death (1 patient in the EC + FOLFIRI arm in the 2L setting). ^bOnly includes participants with target lesions at baseline and ≥1 non-missing post-baseline % change from baseline assessment up to time of PD or new anti-cancer therapy. ^cThis participant had a nodal target lesion that did not completely disappear but became non-pathological by size (<10 mm).

CR, complete response; EC, encorafenib + cetuximab; PD, progressive disease; PR, partial response; SD, stable disease.

Tabernero et al., presented at ESMO 2022

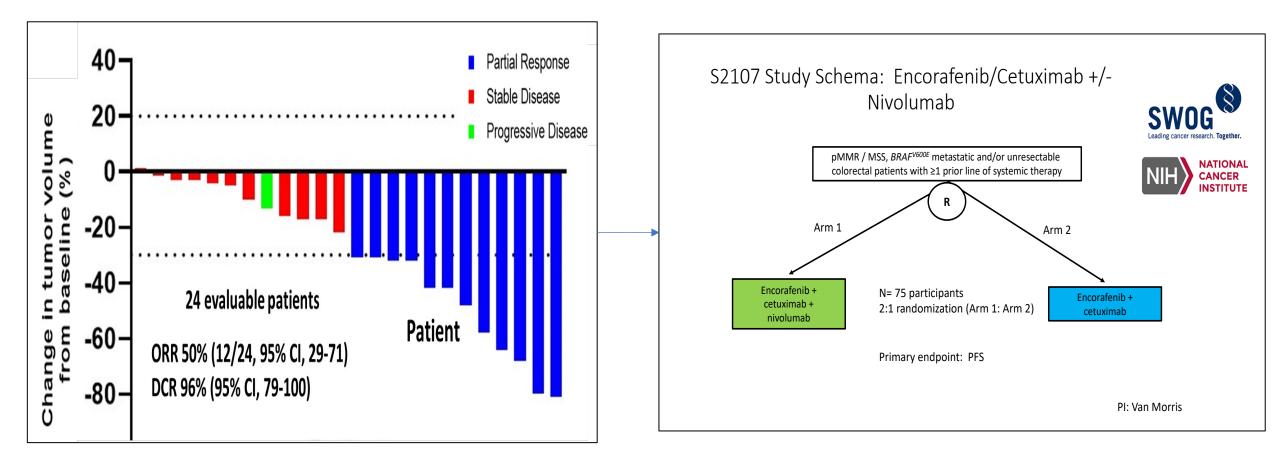
BREAKWATER Safety Lead-In: PFS


(investigator assessed)

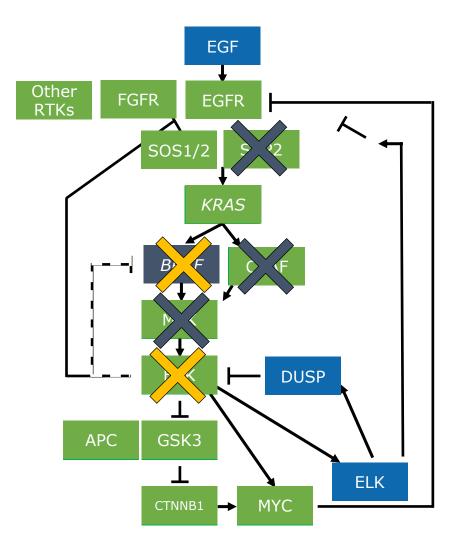

Tabernero et al., presented at ESMO 2022

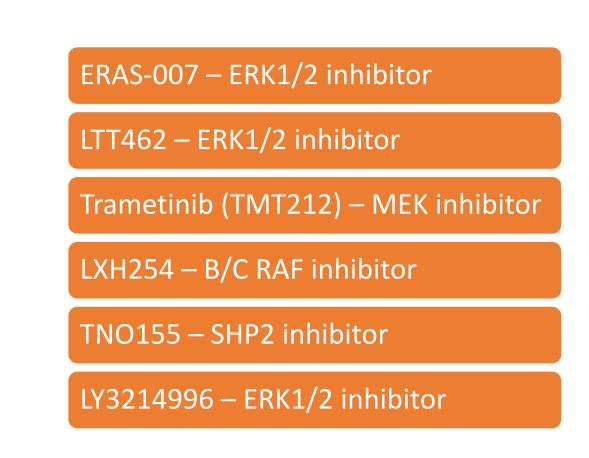
BREAKWATER: Updated Phase III Trial Design

- BREAKWATER (NCT04607421) is an ongoing, open-label, multicenter, randomized, phase 3 study evaluating 1L EC ± CT vs SOC CT alone in patients with BRAF V600E-mutant mCRC
 - In the BREAKWATER SLI, which evaluated 57 patients with mCRC who had received ≤1 prior treatment, EC + CT showed encouraging antitumor activity
 - Based on these SLI results, EC + mFOLFOX6 was selected as the recommended phase 3 regimen



SEAMARK Phase 2 Study: Immunotherapy +/- Encorafenib/Cetuximab in BRAF^{V600E}, MSI-H




Primary Endpoint	PFS per investigator according to RECIST 1.1
Secondary Endpoints	Safety and tolerability, OS, OR, DOR, and QOL

Encorafenib + Cetuximab + Nivolumab for MSS, BRAF^{V600E} mCRC

Combinations Being Explored in Patients Progressing on E+C

Conclusions

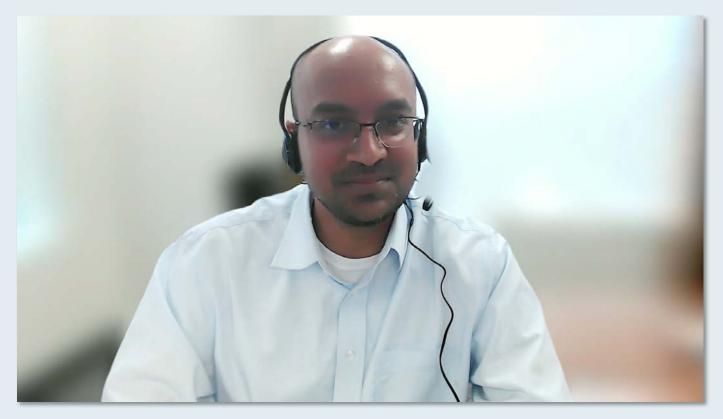
- *BRAF*^{V600E} mutations have poor prognosis and novel therapeutic options
- *BRAF* should be part of the routine testing panel
- Combination strategies to target *BRAF*^{V600E} have been successful
 - Encorafenib, cetuximab is current standard of care for 2nd, 3rd line (BEACON CRC)
 - Management of skin toxicity, arthralgia/myalgia, and rare renal toxicity
- Next steps for the field:
 - Evaluation in first line metastatic disease and (neo)adjuvant setting (ctDNA+ defined and traditional Phase 3)
 - Randomized studies with anti-PD1 with BRAF/EGFRi are initiating in MSS and MSI_H
 - Novel combinations are coming: panRAF, ERK, SHP2, BRD2/4

MODULE 4: Integration of Immune Checkpoint Inhibitors into the Management of MSI-High/MMR-Deficient mCRC – Dr Cercek

Postulated mechanisms of resistance to immunotherapy

Arvind N Dasari, MD, MS

QUESTIONS FOR THE FACULTY


Arvind N Dasari, MD, MS

What are the underlying mechanisms of intrinsic resistance to immunotherapy in patients with MSI-high mCRC, and what strategies are available to overcome them?

Are there situations in which you would consider dual immune checkpoint inhibitor therapy or a combination of chemotherapy and immunotherapy for a patient with MSI-high mCRC in the first-line setting?

Treatment selection for MSI-H, BRAF-mutant mCRC

Arvind N Dasari, MD, MS

QUESTIONS FOR THE FACULTY

Arvind N Dasari, MD, MS

How do you typically sequence immunotherapy and BRAF-targeted therapy for patients with MSI-high, BRAF-mutant mCRC?

Would you ever combine immunotherapy and BRAFtargeted therapy for these patients?

What was the age of the last patient in your practice with <u>MSI-high/MMR-deficient</u> (<u>dMMR</u>) mCRC who received immunotherapy? Which immunotherapy did they receive?

	Age	Immunotherapy
Dr Bekaii-Saab	45 years	Pembrolizumab
Dr Cercek	31 years	Pembrolizumab
Dr Eng	62 years	Pembrolizumab
Dr Lieu	80 years	Pembrolizumab
Dr Strickler	51 years	Pembrolizumab
Dr Ciombor	53 years	Pembrolizumab
Dr Dasari	68 years	Pembrolizumab

For an asymptomatic patient with MSI-high mCRC who experienced slow disease progression on anti-PD-1 therapy alone, have you switched or would you consider switching to the combination of nivolumab and ipilimumab?

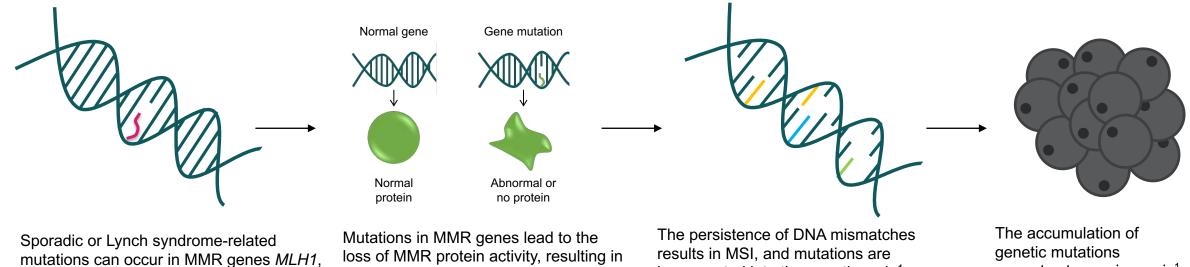
Dr Bekaii-Saab	I have
Dr Cercek	I have
Dr Eng	I have not and would not
Dr Lieu	I have
Dr Strickler	I have not but would for the right patient
Dr Ciombor	I have
Dr Dasari	I have

Based on currently available data and/or your own clinical experience, which autoimmune conditions do you believe to constitute an absolute contraindication to treatment with an immune checkpoint inhibitor for a patient with MSI-high/dMMR mCRC?

Dr Bekaii-Saab	Any severe autoimmune disorder that is not well controlled; solid organ transplant
Dr Cercek	Active autoimmune disease
Dr Eng	High dose steroids
Dr Lieu	Pneumonitis, any autoimmune cardiomyopathies
Dr Strickler	Uncontrolled severe/life-threatening autoimmune disorder requiring systemic therapy; history of lung transplant
Dr Ciombor	History of organ transplant, myasthenia gravis, uncontrolled autoimmune disease or those requiring systemic therapy
Dr Dasari	Active autoimmune conditions requiring ongoing steroids and/or immunosuppressive medications

In general, for a patient with MSI-high/dMMR mCRC who is receiving immunotherapy, for how long do you continue the treatment if the patient is tolerating it well?

How would you generally sequence BRAF-targeted therapy and immunotherapy for a patient with MSI-high mCRC with a BRAF mutation?


Dr Bekaii-Saab	Immunotherapy -> BRAF-targeted therapy
Dr Cercek	Immunotherapy -> BRAF-targeted therapy
Dr Eng	Immunotherapy → BRAF-targeted therapy
Dr Lieu	Immunotherapy → BRAF-targeted therapy
Dr Strickler	Immunotherapy → BRAF-targeted therapy
Dr Ciombor	Immunotherapy → BRAF-targeted therapy
Dr Dasari	Immunotherapy \rightarrow BRAF-targeted therapy

Incorporating Immunotherapy into Treatment of dMMR/MSI Metastatic Colorectal Cancer

Andrea Cercek, MD Section Head, Colorectal Cancer Associate Attending Physician Memorial Sloan Kettering Cancer Center January 19, 2024

Mismatch repair protein deficiency / MSI-H

MSH2, MSH6 or PMS2^{1,2}

DNA mismatches^{1,2}

incorporated into the genetic code¹

promotes tumourigenesis¹

Figure adapted from Boland CR et al. 2010 and Kawakami H et al. 2015.

Pembrolizumab for previously treated, microsatellite instability-high/mismatch repair-deficient advanced colorectal cancer: final analysis of KEYNOTE-164

Dung T. Le^{a,*}, Luis A. Diaz Jr.^{b,c}, Tae Won Kim^{c,d}, Eric Van Cutsem^e, Ravit Geva^f, Dirk Jäger^g, Hiroki Hara^h, Matthew Burgeⁱ, Bert H. O'Neil^j, Petr Kavan^k, Takayuki Yoshino¹, Rosine Guimbaud^m, Hiroya Taniguchiⁿ, Elena Élez^{o,p}, Salah-Eddin Al-Batran^{q,r}, Patrick M. Boland^s, Yi Cui^t, Pierre Leconte^u, Patricia Marinello^v, Thierry André^{w,x}

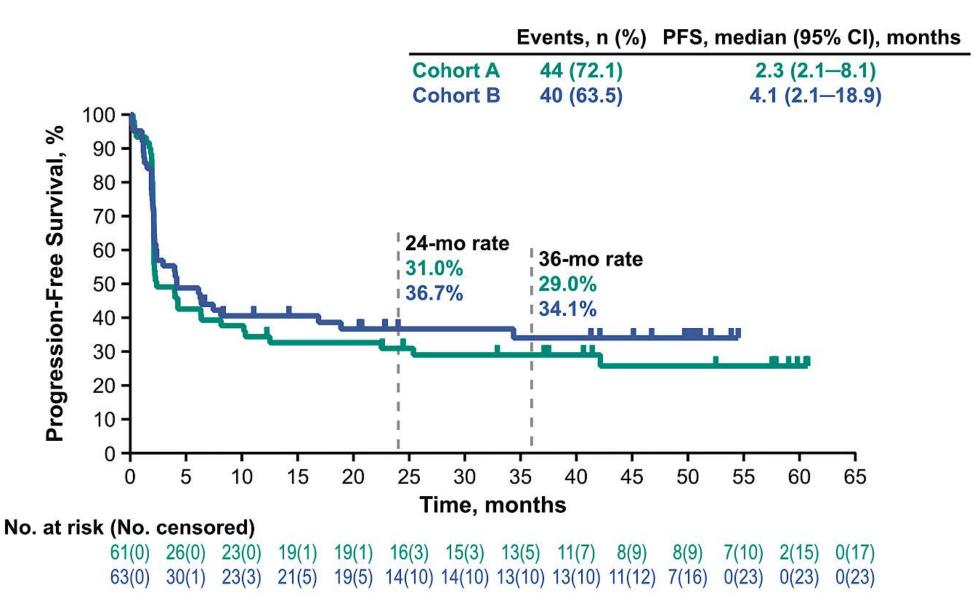
Eur J Cancer 2023;186:185-95.

KEYNOTE-164: Response Data

Table 1

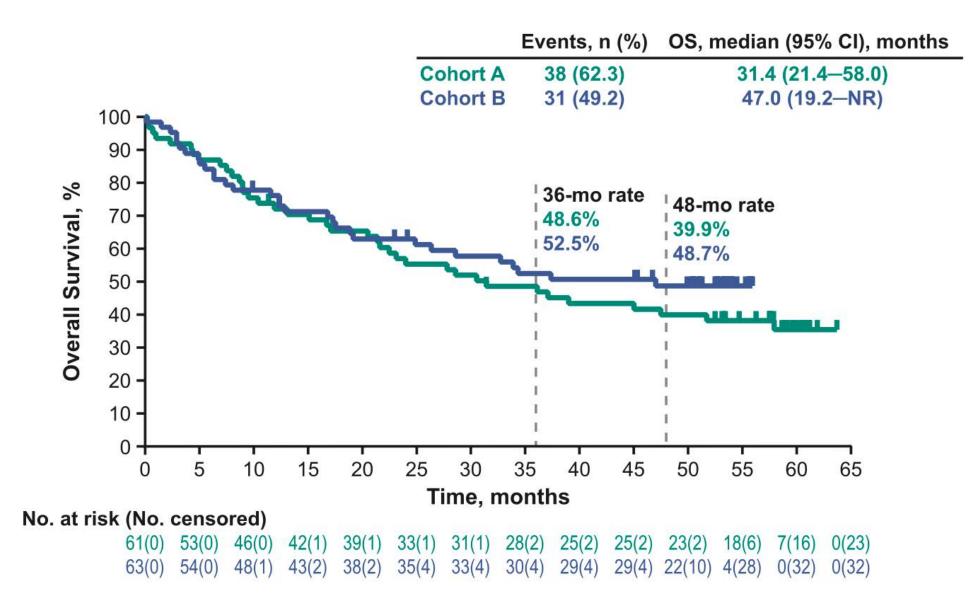
Best response assessed per RECIST v1.1 by BICR in patients with MSI-H/dMMR unresectable locally advanced unresectable or metastatic colorectal cancer in cohorts A and B.

	Cohort A n = 61	Cohort A: ≥2 prior lines of therapy		Cohort B: ≥1 prior lines of therapy	
	n	% (95% CI) ^a	n	% (95% CI) ^a	
ORR	20	32.8 (21.3-46.0)	22	34.9 (23.3-48.0)	
Best overall response		18 190			
CR	3	4.9 (1.0–13.7)	9	14.3 (6.7–25.4)	
PR	17	27.9 (17.1-40.8)	13	20.6 (11.5-32.7)	
SD	11	18.0 (9.4–30.0)	13	20.6 (11.5-32.7)	
PD	28	45.9 (33.1–59.2)	25	39.7 (27.6–52.8)	
Non-evaluable	2	3.3 (0.4–11.3)	3	4.8 (1.0–13.3)	
DCR ^b	31	50.8 (37.7-63.9)	35	55.6 (42.5-68.1)	
DOR median (range), ^c months	Ν	NR (6.2–58.5+)	NR (4.4–52.4+)		
Estimated $DOR^{\circ} \ge 36$ months, %		89.7		95.5	


BICR, blinded independent central review; CI, confidence interval; CR, complete response; dMMR, mismatch repair deficient; DCR, disease control rate; DOR, duration of response; MSI-H, microsatellite instability-high; NR, not reached; ORR, objective response rate; PD, progressive disease; PR, partial response; RECIST v1.1, Response Evaluation Criteria in Solid Tumors, version 1.1; SD, stable disease.

^a Based on binomial exact confidence interval method.

^b CR + PR + SD \geq 24 weeks.


^c From product-limit (Kaplan-Meier) method for censored data.

KEYNOTE-164: Progression-Free Survival (PFS) Analysis

Le DT et al. Eur J Cancer 2023;186:185-95.

KEYNOTE-164: Overall Survival (OS) Analysis

Le DT et al. Eur J Cancer 2023;186:185-95.

KEYNOTE-164: Safety

Table 3

Immune-mediated AEs^a in patients with MSI-H/dMMR locally advanced unresectable or metastatic colorectal cancer in cohorts A and B.

n (%)	Cohort A, $n = 61$	ĺ	Cohort B, $n = 63$	l.
Any grade immune-mediated AEs	13 (21.3)		24 (38.1)	
Grade 3/4 immune-mediated AEs ^b	4 (6.6)		3 (4.8)	
Immune-mediated AE leading to discontinuation	1 (1.6)		2 (3.2)	
All immune-mediated AEs	Any grade	Grade 3/4	Any grade	Grade 3/4
Hypothyroidism	6 (9.8)	0	13 (20.6)	0
Hyperthyroidism	3 (4.9)	0	7 (11.1)	0
Pancreatitis	3 (4.9)	2 (3.3)	0	0
Pneumonitis	3 (4.9)	1 (1.6)	3 (4.8)	1 (1.6)
Colitis	1 (1.6)	0	1 (1.6)	1 (1.6)
Hepatitis	1 (1.6)	1 (1.6)	0	0
Infusion reaction	1 (1.6)	0	1 (1.6)	0
Myositis	1 (1.6)	0	1 (1.6)	0
Severe skin reaction	1 (1.6)	1 (1.6)	0	0
Sarcoidosis	0	0	1 (1.6)	0
Vasculitis	0	0	1 (1.6)	1 (1.6)

AE, adverse event; dMMR, mismatch repair deficient; MSI-H, microsatellite instability-high.

^a Based on a list specified by the sponsor and considered regardless of attribution to treatment or immune relatedness by investigator.

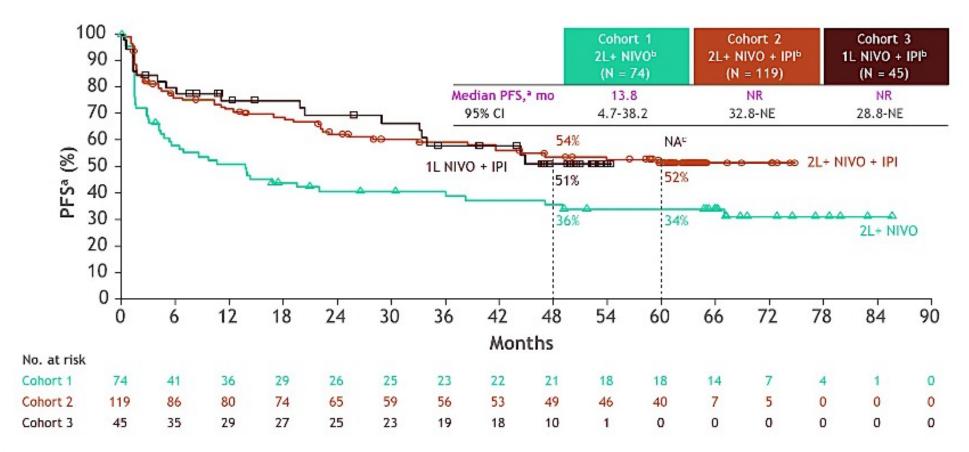
^b No grade 5 immune-related AEs or infusion reactions occurred in either cohort.

Nivolumab ± ipilimumab in patients with microsatellite instability-high/mismatch repairdeficient metastatic colorectal cancer: ~ 5-year follow-up from CheckMate 142

Michael J. Overman,¹ Heinz-Josef Lenz,² Thierry Andre,³ Massimo Aglietta,⁴ Mark Wong,⁵ Gabriele Luppi,⁶ Eric Van Cutsem,⁷ Ray McDermott,⁸ Alain Hendlisz,⁹ Dana Cardin,¹⁰ Michael Morse,¹¹ Bart Neyns,¹² Andrew Hill,¹³ Maria Luisa Limon,¹⁴ Pilar Garcia-Alfonso,¹⁵ Anuradha Krishnamurthy,¹⁶ Franklin Chen,¹⁷ Sandzhar Abdullaev,¹⁸ Samira Soleymani,¹⁸ Sara Lonardi¹⁹

¹University of Texas MD Anderson Cancer Center, Houston, TX; ²University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; ³Hôpital Saint Antoine, Assistance Publique Hôpitaux de Paris and Sorbonne Université, Paris, France; ⁴Candiolo Cancer Institute and University of Torino Medical School, Candiolo, Italy; ⁵Westmead Hospital, Sydney, Australia; ⁶University Hospital of Modena, Modena, Italy; ⁷University Hospitals Gasthuisberg/Leuven and KU Leuven, Leuven, Belgium; ⁸St Vincent's University Hospital and Cancer Trials Ireland, Dublin, Ireland; ⁹Institut Jules Bordet, Brussels, Belgium; ¹⁰Vanderbilt-Ingram Cancer Center, Nashville, TN; ¹¹Duke University Medical Center, Durham, NC; ¹²Universitair Ziekenhuis Brussel, Brussels, Belgium; ¹³Tasman Oncology Research Ltd, Southport, Australia; ¹⁴Hospital Universitario Virgen del Rocio, Sevilla, Spain; ¹⁵Hospital Gral Universitario Gregorio Marañon, Madrid, Spain; ¹⁶University of Pittsburgh Cancer Institute, Pittsburgh, PA; ¹⁷Novant Health Cancer Institute, Winston-Salem, NC; ¹⁸Bristol Myers Squibb, Princeton, NJ; ¹⁹Veneto Institute of Oncology IOV-IRCCS, Padua, Italy

CheckMate 142: Response, Disease Control and Durability

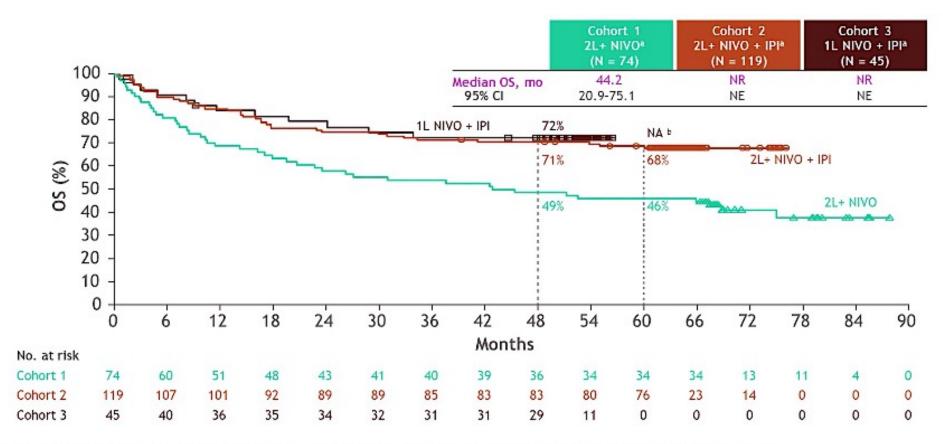

Outcomeª	Cohort 1 2L+ NIVO ^b (N = 74)	Cohort 2 2L+ NIVO + IPI ^b (N = 119)	Cohort 3 1L NIVO + IPI ^b (N = 45)	
ORR, ^c n (%)	29 (39)	77 (65)	32 (71)	
95% CI	28-51	55-73	56-84	
Best overall response, n (%)				
CR	12 (16)	20 (17)	9 (20)	
PR	17 (23)	57 (48)	23 (51)	
SD	22 (30)	25 (21)	6 (13)	
PD	19 (26)	14 (12)	7 (16)	
Unable to determine	4 (5)	3 (3)	0	
DCR, ^d n (%)	51 (69)	96 (81)	38 (84)	
95% CI	57-79	72-87	71-94	
Median TTR (range), ^e months	2.8 (1.2-46.3)	2.8 (1.1-37.1)	2.7 (1.2-27.7)	
Median DOR (95% CI), ^e months	NR (NE)	NR (NE)	NR (41.5-NE)	
36-month rate (95% CI), %	81 (60-92)	79 (67-87)	75 (52-88)	
42-month rate (95% CI), %	77 (55-89)	75 (63-84)	69 (44-84)	
60-month rate (95% CI), %	77 (55-89)	73 (60-82)	NA	

•Per investigator; ^bStudy cohorts were neither randomized nor designed for a formal comparison; ^ePatients with BOR of CR + PR divided by the number of treated patients; ^dPatients with CR, PR, or SD for ≥ 12 weeks divided by the number of treated patients; ^eEvaluated in patients who had an objective response. CI, confidence interval; NA, not available; NE, not evaluable; NR, not reached; TTR, time to response.

Overman MJ et al. ASCO 2022; Abstract 3510.

6

CheckMate 142: Progression-Free Survival



- Median PFS was 13.8 months in cohort 1 and not reached in cohorts 2 and 3
 - 48-month PFS rates were 36% (cohort 1), 54% (cohort 2), and 51% (cohort 3)
 - 60-month PFS rates were 34% (cohort 1), 52% (cohort 2), and not available for cohort 3

»Per investigator; Study cohorts were neither randomized nor designed for a formal comparison; Minimum follow-up for cohort 3 was 47.6 months. mo, months.

Overman MJ et al. ASCO 2022; Abstract 3510.

CheckMate 142: Overall Survival

- Median OS was 44.2 months in cohort 1 and not reached in cohorts 2 and 3
 - 48-month OS rates were 49% (cohort 1), 71% (cohort 2), and 72% (cohort 3)
 - 60-month OS rates were 46% (cohort 1), 68% (cohort 2), and not available for cohort 3

*Study cohorts were neither randomized nor designed for a formal comparison; *Minimum follow-up for cohort 3 was 47.6 months.

Overman MJ et al. ASCO 2022; Abstract 3510.

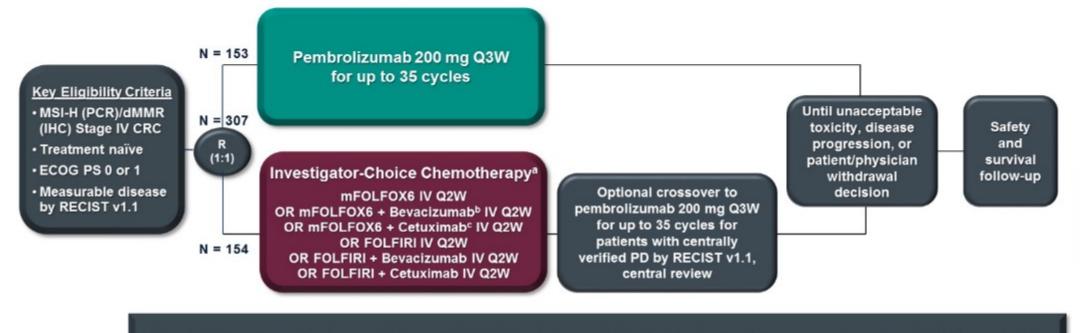
CheckMate 142: Summary of Treatment-Related Adverse Events

	Cohort 1 2L+ NIVO ^b (N = 74)		Cohort 2 2L+ NIVO + IPI ^ь (N = 119)		Cohort 3 1L NIVO + IPI ^b (N = 45)	
Patients,ª n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	Any grade	Grade 3/4
Any TRAEs ^c	58 (78) ^d	20 (27)	101 (85)	38 (32)	36 (80)	9 (20)
Serious TRAEs ^c	11 (15) ^d	9 (12)	27 (23)	24 (20)	7 (16)	5 (11)
TRAEs leading to discontinuation ^c	7 (9)	5 (7)	16 (13)	12 (10)	7 (16)	2 (4)
Treatment-related deaths ^e	1 (1) ^f		0		1 (2) ^g	
Any-grade TRAEs occurring in ≥ 20% of patients in ar	y cohort					
Diarrhea	17 (23)	1 (1)	32 (27)	3 (3)	7 (16)	0
Fatigue	17 (23)	1 (1)	23 (19)	2 (2)	7 (16)	0
Pruritus	14 (19)	1 (1)	25 (21)	2 (2)	17 (38)	0
Arthralgia	5 (7)	0	12 (10)	1 (< 1)	9 (20)	0

 With extended follow-up of ~ 5 years, no new safety signals were identified with 2L+ NIVO ± IPI and 1L NIVO + IPI

"Patients who received ≥ 1 dose of study drug; ^bStudy cohorts were neither randomized nor designed for a formal comparison; "Includes events reported between first dose and 30 days after last dose of study drug; ^c1 grade 5 event (sudden death); ^cTreatment-related deaths were reported regardless of timeframe; ^r1 event of sudden death; ^s1 event of respiratory failure. TRAE, treatment-related adverse event.

Overman MJ et al. ASCO 2022; Abstract 3510.


11

First-Line (1L) Nivolumab (NIVO) + Ipilimumab (IPI) in Patients (pts) with Microsatellite Instability-High/Mismatch Repair Deficient (MSI-H/dMMR) Metastatic Colorectal Cancer (mCRC): 64-Month (mo) Follow-Up from CheckMate 142

Lenz H-J et al. Gastrointestinal Cancers Symposium 2024;Abstract 97. Saturday, January 20, 2024 | Poster session begins at 6:30 AM PT

First Line MSI mCRC

KEYNOTE-177 Study Design (NCT02563002)

Dual-Primary endpoints: PFS per RECIST v1.1 per blinded independent central review (BICR) and OS
Secondary endpoints: ORR per RECIST v1.1 by BICR, safety
Tumor response assessed at week 9 and Q9W thereafter per RECIST v1.1 by BICR

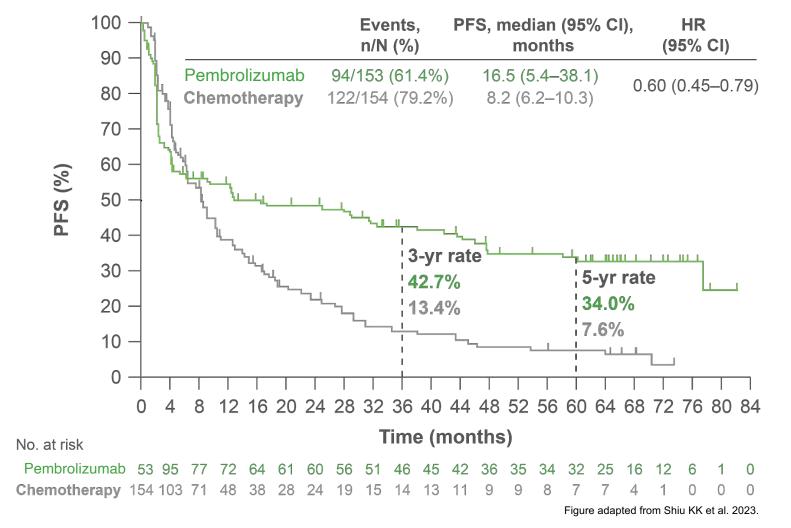
PRESENTED BY: Thierry Andre, MD

*Chosen before randomization; *Bevacizumab 5 mg/kg IV; *Cetuximab 400 mg/m2 over 2 hours then 250 mg/mg² IV over 1 hour weekly. IHC: immunohistochemistry, with MM H1, MMSH2, MMSH8, PMS2; PCR: nohmerase, chain reaction; PES progression/free survival; OS; overall survival; ORP; over

#ASCO20

IHC: immunohistochemistry with hMLH1, hMSH2, hMSH6, PMS2; PCR: polymerase chain reaction; PFS, progression-free survival; OS: overall survival; ORR: overall response rate; Q9W: every 9 weeks.

Andre T et al. *J Clin Oncol.* 2020;38(suppl): Abstract LBA4.

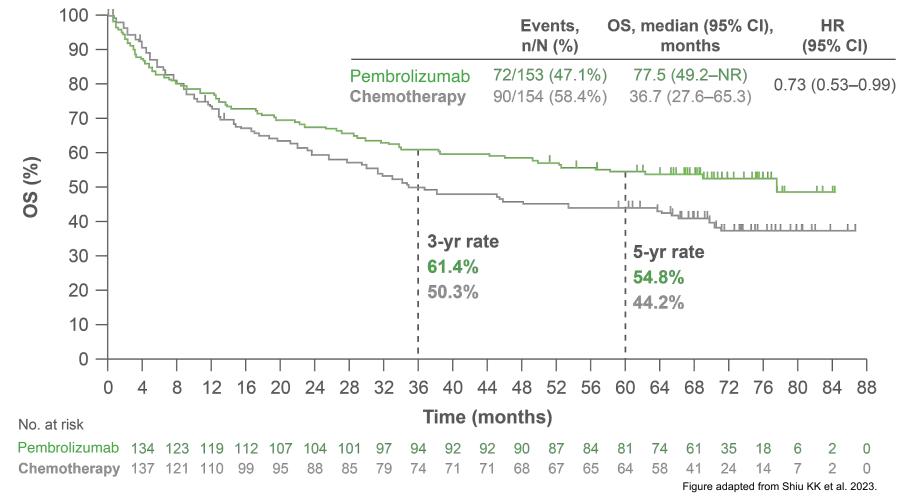

2020ASCO

ANNUAL MEETING

PRESENTED AT:

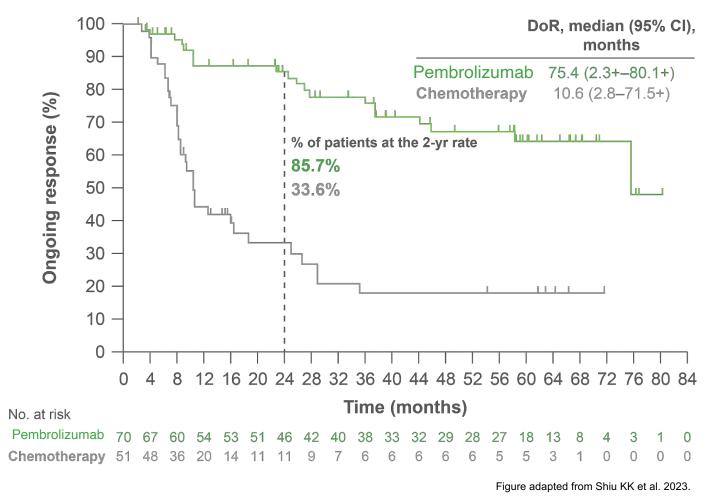
Andre T et al. ASCO 2021: Abstract 3500.

KEYNOTE-177: PFS (5-year updated analysis)



This was an exploratory analysis; significance was not tested, so results should be interpreted with caution

Data cut-off: 17 July 2023. PFS was assessed per RECIST v1.1 by BICR.


BICR, blinded independent central review; CI, confidence interval; HR, hazard ratio; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors Version 1.1; yr, year. Shiu KK et al. Presented at the European Society for Medical Oncology (ESMO) Congress 2023, 20–24 October 2023, Madrid, Spain.

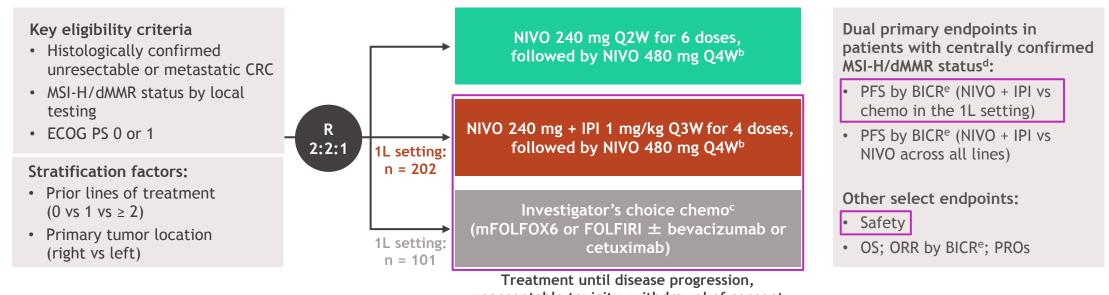
KEYNOTE-177: OS (5-year updated analysis)

When last formally tested at the final analysis in 2021, the OS improvement did not reach statistical significance and was not formally re-tested

KEYNOTE-177: Duration of response (5-year updated analysis)

Endpoint was not powered for statistical comparison in subgroups

KEYNOTE-177: AEs


Pembrolizumab Chemotherapy Diarrhea Fatigue Pruritus Nausea Rash Arthralgia Increased aspartate aminotransferase Hypothyroidism **Decreased appetite** Asthenia Anemia Stomatitis Vomiting Alopecia Grade Mucosal inflammation Dizziness 1-2 3-5 Decreased neutrophil count Pembrolizumab Peripheral neuropathy Decreased white blood cell count Chemotherapy Neutropenia Peripheral sensory neuropathy Palmar plantar erythrodysesthesia Epistaxis 80 60 40 20 20 40 60 80 0

Treatment-related AEs^a, %

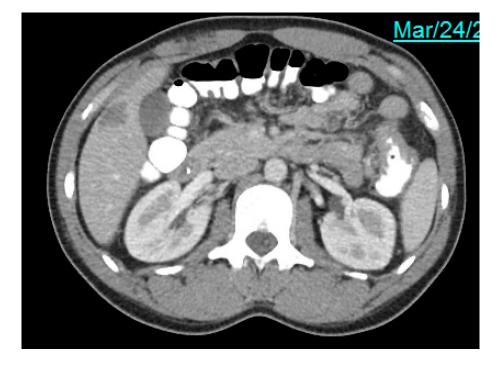
n (%)	Pembrolizumab N = 153	Chemotherapy N = 143		
Any AE	149 (97.4)	142 (99.3)		
Treatment-related AE	122 (79.7)	141 (98.6)		
Grade 3-5	33 (21.6)	96 (67.1)		
Led to treatment discontinuation	15 (9.8)	10 (7.0)		
Led to death	0	1 (0.7)		
Immune-mediated AEs	and Infusion Reaction	ns		
All	51 (33.3)	23 (16.1)		
Grade 3-5	16 (10.5)	3 (2.1)		
Led to death	0	0		

CheckMate 8HW study design

• CheckMate 8HW is a randomized, multicenter, open-label phase 3 study^a

unacceptable toxicity, withdrawal of consent (all arms), or a maximum treatment duration of 2 years (NIVO and NIVO + IPI arms only)

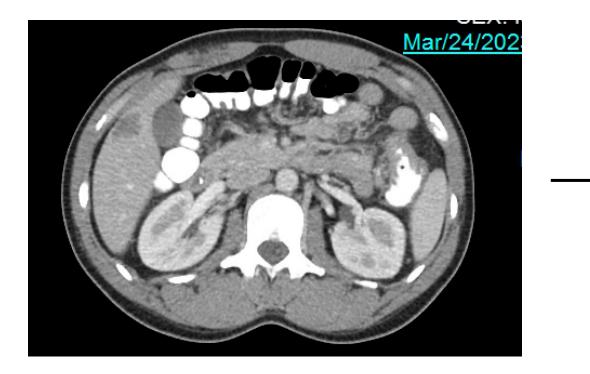
• At data cutoff (October 12, 2023), the median follow-up^f was 24.3 months


^aClinicalTrials.gov. NCT04008030. ^bPatients with ≥ 2 prior lines are randomized only to the NIVO or NIVO + IPI arms. ^cPatients receiving investigator's choice of chemotherapy are eligible to receive NIVO + IPI upon progression (crossover treatment). ^dConfirmed using either immunohistochemistry and/or polymerase chain reaction-based tests. ^eEvaluated using RECIST v1.1. ^fTime between randomization and last known date alive or death.

Nivolumab (NIVO) plus Ipilimumab (IPI) vs Chemotherapy (Chemo) as First-Line (1L) Treatment for Microsatellite Instability-High/Mismatch Repair-Deficient (MSI-H/dMMR) Metastatic Colorectal Cancer (mCRC): First Results of the CheckMate 8HW Study

Andre T et al. Gastrointestinal Cancers Symposium 2024;Abstract LBA768. Saturday, January 20, 2024 | 9:15 AM PT

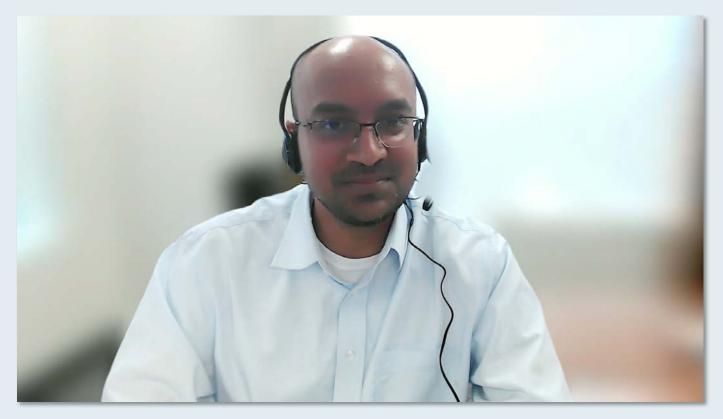
Case study


- Patient is a 32-year-old man with no significant medical history
- Presented with 2 months of abdominal pain
- Saw a primary care physician and was referred for a colonoscopy
- Colonoscopy was complete to the cecum; a notable ulcerated 4 cm mass in the transverse colon was observed
- Bx + adenocarcinoma; IHC loss of PMS2
- CT CAP notable for a 2.1 cm right hepatic mass confirmed by an MRI
- CEA 3.0
- NGS testing confirmed MSI; TMB 35.4

Bx, biopsy; CAP, chest, abdomen, and pelvis; CEA, carcinoembryonic antigen; CT, computed tomography; IHC, immunohistochemistry; MRI, magnetic resonance imaging; MSI, microsatellite instability; NGS, next generation sequencing; PMS2, PMS1 homolog 2; TMB, tumour mutational burden.

Please note that this is one individual, and cases may vary. Images provided by the speaker.

- Patient initiated pembrolizumab per KEYNOTE-177 trial
- Abdominal pain resolved and a 6-month CT CAP showed notable significant tumour regression
- The patient currently remains on treatment


Important clinical considerations

- Germline testing
- Duration of therapy 2 years
- Plan for resection with primary and one lesion vs. continued treatment?
- Single agent PD1 vs combination therapy

MODULE 5: HER2 and Other Emerging Biomarkers for Targeted Therapy in mCRC – Dr Strickler

Trastuzumab deruxtecan: Indications, prevention and management of interstitial lung disease

Arvind N Dasari, MD, MS

QUESTIONS FOR THE FACULTY

Arvind N Dasari, MD, MS

How do you think through the sequencing of anti-HER2 therapies in mCRC?

What is your approach to the detection and management of trastuzumab deruxtecan-associated ILD?

Treatment of HER2-positive mCRC; KRAS G12C inhibitors and other novel strategies under development

Kristen K Ciombor, MD, MSCI

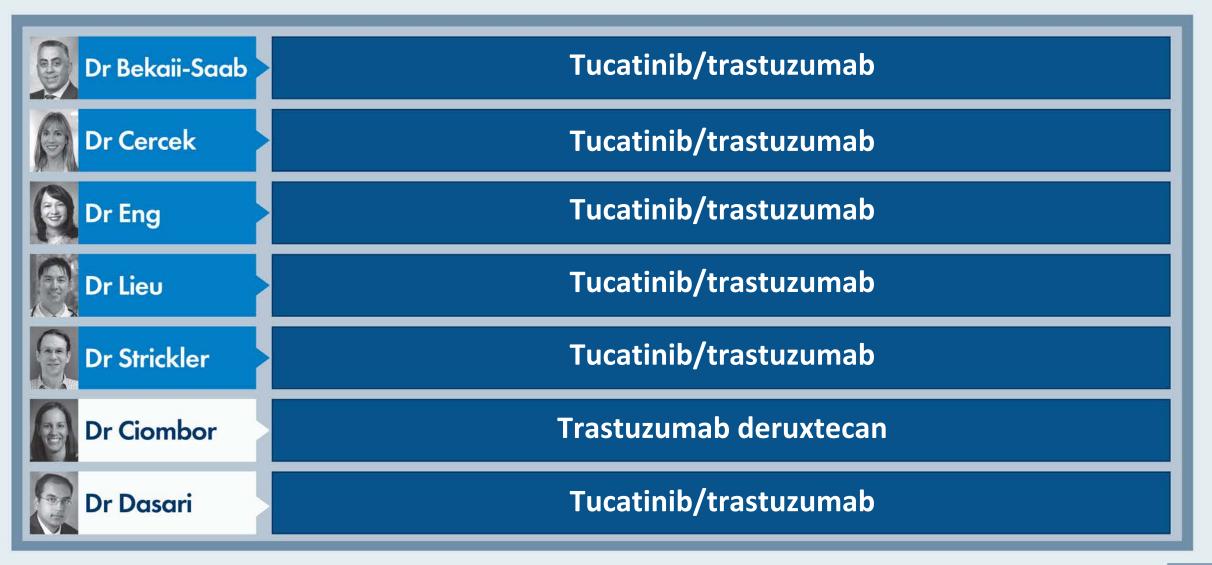
QUESTIONS FOR THE FACULTY

Kristen K Ciombor, MD, MSCI

What is your experience with the combination of trastuzumab/pertuzumab in HER2-positive mCRC?

What other targeted strategies are you most excited about for patients with mCRC?

What was the age of the last patient in your practice with <u>HER2-positive</u> mCRC who received targeted treatment? Which targeted treatment did they receive, and what was their response to therapy?


	Age	Targeted Tx	Response	
Dr Bekaii-Saab	53 years	Tucatinib/trastuzumab	PR	
Dr Cercek	47 years	Tucatinib/trastuzumab	PR	
Dr Eng	52 years	Tucatinib	PR	
Dr Lieu	45 years	Tucatinib/trastuzumab	PR	
Dr Strickler	42 years	Tucatinib/trastuzumab	Near CR	
Dr Ciombor	60 years	Trastuzumab/pertuzumab (prior to MOUNTAINEER approval)	PR	
Dr Dasari	43 years	Tucatinib/trastuzumab	PR	

PR = partial response

Regulatory and reimbursement issues aside, what would be your most likely <u>first- and</u> <u>second-line anti-HER2 treatments</u> for a patient with HER2-positive mCRC?

	First line	Second line		
Dr Bekaii-Saab	Tucatinib/trastuzumab	Trastuzumab deruxtecan		
Dr Cercek	Tucatinib/trastuzumab	Trastuzumab deruxtecan		
Dr Eng	Tucatinib/trastuzumab	Trastuzumab deruxtecan		
Dr Lieu	Tucatinib/trastuzumab	Trastuzumab deruxtecan		
Dr Strickler	Tucatinib/trastuzumab	Trastuzumab deruxtecan		
Dr Ciombor	Tucatinib/trastuzumab	Trastuzumab deruxtecan		
Dr Dasari	Tucatinib/trastuzumab	Trastuzumab deruxtecan		

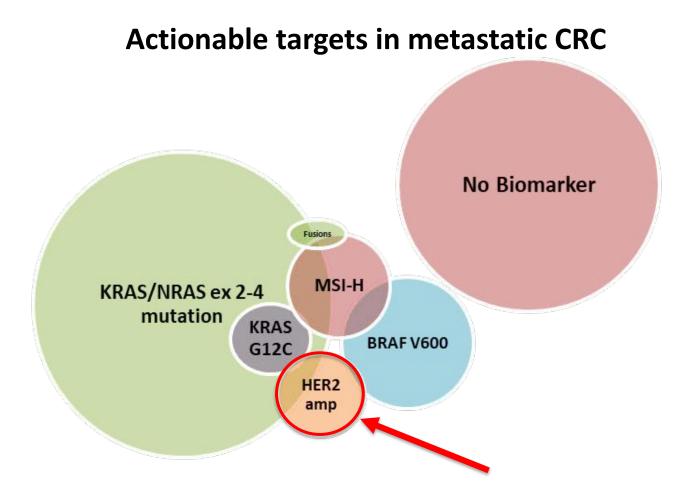
Regulatory and reimbursement issues aside, what would be your most likely anti-HER2 treatment for a patient with HER2-positive mCRC <u>and brain metastases</u>?

Please provide at least 1 impediment or barrier you have encountered in your attempts to deliver high-quality care to your patients with CRC.

- Keeping up with tumor-specific advances/nuances as a general medical oncologist
- Sometimes getting patients enrolled in clinical trials quickly in the community once the patients run out of regular options
- Lack of knowledge about all different targeted options
- Insurance coverage
- Insurance coverage of NGS and ctDNA testing
- Access to good quality trials in previously treated patients
- The possibility of the utilization of neoadjuvant therapy prior to surgical interventions
- No new drugs
- Rapidly evolving data set and keeping up
- Once the patient is progressing past combination chemotherapy/bev, there seem to be no good options for HER2 WT or MSS colon ca
- None
- Inability to fully decode the role of ctDNA in CRC. A clear set of directives would help general oncologists use it widely. Also, there is issue with reimbursement for ctDNA

Please provide at least 1 impediment or barrier you have encountered in your attempts to deliver high-quality care to your patients with CRC. (Continued)

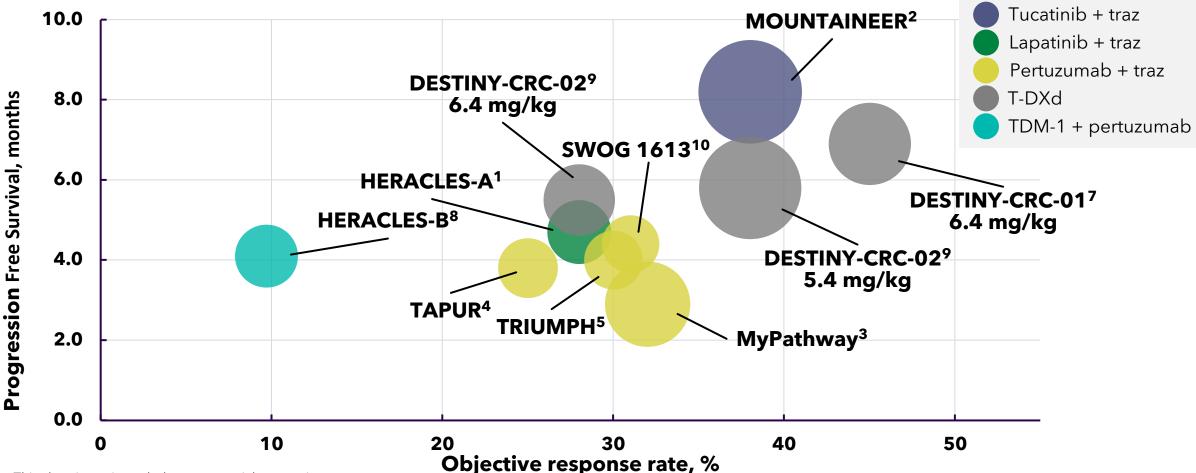
- Need more therapy options for second line and beyond
- Community hospital does not send tumor markers in time or insurance would not pay for broad molecular test
- Which therapies to use in different lines of therapy and the role of serial ctDNA monitoring
- Metastatic CRC and treatment-free interval post adjuvant therapy; MRD-directed therapy and possible discontinuation
- Difficulty keeping up with abundance of data and publications, especially in a general oncology clinic
- Insurance approval can take a long time
- Insurance approval
- Insurance
- Insurance issues leading to breaks in care
- Hard to keep up with all the new data
- Financial toxicity
- Authorization from insurance


HER2 and Other Emerging Biomarkers for Targeted Therapy in metastatic CRC

John H. Strickler, MD Associate Professor of Medicine Duke University Medical Center

January 19, 2024

HER2 as an emerging precision cancer medicine target in metastatic CRC

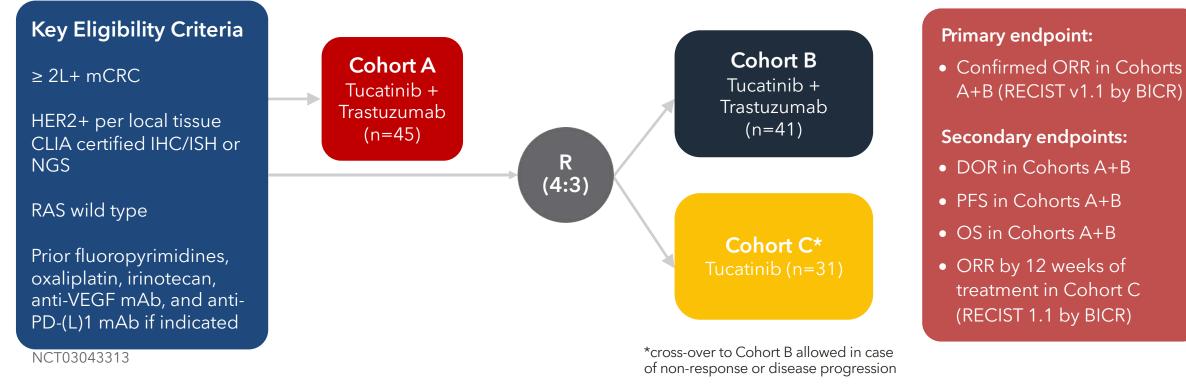


Dukeuniversity

- Usually left sided
- <u>Not</u> mutually exclusive with *RAS* or *BRAF* mutations
- Associated with lung and brain metastases
- May predict resistance to EGFR antibodies

Therapeutic landscape for HER2+ metastatic CRC

Size of data point adjusted for sample size



This chart is not intended as a cross-trial comparison.

CRC, colorectal cancer; HER2, human epidermal growth factor receptor 2; HER2+, HER2 gene amplification; T-DXd, trastuzumab-deruxtecan; TDM-1, trastuzumab emtansine; traz, trastuzumab. 1. Tosi F et al., Clin Colorectal Cancer 2020; 2. Strickler JH et al., Lancet Oncol. 2023; 3. Meric-Bernstam F et al., Lancet Oncol 2019; 4. Gupta et al., J Clinical Oncol. 2020; 5. Nakamura Y et al., Nature Medicine 2021; 6. Meric-Bernstam F et al., Ann Oncol. 2019; 7. Yoshino T et al., Nat. Commun. 2023. 8. Sartore-Bianchi A et al., <u>ESMO Open</u> 2020; 9. Raghav K et al., presented at ASCO Annual Meeting 2023, Chicago (USA), June 2-6, Oral Abstract 3501; 10. Raghav K et al., J Clin Oncol. 2023.

MOUNTAINEER: Tucatinib + Trastuzumab for HER2+ mCRC - Phase 2 Study Design

- Tucatinib is an oral, small molecule TKI that targets HER2
- Highly selective for the HER2 receptor
- Selectivity may improve tolerability (skin rash, diarrhea, etc.) compared to non-selective TKIs

Strickler JH et al. Lancet Oncol. 2023;24(5):496-508. Corti C et al. ESMO Open. 2021;6(2):100063. Moulder SL et al. Clin Cancer Res. 2017;23(14):3529-3536.

Duke UNIVERSITY

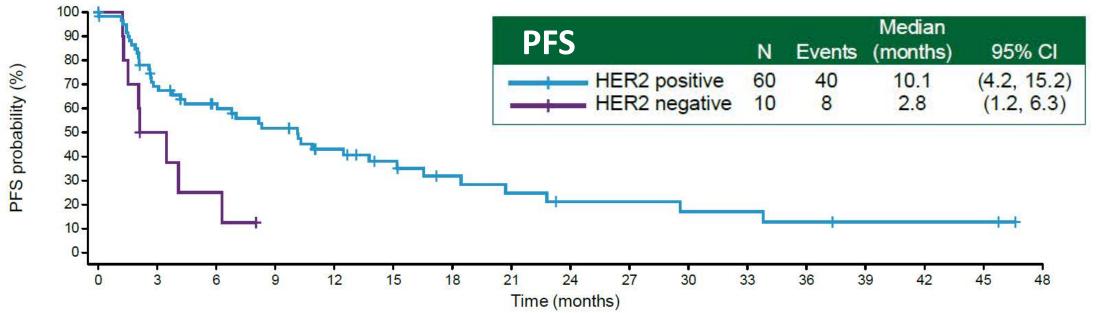
MOUNTAINEER: Tucatinib + Trastuzumab: Summary – Efficacy and Safety

Overview efficacy Tucatinib + Trastuzumab Cohorts A+B (n=84)¹ Overview safety Tucatinib + Trastuzumab Cohorts A+B (n=86)²

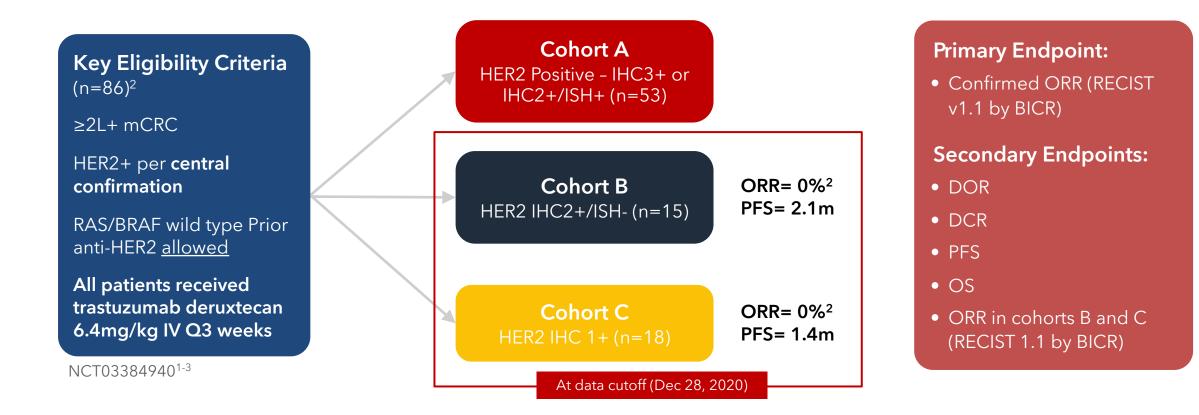
Confirmed ORR, % (95% CI)	38.1% (27.7-49.3)	TEAEs, n (%)	Tucatinib + Trastuzumab
mDOR, months (95% CI)	12.4 months (8.5-25.5)	Any grade AEs Tucatinib-related Trastuzumab-related	82 (95.3) 63 (73.3) 58 (67.4)
DCR, n (%)	60 (71%)	Grade ≥3 AEs Tucatinib-related Trastuzumab-related	33 (38.4) 8 (9.3) 6 (7.0)
PFS, months (95% CI)	8.2 months (4.2-10.3)	SAEs Tucatinib-related Trastuzumab-related	19 (22.1) 3 (3.5) 2 (2.3)
OS, months (95% CI)	24.1 months (20.3-36.7)	AEs leading to study treatment discontinuation ^{a,b} AEs leading to tucatinib dose modification Deaths due to AEs	5 (5.8) 22 (25.6) 0

^a TEAEs leading to discontinuation of tucatinib included alanine aminotransferase increase (2.3%), COVID-19 pneumonia (1.2%), cholangitis (1.2%), and fatigue (1.2%); ^b TEAEs leading to discontinuation of trastuzumab included alanine aminotransferase increase (2.3%) and COVID-19 pneumonia (1.2%).

AE, adverse event; CI, confidence interval; DCR, disease control rate; mDOR, median duration of response; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; SAE, serious adverse event; TEAE, treatment-emergent adverse event.


1. Strickler JH et al. Lancet Oncol. 2023;24(5):496-508. 2. Strickler JH et al. 2022 ESMO GI Congress. Abstract LBA-2.

MOUNTAINEER Cohorts A+B Response Assessment by <u>Central</u> IHC/FISH


Dukeuniversity

	Central IHC + FISH				
	Positive	Positive	Negative		
Response	(IHC3+)	(IHC2+/ISH+)			
	(n=45)	(n=15)	(n=10)		
cORR, n (%)	21 (46.7%)	3 (20.0%)	1 (10.0%)		
(95% CI)	(31.7-62.1)	(4.3-48.1)	(0.3-44.5)		
mDOR, mo (95% CI)	16.4 (10				

Strickler JH et al. 2023 ASCO Annual Meeting. Abstract 3528.

DESTINY-CRC01: Trastuzumab deruxtecan (T-DXd; DS-8201a) for HER2+ mCRC - Phase 2 Study Design

1. Siena S et al. Lancet Oncol. 2021;22(6):779-789.

- 2. Yoshino T et al. 2021 ASCO Annual Meeting. Abstract 3505.
- 3. Yoshino T et al. Nat Commun. 2023;14(1):3332.

Duke UNIVERSITY

DESTINY-CRC01: Trastuzumab deruxtecan for HER2+ mCRC - Efficacy Outcomes

Cohort A, N=53 (response assessed by BICR)¹⁻³

Confirmed ORR, % (95% CI)	45.3% (31.6-59.6)
mDOR, months (95% CI) ²	7.0 months (5.8-9.5)
Disease control rate, % (95% CI)	83.0% (70.2-91.9)
PFS, months (95% CI) ²	6.9 months (4.1-8.7)
OS, months (95% CI) ²	15.5 months (8.8-20.8)

Data cutoff (Dec 28, 2020)

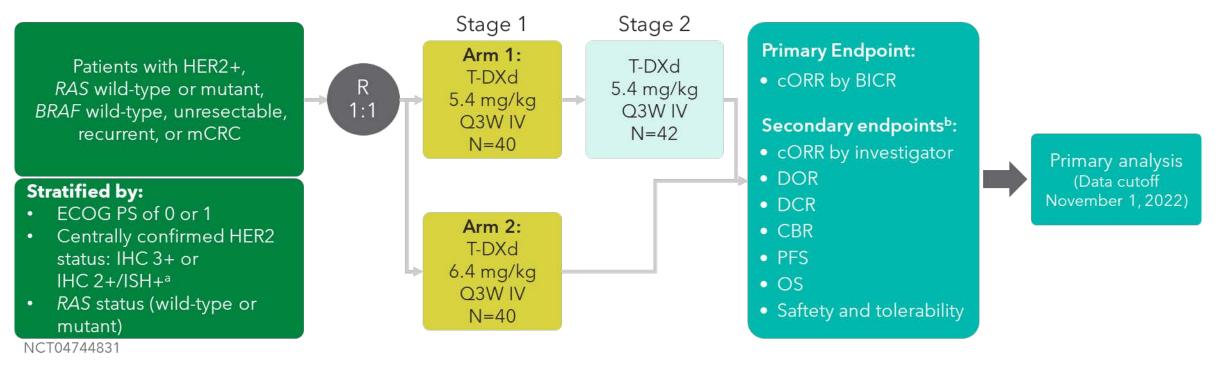
1 Ke UNIVERSITY

BICR, blinded independent central review; CI, confidence interval; HER2+, HER2 gene amplification; mCRC, metastatic colorectal cancer; NE, not evaluable; ORR, objective response rate; OS, overall survival; PFS, progression-free survival.

1. Siena S et al. Lancet Oncol. 2021;22(6):779-789. 2. Yoshino T et al. 2021 ASCO Annual Meeting. Abstract 3505. 3. Yoshino T et al. Nat Commun. 2023;14(1):3332.

DESTINY-CRC01: Trastuzumab deruxtecan for HER2+ mCRC - Most Common TEAEs (≥ 10%)

(All cohorts, N=86)


Preferred term	Any grade	Grade ≥3	• Eight (9.3%) of 86 patients h
Patients with any TEAE	86 (100)	56 (65.1)	interstitial lung disease or
Nausea	53 (61.6)	5 (5.8)	pneumonitis • Grade 2 = 4 patients
Anemia	31 (36.0)	12 (14.0)	 Grade 3 = 1 patient Grade 5 = 3 patients
Fatigue	31 (36.0)	1 (1.2)	
Decreased appetite	30 (34.9)	0	 Median time to onset date of interstitial lung disease or
Platelet count decreased	28 (32.6)	8 (9.3)	pneumonitis was 66.5 days
Vomiting	27 (31.4)	1 (1.2)	• 4 recovered, 1 did not recove
Neutrophil count decreased	26 (30.2)	19 (22.1)	died of disease progression, died due to the AE
Diarrhea	23 (26.7)	1 (1.2)	

AE, adverse event; HER2, human epidermal growth factor receptor 2; HER2+, HER2 gene amplification; mCRC, metastatic colorectal cancer; TEAE, treatment-emergent adverse event.

DESTINY-CRC02 - Study Design

A randomized, blinded, 2-stage, 2-arm, multicenter, global, phase 2 study

This study was not powered to statistically compare the two arms.

• Stage 1 (randomized) was followed by Stage 2 (nonrandomized), which enrolled an additional 42 patients

Raghav K et al. 2023 ASCO Annual Meeting. Abstract 3501.

1 ke UNIVERSITY

DESTINY-CRC02: Trastuzumab deruxtecan for HER2+ mCRC - Efficacy Outcomes

	5.4 mg/kg Q3W	6.4 mg/kg Q3W	
	(n = 82)	(n = 40)	
Confirmed ORR, % (95% CI)	37.8% (77.3-49.2)	27.5% (14.6-43.9)	
mDOR, months (95% CI)	5.5 mg 4.2-8.1)	5.5 months (3.7-NE)	
Disease control rate, % (95% CI)	5.4mg/kg wins!	85.0% (70.2-94.3)	
PFS, months (95% CI)	5.8 7.0)	5.5 (4.2-7.0)	
OS, months (95% CI)	13.4 months (12.5-16.8)	NE (9.9-NE)	

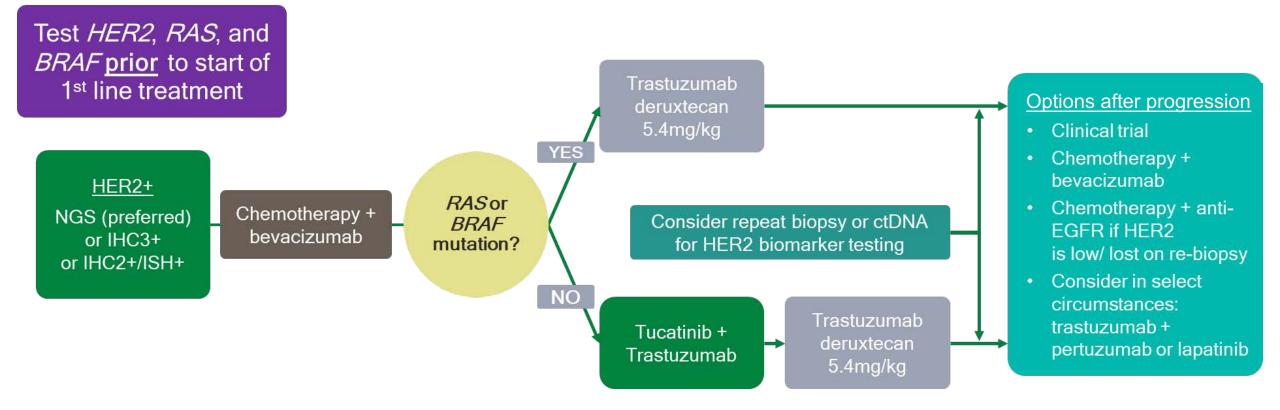
Raghav K et al. 2023 ASCO Annual Meeting. Abstract 3501.

DESTINY-CRC02: Adjudicated Drug-Related ILD/Pneumonitis by Independent Adjudication Committee

		T-DXd 6.4 mg/kg Q3W		
Adjudicated as drug-related ILD/pneumonitis, n (%)	Stage 1 n = 41ª	Stage 2 n = 42	Total N = 83	Stage 1 N = 39
Any grade	4 (9.8)	3 (7))	7 (8.4)	5 (12.8)
Grade 1	1 (2.4)		1 (1.2)	2 (5.1)
Grade 2	3 (7.3)		(7.2)	2 (5.1)
Grade 3	0	5.4mg/kg wins!	0	0
Grade 4	0		0	0
Grade 5	0	0	0	1 (2.6) ^b

Raghav K et al. 2023 ASCO Annual Meeting. Abstract 3501.

DESTINY-CRC02: Trastuzumab deruxtecan for HER2+ mCRC - Best ORR (BICR) by T-DXd 5.4 mg/kg subgroup


							ORR, % (n/N)	95% Cl ª
All patients (5.4 mg/kg)	N = 82				+		37.8 (31/82)	27.3-49.2
	IHC 3+			-	 		46.9 (30/64)	34.3-59.8
HER2 status	IHC 2+/ISH+		•		i i		5.6 (1/18)	0.1-27.3
DAC status	Wild-type				•		39.7 (27/68)	28.0-52.3
RAS status	Mutant ^b			•		—	28.6 (4/14)	8.4-58.1
	0				•		39.1 (18/46)	25.1-54.6
ECOG PS	1				•		36.1 (13/36)	20.8-53.8
	Left colon ^c				- 		39.3 (24/61)	27.1-52.7
Primary tumor site	Right colon ^d		-	•	<u>.</u>	_	33.3 (7/21)	14.6-57.0
	No				•		36.9 (24/65)	25.3-49.8
Prior anti-HER2 treatment	Yes				 		41.2 (7/17)	18.4-67.1
		0	10	20 30	40 50	60 70	80	
				Objective Re	esponse Rate	,%		

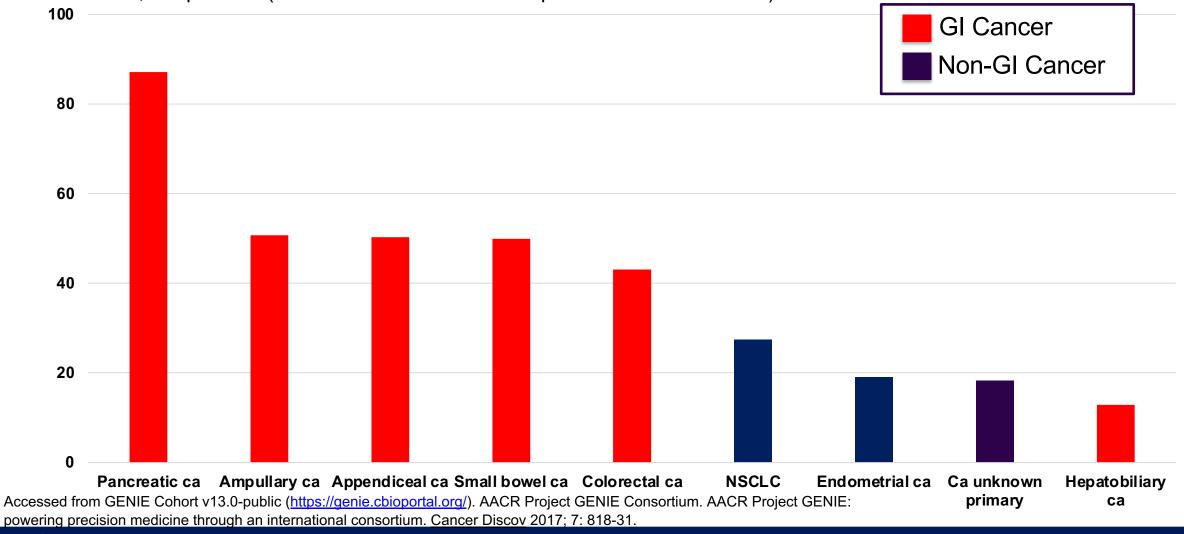
^aBased on the exact Clopper-Pearson method for binomial distribution. ^bAll RASm responders were IHC 3+. ^cIncludes rectum, sigmoid, and descending. ^dIncludes cecum, ascending, and transverse. Trastuzumab deruxtecan is not approved by EMA in mCRC.

Raghav K et al., presented at ASCO Annual Meeting 2023, Chicago (USA), June 2-6, Oral Abstract 3501.

Evidence-Based Algorithm for HER2+ Metastatic CRC

MOUNTAINEER-03: Global, Randomised, Open-Label, Phase 3 Trial

a Stratification: Primary tumor sidedness, liver metastases; b Levoleucovorin may be given in place of leucovorin; c Alpha-controlled


1L, first line; BICR, blinded independent central review; ECOG, Eastern Cooperative Oncology Group; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; mCRC, metastatic colorectal cancer; mFOLFOX6, 5-fluorouracil, leucovorin, and oxaliplatin; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; R, randomisation; RAS, rat sarcoma virus; RECIST, Response Evaluation Criteria in Solid Tumors.

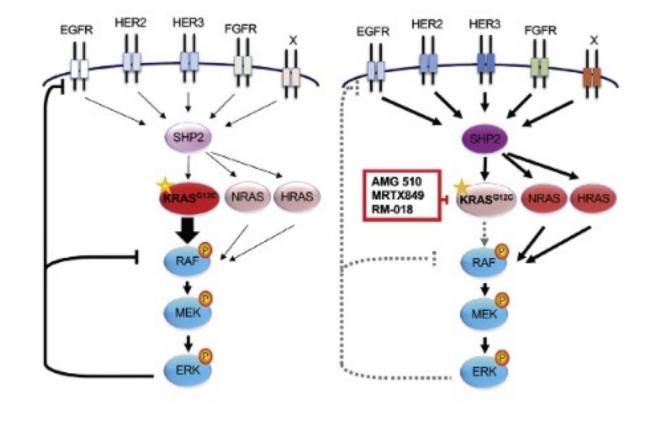
https://clinicaltrials.gov/ct2/show/NCT05253651 Bekaii-Saab TS et al. ASCO 2023; Abstract TPS3631.

KRAS: An Important Target for GI Cancers

N= 148,268 patients (tumors with *KRAS* mutation prevalence > 10% listed)

<u>Juke university</u>

Sotorasib and Adagrasib Have Single-Agent Activity in *KRAS*^{G12C}-mutant Metastatic CRC


23% (12-39)	10% (4-20)	
4.3 mo (2.3-8.3)	4.2 mo (2.9-8.5)	
5.6 mo (4.1-8.3)	4.0 mo (2.8-4.2)	
19.8 mo (12.5-23.0)	10.6 mo (7.7-15.6)	
17 (39%)	11 (18%)**	
0 (0%)	1 (2%)	
	4.3 mo (2.3-8.3) 5.6 mo (4.1-8.3) 19.8 mo (12.5-23.0) 17 (39%)	

Yaeger et al., <u>N Engl J Med</u> 2023; 388:44-54. Fakih et al., <u>Lancet Oncol</u> 2022; 23: 115–24,

Dukeuniversity

KRAS^{G12C}-independent Feedback Activation of Wild-type RAS Limits Single-agent Activity of KRAS^{G12C} Inhibitors

- KRAS^{G12C} inhibitors drive adaptive feedback reactivation of RAS-MAPK signaling via RTKs (EGFR, etc.)
- Activation of wild-type RAS (NRAS and HRAS) drives MAPK signaling in presence of KRAS^{G12C} inhibition
- Vertical inhibition strategies (dual or triple inhibition with SHP2, MEK, and/or EGFR) enhance activity of KRAS^{G12C} inhibitors

No inhibitor

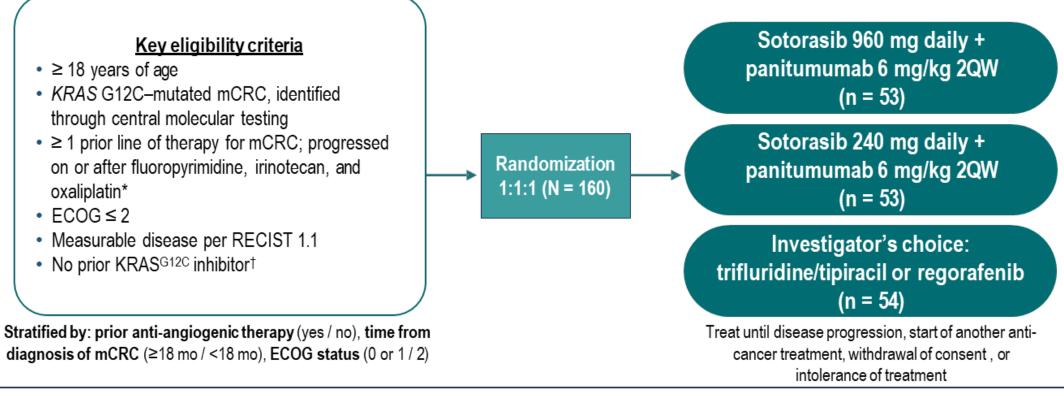
+ inhibitor

Ryan et al., <u>Cell Reports</u> 2022; 39(12) 1-14. Amodio et al., <u>Cancer Discov</u> 2020;10:1129–39.

Duke UNIVERSITY

Dual Inhibition of KRAS^{G12C} and EGFR Has Significant Activity for Refractory Metastatic CRC

	Adagrasib+cetuximab (N=28)*	Sotorasib+panitumumab (N=40)
Objective response rate % (95% CI)	46% (28-66)	30% (17-47)
Median duration of response months (95%CI)	7.6 mo (5.7-NE)	5.3 mo (2.8-7.4)
Median progression-free survival months (95%CI)	6.9 mo (5.4-8.1)	5.7 mo (4.2-7.7)
Median overall survival months (95%CI)	13.4 mo (9.5-20.1)	15.2 mo (12.5-NE)

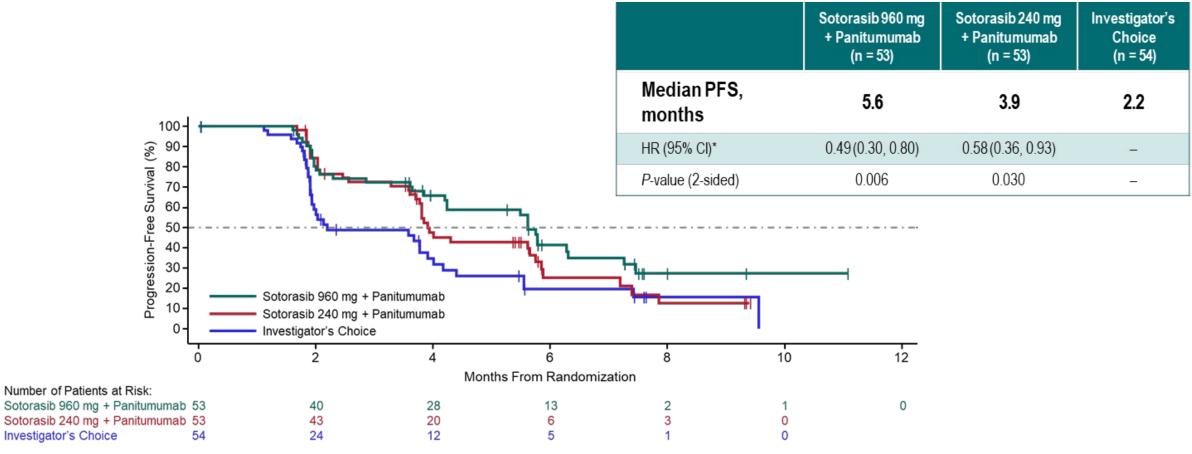

* 4 patients excluded from the efficacy analysis

Duke

Yaeger et al, <u>N Engl J Med</u> 2023; 388:44-54. Kuboki et al, <u>Nature Medicine</u> (2024 Jan 4) Online ahead of print.

CodeBreaK 300 Phase 3 Study Design

Global, randomized, open-label, active-controlled study of sotorasib + panitumumab in mCRC (NCT05198934)


Primary endpoint: PFS by BICR (measured by CT / MRI and assessed by RECIST v1.1) Key secondary endpoints: OS, ORR

*Patients deemed by the investigator not to be candidates for fluoropyrimidine, irinotecan, or oxaliplatin may still be eligible if \geq 1 prior line of therapy was received for metastatic disease and trifluridine and tipiracil and/or regorafenib were deemed appropriate next line of therapy. †Patients with prior treatment with trifluridine and tipiracil and with regorafenib were excluded, where the investigator's choice would be these agents.

2QW, every 2 weeks; BICR, blinded independent central review; CT, computed tomography; ECOG, Eastern Cooperative Oncology Group; KRAS, Kirsten rat sarcoma; mCRC, metastatic colorectal cancer; MRI, magnetic resonance imaging; OS, overall survival; ORR, objective response rate; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors.

CodeBreaK 300: PFS for sotorasib+panitumumab vs investigator's choice (ITT)

- After a median follow-up of 7.8 months, sotorasib (960 mg and 240 mg) + panitumumab significantly improved PFS vs IC
- Overall survival data were not mature at data cutoff

Duke UNIVERSITY

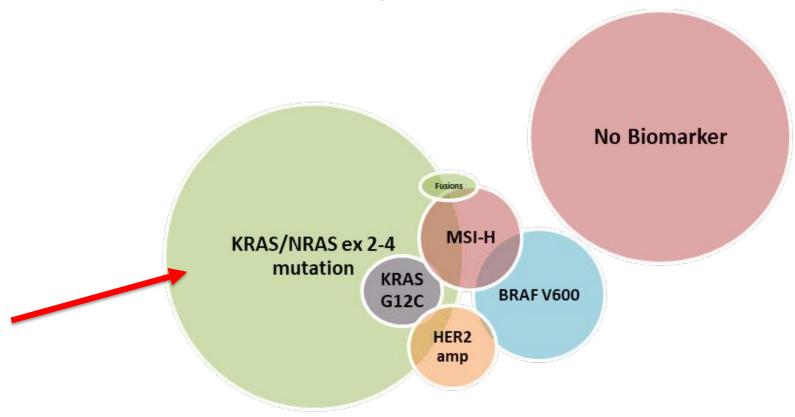
• Both sotorasib doses + panitumumab were tolerable, with no new safety signals and no fatal TRAEs

Pietrantonio F et al., Presented at ESMO 2023. Fakih et al., <u>N Engl J Med</u> 2023; 389:2125-2139

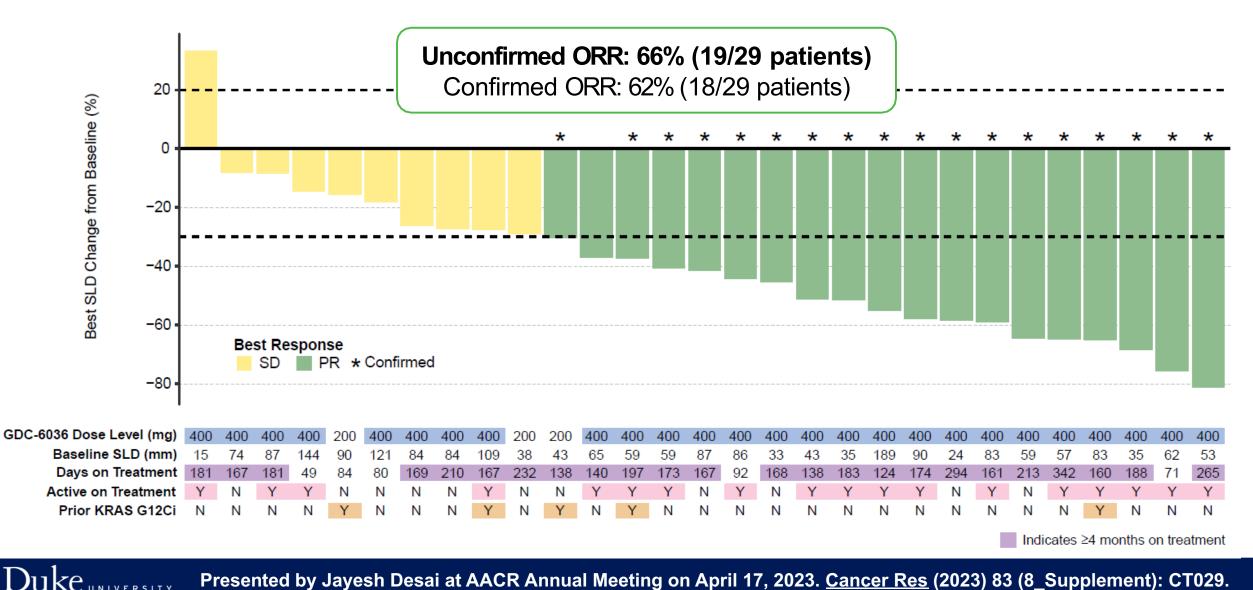
CodeBreaK 300: ORR and DCR favor sotorasib + panitumumab

Response by BICR	Sotorasib 960 mg + Panitumumab (n = 53)	Sotorasib 240 mg + Panitumumab (n = 53)	Investigator's Choice (n = 54)
ORR, % (95% CI)*†	26 (15.3–40.3)	6 (1.2–15.7)	0 (0–6.6)
Complete response, n (%)	1 (2)	0	0
Partial response, n (%)	13 (25)	3 (6)	0
Stable disease, n (%)	24 (45)	33 (62)	25 (46)
Progressive disease, n (%)	12 (23)	13 (25)	17 (31)
Not evaluable / not done, n (%)	3 (6)	2 (4)	11 (20)
DCR, % (95% CI)*	72 (57.7–83.2)	68 (53.7-80.1)	46 (32.6–60.4)

The intention-to-treat analysis set included all patients who underwent randomization.


*95% CIs were estimated using the Clopper-Pearson method. BICR, blinded independent central review; DCR, disease control rate; ORR, objective response rate

[†]Two patients (4%) in the 240 mg arm and 1 patient (2%) in the investigator's choice arm had non-complete response/non-progressive disease; these patients had BICR assessed non-target disease only


Other emerging precision cancer medicine targets in metastatic CRC

Actionable targets in metastatic CRC

GDC-6036 (Divarasib) + Cetuximab for Metastatic CRC

Presented by Jayesh Desai at AACR Annual Meeting on April 17, 2023. Cancer Res (2023) 83 (8_Supplement): CT029.

Novel Therapeutic Strategies to Target Other KRAS Variants

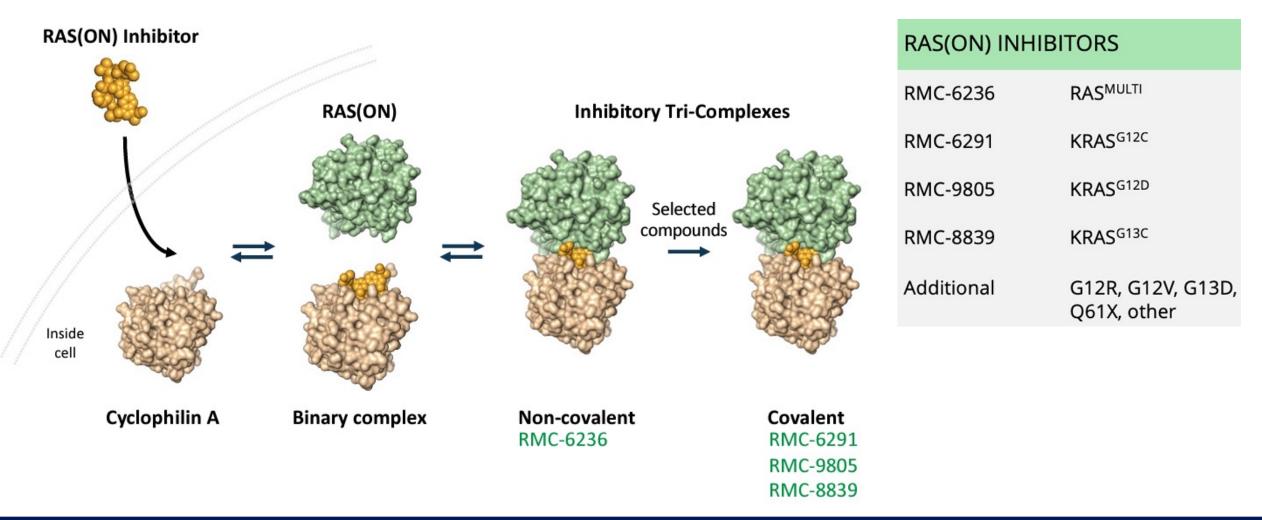
High potency targeting

- 10⁵-10⁶ x improvement in target • binding affinity Inhibition without covalent bonds
- Affinity for "on and off state" KRAS

Targeted degraders

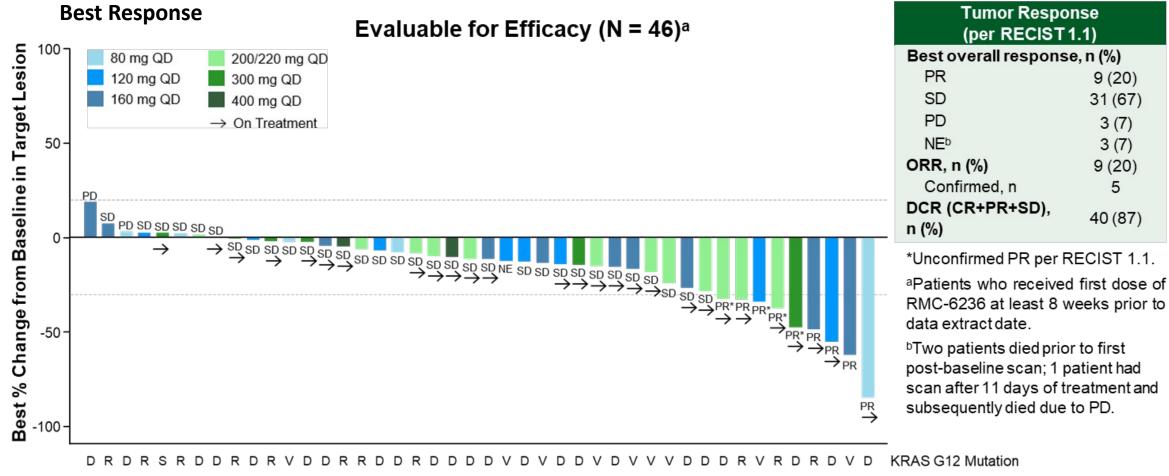
- Drug forms complexes between KRAS and ubiquitins to increase degradation
- Affinity for "on and off state" KRAS
- Rapid KRAS depletion

Molecular glues


- RAS sticks to another protein to shut down the GTPase without degrading it
- Non-covalent pan-RAS inhibitor
- Inhibits wild-type proteins

Covalent bonds with complexes

2-step process: 1) non-covalent complex with KRAS variant and another protein; 2) covalent bond then formed by drug to complex


New Therapeutic Strategies in Development: Targeting RAS(ON) Proteins with a Tri-complex Platform

Koltun ES et al. AACR 2022; Abstract 3597. Arbour et al. ESMO 2023; Abstract 6520.

RMC-6236 RAS^{MULTI}(ON) Inhibitor in Patients with *KRAS^{G12X}* mutant PDAC

12 4 11 11 12 6 5 5 18 5 15 6 18 5 12 26 26 11 6 6 6 18 2 18 15 11 6 12 18 17 18 11 18 17 12 18 30 6 6 18 27 18 45 Week of Most Recent Scan

Koltun ES et al. AACR 2022; Abstract 3597. Arbour et al. ESMO 2023; Abstract 6520.

An incomplete list of KRAS therapies entering the clinic

	Drug	Target	Properties	Status
	ASP3082	KRAS-G12D	Targeted degrader	Ph 1
	HRS-4642	KRAS-G12D	Targeted inhibitor	Ph 1 (China)
	MRTX1133	KRAS-G12D	Non-covalent inhibitor	Ph 1/2
Variant	RMC-9805	KRAS-G12D	Molecular glue inhibitor	IND-enabling
specific	RMC-8839	KRAS-G13C	Molecular glue inhibitor	IND-enabling
inhibitors	QTX3046	KRAS-G12D	Non-covalent inhibitor	Preclinical
	BI-KRASG12D	KRAS-G12D	Non-covalent inhibitor	Preclinical
	JAB-22000	KRAS-G12D	Targeted inhibitor	Preclinical
	ERAS-4	KRAS-G12D	Targeted inhibitor	Preclinical
	RMC-6236	Pan-KRAS	Molecular glue inhibitor	Ph 1
Pan-KRAS	NA	Pan-KRAS	Pan-KRAS degrader	Ph 1
inhibitors	NA	Pan-KRAS	Pan-KRAS degrader	Preclinical
	QTX3034	Pan-KRAS	Allosteric KRAS inhibitor	Ph 1
On-state	FMC-376	KRAS-G12C	Targeted inhibitor	IND-enabling
inhibitors	BBO-8520	KRAS-G12C	Targeted inhibitor	IND-enabling

<u>Duke</u> UNIVERSITY

Source: Modified from <u>Nature Reviews Drug Discovery</u> 22, 167-171 (2023)

Consensus or Controversy? Investigator Perspectives on the Current and Future Role of Immune Checkpoint Inhibitors in the Management of Hepatobiliary Cancers

> Saturday, January 20, 2024 5:30 AM – 6:30 AM PT (8:30 AM – 9:30 AM ET)

> > Faculty Ahmed Omar Kaseb, MD, CMQ Arndt Vogel, MD, PhD

> > > Moderator Neil Love, MD

Thank you for joining us! Your feedback is very important to us.

Please complete the survey currently up on the iPads for attendees in the room and on Zoom for those attending virtually. The survey will remain open up to 5 minutes after the meeting ends.

How to Obtain CME Credit

In-person attendees: Please refer to the program syllabus for the CME credit link or QR code. You may also use the iPads available in the meeting room to complete the course evaluation. Online/Zoom attendees: The CME credit link is posted in the chat room.

