Lunch with the Investigators: Hepatobiliary Cancers Friday, May 31, 2024 11:45 AM – 12:45 PM CT (12:45 PM – 1:45 PM ET)

> Faculty Edward Kim, MD Arndt Vogel, MD, PhD

Moderator Robin K (Katie) Kelley, MD

Faculty

Edward Kim, MD

Director, Interventional Oncology Professor of Radiology and Surgery Division of Interventional Radiology Mount Sinai Health System New York, New York

Moderator

Robin K (Katie) Kelley, MD Professor of Clinical Medicine, Division of Hematology/Oncology Helen Diller Family Comprehensive Cancer Center University of California, San Francisco (UCSF) San Francisco, California

Arndt Vogel, MD, PhD

Professor of Medicine, University of Toronto Longo Family Chair in Liver Cancer Research Division of Gastroenterology and Hepatology Toronto General Hospital Medical Oncology Princess Margaret Cancer Centre Toronto General Hospital Research Institute Schwartz Reisman Liver Research Centre Toronto, Ontario, Canada

Dr Kim — Disclosures Faculty

No relevant conflicts of interest to disclose.

Prof Vogel — Disclosures Faculty

Dr Kelley — Disclosures Moderator

Advisory Committees	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Exelixis Inc, Ipsen
(Payments to Institution)	Biopharmaceuticals Inc, Merck
Consulting Agreements	Compass Therapeutics, Exact Sciences Corporation, GSK, J-Pharma Co Ltd, Kinnate
(Payments to Self)	Biopharma, Moderna, Regeneron Pharmaceuticals Inc, Tyra Biosciences
Contracted Research (Payment to Institution for Trial Conduct)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol Myers Squibb, Compass Therapeutics, EMD Serono Inc, Exelixis Inc, Genentech, a member of the Roche Group, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Partner Therapeutics, QED Therapeutics, Servier Pharmaceuticals LLC, Surface Oncology, Taiho Oncology Inc, Tyra Biosciences
Independent Data Monitoring Committees (Unpaid Service)	Genentech, a member of the Roche Group, Merck

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI Biopharma, a Sobi company, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab US Inc, Gilead Sciences Inc, Grail Inc, GSK, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Legend Biotech, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Mural Oncology Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, R-Pharm US, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Syndax Pharmaceuticals, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc, and Zymeworks Inc.

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Incyte Corporation, Jazz Pharmaceuticals Inc, and Taiho Oncology Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

This educational activity contains discussion of non-FDA-approved uses of agents and regimens. Please refer to official prescribing information for each product for approved indications.

Friday	Hepatobiliary Cancers 11:45 AM - 12:45 PM CT (12:45 PM - 1:45 PM ET)
May 31	Non-Small Cell Lung Cancer with an EGFR Mutation 6:30 PM - 8:30 PM CT (7:30 PM - 9:30 PM ET)
Saturday	Antibody-Drug Conjugates in the Treatment of Lung Cancer 6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET)
June 1	Prostate Cancer 7:00 PM - 9:00 PM CT (8:00 PM - 10:00 PM ET)
Sunday	Multiple Myeloma 6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET)
June 2	Ovarian and Endometrial Cancer 7:00 PM - 9:00 PM CT (8:00 PM - 10:00 PM ET)
Monday	Colorectal Cancer (Webinar) 7:00 AM - 8:00 AM CT (8:00 AM - 9:00 AM ET)
Monday June 3	

Exciting CME Events in Chicago You Do Not Want to Miss

A CME Hybrid Symposium Series Held in Conjunction with the 2024 ASCO[®] Annual Meeting

Hepatobiliary Cancers Friday, May 31, 2024 11:45 AM – 12:45 PM CT (12:45 PM – 1:45 PM ET)

Faculty

Robin K (Katie) Kelley, MD Edward Kim, MD Arndt Vogel, MD, PhD

Non-Small Cell Lung Cancer with an EGFR Mutation

Friday, May 31, 2024 6:30 PM – 8:30 PM CT (7:30 PM – 9:30 PM ET)

Faculty

Jonathan W Goldman, MD Corey J Langer, MD Joel W Neal, MD, PhD Zofia Piotrowska, MD, MHS Joshua K Sabari, MD Helena Yu, MD Antibody-Drug Conjugates in Lung Cancer Saturday, June 1, 2024 6:45 AM – 7:45 AM CT (7:45 AM – 8:45 AM ET)

Faculty Rebecca S Heist, MD, MPH Luis Paz-Ares, MD, PhD Jacob Sands, MD

Prostate Cancer

Saturday, June 1, 2024 7:00 PM – 9:00 PM CT (8:00 PM – 10:00 PM ET)

Faculty Neeraj Agarwal, MD, FASCO

Emmanuel S Antonarakis, MD Andrew J Armstrong, MD, ScM Tanya B Dorff, MD Matthew R Smith, MD, PhD

Exciting CME Events in Chicago You Do Not Want to Miss

A CME Hybrid Symposium Series Held in Conjunction with the 2024 ASCO® Annual Meeting

Multiple Myeloma Sunday, June 2, 2024 6:45 AM – 7:45 AM CT (7:45 AM – 8:45 AM ET)

Faculty

Rafael Fonseca, MD María-Victoria Mateos, MD, PhD Elizabeth O'Donnell, MD

Ovarian and Endometrial Cancer Sunday, June 2, 2024 7:00 PM – 9:00 PM CT (8:00 PM – 10:00 PM ET)

Faculty

Floor J Backes, MD Mansoor Raza Mirza, MD Ritu Salani, MD, MBA Angeles Alvarez Secord, MD, MHSc Brian M Slomovitz, MD

LIVE WEBCAST

Colorectal Cancer Monday, June 3, 2024 7:00 AM – 8:00 AM CT (8:00 AM – 9:00 AM ET)

Faculty Scott Kopetz, MD, PhD John Strickler, MD

Metastatic Breast Cancer

Monday, June 3, 2024 7:00 PM – 9:00 PM CT (8:00 PM – 10:00 PM ET)

Faculty

Aditya Bardia, MD, MPH Harold J Burstein, MD, PhD Professor Giuseppe Curigliano, MD, PhD Sara A Hurvitz, MD, FACP Joyce O'Shaughnessy, MD Hope S Rugo, MD

Exciting CME Events in Chicago You Do Not Want to Miss

A CME Hybrid Symposium Series Held in Conjunction with the 2024 ASCO® Annual Meeting

LIVE WEBCAST

Bispecific Antibodies in Lymphoma Tuesday, June 4, 2024 7:00 AM – 8:00 AM CT (8:00 AM – 9:00 AM ET)

Faculty Joshua Brody, MD Ian W Flinn, MD, PhD

Tycel Phillips, MD

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the pre- and postmeeting surveys.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Clinicians Attending via Zoom

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the pre- and postmeeting surveys.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME Credit: A CME credit link will be provided in the chat room at the conclusion of the program.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

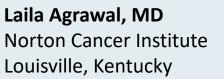
An email will be sent to all attendees when the activity is available.

 To learn more about our education programs, visit our website, <u>www.ResearchToPractice.com</u>

Lunch with the Investigators: Hepatobiliary Cancers Friday, May 31, 2024 11:45 AM – 12:45 PM CT (12:45 PM – 1:45 PM ET)

> Faculty Edward Kim, MD Arndt Vogel, MD, PhD

Moderator Robin K (Katie) Kelley, MD



Consulting Oncologists

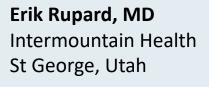
Neil Love, MD Research To Practice Miami, Florida

Spencer H Bachow, MD Lynn Cancer Institute Boca Raton, Florida

Warren S Brenner, MD Lynn Cancer Institute Boca Raton, Florida

Gigi Chen, MD John Muir Health Pleasant Hill, California

Sunil Gandhi, MD Florida Cancer Specialists & Research Institute Lecanto, Florida


Kimberly Ku, MD Bloomington, Illinois

Neil Morganstein, MD Atlantic Health System Summit, New Jersey

Estelamari Rodriguez, MD, MPH Sylvester Comprehensive Cancer Center Miami, Florida

Agenda

Module 1: Recent Developments in the Management of Early- and Intermediate-Stage Hepatocellular Carcinoma (HCC) — Dr Kim

Module 2: First-Line Therapy for Advanced HCC and Biliary Tract Cancers (BTCs) — Prof Vogel

Module 3: Integration of Targeted Therapy into the Management of Advanced BTCs — Dr Kelley

Agenda

Module 1: Recent Developments in the Management of Early- and Intermediate-Stage Hepatocellular Carcinoma (HCC) — Dr Kim

Module 2: First-Line Therapy for Advanced HCC and Biliary Tract Cancers (BTCs) — Prof Vogel

Module 3: Integration of Targeted Therapy into the Management of Advanced BTCs — Dr Kelley

Consulting Faculty Comments

Selection of first-line treatment for HCC in patients with a solitary lung metastasis; determining candidacy for TACE treatment by interventional radiologists

Dr Gigi Chen (Pleasant Hill, California)

Dr Erik Rupard (St George, Utah)

Consulting Faculty Comments

Case Presentation: 49-year-old woman with metastatic recurrence of HCC 2 years after resection of Stage IIIA disease

Dr Gigi Chen (Pleasant Hill, California)

2022: MRI abdomen: 11.6cm solid mass arising from the anterior segment right lobe of liver, (segment 5), consistent with HCC. No other sites of disease

3/2024:

MRI abdomen: New 3.8x2.8cm lesion posterior right hepatic lobe highly suspicious for hepatoma. 5mm RLL pulmonary nodule, not present in previous CT chest

8mm RLL nodule, small bilateral lung nodules measuring up to 4mm

Resection of RLL lung nodule: path met HCC Resection of liver recurrence: HCC

Currently recovering from surgery

QUESTIONS FOR THE FACULTY

Are there any situations in which you would be tempted to employ atezolizumab/bevacizumab in the adjuvant setting outside of a trial today?

If so, which specific situations?

QUESTIONS FOR THE FACULTY

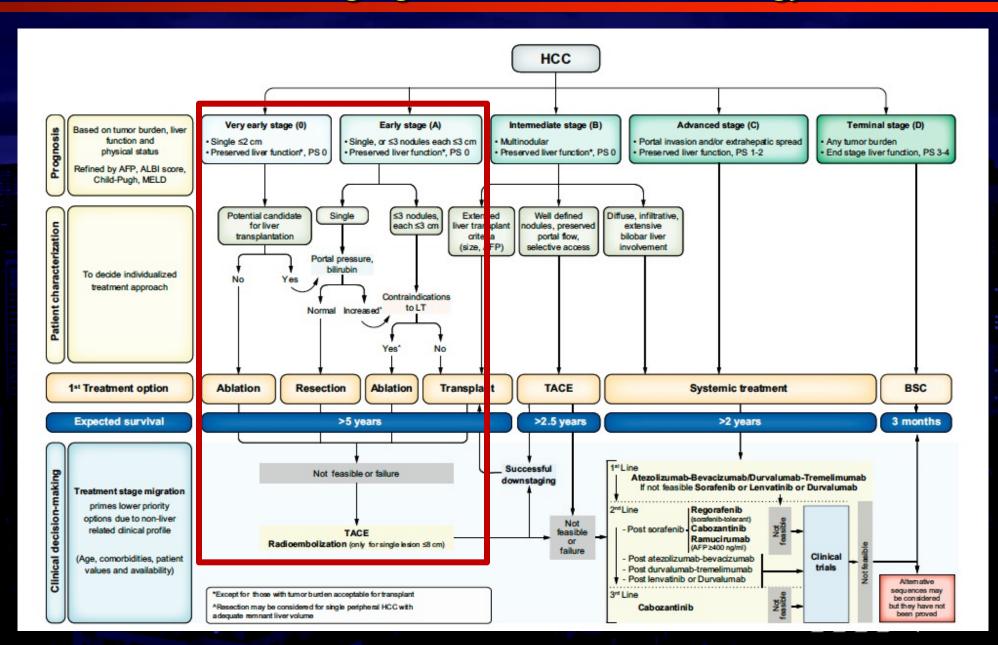
In patients with intermediate-stage HCC for whom you are not considering transplant, how do you determine whether locoregional liver-directed therapy or systemic therapy is more appropriate?

Is there a specific degree of intrahepatic tumor burden that you use as a cutoff when making this determination?

QUESTIONS FOR THE FACULTY

Are there any situations in which you would be tempted to employ TACE in combination with durvalumab/bevacizumab outside of a trial today?

If so, which specific situations?



Recent Developments in the Management of Early- and Intermediate-Stage Hepatocellular Carcinoma

Edward Kim, MD FSIR Professor of Radiology and Surgery Director, Interventional Oncology Mount Sinai Health System New York, NY

BCLC staging and treatment strategy

Multidisciplinary HCC team

Oncology

Systemic chemotherapy

Hepatology

Transplant
Management of underlying liver disease Interventional Radiology • TACE • Y90 • ablation

Surgery

Resection
Transplant

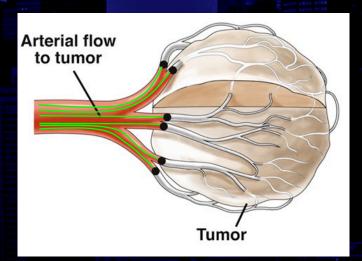
1. Matsumoto MM et al. Cardiovasc Intervent Radiol. 2021;44:1070-1080.

Curative-intent treatments

	Recurrence Rate	Overall Survival	Ideal Candidate	Exclusion	Key Issues
Ablation	73-80%	70%	 very small HCC ≤2cm in size not a surgical candidate location easily accessible via the percutaneous route 	 adjacent to major blood vessels or bile ducts due to heat sink effect typically, not used over 3 cm in size dome lesions close to the diaphragm 	if a patient is a transplant candidate with a very small HCC, observation until >2 cm may be recommended in order to obtain MELD exception points
Resection	70%	70-80%	 no cirrhosis or CP A cirrhosis without clinically significant portal hypertension solitary mass location will allow for an adequate liver remnant after resection 	- clinically significant portal hypertension - multifocal/bilobar disease	if the size of the future liver remnant is a concern, preoperative portal vein embolization can be performed to induce hypertrophy of the future liver remnant
Transplant	10-15%	80%	- cirrhosis severity precludes resection - within the Milan criteria	not expected to survive a major surgery	 expanded criteria available if the patient is not within the Milan criteria, with regional variations downstaging to Milan is possible with local regional therapies
Y90 Radiation Segmentectomy	ORR 88-100%	57-75%	Solitary lesions up to 8 cmBest outcomes reported for lesions up to 3 cm	Elevated lung shunt	- Potential transplant within 30 days

Kinsey, E.; Lee, H.M. Management of Hepatocellular Carcinoma in 2024: The Multidisciplinary Paradigm in an Evolving Treatment Landscape. Cancers. 2024,16,666.

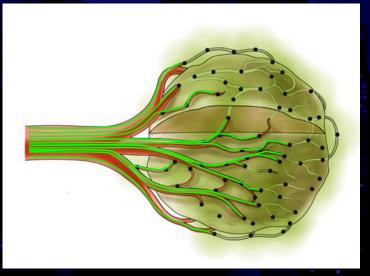
Liver-directed therapies


	Advantages	Disadvantages
Ablation	 curative well tolerated 	 limited to small lesions, ideal for <3 cm must be mindful of location (avoid dome lesions, adjacent to major vessels or bile ducts)
TARE-Y90	 can be used in the presence of portal vein thrombosis outpatient procedure performed in two sessions (one mapping session and one treatment session) well tolerated Cost effective with a single treatment vs multiple TACE 	- must pass the mapping procedure requirements (to avoid hepatopulmonary shunting or reflux)
TACE	- recommended as first-line liver-directed therapy in the treatment algorithm for BCLC stage B patients	 Usually requires multiple interventions overnight stay in the hospital may be required to monitor for post-procedure pain and complications cannot be used in patients with portal vein thrombosis

Kinsey, E.; Lee, H.M. Management of Hepatocellular Carcinoma in 2024: The Multidisciplinary Paradigm in an Evolving Treatment Landscape. Cancers. 2024, 16, 666.

Transarterial Therapies

ARTERIAL EMBOLIZATION



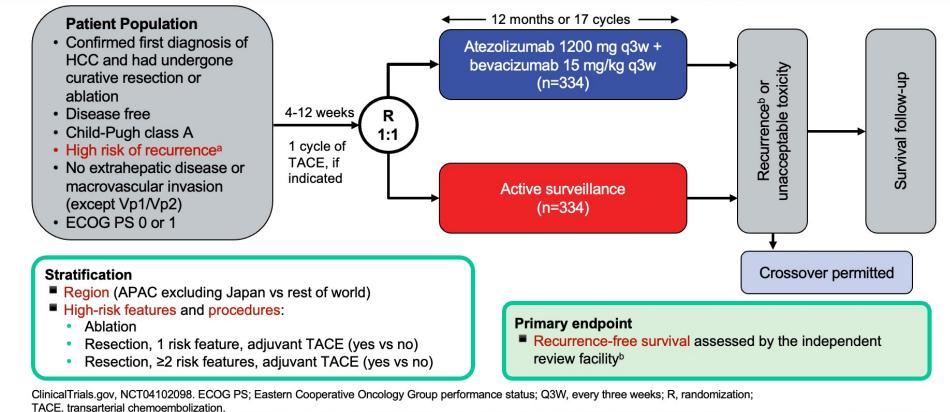
Disruption of tumor blood supply resulting in tumor ischemia/hypoxia

ischeima/hypoxia

Salem R et al. *Gastroenterology*. 2010;138:52-64. Sato K et al. *Cardiovasc Intervent Radiol*. 2006;29(4):522-529.

RADIOEMBOLIZATION

Delivery of β -emitting microspheres that provide local, high dose tumor radiation

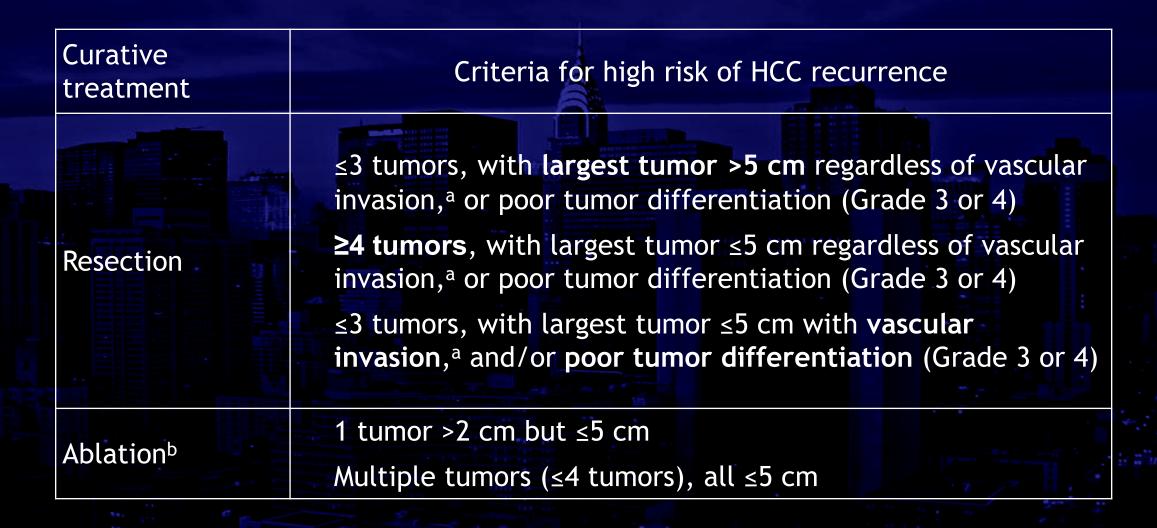


Summary of recent studies with Radiation Segmentectomy

RadSeg Study	Tumor Size (median)	Treated Volume (Median)	Median Dose (Perfused)	ORR% (CR%)	ТТР	PFS	Grade ≥ 3 Toxicity (%)
RASER E Kim et al.	≤ 3 cm	153.6 mL	584 Gy	100% (90%)	Not reached	-	0
LEGACY Salem et al.	2.7 cm (1.0-8.1)	155 mL (19-1363)	410.1 Gy	88% (84%)	Not reached	40.7 mo	1.9%
Radseg vs resect De la Garza-Ramos et al.	2.5 cm	169 mL	361 Gy	98% (87%)	Not reached	-	1%
Radseg Intensification Montazeri et al.	2.3 cm (intensification)	250 mL	536 Gy	100% (89%)	-	-	-
RadSeg vs MWA Arndt et al.	≤ 4 cm	-	225.3 Gy to tumor	88% (88%)	57.8 mo (target)	59 mo (target)	9.1%
Boosted Y90 Large HC Kim et al.	7.6 cm	883 mL	241.6 Gy	100% (80%)	-	94.1% @ 1 yr local	0%
RadSeg vs sel TACE Padia et al.	3.2 cm	-	>200 Gy	97% (92%)	-	18.5 mo	3%
RS before transplant Toskich et al.	2.3 cm	175 mL	314 Gy	92% (76%)	-	-	0%

Atezolizumab plus bevacizumab versus active surveillance in patients with resected or ablated high-risk hepatocellular carcinoma (IMbrave050): a randomised, open-label, multicentre, phase 3 trial

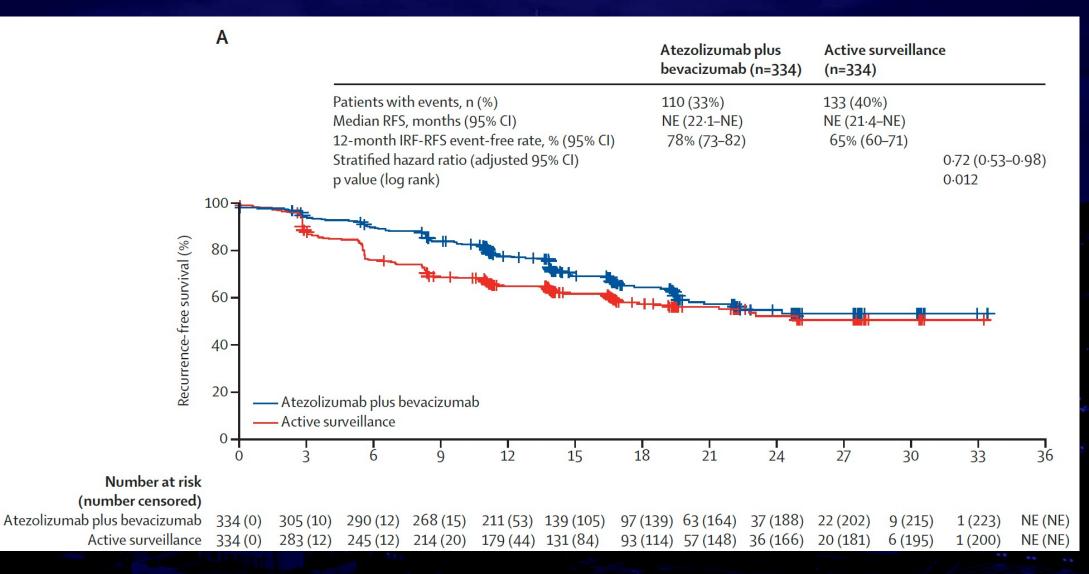
Shukui Qin*, Minshan Chen*, Ann-Lii Cheng*, Ahmed O Kaseb*, Masatoshi Kudo*, Han Chu Lee*, Adam C Yopp*, Jian Zhou, Lu Wang, Xiaoyu Wen, Jeong Heo, Won Young Tak, Shinichiro Nakamura, Kazushi Numata, Thomas Uguen, David Hsiehchen, Edward Cha, Stephen P Hack, Qinshu Lian, Ning Ma, Jessica H Spahn, Yulei Wang, Chun Wu, Pierce K H Chow*, for the IMbrave050 investigators†



a High-risk features include: tumor >5 cm, >3 tumors, microvascular invasion, minor macrovascular invasion Vp1/Vp2, or Grade 3/4 pathology.

^b Intrahepatic recurrence defined by EASL criteria. Extrahepatic recurrence defined by RECIST 1.1.

Chow et al IMbrave050 https://bit.ly/3ZPKzgM 14


High Risk criteria by curative treatment

^a Microvascular invasion or minor macrovascular portal vein invasion of the portal vein–Vp1/Vp2. ^b Ablation must be radiofrequency ablation or microwave ablation.

Primary endpoint: IRF RFS significantly improved with atezo/bev vs active surveillance

Qin et al. Lancet. 2023 Nov 18;402(10415):1835-1847

Safety/Toxicities

	Atezolizum (n=332)	ab plus bevaciz	zumab	Active surve (n=330)		
	Any grade	Grade 3 or 4	Grade 5	Any grade	Grade 3 or 4	Grade 5
Any adverse event	326 (98%)	136 (41%)	6 (2%)	205 (62%)	44 (13%)	1 (<1%)
Related adverse event	293 (88%)	116 (35%)	2 (<1%)	NA	NA	NA
Serious adverse event	80 (24%)	53 (16%)	6 (2%)	34 (10%)	26 (8%)	1 (<1%)
Related serious adverse event	44 (13%)	32 (10%)	2 (<1%)	NA	NA	NA
Adverse event leading to withdrawal from both atezolizumab and bevacizumab	29 (9%)	23 (7%)	0	NA	NA	NA
Adverse event leading to withdrawal from atezolizumab	31 (9%)	24 (7%)	0	NA	NA	NA
Adverse event leading to withdrawal from bevacizumab	62 (19%)	38 (11%)	0	NA	NA	NA

	Atezolizumab plus bevacizumab (n=332)			Active surve (n=330)						
	Any grade	Grade 3 or 4	Grade 5	Any grade	Grade 3 or 4	Grade 5				
Adverse events (of any grade) with an incidence rate of at least 10% in either treatment group by preferred term										
Proteinuria	154 (46%)	29 (9%)	0	12 (4%)	0	0				
Hypertension	127 (38%)	61 (18%)	0	10 (3%)	3 (1%)	0				
Platelet count decreased	66 (20%)	15 (5%)	0	22 (7%)	4 (1%)	0				
Aspartate aminotransferase increased	52 (16%)	3 (1%)	0	18 (5%)	2 (1%)	0				
Alanine aminotransferase increased	47 (14%)	2 (1%)	0	18 (5%)	3 (1%)	0				
Hypothyroidism	47 (14%)	0	0	1 (<1%)	0	0				
Arthralgia	40 (12%)	1 (<1%)	0	8 (2%)	1(<1%)	0				
Pruritus	40 (12%)	1 (<1%)	0	3 (1%)	0	0				
Rash	40 (12%)	0	0	1 (<1%)	0	0				
Blood bilirubin increased	34 (10%)	1 (<1%)	0	23 (7%)	1(<1%)	0				
Pyrexia	34 (10%)	0	0	7 (2%)	0	0				

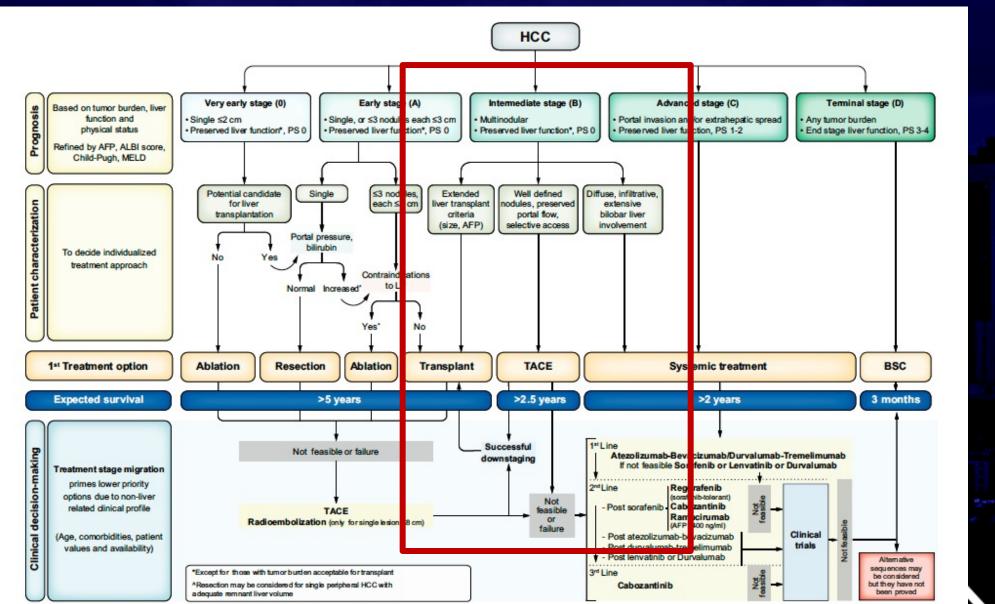
Mount Sinai

Data are n (%). NA=not available.

Table 2: Safety summary for the safety-evaluable population

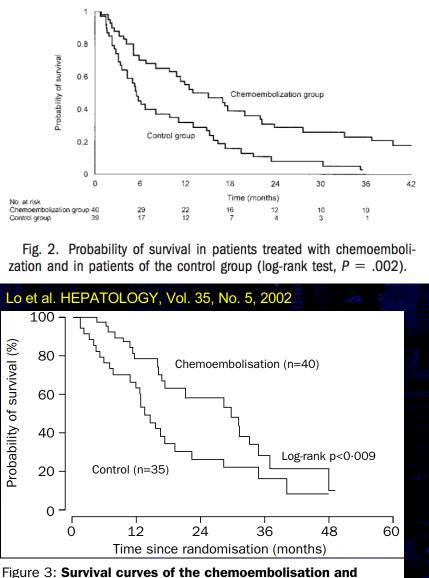
IMbrave 050 conclusions

IMbrave050 is the first Phase 3 study of adjuvant treatment for HCC to demonstrate RFS improvement following curative intent resection or ablation

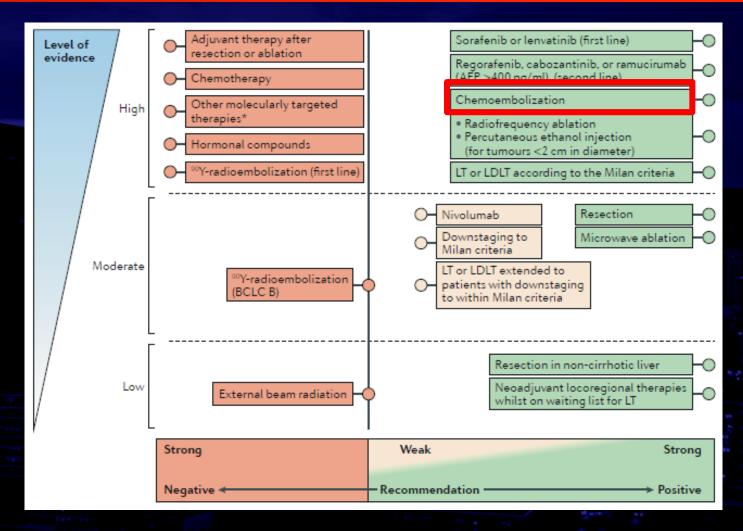

At the **prespecified interim analysis**, adjuvant atezolizumab + bevacizumab met its **primary endpoint** and showed a statistically significant and clinically meaningful improvement in IRF-assessed RFS vs active surveillance in patients with a high risk of HCC recurrence (HR, 0.72; 95% CI: 0.56, 0.98; *P*=0.012)

RFS benefit with atezolizumab + bevacizumab was generally consistent across key clinical subgroups

The safety profile of adjuvant atezolizumab + bevacizumab was generally consistent with that of each agent and with the underlying disease

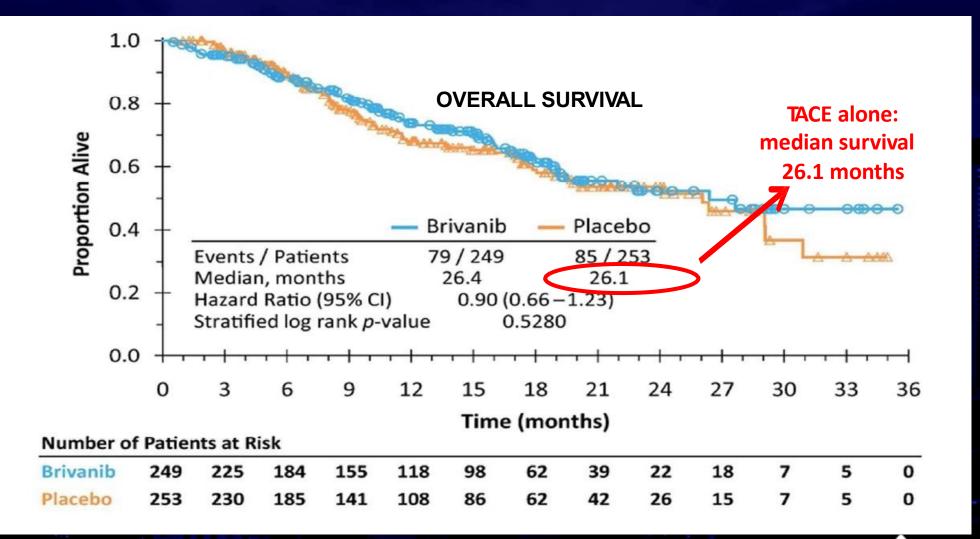

Atezolizumab + bevacizumab may benefit patients with high-risk HCC as adjuvant treatment

BCLC staging and treatment strategy



Mount Sinai

Conventional Chemoembolization (cTACE, lipiodol TACE)



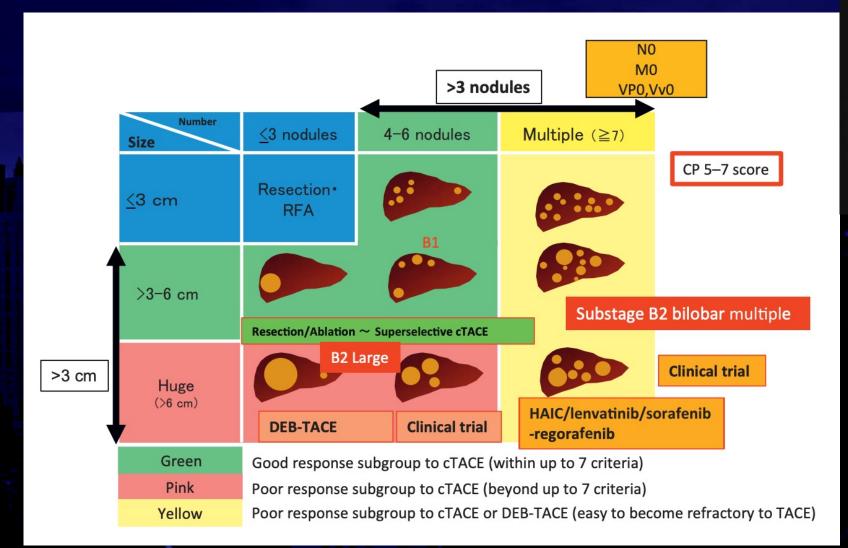
control groups Llovet et al. THE LANCET • Vol. 359 • May 18, 2002

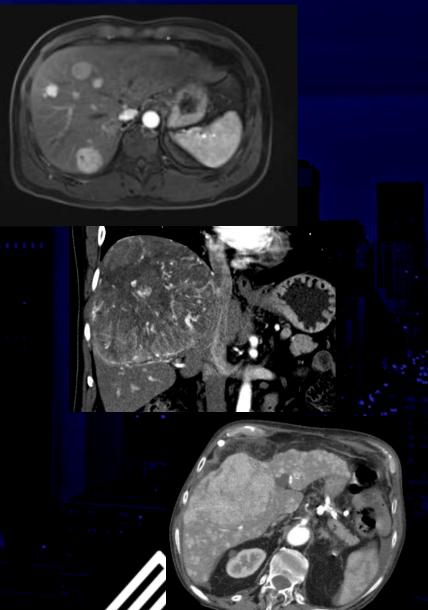
Brivanib as Adjuvant Therapy to TACE: A Phase III Randomized Controlled Clinical Trial

Mount

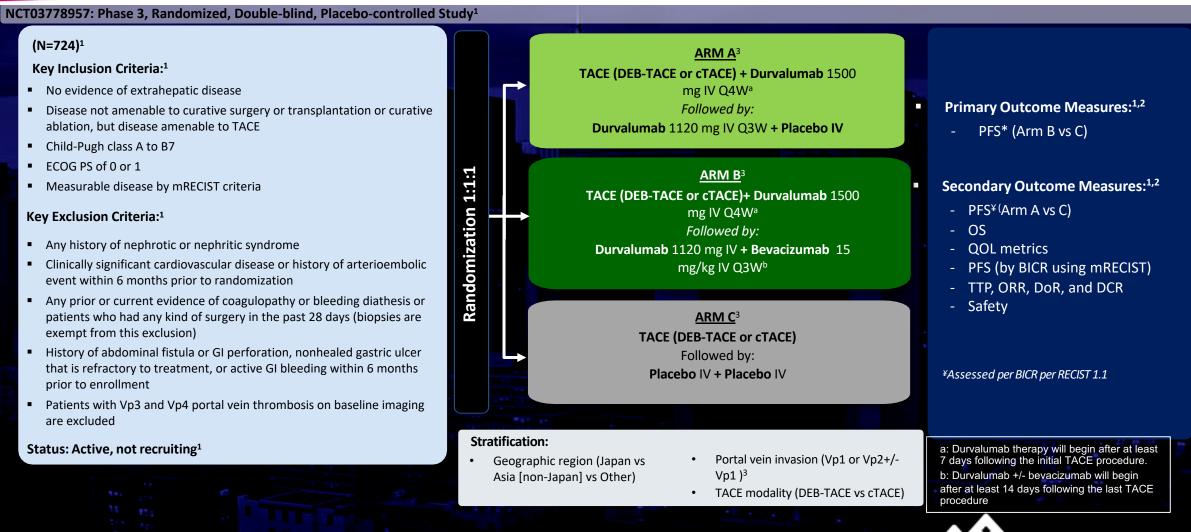
Sinai

Kudo M et al. Hepatology 2014;60:697-707


Negative Transarterial Trials +/- systemic therapy

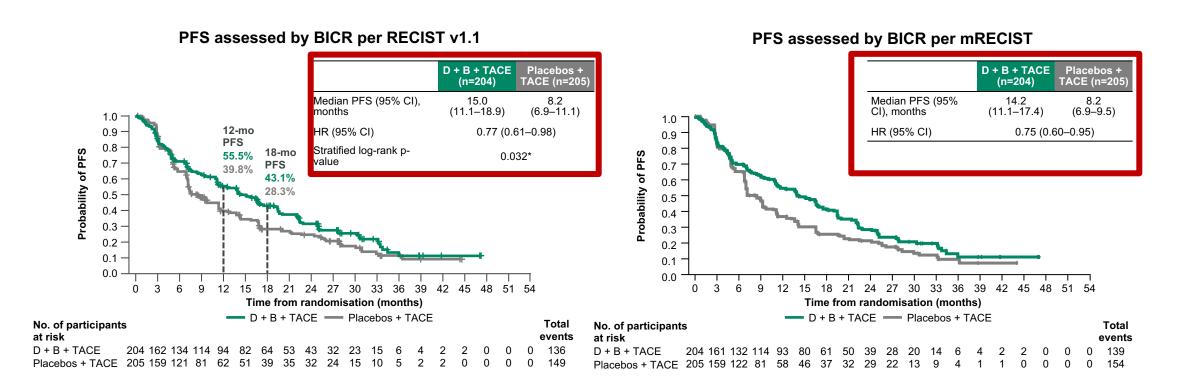

Table 2 | Outcomes of randomized controlled trials assessing intra-arterial therapies in HCC, 2009–2019

Randomized controlled trial	Region	Experimental arms	End points	Outcomes	Ref.
Chemoembolization	1				
Okusaka et al. 2009	Japan	TAI (n=82) vs cTACE (n=79)	OS	22.3 months vs 21.2 months; P = 0.383	115
Kudo et al. 2011 (Post-TACE trial)	Japan, South Korea	cTACE (responders) plus sorafenib (n = 229) vs cTACE plus placebo (n = 229)	ТТР⋼	5.4 months vs 3.7 months; HR 0.87 (95% CI 0.70–1.09); P = 0.252	116
Yu et al. 2014	China	TEA (n=49) vs cTACE (n=49)	OS	24.3 months vs 20.1 months; P = 0.513	117
Golfieri et al. 2014 (PRECISION ITALIA trial)	Italy	DEB-TACE (n = 89) vs cTACE (n = 88)	OS (2 years)	56.8% vs 55.4%; P=0.949	118
Kudoetal. 2014 (BRISK-TAtrial)	Global	cTACE or DEB-TACE plus brivanib (n = 249) vs cTACE plus placebo (n = 253)	OS	26.4 months vs 26.1 months; HR 0.90 (95% Cl 0.66-1.23); P=0.53	23
Lencioni et al. 2016 (SPACE trial)	Global	DEB-TACE plus sorafenib (n = 154) vs DEB-TACE plus placebo (n = 153)	TTP	5.6 months vs 5.5 months; HR 0.797 (95% Cl 0.588–1.080); P = 0.072	22
Meyer et al. 2017 (TACE 2 trial)	UK	DEB-TACE plus sorafenib (n = 157) vs DEB-TACE plus placebo (n = 156)	PFS	7.8 months vs 7.7 months; HR 1.03 (95% CI 0.75–1.42); P=0.85	21
Kudo et al. 2018 (ORIENTAL trial)	Japan, South Korea, Taiwan	cTACE plus orantinib (n = 445) vs cTACE plus placebo (n = 444)	OS	31.1 months vs 32.3 months; HR 1.090 (95% Cl 0.878–1.352); P = 0.435	119
Ikeda et al. 2018	Japan	cTACE with miniplatin ($n=129$) vs cTACE with epirubicin ($n=128$)	OS	36.5 months vs 37.1 months; HR 1.01 (95% CI 0.7 3–1.40); P = 0.946	120
Kudo et al. 2019 (TACTICS trial)	Japan	cTACE plus sorafenib (n=80) vs cTACE (n=76)	mPFS ^e	25.2 months vs 13.5 months; HR 0.59 (95% Cl 0.41–0.87); P = 0.006	121
Park et al. 2019 (STAH trial)*	South Korea	cTACE plus sorafenib (n = 170) vs sorafenib (n = 169)	OS	12.8 months vs 10.8 months; HR 0.91 (Cl 0.69–1.21); $P = 0.290$	122
Transarterialradioe	mbolization				
Salem et al. 2016	USA	TARE $(n=24)$ vscTACE $(n=21)^d$	TTP	>26 months vs 6.8 months; HR 0.12 (95% CI 0.027–0.55); P =0.001	127
Vilgrein et el. 2017 (SARAHtrial)*	France	TARE (n=237) vs sorafenib (n=222)	OS	8 months vs 9.9 months; HR 1.15 (95% CI 0.94–1.41); P = 0.18	123
Chow et al. 2018 (SIRveNIB trial)*	Asia-Pacific	TARE ($n = 182$) vs sorefenib ($n = 178$)	OS	8.8 months vs 10.0 months; HR 1.12 (95% Cl 0.9–1.4); P=0.36)	124
Ricke et al. 2019 (SORAMIC trial)*	Europe, Turkey	TARE plus sorafenib ($n = 216$) vs sorafenib ($n = 208$)	OS	12.1 months vs 11.4 months; HR 1.01 (95% Cl 0.81–1.25); P = 0.95	125
Intra-arterial chem	otherapy				
Kudo et al. 2018 (SILIUS trial)*	Japan	HAIC plus sorafenib (n = 102) vs sorafenib (n = 103)	OS	11.8 months vs 11.5 months; HR 1.009 (95% CI 0.743–1.371); P = 0.95	125



Heterogeneity and treatment strategy for intermediate-stage HCC

EMERALD-1: Durvalumab and TACE With or Without Bevacizumab

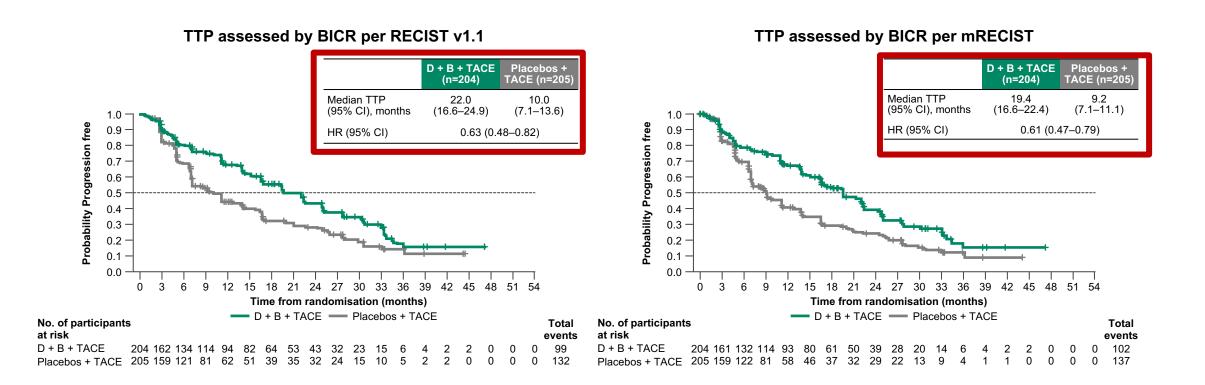


Mount

BICR, blinded independent central review; DCR, disease control rate; DOR, duration of response; ECOG PS, Eastern Cooperative Group Performance Status; IV, intravenously; mRECIST, modified Response Evaluation Criteria in Solid Tumors; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; Q3W, every 3 weeks; Q4W, every 4 weeks; Q0L, quality of life; RECIST 1.1, Response Evaluation Criteria for Solid Tumors version 1.1; TACE, transarterial chemoembolization; TTP, time to progression.

1. ClinicalTrials.gov identifier: NCT03778957. Accessed September 2023. 2. Sangro B, et al. Ann Oncol. 2020; 31 (Suppl3): S202-S203. 3. Kudo M. Liver Cancer. 2019;8(4):221-238. doi:10.1159/000501501

PFS with D + B + TACE versus placebos + TACE (**RECIST 1.1 vs mRECIST**)



Median (range) duration of follow-up in censored participants as assessed by BICR per RECIST v1.1, D + B + TACE 16.7 (0.03–47.1) months, placebos + TACE 10.3 (0.03–44.3) months. Median (95% CI) duration of follow-up in all participants using the reverse Kaplan-Meier method, D + B + TACE 22.2 (16.7–27.3) months, placebos + TACE 26.3 (16.7–30.4) months. Median (range) duration of follow-up in censored participants as assessed by BICR per mRECIST, D + B + TACE 16.5 (0.03–47.1) months, placebos + TACE 9.2 (0.03–44.0) months. *The threshold of significance for this analysis was 0.0435 based on the α spend at the PFS interim analysis (2.27%) and the actual number of events at PFS final analysis. B, bevacizumab; BICR, blinded independent central review; CI, confidence interval; D, durvalumab; HR, hazard ratio; mRECIST, modified Response Evaluation Criteria in Solid Tumors; TACE, transarterial chemoembolisation.

Sangro B, et al. Presented at EASL Liver Cancer Summit 2024. 22–24 February; Rotterdam, Netherlands.

TTP with D + B + TACE versus placebos + TACE (RECIST 1.1 vs mRECIST)

Mount Sinai

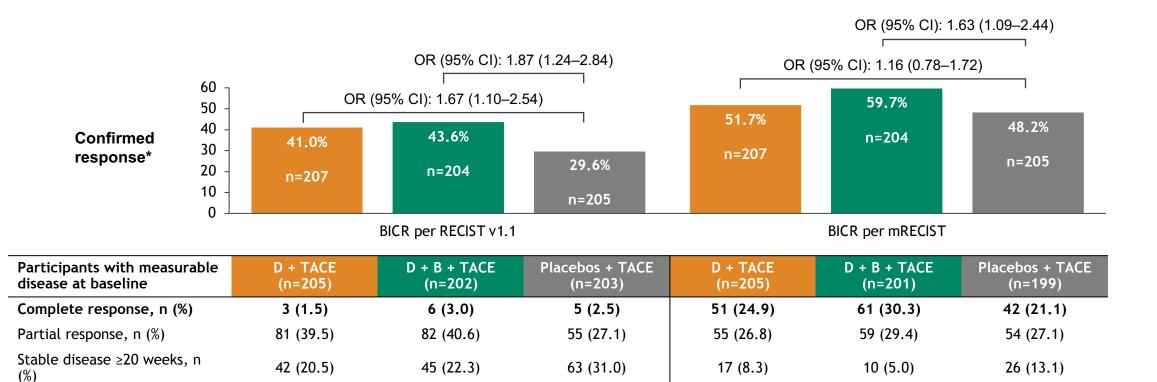
B, bevacizumab; BICR, blinded independent central review; CI, confidence interval; D, durvalumab; HR, hazard ratio; mRECIST, modified Response Evaluation Criteria in Solid Tumors; RECIST, Response Evaluation Criteria in Solid Tumors; TACE, transarterial chemoembolisation; TTP, time to progression.

Sangro B, et al. Presented at EASL Liver Cancer Summit 2024. 22-24 February; Rotterdam, Netherlands.

PFS with D+B + TACE versus placebo + TACE in key subgroups PFS benefit was D+B + TACE was generally consistent across subgroups

		Favors D+B + TACE	Favors Placebos+ TAC	D+B + TACE (n=204), n / N (%)	Placebos + TACE (n=205), n / N (%	HR (95% CI)
All participants:				136 / 204 (66.7%)	149 / 205 (72.7%)	0.77 (0.61-0.98)
Geographical region	Japan I Asia non-Japan Other		● ↓ ↓	H 12 / 15 (80.0%) 68 / 107 (63.6%) 56 / 82 (68.3%)	11 / 15 (73.3%) 77 / 107 (72.0%) 61 / 83 (73.5%)	1.03 (0.45-2.39) 0.74 (0.53-1.02) 0.74 (0.51-1.07)
TACE technique	DEB-TACE cTACE		i H	55 / 83 (66.3%) 81 / 121 (66.9%)	67 / 85 (78.8%) 82 / 120 (68.3%)	0.71 (0.50-1.02) 0.80 (0.59-1.09)
Portal vein invasion	Vp1 or Vp2+ / -Vp1 None		•		10 / 13 (76.9%) 139 / 192 (72.4%)	1.12 (0.48-2.76) 0.73 (0.57-0.93)
Sex	Male Female			106 / 162 (65.4%) 30 / 42 (71.4%)	116 / 163 (71.2%) 33 / 42 (78.6%)	0.70 (0.53-0.91) 0.96 (0.58-1.58)
BCLC stage	A H	· · · · ·		28 / 51 (54.9%) 82 / 117 (70.1%) 26 / 35 (74.3%)	31/49 (63.3%) 91/122 (74.6%) 25/31 (80.6%)	0.72 (0.43-1.21) 0.71 (0.52-0.95) 0.96 (0.55-1.68)
Etiology of liver disease*	HBV HCV HCV H	· · · ·		48 / 75 (64.0%) 30 / 42 (71.4%) 58 / 86 (67.4%)	48 / 74 (64.9%) 44 / 54 (81.5%) 57 / 76 (75.0%)	0.82 (0.55-1.23) 0.68 (0.43-1.09) 0.74 (0.51-1.08)
Screening ECOG PS	0			109 / 167 (65.3%) 27 / 37 (73.0%)	128 / 175 (73.1%) 21 / 30 (70.0%)	0.70 (0.54-0.90)
Baseline PD-L1 [†]	<1% ≥1% ⊢	· · ·	- · · ·	71/93 (76.3%) 41/61 (67.2%)	67 / 88 (76.1%) 47 / 64 (73.4%)	0.87 (0.62-1.21) 0.66 (0.43-1.01)
AFP	≤400 ng/mL >400 ng/mL			95 / 146 (65.1%) 40 / 57 (70.2%)	107 / 150 (71.3%) 42 / 55 (76.4%)	0.72 (0.54-0.94) 0.86 (0.56-1.33)
HAP score	A B H C H	••••		41 / 66 (62.1%) 50 / 74 (67.6%) 27 / 41 (65.9%) 16 / 20 (80.0%)	41 / 64 (64.1%) 56 / 75 (74.7%) 37 / 48 (77.1%) 15 / 18 (83.3%)	0.76 (0.49-1.17) 0.66 (0.45-0.98) 0.73 (0.44-1.21) 1.12 (0.55-2.29)
Tumor burden at baseline	Within up-to 7 criteria (≤7 Beyond up-to-7 criteria (>		+ ⊣	63 / 97 (64.9%) 73 / 106 (68.9%)	68 / 102 (66.7%) 81 / 103 (78.6%)	0.73 (0.52-1.03) 0.78 (0.56-1.07)
ALBI at baseline	Grade 1 Grade ≥2		4	78 / 117 (66.7%) 58 / 87 (66.7%)	87 / 126 (69.0%) 62 / 79 (78.5%)	0.74 (0.55-1.01) 0.76 (0.53-1.09)
0.1	0.25	0.5	1.5 2	3 4 5		

Size of circles are proportional to the number of events.


*One participant in each arm had both HBV and HCV. Neither of these participants experienced a PFS event. *Baseline PD-L1 TAP expression.

AFP, alpha-fetoprotein: ALBI, albumin-bilirubin; B, bevacizumab; BCLC, Barcelona Clinical Liver Cancer; CI, confidence interval; cTACE, conventional transarterial chemoembolization; D, durvalumab; DEB-TACE, drug-eluting bead-transarterial chemoembolization; ECOG, Eastern Cooperative Oncology Group; HAP, hepatoma arterial-embolization prognostic; HBV, hepatitis B virus; HCV, hepatitis C virus; HR, hazard ratio; PD-L1, programmed cell death ligand-1; PFS, progression-free survival; PS, performance status; TACE, transarterial chemoembolization TAP, tumor area positivity.

Lencioni R et al. ASCO GI 2024; Abstract LBA432.

ORR (RECIST 1.1 vs mRECIST)

16.4

(6.3-26.3)

10.8

(6.4 - 26.4)

17.4

(11.1-30.9)

*Responses included confirmed complete or partial response.

Median duration of response,

(LQ-UQ) months

B, bevacizumab; BICR, blinded independent central review; CI, confidence interval; D, durvalumab; LQ, lower quartile; mRECIST, modified Response Evaluation Criteria in Solid Tumors; OR, odds ratio; ORR, objective response rate; RECIST, Response Evaluation Criteria in Solid Tumors; TACE, transarterial chemoembolization; UQ, upper quartile Sangro B, et al. Presented at EASL Liver Cancer Summit 2024. 22–24 February; Rotterdam, Netherlands.

22.1

(11.2-30.3)

14.0

(6.9 - 30.7)

11.3

(5.7-24.8)

EMERALD-1 safety summary

	D + TACE (n=232)*	D+B + TACE (n=154)*	Placebos + TACE (n=200)*
Any AE, n (%)	215 (92.7)	151 (98.1)	186 (93.0)
Possibly related to study treatment	117 (50.4)	124 (80.5)	90 (45.0)
Possibly provoked by TACE	101 (43.5)	78 (50.6)	95 (47.5)
SAEs (including AEs with outcome of death), n (%)	84 (36.2)	74 (48.1)	62 (31.0)
Possibly related to any treatment	13 (5.6)	30 (19.5)	10 (5.0)
Any AE of max CTCAE Grade 3 or 4, n (%)	64 (27.6)	70 (45.5)	46 (23.0)
Any AE possibly related to study treatment of max CTCAE Grade 3 or 4 , n (%)	15 (6.5)	41 (26.6)	12 (6.0)
Any AE possibly provoked by TACE of max CTCAE Grade 3 or 4, n (%)	21 (9.1)	13 (8.4)	17 (8.5)
Any AE with outcome of death, n (%)	21 (9.1)	16 (10.4)	11 (5.5)
Possibly related to study treatment	3 (1.3)	0	3 (1.5)
Possibly related to durvalumab / placebo	2 (0.9)	0	1 (0.5)
Possibly related to bevacizumab / placebo	1 (0.4)	0	2 (1.0)
AE leading to discontinuation, n (%)	28 (12.1)	38 (24.7)	14 (7.0)
Possibly related to study treatment	8 (3.4)	13 (8.4)	6 (3.0)
Possibly related to durvalumab / placebo	6 (2.6)	7 (4.5)	3 (1.5)
Possibly related to bevacizumab / placebo	3 (1.3)	9 (5.8)	4 (2.0)
Possibly provoked by TACE	2 (0.9)	0	2 (1)

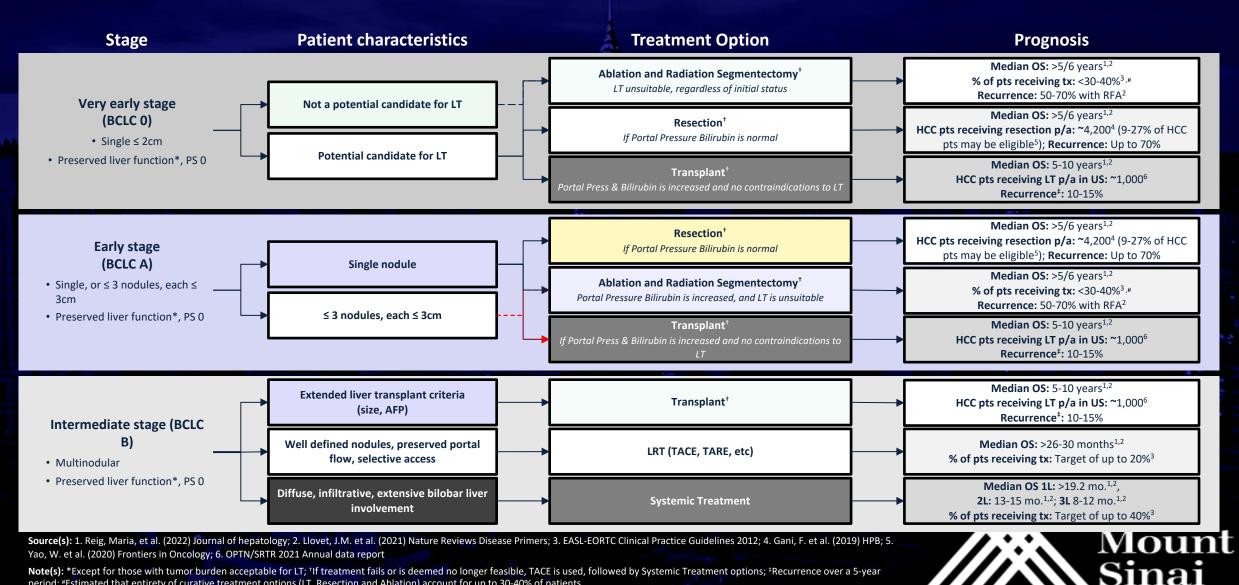
"Safety analysis set: all randomized patients who received any amount of study treatment (i.e. durvalumab, bevacizumab, or placebo) regardless of arm randomized to

AE, adverse event; B, bevacizumab; CTCAE, Common Terminology Criteria for Adverse Events; D, durvalumab; NA, not applicable; SAE, serious adverse event; TACE, transarterial chemoembolization

EMERALD-1 safety: G3-4 TEAEs

AE, n (%)	D + TACE (n=232)	D+B + TACE (n=154)	Placebos + TACE (n=200)
Hypertension	5 (2.2)	9 (5.8)	1 (0.5)
Anemia	10 (4.3)	7 (4.5)	3 (1.5)
Acute kidney injury	4 (1.7)	6 (3.9)	0
Proteinuria	0	6 (3.9)	0
Post-embolization syndrome	8 (3.4)	5 (3.2)	8 (4.0)
Hepatic encephalopathy	1 (0.4)	5 (3.2)	3 (1.5)
Ascites	4 (1.7)	4 (2.6)	3 (1.5)
Hyponatremia	1 (0.4)	4 (2.6)	0
Esophageal varices hemorrhage	0	4 (2.6)	1 (0.5)

AEs occurring in ≥2% of participants by preferred term in any arm. AE, adverse event; B, bevacizumab; D, durvalumab; TACE, transarterial chemoembolization; TEAE, treatment-emergent adverse event.


Lencioni R et al. ASCO GI 2024; Abstract LBA432.

Ongoing Combination Trials

RCT	Experimental Arm	Endpoint
LEAP-012	TACE vs TACE + Pembrolizumab/Lenvatinib	PFS per RECIST OS
EMERALD-3	TACE vs TACE + Durvalumab/Tremelimumab +/- Lenvatinib	PFS per RECIST (BICR)
EMERALD-Y90	TARE + Durvalumab/Bevacizumab	PFS per mRECIST
ROWAN	TARE + Durvalumab/Tremelimumab	ORR per mRECIST
REPLACE (formerly RENOTACE)	TACE/TARE vs Regorafenib + Pembrolizumab	PFS per mRECIST
KEYNOTE-937	Adjuvant Pembrolizumab vs placebo post resection or CR post-ablation	RFS OS

BCLC: HCC Treatment Pathways

Note(s): *Except for those with tumor burden acceptable for LT; †If treatment fails or is deemed no longer feasible, TACE is used, followed by Systemic Treatment options; *Recurrence over a 5-year period; #Estimated that entirety of curative treatment options (LT, Resection and Ablation) account for up to 30-40% of patients

Early and Intermediate HCC Management

- Liver Transplantation and Resection remain best "curative" treatment modalities BCLC A:
 - Thermal Ablation best utilized for unresectable hepatocellular carcinoma < 3 cm</p>
 - Alternative for thermal ablation benefit from radiation segmentectomy up to 8 cm
 - High ORR, CR and CPN correlation
 - LRT for Bridging Therapy for Transplantation benefits from long TTP
 - IMbrave050 demonstrates benefit of atezo/bev adjuvant therapy for high risk patients with curative treatment
 - Definition of high risk: poorly differentiated, microvascular invasion, elevated AFP, infiltrative appearance

BCLC B:

- TACE's principle is based on occlusion of feeding tumor vessels with drug
- TARE's principle is based on seeding the tumor with radioactive spheres and maintaining blood flow and oxygenation to the target to potentiate the effects of radiation
- Downstaging Therapy for Transplantation offers best chance at curative transplantation

Thoughts:

- Potential combination of TACE/TARE and Immune Checkpoint Inhibitors
 - EMERALD-1 demonstrates longer PFS when TACE is combined with Durva/Bev vs TACE +/durvalumab
 - Safety profile of EMERALD-1 consistent with previously reported SAEs from systemic therapy

Agenda

Module 1: Recent Developments in the Management of Early- and Intermediate-Stage Hepatocellular Carcinoma (HCC) — Dr Kim

Module 2: First-Line Therapy for Advanced HCC and Biliary Tract Cancers (BTCs) — Prof Vogel

Module 3: Integration of Targeted Therapy into the Management of Advanced BTCs — Dr Kelley

Consulting Faculty Comments

Choosing between atezolizumab/bevacizumab and durvalumab/tremelimumab (STRIDE regimen) as first-line therapy for advanced HCC

Dr Warren Brenner (Boca Raton, Florida)

Dr Erik Rupard (St George, Utah)

Dr Kimberly Ku (Bloomington, Illinois)

Dr Neil Morganstein (Summit, New Jersey)

QUESTIONS FOR THE FACULTY

For a patient with HCC who received adjuvant atezolizumab/bevacizumab or TACE combined with durvalumab/bevacizumab and experienced disease recurrence, would you rechallenge with another immune checkpoint inhibitor-based strategy later in the treatment course?

QUESTIONS FOR THE FACULTY

What first-line therapy would you typically recommend for an otherwise healthy patient with advanced HCC and Child-Pugh B7 cirrhosis?

Consulting Faculty Comments

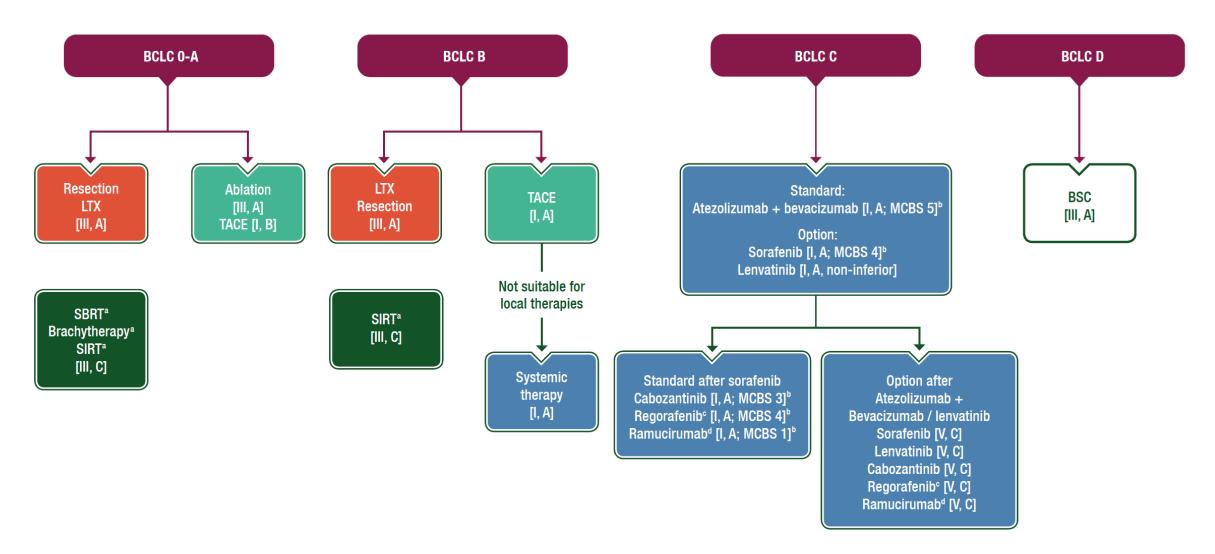
Use of immunotherapy as part of standard therapy for patients with advanced BTCs with and without concomitant autoimmune conditions

Dr Neil Morganstein (Summit, New Jersey)

QUESTIONS FOR THE FACULTY

For patients with advanced BTCs, are there any situations in which you would not add either durvalumab or pembrolizumab to up-front chemotherapy?

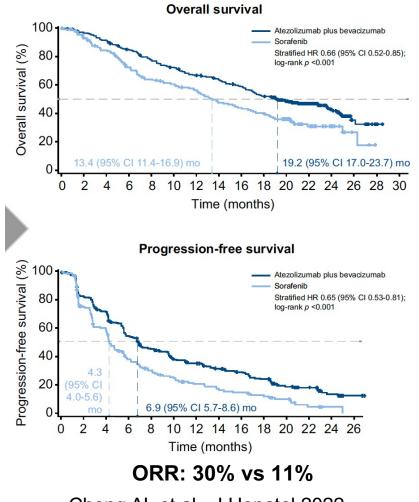
What first-line regimen do you generally employ for patients with actionable FGFR alterations?


First-Line Therapy for Advanced HCC and Biliary Tract Cancers (BTCs)

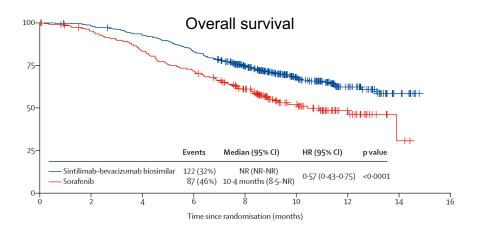
Arndt Vogel

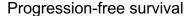
Canada

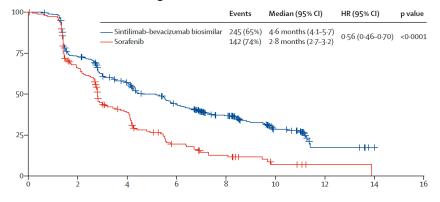
Toronto Center for Liver Cancer


ESMO CLINICAL PRACTICE GUIDELINE HCC

Vogel et al. ESMO CPG 2021, eUpdate

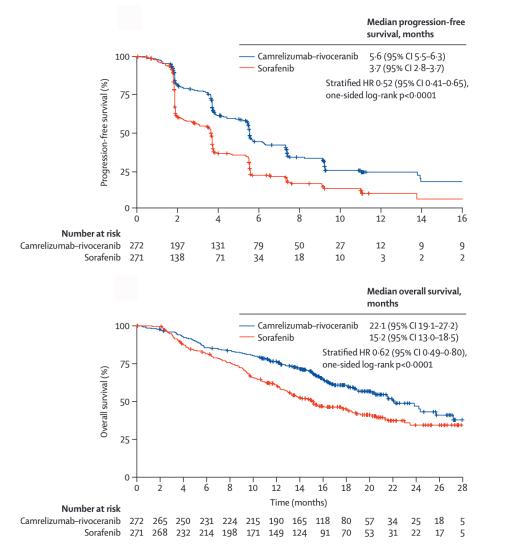

Efficacy of anti-PD-(L)1 & anti-VEGF ABs in 1st line phase III


IMbrave150



Cheng AL et al., J Hepatol 2022

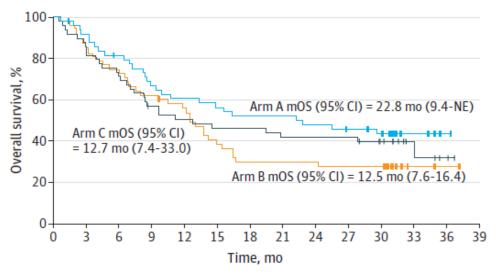
ORIENT-32



ORR: 21% vs 4% Ren AL et al., Lancet Oncology 2021

Efficacy of anti-PD1 and VEGF-R TKI in first-line phase 3 trials

CARES-310: Camrelizumab + rivoceranib

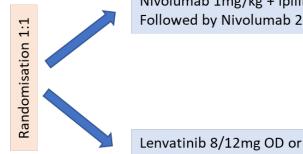


	Camrelizumab-rivoceranib (n=272)			Sorafenib (n	Sorafenib (n=269)			
	Grade 1-2	Grade 3	Grade 4	Grade 5	Grade 1–2	Grade 3	Grade 4	Grade 5
Any treatment-related adverse event	45 (17%)	193 (71%)	26 (10%)	1 (<1%)	128 (48%)	128 (48%)	12 (4%)	1(<1%)
Hypertension	87 (32%)	100 (37%)	2 (1%)	0	76 (28%)	40 (15%)	0	0
Aspartate aminotransferase increased	102 (38%)	42 (15%)	3 (1%)	0	85 (32%)	14 (5%)	0	0
Proteinuria	118 (43%)	16 (6%)	0	0	67 (25%)	5 (2%)	0	0
Alanine aminotransferase increased	92 (34%)	34 (13%)	1 (<1%)	0	72 (27%)	8 (3%)	0	0
Platelet count decreased	94 (35%)	28 (10%)	4 (1%)	0	85 (32%)	4 (1%)	0	0
Blood bilirubin increased	92 (34%)	24 (9%)	0	0	71 (26%)	4 (1%)	0	0
Palmar-plantar erythrodysaesthesia syndrome	69 (25%)	33 (12%)	0	0	122 (45%)	41 (15%)	0	0
Diarrhoea	77 (28%)	6 (2%)	0	0	91 (34%)	14 (5%)	0	0
Reactive cutaneous capillary endothelial proliferation	72 (26%)	7 (3%)	0	0	0	0	0	0
Neutrophil count decreased	57 (21%)	14 (5%)	2 (1%)	0	24 (9%)	1 (<1%)	2 (1%)	0
White blood cell count decreased	66 (24%)	7 (3%)	0	0	35 (13%)	3 (1%)	0	0
Gamma-glutamyltransferase increased	39 (14%)	25 (9%)	2 (1%)	0	29 (11%)	15 (6%)	5 (2%)	0
Hypothyroidism	58 (21%)	0	0	0	16 (6%)	0	0	0
Fatigue	46 (17%)	7 (3%)	0	0	20 (7%)	1 (<1%)	0	0
Blood alkaline phosphatase increased	44 (16%)	3 (1%)	0	0	30 (11%)	3 (1%)	0	0
Conjugated blood bilirubin increased	34 (13%)	10 (4%)	2 (1%)	0	28 (10%)	6 (2%)	2 (1%)	0
Rash	40 (15%)	5 (2%)	0	0	47 (17%)	3 (1%)	0	0
Anaemia	41 (15%)	4 (1%)	0	0	19 (7%)	2 (1%)	0	0
Decreased appetite	39 (14%)	3 (1%)	0	0	31 (12%)	3 (1%)	0	0
Unconjugated blood bilirubin increased	33 (12%)	2 (1%)	0	0	20 (7%)	1 (<1%)	0	0
Hypoalbuminaemia	34 (13%)	0	0	0	21 (8%)	0	0	0
Weight decreased	28 (10%)	4 (1%)	0	0	33 (12%)	6 (2%)	0	0
Asthenia	29 (11%)	3 (1%)	0	0	15 (6%)	0	0	0
Haematuria	31 (11%)	0	0	0	12 (4%)	0	0	0
Nausea	31 (11%)	0	0	0	14 (5%)	0	0	0
Headache	28 (10%)	2 (1%)	0	0	4 (1%)	1 (<1%)	0	0
Blood lactate dehydrogenase increased	26 (10%)	1 (<1%)	0	0	29 (11%)	0	0	0
Lymphocyte count decreased	18 (7%)	8 (3%)	0	0	14 (5%)	3 (1%)	0	0
Amylase increased	15 (6%)	9 (3%)	1 (<1%)	0	6 (2%)	0	1 (<1%)	0
Hyponatraemia	13 (5%)	8 (3%)	0	0	8 (3%)	1 (<1%)	0	0
Lipase increased	7 (3%)	7 (3%)	6 (2%)	0	6 (2%)	4 (1%)	1 (<1%)	0
Hypophosphataemia	17 (6%)	2 (1%)	0	0	27 (10%)	12 (4%)	0	0
Upper gastrointestinal haemorrhage	2 (1%)	6 (2%)	0	0	0	0	0	0
Alopecia	4 (1%)	0	0	0	52 (19%)	0	0	0

Qin/Vogel Lancet 2023

Efficacy of anti-PD1 & anti-CTL4 in HCC

CheckMate 040: Nivolumab/Ipilimumab


Yau et al. JAMA Oncology 2020

Sorafenib 400mg BD

CheckMate 9DW – presented @ASCO 2024

Nivolumab 1mg/kg + Ipilimumab 3mg/kg q3w x4 Followed by Nivolumab 240mg q4w

N=1084 HCC Histology No prior therapy Child Pugh A ECOG PS 0/1

Arndt Vogel 🤣 @ArndtVogel · 21. März

CheckMate-9DW Meets Primary Endpoint in 1st line HCC

- Nivo/Ipi significantly improves OS
- AtezoBev, DurvaTreme, CamRivo, now Nivo/Ipi... to be continued...
- Could become an exciting year in HCC, more data in all stages to be reported

@myESMO @ILCAnews @EASLnews #livertwitter

Bristol Myers Squibb

```
See All Press Releases > Sign up for Email Alerts >
```

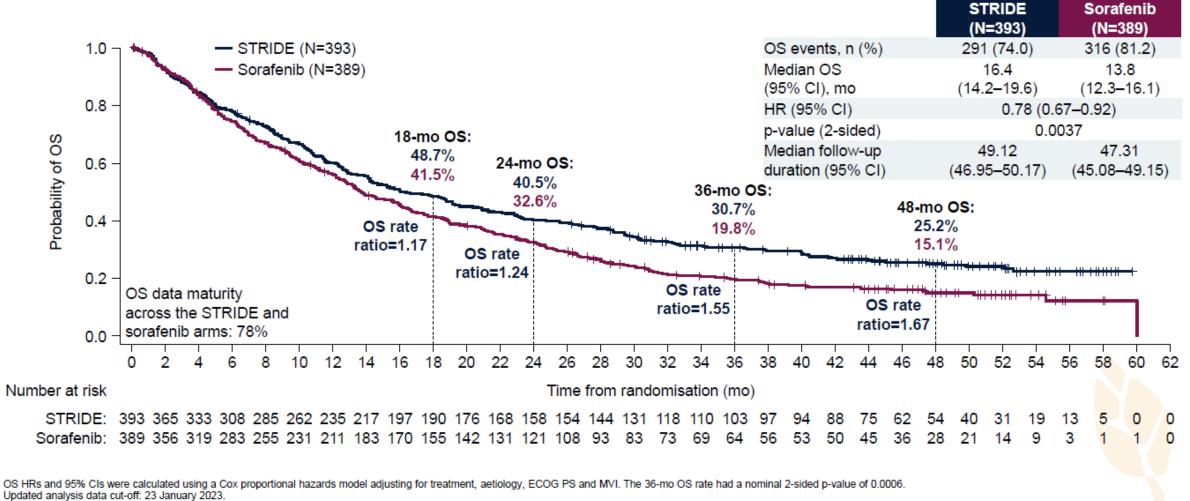
Bristol Myers Squibb Announces CheckMate -9DW Trial Evaluating Opdivo (nivolumab) Plus Yervoy (ipilimumab) Meets Primary Endpoint of Overall Survival for the First-Line Treatment of Advanced Hepatocellular Carcinoma

CATEGORY: Corporate/Financial News

Opdivo plus Yervoy demonstrates statistically significant and clinically meaningful improvement in overall survival compared to investigator's choice of sorafenib or lenvatinib

PRINCETON, N.J.--(BUSINESS WIRE)-- Bristol Myers Squibb (NYSE: BMY) today announced the Phase 3 CheckMate -9DW trial evaluating *Opdivo* (nivolumab) plus *Yervoy* (ipilimumab) as a first-line treatment for patients with advanced hepatocellular carcinoma (HCC) who have not received prior systemic therapy met its primary endpoint of improved overall survival (OS) compared to investigator's choice of sorafenib or lenvatinib at a pre-specified interim analysis.

The dual immunotherapy combination of *Opdivo* plus *Yervoy* demonstrated a statistically significant and clinically meaningful improvement in OS compared to investigator's choice of sorafenib or lenvatinib. The safety profile for the combination of *Opdivo* plus *Yervoy* remained consistent with previously reported data and was manageable with established protocols, with no new safety signals identified.


"Advanced stage liver cancer patients remain in need of additional treatment options that may help improve survival," said Dana Walker, M.D., M.S.C.E., vice president, global program lead, gastrointestinal and genitourinary cancers, Bristol Myers Squibb. "The overall survival benefit demonstrated by the combination of *Opdivo* plus *Yervoy* in the CheckMate -9DW trial demonstrates its potential to improve outcomes compared to well-established TKI treatment options."

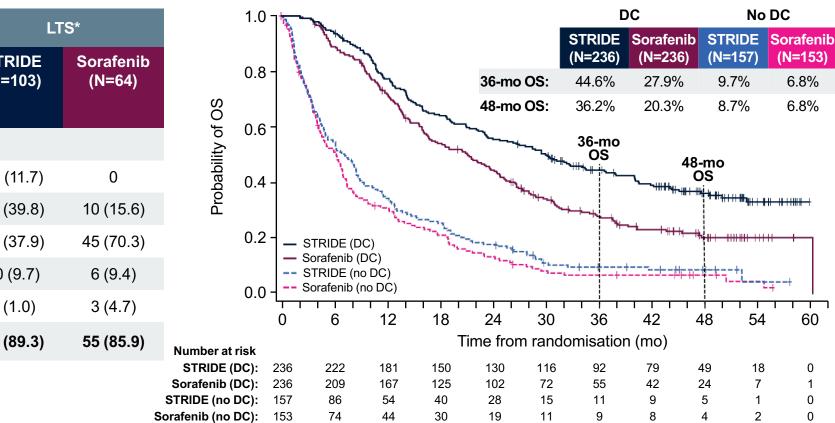
Q 3 t	1 46 🗘 105	5 III 5.57	75 🗋 🗘
-------	-------------------	------------	--------

...

Four-year updated overall survival for STRIDE versus sorafenib

STRIDE demonstrated an unprecedented one in four survival rate at 4 years

CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; HR, hazard ratio; mo, month; MVI, macrovascular invasion; OS, overall survival; PS, performance status.

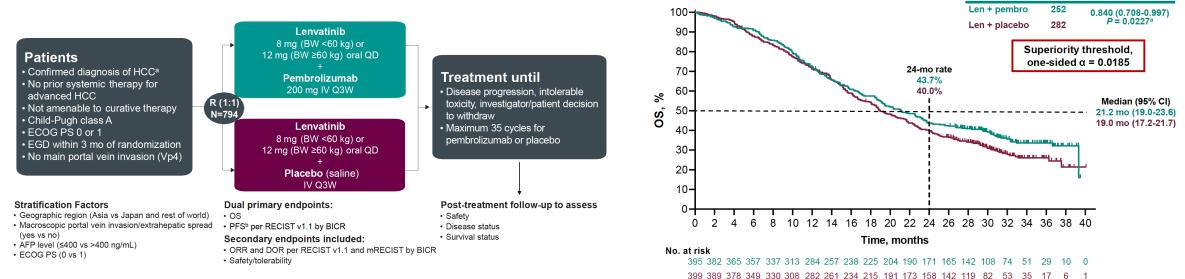

Sangro B et al. Ann Oncol 2024;35(5):448-457.

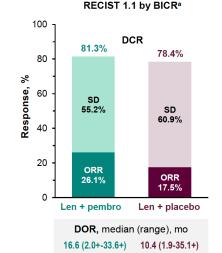
Four-year updated overall survival by response

Long-term OS benefit was observed for participants treated with STRIDE, regardless of response

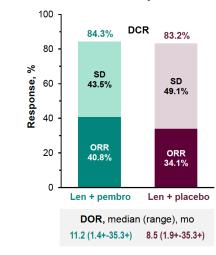
OS rates were nearly 45% at 3 years and 36% at 4 years in participants who achieved disease control with STRIDE

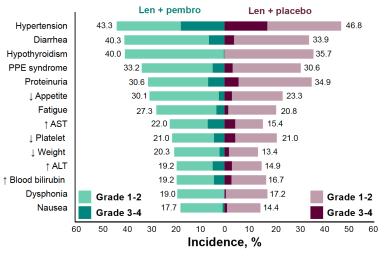
OS by disease control[†]

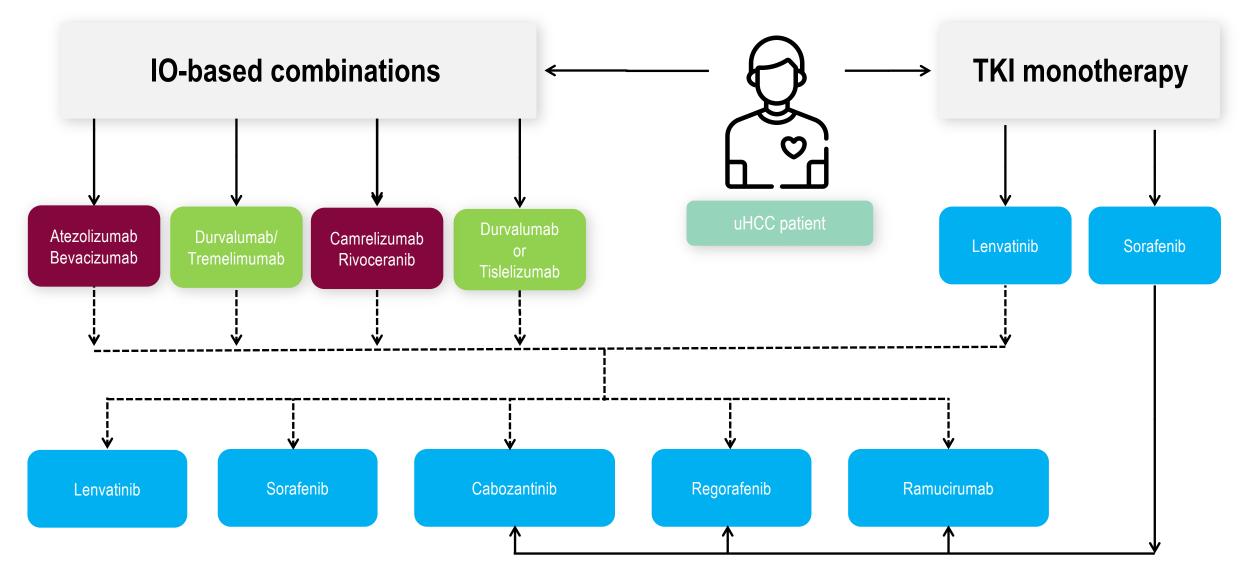

BOR in LTS*


	ľ	TT ¹	LT	`S *
	STRIDE (N=393)	Sorafenib (N=389)	STRIDE (N=103)	Sorafenib (N=64)
BOR, n (%)				
CR	12 (3.1)	0	12 (11.7)	0
PR	67 (17.0)	20 (5.1)	41 (39.8)	10 (15.6)
SD	157 (39.9)	216 (55.5)	39 (37.9)	45 (70.3)
PD	141 (35.9)	118 (30.3)	10 (9.7)	6 (9.4)
NE	16 (4.1)	35 (9.0)	1 (1.0)	3 (4.7)
DCR†, n (%)	236 (60.1)	236 (60.7)	92 (89.3)	55 (85.9)

Sangro B et al. Ann Oncol 2024;35(5):448-457.

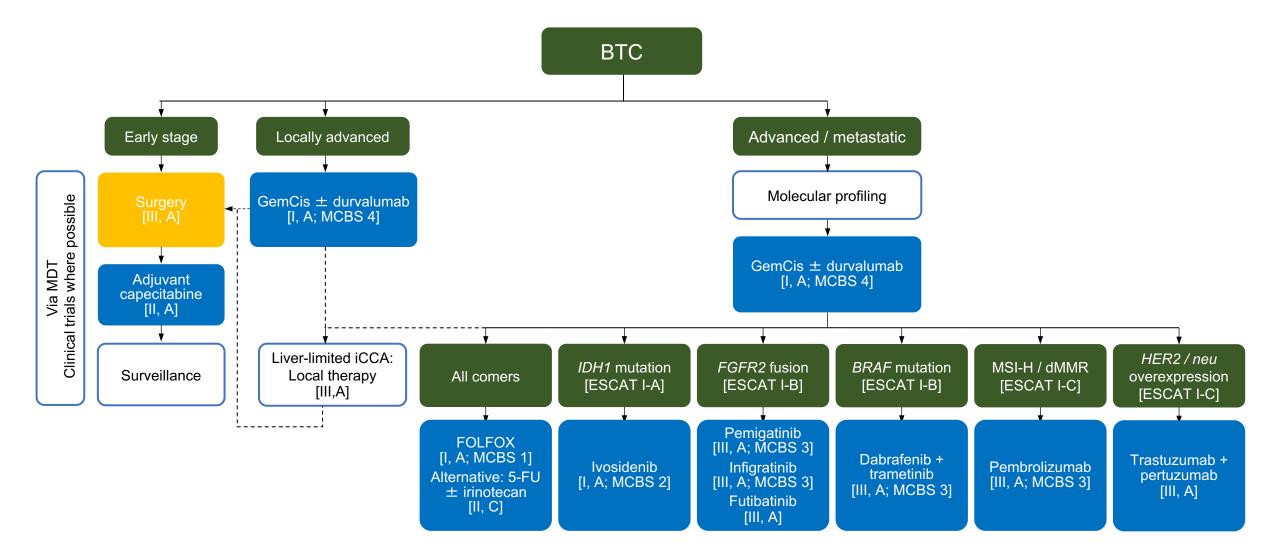

Efficacy of anti-PD1 and TKIs in HCC


LEAP-002

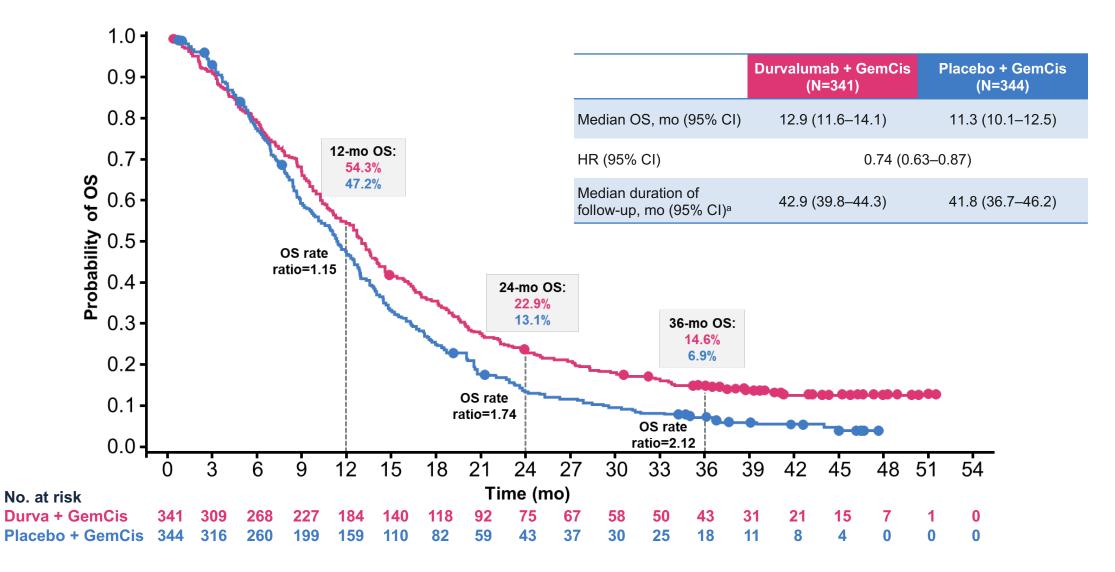


Finn RS et al. ESMO 2022;Abstract LBA34.

HR (95% CI)


Events, n

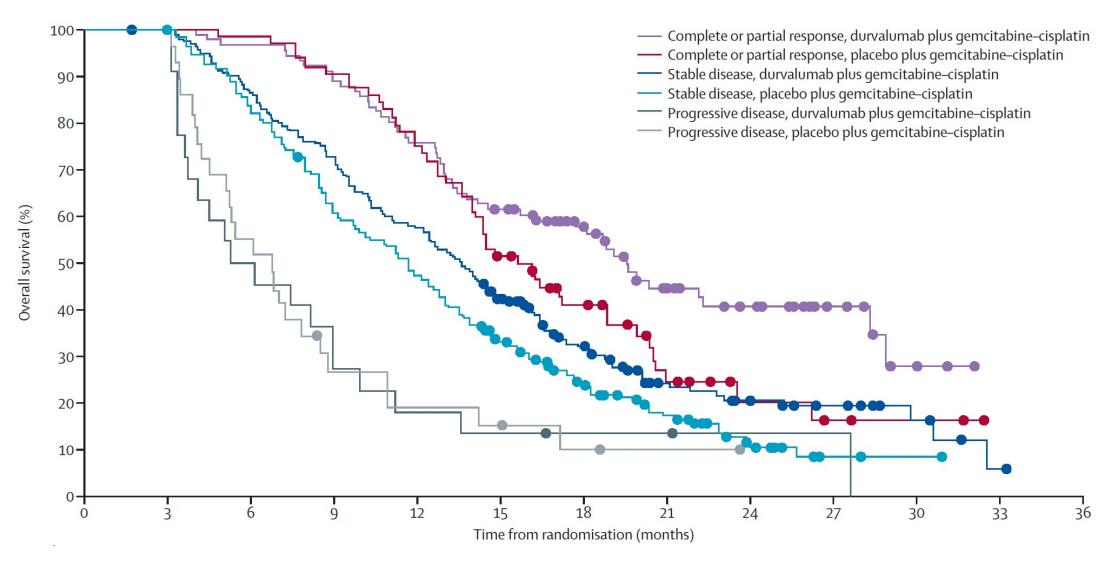
How should we best sequence systemic therapy?


Modifiziert nach Vogel et al. Lancet 2022

ESMO 2023 Clinical Practice Guidelines

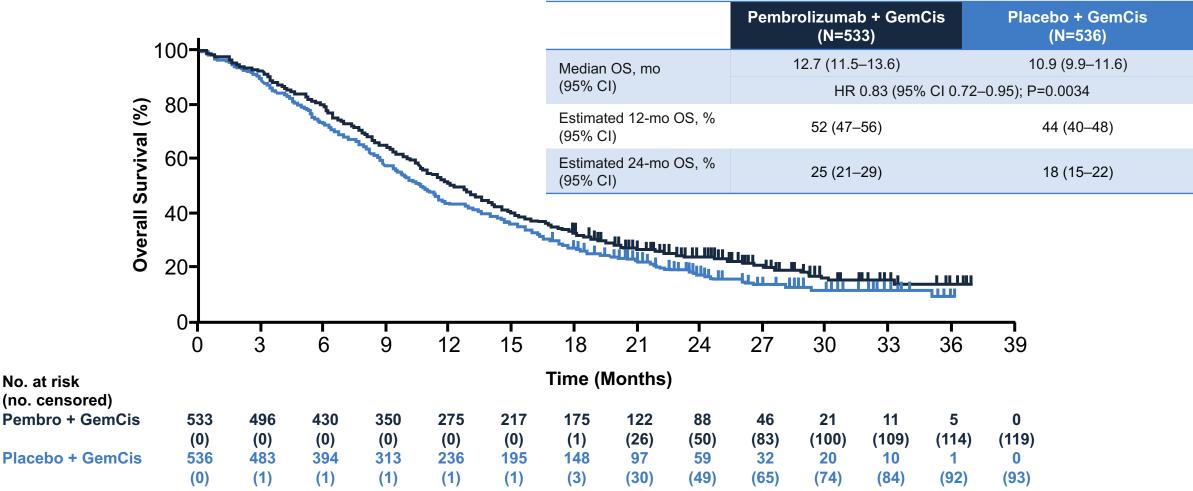
Vogel A, et al. Ann Oncol 2023

TOPAZ-1: Overall Survival (3-Year Update)


1. Oh D-Y, et al. Presented at Cholangiocarcinoma Foundation 2024 Annual Conference, Salt Lake City, UT, April 17–19, 2024.

TOPAZ-1: AEs of any Grade ≥10% in Either Treatment Arm (Primary Analysis)¹

		Durvalun	nab + Ge	m-Cis (N=3	38)		Placebo +	Gem-Cis	; (N=342)			
Any AE	99.4	75.7						77.8				98.8
Anemia		48.2			23.7	22	.5			44.7		
Nausea			40.2	2	1.5	1.8		34.2				
Constipation				32.0	0.6	0.3		28.9			Grade	3/4
Neutropenia			31.7		20.1	21.			29.8		All Gra	de
Neutrophil count decreased			26.9		21.0		5.7			31.0	Grade	3/4
Fatigue				26.9	3.3	3.5		26.3			All Gra	
Decreased appetite				25.7	2.1	0.9	23					
Platelet count decreased				20.7	9.8	8.5		23.1				
Pyrexia				20.1	1.5	0.6	16.4					
Vomiting				18.3		2.0	18.1					
Diarrhea				16.9	_	1.8	14.9					
Asthenia				14.		2.3	14.0					
Abdominal Pain				13	8.9 0.6	2.6	17.0					
Insomnia					9.5 NR		10.5					
Thrombocytopenia				12.		5.3	13.2				any treatmen	it
Pruritis					11.2 NR	NR 8			-	due to AEs: umab group		
Rash					11.2 0.9	0.0 7				o group: 15		
White blood cell count decreased				10	0.9 4.4	5.8	13.5			o groupi io		
Abdominal pain upper					10.4 0.0		8.8					
Alanine aminotransferase increased	г т		1 1		8.6 1.2	0.6	10.2	I I		- I - I		
	100 90	80 70	60 50	40 30 2	20 10 0	0 10	20 3	0 40	50	60 70	80 90	100
					Parcanta	no of Pation	ite					


Percentage of Patients

TOPAZ-1: OS by Best Objective Response

Oh D-Y, et al. Lancet Gastroenterol Hepatol 2024; Published Online May 29, 2024.

KEYNOTE-966: Overall Survival (Final Analysis)

Median follow-up at final analysis, defined as time from random assignment to the Dec 15, 2022, data cutoff, was 25.6 months (IQR 21.7-30.4).

BTC, biliary tract cancer; CI, confidence interval; GemCis, gemcitabine and cisplatin; HR, hazard ratio; IQR, interquartile range; mo, months; NS, not significant; ORR, overall response rate; OS, overall survival; PFS, progression-free survival.

1. Kelley RK, et al. Lancet. 2023;401:1853-1865.

KEYNOTE-966: Overall Survival by Subgroup

		Pembro + GemCis (n/N)	Placebo + GemCis (n/N)		HR (95% CI)
Age (years)	<65	210/269	242/298		0.88 (0.73-1.05)
Age (years)	≥65	204/264	201/238		0.79 (0.65-0.97)
Sex	Female	200/253	220/264	•	0.85 (0.70-1.03)
Sex	Male	214/280	223/272		0.83 (0.69-1.00)
Geographical Region	Asia	185/242	201/244	-+	0.88 (0.72-1.08)
Geographical Region	Not Asia	229/291	242/292		0.80 (0.67-0.96)
ECOG PS	0	186/258	177/228	•	0.87 (0.71-1.07)
ECOG PS	1	227/274	266/308		0.84 (0.70-1.00)
	Current	42/56	38/49	_	0.90 (0.58-1.40)
Smoking status	Former	160/205	160/191	_	0.87 (0.70-1.09)
	Never	212/272	244/295	_	0.82 (0.68-0.98)
Antibiotic use within 1	No	364/471	403/493	_	0.85 (0.73-0.97)
month of study start	Yes	50/62	40/43	_	0.72 (0.47-1.09)
	Extrahepatic	78/98	83/105		0.99 (0.73-1.35)
Site of origin	Gallbladder	102/115	104/118		0.96 (0.73-1.26)
	Intrahepatic	234/320	256/313	_ _	0.76 (0.64-0.91)
Disease status	Locally advanced	37/60	52/66		0.69 (0.45-1.06)
Disease status	Metastatic	377/473	391/470		0.85 (0.74-0.98)
Dillows of an durin	No	388/500	406/495		0.85 (0.74-0.98)
Biliary stent or drain	Yes	26/33	37/41	_	0.72 (0.43-1.19)
Previous	No	382/483	408/488		0.86 (0.75-0.99)
chemotherapy	Yes	32/50	35/48		0.66 (0.41-1.08)
	<1	86/113	87/110		0.84 (0.62-1.14)
PD-L1 combined	≥1	287/363	309/365		0.85 (0.72-1.00)
positive score	Unknown	41/57	47/61		0.77 (0.51-1.18)
Overall		414/533	443/536	0.5 0.7 1.0 1.5	0.83 (0.72-0.95)

1. Kelley RK, et al. Lancet. 2023;401:1853-1865.

Favours pembro + GemCis Favours placebo + GemCis

KEYNOTE-966: Safety Results

		nab + GemCis 529)		+ GemCis 534)		
AEs from any cause, N (%)	524	(99)	532 (<100)			
Maximum toxicity Grade 3 or 4, N (%)	420	(79)	400 (75)			
Potentially immune-mediated AEs, N (%)	117	(22)	69 (13)			
AEs leading to death, N (%)	31	(6)	49	(9)		
AEs leading to discontinuation of ≥1 study drug, N (%)	138	138 (26)		(23)		
Discontinuation of all study drugs, N (%)	35 (7)		39 (7)			
AEs occurring in ≥30% of participants in either study group						
	All Grades	Grades 3-4	All Grades	Grades 3-4		
Decreased neutrophil count (%)	63	49	61	47		
Anemia (%)	61	29	59	29		
Nausea (%)	44	2	46	2		
Decreased platelet count (%)	40	18	40	20		
Fatigue (%)	36	6	32	4		
Constipation (%)	36	<1	36	1		

AE profile of pembrolizumab + GemCis was as expected based on the known profiles of treatment components

٠

 Potentially immunemediated AEs were more common in the pembrolizumab group

Other AEs occurring in ≥15% of participants in either study group: decreased appetite, decreased white blood cell count, pyrexia, vomiting, diarrhea, abdominal pain, rash, increased AST, increased ALT, hypomagnesemia, pruritus, asthenia, and peripheral edema

Agenda

Module 1: Recent Developments in the Management of Early- and Intermediate-Stage Hepatocellular Carcinoma (HCC) — Dr Kim

Module 2: First-Line Therapy for Advanced HCC and Biliary Tract Cancers (BTCs) — Prof Vogel

Module 3: Integration of Targeted Therapy into the Management of Advanced BTCs — Dr Kelley

Consulting Faculty Comments

Use of immunotherapy for patients with hyperbilirubinemia; choosing between FGFR inhibitors

Dr Gigi Chen (Pleasant Hill, California)

QUESTIONS FOR THE FACULTY

For patients with actionable FGFR abnormalities, how do you decide whether to use pemigatinib or futibatinib?

For patients who experience disease progression on one FGFR inhibitor, do you typically try the other?

QUESTIONS FOR THE FACULTY

What are the most common toxicities reported with pemigatinib and futibatinib?

Which of these do you believe are most detrimental to patient quality of life?

Consulting Faculty Comments

Sequencing of trastuzumab deruxtecan in the treatment algorithm for patients with BTCs

Dr Warren Brenner (Boca Raton, Florida)

QUESTIONS FOR THE FACULTY

Are you generally conducting HER2 assessment for your patients with BTCs? If so, when do you test?

Where in the treatment course are you typically offering trastuzumab deruxtecan (T-DXd) to your patients with advanced BTCs?

QUESTIONS FOR THE FACULTY

What is zanidatamab? Do you believe this agent will soon be endorsed for patients with HER2-positive BTCs?

If zanidatamab becomes available, how will you select between it and T-DXd? Will you likely use these agents in sequence?

Consulting Faculty Comments

Therapeutic approach to combined HCC-cholangiocarcinoma

Dr Erik Rupard (St George, Utah)

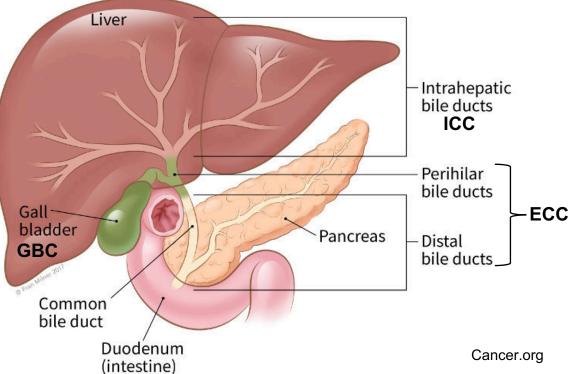
QUESTIONS FOR THE FACULTY

In general, how do you approach the treatment of patients with mixed hepatocellular cholangiocarcinoma?

Integration of Targeted Therapy into the Management of Advanced Biliary Tract Cancers

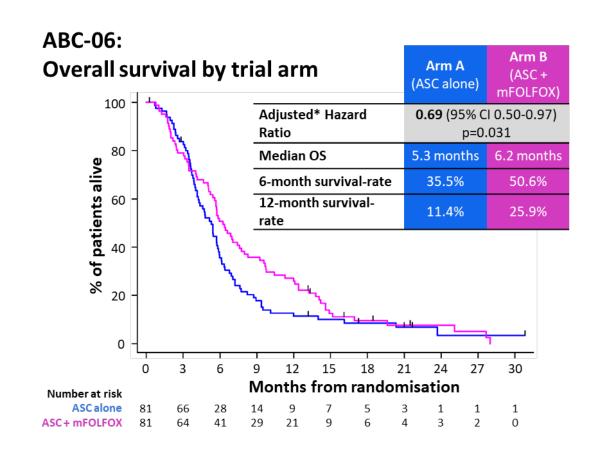
Katie Kelley, MD Professor of Clinical Medicine University of California, San Francisco

Outline

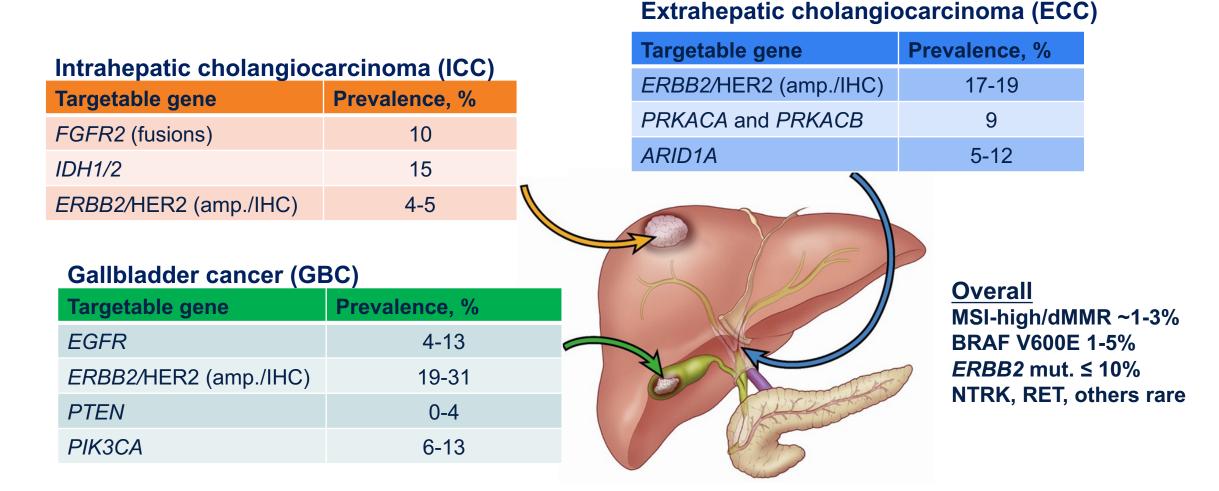

- Background on molecular alterations in advanced biliary tract cancers (BTC)
- Targeting FGFR2 alterations in cholangiocarcinoma (CCA)
 - Pemigatinib and futibatinib; new agents on horizon
- Targeting HER2 in BTC
 - Zanidatamab: Bispecific HER2-targeting antibody
 - HERIZON-BTC-01
 - T-DXd: Antibody-drug conjugate
 - HERB and DESTINY-PanTumor02 trials
- Summary and future directions

Background on Biliary Tract Cancers (BTC)

- Uncommon tumors with rising incidence worldwide¹⁻⁴
 - Global age-standardized incidence rate (ASIR) 2.7 per 100,000 in 2017¹
- Heterogeneous anatomy
 - Gallbladder (GBC)
 - Cholangiocarcinoma (CCA)
 - Intrahepatic CCA (ICC)
 - Extrahepatic CCA (ECC)
- Heterogeneous etiology and biology
 - Risk factors include viral hepatitis, fluke infection, fatty liver, hereditary, autoimmunity, idiopathic
 - Molecular heterogeneity of tumor and microenvironment

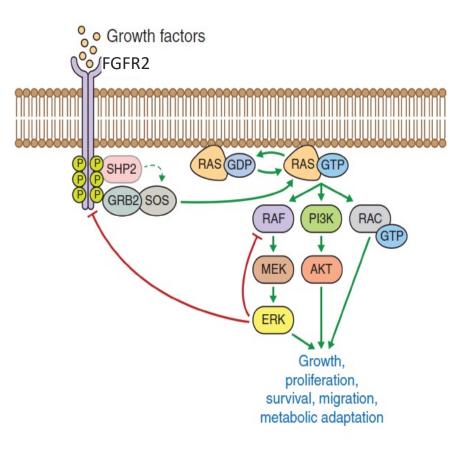


Advanced BTC: ≥2nd Line Systemic Therapy Options


- Before 2019: No established 2nd line therapy after GEM+CIS
- 2019: ABC-06 trial of FOLFOX vs ASC showed improved PFS and OS for FOLFOX
 - mOS 6.2 vs. 5.3 mos for FOLFOX vs ASC
 - mPFS 4.0 months for FOLFOX arm
 - ORR 5% for FOLFOX arm
- Other regimens such as FOLFIRI, 5-FU/nal-IRI, capecitabine, GEM/nab-paclitaxel are commonly used based upon phase 2 data

Lamarca et al, Lancet Oncol 2021;22(5)

Beyond Chemotherapy: Molecular Targets Vary by Anatomic Subsite of BTC

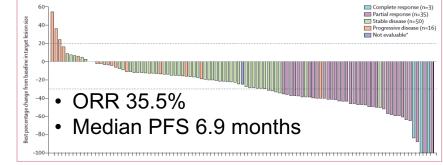


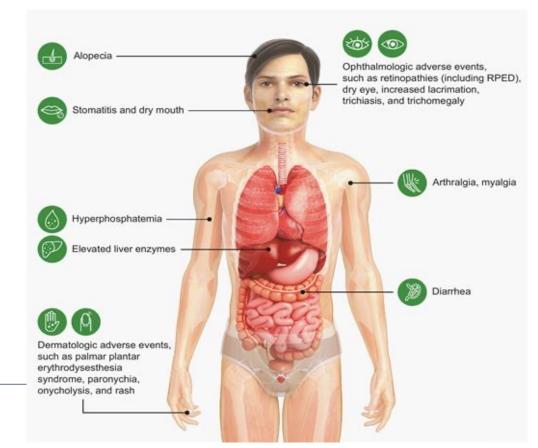
Jain A, Javle M. J Gastrointest Oncol 2016;7(5); Valle et al. Cancer Discovery 2017; Ju et al. Am J Clin Pathol 2020;153(5): 598-604; Banales et al. Nat Rev Gastroenterol Hepatol 2020;17(9); Hiraoka et al. Hum Path 2020;105:9-19

UCSF

FGFR2 Fusions and Rearrangements in CCA

- Present in ~10% of intrahepatic CCA, rare in other locations
 - Kinase domain of *FGFR2* fused in-frame to a known 3' partner gene (fusions) or to unidentified partner gene (rearrangements)
- Produce chimeric constitutively active FGFR2 kinase
- Can be inhibited by:
 - ATP-competitive pan-FGFR inhibitors:
 - Infigratinib, pemigatinib, erdafitinib, others
 - TYRA-200
 - Non-ATP-competitive covalent pan-FGFR inhibitors
 - Futibatinib
 - KIN-3248
 - FGFR2-selective covalent inhibitors
 - RLY-4008

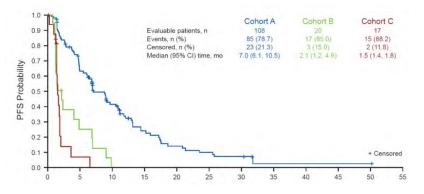

ATP-Competitive FGFR Inhibition in CCA with *FGFR2* Rearrangements

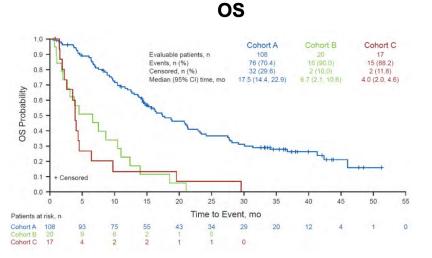

- Studied in $\geq 2^{nd}$ line advanced BTC, non-randomized trials
- ATP-competitive inhibitors of FGFR1-3>4:
 - Pemigatinib¹
 - Accelerated approval from USFDA in 2020 for ICC with FGFR2 rearrangement
 - Infigratinib²
 - ORR 23%, median PFS 7.3 mos.
 - discontinued by manufacturer 2023
- Class toxicities³ include: Hyperphosphatemia, stomatitis, palmar-plantar erythrodysesthesia, ophthalmologic toxicities

Accelerated approval from USFDA in 2021; distribution

1. Abou-Alfa et al. Lancet Oncol 2020;21:671-84; 2. Javle et al. Lancet Gastroenterol Hepatol 2021;6; 3. Meric-Bernstam et al. Clin Cancer Res 2024;30(8):1466-77

Fight-202: Phase 2 Study of Pemigatinib

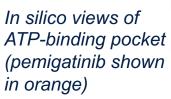

Pemigatinib in FGFR2-Rearranged CCA

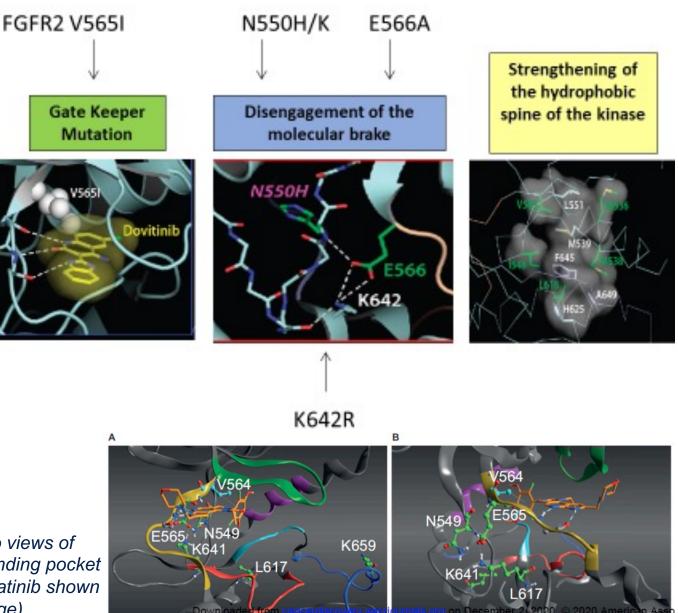

PFS

Parameter	Cohort A (n=108)	Cohort B (n=20)	Cohort C (n=17)
Duration of follow-up, median (range), mo	42.9 (19.9–52.2)	47.5 (43.7–51.1)	51.9 (49.5–53.7)
ORR,* % (95% CI)	37 (28, 47)	0 (0, 17)	0 (0, 20)
DCR,† % (95% CI)	82 (74, 89)	40 (19, 64)	18 (4, 43)
Best overall response, %			
Complete response	3	0	0
Partial response	34	0	0
Stable disease	45	40	18
Progressive disease	15	35	65
Not evaluable	3	25	18
DOR, median (95% CI), mo	9.1 (6.0, 14.5)	_	<u> </u>

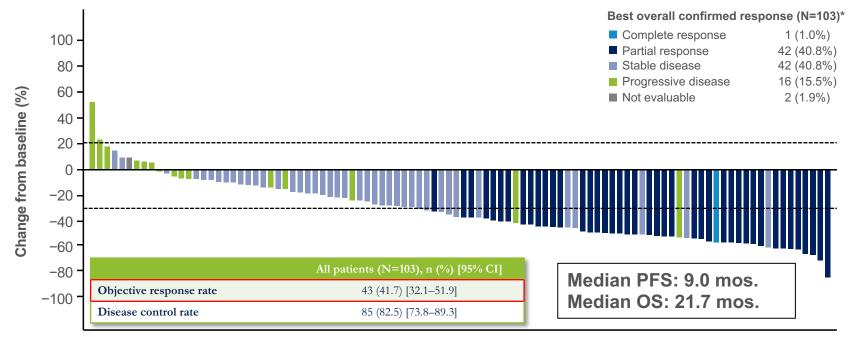
 Median PFS in cohort A was 7.0 months (95% CI: 6.1, 10.5)

 Median OS in cohort A was 17.5 months (95% CI: 14.4, 22.9)




• Received accelerated approval from USFDA in April 2020.

Acquired Resistance to **FGFR2** Inhibition Limits **Duration of Response**


- Acquired, polyclonal secondary FGFR2 kinase domain point mutations cause acquired resistance to ATP-competitive inhibitors
 - Gatekeeper residue mutations •
 - Molecular brake mutations •
 - Mutations that destabilize inactive • conformation in other ways
- Covalent inhibitors (e.g. RLY-4008, futibatinib) show activity against some common resistance mutations
 - Other agents are in development ۲

Futibatinib in *FGFR2*-Rearranged CCA

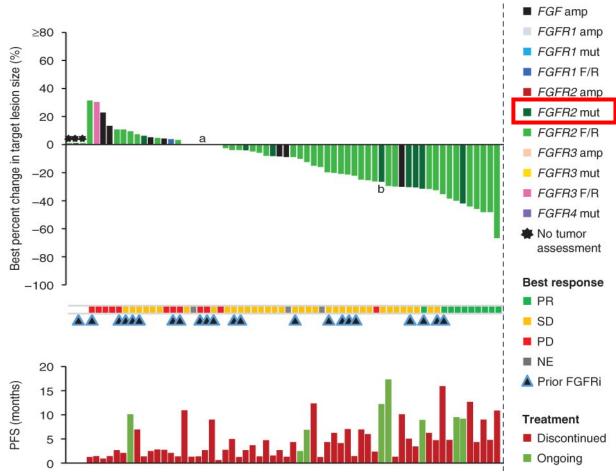
Patient

*Assessed by Independent Central Review

Data cutoff: October 1, 2020. Dotted horizontal lines represent partial response (≥30% reduction in lesion size) and progressive disease (≥20% increase) per RECIST v1.1. CI, confidence interval; iCCA, intrahepatic cholangiocarcinoma; ICR, independent central review; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1

• Received accelerated approval from USFDA in September 2022

92

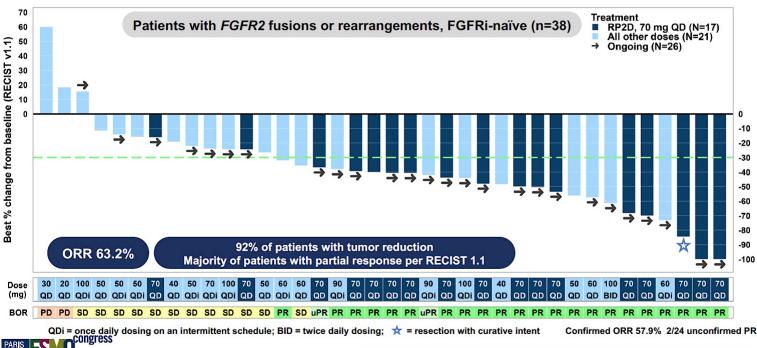

Do pan-FGFR inhibitors have activity in other FGFR2 alterations?

 Pemigatinib has limited activity in other FGF/FGFR2 alterations or WT¹

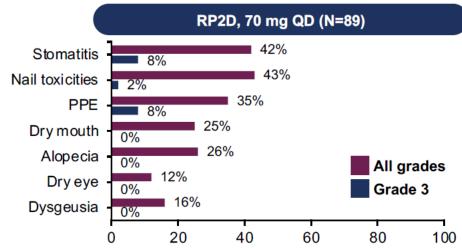
Table 2. Primary and secondary efficacy outcomes

	FGFR2 fusions or rearrangements (n=107)	Other FGF/FGFR alterations (n=20)	No FGF/FGFR alterations (n=18
Proportion of patients with an objective response	35-5% (26-5 to 45-4)	0	0
Best overall response*			
Complete response	3 (2.8%)	0	0
Partial response	35 (32.7%)	0	0
Stable disease	50 (46.7%)	8 (40.0%)	4 (22.2%)
Progressive disease	16 (14-9%)	7 (35.0%)	11 (61.1%)
Not evaluable	3 (2.8%)	5 (25.0%)	3 (16.7%)
Progression-free survival			
Patients with events	71 (66%)	17 (85%)	16 (89%)
Patients censored	36 (34%)	3 (15%)	2 (11%)
Median, months	6·9 (6·2 to 9·6)	2·1 (1·2 to 4·9)	1·7 (1·3 to 1·8)
Overall survival†			
Patients with events	40 (37%)	16 (80%)	14 (78%)
Patients censored	67 (63%)	4 (20%)	4 (22%)
Median overall survival, months	21·1 (14·8 to not estimable)	6·7 (2·1 to 10·6)	4·0 (2·3 to 6·5)

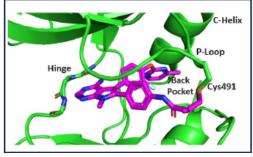
Futibatinib has some activity in CCA with
 selected FGFR2 mutations²
 FGFR aberration



1. Abou-Alfa et al. Lancet Oncol 2020;21:671-84; 2. Meric-Bernstam et al. Cancer Discovery 2022;12(2):402-15


Phase 1/2 Trial of RLY-4008

- RLY-4008 is an oral, highly selective FGFR2 inhibitor
- Active against common FGFR2 kinase domain resistance mutations


Radiographic Tumor Regression and Response per RECIST 1.1 Across All Doses

Treatment-Related Adverse Events (TRAEs) ≥ 15%

RLY-4008 Structure

Tinengotinib in Patients with Advanced Solid Tumors Harboring Actionable FGFR1-3 Alterations

Figure 1. Waterfall plot for all efficacy-evaluable patients (N=52) Figure 2. Swimming plot for all efficacy-evaluable patients (N=52) FGFR3 Alteration OCA OCA FGFR2 Alteration м WT FGFR1 Alteration F = Fusion, R = Rearrangement, M = Mutation, WT = Wild Type mCRP -20 mCRP -40 PD -> Ongoing 🖈 PR SD PD → Ongoin mCRPC patient with FGFR1/2/3 mutation had no target lesions, and the best response was SD. Duration of Treatment (week

51 pts (29 CCA). ORR 33%. DCR 88%. Median PFS 6.9 months. Median DOR 6.7 months.

Of the 51, 24 pts had prior FGFRi. ORR 38%. DCR 88%. Median PFS 6.0 months.

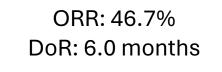
Piha-Paul, et al., AACR 2024

HER2 Overexpression and/or Amplifications are seen in 10-15% of Biliary Tract Cancers

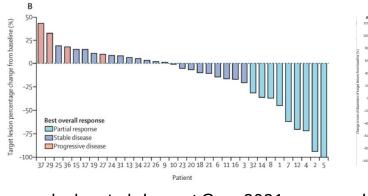
Trastuzumab/Pertuzumab (2 monoclonal antibodies)

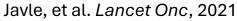
MyPathway (N=39) HER2 3+ by IHC, *HER2:CEP17* >2.0 or HER2 CN>6.0 by FISH/CISH, or HER2 amp by NGS Zanidatamab (bi-specific antibody)

HERIZON-BTC-01 (n=80)


HER2 2+ or 3+ by IHC

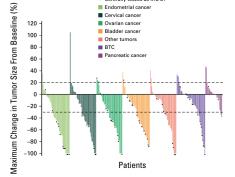
Trastuzumab/TucatinibTrastuzumab-deruxtecan(monoclonal Ab/small molecule)(antibody drug conjugate)


SGNTUC-019 (n=30) HER2 3+ by IHC, *HER2:CEP17*>2.0 or HER2 CN>6.0 by FISH/CISH, or HER2 amp by NGS DESTINY-PanTumor 02 (n=41 with BTC) HER2 2+ or 3+ by IHC


ORR: 23% DoR: 10.8 months

ORR: 41.3% DoR: 12.9 months ORR 51.6%/5.6% for IHC 3+/2+

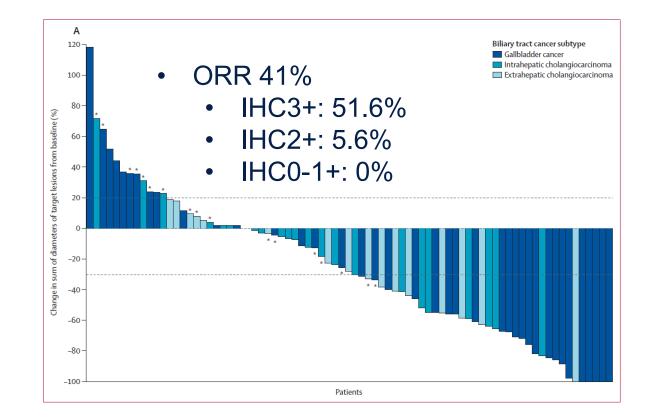
ORR: 22% DOR: 8.6 months ORR 56.3%/0% for IHC 3+/2+



Barby de la della della

Harding, et al. Lancet Onc, 2023

Nakamura, et al. JCO, 2023



Centrally tested as IHC 3.

Meric-Bernstam, et al. *JCO*, 2024 Slide courtesy Dr. Lipika Goyal

Zanidatamab in Advanced BTC

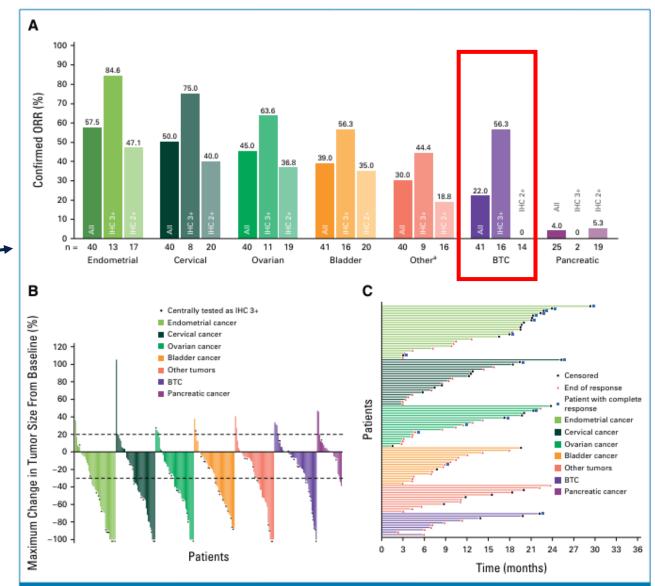
- Bispecific mAb targeting 2 distinct HER2 epitopes
 - Dimerization, juxtamembrane domains
 - Causes receptor internalization and downregulation
- HERIZON-BTC trial:
 - N=87 HER2 amplified (*HER2*/chr17 ratio ≥2.0)
 - IHC3+ n=62
 - IHC2+ n=18
 - IHC0-1+ n=7
 - Key TRAE: Diarrhea (37%), infusion reactions (33%)
 - TRAE Grade 3: Diarrhea (5%), reduced EF (3%), anemia (2%)

Zanidatamab in Advanced BTC: Efficacy Data

	Independent central review assessment (n=80)	Investigator assessment (n=80)
Confirmed objective response rate, n (%; 95% CI)	33 (41·3%; 30·4–52·8)	33 (41·3%; 30·4–52·8)
Confirmed best overall response		
Complete response	1(1%)	4 (5%)
Partial response	32 (40%)	29 (36%)
Stable disease	22 (28%)	21 (26%)
Progressive disease	24 (30%)	25 (31%)
Not evaluable*	1(1%)	1 (1%)
Median time to first response (95% CI), months, months†	1.8 (1.7–2.0)	1.8 (1.8–2.0)
Range	1.6-5.5	1.6-3.7
Duration of response, months†		
Median (95% CI)	12·9 (6·0–not estimable)	11.1 (5.6–14.1)
Range	1.5–16.9+	1.9–15.0+
Had event	11/33 (33%)	17/33 (52%)
Censored	22/33 (67%)	16/33 (49%)

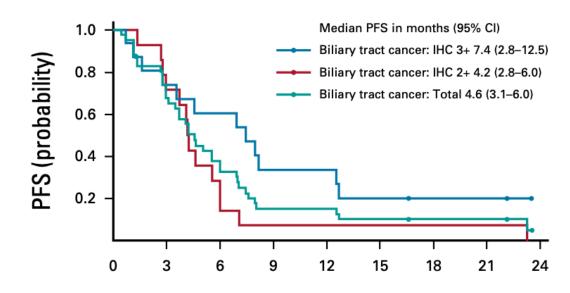
	n/N		ORR, % (95% CI)
Disease subtype			
Gallbladder cancer	19/41		46.3 (30.7-62.6)
Intrahepatic cholangiocarcinoma	7/23		30.4 (13.2–52.9)
Extrahepatic cholangiocarcinoma	7/16		43.8 (19.8–70.1)
Intolerance to most recent prior	therapy		
Yes	3/8		37.5 (8.5–75.5)
No	30/72		41.7 (30.2–53.9)
Prior regimens			
<2	18/47		38.3 (24.5-53.6)
≥2	15/33		45.5 (28.1-63.6)
IHC expression			
3+	32/62		51.6 (38.6–64.5)
2+	1/18		5.6 (0.1-27.3)
Progression-free survival, month	าร§		
Median (95% CI)		5.5 (3.7–7.2)	5.4 (3.6–7.2)
Range		0.3-18.5+	0·3–18·5+
Had event		54/80 (68%)	62/80 (78%)
Censored		26/80 (33%)	18/80 (23%)

Zanidatamab in Advanced BTC: Safety Data

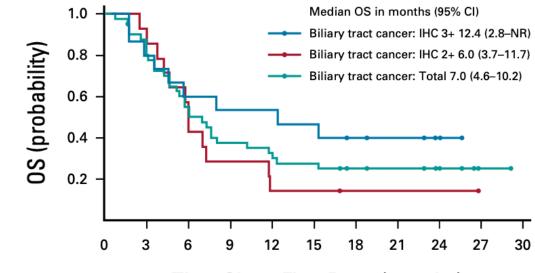

	Grade 1-2	Grade 3
Any adverse event	47 (54%)	16 (18%)
Diarrhoea	28 (32%)	4 (5%)
Infusion-related reaction	28 (32%)	1 (1%)
Ejection fraction decreased	5 (6%)	3 (3%)
Nausea	7 (8%)	1 (1%)
Alanine aminotransferase increased	6 (7%)	0
Aspartate aminotransferase increased	5 (6%)	1 (1%)
Vomiting	6 (7%)	0
Fatigue	5 (6%)	0
Anaemia	2 (2%)	2 (2%)
Hypokalaemia	1 (1%)	1 (1%)
Platelet count decreased	1 (1%)	1 (1%)
Blood bilirubin increased	0	1 (1%)
Enteritis	0	1 (1%)
Lipase increased	0	1 (1%)
Oral candidiasis	0	1 (1%)
Pneumonitis	0	1 (1%)
Stomatitis	0	1 (1%)

Harding et al. Lancet Oncol 2023;24:772-82

Trastuzumab Deruxtecan


- HERB trial^{1,2}: Trastuzumab deruxtecan (T-DXd) in HER2+ advanced BTC
 - N=32: 24 HER2+, 8 HER2-low
 - ORR 36.4% in HER2+ (IHC 3+ or 2+/ISH+)
 - ORR 12.5% in HER2-low
 - Interstitial lung disease (ILD) in 25%
- DESTINY-PanTumor02³: -
 - N=41 advanced BTC HER2+ (3+ or 2+ by IHC)
 - ORR 22% overall BTC
 - IHC3+ 56%
 - IHC2+ 0%
 - ILD 10.5%

FDA granted tumor-agnostic accelerated approval for T-DXd in patients with HER2 IHC3+ tumors in April 2024.


T-DXd in BTC: PFS and OS

Time Since First Dose (months)

0 0 0

No. at risk:									
Biliary tract cancer: IHC 3+	16	11	9	5	5	3	2	2	
Biliary tract cancer: IHC 2+	14	10	3	1	1	1	1	1	
Biliary tract cancer: Total	41	27	14	6	6	4	3	3	

Time Since First Dose (months)

No. at risk:											
Biliary tract cancer: IHC 3+	16	12	9	8	8	7	5	4	1	0	
Biliary tract cancer: IHC 2+	14	12	7	4	2	2	1	1	1	0	
Biliary tract cancer: Total	41	32	21	15	12	11	8	7	4	1	0

T-DXd in BTC: Safety Profile

Adverse Event	Biliary Tract Cancer (n = 41)
Drug-related adverse events, No. (%)	33 (80.5)
Grade ≥3	16 (39.0)
Serious adverse events	5 (12.2)
Leading to discontinuation	5 (12.2)
Leading to dose modification ^a	13 (31.7)
Associated with death	0
Most common drug-related adverse events (>10% of total patient	nts), No. (%)
Nausea	19 (46.3)
Anemia	10 (24.4)
Diarrhea	8 (19.5)
Fatigue	9 (22.0)
Vomiting	9 (22.0)
Neutropenia	9 (22.0)
Decreased appetite	7 (17.1)
Asthenia	6 (14.6)
Alopecia	9 (22.0)
Thrombocytopenia	5 (12.2)

Summary of FDA-Approved Targeted Therapies in Advanced ≥2nd Line BTC in 2024

Full approval based upon randomized, phase 3 study in BTC:

IDH1 mutation: ivosidenib

Accelerated approvals based on phase 2 studies in BTC:

• *FGFR2* rearrangement/fusion: pemigatinib, futibatinib

Tumor-agnostic approvals:

- BRAF V600E: dabrafenib+trametinib
- MSI/TMB high: pembrolizumab, dostarlimab
- *NTRK* fusion: entrectinib, larotrectinib
- RET fusion: selpercatinib
- ERBB2/HER2 IHC3+: T-DXd

All patients with advanced BTC should have comprehensive molecular profiling including coverage of FGFR2 fusions/ rearrangements and HER2 IHC.

Targeted therapies have substantially improved outcomes for patients with tumors harboring molecular targets in BTC. Tumor profiling with NGS and HER2 IHC are now a standard of care.

Second Opinion: Investigators Discuss How They Apply Available Clinical Research in the Care of Patients with Non-Small Cell Lung Cancer with an EGFR Mutation

A CME Symposium Held in Conjunction with the 2024 ASCO[®] Annual Meeting

Friday, May 31, 2024 6:30 PM – 8:30 PM CT (7:30 PM – 9:30 PM ET)

Faculty

Jonathan W Goldman, MD Corey J Langer, MD Joel W Neal, MD, PhD Zofia Piotrowska, MD, MHS Joshua K Sabari, MD

Moderator Helena Yu, MD

Thank you for joining us! Your feedback is very important to us.

Please complete the survey currently up on the iPads for attendees in the room and on Zoom for those attending virtually. The survey will remain open up to 5 minutes after the meeting ends.

How to Obtain CME Credit

In-person attendees: Please refer to the program syllabus for the CME credit link or QR code. Online/Zoom attendees: The CME credit link is posted in the chat room.

