Implications of Recent Data Sets for the Current and Future Management of Gynecologic Cancers

Part 1 of a 3-Part Post-ESMO Congress 2023 CME/MOC-Accredited Live Webinar Series

Tuesday, November 7, 2023 5:00 PM – 6:00 PM ET

Faculty Richard T Penson, MD, MRCP Krishnansu S Tewari, MD

Faculty

Richard T Penson, MD, MRCP Associate Professor of Medicine Harvard Medical School Clinical Director, Medical Gynecologic Oncology Massachusetts General Hospital Boston, Massachusetts

MODERATOR Neil Love, MD Research To Practice Miami, Florida

Krishnansu S Tewari, MD

Professor Philip J DiSaia, MD Endowed Chair in Gynecologic Oncology Director, Division of Gynecologic Oncology Department of Obstetrics and Gynecology University of California, Irvine Irvine, California

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP and Merck.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab US Inc, Gilead Sciences Inc, Grail Inc, GSK, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Legend Biotech, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, R-Pharm US, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc, and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Penson — Disclosures

Advisory Committee	Aadi Bioscience, AstraZeneca Pharmaceuticals LP, GSK, ImmunoGen Inc, Merck, Mersana Therapeutics Inc, Novocure Inc, Roche Laboratories Inc, Sutro Biopharma, VBL Therapeutics
Contracted Research	Array BioPharma Inc, a subsidiary of Pfizer Inc, AstraZeneca Pharmaceuticals LP, Eisai Inc, Genentech, a member of the Roche Group, VBL Therapeutics
Data and Safety Monitoring Board/Committee	AstraZeneca Pharmaceuticals LP, EQRx, Roche Laboratories Inc

Dr Tewari — Disclosures

Advisory Committee and Consulting Agreements	AstraZeneca Pharmaceuticals LP, Eisai Inc, Genmab US Inc, GSK, Merck, Regeneron Pharmaceuticals Inc, Seagen Inc
Contracted Research	Genmab US Inc, Karyopharm Therapeutics, Merck, Regeneron Pharmaceuticals Inc, Seagen Inc
Data and Safety Monitoring Board/Committee	Iovance Biotherapeutics
Speakers Bureau	AstraZeneca Pharmaceuticals LP, Eisai Inc, Genmab US Inc, GSK, Merck, Seagen Inc

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration.

Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY WITH DR NEIL LOVE

Special Edition — Key Presentations on Gynecologic Cancers from the 2023 American Society of Clinical Oncology (ASCO) Annual Meeting

DR FLOOR BACKES THE JAMES CANCER HOSPITAL - COLUMBUS

30)

(15)

Implications of Recent Data Sets for the Current and Future Management of Breast Cancer

Part 2 of a 3-Part Post-ESMO Congress 2023 CME/MOC-Accredited Live Webinar Series

Thursday, November 9, 2023 5:00 PM – 6:00 PM ET

Faculty Aditya Bardia, MD, MPH Sara M Tolaney, MD, MPH

Implications of Recent Data Sets for the Current and Future Management of Lung Cancer

Part 3 of a 3-Part Post-ESMO Congress 2023 CME/MOC-Accredited Live Webinar Series

Tuesday, November 14, 2023 5:00 PM – 6:30 PM ET Faculty Luis Paz-Ares, MD, PhD Zofia Piotrowska, MD, MHS David R Spigel, MD

Meet The Professor Optimizing the Management of Gastroesophageal Cancers

> Thursday, November 16, 2023 5:00 PM – 6:00 PM ET

> > Faculty Samuel J Klempner, MD

Inside the Issue: Targeted and Immunotherapeutic Approaches for Biliary Tract Cancers

A CME/MOC-Accredited Live Webinar

Wednesday, November 29, 2023 5:00 PM – 6:00 PM ET

> Faculty Lipika Goyal, MD, MPhil Milind Javle, MD

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Breast Cancer

A 3-Part CME Satellite Symposium Series Held in Conjunction with the 2023 San Antonio Breast Cancer Symposium®

ER-Positive Metastatic Breast Cancer Tuesday, December 5, 2023 7:15 PM – 9:15 PM CT Localized HER2-Negative Breast Cancer Wednesday, December 6, 2023 7:15 PM – 9:15 PM CT

HER2-Low Breast Cancer Thursday, December 7, 2023 7:15 PM – 8:45 PM CT

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Hematologic Cancers

A 4-Part CME Friday Satellite Symposium Series Preceding the 65th ASH Annual Meeting and Exposition

Friday, December 8, 2023

Follicular, Mantle Cell and Hodgkin Lymphoma 7:30 AM – 10:00 AM PT

Diffuse Large B-Cell Lymphoma 11:30 AM – 1:30 PM PT

Chronic Lymphocytic Leukemia 3:15 PM – 5:15 PM PT

Multiple Myeloma 7:00 PM – 9:00 PM PT

JOIN US IN 2024 FOR THE RETURN OF

The Annual National General Medical Oncology Summit

A Multitumor CME/MOC- and NCPD-Accredited Educational Conference Developed in Partnership with Florida Cancer Specialists and Research Institute

MARCH 22-24, 2024

JW Marriott Miami Turnberry

To Learn More or to Register, Visit www.ResearchToPractice.com/Meetings/GMO2024

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Implications of Recent Data Sets for the Current and Future Management of Gynecologic Cancers

Part 1 of a 3-Part Post-ESMO Congress 2023 CME/MOC-Accredited Live Webinar Series

Tuesday, November 7, 2023 5:00 PM – 6:00 PM ET

Faculty Richard T Penson, MD, MRCP Krishnansu S Tewari, MD

Faculty

Richard T Penson, MD, MRCP Associate Professor of Medicine Harvard Medical School Clinical Director, Medical Gynecologic Oncology Massachusetts General Hospital Boston, Massachusetts

MODERATOR Neil Love, MD Research To Practice Miami, Florida

Krishnansu S Tewari, MD

Professor Philip J DiSaia, MD Endowed Chair in Gynecologic Oncology Director, Division of Gynecologic Oncology Department of Obstetrics and Gynecology University of California, Irvine Irvine, California

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

Implications of Recent Data Sets for the Current and Future Management of Breast Cancer

Part 2 of a 3-Part Post-ESMO Congress 2023 CME/MOC-Accredited Live Webinar Series

Thursday, November 9, 2023 5:00 PM – 6:00 PM ET

Faculty Aditya Bardia, MD, MPH Sara M Tolaney, MD, MPH

Implications of Recent Data Sets for the Current and Future Management of Lung Cancer

Part 3 of a 3-Part Post-ESMO Congress 2023 CME/MOC-Accredited Live Webinar Series

Tuesday, November 14, 2023 5:00 PM – 6:30 PM ET Faculty Luis Paz-Ares, MD, PhD Zofia Piotrowska, MD, MHS David R Spigel, MD

Meet The Professor Optimizing the Management of Gastroesophageal Cancers

> Thursday, November 16, 2023 5:00 PM – 6:00 PM ET

> > Faculty Samuel J Klempner, MD

Inside the Issue: Targeted and Immunotherapeutic Approaches for Biliary Tract Cancers

A CME/MOC-Accredited Live Webinar

Wednesday, November 29, 2023 5:00 PM – 6:00 PM ET

> Faculty Lipika Goyal, MD, MPhil Milind Javle, MD

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Breast Cancer

A 3-Part CME Satellite Symposium Series Held in Conjunction with the 2023 San Antonio Breast Cancer Symposium®

ER-Positive Metastatic Breast Cancer Tuesday, December 5, 2023 7:15 PM – 9:15 PM CT Localized HER2-Negative Breast Cancer Wednesday, December 6, 2023 7:15 PM – 9:15 PM CT

HER2-Low Breast Cancer Thursday, December 7, 2023 7:15 PM – 8:45 PM CT

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Hematologic Cancers

A 4-Part CME Friday Satellite Symposium Series Preceding the 65th ASH Annual Meeting and Exposition

Friday, December 8, 2023

Follicular, Mantle Cell and Hodgkin Lymphoma 7:30 AM – 10:00 AM PT

Diffuse Large B-Cell Lymphoma 11:30 AM – 1:30 PM PT

Chronic Lymphocytic Leukemia 3:15 PM – 5:15 PM PT

Multiple Myeloma 7:00 PM – 9:00 PM PT

JOIN US IN 2024 FOR THE RETURN OF

The Annual National General Medical Oncology Summit

A Multitumor CME/MOC- and NCPD-Accredited Educational Conference Developed in Partnership with Florida Cancer Specialists and Research Institute

MARCH 22-24, 2024

JW Marriott Miami Turnberry

To Learn More or to Register, Visit www.ResearchToPractice.com/Meetings/GMO2024

ONCOLOGY TODAY WITH DR NEIL LOVE

Special Edition — Key Presentations on Gynecologic Cancers from the 2023 American Society of Clinical Oncology (ASCO) Annual Meeting

DR FLOOR BACKES THE JAMES CANCER HOSPITAL - COLUMBUS

30)

(15)

Implications of Recent Data Sets for the Current and Future Management of Gynecologic Cancers

Part 1 of a 3-Part Post-ESMO Congress 2023 CME/MOC-Accredited Live Webinar Series

Tuesday, November 7, 2023 5:00 PM – 6:00 PM ET

Faculty Richard T Penson, MD, MRCP Krishnansu S Tewari, MD

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP and Merck.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Penson — Disclosures

Advisory Committee	Aadi Bioscience, AstraZeneca Pharmaceuticals LP, GSK, ImmunoGen Inc, Merck, Mersana Therapeutics Inc, Novocure Inc, Roche Laboratories Inc, Sutro Biopharma, VBL Therapeutics
Contracted Research	Array BioPharma Inc, a subsidiary of Pfizer Inc, AstraZeneca Pharmaceuticals LP, Eisai Inc, Genentech, a member of the Roche Group, VBL Therapeutics
Data and Safety Monitoring Board/Committee	AstraZeneca Pharmaceuticals LP, EQRx, Roche Laboratories Inc

Dr Tewari — Disclosures

Advisory Committee and Consulting Agreements	AstraZeneca Pharmaceuticals LP, Eisai Inc, Genmab US Inc, GSK, Merck, Regeneron Pharmaceuticals Inc, Seagen Inc
Contracted Research	Genmab US Inc, Karyopharm Therapeutics, Merck, Regeneron Pharmaceuticals Inc, Seagen Inc
Data and Safety Monitoring Board/Committee	Iovance Biotherapeutics
Speakers Bureau	AstraZeneca Pharmaceuticals LP, Eisai Inc, Genmab US Inc, GSK, Merck, Seagen Inc

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration.

Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

Krishnansu S Tewari, MD

- De Bruyn M et al. Neoadjuvant immune checkpoint blockade in mismatch repair deficient endometrial cancer. ESMO 2023;Abstract 742MO.
- Mirza MR et al. Dostarlimab + chemotherapy for the treatment of primary advanced or recurrent endometrial cancer (pA/rEC): Analysis of progression free survival (PFS) and overall survival (OS) outcomes by molecular classification in the ENGOT-EN6-NSGO/GOG-3031/RUBY trial. ESMO 2023;Abstract 740MO.
- Eskander RN et al. Updated response data and analysis of progression free survival by mechanism of mismatch repair loss in endometrial cancer (EC) patients (pts) treated with pembrolizumab plus carboplatin/paclitaxel (CP) as compared to CP plus placebo (PBO) in the NRG GY018 trial. ESMO 2023;Abstract LBA43.
- Colombo N et al. Phase III double-blind randomized placebo controlled trial of atezolizumab in combination with carboplatin and paclitaxel in women with advanced/recurrent endometrial carcinoma. ESMO 2023;Abstract LBA40.

Krishnansu S Tewari, MD (continued)

- Westin SN et al. Durvalumab (durva) plus carboplatin/paclitaxel (CP) followed by maintenance (mtx) durva ± olaparib (ola) as a first-line (1L) treatment for newly diagnosed advanced or recurrent endometrial cancer (EC): Results from the phase III DUO-E/GOG-3041/ENGOT-EN10 trial. ESMO 2023;Abstract LBA41.
- Lobbedez FJ et al. Olaparib vs placebo as maintenance therapy after platinum-based chemotherapy in advanced/metastatic endometrial cancer patients: The GINECO randomized phase IIb UTOLA trial. ESMO 2023;Abstract LBA42.
- Colombo E et al. Outcomes for patients (pts) with advanced endometrial cancer (aEC) who completed pembrolizumab (pembro) and continued lenvatinib (LEN) in the phase III Study 309/KEYNOTE-775. ESMO 2023;Abstract 748P.
- McCormack M et al. A randomised phase III trial of induction chemotherapy followed by chemoradiation compared with chemoradiation alone in locally advanced cervical cancer: The GCIG INTERLACE trial. ESMO 2023;Abstract LBA8.

Krishnansu S Tewari, MD (continued)

- Lorusso D et al. Pembrolizumab plus chemoradiotherapy for high-risk locally advanced cervical cancer: A randomized, double-blind, phase III ENGOT-cx11/GOG-3047/KEYNOTE-A18 study. ESMO 2023;Abstract LBA38.
- Monk BJ et al. KEYNOTE-826: Final overall survival results from a randomized, double-blind, phase 3 study of pembrolizumab + chemotherapy vs placebo + chemotherapy for first-line treatment of persistent, recurrent, or metastatic cervical cancer. ASCO 2023;Abstract 5500.
- Vergote IB et al. innovaTV 301/ENGOT-cx12/GOG-3057: A global, randomized, open-label, phase III study of tisotumab vedotin vs investigator's choice of chemotherapy in 2L or 3L recurrent or metastatic cervical cancer. ESMO 2023;Abstract LBA9.
- Meric-Bernstam F et al. Trastuzumab deruxtecan (T-DXd) for pretreated patients (pts) with HER2expressing solid tumors: Primary analysis from the DESTINY-PanTumor02 (DP-02) study. ESMO 2023;Abstract LBA34.

Richard T Penson, MD, MRCP

- Richardson DL et al. Effectiveness of PARP inhibitor maintenance therapy (mPARPi) in advanced ovarian cancer (OC) by BRCA1/2 and HRD signature in real-world practice. ASCO 2023;Abstract 5583.
- Wu X et al. Efficacy and safety of senaparib as maintenance treatment in patients with newly diagnosed advanced ovarian cancer (FLAMES study): A randomized, double-blind, placebo-controlled, phase III trial. ESMO 2023;Abstract LBA36.
- Harter P et al. Durvalumab with paclitaxel/carboplatin (PC) and bevacizumab (bev), followed by maintenance durvalumab, bev, and olaparib in patients (pts) with newly diagnosed advanced ovarian cancer (AOC) without a tumor BRCA1/2 mutation (non-tBRCAm): Results from the randomized, placebo (pbo)-controlled phase III DUO-O trial. ASCO 2023;Abstract LBA5506.
- Gonzalez Martin A et al. Atezolizumab (atezo) combined with platinum-based chemotherapy (CT) and maintenance niraparib for recurrent ovarian cancer (rOC) with a platinum-free interval (TFIp) >6 months: Primary analysis of the double-blind placebo (pbo)-controlled ENGOT-Ov41/GEICO 69-O/ANITA phase III trial. ESMO 2023;Abstract LBA37.

Richard T Penson, MD, MRCP (continued)

- Liu JF et al. Overall survival (OS) outcomes from NRG-GY004, a phase III study comparing singleagent olaparib or combination cediranib and olaparib to platinum (plat) based chemotherapy in recurrent plat sensitive ovarian cancer (OvCa). ESMO 2023;Abstract LBA45.
- Moore KN et al. Phase III MIRASOL (GOG 3045/ENGOT-ov55) study: Initial report of mirvetuximab soravtansine vs. investigator's choice of chemotherapy in platinum-resistant, advanced high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate receptor-alpha expression. ASCO 2023;Abstract LBA5507.
- Moore KN et al. Raludotatug deruxtecan (R-DXd; DS-6000) monotherapy in patients with previously treated ovarian cancer (OVC): Subgroup analysis of a first-in-human phase I study. ESMO 2023;Abstract 745MO.

Agenda

INTRODUCTION: Pan-tumor Indications for New Therapies

MODULE 1: Endometrial Cancer

• Key Issue – Immunotherapy

MODULE 2: Cervical Cancer

- Key Issue Immunotherapy
- Key Issue Tisotumab vedotin

MODULE 3: Ovarian Cancer

- Key Issue PARP inhibitors in primary management (maintenance) and relapsed disease
- Key Issue Mirvetuximab soravtansine and other antibody-drug conjugates

Agenda

INTRODUCTION: Pan-tumor Indications for New Therapies

MODULE 1: Endometrial Cancer

• Key Issue – Immunotherapy

MODULE 2: Cervical Cancer

- Key Issue Immunotherapy
- Key Issue Tisotumab vedotin

MODULE 3: Ovarian Cancer

- Key Issue PARP inhibitors in primary management (maintenance) and relapsed disease
- Key Issue Mirvetuximab soravtansine and other antibody-drug conjugates

DESTINY-PanTumorO2 Study Trastuzumab Deruxtecan for HER2-expressing solid tumors

n	0RR, %	mPFS, mo (95% Cl)	mOS, mo (95% CI))			
All	IHC 3+	All	IHC 3+	All	IHC 3+	All	IHC 3+
Total 267	775	37.1	61.3	6.9 (5.6, 8.0)	11.9 (8.2, 13.0)) 13.4 (11.9, 15.	5) 21.1 (15.3, 29.6)

	n	0RR, %	mPFS, mo (95% Cl)) mOS, mo (95% CI)				
	All	IHC 3+	All	IHC 3+	All	IHC 3+	All	IHC 3+
BTC	41	16	22.0	56.3	4.6 (3.1, 6.0)	7.4 (2.8, 12.5)	7.0 (4.6, 10.2)	12.4 (2.8, NR)
URO	41	16	39.0	56.3	7.0 (4.2, 9.7)	7.4 (3.0, 11.9)	12.8 (11.2, 15.1)) <u>13.4 (6.7, 19</u> .8)
CC	40	8	50.0	75.0	7.0 (4.2, 11.1)) NR (3.9, NR)	13.6 (11.1, NR)	NE (3.9, NR)
EC	40	13	57.5	84.6	11.1 (7.1, NR)	NR (7.3, NR)	26.0 (12.8, NR)	26.0 (18.9, NR)
00	40	11	45.0	63.6	5.9 (4.0, 8.3)	12.5 (3.1, NR)	13.2 (8.0, 17.7)	20.0 (3.8, NR)
PC	25	2	4.0	0	3.2 (1.8, 7.2)	5.4 (2.8, NR)	5.0 (3.8, 14.2)	12.4 (8.8, NR)
Othe	r 40	9	30.0	44.4	8.8 (5.5, 12.5)	23.4 (5.6, NR)	21.0 (12.9, 24.3))24.3 (11.1, NR)

NR, not reached

Presented by Meric-Bernstam F, et al. ESMO 2023

DESTINY-PanTumor02: a Phase 2 study of T-DXd for HER2-expressing solid tumors

An open-label, multicenter study (NCT04482309)

Key eligibility criteria

- Advanced solid tumors not eligible for curative therapy
- 2L+ patient population
- HER2 expression (IHC 3+ or 2+)
 - Local test or central test by HercepTest if local test not feasible (ASCO/CAP gastric cancer scoring¹)^a
- Prior HER2-targeting therapy allowed
- ECOG/WHO PS 0–1

Baseline characteristics

- 267 patients received treatment; 202 (75.7%) based on local HER2 testing
 - 111 (41.6%) patients were IHC 3+ based on HER2 test (local or central) at enrollment, primary efficacy analysis (all patients)
 - 75 (28.1%) patients were IHC 3+ on central testing. sensitivity analysis on efficacy endpoints (subgroup analyses)
- Median age was 62 years (23–85) and 109 (40.8%) patients had received ≥3 lines of therapy

2L, second-line; ASCO, American Society of Clinical Oncology; CAP, College of American Pathologists; DCR, disease control rate; DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PS, performance status; Q3W, every 3 weeks; T-DXd, trastuzumab deruxtecan; WHO, World Health Organization 1. Hofmann M, et al. Histopathology. 2008;52:797-805

DESTINY-PanTumor02: Objective Response and Duration of Response

Objective response and duration of response

Analysis of ORR by investigator was performed in patients who received ≥ 1 dose of T-DXd; all patients (n=267; including 67 patients with IHC 1+ [n=25], IHC 0 [n=30], or unknown IHC status [n=12] by central testing) and patients with centrally confirmed HER2 IHC 3+ (n=75) or IHC 2+ (n=125) status. Analysis of DOR was performed in patients with objective response who received ≥ 1 dose of T-DXd; all patients (n=99; including 19 patients with IHC 1+ [n=6], IHC 0 [n=9], or unknown IHC status [n=4] by central testing) and patients with centrally confirmed HER2 IHC 3+ (n=46) or IHC 2+ (n=34) status. ^aResponses in extramammary Paget's disease, head and neck cancer, oropharyngeal neoplasm, and salivary gland cancer; ^bincludes patients with a confirmed objective response only

BTC, biliary tract cancer, CI, confidence interval; DOR, duration of response; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; NR, not reached; ORR, objective response rate; T-DXd, trastuzumab deruxtecan

DESTINY-PanTumor02: Safety Summary

	All patients	Most common drug-related TEAEs (>10%)								
n (%)	(N=267)	Nausea	3.7							55.1
		Fatigue ^b	7.	1				40.1		
Any drug-related TEAEs	226 (84.6)	Neutropenia ^c			19.1		32.6			
		Anemia		10.9		27.7				
Drug-related TEAEs Grade ≥3	109 (40.8)	Diarrhea	3.7			25.8				
		Vomiting	1.5			24.7				
Serious drug-related TEAEs	36 (13.5)	Decreased appetite	1.5		17.6					
		Thrombocytopeniad	5.6		17.2					
Drug-related TEAEs associated	23 (8.6)	Alopecia			16.9					Grade ≥3
with dose discontinuations		Increased transaminasese	0.4	10.1						Any grade
Drug-related TEAEs associated	54 (20.2)	Leukopenia ^f	2.6	10.1						
with dose interruptions	54 (20.2)	0)	10	20)	30	40	5	0 60
Drug-related TEAEs associated	54 (00.0)				Patients	experienci	ng drug-	related TEAE	s (%)	
with dose reductions	54 (20.2)	ILD/pneumonitis adjudi	cated							
Drug-related TEAEs associated		as T-DXd related, n (%)		Grade 1	Grad	e 2 Gra	ade 3	Grade 4	Grade 5	Any grade
with deaths	4 (1.5) ^a	All patients (N=267)		7 (2.6)	17 (6	.4) 1 ((0.4)	0	3 (1.1)	28 (10.5)

Analyses were performed in patients who received ≥1 dose of T-DXd (N=267); median total treatment duration 5.6 months (range 0.4–31.1)

^aIncluded pneumonia (n=1), organizing pneumonia (n=1), pneumonitis (n=1), and neutropenic sepsis (n=1); ^bcategory includes the preferred terms fatigue, asthenia, and malaise; ^ccategory includes the preferred terms neutrophil count decreased and neutropenia; ^dcategory includes the preferred terms platelet count decreased and thrombocytopenia; ^ecategory includes the preferred terms aspartate aminotransferase increased, alanine aminotransferase increased, gamma-glutamyltransferase increased and leukopenia

ILD, interstitial lung disease; T-DXd, trastuzumab deruxtecan; TEAE, treatment-emergent adverse event

Journal of Clinical Oncology®

Original Reports | Cynecological Cancer

CONTEX

What is th

natients r

THC 3+

DESTIN

alongs

the HER

T-DKd

whole

and limit

tunity to

NER2-5

antibod

mano

Bet 10p4

Souther

in the

HERS

aric o

advorse rissts al (ILD)[P0

45

Efficacy and Safety of Trastuzumab Deruxtecan in Patients With HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial

French Inner Bennamn, MO[®], Vide Makker, MO[™]B, Ana Caleira, MO[™]B, Do Yoan GA, MO[®]B, Isanan Benneira, MO[™]B, Antonia Grandiana Maria, MO[®], Jampa Hao Jana, MO[™]B, Imma targenada, MO[™]La, Mo[™]B, Antonia Mo[™]B, Behneller Mellihar, MO[™]; Scholter Stea, MO[™]B, Jamiel Stear, HO[™], and Jamp Yani, Lei, MO[™]B, Uniter Stear, HO[™], and Jamp Yani, Lei, MO[™]B, Uniter Stear, HO[™], and Jamp Yani, Lei, MO[™]B, Uniter Stear, Jacobiana, Jacobiana, Jacobiana, Jacobiana, Jacobiana, Jacobiana, Jacobiana, Jacobiana, Uniter Stear, Jacobiana, Uniter Stear, Jacobiana, Jac

ADCOMPANYING CONTENT

accepted October 12, 2023

Steartive Commons Attribution Ron-Commons ial No Derivatives 10 License

poor prognosis, increased risk of disease recurrence, and

7 Protocol

PURPOSE Trastuzumab deruxtecan (T-DXd) is a human epidemtal growth factor a (HERa)-directed antibody-drug compugate approved in HERA-expressing breast and gastric cancers and HERA-initiat hou-initial-tool lang cancer. Treatments are limited for other HERA-expressing solid tumors.

HETHOD This open-label phase. II study evaluated T-DAK (54, mg/kg once every Pathewick 05, 2013) and phase of the phase pha

NESHITS At primary analysis, 1627 patients received treatment across seven tensor cohorts: endometrial, cervical, ovarian, bladder, bliary tract, pancreatic, and other. The medians follow-up was 12,25 months. In all guidents, the OOR was 37,1% (in - 99, 105% Cl, 32,10 k3,21), with responses in all cohorts; the median DOR was 13,1 meeths (v)55% Cl, 36 to 37,86, the median PE was 6,9 months (95% Cl, 5,616 k0); and the median OS was 3,4 months (95% Cl, 5616 k0); and the median OS was 3,1 menths (95% Cl, 64 to 52,4); the median DOR was 2,21 menths (95% Cl, 64,64 to 72,4); the modian DOR was 2,21 menths (95% Cl, 64 to 72,4); the median OS was 2,11 meeths (95% Cl, 65,616 km; 65% cl, 10,55% cl, 10

CONCLUSION Our study demonstrates durable clinical benefit, meaningful survival outcomes, and safety consistent with the innovn poefile (including ILD) in pretreated patients with HIBL's expressing tumons receiving T-DXG. Icreates themefit was observed for the IHC 3+ population. These data support the potential role of T-DXG as a tumor-agnostic therapy for patients with HIBL2-expressing solid tumors.

INTRODUCTION

Imited benefit from chemothemapt.¹⁵ HER2-incide Human epidemnal growth factor receptor 2 (HER2) is a therapy is standard of care for HER2-expressing uncstandard or metastatic breast cancer, HER2-politive stimulation of cell polification, differentiation, and surlocally advanced or metastatic gastric cancers, colonertal twich 'HER2 everypressing color concern in a range of solid at tumors, including breast, gastric, blayer tack, bladder, HER2-eminat neo--small-cell lung cancer.¹⁶ HeR2-expressing solid tumors is associated with a blobgically aggressive tumo phenotype, will progress on standard therapy, with poor prognosis

ASCO Journal of Clinical Oncology

ascopubs.org/journal/job | Volume 🚥, Haue 🚥

Efficacy and Safety of Trastuzumab Deruxtecan in Patients With HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial

ascopubs.org/doi/full/10.1200/JCO.23.02005

📋 SCAN ME

Raludotatug deruxtecan (R-DXd; DS-6000) monotherapy in patients with previously treated ovarian cancer (OVC): subgroup analysis of a first-in-human Phase 1 study

Kathleen Moore,^{1,2} Alexander Philipovskiy,^{2,3} Kenichi Harano,⁴ Brian Rini,⁵ Kazuki Sudo,⁶ Shigehisa Kitano,⁷ David R. Spigel,^{2,8} Jie Lin,⁹ Madan G. Kundu,⁹ Amine Bensmaine,¹⁰ Yusuke Myobatake,⁹ Erika Hamilton^{2,8}

¹University of Oklahoma, Oklahoma City, OK, USA; ²Sarah Cannon Research Institute, Nashville, TN, USA; ³Florida Cancer Specialists, Lake Mary, FL, USA; ⁴National Cancer Center Hospital East, Kashiwa, Japan; ⁵Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; ⁶National Cancer Center Hospital, Tokyo, Japan; ⁷Japanese Foundation for Cancer Research, Tokyo, Japan; ⁸Tennessee Oncology, PLLC, Nashville, TN, USA; ⁹Daiichi Sankyo, Inc., Basking Ridge, NJ, USA; ¹⁰Daiichi Sankyo, Inc., Rueil-Malmaison, France.

Courtesy of Richard T Penson, MD, MRCP

Background

- The emergence of platinum resistance in recurrent OVC is inevitable; these patients have a clear need for novel treatments¹
- Mirvetuximab soravtansine-gynx received accelerated approval from the FDA for the treatment of patients with platinum-resistant, FRα-positive OVC (ORR: 31.7%, median DOR: 6.9 months)²
- Expression of CDH6 is observed in ~65–85% of patients with OVC^{3,4}
- Raludotatug deruxtecan (R-DXd; DS-6000) is a CDH6-directed ADC composed of three parts: a humanized anti-CDH6 IgG1 mAb, covalently linked to a topoisomerase I inhibitor payload via a tetrapeptide-based cleavable linker⁵

R-DXd was designed with 7 key attributes

almage is for illustrative purposes only; actual drug positions may vary. bThe clinical relevance of these features is under investigation. Based on animal data.

ADC, antibody-drug conjugate; CDH6, cadherin 6; DOR, duration of response; DXd, deruxtecan; FDA, United States Food and Drug Administration; FRa, folate receptor alpha; IgG1, immunoglobulin G1; mAb, monoclonal antibody; ORR, objective response rate; OVC, ovarian cancer.

4. Shintani D, et al. Gynecol Oncol. 2022;166(Suppl. 1):S116; 5. Suzuki H, et al. Ann Oncol. 2021;32(Suppl. 5):S361–S375; 6. Nakada T, et al. Chem Pharm Bull (Tokyo). 2019;67:173–185.

First-in-human phase 1 study of R-DXd (NCT04707248)^{1,2}

Subgroup analysis of patients with OVC who received R-DXd at 4.8-8.0 mg/kg^a

Part A Dose escalation: R-DXd IV Q3W

Part B Dose expansion: R-DXd IV Q3W

Enrollment criteria:

- Advanced/metastatic OVC not amenable to SOC therapy
- ECOG PS 0–1
- Prior taxane and platinum-based chemotherapy
- No previous CDH6-targeting agents or ADCs with a linked topoisomerase I inhibitor
- Patients were not selected based on tumor CDH6 expression

Key primary objectives:

- Safety and tolerability
- Determine MTD and RDEs for dose expansion
- Determine ORR per RECIST v1.1 for dose expansion

Key secondary objectives:

- PK: ADC, total anti-CDH6 antibody, and the DXd payload
- Antitumor activity per RECIST v1.1
- Immunogenicity

^a4.8–8.0 mg/kg R-DXd dose cohorts were initially prioritized for dose expansion due to a favorable benefit/risk profile.

ADC, antibody-drug conjugate; CDH6, cadherin 6; ECOG PS, Eastern Cooperative Oncology Group performance status; IV, intravenous; MTD, maximum tolerated dose; ORR, objective response rate; OVC, ovarian cancer; PK, pharmacokinetics; Q3W, every 3 weeks; RDE, recommended doses for expansion; RECIST 1.1, Response Evaluation Criteria in Solid Tumors version 1.1; SOC, standard of care.

1. ClinicalTrials.gov. https://classic.clinicaltrials.gov/ct2/show/NCT04707248. Accessed July 20, 2023; 2. Data on file. Daiichi Sankyo, Inc. DS6000-A-U101 protocol, version 3; 2020.

Courtesy of Richard T Penson, MD, MRCP

Preliminary efficacy data for R-DXd are promising in pretreated OVC patients

- Confirmed ORR: 46% in the 4.8–8.0 mg/kg OVC cohort (23/50; 95% CI: 32–61); one CR and 22 PRs
 - 4 unconfirmed responses were ongoing at data cutoff
- Disease control rate^a: 98%

- Median time to response: 6 weeks (95% CI: 5–11)
- Median DOR^b: 11.2 months (95% CI: 3.0–NE)
- Median PFS^c: 7.9 months (95% CI: 4.4–12.4)

°CR + PR + stable disease. Median follow-up for DOR: 5.8 months (95% CI: 3.0–8.1). Median follow-up for PFS: 5.6 months (95% CI: 2.8–7.0)

The efficacy evaluable population included patients who received ≥1 dose of study treatment and completed ≥1 post-baseline tumor assessment or discontinued treatment for any reason. Change from baseline in target tumor size was assessed per RECIST v1.1. Two patients with no measurable lesions at baseline and one patient who discontinued and did not have a post-baseline tumor assessment were not included in the waterfall or spider plots.

CI, confidence interval; CR, complete response; DOR, duration of response; NE, not estimable; ORR, objective response rate; OVC, ovarian cancer; PFS, progression-free survival; PR, partial response; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1.

Kathleen Moore

Courtesy of Richard T Penson, MD, MRCP

Safety profile of R-DXd is manageable

Patients with OVC who received R-DXd at 4.8–8.0 mg/kg

Overview of TEAEs

	n (%) N=60
Any TEAEs	57 (95.0)
TEAE with CTCAE Grade ≥3	31 (51.7)
TEAE associated with drug discontinuation	9 (15.0)
TEAE associated with dose interruption	22 (36.7)
TEAE associated with dose reduction	15 (25.0)
Any treatment-related CTCAE Grade ≥3 TEAE	22 (36.7)
Treatment-related TEAE associated with death	2 (3.3) ^a

Most common (≥10%) treatment-related TEAEs

Preferred term	n (%) N=60			
	All grades	Grade ≥3		
Nausea	35 (58.3)	1 (1.7)		
Fatigue	27 (45.0)	2 (3.3)		
Vomiting	20 (33.3)	1 (1.7)		
Anemia	17 (28.3)	11 (18.3)		
Decreased neutrophil count	15 (25.0)	7 (11.7)		
Diarrhea	16 (26.7)	1 (1.7)		
Decreased appetite	15 (25.0)	1 (1.7)		
Decreased platelet count	10 (16.7)	3 (5.0)		
Alopecia	7 (11.7)	0		
Malaise	6 (10.0)	0		

Data cutoff: July 14, 2023.

^aGrade 5 ILD. ^b6/15 (40.0%) patients in the 8.0-mg/kg OVC cohort experienced serious and Grade ≥3 TEAEs.

CTCAE, Common Terminology Criteria for Adverse Events; ILD, interstitial lung disease; OVC, ovarian cancer; TEAE, treatment-emergent adverse event.

Conclusions

- R-DXd is the first CDH6-directed ADC to demonstrate promising efficacy in patients with heavily pretreated platinum-resistant OVC who were not selected based on tumor CDH6 expression
 - ORR: 46% in the 4.8–8.0 mg/kg OVC cohort; one CR and 22 PRs
 - Median DOR: 11.2 months^a
 - Median PFS: 7.9 months^b
- Safety profile is manageable, and toxicities are consistent with those observed with other DXd ADCs^{1,2}
- Based on the accumulated overall safety, tolerability, PK and efficacy profile of R-DXd, the 8.0 mg/kg cohort was closed, and further assessment is ongoing at three dose levels: 4.8 mg/kg, 5.6 mg/kg and 6.4 mg/kg
- These data support further clinical evaluation of R-DXd in a late-phase study in patients with OVC

^aMedian follow-up for DOR: 5.8 months (95% CI: 3.0–8.1). ^bMedian follow-up for PFS: 5.6 months (95% CI: 2.8–7.0).

ADC, antibody–drug conjugate; CDH6, cadherin 6; Cl, confidence interval; CR, complete response; DOR, duration of response; DXd, deruxtecan; ORR, objective response rate; OVC, ovarian cancer; PFS, progression-free survival; PK, pharmacokinetics; PR, partial response. 1. Guo Z, et al. *J Clin Pharm Ther.* 2022;47:1837–1844; 2. Jänne PA, et al. *Cancer Discov.* 2022;12:74–89.

Agenda

INTRODUCTION: Pan-tumor Indications for New Therapies

MODULE 1: Endometrial Cancer

• Key Issue – Immunotherapy

MODULE 2: Cervical Cancer

- Key Issue Immunotherapy
- Key Issue Tisotumab vedotin

MODULE 3: Ovarian Cancer

- Key Issue PARP inhibitors in primary management (maintenance) and relapsed disease
- Key Issue Mirvetuximab soravtansine and other antibody-drug conjugates

ENGOT-EN6-NSGO/GOG-3031/RUBY (NCT03981796)

Phase 3, randomized, double-blind, multicenter study of dostarlimab plus carboplatin-paclitaxel versus placebo plus carboplatin/paclitaxel in patients with primary advanced or recurrent EC

Further study details can be found at Mirza MR, et al. N Engl J Med. 2023 Jun 8;388(23):2145-2158.

^aTreatment ends after 3 years, PD, toxicity, withdrawal of consent, investigator's decision, or death, whichever occurs first. Continued treatment with dostarlimab or placebo beyond 3 years may be considered following discussion between the Sponsor and the Investigator. AUC, area under the plasma or serum concentration-time curve; BICR, blinded independent central review; DCR, disease control rate; DOR, duration of response, EC, endometrial cancer; ECOG PS, Eastern Cooperative Oncology Group performance status; EOT, end of treatment; HRQOL, health-related quality of life; IHC, immunohistochemistry; INV, investigator assessment; MMR, mismatch repair; MSI, microsatellite instability; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PRO, patient-reported outcome; R, randomization; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1.

Presented by Mirza MR, et al. ESMO 2023

RUBY PFS According to Molecular Subgroup

1.0

0.8

Probability of PFS 9.0 9.7

0.2

C

1.0

0.8

Probability of PFS 9°0 9°0

0.2

At risk

D+CP

Atrisk

D+CP

POLs mut

TP53 mut

Presented by Mirza MR, et al. ESMO 2023

Courtesy of Krishnansu S Tewari, MD

NSGO-CTU GOG FOUNDATION"

RUBY Molecular Classification Algorithm

• In RUBY Part 1, molecular classification was performed for all participants with WES results – 400 of 494 patients

Efficacy per molecular classification was an exploratory analysis.

dMMR, mismatch repair deficient; EC, endometrial cancer; EDM, exonuclease domain; IHC, immunohistochemistry; MMRp, mismatch repair proficient; MSI-H, microsatellite instability-high; mut, mutated; NGS, next generation sequencing; NSMP, no specific molecular profile; PCR, polymerase chain reaction; POL_ε, polymerase epsilon; TP53, tumor protein 53; WES, whole exome DNA sequencing; WT, wild type.

Phase III RUBY Trial of Dostarlimab with Chemotherapy Meets Endpoint of Overall Survival for Patients with Primary Advanced or Recurrent Endometrial Cancer Press Release: October 30, 2023

"Positive headline results [were announced] from a planned analysis of Part 1 of the RUBY/ENGOT-EN6/GOG3031/NSGO phase III trial investigating dostarlimab plus standard-of-care chemotherapy (carboplatin and paclitaxel), followed by dostarlimab as a single agent, compared to placebo plus chemotherapy followed by placebo in adult patients with primary advanced or recurrent endometrial cancer. The trial met its primary endpoint of overall survival (OS), demonstrating a statistically significant and clinically meaningful benefit in the overall patient population.

A clinically meaningful OS benefit was observed in both prespecified subpopulations in the trial: mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) and mismatch repair proficient (MMRp)/microsatellite stable (MSS) patient subgroups. OS is one of two primary endpoints in the RUBY Part 1 trial. Previously, the trial met its other primary endpoint of progressionfree survival (PFS), demonstrating a 72% and 36% reduction in the risk of disease progression or death observed in the dMMR/MSI-H population (HR: 0.28 [95% CI: 0.16-0.50]) and overall patient population (HR: 0.64 [95% CI: 0.51–0.80]), respectively."

https://www.gsk.com/en-gb/media/press-releases/phase-iii-ruby-trial-of-jemperli-dostarlimab-plus-chemotherapy-meets-endpoint-of-overall-survival-in-patients-with-primary-advanced-or-recurrent-endometrial-cancer/

NRG GY018 Study Design

Key Eligibility Criteria

- Measurable stage III/IVA or measurable/nonmeasurable stage IVB or recurrent endometrial cancer
- Pathology report showing results of institutional MMR IHC testing
- ECOG PS 0, 1, or 2
- No prior chemo except prior adjuvant chemo if completed ≥12 mo before study

Stratification Factors

- dMMR vs pMMR
- ECOG PS (0 or 1 vs 2)
- Prior adjuvant chemo (yes vs no)

Median follow-up:

- IA1 data cutoff date of December 16, 2022: dMMR cohort, 12 months; pMMR cohort, 7.9 months
- Current analysis data cutoff date of August 18, 2023: dMMR cohort, 20.6 months; pMMR cohort, 15.8 months

Presented by Eskander RN, et al. ESMO 2023

- **Primary:** PFS per RECIST v1.1 by investigator in pMMR and dMMR populations
- Secondary: Safety, ORR/DOR per RECIST v1.1 by BICR or investigator by treatment arm and MMR IHC status, OS in pMMR and dMMR populations, PRO/QoL in pMMR population, and concordance of MMR IHC testing at institution vs centralized

NRG GY018 ORR in dMMR and pMMR Populations

Odds ratio for response with Pembro + CP: 1.83 (95% CI, 0.92–3.66)

Odds ratio for response with Pembro + CP: 1.74 (95% CI, 1.18–2.58)

Presented by Eskander RN, et al. ESMO 2023

AtTEnd Study Design

- Endometrial carcinoma or carcinosarcoma
- Patients with advanced (stage III-IV) newly diagnosed or recurrent disease with no prior systemic chemotherapy for recurrence.
- In recurrent patients, one prior line of systemic platinum-based regimen is permitted with a platinum-free interval ≥ 6 months.
- ECOG 0-2
- Normal organ and bone marrow function

- Country
- Endometrioid vs. other histotypes
- Recurrent disease vs newly diagnosed

PFS: Progression free survival. OS: overall survival. HR: hazard ratio.

pMMR vs dMMR vs non evaluable (centrally ٠ evaluated)

*OS interim analysis planned with a 63% power

Presented by Colombo N, et al. ESMO 2023

AtTEnd

Primary Endpoint: PFS in All Comers

Presented by Colombo N, et al. ESMO 2023

PFS and OS in pMMR

Presented by Colombo N, et al. ESMO 2023

AtTEnd

Subgroup Analysis of PFS in All Comers

•	Placebo	Atezolizumab		Interaction test	
Subgroup	no. events/no. pts	no. events/no. pts		p-value	HR (95% CI)
Dverall	148/189 (78%)	253/360 (70%)			0.74 (0.61-0.91
Seographic region					Constant Arcon and the second
Europe	114/134 (85%)	189/264 (72%)	⊢		0.68 (0.54-0.86
Asia	21/37 (57%)	41/66 (62%)			1.03 (0.61-1.74
Australia/New Zealand	13/18 (72%)	23/30 (77%)			0.86 (0.43-1.71
ace			· · · ·		
Caucasian	123/143 (86%)	207/289 (72%)	1		0.66 (0.52-0.82
Asian	23/43 (53%)	44/69 (64%)			1.17 (0.71-1.94
Other	2/3 (67%)	2/2 (100%)	1 1		NE
tatus of disease*			1		
Newly diagnosed-Stage III	5/10 (50%)	13/21 (62%)			1.37 (0.49-3.87
Newly diagnosed-Stage IV	39/52 (75%)	72/96 (75%)			0 88 (0 60-1 31
Recurrent	103/126 (82%)	168/243 (69%)			0 68 (0 53-0 87
listological type	territer (sec. of				a.a.a. (a.a.a. a.a.)
Carcinosarcoma	12/15 (80%)	30/35 (86%)			0.88 (0.45-1.73
Endometrioid	99/125 (79%)	150/227 (66%)			0.68 (0.53.0.88
Papillary serous	23/29 (79%)	47/59 (80%)			0.87 (0.52-1.45
Other	14/20 (70%)	26/39 (67%)			0.86 (0.45.1.66
Pre-treated with chemotherapy	11/20 (10:0)	zarod (or a)			0.00 (0.10 1.00
No	100/129 (78%)	172/253 (68%)			0 77 (0 60-0 99
Yes	48/60 (80%)	81/107 (76%)			0.68 (0.47.0.97
lismatch renair status	10100 (00.10)	official (row)			0.00 (0.11 0.01
Deficient	37/44 (84%)	37/81 (46%)			0.36 (0.23-0.57
Proficient	108/140 (77%)	210/269 (78%)		0.0001	0.92 (0.73.1.16
Not evaluable	3/5 (60%)	6/10 (60%)		0.0001	1 13 (0 28.4 54
D-I 1 (IC) expression	010 (0010)	0.10 (00.0)		·	1.10 (0.20-1.01
Positive	32/44 (73%)	19/86 (57%)			0.56 /0.35-0.88
Negative	102/129 (79%)	186/247 (75%)			0.86 (0.68 1.10
Not evaluable	14/16 (88%)	18/27 (67%)			0.42 (0.21.0.87
	14110 (00.10)	10121 [0170]			0.72 [0.21*0.01
Intact	107/131 (82%)	188/248 (76%)			0 74 /0 58 0 94
Loss	39/55 /71%)	61/104 (59%)			0 74 /0 49.1 11
Not evaluable	2/3 (67%)	4/8/50%)			0.60 /0.11 2.22
INOT CIVILIDING	210 (01 70)				0.00 [0.11-3.33

Presented by Colombo N, et al. ESMO 2023

DUO-E study design

Patients

- Newly diagnosed FIGO 2009 Stage III/IV or recurrent endometrial cancer
- Known MMR status
- Naïve to first-line systemic anticancer treatment for advanced disease
- Naïve to PARP inhibitors and immunemediated therapy
- Adjuvant chemotherapy allowed if ≥12 months from last treatment to relapse
- All histologies except sarcomas

Endpoints Primarv PFS (RECIST per investigator) in: - Durva vs Control - Durva+Ola vs Control **Key secondary** OS (analytical) • Safety **Exploratory** PFS in Durva+Ola vs durva Subgroup analyses of PFS - Including MMR, PD-L1, and HRRm

Presented by Westin SN, et al. ESMO 2023

DUO-E

PFS: ITT population Primary endpoint

	(N=241)	(N=238)	(N=239)			
Events, n (%)	173 (71.8)	139 (58.4)	126 (52.7)			
Median PFS (95% CI),* months	9.6 (9.0–9.9)	10.2 (9.7–14.7)	15.1 (12.6–20.7)			
HR (95% CI) vs Control†		0.71 (0.57–0.89); <i>P</i> =0.003	0.55 (0.43–0.69); <i>P</i> <0.0001			
HR (95% CI) vs Durva [†]			0.78 (0.61–0.99)			
	Overall data maturity 61.0%					

0 - -- 1 --- 1

Presented by Westin SN, et al. ESMO 2023

DUO-E: PFS by MMR Status

Exploratory subgroup analysis. MMR status evaluated using the Ventana immunohistochemistry MMR panel. Rates were estimated by the KM method. *CI for median PFS was derived based on the Brookmeyer-Crowley method; [†]The HR and CI were estimated from an unstratified Cox proportional hazards model.

FSV

MADRID 2023

DUO-E: PFS Subgroup Analysis

By stratification factors and biomarker status

All patients 0.53 (0.42–0.67) 126/239 (52.7) 173/241 (71.8) Disease status 0.47 (0.33–0.66) 58/114 (50.9) 81/115 (70.4) Newly diagnosed 0.59 (0.43–0.81) 68/125 (54.4) 92/126 (73.0) MMR status 0.57 (0.44–0.73) 108/191 (56.5) 148/192 (77.1)	
Disease status 0.47 (0.33–0.66) 58/114 (50.9) 81/115 (70.4) Newly diagnosed • 0.59 (0.43–0.81) 68/125 (54.4) 92/126 (73.0) MMR status • • 0.57 (0.44–0.73) 108/191 (56.5) 148/192 (77.1)	
Newly diagnosed 0.47 (0.33–0.66) 58/114 (50.9) 81/115 (70.4) Recurrent disease 0.59 (0.43–0.81) 68/125 (54.4) 92/126 (73.0) MMR status 0.57 (0.44–0.73) 108/191 (56.5) 148/192 (77.1)	
Recurrent disease 0.59 (0.43-0.81) 68/125 (54.4) 92/126 (73.0) MMR status 0.57 (0.44-0.73) 108/191 (56.5) 148/192 (77.1)	
MMR status 0.57 (0.44-0.73) 108/191 (56.5) 148/192 (77.1)	
Proficient tumours 0.57 (0.44–0.73) 108/191 (56.5) 148/192 (77.1)	
Deficient tumours - 0.41 (0.21–0.75) 18/48 (37.5) 25/49 (51.0)	
Region	
Asia 0.68 (0.44–1.06) 37/67 (55.2) 45/68 (66.2)	
Non-Asia 0.48 (0.36–0.63) 89/172 (51.7) 128/173 (74.0)	
HRRm status	
HRRm 0.30 (0.15–0.58) 16/39 (41.0) 23/32 (71.9)	
Non-HRRm 0.59 (0.44–0.80) 81/141 (57.4) 96/132 (72.7)	
Unknown - 0.57 (0.36–0.89) 29/59 (49.2) 54/77 (70.1)	
PD-L1 expression	
Positive (TAP score ≥1%) 0.42 (0.31–0.57) 68/150 (45.3) 114/163 (69.9)	
Negative (TAP score <1%) 0.80 (0.55–1.16) 55/82 (67.1) 57/75 (76.0)	
Unknown NC (NC–NC) 3/7 (42.9) 2/3 (66.7)	

Westin SN et al. ESMO 2023;Abstract LBA41.

KEYNOTE-0775

2nd Line Pembrolizumab + Lenvatinib Confirmatory Trial

Advanced, recurrent, or metastatic EC 1 prior platinum regimen for advanced disease PS 0 to 1 N = 827

NCT03517449

 Pembrolizumab 200 mg IV every 3 wk Lenvatinib 20 mg PO once daily Up to 35 cycles

Physician's choice chemotherapy Doxorubicin or paclitaxel

Treatment until PD or unacceptable toxicity Primary endpoints: PFS, OS Secondary endpoints: ORR, TTF, safety, QoL

Primary and key secondary data are forthcoming

Presented by Colomba E, et al. ESMO 2023
KEYNOTE-775

	pMMR pembro completers (n=30) All-comer pembro completers (n=41)			
Median PFS ^{a,b} (95% CI), mos	34.1 (20.1-NE)	34.1 (27.7-NE)		
Median OS ^b (95% CI), mos	NR (NE-NE)	NR (NE-NE)		
OS rate at 36 mos ^b (95% CI), %	84.3 (63.2-93.8)	89.0 (73.1-95.7)		
ORR ^a (95% CI), %	63.3 (43.9-80.1)	63.4 (46.9-77.9)		
CR ^a (95% CI), %	23.3 (9.9-42.3)	19.5 (8.8-34.9)		
Median DOR ^{a,b} (range), mos	NR (3.5-39.5+)	NR (3.5-39.5+)		
Probability of pts with extended DOR ^a , % ^b ≥24 n	83.870.9			
Drug-related AEs ^c , n (%) any grade, Grade ≥3		41 (100), 33 (80.5)		

Presented by Colomba E, et al. ESMO 2023

Neoadjuvant Pembrolizumab for Mismatch Repair-Deficient Endometrial Cancer

Tumor Responses with Neoadjuvant Pembrolizumab for Mismatch Repair-Deficient Endometrial Cancer

ORR: 37.5% (95% CI 8.52 – 75.51%)

UTOLA study design

Randomized phase II trial

Presented by Joly F, et al. ESMO 2023

UTOLA **PFS: According to HRD status**

HRp (LGE <6) n = 67

Presented by Joly F, et al. ESMO 2023

Dr Tewari – Case 1: Advanced Endometrial Cancer

- 69 y/o Asian nulliparous businesswoman
 - PMP VB
- TVUS: 9 cm uterus
 - Hypervascular endometrial mass
 - Non-visualization of ovaries
 - Absence of free fluid
- EMB: FIGO grade 3 clear cell adenocarcinoma
- CT chest/abdomen/pelvis:
 - 3 cm aorto-caval nodes
- PMH: non-contributory
- PSH: no prior surgeries
- BMI: 23

Dr Tewari – Case 1 (continued)

- Robotic hysterectomy with bilateral salpingoophorectomy & paraaortic/pelvic lymphadenectomy
- dMMR: carboplatin + paclitaxel & dostarlimab
 - Tolerating well, currently receiving cycle 3

Dr Tewari – Case 2: Recurrent Endometrial Cancer

- 62 y/o Indian Para-2 PMP VB
- TVUS: $10 \times 6 \times 8$ cm uterus w/12 mm EMS
- No adnexal masses or free fluid
- EMB: Grade 2 endometrioid adenocarcinoma
- PMH: Obesity (BMI 34), well-controlled htn, NIDDM, and hypercholesterolemia
- PSH: C/2 x 2 (Pfannensteil), LSC cholecystectomy
- ROS: denies SOB, chest pain, etc
- Robotic hyst-BSO, sentinel lymphatic mapping, MMR IHC

Dr Tewari – Case 2 (continued)

- FIGO stage IIIC1, pMMR
- Adjuvant carboplatin plus paclitaxel x 6 cycles
- NED x 1.5 yrs
- Recurrence confirmed by CT-guided bx (retroperitoneal nodes)
 - Pembrolizumab plus lenvatinib
 - Dose reduction lenvatinib 10 mg daily (Cycle 4+)

Agenda

INTRODUCTION: Pan-tumor Indications for New Therapies

MODULE 1: Endometrial Cancer

• Key Issue – Immunotherapy

MODULE 2: Cervical Cancer

- Key Issue Immunotherapy
- Key Issue Tisotumab vedotin

MODULE 3: Ovarian Cancer

- Key Issue PARP inhibitors in primary management (maintenance) and relapsed disease
- Key Issue Mirvetuximab soravtansine and other antibody-drug conjugates

INTERLACE Trial Design

Key eligibility criteria

- Newly diagnosed histologically confirmed FIGO (2008) stage IB1 node+,IB2 ,II,IIIB,IVa squamous, adeno, adenosquamous cervical cancer
- No nodes above aortic bifurcation
- Adequate renal/liver and bone marrow function
- Fit for chemotherapy & radical RT
- No prior pelvic RT

RT=Radiation IMRT=Intensity modulated radiation EBRT=External beam radiation BT= Brachytherapy RTQA=Radiation guality assurance

Presented by McCormack M, et al. ESMO 2023

INTERLACE Progression-Free Survival (median FU 64m)

INTERLACE Overall Survival (median FU 64m)

Presented by McCormack M, et al. ESMO 2023

ENGOT-cx11/GOG-3047/KEYNOTE-A18: Randomized, Double-Blind, Phase 3 Study

^aA 6th cycle was allowed per investigator discretion. EBRT, external beam radiotherapy; FIGO, International Federation of Gynecology and Obstetrics; Gy, grays; IMRT, intensity-modulated radiotherapy; Q3W, every 3 weeks; Q6W, every 6 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; VMAT, volumetric-modulated arc therapy. ENGOT-cx11/GOG-3047/KEYNOTE-A18 ClinicalTrials.gov identifier, NCT04221945.

KEYNOTE-A18

Primary Endpoint: Progression-Free Survival

Response assessed per RECIST v1.1 by investigator review or histopathologic confirmation. #With 269 events (88.5% information fraction), the observed P = 0.0020 (1-sided) crossed the prespecified nominal boundary of 0.0172 (1-sided) at this planned first interim analysis. The success criterion of the PFS hypothesis was met, and thus no formal testing of PFS will be performed at a later analysis. Data cutoff date: January 9, 2023.

Primary Endpoint: Overall Survival

Data cutoff date: January 9, 2023.

Presented by Lorusso D, et al. ESMO 2023

KEYNOTE-826 FINAL OVERALL SURVIVAL

Key Eligibility Criteria

- Persistent, recurrent, or metastatic cervical cancer not amenable to curative treatment
- No prior systemic chemotherapy (prior radiotherapy and chemoradiotherapy permitted)
- ECOG PS 0 or 1

Stratification Factors

- Metastatic disease at diagnosis (yes vs no)
- PD-L1 CPS (<1 vs 1 to <10 vs ≥10)
- Planned bevacizumab use (yes vs no)

End Points

- **Dual primary:** OS and PFS per RECIST v1.1 by investigator
- Secondary: ORR, DOR, 12-mo PFS, and safety
- Exploratory: PROs assessed per EuroQol EQ-5D-5L VAS

KEYNOTE-826

Monk BJ, et al. J Clin Oncol 2023 Nov 2 [Epub ahead of print].

Dr Tewari – Case 3 Locally Advanced Cervical Cancer

- 56 y/o w/VB, vaginal discharge, left flank pain
- Speculum: fungating 5 cm mass replacing cervix and upper vagina
 - Bx: G3 SCCA
- Bimanual & Rectovaginal exam
 - Bilateral parametrial involvement
 - Left pelvic sidewall extension
 - No rectal infiltration
- No peripheral adenopathy
- PET/CT
 - Left hydronephrosis (moderate)
 - Left pelvic adenopathy (SUV 9, 3 nodes short axis 1.6-2.0 cm)
- FIGO stage IIICr
- Treatment options
 - CDDP-based chemoradiation plus HDR Intracavitary Brachytherapy
 - Induction chemoRx (INTERLACE) followed by chemoRT
 - ChemoRT plus Pembrolizumab (KEYNOTE-A18)
 - INTERLACE plus KEYNOTE-A18?

innovaTV 301: A Randomized, Open-Label, Phase 3 Trial

• Data presented herein are a planned interim analysis

IC, investigator's choice

End of treatment visit occurred 30 days after the last dose of treatment. Survival follow-up occurred every 60 days after the last dose of treatment.

^aChemotherapy regimens were given at the following doses: topotecan: 1 or 1.25 mg/m² IV on Days 1 to 5, every 21 days; vinorelbine: 30 mg/m² IV on Days 1 and 8, every 21 days; gencitabine: 1000 mg/m² IV on Days 1 and 8, every 21 days; irinotecan: 100 or 125 mg/m² IV weekly for 28 days, every 42 days; pemetrexed: 500 mg/m² on Day 1, every 21 days; ^bOS was defined as the time from the date of randomization to the date of death due to any cause; ^cAssessed by investigator.

Presented by Vergote I, et al. ESMO 2023

innovaTV 301

Overall Survival (Primary Endpoint)

^aThe threshold for statistical significance is 0.0226 (2-sided), based on the actual number of OS events at interim analysis.

Presented by Vergote I, et al. ESMO 2023

innovaTV 301: PFS by Investigator

^aThe threshold for statistical significance is 0.0453 (2-sided), based on the actual number of PFS events at interim analysis.

innovaTV 301: Antitumor Activity

	Tisotumab Vedotin (N=253)	IC Chemotherapy (N=249)		
ORR, % (95% CI)	17.8 (13.3-23.1)	5.2 (2.8-8.8)		
Odds ratio (95% CI) P value	4.0 (2.1-7.6) p<0.0001			
Best Overall Response, n (%)				
CR	6 (2.4)	0		
PR	39 (15.4)	13 (5.2)		
SD	147 (58.1)	132 (53.0)		
PD	46 (18.2)	74 (29.7)		
Not evaluable/Not available	15 (5.9)	30 (12.0)		
DCR ^a , % (95% CI)	75.9 (70.1-81.0)	58.2 (51.8-64.4)		
Median DOR (95% CI)	5.3 (4.2-8.3)	5.7 (2.8-NR)		

^aDCR defined as CR+PR+SD; CR and PR were confirmed responses. The minimum criteria for SD duration was ≥5 weeks after the date of randomization.

Vergote IB et al. ESMO 2023; Abstract LBA9.

innovaTV 301: Most Common Treatment-Emergent Adverse Events (TRAEs)

- Grade 5 TRAEs occurred in 2 (0.8%) and 1 (0.4%) patients in the tisotumab vedotin and IC chemotherapy arms, respectively^b
- Median relative dose intensity was 96.1% and 90.0% in the tisotumab vedotin and IC chemotherapy arms, respectively

aTRAEs listed are those occurring in ≥15% of patients on either arm; bGrade 5 TRAEs included acute kidney injury (n=1) and Stevens-Johnson syndrome (n=1) in the tisotumab vedotin arm and pancytopenia (n=1) in the IC chemotherapy arm.

innovaTV 301: Adverse Events of Special Interest with Tisotumab Vedotin

- There were no grade 4 or 5 AESIs
- Dose discontinuation due to ocular and peripheral neuropathy events occurred in 5.6% of patients for each

Three most common preferred terms for each AESI				
Ocular	Conjunctivitis (30.4%), keratitis (15.6%), dry eye (13.2%)			
Peripheral neuropathy	Peripheral sensory neuropathy (26.8%), paresthesia (2.8%), muscular weakness (2.4%), peripheral sensorimotor neuropathy (2.4%)			
Bleeding	Epistaxis (22.8%), hematuria (3.2%), vaginal hemorrhage (3.2%)			

Agenda

INTRODUCTION: Pan-tumor Indications for New Therapies

MODULE 1: Endometrial Cancer

• Key Issue – Immunotherapy

MODULE 2: Cervical Cancer

- Key Issue Immunotherapy
- Key Issue Tisotumab vedotin

MODULE 3: Ovarian Cancer

- Key Issue PARP inhibitors in primary management (maintenance) and relapsed disease
- Key Issue Mirvetuximab soravtansine and other antibody-drug conjugates

Ovarian Cancer: PARPi Approval History

Voluntary Withdrawal of Indications

Direct Healthcare Professional Communication (DHPC)

5/5/22 Niraparib (NOVA) OS disadvantage 2L+ Non-gBRCAmut HRDpos subgroup mOS 37 vs. 41 months (HR = 1.32 [95% CI 0.84, 2.06])

6/28/22 Rucaparib (ARIEL4) 2L+

mOS 19 vs. 25 months (HR of 1.31 [95% CI 1.00, 1.73]) p= 0.0507

8/10/22 Olaparib (SOLO3) for 3L+ treatment of gBRCAm mOS 30 vs. 39 months (HR of 1.33 [95% CI 0.84, 2.18])

Tew WP, et al. ASCO Guideline Update. JCO 2022:JCO2201934. Tattersall A, et al. Cochrane Database Syst Rev. 2022;2(2):CD007929. Kristeleit R, et al. Lancet Oncol. 2022;23(4):465-478. Penson RT, et al. JCO 2020;38(11):1164-1174.

Case Discussion

Patient with a germline BRCA mutation (or other homologous recombination deficiency)

- Usual upfront treatment approach, including maintenance therapy for a Stage III ovarian cancer
- Usual approach to progressive metastatic ovarian cancer for patients who have not received a PARP inhibitor

ASCO 2023

Effectiveness of PARP inhibitor maintenance therapy (mPARPi) in advanced ovarian cancer (OC) by *BRCA1/2* and a novel HRD signature (HRDsig) in real-world practice

Debra Richardson¹, Julia C. F. Quintanilha², Ryon P. Graf², Natalie Danziger², Alexa B. Schrock², Christina Washington¹, Lauren Dockery¹, Tamara Snow³, Anosheh Afghahi³, Anthony Frachioni³, Julia Elvin², Kathleen Moore ¹Oklahoma University, Oklahoma City, OK ²Foundation Medicine, Inc., Cambridge, MA; ³Flatiron Health, New York, NY

BACKGROUND

- mPARPi following surgery and platinum chemotherapy (PCT) is a standard of care treatment for newly diagnosed advanced OC.
- Clinical trials have demonstrated benefit of mPARPi for patients with and without BRCA1/2 mutations (BRCA+/-).
- · The degree of benefit of mPARPi for patients without homologous recombination deficiency (HRD) biomarkers detected remains in question.
- · This study aimed to compare the effectiveness of mPARPi in real world practice by biomarker status (BRCA1/2 mutations and a novel HRDsig)

MATERIALS AND METHODS

- · This study included platinum-sensitive patients with advanced OC who received 1st-line PCT with real-world progression-free survival (rwPFS) of at least 10 months after treatment initiation and received either mPARPi (without bevacizumab) or no maintenance therapy.
- This study used the nationwide (US-based) de-identified Flatiron Health-Foundation Medicine ovarian cancer clinico-genomic database (FH-FMI CGDB), originating from ~280 US cancer clinics (~800 sites of care) between 01/2015 and 12/2022. Retrospective longitudinal clinical data were derived from electronic health record data, comprising patient-level structured and unstructured data, curated via technology-enabled abstraction, and were linked to genomic data derived from Foundation Medicine comprehensive genomic profiling (CGP) tests in the Flatiron FH-FMI CGDB by de-identified. deterministic matching
- rwPFS and real-world overall survival (rwOS) were compared between patients +/- biomarkers by Cox models, adjusted for propensity scores accounting for disease stage at diagnosis, ECOG, age, and BRCA status (for the HRDsig analysis).
- · Foundation Medicine's HRDsig was assessed using a machine learning based algorithm with copy number features and select indel features used as inputs. HRDsig status was determined by pre-specified cutoff.

FIGURE I: Conort Selection and analysis overview.	
Cohort selection diagram (A) and temporal visualization of the analysis cohort (B) are show	vn.

PATIENTS CHARACTERISTICS

	none (N=395)	mPARPi (N=112)	Total (N=507)	p value
Age				0.952
Median (Q1, Q3)	67.0 (58.0, 73.0)	66.0 (59.8, 73.2)	66.0 (59.0, 73.0)	
ECOG PS				0.794
0	149 (37.7%)	45 (40.2%)	194 (38.3%)	
1	135 (34.2%)	38 (33.9%)	173 (34.1%)	
2+	32 (8.1%)	6 (5.4%)	38 (7.5%)	
Unknown	79 (20.0%)	23 (20.5%)	102 (20.1%)	
Stage at Diagnosis				0.018
Stage III	262 (66.3%)	61 (54.5%)	323 (63.7%)	
Stage IV	86 (21.8%)	39 (34.8%)	125 (24.7%)	
Unknown/not documented	47 (11.9%)	12 (10.7%)	59 (11.6%)	
Histology				0.156
Epithelial NOS	35 (8.9%)	15 (13.4%)	50 (9.9%)	
Serous	360 (91.1%)	97 (86.6%)	457 (90.1%)	
Extent of Debulking				0.075
Optimal	296 (74.9%)	83 (74.1%)	379 (74.8%)	
Suboptimal	31 (7.8%)	3 (2.7%)	34 (6.7%)	
Unknown/not documented	68 (17.2%)	26 (23.2%)	94 (18.5%)	
Residual Disease Status				0.042
No residual disease	186 (47.1%)	64 (57.1%)	250 (49.3%)	
Residual disease	121 (30.6%)	21 (18.8%)	142 (28.0%)	
Unknown/not documented	88 (22.3%)	27 (24.1%)	115 (22.7%)	
TP53 Alteration				0.086
Negative	33 (8.4%)	4 (3.6%)	37 (7.3%)	
Positive	362 (91.6%)	108 (96.4%)	470 (92.7%)	
BRCA group				< 0.001
BRCA1/2	59 (14.9%)	24 (30.4%)	93 (18.3%)	
Negative	336 (85.1%)	78 (69.6%)	414 (81.7%)	
HRDsig				< 0.001
(+)	138 (34.9%)	61 (54.5%)	199 (39.3%)	
(-)	257 (65.1%)	51 (45.5%)	308 (60,7%)	

KEY TAKEAWAY HE SA A novel HRDsig biomarker is able to predict benefit from mPARPi regardless of BRCA status (HR of 0.31 for PFS) in real-world OC patients. and those who are HRDsig(-) might be spared mPARPi therapy use (HR of 0.98 for PFS).

BRCA1/2 alt

than BRCA1/2 alterations alone

assessed for 24% patients with gLOH not evaluable

outcomes when BRCAalt but not BRCAwt.

Full Cohort -

(A)

PFS: PARPi maintenance vs. none

Favors PARPi Favors no

maintenance

HR: 0.55 (0.41-0.7)

maintenance

FIGURE 6: HRDsig is superior to BRCA for enrichment of favorable PFS and OS.

FIGURE 7: Patients receiving maintenance PARPi had more favorable outcomes when gLOH high but not gLOH low.

Durvalumab with paclitaxel/carboplatin and bevacizumab followed by maintenance durvalumab, bevacizumab and olaparib in patients with newly diagnosed advanced ovarian cancer without a tumor *BRCA1/BRCA2* mutation: results from the randomized, placebo-controlled Phase III DUO-O/ENGOT-ov46/AGO-OVAR 23/GOG-3025 trial

Philipp Harter,¹ Fabian Trillsch,² Aikou Okamoto,³ Alexander Reuss,⁴ Jae-Weon Kim,⁵ Maria Jesús Rubio-Pérez,⁶ Mehmet Ali Vardar,⁷ Giovanni Scambia,⁸ Olivier Trédan,⁹ Gitte-Bettina Nyvang,¹⁰ Nicoletta Colombo,¹¹ Anita Chudecka-Głaz,¹² Christoph Grimm,¹³ Stephanie Lheureux,¹⁴ Els Van Nieuwenhuysen,¹⁵ Florian Heitz,¹⁶ Robert M. Wenham,¹⁷ Kimio Ushijima,¹⁸ Emily Day,¹⁹ Carol Aghajanian²⁰

¹Kliniken Essen-Mitte, Essen, and AGO, Germany; ²University Hospital, LMU Munich, Munich, and AGO, Germany; ³The Jikei University School of Medicine, Tokyo, and JGOG, Japan; ⁴Coordinating Center for Clinical Trials of the Philipps-University of Marburg, Marburg, and ENGOT, Germany; ⁵ Seoul National University Hospital, Seoul, and KGOG, South Korea; ⁶Reina Sofia University Hospital, Cordoba, and GEICO, Spain; ⁷Medical Faculty, University of Cukurova, and Balcali Hospital, Adana, and TRSGO, Turkey; ⁸Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, and MITO, Italy; ⁹Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, and GINECO, France; ¹⁰ Odense Universitetshospital, Odense, and NSGO, Denmark; ¹¹University of Milan-Bicocca and Istituto Europeo di Oncologia IRCCS, Milan, and MANGO, Italy; ¹²SPSK Nr 2, Pomeranian Medical University, Szczecin, and PGOG, Poland; ¹³Gynecologic Cancer Unit, Medical University Vienna, and AGO-Au, Austria; ¹⁴Princess Margaret Hospital, Toronto, ON, and PMHC, Canada; ¹⁵UZ Leuven, Leuven, and BGOG, Belgium, ¹⁶Ev. Kliniken Essen-Mitte, Essen, and Charité Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, and AGO, Germany; ¹⁷Moffitt Cancer Center, Tampa, FL, and GOG-F, USA; ¹⁸Kurume University School of Medicine, Kurume, and JGOG, Japan; ¹⁹Oncology Biometrics, AstraZeneca, Cambridge, UK; ²⁰Memorial Sloan Kettering Cancer Center, New York, NY, and GOG-F, USA

ClinicalTrials.gov identifier: NCT03737643

DUO-O study design

Treatment continued until disease progression, study treatment was complete or other discontinuation criteria were met

Dosing and schedule: bevacizumab (15 mg/kg IV q3w); durvalumab (1120 mg IV q3w); olaparib (300 mg po bid); chemotherapy: paclitaxel 175 mg/m² IV q3w and carboplatin at AUC5 or AUC6 IV q3w. PFS interim analysis DCO: December 5, 2022. *With or without bevacizumab according to local practice; †Cycles 2–6; ‡Genomic instability score ≥42 assessed prospectively by Myriad MyChoice CDx assay.

AUC, area under the curve; bev, bevacizumab; bid, twice daily; CTx, chemotherapy; DCO, data cutoff; durva, durvalumab; FIGO, International Federation of Gynecology and Obstetrics; HRD, homologous recombination deficiency; ITT, intent-to-treat; IV, intravenous; ola, olaparib; OS, overall survival; PC, paclitaxel/carboplatin; po, by mouth; q3w, every 3 weeks; R, randomization; RECIST, Response Evaluation Criteria for Solid Tumors.

PRESENTED BY: Dr Philipp Harter #ASCO23

2023 ASCO

ANNUAL MEETING

Subgroup analysis of PFS by HRD status

	Arm 1 PC + bev N=143	Arm 2 PC + bev + durva N=148	Arm 3 PC + bev + durva + ola N=140
Events, n (%)	86 (60)	69 (47)	49 (35)
Median PFS, months [†]	23.0	24.4 [‡]	37.3 [‡]
HR (95% Cl) vs Arm 1		0.82 (0.60–1.12)§	0.51 (0.36–0.72)§

	Arm 1 PC + bev N=216	Arm 2 PC + bev + durva N=199	Arm 3 PC + bev + durva + ola N=211
Events, n (%)	157 (73)	142 (71)	127 (60)
Median PFS, months [†]	17.4	15.4	20.9
HR (95% CI) vs Arm 1		0.94 (0.75–1.18)§	0.68 (0.54–0.86)§

*24-month PFS rates unstable; †Medians and rates were estimated by KM method; ‡Median PFS in HRD-positive subgroup Arm 3 and Arm 2 unstable: §HR and CI were estimated from an unstratified Cox proportional hazards model

Courtesy of Richard T Penson, MD, MRCP

2023 **ASCO**

ANNUAL MEETING

Safety summary

	(chemothera	Overall chemotherapy phase + maintenance phase)			Maintenance phase		
AEs, n (%)	Arm 1 PC + bev N=376	Arm 2 PC + bev + durva N=373	Arm 3 PC + bev + durva + ola N=378	Arm 1 PC + bev N=331	Arm 2 PC + bev + durva N=323	Arm 3 PC + bev + durva + ola N=336	
Any-grade AE	373 (99)	371 (99)	375 (99)	308 (93)	303 (94)	328 (98)	
Grade ≥3 AE	231 (61)	245 (66)	269 (71)	88 (27)	113 (35)	164 (49)	
AE with outcome of death	4 (1)	9 (2)	6 (2)	2 (1)	3 (1)	4 (1)	
Serious AE (including outcome of death)	128 (34)	161 (43)	148 (39)	50 (15)	91 (28)	83 (25)	
AE of special interest to olaparib							
MDS/AML*	1 (<1)	0	2 (1)	1 (<1)	0	1 (<1)	
New primary malignancies*	1 (<1)	1 (<1)	4 (1)	1 (<1)	1 (<1)	3 (1)	
Pneumonitis	3 (1)	5 (1)	7 (2)	1 (<1)	3 (1)	6 (2)	
Any immune-mediated AEs [†]	132 (35)	209 (56)	200 (53)	94 (28)	139 (43)	141 (42)	
AEs leading to dose modification ^{‡,§}	272 (72)	299 (80)	323 (85)	163 (49)	182 (56)	254 (76)	
AEs leading to discontinuation [‡]	77 (20)	98 (26)	131 (35)	44 (13)	54 (17)	88 (26)	
AEs leading to discontinuation of PC/bevacizumab	57 (15)	59 (16)	70 (19)	27 (8)	24 (7)	35 (10)	
AEs leading to discontinuation of durvalumab/placebo	24 (6)	62 (17)	65 (17)	14 (4)	39 (12)	40 (12)	
AEs leading to discontinuation of olaparib/placebo	15 (4)	19 (5)	62 (16)	14 (4)	19 (6)	61 (18)	

Includes AEs with onset or worsening on or after the date of first dose of durvalumab/placebo or olaparib/placebo (overall) or first dose of olaparib/placebo (maintenance phase)

until initiation of the first subsequent anticancer therapy following last dose of study treatment or until the end of the safety follow-up period.

*Includes events from first dose of durvalumab/olaparib/placebo until end of study; †Investigator-assessed; ‡Based on action taken on AE CRF for at least one treatment. For durvalumab/placebo, dose modification includes skipped or delayed doses, or interruption of the infusion; §Either dose reduction or dose interruption. AE, adverse event; AML, acute myeloid leukemia; CRF, case report form; MDS, myelodysplastic syndrome.

#ASCO23 PRESENTED BY: Dr Philipp Harter

2023 **ASCO**

ANNUAL MEETING

Conclusions

- DUO-O met its primary endpoint at the planned PFS interim analysis, demonstrating statistically significant and clinically meaningful improvement in PFS with first-line chemotherapy + bevacizumab + durvalumab followed by maintenance bevacizumab + durvalumab + olaparib compared with control in patients with non-tBRCAm advanced OC
 - Non-tBRCAm HRD-positive: HR 0.49 (0.34–0.69); P<0.0001
 - Non-tBRCAm ITT: HR 0.63 (0.52–0.76); P<0.0001
- PFS benefit was observed across subgroups, including those patients with HRD-negative disease (HR 0.68 [0.54–0.86])
- A numerical, but not statistical, improvement in PFS was shown with chemotherapy + bevacizumab + durvalumab followed by maintenance bevacizumab + durvalumab, compared with control, in the non-tBRCAm ITT population at the time of the PFS interim analysis
- Safety was generally consistent with the known profiles of each individual agent
- The trial is ongoing final PFS, OS and other key secondary results will be reported in due course

Efficacy and Safety of Senaparib as Maintenance Treatment in Patients with Newly Diagnosed Advanced Ovarian Cancer (FLAMES): A Randomised, Double-blind, Placebo-Controlled, Phase 3 Trial

<u>Xiaohua Wu¹</u>, Jihong Liu², Xiaobin Wang³, Jing Wang⁴, Li Wang⁵, Jianqing Zhu⁶, Beihua Kong⁷, Junwei Fei⁸, Ying Tang⁹, Bairong Xia¹⁰, Zhiqing Liang¹¹, Ke Wang¹², Zhongqiu Lin¹³, Yi Huang¹⁴, Hong Zheng¹⁵, An Lin¹⁶, Kui Jiang¹⁷, Wei Wang¹⁸, Xin Wang¹⁹, Ge Lou²⁰

¹Fudan University Shanghai Cancer Center, Shanghai, China, ²Sun Yat-sen University Cancer Center, Guangzhou, China, ³Liaoning Cancer Hospital, Shenyang, China, ⁴Hunan Cancer Hospital, Changsha, China, ⁵Henan Cancer Hospital, Zhengzhou, China, ⁶Cancer hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China, ⁷Qilu Hospital of Shandong University, Jinan, China, ⁸The First Hospital of Jilin University, Changchun, China, ⁹Chongqing University Cancer Hospital, Chongqing, China, ¹⁰Anhui Provincial Cancer Hospital, Anhui Provincial Hospital West District, Hefei, China, ¹¹South West Hospital, The First Affiliated Hospital of Army Medical University, Chongqing, China, ¹²TMUCIH - Tianjin Medical University Cancer Institute and Hospital, Tianjin, China, ¹³The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China, ¹⁴Hubei Cancer Hospital, Wuhan, China, ¹⁵Beijing Cancer Hospital, Beijing, China, ¹⁶Fujian Provincial Cancer Hospital of Guangzhou Medical University, Guangzhou, China, ¹⁹Zhongshan Hospital Xiamen University, Xiamen, China, ²⁰Harbin Medical University Cancer Hospital, Harbin, China

Dr. Xiaohua Wu, MD

FLAMES trial design

Randomised, Double-blind, Placebo-controlled

- Newly diagnosed, FIGO stage III-IV, high grade serous or endometrioid ovarian, fallopian tube or primary peritoneal cancer
- Subjects with complete response or partial response after platinum-based treatment
- Subjects must be randomised within 8 weeks after last dose of the chemotherapy

R 2:1 Senaparib 100 mg QD (n=262) Stratification factors: • Response to platinum-based chemotherapy • Status of BRCA mutations (positive/negative) Placebo 100 mg QD (n=131)

Treatment* continued for up to 2 years or until disease progression, unacceptable toxicity

Primary Endpoint

• PFS by BICR (RECIST v1.1) †

Secondary Endpoints

- PFS by investigator assessment (RECIST v1.1)
- Safety
- Time from randomisation to study treatment discontinuation or death
- Time from randomisation to first subsequent therapy or death
- OS
- Chemotherapy free interval
- HRQoL (FACT-O TOI score)

Pre-planned interim analysis (data cut-off date: March 16, 2023, median follow-up duration 22.3 months)

n=393

* Dose interruption or a sequential reduction (100mg, 80mg, 60mg, 40mg) of study drug can be implemented for adverse reaction management.

FIGO International Federation of Gynecology and Obstetrics; BRCA breast cancer susceptibility gene; BICR blinded independent central review; QD once daily; PFS progression-free survival; OS overall survival; HRQoL health-related quality of life; FACT-O functional assessment of cancer therapy –ovarian; TOI trial outcome index

Substantial PFS benefit regardless of BRCA mutation status

FLAMES prespecified subgroup analysis

Data cut-off date: March 16, 2023

VADRID 2023 ESVO

Dr. Xiaohua Wu

Atezolizumab combined with platinum-based chemotherapy and maintenance niraparib for recurrent ovarian cancer with a platinum-free interval >6 months: Primary analysis of the double-blind placebo-controlled ENGOT-Ov41/GEICO 69-O/ANITA phase 3 trial

Antonio González-Martín, MD, PhD Cancer Center Clínica Universidad de Navarra and GEICO, Madrid, Spain

On behalf of MJ Rubio Perez (GEICO, Spain), F Heitz (AGO, Germany), RD Christensen (GEICO & NSGO, Denmark), N Colombo (MaNGO, Italy), T Van Gorp (BGOG, Belgium), A Oaknin (GEICO, Spain), A Leary (GINECO, France), L Gaba (GEICO, Spain), C Lebreton (GINECO, France), LM De Sande González (GEICO, Spain), M Romeo Marin (GEICO, Spain), A Redondo (GEICO, Spain), MP Barretina Ginesta (GEICO, Spain), JA Perez-Fidalgo (GEICO, Spain), A Santaballa Bertran (GEICO, Spain), MJ Bermejo-Pérez (GEICO, Spain), I Bruchim (ISGO, Israel), I Ray-Coquard (GINECO, France), F Selle (GINECO, France)

LBA37, Madrid, Spain, 20th October 2023 ANITA = Atezolizumab and NIraparib Treatment Association

ANITA/ENGOT-Ov41/GEICO 69-O (NCT03598270) trial design

Placebo-controlled multicentre randomised phase 3 trial

- Measurable high-grade serous, endometrioid or undifferentiated rOC
- TFIp >6 months
- ≤2 prior lines of CT (most recent including platinum)
- No prior PARPi for rOC^a
- No prior immune checkpoint inhibitor (any setting)
- ECOG PS ≤1
- Mandatory de novo biopsy^b

Stratification factors:

- Carboplatin doublet (PLD vs gemcitabine vs paclitaxel)
- TFIp (6–12 vs >12 months)
- BRCA status (mutated vs non-mutated)
- PD-L1 status (IC <1% vs ≥1% vs non-informative)^e

AUC = area under the curve; CR = complete response; d = day; ECOG PS = Eastern Cooperative Oncology Group performance status; IC = immune cells; ISD = individualised starting dose (300 mg, or 200 mg if baseline weight is <77 kg or baseline platelet count is <150,000 µL); PD = progressive disease; PLD = pegylated liposomal doxorubicin; PR = partial response; q21d = every 21 days; R = randomisation; RECIST = Response Evaluation Criteria in Solid Tumours; SD = stable disease aPrior PARPi after front-line therapy permitted if continued for ≥18 months (*BRCA* mutated) or ≥12 months (*BRCA* wildtype).
^bImplemented after randomisation of 82 patients (whose PD-L1 status was analysed in archival tissue).
^cAtezolizumab 1200 mg d1 q21d or 840 mg d1&8 q28d, depending on CT regimen. ^dCarboplatin AUC5 d1 + paclitaxel 175 mg/m² d1 q21d OR carboplatin AUC4 d1 + generitabine 1000 mg/m² d188 q21d OR carboplatin AUC5 d1 + PL D 30 mg/m² d1 q28d

d1 q21d OR carboplatin AUC4 d1 + gemcitabine 1000 mg/m² d1&8 q21d OR carboplatin AUC5 d1 + PLD 30 mg/m² d1 q28d. PD-L1-expressing IC on tumour area, determined by SP142 assay. Non-informative cases were capped at <10%

Primary endpoint: PFS

Antonio González-Martín, MD, PhD

Overall Survival Outcomes from NRG-GY004, a Phase III Study Comparing Single-Agent Olaparib or Combination Cediranib and Olaparib to Platinum Based Chemotherapy in Recurrent Platinum Sensitive Ovarian Cancer

Joyce F. Liu¹, Mark F. Brady², Ursula A. Matulonis¹, Austin Miller², Elise C. Kohn³, Elizabeth Swisher⁴, William P. Tew⁵, Noelle G. Cloven^{6,} Carolyn Muller⁷, David Bender⁸, Richard G. Moore⁹, David Michelin¹⁰, Steven Waggoner¹¹, Melissa Geller¹², Keiichi Fujiwara¹³, Stacy D'Andre¹⁴, Michael Carney¹⁵ Angeles A. Secord¹⁶, Joan L. Walker¹⁷, Michael A. Bookman¹⁸

¹Dana-Farber Cancer Institute, Boston, MA; ²Roswell Park Cancer Institute, Buffalo, NY; ³National Cancer Institute, Rockville, MD; ⁴University of Washington, Seattle, WA; ⁵Memorial Sloan Kettering Cancer Center, New York, NY; ⁶Texas Oncology, Fort Worth, TX; ⁷University of New Mexico, Albuquerque, NM; ⁸University of Iowa, Iowa City, IA; ⁹University of Rochester Medical Center, Rochester, NY; ¹⁰Cancer Research Consortium of West Michigan, Grand Rapids, MI; ¹¹Case Western Reserve University School of Medicine, Cleveland, OH; ¹²University of Minnesota, Minneapolis, MN; ¹³Saitama Medical University International Medical Center, Japan; ¹⁴Sutter Medical Group, Sacramento, CA; ¹⁵University of Hawaii, Honolulu, HI; ¹⁶Duke University Medical Center, Durham, NC, ¹⁷University of Oklahoma Health Sciences Center, Oklahoma City, OK, ¹⁸Kaiser Permanente Northern California, San Francisco, CA

2023 ESMO Congress; 20-24 October 2023

NRG-GY004 Study Design (NCT02446600)

doxorubicin (PLD)

<u>Primary endpoint</u>: Progression-free survival <u>Secondary efficacy endpoints</u>:

- Overall survival
- Objective response rate
- Activity in biomarker-defined populations

Overall Survival

Data cut-off March 7, 2023

	Chemo [†]	Cediranib + Olaparib	Olaparib
# of Pts	187	189	189
# of Events	114	153	152
Median OS (mos)	32.7	33.5	31.0
HR for OS vs chemo (95% CI)		1.12 (0.874-1.43)	1.27 (0.990-1.62)
Nominal p value		0.378	0.060

[†]Choice of chemotherapy, N (%)

• Carboplatin/PLD: 89 (47.6%)

- Carboplatin/gemcitabine: 51 (27.2%)
- Carboplatin/paclitaxel: 47 (25.1%)

Phase III MIRASOL (GOG 3045/ENGOT-ov55) Study: Mirvetuximab Soravtansine vs. Investigator's Choice of Chemotherapy in Platinum-Resistant, Advanced High-Grade Epithelial Ovarian, Primary Peritoneal or Fallopian Tube Cancers with High Folate Receptor-Alpha (FRα) Expression

Kathleen N. Moore¹, Antoine Angelergues², Gottfried E. Konecny³, Susana Banerjee⁴, Sandro Pignata⁵, Nicoletta Colombo⁶, John Moroney⁷, Casey Cosgrove⁸, Jung-Yun Lee⁹, Andrzej Roszak¹⁰, Shani Breuer¹¹, Jacqueline Tromp¹², Diana Bello Roufai¹³, Lucy Gilbert¹⁴, Rowan Miller¹⁵, Tashanna Myers¹⁶, Yuemei Wang¹⁷, Anna Berkenblit¹⁷, Domenica Lorusso¹⁸, Toon Van Gorp¹⁹

¹Stephenson Cancer Center University of Oklahoma College of Medicine, Oklahoma City, OK, USA; ²Groupe Hospitalier Diaconesses Croix Saint Simon, Paris, France; ³UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA; ⁴The Royal Marsden NHS Foundation Trust - Royal Marsden Hospital, London, UK; ⁵Istituto Nazionale Tumori- G. Pascale, Naples, Italy; ⁶European Institute of Oncology IRCCS, Milan, Italy and University of Milan-Bicocca, Milan, Italy; ⁷The University of Chicago, Chicago, IL, USA; ⁸The Ohio State University, Columbus, OH, USA; ⁹Severance Hospital, Seoul, South Korea; ¹⁰Wielkopolskie Centrum Onkologii, Poznan, Poland; ¹¹Hadassah Ein Kerem – Sharett, Jerusalem, Israel; ¹²Amsterdam UMC, Amsterdam, The Netherlands; ¹³Hopital Rene Huguenin, Institut Curie, Saint-Cloud, France; ¹⁴McGill University Health Centre, Montreal, Canada; ¹⁵University College London Hospital, London, UK; ¹⁶Baystate Medical Center, Springfield, MA, USA; ¹⁷ImmunoGen, Inc., Waltham, MA, USA; ¹⁸Fondazione Policlinico Universitario A. Gemelli, IRCCS and Catholic University of Sacred Heart, Rome, Italy; ¹⁹University Hospital Leuven Leuven Cancer Institute, Leuven, Belgium

Background

- No randomized phase 3 trial has shown an overall survival (OS) benefit of a novel therapy in platinum-resistant ovarian cancer (PROC)^{1, 2}
- Mirvetuximab soravtansine (MIRV) is an ADC comprising a FRα-binding antibody, cleavable linker, and maytansinoid DM4, a potent tubulintargeting agent^{3,4}
- FRα is expressed in ~90% of ovarian carcinomas,^{5, 6} with 35-40%⁷ of PROC tumors exhibiting high FRα expression (≥75% of tumor cells positive with ≥2+ intensity)⁸
- MIRV demonstrated an ORR of 32% and mDOR 6.9 months in the singlearm study SORAYA⁸ of BEV pre-treated PROC to support accelerated approval by the FDA⁹
- MIRASOL is the confirmatory, randomized, global phase 3 trial designed to support approval worldwide

PFS, progression-free survival; OS, overall survival; FRα, folate receptor alpha; ORR, objective response rate; ADC, antibody-drug conjugate; mDOR, median duration of response; FDA, Food and Drug Administration; BEV, bevacizumab; US, United States; EU, Europe. **1.** Pujade-Lauraine et al. *J Clin Oncol.* 2014;32(13):1302-1308. **2.** Richardson et al. *JAMA Oncol.* 2023;10.1001/jamaoncol.2023.0197. **3.** Moore et al. *Cancer.* 2017;123(16):3080-3087. **4.** Ab et al. *Mol Cancer Ther.*

2015;14(7):1605-1613. **5.** Markert et al. Anticancer Res. 2008;28(6A):3567-3572. **6.** Martin et al. Gynecol Oncol. 2017;147(2):402-407. 7. Data on file. **8.** Matulonis et al. J Clin Oncol. 2023:41(13):2436-2445. **9.** U.S. FOOD & DRUG ADMINISTRATION. BLA ACCELERATED APPROVAL. https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2022/761310Orig1s000ltr.pdf. Accessed May 23, 2023.

ASCO[®] AMERICAN SOCIETY OF CLINICAL ONCOLOGY KNOWLEDGE CONQUERS CANCER

Design

MIRASOL (NCT04209855)

An open-label, phase 3 randomized trial of MIRV vs investigator's choice chemotherapy in patients with FRα-high platinum-resistant ovarian cancer

AlBW, adjusted ideal body weight; BEV; bevacizumab; BICR, blinded independent central review; BRCA, BReast CAncer gene; CA-125, cancer antigen 125; chemo, chemotherapy; DOR, duration of response; FRα, folate receptor alpha; IC, investigator's choice; IHC, immunohistochemistry; INV, investigator; MIRV, mirvetuximab soravtansine; ORR, objective response rate; OS, overall survival; PARPi, poly (ADP-ribose) polymerase inhibitors; PFI, platinum-free interval; PFS, progression-free survival; PFS2, time from randomization until second disease progression; PLD, pegylated liposomal doxorubicin; PROs, patient-reported outcomes; PS2+, positive staining intensity ≥2; Q3W, every 3 weeks. ^aPROs will be measured using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire, 28-item Ovarian Cancer Module (OV28) study instrument. ^bGynecological Cancer InterGroup (GCIG) criteria.

1. ClinicalTrials.gov identifier: NCT04209855. Updated June 16, 2022. Accessed October 5, 2022. https://clinicaltrials.gov/ct2/show/NCT04209855

2. Moore K, et al. Presented at: 2020 American Society of Clinical Oncology Annual Meeting; May 29-31, 2020; Virtual. Abstract TPS6103.

Primary End Point: PFS by Investigator

Courtesy of Richard T Penson, MD, MRCP

#ASCO23 PRESENTED BY: Katy Moore MD

2023 **ASCO**

ANNUAL MEETING

Overall Survival

MIRV, mirvetuximab soravtansine; IC Chemo, investigator's choice chemotherapy; mOS, median overall survival; CI, confidence interval; HR, hazard ratio.

^aOverall survival is statistically significant based on pre-specified boundary p-value at interim analysis = 0.01313

#ASCO23 PRESENTED BY: Katy Moore MD

Safety Profile: TEAEs

MIRV, mirvetuximab soravtansine; IC Chemo: investigator's choice chemotherapy; Pac, paclitaxel; PLD, pegylated liposomal doxorubicin; Topo, topotecan.

*Pac n=82 (39%), PLD n=76 (37%), Topo n=49 (24%). Grade 2+ peripheral neuropathy events were observed in 12% and 16% of patients that received MIRV or paclitaxel, respectively

ASCO[®] AMERICAN SOCIETY OF CLINICAL ONCOLOGY KNOWLEDGE CONQUERS CANCER

MIRASOL Conclusions

- MIRV is the first novel treatment to **demonstrate a benefit in overall survival** in platinum-resistant ovarian cancer in a phase 3 trial
- MIRV demonstrated statistically significant and clinically meaningful improvement in PFS, ORR, and OS compared to IC chemotherapy, with a differentiated safety profile consisting predominantly of low-grade ocular and gastrointestinal events
- MIRV is the first ADC for ovarian cancer with proven efficacy and is the only FDAapproved biomarker-directed therapy for platinum-resistant ovarian cancer
- These data are practice-changing and position MIRV as a **new standard of care** for patients with FR α -positive PROC

#ASCO23

Implications of Recent Data Sets for the Current and Future Management of Breast Cancer

Part 2 of a 3-Part Post-ESMO Congress 2023 CME/MOC-Accredited Live Webinar Series

Thursday, November 9, 2023 5:00 PM – 6:00 PM ET

Faculty Aditya Bardia, MD, MPH Sara M Tolaney, MD, MPH

> Moderator Neil Love, MD

Thank you for joining us!

Please take a moment to complete the survey currently up on Zoom. Your feedback is very important to us. The survey will remain open for 5 minutes after the meeting ends.

CME and MOC credit information will be emailed to each participant within 5 business days.

