What I Tell My Patients: **Faculty Physicians and Nurses Discuss Patient Education About New Treatments and Clinical Trials** Fifteenth Annual RTP Symposium Series Held During the Annual ONS Congress Lung Cancer Friday, April 28, 2023 6:00 PM - 8:00 PM Faculty **Stephen V Liu, MD** Tara Plues, APRN, MSN Jillian Thompson, MSN, ANP-BC, AOCNP Anne S Tsao, MD, MBA **Moderator** Neil Love, MD

#### Faculty



**Stephen V Liu, MD** Associate Professor of Medicine MedStar Georgetown University Hospital Washington, DC



**Tara Plues, APRN, MSN** Hematology and Medical Oncology Cleveland Clinic Cleveland, Ohio



Anne S Tsao, MD, MBA Vice President, Academic Affairs Chief Academic Office Professor, Thoracic/Head and Neck Medical Oncology Director, Mesothelioma Program The University of Texas MD Anderson Cancer Center Houston, Texas



#### **Moderator**

**Neil Love, MD** Research To Practice Miami, Florida



Jillian Thompson, MSN, ANP-BC, AOCNP Nurse Practitioner MedStar Georgetown University Hospital Lombardi Comprehensive Cancer Center Washington, DC



#### Dr Liu — Disclosures

| Advisory Committee                            | AbbVie Inc, AstraZeneca Pharmaceuticals LP, Genentech, a member of the<br>Roche Group, Janssen Biotech Inc, Jazz Pharmaceuticals Inc, Regeneron<br>Pharmaceuticals Inc, Sanofi, Takeda Pharmaceuticals USA Inc                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Consulting Agreements                         | AbbVie Inc, Amgen Inc, AstraZeneca Pharmaceuticals LP, Boehringer Ingelheim<br>Pharmaceuticals Inc, Bristol-Myers Squibb Company, Catalyst Pharmaceuticals,<br>Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology, Genentech, a member of the<br>Roche Group, Gilead Sciences Inc, Guardant Health, Janssen Biotech Inc, Jazz<br>Pharmaceuticals Inc, Merck, Merus BV, Mirati Therapeutics Inc, Novartis,<br>Regeneron Pharmaceuticals Inc, Sanofi, Takeda Pharmaceuticals USA Inc,<br>Turning Point Therapeutics Inc |  |  |  |  |
| Contracted Research                           | Alkermes, Elevation Oncology, Genentech, a member of the Roche Group,<br>Gilead Sciences Inc, Merck, Merus BV, Nuvalent, RAPT Therapeutics, Turning<br>Point Therapeutics Inc                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Data and Safety Monitoring<br>Board/Committee | Candel Therapeutics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |



#### Ms Plues — Disclosures

No relevant conflicts of interest to disclose



# Ms Thompson — Disclosures

| Advisory Committee                    | Janssen Biotech Inc                     |
|---------------------------------------|-----------------------------------------|
| Nonrelevant Financial<br>Relationship | Targeted Oncology (virtual tumor board) |



#### Dr Tsao — Disclosures

| Consulting Agreements | AstraZeneca Pharmaceuticals LP, Boehringer Ingelheim Pharmaceuticals Inc,<br>Bristol-Myers Squibb Company, EMD Serono Inc, Genentech, a member of the<br>Roche Group, Gilead Sciences Inc, GSK, Lilly, Merck, Novartis, Pfizer Inc, Roche<br>Laboratories Inc, Seagen Inc, Summit Therapeutics, Takeda Pharmaceuticals<br>USA Inc |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contracted Research   | AstraZeneca Pharmaceuticals LP, Boehringer Ingelheim Pharmaceuticals Inc,<br>Bristol-Myers Squibb Company, Epizyme Inc, Genentech, a member of the<br>Roche Group, Lilly, Merck, Novartis, Polaris Pharmaceuticals, Seagen Inc,<br>Takeda Pharmaceuticals USA Inc                                                                 |



#### **Commercial Support**

This activity is supported by educational grants from Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Lilly, Mirati Therapeutics Inc, and Novocure Inc.

#### Research To Practice NCPD Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



#### **Clinicians in the Meeting Room**

#### Networked iPads are available.



Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.



Answer Survey Questions: Complete the pre- and postmeeting surveys. Survey questions will be discussed throughout the meeting.



Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.



Complete Your Evaluation: Tap the NCPD Evaluation button to complete your evaluation electronically to receive credit for your participation.

For assistance, please raise your hand. Devices will be collected at the conclusion of the activity.



#### **Clinicians Attending via Zoom**

|--|

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.



Answer Survey Questions: Complete the pre- and postmeeting surveys. Survey questions will be discussed throughout the meeting.



Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.



Get NCPD Credit: An NCPD credit link will be provided in the chat room at the conclusion of the program.



# **Clinicians, Please Complete the Pre- and Postmeeting Surveys**





#### **About the Enduring Program**

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.



An email will be sent to all attendees when the activity is available.

• To learn more about our education programs, visit our website, <u>www.ResearchToPractice.com</u>



#### "What I Tell My Patients" Fifteenth Annual RTP-ONS NCPD Symposium Series ONS Congress, San Antonio, Texas — April 26 to 29, 2023

| Wednesday            | Cervical and Endometrial Cancer<br>11:15 AM - 12:45 PM CT (12:15 PM - 1:45 PM ET)                                     |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| April 26             | Breast Cancer<br>6:00 PM - 8:00 PM CT (7:00 PM - 9:00 PM ET)                                                          |  |
|                      | Diffuse Large B-Cell Lymphoma<br>6:00 AM - 7:30 AM CT (7:00 AM - 8:30 AM ET)                                          |  |
| Thursday<br>April 27 | Chronic Lymphocytic Leukemia<br>12:15 PM – 1:45 PM CT (1:15 PM – 2:45 PM ET)                                          |  |
|                      | HER2-Targeted Antibody-Drug Conjugates<br>6:00 PM - 7:30 PM CT (7:00 PM - 8:30 PM ET)                                 |  |
| Friday<br>April 28   | Hepatobiliary Cancers<br>6:00 AM - 7:30 AM CT (7:00 AM - 8:30 AM ET)                                                  |  |
|                      | <b>Ovarian Cancer</b><br>12:15 PM - 1:45 PM CT (1:15 PM - 2:45 PM ET)                                                 |  |
|                      | Lung Cancer<br>6:00 PM - 8:00 PM CT (7:00 PM - 9:00 PM ET)                                                            |  |
| Saturday<br>April 29 | Acute Myeloid Leukemia, Myelodysplastic<br>Syndromes and Myelofibrosis<br>6:00 AM - 7:30 AM CT (7:00 AM - 8:30 AM ET) |  |
|                      | <b>Prostate Cancer</b><br>12:15 PM - 1:45 PM CT (1:15 PM - 2:45 PM ET)                                                |  |



What I Tell My Patients 2023 ONS Congress San Antonio, Texas

**Symposia Themes** 

- New agents and therapies; ongoing trials related to specific clinical scenarios
- Patient education: Preparing to receive new therapies
- The bond that heals
- THANKS! (Great job)



How was it different to take care of this patient versus another patient in the same oncologic setting?

What unique biopsychosocial factors (eg, attitude, comorbidities, social support) were considered in the overall management of this case?



What I Tell My Patients: **Faculty Physicians and Nurses Discuss Patient Education About New Treatments and Clinical Trials** Fifteenth Annual RTP Symposium Series Held During the Annual ONS Congress Lung Cancer Friday, April 28, 2023 6:00 PM - 8:00 PM Faculty **Stephen V Liu, MD** Tara Plues, APRN, MSN Jillian Thompson, MSN, ANP-BC, AOCNP Anne S Tsao, MD, MBA **Moderator** Neil Love, MD

#### Faculty



**Stephen V Liu, MD** Associate Professor of Medicine MedStar Georgetown University Hospital Washington, DC



**Tara Plues, APRN, MSN** Hematology and Medical Oncology Cleveland Clinic Cleveland, Ohio



Anne S Tsao, MD, MBA Vice President, Academic Affairs Chief Academic Office Professor, Thoracic/Head and Neck Medical Oncology Director, Mesothelioma Program The University of Texas MD Anderson Cancer Center Houston, Texas



#### **Moderator**

**Neil Love, MD** Research To Practice Miami, Florida



Jillian Thompson, MSN, ANP-BC, AOCNP Nurse Practitioner MedStar Georgetown University Hospital Lombardi Comprehensive Cancer Center Washington, DC



#### Agenda

Module 1: Immunotherapy for Nonmetastatic and Metastatic NSCLC **Module 2: Future Directions — Tumor Treating Fields Module 3: Overview of Targeted Treatment for NSCLC** Module 4: Targeted Treatment for NSCLC with an EGFR Mutation Module 5: EGFR Exon 20 Insertion Mutations Module 6: Targeted Treatment for NSCLC with a RET Fusion Module 7: Targeted Treatment for NSCLC with a KRAS G12C Mutation



# Agenda

Module 1: Immunotherapy for Nonmetastatic and Metastatic NSCLC

- **Module 2: Future Directions Tumor Treating Fields**
- **Module 3: Overview of Targeted Treatment for NSCLC**
- **Module 4: Targeted Treatment for NSCLC with an EGFR Mutation**
- Module 5: EGFR Exon 20 Insertion Mutations
- **Module 6: Targeted Treatment for NSCLC with a RET Fusion**
- Module 7: Targeted Treatment for NSCLC with a KRAS G12C Mutation





79-year-old woman with metastatic NSCLC who received carboplatin/pemetrexed/atezolizumab followed by atezolizumab maintenance and experienced an extended response





**Dr Liu** Washington, DC

### **Clinical Research Background**



**Dr Tsao** Houston, Texas

- Role of immunotherapy in non-small cell lung cancer (NSCLC)
  - Neoadjuvant and adjuvant treatment
  - Consolidation treatment for unresectable locally advanced disease
  - First-line therapy for metastatic disease
  - Toxicity in patients with lung cancer



#### **Mechanism of Action of Immune Checkpoint Inhibitors**





Seebacher NA et al. Clin Cancer Res 2019;38(1):156.

#### **FDA-Approved Immunotherapy for Nonmetastatic NSCLC**

| Regimen                                                   | FDA<br>approval | Pivotal study      | Setting                                                 | Primary Endpoint(s)                                              |
|-----------------------------------------------------------|-----------------|--------------------|---------------------------------------------------------|------------------------------------------------------------------|
| Nivolumab +<br>platinum-doublet chemotherapy <sup>1</sup> | 3/4/22          | CheckMate-816      | Neoadjuvant<br>Resectable,<br>Stage IB , II, or<br>IIIA | Median EFS: 31.6 mo<br>pCR: 24.0%                                |
| Atezolizumab <sup>2</sup>                                 | 10/15/21        | IMpower010         | Adjuvant<br>Stage II-IIIA<br>PD-L1 ≥1%                  | Median DFS: NR                                                   |
| Pembrolizumab <sup>3</sup>                                | 1/26/23         | PEARLS/KEYNOTE-091 | Adjuvant<br>Stage IB, II, or<br>IIIA                    | Median DFS (overall): 53.6 mo<br>Median DFS (PD-L1 TPS ≥50%): NF |
| Durvalumab <sup>4</sup>                                   | 2/6/18          | PACIFIC            | Consolidation<br>Unresectable,<br>Stage III             | Median PFS: 16.9 mo<br>Median OS: 47.5 mo                        |

NR, not reached

<sup>1</sup> Forde PM et al. *N Engl J Med* 2022;386(21):1973-85. <sup>2</sup>Felip E et al. *Lancet* 2021;398(10308):1344-57. <sup>3</sup>O'Brien M et al. Lancet Oncol 2022; 23(10):1274-86. <sup>4</sup>Spigel DR et al. *J Clin Oncol* 2022;40(12):1301-11.



#### FDA-Approved Single-Agent Immunotherapy Options for First-Line Therapy

| Monotherapy                                       | FDA approval        | Pivotal study                  | Histologic type                                     | HR (OS) |
|---------------------------------------------------|---------------------|--------------------------------|-----------------------------------------------------|---------|
| Pembrolizumab <sup>1,2</sup><br>(q3wk or q6wk)    | 4/11/19<br>10/24/16 | KEYNOTE-042<br>KEYNOTE-024     | PD-L1 TPS ≥1%                                       | 0.63    |
| Atezolizumab <sup>3</sup><br>(q2wk, q3wk or q4wk) | 5/18/20             | IMpower110                     | PD-L1 TPS ≥50,<br>EGFR and/or ALK wt                | 0.59    |
| Cemiplimab <sup>4</sup><br>(q3wk)                 | 2/22/21             | EMPOWER-Lung 1<br>(Study 1624) | PD-L1 TPS ≥50,<br>EGFR and/or ALK<br>and/or ROS1 wt | 0.57    |

wt = wild type



<sup>1</sup> Mok. *Lancet* 2019. <sup>2</sup> Reck. *J Clin Oncol* 2019. <sup>3</sup> Herbst. *N Engl J Med* 2020. <sup>4</sup> Sezer. *Lancet* 2021.

#### **FDA-Approved Immunotherapy Combination Options for First-Line Therapy**

| Combination regimen                                                                             | FDA approval | Pivotal study | Histologic type                     | HR (OS) |
|-------------------------------------------------------------------------------------------------|--------------|---------------|-------------------------------------|---------|
| Pembrolizumab (q3wk or q6wk) + platinum and pemetrexed <sup>1</sup>                             | 8/20/18      | KEYNOTE-189   | Nonsquamous                         | 0.56    |
| Pembrolizumab (q3wk or q6wk) +<br>carboplatin, paclitaxel or <i>nab</i> paclitaxel <sup>2</sup> | 10/30/18     | KEYNOTE-407   | Squamous                            | 0.71    |
| Atezolizumab (q3wk) +<br>carboplatin and paclitaxel and<br>bevacizumab <sup>3</sup>             | 12/6/18      | IMpower150    | Nonsquamous                         | 0.80    |
| Atezolizumab (q3wk) +<br>carboplatin and <i>nab</i> paclitaxel <sup>4</sup>                     | 12/3/19      | IMpower130    | Nonsquamous                         | 0.79    |
| Nivolumab (q2wk) +<br>ipilimumab <sup>5</sup>                                                   | 5/15/20      | CheckMate 227 | PD-L1 TPS ≥1,<br>EGFR and/or ALK wt | 0.76    |
| Nivolumab (q3wk) +<br>ipilimumab and chemotherapy <sup>6</sup>                                  | 5/26/20      | CheckMate 9LA | EGFR and/or ALK wt                  | 0.72    |
| Durvalumab (q4wk) +<br>tremelimumab and chemotherapy <sup>7</sup>                               | 11/10/20     | POSEIDON      | EGFR and/or ALK wt                  | 0.77    |

<sup>1</sup> Rodriguez-Abreu. *Ann Oncol* 2021. <sup>2</sup> Paz-Ares. *J Thorac Oncol* 2020. <sup>3</sup> Socinski *J Thorac Oncol* 2021. <sup>4</sup> West. *Lancet Oncol* 2019. <sup>5</sup> Paz-Ares. ASCO 2021; Abstract 9016. <sup>6</sup> Reck. ASCO 2021; Abstract 9000. <sup>7</sup> Johnson. *J Clin Oncol* 2023.





# 59-year-old man with metastatic NSCLC who received ipilimumab/nivolumab and rejected a transplanted kidney





**Dr Liu** Washington, DC

# **Clinical Research Background**



**Dr Tsao** Houston, Texas

- Role of immunotherapy in NSCLC
  - Neoadjuvant and adjuvant treatment
  - Consolidation treatment for unresectable locally advanced disease
  - First-line therapy for metastatic disease
  - Toxicity in patients with lung cancer



#### Symptoms of Immunotherapy Toxicity

Hypophysitis (fatigue)

**Thyroiditis** (over/underactive thyroid)

Adrenal Insufficiency (fatigue)

**Diabetes Mellitus** (Type I, II, fatigue, DKA)

**Colitis** (diarrhea, abdominal pain)

**Dermatitis** (rash, itch, blistering)



**Pneumonitis** (dyspnea, cough)

**Myocarditis** (chest pain, dyspnea)

Hepatitis (abnornal LFTs, jaundice)

Pancreatitis (abdominal pain)

**Neurotoxicities** (MG, encephalitis)

Arthritis (joint pain)



# Agenda

Module 1: Immunotherapy for Nonmetastatic and Metastatic NSCLC

Module 2: Future Directions — Tumor Treating Fields

**Module 3: Overview of Targeted Treatment for NSCLC** 

Module 4: Targeted Treatment for NSCLC with an EGFR Mutation

**Module 5: EGFR Exon 20 Insertion Mutations** 

**Module 6: Targeted Treatment for NSCLC with a RET Fusion** 

Module 7: Targeted Treatment for NSCLC with a KRAS G12C Mutation





75-year-old woman who received neoadjuvant chemotherapy and adjuvant pembrolizumab, developed recurrent disease with a MET exon 14 mutation and was started on capmatinib





**Dr Liu** Washington, DC

### **Clinical Research Background**



**Dr Tsao** Houston, Texas

- Tumor treating fields
  - Mechanism of action
  - Emerging Phase III LUNAR study results
  - Tolerability



#### **Tumor Treating Fields (TTFields)**

#### **Mechanism of action**

• Alternating electric fields which interfere with dividing cells by disrupting mitosis

#### Indication

Investigational

#### **Pivotal clinical data**

- Press release (January 5, 2023): Primary OS endpoint met in pivotal Phase III LUNAR study of TTFields with immune checkpoint inhibitors or docetaxel (experimental arm) versus immune checkpoint inhibitors or docetaxel alone (control arm) for patients with Stage IV NSCLC whose disease progressed during or after platinum-based therapy
- KEYNOTE-B36: A pilot study of first-line TTFields (150 kHz) with pembrolizumab for advanced or metastatic NSCLC

https://www.novocure.com/novocure-announces-pivotal-lunar-study-in-non-small-cell-lung-cancer-met-primary-overall-survivalendpoint/; Kotecha R et al. WCLC 2022;Abstract EP08.01-076; www.clinicaltrials.gov. NCT04892472. Accessed April 2023.



#### Agenda

Module 1: Immunotherapy for Nonmetastatic and Metastatic NSCLC

**Module 2: Future Directions — Tumor Treating Fields** 

Module 3: Overview of Targeted Treatment for NSCLC

Module 4: Targeted Treatment for NSCLC with an EGFR Mutation

Module 5: EGFR Exon 20 Insertion Mutations

**Module 6: Targeted Treatment for NSCLC with a RET Fusion** 

Module 7: Targeted Treatment for NSCLC with a KRAS G12C Mutation





# 24-year-old man with metastatic NSCLC with an ALK rearrangement who received crizotinib





**Dr Liu** Washington, DC

## **Clinical Research Background**



**Dr Tsao** Houston, Texas

- Overview of targeted treatment for NSCLC
  - Frequency of targetable tumor mutations
  - Approaches to genetic testing



#### **Targetable Oncogenic Drivers**



O PRACTIC

Presented By Frances Shepherd at 2019 ASCO Annual Meeting.

#### Agenda

Module 1: Immunotherapy for Nonmetastatic and Metastatic NSCLC

**Module 2: Future Directions — Tumor Treating Fields** 

**Module 3: Overview of Targeted Treatment for NSCLC** 

Module 4: Targeted Treatment for NSCLC with an EGFR Mutation

**Module 5: EGFR Exon 20 Insertion Mutations** 

**Module 6: Targeted Treatment for NSCLC with a RET Fusion** 

Module 7: Targeted Treatment for NSCLC with a KRAS G12C Mutation




# 74-year-old man with resected Stage IIA NSCLC with an EGFR L858R mutation who received adjuvant osimertinib





**Dr Liu** Washington, DC

#### **Clinical Research Background**



**Dr Tsao** Houston, Texas

- Targeted treatment for NSCLC with an EGFR mutation
  - Selection of patients for adjuvant osimertinib
  - First-line therapy for metastatic disease
  - Therapeutic considerations for patients with metastatic NSCLC after disease progression on first-line osimertinib



#### Agenda

Module 1: Immunotherapy for Nonmetastatic and Metastatic NSCLC

**Module 2: Future Directions — Tumor Treating Fields** 

**Module 3: Overview of Targeted Treatment for NSCLC** 

Module 4: Targeted Treatment for NSCLC with an EGFR Mutation

Module 5: EGFR Exon 20 Insertion Mutations

**Module 6: Targeted Treatment for NSCLC with a RET Fusion** 

Module 7: Targeted Treatment for NSCLC with a KRAS G12C Mutation





# 73-year-old man with metastatic NSCLC with an EGFR exon 20 mutation who received amivantamab





**Dr Liu** Washington, DC

#### **Clinical Research Background**



**Dr Tsao** Houston, Texas

- NSCLC with EGFR exon 20 insertion mutations
  - Selection and sequencing of amivantamab and mobocertinib
  - Tolerability of targeted agents



#### **Frequency of EGFR Exon 20 Mutations**





| Exon 20 NSCLC: US and China |      |                               |                 |       |  |  |
|-----------------------------|------|-------------------------------|-----------------|-------|--|--|
|                             |      | Exon 20                       | Total Number of |       |  |  |
|                             |      | Frequency NSCLC Patients/year |                 |       |  |  |
| United                      | EGFR | 2.1%                          | 3.6%            | 7700  |  |  |
| States                      | HER2 | 1.5%                          | 3.0%            | 1100  |  |  |
| China                       | EGFR | 2.4%                          | 6.3%            | 41100 |  |  |
|                             | HER2 | 3.9%                          |                 |       |  |  |



#### **Amivantamab: EGFR-MET Bispecific Antibody**

- Demonstrated monotherapy activity in EGFR ex20ins NSCLC following progression on platinumbased chemotherapy (ORR, 40%; DOR, 11.1 months)<sup>1</sup>
- Demonstrated activity in TKI-resistant EGFRm NSCLC with MET amplification<sup>2,3</sup>
- Has higher affinity for MET (40 pM) than EGFR (1.4 nM)
- Depletion of free soluble target proteins, suggesting total body target engagement, occurs at ≥140 mg for sMET and ≥350 mg for sEGFR
- · Evaluation in primary MET-driven tumors is ongoing



C, cycle; D, day; DOR, duration of response; EGFR, epidermal growth factor receptor; EGFRm, EGFR-mutated; ex20ins, exon 20 insertion mutations; K<sub>D</sub>, dissociation constant; LLOQ, lower limit of quantification; NSCLC, non-small cell lung cancer; ORR, overall response rate; SD, standard deviation; sEGFR, soluble EGFR; sMET, soluble MET; TKI, tyrosine kinase inhibitor.

1. Park K, et al. J Clin Oncol. 2021;39(30):3391-3402. 2. Haura EB, et al. Presented at: ASCO; May 31-June 4, 2019. 9009 (oral). 3. Bauml J, et al. Presented at: ASCO; June 4-8, 2021. 9006 (oral).



#### Amivantamab

#### **Mechanism of action**

• Bispecific EGFR-directed and MET receptor-directed antibody

#### Indication

 For adult patients with locally advanced or metastatic NSCLC with EGFR exon 20 insertion mutations whose disease has progressed on or after platinum-based chemotherapy

#### **Recommended dose**

- Administered weekly for 4 weeks, with the initial dose as a split infusion in week 1 on day 1 and day 2, then administer every 2 weeks thereafter, starting at week 5, until disease progression or unacceptable toxicity
- Body weight less than 80 kg = 1,050 mg; greater than or equal to 80 kg = 1,400 mg



#### Mobocertinib

#### **Mechanism of action**

• Bispecific EGFR-directed and MET receptor-directed antibody

#### Indication

 For the treatment of locally advanced or metastatic NSCLC with EGFR exon 20 insertion mutations in patients whose disease has progressed on or after platinum-based chemotherapy

#### **Recommended dose**

• 160 mg orally once daily, with or without food



#### Agenda

Module 1: Immunotherapy for Nonmetastatic and Metastatic NSCLC

**Module 2: Future Directions — Tumor Treating Fields** 

**Module 3: Overview of Targeted Treatment for NSCLC** 

Module 4: Targeted Treatment for NSCLC with an EGFR Mutation

**Module 5: EGFR Exon 20 Insertion Mutations** 

Module 6: Targeted Treatment for NSCLC with a RET Fusion

Module 7: Targeted Treatment for NSCLC with a KRAS G12C Mutation





# 60-year-old woman with metastatic NSCLC with a RET fusion who received selpercatinib and experienced an extended response





**Dr Liu** Washington, DC

#### **Clinical Research Background**



**Dr Tsao** Houston, Texas

- Targeted treatment for NSCLC with a RET fusion
  - Selection and sequencing of selpercatinib and pralsetinib
  - Tolerability of targeted agents



## **RET Fusions in NSCLC**



- Intact tyrosine kinase domain fused to an upstream gene partner
  - Most common: KIF5B
  - Others: CCDC6, NCOA4, TRIM33, KIAA1468
- Ligand-independent dimerization and downstream growth pathway activation
- Oncogenic in vitro and in vivo
- 1%-2% NSCLC; younger; never/light smokers; adenocarcinoma/poorly differentiated



#### Selpercatinib

#### **Mechanism of action**

• **RET Inhibitor** 

#### Indication

• For adult patients with locally advanced or metastatic NSCLC with a rearranged during transfection (RET) gene fusion as detected by an FDA-approved test

#### **Recommended dose**

- 50 kg or greater: 160 mg orally twice daily
- Less than 50 kg: 120 mg orally twice daily



#### Pralsetinib

#### **Mechanism of action**

• Oral, next-generation, small-molecule selective RET inhibitor

#### Indication

 For adult patients with metastatic NSCLC with RET fusion as detected by an FDA-approved test

#### **Recommended dose**

• 400 mg orally once daily on an empty stomach (no food intake for at least 2 hours before and at least 1 hour after)



#### Agenda

Module 1: Immunotherapy for Nonmetastatic and Metastatic NSCLC

**Module 2: Future Directions — Tumor Treating Fields** 

**Module 3: Overview of Targeted Treatment for NSCLC** 

Module 4: Targeted Treatment for NSCLC with an EGFR Mutation

**Module 5: EGFR Exon 20 Insertion Mutations** 

**Module 6: Targeted Treatment for NSCLC with a RET Fusion** 

Module 7: Targeted Treatment for NSCLC with a KRAS G12C Mutation





58-year-old woman with metastatic NSCLC with a KRAS G12C mutation who received first-line carboplatin/pemetrexed/ pembrolizumab  $\rightarrow$  second-line adagrasib





- Targeted treatment for NSCLC with a KRAS G12C mutation
  - Selection and sequencing of adagrasib and sotorasib
  - Tolerability of targeted agents



#### **Mechanism of Action of KRAS G12C Inhibitors**



Compared with wild-type KRAS, which maintains a balance between inactive and activated states, cysteine 12 (C12) mutations destroys GTPase activity of KRAS and locks in the GTP-bound active state.

In contrast, the small molecule drug sotorasib or adagrasib can form a covalent bond with C12 in the KRAS G12C protein, causing KRAS to be in an inactive state.



Liu J et al. Cancer Gene Ther 2022;29:875-78.

#### **Sotorasib**

#### **Mechanism of action**

• Direct inhibitor of the enzyme KRAS with the G12C mutation

#### Indication

 For the treatment of locally advanced or metastatic NSCLC with a KRAS G12C mutation in patients who have received at least 1 prior systemic therapy

#### **Recommended dose**

• 960 mg orally once daily



#### Adagrasib

#### **Mechanism of action**

• Orally bioavailable, highly selective, small-molecule, irreversible covalent inhibitor of KRAS G12C

#### Indication

 For the treatment of locally advanced or metastatic NSCLC with a KRAS G12C mutation in patients who have received at least 1 prior systemic therapy

#### **Recommended dose**

• 600 mg orally twice daily



## **APPENDIX**



### **Immunotherapy as Up-Front Treatment for NSCLC**



# 2022 ASCO®



#### Abstract 9000

## Outcomes of anti-PD-(L)1 therapy with or without chemotherapy (chemo) for first-line (1L) treatment of advanced non-small cell lung cancer (NSCLC) with PD-L1 score ≥50%: FDA Pooled Analysis

Oladimeji Akinboro<sup>1</sup>, Jonathon Vallejo<sup>1</sup>, Erica Nakajima<sup>1</sup>, Yi Ren<sup>1</sup>, Pallavi Mishra-Kalyani<sup>1</sup>, Erin Larkins<sup>1</sup>, Paz Vellanki<sup>1</sup>, Nicole Drezner<sup>1</sup>, Mathieu Luckson<sup>1</sup>, Shenghui Tang<sup>1</sup>, Martha Donoghue<sup>1,2</sup>, Richard Pazdur<sup>1,2</sup>, Julia A. Beaver<sup>1,2</sup>, Harpreet Singh<sup>1,2</sup>

<sup>1</sup>Center for Drug Evaluation and Research, U.S. Food and Drug Administration

<sup>2</sup>Oncology Center of Excellence, U.S. Food and Drug Administration



#### FDA-Approved Regimens for Advanced NSCLC Not Harboring Tumor Genomic Alterations

| PD-L1 level | Regimen                                               | Histology | Approval endpoint |
|-------------|-------------------------------------------------------|-----------|-------------------|
| ≥ 50%       | Pembrolizumab                                         | NSCLC     | OS & PFS          |
|             | Atezolizumab <sup>a</sup>                             | NSCLC     | OS                |
|             | Cemiplimab                                            | NSCLC     | OS & PFS          |
| ≥ 1%        | Pembrolizumab                                         | NSCLC     | OS                |
|             | Nivolumab + Ipilimumab                                | NSCLC     | OS                |
| None        | Pembrolizumab + Platinum + Pemetrexed <sup>b</sup>    | NSq-NSCLC | OS & PFS          |
|             | Pembrolizumab + Carboplatin + Paclitaxel              | Sq-NSCLC  | OS & PFS          |
|             | Atezolizumab + Bevacizumab + Carboplatin + Paclitaxel | NSq-NSCLC | OS & PFS          |
|             | Atezolizumab + Carboplatin + Nab-paclitaxel           | NSq-NSCLC | OS & PFS          |
|             | Nivolumab + Ipilimumab + Platinum doublet             | NSCLC     | OS                |



#### **Clinical Trials of First-Line Chemotherapy/Immuno-Oncology** (IO) and IO Regimens Included in FDA Pooled Analysis

| Chemo-IO Trials |                                       | IO-only Trials |                          |  |
|-----------------|---------------------------------------|----------------|--------------------------|--|
| Trial           | Investigational Regimen               | Trial          | Investigational Regimen  |  |
| KEYNOTE-021*    | Pembrolizumab + Chemo**               | CheckMate 026  | Nivolumab**              |  |
| KEYNOTE-189     | Pembrolizumab + Chemo**               | KEYNOTE-024    | Pembrolizumab**          |  |
| KEYNOTE-407     | Pembrolizumab + Chemo**               | KEYNOTE-042    | Pembrolizumab**          |  |
| IMpower150      | Atezolizumab + Bevacizumab + Chemo*** | IMpower110     | Atezolizumab**           |  |
| IMpower130      | Atezolizumab + Chemo**                | CheckMate 227  | Nivolumab + Ipilimumab** |  |
| CheckMate-9LA   | Nivolumab + Ipilimumab + Chemo**      | EMPOWER-Lung 1 | Cemiplimab**             |  |



Akinboro O et al. ASCO 2022; Abstract 9000.

#### **FDA Pooled Analysis: Author Conclusions and Summary**

- Our pooled analysis does not suggest a difference in OS for Chemo-IO vs IO-alone though there appears to be a slight numerical advantage favoring Chemo-IO
- Observed differences in PFS and ORR between Chemo-IO and IO-alone to be interpreted in the context of the OS findings and the exploratory nature of this analysis
- Older adults aged ≥75 years may have better OS and PFS outcomes with IO-only regimens
- These support shared decision-making in selecting a therapeutic approach



Akinboro O et al. ASCO 2022; Abstract 9000.

#### **FDA Pooled Analysis: Limitations**

- Retrospective exploratory pooled analyses
  Results only hypothesis-generating
- Analyses do not explain the lack of concordance between OS and PFS/ORR results
  - Subsequent therapies in the IO-only arm
  - Deaths and treatment-discontinuation due to toxicity
- Potential heterogeneity across trials
  Differences in PD-L1 assays
- Notable differences between clinical trial populations and real-world patients



Akinboro O et al. ASCO 2022; Abstract 9000.

# Cemiplimab plus chemotherapy versus chemotherapy alone in non-small cell lung cancer: a randomized, controlled, double-blind phase 3 trial

Miranda Gogishvili<sup>®1</sup><sup>™</sup>, Tamar Melkadze<sup>2</sup>, Tamta Makharadze<sup>3</sup>, Davit Giorgadze<sup>4</sup>, Mikhail Dvorkin<sup>5</sup>, Konstantin Penkov<sup>6</sup>, Konstantin Laktionov<sup>7</sup>, Gia Nemsadze<sup>8</sup>, Marina Nechaeva<sup>9</sup>, Irina Rozhkova<sup>10</sup>, Ewa Kalinka<sup>®11</sup>, Christian Gessner<sup>12,13</sup>, Brizio Moreno-Jaime<sup>14</sup>, Rodolfo Passalacqua<sup>15</sup>, Siyu Li<sup>16</sup>, Kristina McGuire<sup>16</sup>, Manika Kaul<sup>16</sup>, Anne Paccaly<sup>16</sup>, Ruben G. W. Quek<sup>®16</sup>, Bo Gao<sup>16</sup>, Frank Seebach<sup>16</sup>, David M. Weinreich<sup>16</sup>, George D. Yancopoulos<sup>16</sup>, Israel Lowy<sup>16</sup>, Giuseppe Gullo<sup>16</sup> and Petra Rietschel<sup>16</sup>

Nat Med 2022 August 25;[Online ahead of print].



#### **EMPOWER-Lung 3: First-Line Cemiplimab with Platinum-Doublet Chemotherapy for Advanced NSCLC**



Key secondary: PFS and ORR

Additional secondary: DOR, BOR, safety, and PRO

Two interim analyses were prespecified per protocol Second interim analysis (14 June 2021) presented here



#### **EMPOWER-Lung 3: First-Line Cemiplimab with Platinum-Doublet Chemotherapy for Advanced NSCLC**





Gogishvili M et al. Nat Med 2022 August 25;[Online ahead of print].

# Durvalumab With or Without Tremelimumab in Combination With Chemotherapy as First-Line Therapy for Metastatic Non–Small-Cell Lung Cancer: The Phase III POSEIDON Study

Melissa L. Johnson, MD<sup>1</sup>; Byoung Chul Cho, MD, PhD<sup>2</sup>; Alexander Luft, MD<sup>3</sup>; Jorge Alatorre-Alexander, MD<sup>4</sup>; Sarayut Lucien Geater, MD<sup>5</sup>; Konstantin Laktionov, MD<sup>6</sup>; Sang-We Kim, MD, PhD<sup>7</sup>; Grygorii Ursol, MD<sup>8</sup>; Maen Hussein, MD<sup>9</sup>; Farah Louise Lim, MBBS, MRCP<sup>10</sup>; Cheng-Ta Yang, MD<sup>11</sup>; Luiz Henrique Araujo, MD, PhD<sup>12</sup>; Haruhiro Saito, MD, PhD<sup>13</sup>; Niels Reinmuth, MD, PhD<sup>14</sup>; Xiaojin Shi, MD<sup>15</sup>; Lynne Poole, MSc<sup>16</sup>; Solange Peters, MD, PhD<sup>17</sup>; Edward B. Garon, MD<sup>18</sup>; and Tony Mok, MD<sup>19</sup> for the POSEIDON investigators

J Clin Oncol 2023;41:1213-27.



# **POSEIDON: PFS with First-Line Durvalumab with Tremelimumab and Chemotherapy for Advanced NSCLC**





# **POSEIDON: OS with First-Line Durvalumab with Tremelimumab and Chemotherapy for Advanced NSCLC**





Johnson ML et al. J Clin Oncol 2023;41:1213-27.

### **NSCLC with EGFR Mutation**



#### Frequency of Targetable Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung



Derived from: Tan AC et al. J Clin Oncol 2022;40(6):611-25.
## Amivantamab in EGFR Exon 20 Insertion— **Mutated Non–Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results From the CHRYSALIS Phase I Study**

origina

rep

ort

S

Keunchil Park, MD, PhD<sup>1</sup>; Eric B. Haura, MD<sup>2</sup>; Natasha B. Leighl, MD<sup>3</sup>; Paul Mitchell, MD<sup>4</sup>; Catherine A. Shu, MD<sup>5</sup>; Nicolas Girard, MD, PhD<sup>6</sup>; Santiago Viteri, MD<sup>7</sup>; Ji-Youn Han, MD, PhD<sup>8</sup>; Sang-We Kim, MD, PhD<sup>9</sup>; Chee Khoon Lee, MD<sup>10</sup>; Joshua K. Sabari, MD<sup>11</sup>; Alexander I. Spira, MD, PhD<sup>12</sup>; Tsung-Ying Yang, MD, PhD<sup>13</sup>; Dong-Wan Kim, MD, PhD<sup>14</sup>; Ki Hyeong Lee, MD, PhD<sup>15</sup>; Rachel E. Sanborn, MD<sup>16</sup>; José Trigo, MD<sup>17</sup>; Koichi Goto, MD, PhD<sup>18</sup>; Jong-Seok Lee, MD, PhD<sup>19</sup>; James Chih-Hsin Yang, MD, PhD<sup>20</sup>; Ramaswamy Govindan, MD<sup>21</sup>; Joshua M. Bauml, MD<sup>22</sup>; Pilar Garrido, MD, PhD<sup>23</sup>; Matthew G. Krebs, MD, PhD<sup>24</sup>; Karen L. Reckamp, MD<sup>25</sup>; John Xie, PhD<sup>26</sup>; Joshua C. Curtin, PhD<sup>26</sup>; Nahor Haddish-Berhane, PhD<sup>26</sup>; Amy Roshak, BS<sup>26</sup>; Dawn Millington, MS<sup>26</sup>; Patricia Lorenzini, MS<sup>26</sup>; Meena Thayu, MD<sup>26</sup>; Roland E. Knoblauch, MD, PhD<sup>26</sup>; and Byoung Chul Cho, MD, PhD<sup>27</sup>

#### J Clin Oncol 2021;39:3391-402.



#### **CHRYSALIS: Tumor Reduction and Response**



ORR = overall response rate; CBR = clinical benefit rate

Park K et al. J Clin Oncol 2021;39:3391-402.



#### **CHRYSALIS: Summary of Adverse Events (AEs) and Most Common AEs**

| Safety Population ( $n = 114$ ), No. (%) | Patients Treated at the RP2D ( $n = 258$ ), No. (%)                                                                                                 |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 113 (99)                                 | 257 (100)                                                                                                                                           |
| 40 (35)                                  | 101 (39)                                                                                                                                            |
| 34 (30)                                  | 79 (31)                                                                                                                                             |
| 8 (7)                                    | 13 (5)                                                                                                                                              |
| 11 (10)                                  | 17 (7)                                                                                                                                              |
| 15 (13)                                  | 26 (10)                                                                                                                                             |
| 40 (35)                                  | 88 (34)                                                                                                                                             |
|                                          | Safety Population (n = 114), No. (%)         113 (99)         40 (35)         34 (30)         8 (7)         11 (10)         15 (13)         40 (35) |

#### Most Common AEs in the Safety Population

| Adverse Events             | Any Grade | Grade ≥3 |
|----------------------------|-----------|----------|
| Rash                       | 86%       | 4%       |
| Infusion-related reactions | 66%       | 3%       |
| Paronychia                 | 45%       | 1%       |



Park K et al. J Clin Oncol 2021;39:3391-402.

# 2022 ASCO®

Abstract 9006

#### Amivantamab and lazertinib in patients with EGFR-mutant non-small cell lung cancer (NSCLC) after progression on osimertinib and platinum-based chemotherapy: Updated results from CHRYSALIS-2

<u>Catherine A. Shu,</u><sup>1</sup> Koichi Goto,<sup>2</sup> Yuichiro Ohe,<sup>3</sup> Benjamin Besse,<sup>4</sup> Se-Hoon Lee,<sup>5</sup> Yongsheng Wang,<sup>6</sup> Frank Griesinger,<sup>7</sup> James Chih-Hsin Yang,<sup>8</sup> Enriqueta Felip,<sup>9</sup> Rachel E. Sanborn,<sup>10</sup> Reyes Bernabe Caro,<sup>11</sup> Joshua C. Curtin,<sup>12</sup> Jun Chen,<sup>12</sup> Janine Mahoney,<sup>12</sup> Leonardo Trani,<sup>12</sup> Joshua M. Bauml,<sup>12</sup> Meena Thayu,<sup>12</sup> Roland E. Knoblauch,<sup>12</sup> Byoung Chul Cho<sup>13</sup>



#### **CHRYSALIS-2: Study Design**

#### **Dose Expansion Cohorts**

RP2CD: Lazertinib 240 mg PO + Amivantamab 1050 mg (1400 mg for ≥80 kg) IV

**Cohort A:** EGFR ex19del or L858R Post-osimertinib and platinum-based chemotherapy (n=162)

Cohort B: EGFR ex20ins

Post-standard of care and platinum-based chemotherapy

**Cohort C:** Uncommon EGFR mutations Treatment naïve or post-1<sup>st</sup> or 2<sup>nd</sup> generation EGFR TKI

**Cohort D:** EGFR ex19del or L858R Post-osimertinib, chemotherapy naïve, biomarker validation

#### Endpoints

- Overall response rate (primary)
- Duration of response
- Clinical benefit rate<sup>a</sup>
- Progression-free survival
- Overall survival
- Adverse events

Here we present updated **safety** and **efficacy** results of the **amivantamab and lazertinib combination** from **fully enrolled Cohort A** 



#### **CHRYSALIS-2: Best Antitumor Response and ORR by Prior Therapy**



ORR = overall response rate; BICR = blinded independent central review; INV = investigator; CBR = clinical benefit rate



Shu CA et al. ASCO 2022; Abstract 9006.

#### **CHRYSALIS-2: Safety Profile**

|                                       | n=162     |          |  |
|---------------------------------------|-----------|----------|--|
| TEAEs (≥15%) by Preferred Term, n (%) | All grade | Grade ≥3 |  |
| EGFR-related                          |           |          |  |
| Rash                                  | 71 (44)   | 4 (2)    |  |
| Dermatitis acneiform                  | 55 (34)   | 8 (5)    |  |
| Paronychia                            | 84 (52)   | 6 (4)    |  |
| Stomatitis                            | 63 (39)   | 2 (1)    |  |
| Diarrhea                              | 36 (22)   | 1 (1)    |  |
| Pruritus                              | 30 (19)   | 1 (1)    |  |
| MET-related                           |           |          |  |
| Hypoalbuminemia                       | 70 (43)   | 11 (7)   |  |
| Peripheral edema                      | 43 (27)   | 2 (1)    |  |
| Other                                 |           |          |  |
| Infusion related reaction             | 108 (67)  | 13 (8)   |  |
| Increased ALT                         | 46 (28)   | 5 (3)    |  |
| Nausea                                | 40 (25)   | 3 (2)    |  |
| Decreased appetite                    | 39 (24)   | 1 (1)    |  |
| Constipation                          | 38 (23)   | 0        |  |
| Asthenia                              | 37 (23)   | 7 (4)    |  |
| Dry skin                              | 37 (23)   | 0        |  |
| Vomiting                              | 36 (22)   | 1 (1)    |  |
| Increased AST                         | 35 (22)   | 3 (2)    |  |
| Dyspnea                               | 33 (20)   | 13 (8)   |  |
| Thrombocytopenia                      | 33 (20)   | 2 (1)    |  |
| Fatigue                               | 32 (20)   | 4 (2)    |  |
| Headache                              | 29 (18)   | 2 (1)    |  |
| Anemia                                | 27 (17)   | 4 (2)    |  |
| Hypocalcemia                          | 26 (16)   | 1 (1)    |  |

- Individual AEs were mostly grade 1-2
- Dose interruptions, reductions, and discontinuations of both amivantamab and lazertinib due to toxicity were seen in 57 (35%), 15 (9%), and 12 (7%) patients, respectively
- Pneumonitis/ILD was seen in 11 (7%) patients, of which 6 (4%) were grade ≥3 (no grade 5)
- Cumulative grouped rash-related AEs<sup>a</sup> occurred in 129 (80%) patients, with 17 grade ≥3 (10%)
- Safety profile consistent with what was previously reported; no new safety signals identified



## Select Ongoing Phase III Studies of First-Line Therapy for Patients with Metastatic NSCLC and Activating EGFR Mutations

| Study                | No. of patients | Randomization                                                                                             | Est primary completion |
|----------------------|-----------------|-----------------------------------------------------------------------------------------------------------|------------------------|
| FLAURA2              | 587             | <ul> <li>Osimertinib</li> <li>Osimertinib + platinum-based chemo</li> </ul>                               | April 2023             |
| MARIPOSA             | 1,000           | <ul> <li>Amivantamab + lazertinib</li> <li>Osimertinib + placebo</li> <li>Lazertinib + placebo</li> </ul> | April 2024             |
| ECOG-ACRIN<br>EA5182 | 300             | <ul><li>Osimertinib</li><li>Osimertinib + bevacizumab</li></ul>                                           | September 2025         |
| SANOVO*              | 320             | <ul> <li>Osimertinib + savolitinib</li> <li>Osimertinib + placebo</li> </ul>                              | November 2024          |
| FLETEO               | 680             | <ul><li>Osimertinib</li><li>TY-9591</li></ul>                                                             | May 2025               |

\* Sensitizing EGFR mutation and c-MET overexpression

www.clinicaltrials.gov. Accessed June 2022.



#### Lazertinib

#### **Mechanism of action**

• Oral third-generation, irreversible EGFR TKI

#### Indication

Investigational

#### **Pivotal clinical data**

 Phase III MARIPOSA study evaluating lazertinib and amivantamab combination therapy versus osimertinib versus lazertinib as first-line therapy for patients with EGFR-mutated locally advanced or metastatic NSCLC



#### Select Ongoing Studies to Overcome Mechanisms of Resistance to EGFR TKIs for Advanced NSCLC

| Study/phase             | No. of<br>patients | Eligibility                                                                                                                            | Treatment                                                                                                           |
|-------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| SAVANNAH<br>Phase II    | 294                | <ul> <li>Locally advanced/metastatic</li> <li>EGFR mutation</li> <li>MET amplified/overexpressed</li> <li>PD on osimertinib</li> </ul> | Osimertinib + savolitinib                                                                                           |
| SAFFRON<br>Phase III    | 324                | <ul> <li>Locally advanced/metastatic</li> <li>EGFR mutation</li> <li>MET amplified/overexpressed</li> <li>PD on osimertinib</li> </ul> | <ul><li>Osimertinib + savolitinib</li><li>Platinum-based doublet</li></ul>                                          |
| COMPEL<br>Phase III     | 204                | <ul> <li>Locally advanced/metastatic</li> <li>EGFR mutation</li> <li>Extracranial PD on first-line osimertinib</li> </ul>              | <ul> <li>Platinum/pemetrexed + osimertinib</li> <li>Platinum/pemetrexed + placebo</li> </ul>                        |
| MARIPOSA-2<br>Phase III | 500                | <ul> <li>Locally advanced/metastatic</li> <li>EGFR mutation</li> <li>PD on osimertinib</li> </ul>                                      | <ul> <li>Platinum-based chemotherapy +<br/>amivantamab + lazertinib</li> <li>Platinum-based chemotherapy</li> </ul> |

PD = disease progression



#### JAMA Oncol 2021;7(12):e214761.

#### JAMA Oncology | Original Investigation

#### Treatment Outcomes and Safety of Mobocertinib in Platinum-Pretreated Patients With *EGFR* Exon 20 Insertion–Positive Metastatic Non–Small Cell Lung Cancer A Phase 1/2 Open-label Nonrandomized Clinical Trial

Caicun Zhou, PhD, MD; Suresh S. Ramalingam, MD; Tae Min Kim, MD, PhD; Sang-We Kim, MD; James Chih-Hsin Yang, MD; Gregory J. Riely, MD; Tarek Mekhail, MD; Danny Nguyen, MD; Maria R. Garcia Campelo, MD; Enriqueta Felip, MD; Sylvie Vincent, PhD; Shu Jin, MS; Celina Griffin, PharmD; Veronica Bunn, PhD; Jianchang Lin, PhD; Huamao M. Lin, PhD; Minal Mehta, MBBS; Pasi A. Jänne, MD, PhD



#### Mobocertinib Activity in Patients with Platinum-Pretreated Metastatic NSCLC with EGFR Exon 20 Insertion Mutation (PPP Cohort)





#### Mobocertinib: Summary of Adverse Events (AEs) and Most Common AEs

|                                                                                                                    | Patients, No. (%)    |                 |                         |                 |
|--------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|-------------------------|-----------------|
|                                                                                                                    | PPP cohort (n = 114) |                 | EXCLAIM cohort (n = 96) |                 |
| Adverse event                                                                                                      | Any grade            | Grade ≥3        | Any grade               | Grade ≥3        |
| Overview of AEs                                                                                                    |                      |                 |                         |                 |
| Any                                                                                                                | 114 (100)            | 79 (69)         | 96 (100)                | 63 (66)         |
| Any treatment-related                                                                                              | 113 (99)             | 54 (47)         | 95 (99)                 | 40 (42)         |
| Serious                                                                                                            | 56 (49)              | 52 (46)         | 45 (47)                 | 42 (44)         |
| Leading to dose reduction                                                                                          | 29 (25)              | NA <sup>a</sup> | 21 (22)                 | NA <sup>a</sup> |
| Leading to treatment discontinuation                                                                               | 19 (17)              | NA <sup>a</sup> | 10 (10)                 | NA <sup>a</sup> |
| Treatment-related AEs of any grade reported in $\ge 10\%$<br>or of grade $\ge 3$ reported in $\ge 3\%$ of patients |                      |                 |                         |                 |
| Diarrhea                                                                                                           | 104 (91)             | 24 (21)         | 89 (93)                 | 15 (16)         |
| Rash                                                                                                               | 51 (45)              | 0               | 43 (45)                 | 0               |
| Paronychia                                                                                                         | 43 (38)              | 1 (<1)          | 37 (39)                 | 1 (1)           |



#### **RET-Rearranged NSCLC**



#### Frequency of Targetable Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung



Derived from Tan AC et al. J Clin Oncol 2022;40:611-25.



## Selpercatinib in Patients With RET **Fusion–Positive Non–Small-Cell Lung Cancer: Updated Safety and Efficacy From the Registrational LIBRETTO-001 Phase I/II Trial**

origina

report

SO

Alexander Drilon, MD<sup>1</sup>; Vivek Subbiah, MD<sup>2</sup>; Oliver Gautschi, MD<sup>3</sup>; Pascale Tomasini, MD, MSc<sup>4</sup>; Filippo de Braud, MD<sup>5</sup>; Benjamin J. Solomon, MBBS, PhD<sup>6</sup>; Daniel Shao-Weng Tan, MBBS, PhD<sup>7</sup>; Guzmán Alonso, MD<sup>8</sup>; Jürgen Wolf, MD<sup>9</sup>; Keunchil Park, MD, PhD<sup>10</sup>; Koichi Goto, MD<sup>11</sup>; Victoria Soldatenkova, MSc<sup>12</sup>; Sylwia Szymczak, PhD<sup>13</sup>; Scott S. Barker, PhD<sup>12</sup>; Tarun Puri, MD<sup>12</sup>; Aimee Bence Lin, PhD<sup>12</sup>; Herbert Loong, MBBS<sup>14</sup>; and Benjamin Besse, MD, PhD<sup>15</sup>

J Clin Oncol 2023;41(2):385-94.



#### LIBRETTO-001: Updated Responses with Selpercatinib for Advanced NSCLC with RET Fusion



![](_page_88_Picture_2.jpeg)

Drilon A et al. J Clin Oncol 2023;41(2):385-94.

#### Management of Localized NSCLC with an EGFR Mutation

![](_page_89_Picture_1.jpeg)

# Adjuvant Osimertinib for Resected EGFR-Mutated Stage IB-IIIA Non–Small-Cell Lung Cancer: Updated Results From the Phase III Randomized ADAURA Trial

Roy S. Herbst, MD, PhD<sup>1</sup>; Yi-Long Wu, MD<sup>2</sup>; Thomas John, PhD<sup>3</sup>; Christian Grohe, MD<sup>4</sup>; Margarita Majem, MD, PhD<sup>5</sup>; Jie Wang, MD, PhD<sup>6</sup>; Terufumi Kato, MD<sup>7</sup>; Jonathan W. Goldman, MD<sup>8</sup>; Konstantin Laktionov, PhD<sup>9</sup>; Sang-We Kim, MD, PhD<sup>10</sup>; Chong-Jen Yu, MD, PhD<sup>11,12</sup>; Huu Vinh Vu, MD, PhD<sup>13</sup>; Shun Lu, MD<sup>14</sup>; Kye Young Lee, MD, PhD<sup>15</sup>; Guzel Mukhametshina, MD<sup>16</sup>; Charuwan Akewanlop, MD<sup>17</sup>; Filippo de Marinis, MD<sup>18</sup>; Laura Bonanno, MD<sup>19</sup>; Manuel Domine, MD, PhD<sup>20</sup>; Frances A. Shepherd, MD<sup>21</sup>; Damien Urban, MBBS<sup>22,23</sup>; Xiangning Huang, PhD<sup>24</sup>; Ana Bolanos, MD<sup>25</sup>; Marta Stachowiak, MPharm<sup>26</sup>; and Masahiro Tsuboi, MD, PhD<sup>27</sup>

dn

odate

D

J Clin Oncol 2023;41:1830-40.

![](_page_90_Picture_3.jpeg)

#### **ADAURA Updated Results: DFS in Stage II/IIIA Disease**

![](_page_91_Figure_1.jpeg)

![](_page_91_Picture_2.jpeg)

Herbst RS et al. J Clin Oncol 2023;41:1830-40.

## ADAURA Updated DFS Results in the Overall Population (Stage IB/II/IIIA Disease)

![](_page_92_Figure_1.jpeg)

![](_page_92_Picture_2.jpeg)

Herbst RS et al. J Clin Oncol 2023;41:1830-40.

#### **ADAURA Updated Results: Most Common All Causality Adverse** Events

| Most Common All-Causality AE <sup>d</sup> | Any Grade | Grade 1  | Grade 2 | Grade 3 | Any Grade | Grade 1 | Grade 2 | Grade 3 |
|-------------------------------------------|-----------|----------|---------|---------|-----------|---------|---------|---------|
| Diarrhea                                  | 159 (47)  | 114 (34) | 36 (11) | 9 (3)   | 70 (20)   | 55 (16) | 14 (4)  | 1 (< 1) |
| Paronychia                                | 92 (27)   | 33 (10)  | 56 (17) | 3 (1)   | 5 (1)     | 2 (1)   | 3 (1)   | 0       |
| Dry skin                                  | 84 (25)   | 79 (23)  | 4 (1)   | 1 (< 1) | 23 (7)    | 19 (6)  | 4 (1)   | 0       |
| Pruritus                                  | 70 (21)   | 52 (15)  | 18 (5)  | 0       | 30 (9)    | 28 (8)  | 2 (1)   | 0       |
| Cough                                     | 66 (20)   | 45 (13)  | 21 (6)  | 0       | 61 (18)   | 44 (13) | 17 (5)  | 0       |
| Stomatitis                                | 59 (18)   | 35 (10)  | 18 (5)  | 6 (2)   | 15 (4)    | 11 (3)  | 4 (1)   | 0       |
| Upper respiratory tract infection         | 53 (16)   | 29 (9)   | 22 (7)  | 2 (1)   | 37 (11)   | 19 (6)  | 18 (5)  | 0       |
| Nasopharyngitis                           | 50 (15)   | 31 (9)   | 19 (6)  | 0       | 36 (10)   | 25 (7)  | 11 (3)  | 0       |
| Decreased appetite                        | 48 (14)   | 33 (10)  | 13 (4)  | 2 (1)   | 13 (4)    | 9 (3)   | 4 (1)   | 0       |
| Dermatitis acneiform                      | 41 (12)   | 31 (9)   | 10 (3)  | 0       | 16 (5)    | 12 (3)  | 4 (1)   | 0       |
| Mouth ulceration                          | 39 (12)   | 32 (9)   | 7 (2)   | 0       | 10 (3)    | 7 (2)   | 3 (1)   | 0       |
| Weight decreased                          | 35 (10)   | 19 (6)   | 14 (4)  | 2 (1)   | 9 (3)     | 7 (2)   | 2 (1)   | 0       |
| Nausea                                    | 34 (10)   | 28 (8)   | 5 (1)   | 1 (< 1) | 20 (6)    | 15 (4)  | 5 (1)   | 0       |
| Rash                                      | 33 (10)   | 24 (7)   | 9 (3)   | 0       | 12 (3)    | 10 (3)  | 2 (1)   | 0       |
| Arthralgia                                | 23 (7)    | 18 (5)   | 5 (1)   | 0       | 37 (11)   | 32 (9)  | 5 (1)   | 0       |
| Headache                                  | 26 (8)    | 24 (7)   | 2 (1)   | 0       | 34 (10)   | 27 (8)  | 7 (2)   | 0       |

![](_page_93_Picture_2.jpeg)

#### **NSCLC with KRAS G12C Mutations**

![](_page_94_Picture_1.jpeg)

#### Frequency of Targetable Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung

![](_page_95_Figure_1.jpeg)

Derived from Tan AC et al. J Clin Oncol 2022;40(6):611-25.

## 2022 ASCO ANNUAL MEETING

#### Abstract 9002

#### KRYSTAL-1: Activity and Safety of Adagrasib (MRTX849) in Patients with Advanced/Metastatic Non-Small Cell Lung Cancer Harboring a KRAS<sup>G12C</sup> Mutation

Alexander I. Spira<sup>1</sup>, Gregory J. Riely<sup>2</sup>, Shirish M. Gadgeel<sup>3</sup>, Rebecca S. Heist<sup>4</sup>, Sai-Hong Ignatius Ou<sup>5</sup>, Jose M. Pacheco<sup>6</sup>, Melissa L. Johnson<sup>7</sup>, Joshua K. Sabari<sup>8</sup>, Konstantinos Leventakos<sup>9</sup>, Edwin Yau<sup>10</sup>, Lyudmila Bazhenova<sup>11</sup>, Marcelo V. Negrao<sup>12</sup>, Nathan A. Pennell<sup>13</sup>, Jun Zhang<sup>14</sup>, Karen Velastegui<sup>15</sup>, James G. Christensen<sup>15</sup>, Xiaohong Yan<sup>15</sup>, Kenna Anderes<sup>15</sup>, Richard C. Chao<sup>15</sup>, Pasi A. Jänne<sup>16</sup>

#### The NEW ENGLAND JOURNAL of MEDICINE N Engl J Med 2022 July 14;387(2):120-31.

ORIGINAL ARTICLE

#### Adagrasib in Non–Small-Cell Lung Cancer Harboring a *KRAS*<sup>G12C</sup> Mutation

Pasi A. Jänne, M.D., Ph.D., Gregory J. Riely, M.D., Ph.D., Shirish M. Gadgeel, M.D., Rebecca S. Heist, M.D., M.P.H.,
Sai-Hong I. Ou, M.D., Ph.D., Jose M. Pacheco, M.D., Melissa L. Johnson, M.D., Joshua K. Sabari, M.D., Konstantinos Leventakos, M.D., Ph.D.,
Edwin Yau, M.D., Ph.D., Lyudmila Bazhenova, M.D., Marcelo V. Negrao, M.D.,
Nathan A. Pennell, M.D., Ph.D., Jun Zhang, M.D., Ph.D., Kenna Anderes, Ph.D., Hirak Der-Torossian, M.D., Thian Kheoh, Ph.D., Karen Velastegui, B.Sc., Xiaohong Yan, Ph.D., James G. Christensen, Ph.D., Richard C. Chao, M.D., and Alexander I. Spira, M.D., Ph.D.

The NEW ENGLAND JOURNAL of MEDICINE

#### Setting the Benchmark for KRAS<sup>G12C</sup>-Mutated NSCLC

Antonio Passaro, M.D., Ph.D., and Solange Peters, M.D., Ph.D.

*N Engl J Med* 2022 July 14;387(2):180-3.

![](_page_96_Picture_12.jpeg)

#### **KRYSTAL-1: Phase II Cohort A Study Design**

![](_page_97_Figure_1.jpeg)

Here we report data from a registrational Phase 2 cohort evaluating adagrasib 600 mg BID in previously treated patients with NSCLC harboring a KRAS<sup>G12C</sup> mutation (N=116)

Enrollment period, January 2020 to December 2020

![](_page_97_Picture_4.jpeg)

Spira AI et al. ASCO 2022; Abstract 9002.

#### **KRYSTAL-1: Tumor Response with Adagrasib in Advanced NSCLC** Harboring a KRAS G12C Mutation

![](_page_98_Figure_1.jpeg)

Patients with Measurable Disease at Baseline

![](_page_98_Picture_3.jpeg)

Jänne PS et al. N Engl J Med 2022 July 14;387(2):120-31; Spira AI et al. ASCO 2022;Abstract 9002.

#### **KRYSTAL-1: Treatment-Related Adverse Events with Adagrasib in Patients with Advanced NSCLC Harboring a KRAS G12C Mutation**

|                                          | Adagrasib Monotherapy (N=116)<br>Capsule, Fasted |            |  |  |
|------------------------------------------|--------------------------------------------------|------------|--|--|
| TRAEs, n (%)                             | Any Grade                                        | Grades 3–4 |  |  |
| Any TRAEs                                | 113 (97%)                                        | 50 (43%)   |  |  |
| Most frequent TRAEs <sup>a</sup> , n (%) |                                                  |            |  |  |
| Diarrhea                                 | 73 (63%)                                         | 1 (<1%)    |  |  |
| Nausea                                   | 72 (62%)                                         | 5 (4%)     |  |  |
| Vomiting                                 | 55 (47%)                                         | 1 (<1%)    |  |  |
| Fatigue                                  | 47 (41%)                                         | 5 (4%)     |  |  |
| ALT increase                             | 32 (28%)                                         | 5 (4%)     |  |  |
| Blood creatinine increase                | 30 (26%)                                         | 1 (<1%)    |  |  |
| AST increase                             | 29 (25%)                                         | 4 (3%)     |  |  |
| Decreased appetite                       | 28 (24%)                                         | 4 (3%)     |  |  |

- Grade 1–2 TRAEs occurred in 53% of patients
- There were 2 grade 5 TRAEs (cardiac failure [n=1] and pulmonary hemorrhage [n=1])
- TRAEs led to dose reduction in 60/116 (52%) patients<sup>b</sup> and to dose interruption in 71/116 (61%) patients
- TRAEs led to discontinuation of study drug in 8/116 (7%) patients

![](_page_99_Picture_6.jpeg)

![](_page_99_Picture_7.jpeg)

![](_page_100_Picture_0.jpeg)

#### **Abstract CT008**

![](_page_100_Picture_2.jpeg)

#### Long-term Outcomes With Sotorasib in Pre-treated KRAS p.G12C Mutated NSCLC: 2-year Analysis of CodeBreak 100

#### Presenter: Grace K. Dy<sup>1</sup>, MD <sup>1</sup>Roswell Park Comprehensive Cancer Center

**On behalf of:** Ramaswamy Govindan<sup>2</sup>, Vamsidhar Velcheti<sup>3</sup>, Gerald S. Falchook<sup>4</sup>, Antoine Italiano<sup>5</sup>, Juergen Wolf<sup>6</sup>, Adrian G. Sacher<sup>7</sup>, Toshiaki Takahashi<sup>8</sup>, Suresh S. Ramalingam<sup>9</sup>, Christophe Dooms<sup>10</sup>, Dong-Wan Kim<sup>11</sup>, Alfredo Addeo<sup>12</sup>, Jayesh Desai<sup>13</sup>, Martin Schuler<sup>14</sup>, Pascale Tomasini<sup>15</sup>, Qui Tran<sup>18</sup>, Simon Jones<sup>16</sup>, Agnes Ang<sup>16</sup>, Abraham Anderson<sup>16</sup>, Antreas Hindoyan<sup>16</sup>, David S. Hong<sup>17</sup>, Bob T. Li<sup>18</sup>

<sup>2</sup>Washington University in St Louis, <sup>3</sup>New York University Langone, <sup>4</sup>Sarah Cannon Research Institute, <sup>5</sup>Institut Bergonie, <sup>9</sup>Universitatskilnikum Koln, <sup>7</sup>Princess Margaret Cancer Centre, <sup>5</sup>Shizuoka Cancer Center <sup>9</sup>Winship Cancer Institute, <sup>10</sup>Universitair Zlekenhuis Leuven <sup>11</sup>Seoul National University Hospital, <sup>12</sup>Hopitaux Universitaires de Geneve, <sup>19</sup>Peter MacCallum Cancer Centre, <sup>14</sup>Universitätskilnikum Essen, <sup>15</sup>Hopital de la Timone, <sup>16</sup>Amgen Inc., <sup>17</sup>MD Anderson Cancer Center, <sup>18</sup>Memorial Sloan Kettering Cancer Center

![](_page_100_Picture_7.jpeg)

#### **CodeBreaK 100: Long-Term Outcomes with Sotorasib for Pretreated Metastatic NSCLC with KRAS G12C Mutation**

- Overall Survival

![](_page_101_Figure_2.jpeg)

#### 2-year overall survival observed in 32.5% of patients

Median follow-up time for OS was 24.9 months

![](_page_101_Picture_5.jpeg)

Dy GK et al. AACR 2022; Abstract CT008.

#### **MET Exon 14 Mutations**

![](_page_102_Picture_1.jpeg)

#### Frequency of Targetable Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung

![](_page_103_Figure_1.jpeg)

Derived from Tan AC et al. J Clin Oncol 2022;40(6):611-25.

#### **MET Exon 14 Skipping Mutations in NSCLC**

#### MET Exon 14 Skipping Mutations (METex14)

- Found in ~3% of NSCLCs<sup>1</sup>
- Are generally more common in older patients (≥70 years), women, and non-smokers<sup>2</sup>
- Aberrant splicing of exon 14 disrupts degradation of MET receptors, resulting in constitutive activation of the MET pathway<sup>3</sup>

#### **MET TKIs (Capmatinib and Tepotinib)**

- Have accelerated approval
- ORR 41% to 43% in previously treated, MET TKI-naïve populations<sup>4,5</sup>
- Most patients develop acquired resistance<sup>6</sup>
  - Mechanisms may include secondary MET mutations or activation of bypass signalling

![](_page_104_Figure_10.jpeg)

![](_page_104_Picture_11.jpeg)

### **Review Article**

Safety of MET Tyrosine Kinase Inhibitors in Patients With *MET* Exon 14 Skipping Non-small Cell Lung Cancer: A Clinical Review

Alexis Cortot, MD, PhD,<sup>1</sup> Xiuning Le,<sup>2</sup> Egbert Smit,<sup>3</sup> Santiago Viteri,<sup>4</sup> Terufumi Kato,<sup>5</sup> Hiroshi Sakai,<sup>6</sup> Keunchil Park,<sup>7</sup> D. Ross Camidge,<sup>8</sup> Karin Berghoff,<sup>9</sup> Soetkin Vlassak,<sup>9</sup> Paul K. Paik<sup>10,11</sup>

Clin Lung Cancer 2022 May;23(3):195-207.

![](_page_105_Picture_4.jpeg)

#### Monitoring and Management Consideration for Key MET Exon 14 Inhibitor Related Adverse Events

![](_page_106_Figure_1.jpeg)

![](_page_106_Picture_2.jpeg)

Cortot A et al. Clin Lung Cancer 2022 May;23(3):195-207.

# 2022 ASCO®

Abstract 9008

## Amivantamab in NSCLC patients with MET exon 14 skipping mutation: Updated results from the CHRYSALIS study

<u>Matthew G. Krebs,</u><sup>1</sup> Alexander I. Spira,<sup>2</sup> Byoung Chul Cho,<sup>3</sup> Benjamin Besse,<sup>4</sup> Jonathan W. Goldman,<sup>5</sup> Pasi A. Jänne,<sup>6</sup> Zhiyong Ma,<sup>7</sup> Aaron S. Mansfield,<sup>8</sup> Anna Minchom,<sup>9</sup> Sai-Hong Ignatius Ou,<sup>10</sup> Ravi Salgia,<sup>11</sup> Zhijie Wang,<sup>12</sup> Casilda Llacer Perez,<sup>13</sup> Grace Gao,<sup>14</sup> Joshua C. Curtin,<sup>14</sup> Amy Roshak,<sup>14</sup> Robert W. Schnepp,<sup>14</sup> Meena Thayu,<sup>14</sup> Roland E. Knoblauch,<sup>14</sup> Chee Khoon Lee<sup>15</sup>

![](_page_107_Picture_4.jpeg)
### **CHRYSALIS: Antitumor Activity of Amivantamab Monotherapy** in Advanced NSCLC with MET Exon 14 Skipping Mutations

• A total of 46 patients were efficacy evaluable





### **CHRYSALIS: Safety Profile of Amivantamab Monotherapy in Advanced NSCLC with MET Exon 14 Skipping Mutations**

|                                      | RP2D (n=425)                 |          | METex14 Subset (n=55)       |          |
|--------------------------------------|------------------------------|----------|-----------------------------|----------|
| TEAE (≥15%) by Preferred Term,       | Median follow-up 11.8 months |          | Median follow up 5.1 months |          |
| n (%)                                | All Grades                   | Grade ≥3 | All Grades                  | Grade ≥3 |
| Infusion related reaction            | 283 (67)                     | 11 (3)   | 38 (69)                     | 3 (5)    |
| Rash                                 | 155 (36)                     | 8 (2)    | 17 (31)                     | 1 (2)    |
| Dermatitis acneiform                 | 155 (36)                     | 4 (1)    | 22 (40)                     | 0        |
| Paronychia                           | 193 (45)                     | 7 (2)    | 21 (38)                     | 0        |
| Fatigue                              | 93 (22)                      | 8 (2)    | 17 (31)                     | 2 (4)    |
| Hypoalbuminemia                      | 135 (32)                     | 10 (2)   | 15 (27)                     | 1 (2)    |
| Stomatitis                           | 91 (21)                      | 2 (0.5)  | 15 (27)                     | 0        |
| Decreased appetite                   | 76 (18)                      | 2 (0.5)  | 12 (22)                     | 0        |
| Dyspnea                              | 96 (23)                      | 21 (5)   | 12 (22)                     | 4 (7)    |
| Peripheral edema                     | 104 (24)                     | 4 (1)    | 11 (20)                     | 0        |
| Pruritus                             | 79 (19)                      | 0        | 12 (22)                     | 0        |
| Nausea                               | 104 (24)                     | 2 (0.5)  | 11 (20)                     | 0        |
| Constipation                         | 105 (25)                     | 0        | 10 (18)                     | 0        |
| Hypomagnesemia                       | 41 (10)                      | 0        | 9 (16)                      | 0        |
| Aspartate aminotransferase increased | 64 (15)                      | 5 (1)    | 9 (16)                      | 1 (2)    |
| Alanine aminotransferase increased   | 72 (17)                      | 10 (2)   | 8 (15)                      | 1 (2)    |
| Cough                                | 78 (18)                      | 0        | 3 (5)                       | 0        |

- Treatment modifications due to toxicity (n=425): interruptions in 21%, reductions in 12%, and discontinuations in 5% of patients
  - Rates of pneumonitis/ILD was 4%
  - Cumulative grouped rash-related AEs<sup>a</sup> occurred in 322 (76%) patients, with 16 grade ≥3 (4%)
- Safety profile for METex14 subset is consistent with the larger CHRYSALIS safety population, with majority of events grade 1-2
- No new safety signals found

# Capmatinib in MET Exon 14-Mutated, Advanced NSCLC: Updated Results from the GEOMETRY mono-1 Study

Wolf J et al. ASCO 2021;Abstract 9020.



#### **GEOMETRY mono-1**





### **GEOMETRY mono-1: Most Common Adverse Events** (Cohorts 7 and 6)

|                           | Cohort 7 — treatment naïve<br>N = 32 |           | Cohort 6 — second line<br>N = 31 |           |  |
|---------------------------|--------------------------------------|-----------|----------------------------------|-----------|--|
| Adverse event             | Any grade                            | Grade 3/4 | Any grade                        | Grade 3/4 |  |
| Peripheral edema          | 72%                                  | 13%       | 71%                              | 13%       |  |
| Nausea                    | 44%                                  | 0         | 32%                              | 3%        |  |
| Vomiting                  | 15%                                  | 3%        | 26%                              | 0         |  |
| Increase blood creatinine | 31%                                  | 0         | 29%                              | 0         |  |
| Dyspnea                   | 6%                                   | 3%        | 10%                              | 0         |  |
| Fatigue                   | 19%                                  | 0         | 29%                              | 0         |  |
| Decreased appetite        | 16%                                  | 3%        | 16%                              | 0         |  |



# **ALK-Rearranged NSCLC**



### Frequency of Targetable Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung



Derived from Tan AC et al. J Clin Oncol 2022;40(6):611-25.

### **Mechanism of Action of ALK Inhibitors**





Seebacher NA et al. *Clin Cancer Res* 2019;38(1):156.

### **Timeline of FDA Approvals for ALK Tyrosine Kinase Inhibitors (TKIs)**





### **Common and Unique Adverse Effects of ALK TKIs**

| ALK TKI    | Most common adverse effects                                                                                                                                                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Crizotinib | Vision disorders, nausea, diarrhea, vomiting, edema, constipation, elevated transaminases, fatigue, decreased appetite, upper respiratory infection, dizziness and neuropathy |
| Ceritinib  | Diarrhea, nausea, vomiting, fatigue, abdominal pain, decreased appetite and weight loss                                                                                       |
| Alectinib  | Constipation, fatigue, edema, myalgia and anemia                                                                                                                              |
| Brigatinib | Diarrhea, fatigue, nausea, rash, cough, myalgia, headache, hypertension, vomiting and dyspnea                                                                                 |
| Lorlatinib | Hypercholesterolemia, hypertriglyceridemia, edema, peripheral neuropathy, weight gain, cognitive effects, fatigue, dyspnea, arthralgia and diarrhea                           |
| Ensartinib | Rash, nausea, pruritus and vomiting                                                                                                                                           |



## **Brigatinib**

#### **Mechanism of action**

 Tyrosine kinase inhibitor against multiple kinases including ALK, ROS1, insulinlike growth factor-1 receptor (IGF-1R) and FLT3 as well as EGFR deletion and point mutations

#### Indication

• For adult patients with ALK-positive metastatic NSCLC

#### **Recommended dose**

 90 mg orally once daily for the first 7 days, then increase the dose to 180 mg orally once daily



## Lorlatinib

#### **Mechanism of action**

 Reversible potent third-generation tyrosine kinase inhibitor targeting ALK and ROS1

#### Indication

• For the treatment of metastatic NSCLC in adult patients whose tumors are ALK-positive

#### **Recommended dose**

• 100 mg once daily



### Activity of ALK Tyrosine Kinase Inhibitors (TKIs) in the First-Line Setting for Advanced NSCLC with ALK Rearrangement

| ALK TKI    | Median PFS  | Overall<br>response rate | Intracranial<br>response |
|------------|-------------|--------------------------|--------------------------|
| Crizotinib | 10.9 mo     | 74%                      | NA                       |
| Ceritinib  | 16.6 mo     | 72.5%                    | 72.7%                    |
| Alectinib  | 34.8 mo     | 82.9%                    | 82.9%                    |
| Brigatinib | 29.4 mo     | 71%                      | 78%                      |
| Lorlatinib | Not reached | 90%                      | 66.7%                    |
| Ensartinib | 26.2 mo     | 80%                      | 64.3%                    |



## **HER2-Mutant NSCLC**



### Antibody-Drug Conjugate Trastuzumab Deruxtecan (T-DXd)

#### T-DXd is an ADC with 3 components:

- A humanized anti-HER2 IgG1 mAb with the same amino acid sequence as trastuzumab
- A topoisomerase I inhibitor payload, an exatecan derivative
- A tetrapeptide-based cleavable linker



| Payload mechanism of action:<br>topoisomerase I inhibitor |
|-----------------------------------------------------------|
| High potency of payload                                   |
| High drug to antibody ratio ≈ 8                           |
| Payload with short systemic half-life                     |
| Stable linker-payload                                     |
| Tumor-selective cleavable linker                          |
| Membrane-permeable payload                                |
|                                                           |



### DESTINY-Lung01: Activity of Trastuzumab Deruxtecan in Patients with Advanced NSCLC with HER2 Mutations



Trastuzumab deruxtecan showed durable anticancer activity.



### **Trastuzumab Deruxtecan**

#### **Mechanism of action**

• Antibody-drug conjugate directed against HER2

#### Indication

 For patients with unresectable or metastatic NSCLC whose tumors have activating HER2 mutations, as detected by an FDA-approved test, and who have received a prior systemic therapy

#### **Recommended dose**

• 5.4 mg/kg IV infusion q3wk until disease progression or unacceptable toxicity



Trastuzumab deruxtecan package insert, 11/2022.

# **Tumor Treating Fields**



## **Tumor Treatment Fields**



Luo et al. Biomedicine and Pharmacotherapy 2020;127:11013.

### **Effect of Tumor Treating Fields on Dividing Cancer Cells**



#### **Normal Cancer Cell Division**

#### **Effect of Tumor Treating Fields**



MISALIGNED TUBULINS INTERFERE WITH FORMATION OF MITOTIC SPINDLE



TUMOR TREATING FIELDS DISRUPTS CANCER CELL DIVISION



MISALIGNED SEPTINS INTERFERE WITH FORMATION OF THE CONTRACTILE RING



www.novocure.com/our-therapy/

Tumor Treating Fields (TTFields): Alternative Mechanism of Action



Chang\*, Patel\*, et al., 2018, CDD

#### Pivotal LUNAR Study of Tumor Treating Fields Combined with Standard Therapies in NSCLC Meets its Primary Overall Survival Endpoint Press Release – January 5, 2023

It was announced that the LUNAR study met its primary endpoint, demonstrating a statistically significant and clinically meaningful improvement in overall survival over standard therapies alone. The LUNAR study is a pivotal, open-label, randomized study evaluating the safety and efficacy of tumor treating fields (TTFields) together with standard therapies for Stage IV non-small cell lung cancer (NSCLC) following progression while on or after treatment with platinum-based therapy.

The LUNAR study also showed a statistically significant and clinically meaningful improvement in overall survival when patients were treated with TTFields and immune checkpoint inhibitors (ICI), as compared to those treated with immune checkpoint inhibitors alone, and a positive trend in overall survival when patients were treated with TTFields and docetaxel versus docetaxel alone. Patient enrollment was well balanced between the ICI and docetaxel cohorts of the experimental and control arms, and control arms performed in line with prior studies. TTFields therapy was well tolerated by patients enrolled in the experimental arm of the study.

https://www.novocure.com/novocure-announces-pivotal-lunar-study-in-non-small-cell-lung-cancer-met-primary-overall-survival-endpoint/



### **LUNAR Phase III Trial Schema**





# **TTFields** Pipeline



#### Novocure, Ltd.

What I Tell My Patients: **Faculty Physicians and Nurses Discuss Patient Education About New Treatments and Clinical Trials** Fifteenth Annual RTP Symposium Series Held During the Annual ONS Congress Lung Cancer Friday, April 28, 2023 6:00 PM - 8:00 PM Faculty **Stephen V Liu, MD** Tara Plues, APRN, MSN Jillian Thompson, MSN, ANP-BC, AOCNP Anne S Tsao, MD, MBA **Moderator** Neil Love, MD

### What I Tell My Patients: **Faculty Physicians and Nurses Discuss Patient Education About New Treatments and Clinical Trials** Fifteenth Annual RTP Symposium Series Held During the Annual ONS Congress Acute Myeloid Leukemia, Myelodysplastic Syndromes and Myelofibrosis Saturday, April 29, 2023 6:00 AM - 7:30 AM Faculty Ilene Galinsky, NP **Richard M Stone, MD** Ruben A Mesa, MD (Virtual) Sara Tinsley-Vance, PhD, APRN, **Daniel A Pollyea, MD, MS AOCN**

Moderator Neil Love, MD



Thank you for joining us! Please take a moment to complete the survey currently up on Zoom. Your feedback is very important to us. The survey will remain open up to 5 minutes after the meeting ends.

In-person attendees can use the networked iPads<sup>®</sup> to claim NCPD credit or use the QR code as instructed in the program syllabus.

Virtual attendees: The NCPD credit link is posted in the chat room.

NCPD/ONCC credit information will be emailed to each participant within 1 to 2 business days.

