What I Tell My Patients: **Faculty Physicians and Nurses Discuss Patient Education About New Treatments and Clinical Trials** Fifteenth Annual RTP Symposium Series Held During the Annual ONS Congress Acute Myeloid Leukemia, Myelodysplastic Syndromes and Myelofibrosis Saturday, April 29, 2023 6:00 AM - 7:30 AM Faculty Ilene Galinsky, NP **Richard M Stone, MD** Ruben A Mesa, MD (Virtual) Sara M Tinsley-Vance, PhD, APRN, **Daniel A Pollyea, MD, MS AOCN**

Moderator Neil Love, MD

Faculty

llene Galinsky, NP

Senior Adult Leukemia Program Research Nurse Practitioner Dana-Farber Cancer Institute Boston, Massachusetts

Ruben A Mesa, MD

President, Enterprise Cancer Service Line Executive Director, Atrium Health Wake Forest Baptist Comprehensive Cancer Center Enterprise Senior Vice President, Atrium Health Vice Dean for Cancer Programs Professor of Medicine Wake Forest University School of Medicine Winston-Salem, North Carolina

Daniel A Pollyea, MD, MS Professor of Medicine Clinical Director of Leukemia Services Associate Chief of Clinical Affairs Robert H Allen, MD Chair in Hematology Research Division of Hematology University of Colorado School of Medicine Aurora, Colorado

Richard M Stone, MD Lunder Family Chair in Leukemia Chief of Staff Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School Boston, Massachusetts

Sara M Tinsley-Vance, PhD, APRN, AOCN Nurse Practitioner and Researcher Malignant Hematology Moffitt Cancer Center Tampa, Florida

Moderator

Neil Love, MD Research To Practice Miami, Florida

Ms Galinsky — Disclosures

Advisory Committee	AbbVie Inc, Bristol-Myers Squibb Company, CTI BioPharma Corp, Novartis
--------------------	--

Dr Mesa — Disclosures

Advisory Committee	AbbVie Inc, Geron, Incyte Corporation, Telios Pharma Inc	
Consulting Agreements	Blueprint Medicines, Bristol-Myers Squibb Company, Celgene Corporation, CTI BioPharma Corp, Genentech, a member of the Roche Group, GSK, Incyte Corporation, MorphoSys, Novartis, Protagonist Therapeutics, Sierra Oncology	
Contracted Research	Blueprint Medicines, Bristol-Myers Squibb Company, Celgene Corporation, C BioPharma Corp, Incyte Corporation, Sierra Oncology	
Data and Safety Monitoring Board/Committee	onitoring Geron, Telios Pharma Inc	

Dr Pollyea — Disclosures

Advisory Committee	AbbVie Inc, Adicet Bio, Arcellx, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, BerGenBio ASA, Bristol-Myers Squibb Company, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, HiberCell, ImmunoGen Inc, Jazz Pharmaceuticals Inc, Kura Oncology, Link Pharma, Magenta Therapeutics, Medivir AB, Novartis, OncoVerity, Qihan Biotech, Rigel Pharmaceuticals Inc, Ryvu Therapeutics, Seres Therapeutics, Sumitomo Dainippon Pharma Oncology Inc, Syndax Pharmaceuticals Inc, Syros Pharmaceuticals Inc, Zentalis Pharmaceuticals	
Consulting Agreements	AbbVie Inc, Aptevo Therapeutics, Schrödinger, Syros Pharmaceuticals Inc	
Contracted Research	AbbVie Inc, Bristol-Myers Squibb Company, Karyopharm Therapeutics, Teva Oncology	
Data and Safety Monitoring Board/Committee	Aptevo Therapeutics, GlycoMimetics Inc	

Dr Stone — Disclosures

AbbVie Inc, Actinium Pharmaceuticals Inc, Amgen Inc, Arog Pharm AvenCell, Boston Pharmaceuticals, Bristol-Myers Squibb Company BioPharma Corp, Genentech, a member of the Roche Group, GSK, Janssen Biotech Inc, Jazz Pharmaceuticals Inc, Kura Oncology, Lava Ligand Pharmaceuticals Incorporated, Novartis, Syros Pharmaceut Pharmaceuticals Inc, Takeda Pharmaceuticals USA Inc		
AML Expert Council	GSK	
Data and Safety Monitoring Board/Committee		
Focus Group	BerGenBio ASA	
Grand Rounds	Jazz Pharmaceuticals Inc	
Steering Committee	AbbVie Inc	

Dr Tinsley-Vance — Disclosures

Advisory Committee	Bristol-Myers Squibb Company, CTI BioPharma Corp, Incyte Corporation, Jazz Pharmaceuticals Inc	
Consulting Agreements	AbbVie Inc, Bristol-Myers Squibb Company, CTI BioPharma Corp, Incyte Corporation	
Speakers Bureau Corporation, Jazz Pharmaceuticals Inc		

Commercial Support

This activity is supported by educational grants from Bristol-Myers Squibb Company, CTI BioPharma Corp, and GSK.

Research To Practice NCPD Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the pre- and postmeeting surveys. Survey questions will be discussed throughout the meeting.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Complete Your Evaluation: Tap the NCPD Evaluation button to complete your evaluation electronically to receive credit for your participation.

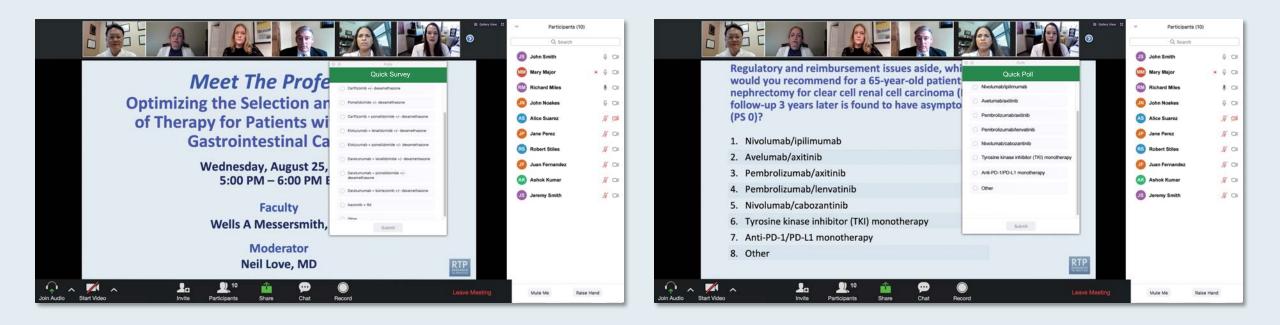
For assistance, please raise your hand. Devices will be collected at the conclusion of the activity.

Clinicians Attending via Zoom

|--|

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the pre- and postmeeting surveys. Survey questions will be discussed throughout the meeting.


Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get NCPD Credit: An NCPD credit link will be provided in the chat room at the conclusion of the program.

Clinicians, Please Complete the Pre- and Postmeeting Surveys

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

An email will be sent to all attendees when the activity is available.

 To learn more about our education programs, visit our website, <u>www.ResearchToPractice.com</u>

"What I Tell My Patients" Fifteenth Annual RTP-ONS NCPD Symposium Series ONS Congress, San Antonio, Texas — April 26 to 29, 2023

Wednesday April 26	Cervical and Endometrial Cancer 11:15 AM - 12:45 PM CT (12:15 PM - 1:45 PM ET)	
	Breast Cancer 6:00 PM - 8:00 PM CT (7:00 PM - 9:00 PM ET)	
Thursday April 27	Diffuse Large B-Cell Lymphoma 6:00 AM - 7:30 AM CT (7:00 AM - 8:30 AM ET)	
	Chronic Lymphocytic Leukemia 12:15 PM - 1:45 PM CT (1:15 PM - 2:45 PM ET)	
	HER2-Targeted Antibody-Drug Conjugates 6:00 PM - 7:30 PM CT (7:00 PM - 8:30 PM ET)	
	Hepatobiliary Cancers 6:00 AM - 7:30 AM CT (7:00 AM - 8:30 AM ET)	
Friday April 28	Ovarian Cancer 12:15 PM - 1:45 PM CT (1:15 PM - 2:45 PM ET)	
	Lung Cancer 6:00 PM - 8:00 PM CT (7:00 PM - 9:00 PM ET)	
Saturday April 29	Acute Myeloid Leukemia, Myelodysplastic Syndromes and Myelofibrosis 6:00 AM - 7:30 AM CT (7:00 AM - 8:30 AM ET)	
	Prostate Cancer 12:15 PM - 1:45 PM CT (1:15 PM - 2:45 PM ET)	

What I Tell My Patients 2023 ONS Congress San Antonio, Texas

Symposia Themes

- New agents and therapies; ongoing trials related to specific clinical scenarios
- Patient education: Preparing to receive new therapies
- The bond that heals
- THANKS! (Great job)

How was it different to take care of this patient versus another patient in the same oncologic setting?

What unique biopsychosocial factors (eg, attitude, comorbidities, social support) were considered in the overall management of this case?

What I Tell My Patients: **Faculty Physicians and Nurses Discuss Patient Education About New Treatments and Clinical Trials** Fifteenth Annual RTP Symposium Series Held During the Annual ONS Congress Acute Myeloid Leukemia, Myelodysplastic Syndromes and Myelofibrosis Saturday, April 29, 2023 6:00 AM - 7:30 AM Faculty Ilene Galinsky, NP **Richard M Stone, MD** Ruben A Mesa, MD (Virtual) Sara M Tinsley-Vance, PhD, APRN, **Daniel A Pollyea, MD, MS AOCN**

Moderator Neil Love, MD

Faculty

llene Galinsky, NP

Senior Adult Leukemia Program Research Nurse Practitioner Dana-Farber Cancer Institute Boston, Massachusetts

Ruben A Mesa, MD

President, Enterprise Cancer Service Line Executive Director, Atrium Health Wake Forest Baptist Comprehensive Cancer Center Enterprise Senior Vice President, Atrium Health Vice Dean for Cancer Programs Professor of Medicine Wake Forest University School of Medicine Winston-Salem, North Carolina

Daniel A Pollyea, MD, MS Professor of Medicine Clinical Director of Leukemia Services Associate Chief of Clinical Affairs Robert H Allen, MD Chair in Hematology Research Division of Hematology University of Colorado School of Medicine Aurora, Colorado

Richard M Stone, MD Lunder Family Chair in Leukemia Chief of Staff Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School Boston, Massachusetts

Sara M Tinsley-Vance, PhD, APRN, AOCN Nurse Practitioner and Researcher Malignant Hematology Moffitt Cancer Center Tampa, Florida

Moderator

Neil Love, MD Research To Practice Miami, Florida

Agenda

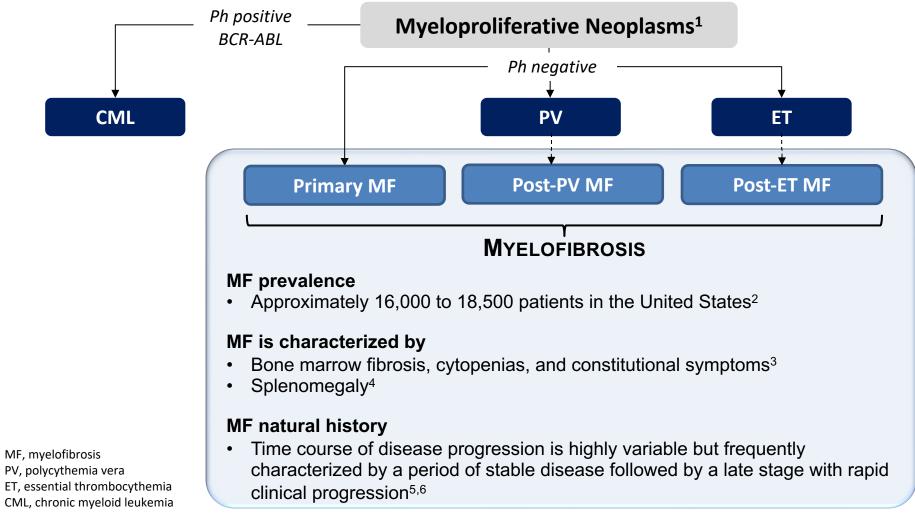
Module 1: Overview of MPNs and MF — Impact of Ruxolitinib Module 2: New Agents in MF — Fedratinib, Momelotinib, Pacritinib Module 3: MDS — Management of Low- and High-Risk Disease Module 4: Overview of AML Module 5: Targeted Therapy for AML

Agenda

Module 1: Overview of MPNs and MF — Impact of Ruxolitinib

- Module 2: New Agents in MF Fedratinib, Momelotinib, Pacritinib
- Module 3: MDS Management of Low- and High-Risk Disease
- **Module 4: Overview of AML**
- **Module 5: Targeted Therapy for AML**

87-year-old man with PMH of benign pleural effusions and pericardial effusions is diagnosed with MPL mutation-positive myelofibrosis (MF) and receives ruxolitinib



Clinical Research Background

- Overview of myeloproliferative neoplasms
 - Disease classification
 - Impact of ruxolitinib

Overview of Myelofibrosis (MF)

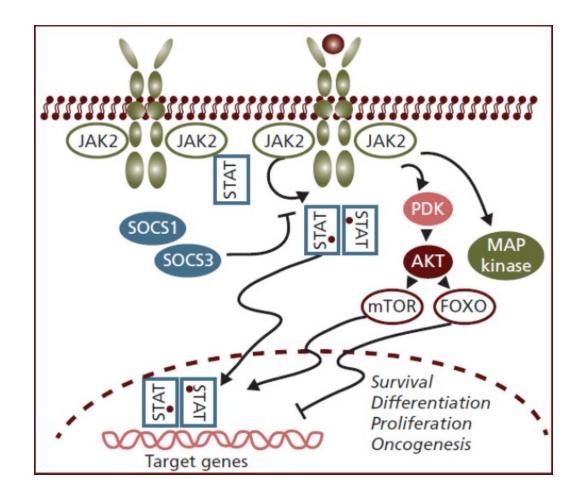
PV, polycythemia vera ET, essential thrombocythemia CML, chronic myeloid leukemia

¹Tefferi A, Vardiman JW. Leukemia. 2008;22:14-22; ²Data on file, Incyte Corporation; ³Verstovsek S. Clin Can Res. 2010;16:1988-1996; ⁴Mesa RA. Blood. 2009;113(22):5394-5400; ⁵Cervantes F, et al. Blood. 2009;113:2895-2901; ⁶Tam CS, et al. J Clin Oncol. 2009;27:5587-5593.

Myelofibrosis: Clinical Manifestations¹

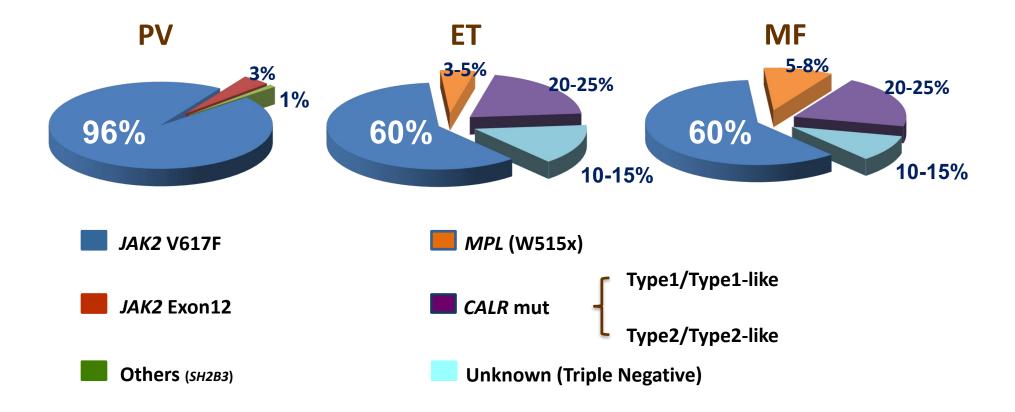
Constitutional symptoms	Fatigue, weight loss, cachexia, pruritus, night sweats, bone/joint pain, low-grade fever, cough	
Marked hepatosplenomegaly	Early satiety, abdominal discomfort, painful splenic infarcts, portal hypertension, cachexia	
Nonhepatosplenic extramedullary hematopoiesis (rare)	Cord compression, ascites, pulmonary hypertension, pulmonary embolism, lymphadenopathy, skin tumors	
Thrombohemorrhagic complications		
Marked leukocytosis or thrombocytosis; severe anemia,		

Splenomegaly²


Increased risk of leukemic transformation

thrombocytopenia, neutropenia; hyperuricemia

1. Barbui T et al. *J Clin Oncol*. 2011;29:761-770. 2. Image provided courtesy of S. Verstovsek.


JAK-STAT Pathway Constitutively Activated in Myelofibrosis

- JAK-STAT pathway implicated in normal hematopoiesis¹
- An activating mutation in the pseudokinase domain of *Janus kinase 2 (JAK2)* was identified in approximately 50% of MF patients
- Dysregulation of JAK-STAT, regardless of JAK mutation status, is a key pathologic feature of MF and other MPNs^{1,2}

1. Vannucchi AM et al. CA Cancer J Clin. 2009;59:171-191. 2. Anand S et al. Blood. 2011;118:1610-1621.

Phenotypic Driver Mutations (they activate JAK-STAT pathway) in MPNs

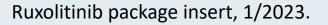
Ruxolitinib

Mechanism of action

• Orally bioavailable Janus-associated kinase (JAK) 1/2 inhibitor with potential antineoplastic and immunomodulating activities

Indication

- For the treatment of intermediate or high-risk myelofibrosis, including primary myelofibrosis, post-polycythemia vera myelofibrosis and post-essential thrombocythemia myelofibrosis in adults
- For the treatment of polycythemia vera in patients who have had an inadequate response to or are intolerant of hydroxyurea


Recommended dose

Myelofibrosis:

- Starting dose based on patient's baseline platelet count:
 - Greater than 200 x 10⁹/L: 20 mg given orally twice daily
 - 100 x 10⁹/L to 200 x 10⁹/L: 15 mg given orally twice daily
 - 50 x 10^9 /L to less than 100 x 10^9 /L: 5 mg given orally twice daily
- Monitor complete blood counts every 2 to 4 weeks until doses are stabilized, and then as clinically indicated Modify or interrupt dosing for thrombocytopenia

Polycythemia vera:

• Starting dose is 10 mg given orally twice daily

What Does Ruxolitinib Do?

Patient Pre-Ruxolitinib TherapyAfter 2 Months of TherapyIt is good for spleen and symptoms

Agenda

Module 1: Overview of MPNs and MF — Impact of Ruxolitinib

Module 2: New Agents in MF — Fedratinib, Momelotinib, Pacritinib

Module 3: MDS — Management of Low- and High-Risk Disease

Module 4: Overview of AML

Module 5: Targeted Therapy for AML

75-year-old male with MF who received fedratinib and developed altered mental status and decreased thiamine levels

Fedratinib

Mechanism of action

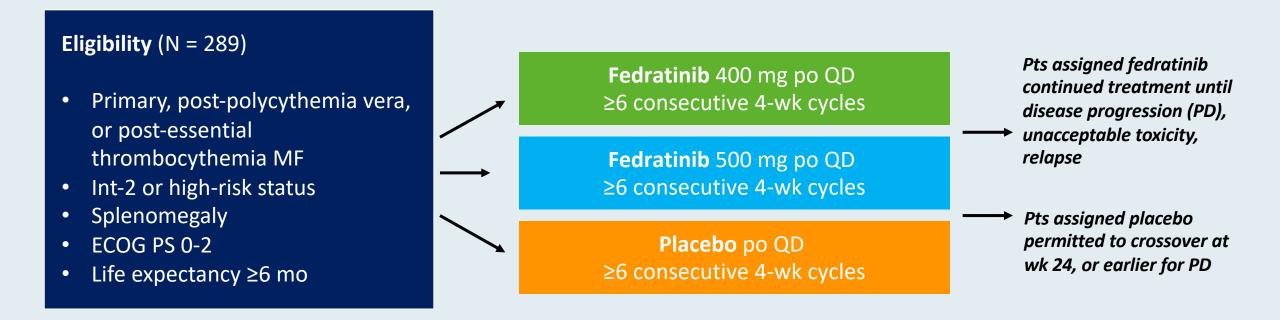
• JAK2 inhibitor

Indication

 For the treatment of adult patients with intermediate-2 or high-risk primary or secondary (post-polycythemia vera or post-essential thrombocythemia) myelofibrosis (MF)

Recommended dose

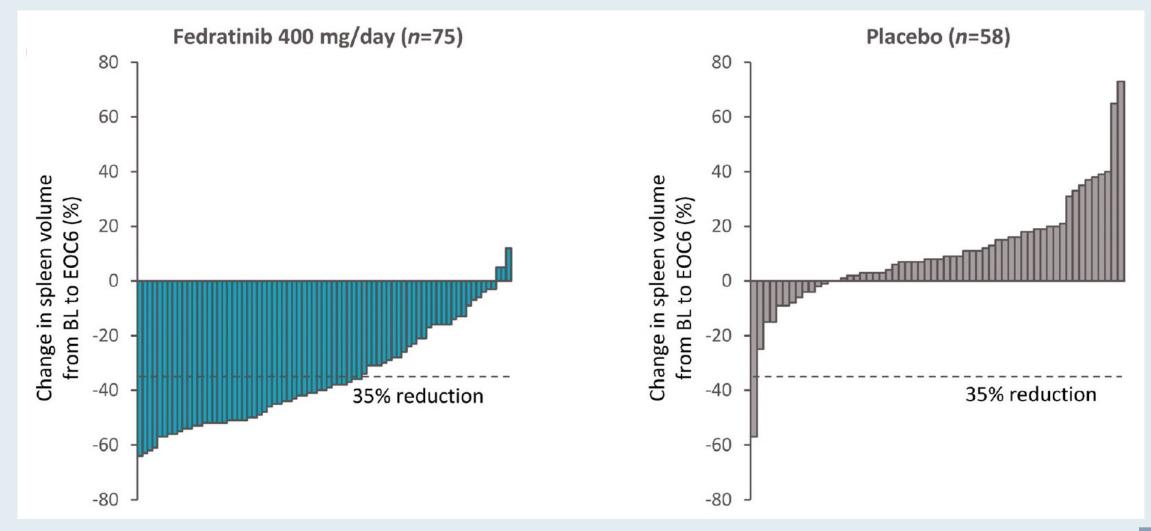
 400 mg orally once daily with or without food for patients with a baseline platelet count of greater than or equal to 50 x 10⁹/L


bjh short report

Updated results of the placebo-controlled, phase III JAKARTA trial of fedratinib in patients with intermediate-2 or high-risk myelofibrosis

Animesh Pardanani,¹ D Ayalew Tefferi,¹ D Tamás Masszi,² Elena Mishchenko,³ Mark Drummond,⁴ Eric Jourdan,⁵ Alessandro Vannucchi,⁶ Mindaugas Jurgutis,⁷ Vincent Ribrag,⁸ Alessandro Rambaldi,^{9,10} Liang Piu Koh,¹¹ Shelonitda Rose,¹² Jun Zhang¹² and Claire Harrison¹³ Br J Haematol 2021;195:244-8.

JAKARTA Phase III Study Design


Primary endpoint: Spleen response (≥35% reduction in spleen volume vs baseline) at wk 24, and confirmed 4 wk later

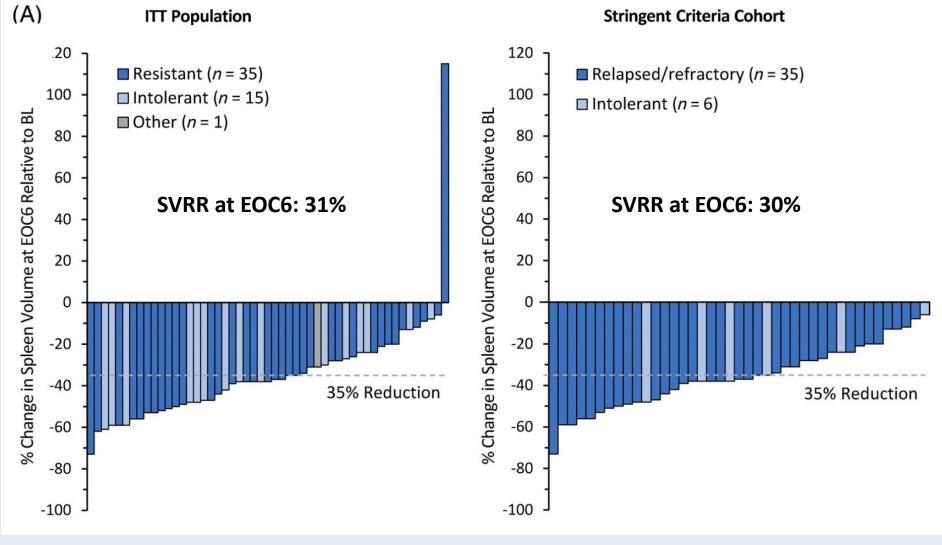
Secondary endpoints: Symptom response (≥50% reduction in total symptom score), safety

Pardanani A et al. JAMA Oncol 2015;1:643-51.

JAKARTA: Change in Spleen Volume from Baseline to End of Cycle 6

RESEARCH ARTICLE

Am J Hematol 2020;95:594-603

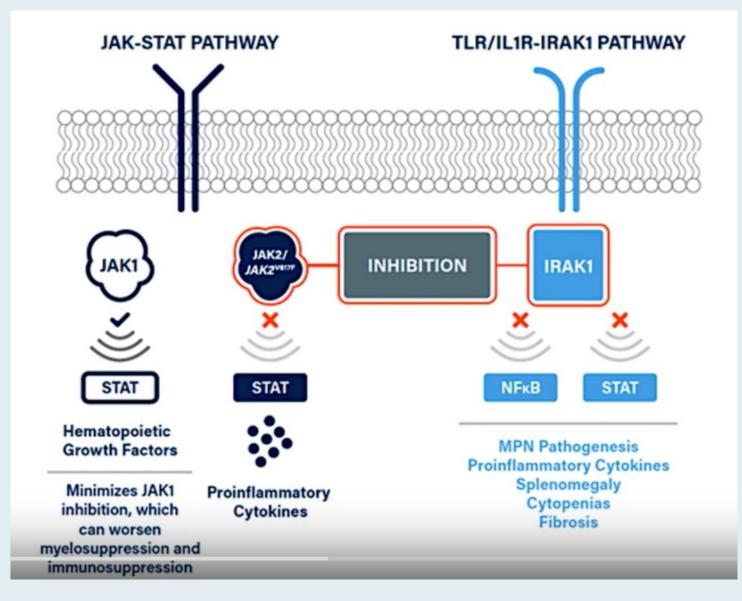


Fedratinib in patients with myelofibrosis previously treated with ruxolitinib: An updated analysis of the JAKARTA2 study using stringent criteria for ruxolitinib failure

Claire N. Harrison¹ | Nicolaas Schaap² | Alessandro M. Vannucchi³ | Jean-Jacques Kiladjian⁴ | Eric Jourdan⁵ | Richard T. Silver⁶ | Harry C. Schouten⁷ | Francesco Passamonti⁸ | Sonja Zweegman⁹ | Moshe Talpaz¹⁰ | Srdan Verstovsek¹¹ | Shelonitda Rose¹² | Juan Shen¹² | Tymara Berry¹² | Carrie Brownstein¹² | Ruben A. Mesa¹³

JAKARTA-2: Change from Baseline in Spleen Volume

ITT = intent-to-treat; SVRR = spleen volume response rate; EOC6 = end of cycle 6



83-year-old woman with multiple comorbidities and SRSF2 mutation-positive MF who received pacritinib

Pacritinib Mechanism of Action: JAK2 and IRAK1 Inhibitor

https://www.youtube.com/watch?v=z8Dkkp-vnIA

Pacritinib

Mechanism of action

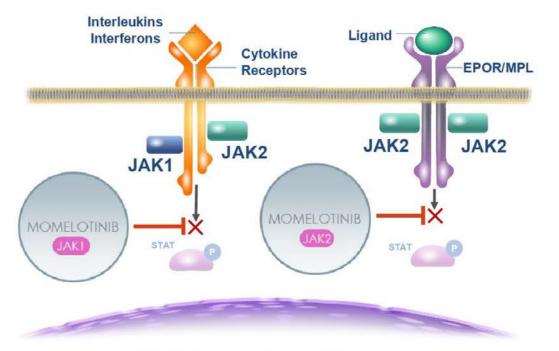
• Oral inhibitor of JAK2 and FLT3

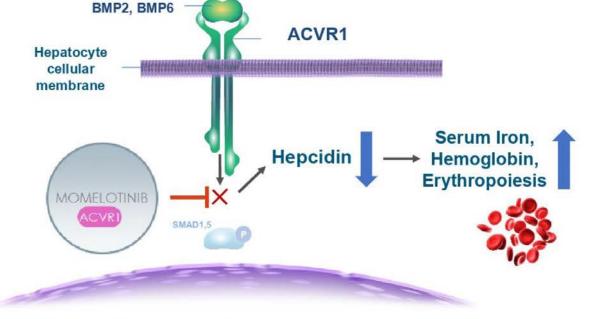
Indication

 For the treatment of intermediate- or high-risk primary or secondary (postpolycythemia vera or post-essential thrombocythemia) myelofibrosis in adult patients with a platelet count below 50 x 10⁹/L

Recommended dose

• 200 mg BID with or without food





79-year-old man with post-polycythemia vera MF who received momelotinib

Momelotinib Inhibits JAK1, JAK2 and ACVR1 to Address MF Symptoms, Spleen and Anemia

Dysregulated JAK-STAT signaling in MF drives overproduction of inflammatory cytokines, bone marrow fibrosis, systemic symptoms, and clonal proliferation resulting in extramedullary hematopoiesis and splenomegaly.^{1,2} Chronic inflammation also drives hyperactivation of **ACVR1**, elevated **hepcidin**, dysregulated iron metabolism, and **anemia** of MF.^{3,4}

Momelotinib

Mechanism of action

• Highly selective JAK1/2 and activin A receptor, Type 1 inhibitor

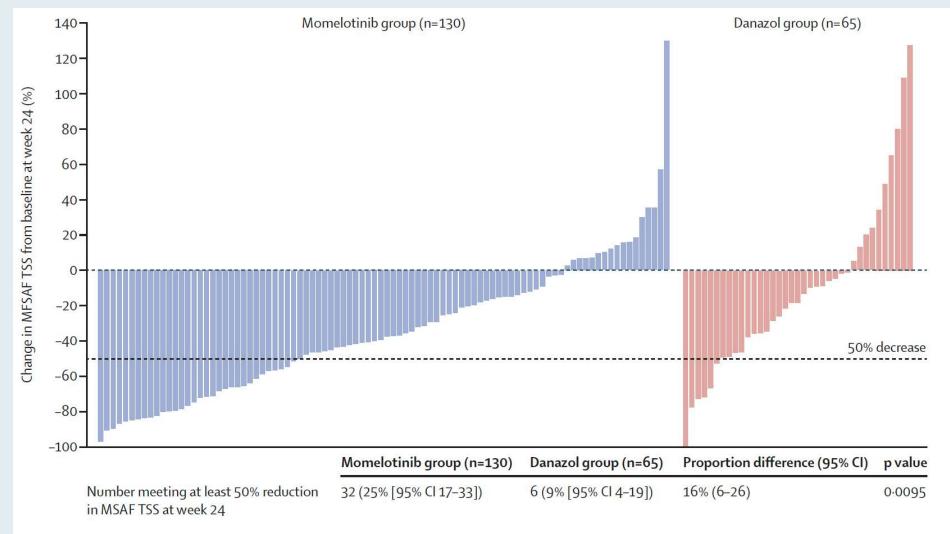
Indication

Investigational

Key clinical data

 Momelotinib versus danazol in symptomatic patients with anemia and myelofibrosis (MOMENTUM): Results from an international, double-blind, randomized, controlled, Phase III study

Lancet 2023;401-269-80


Momelotinib versus danazol in symptomatic patients with anaemia and myelofibrosis (MOMENTUM): results from an international, double-blind, randomised, controlled, phase 3 study

CrossMark

Srdan Verstovsek, Aaron T Gerds, Alessandro M Vannucchi, Haifa Kathrin Al-Ali, David Lavie, Andrew T Kuykendall, Sebastian Grosicki, Alessandra Iurlo, Yeow Tee Goh, Mihaela C Lazaroiu, Miklos Egyed, Maria Laura Fox, Donal McLornan, Andrew Perkins, Sung-Soo Yoon, Vikas Gupta, Jean-Jacques Kiladjian, Nikki Granacher, Sung-Eun Lee, Luminita Ocroteala, Francesco Passamonti, Claire N Harrison, Barbara J Klencke, Sunhee Ro, Rafe Donahue, Jun Kawashima, Ruben Mesa, on behalf of MOMENTUM Study Investigators*

MOMENTUM: Percentage Change of TSS from Baseline to Week 24 for Each Patient

MFSAF=Myelofibrosis Symptom Assessment Form TSS=total symptom score

Verstovsek S et al. Lancet 2023;401:269-80.

Agenda

Module 1: Overview of MPNs and MF — Impact of Ruxolitinib

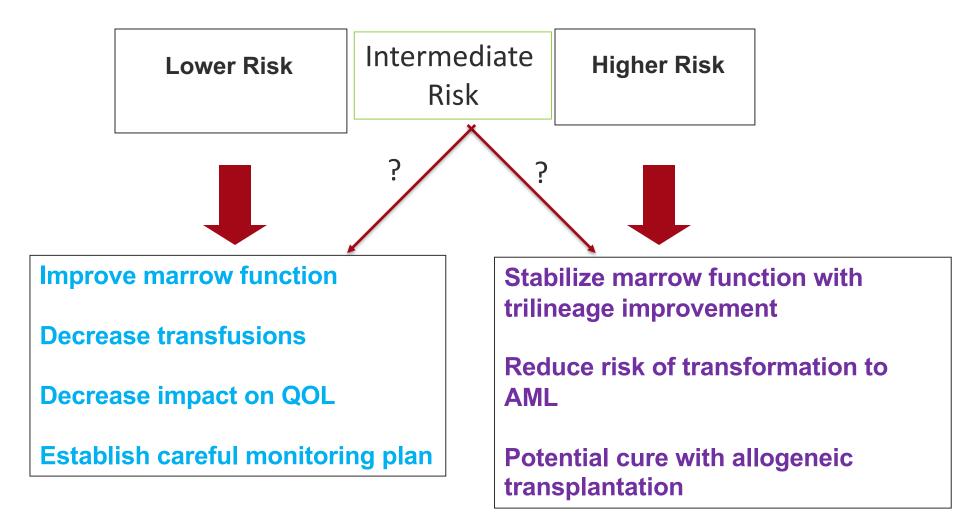
Module 2: New Agents in MF — Fedratinib, Momelotinib, Pacritinib

Module 3: MDS — Management of Low- and High-Risk Disease

Module 4: Overview of AML

Module 5: Targeted Therapy for AML

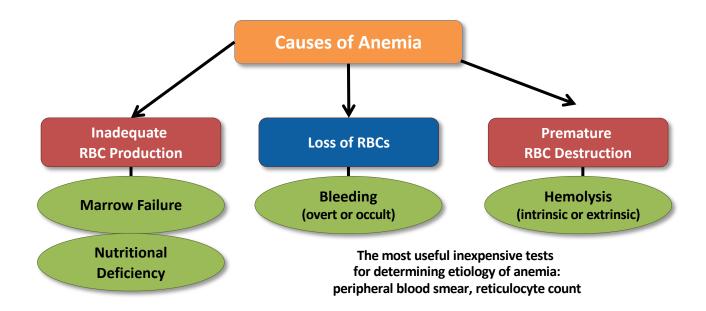
81-year-old man with JAK2 mutation-positive MDS with ringed sideroblasts and anemia requiring blood transfusions who received luspatercept



Clinical Research Background

- Myelodysplastic syndromes
 - Use of luspatercept for low-risk disease
 - Potential role of venetoclax/HMA for high-risk disease

Treatment goals in MDS



Weill Cornell Medicine - NewYork-Presbyterian

Courtesy of Gail J Roboz, MD

Anemia

- Anemia is a sign of disease, not a disease itself
- Dozens of causes, many common
- Organized approach essential
- A specific cause can be found in almost all cases

Luspatercept

Mechanism of action

• Binds TGF-β ligands to reduce SMAD2/3 signaling

Indication

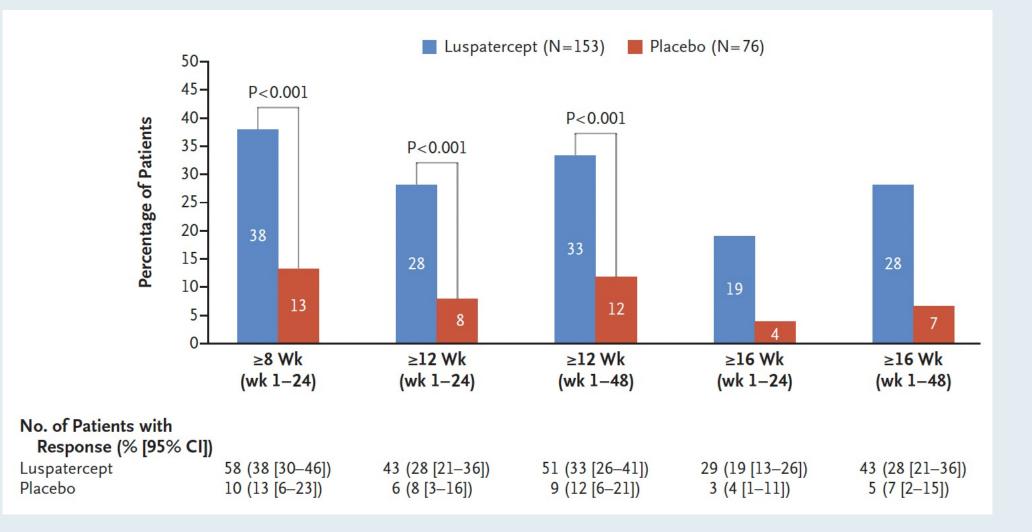
- For the treatment of anemia in adult patients with beta thalassemia who require regular red blood cell (RBC) transfusions
- For the treatment of anemia after failure of an erythropoiesis stimulating agent and requiring 2 or more RBC units over 8 weeks in adult patients with very low- to intermediate-risk myelodysplastic syndromes with ring sideroblasts or with myelodysplastic/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis

Recommended dose

• 1 mg/kg once every 3 weeks by subcutaneous injection

N Engl J Med 2020;382:140-51.

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Luspatercept in Patients with Lower-Risk Myelodysplastic Syndromes

P. Fenaux, U. Platzbecker, G.J. Mufti, G. Garcia-Manero, R. Buckstein, V. Santini, M. Díez-Campelo, C. Finelli, M. Cazzola, O. Ilhan, M.A. Sekeres, J.F. Falantes, B. Arrizabalaga, F. Salvi, V. Giai, P. Vyas, D. Bowen, D. Selleslag, A.E. DeZern, J.G. Jurcic, U. Germing, K.S. Götze, B. Quesnel, O. Beyne-Rauzy, T. Cluzeau, M.-T. Voso, D. Mazure, E. Vellenga, P.L. Greenberg, E. Hellström-Lindberg, A.M. Zeidan, L. Adès, A. Verma, M.R. Savona, A. Laadem, A. Benzohra, J. Zhang, A. Rampersad, D.R. Dunshee, P.G. Linde, M.L. Sherman, R.S. Komrokji, and A.F. List

MEDALIST: Independence from Red Blood Cell Transfusion

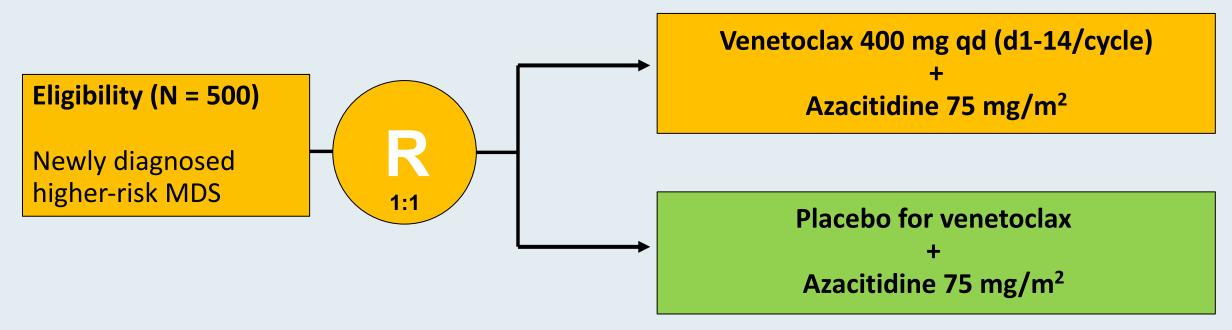
Fenaux P et al. N Engl J Med 2020;382:140-51.

Phase III COMMANDS Trial of First-Line Luspatercept-aamt in Patients with Transfusion-Dependent MDS Meets its Primary Endpoint Press Release: October 31, 2022

The COMMANDS study, a Phase 3, open-label, randomized trial evaluating luspatercept-aamt met its primary endpoint, demonstrating a highly statistically significant and clinically meaningful improvement in red blood cell transfusion independence (RBC-TI) with concurrent hemoglobin (Hb) increase in the first-line treatment of adult patients with very low-, low- or intermediate-risk myelodysplastic syndromes (MDS) who require RBC transfusions. This result was based on a pre-specified interim analysis conducted through an independent review committee. Safety results in the trial were consistent with the safety profile of luspatercept-aamt previously demonstrated in the MEDALIST study (NCT02631070), and no new safety signals were reported.

American Society of Hematology 2021 L Street NW, Suite 900, Washington, DC 20036 Phone: 202-776-0544 | Fax 202-776-0545 bloodadvances@hematology.org

Activity of luspatercept and ESAs combination for treatment of anemia in lowerrisk myelodysplastic syndromes


Tracking no: ADV-2023-009781R2

Rami Komrokji (H. Lee Moffitt Cancer Center, United States) Luis E. Aguirre (H. Lee Moffitt Cancer Center, United States) Najla Al-Ali (H. Lee Moffitt Cancer Center, United States) Onyee Chan (Moffitt Cancer Center, United States) Zhuoer Xie (Moffitt Cancer Center, United States) Andrew Kuykendall (H. Lee Moffitt Cancer Center, United States) Kendra Sweet (H. Lee Moffitt Cancer Center, United States) Jeffrey Lancet (Moffitt Cancer Center, United States) Eric Padron (H. Lee Moffitt Cancer Center, United States) David Sallman (Moffitt Cancer Center and Research Institute, United States)

Blood Adv 2023; Apr 14 [epub ahead of print].

VERONA Phase III Study Design

Until relapse, progression or unacceptable toxicity

Dual primary endpoints: Complete remission and overall survival **Secondary endpoints:** RBC and platelet transfusion independence for patients who are transfusion dependent at baseline, change from baseline in fatigue, time to deterioration of physical functioning, overall response

Zeidan AM et al. ASCO 2021; Abstract TPS7054.

Agenda

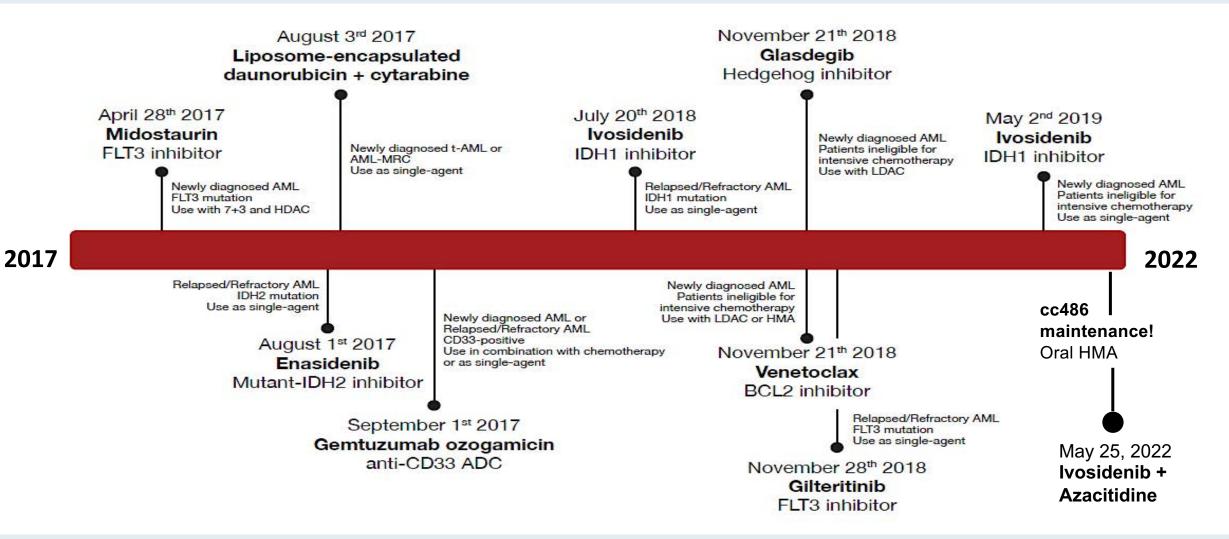
Module 1: Overview of MPNs and MF — Impact of Ruxolitinib

Module 2: New Agents in MF — Fedratinib, Momelotinib, Pacritinib

Module 3: MDS — Management of Low- and High-Risk Disease

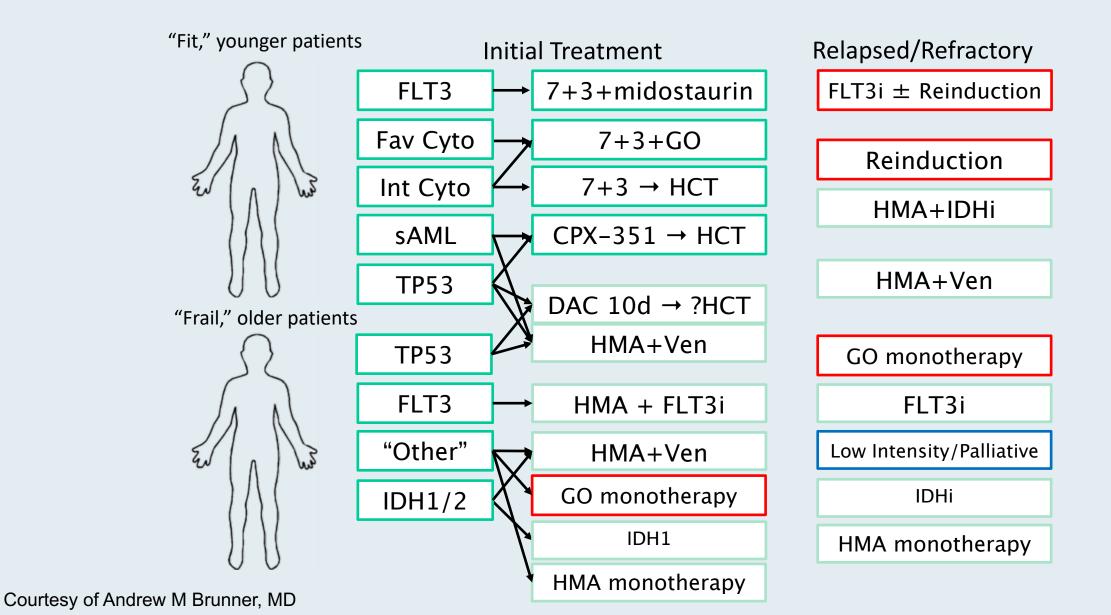
Module 4: Overview of AML

Module 5: Targeted Therapy for AML

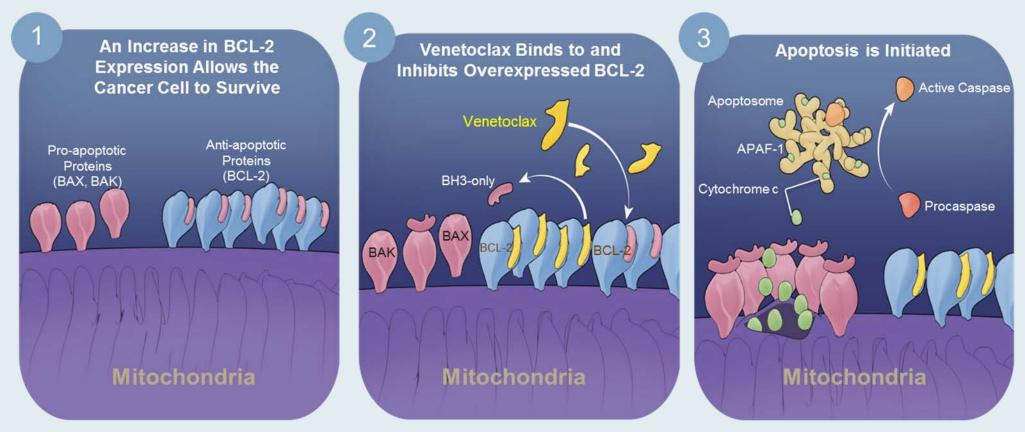

Sara M Tinsley-Vance, PhD, APRN, AOCN

89-year-old man with newly diagnosed AML who received venetoclax/azacitidine

The Rapidly Evolving Treatment Landscape of AML: FDA Approvals



Richard-Carpentier G, DiNardo CD. *Hematology Am Soc Educ Program* 2019(1):548-56.


Content Courtesy of Courtney D DiNardo, MD, MSCE

Management of AML in 2023

Venetoclax Mechanism of Action

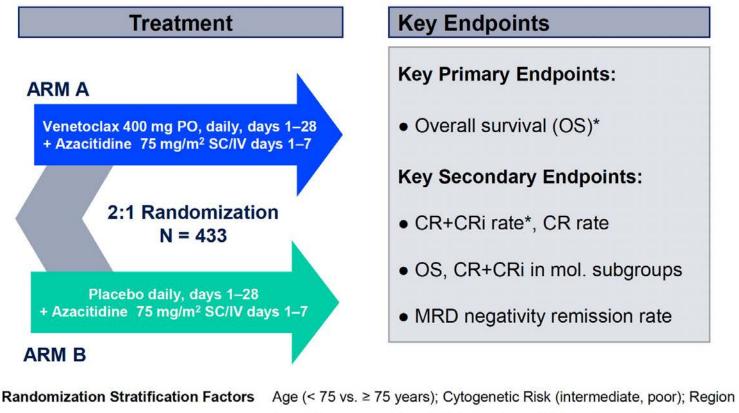
- Cancer cells increase the expression of antiapoptotic proteins to offset the increase in proapoptotic proteins, tipping the balance toward cell survival
- The large number of proapoptotic proteins bound and sequestered by Bcl-2 in AML make them "primed" for death

ASH 2022 | Abstract 219

Long-Term Follow-Up of the Phase 3 VIALE-A Clinical Trial of Venetoclax Plus Azacitidine for Patients With Treatment-Naïve Acute Myeloid Leukemia Ineligible for Intensive Chemotherapy

Keith W. Pratz¹, Brian A. Jonas², Vinod Pullarkat³, Michael J. Thirman⁴, Jacqueline S. Garcia⁵, Walter Fiedler⁶, Kazuhito Yamamoto⁷, Jianxiang Wang⁸, Sung-Soo Yoon⁹, Ofir Wolach¹⁰, Jun-Ho Jang¹¹, Su-Peng Yeh¹², Grace Ku¹³, Catherine Miller¹⁴, Ying Zhou¹⁴, Brenda Chyla¹⁴, Jalaja Potluri¹⁴, Courtney D. DiNardo¹⁵

VIALE-A Phase III Study Design

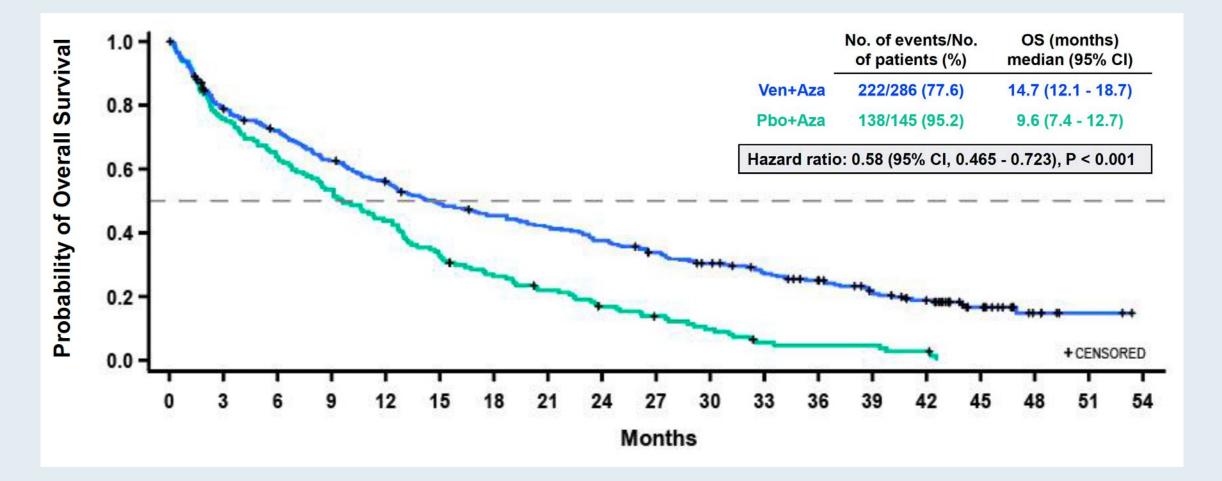

Eligibility

Key Inclusion Criteria

AML previously untreated ● Age
 75 years or 18-74 years with comorbidities ineligible for standard induction regimens ● ECOG of 0-2 for pts ≥ 75 years or 0 to 3 for pts
 ≥ 18-74 years

Key Exclusion Criteria

Prior receipt of any HMA, Ven, or chemotherapy for MDS
Favorable risk cytogenetics per NCCN 2016 • AML secondary to MPN, CML • Acute promyelocytic leukemia • Active CNS involvement



Venetoclax dosing ramp-up

<u>Cycle 1 ramp-up</u> Day 1: 100 mg, Day 2: 200 mg, Day 3 - 28: 400 mg <u>Cycle 2</u> Day 1-28: 400 mg

VIALE-A: Overall Survival (Median Follow-Up: 43.2 Months)

Agenda

Module 1: Overview of MPNs and MF — Impact of Ruxolitinib

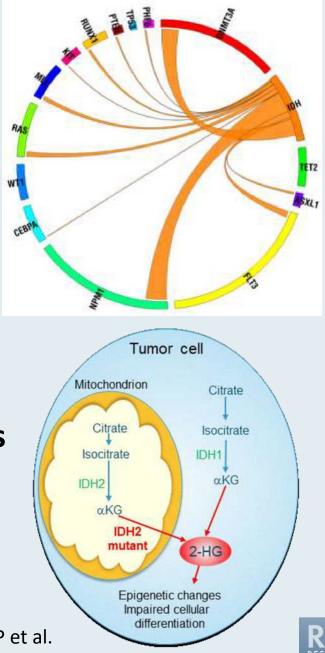
Module 2: New Agents in MF — Fedratinib, Momelotinib, Pacritinib

Module 3: MDS — Management of Low- and High-Risk Disease

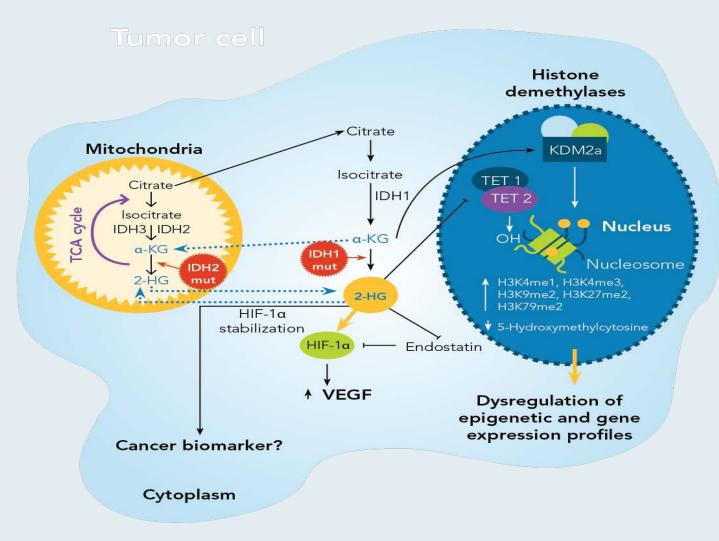
Module 4: Overview of AML

Module 5: Targeted Therapy for AML

66-year-old man with IDH2 mutation-positive relapsed AML who received enasidenib


Clinical Research Background

- Targeted therapy for AML
 - Frequency of targeted mutations
 - IDH1/2 inhibitors
 - FLT3 inhibitors


IDH in Leukemia

- IDH mutations occur in ~20% of AML
 - Frequency: 6% to 16% IDH1 and 8% to 18% IDH2
 - Majority (85%) with diploid or +8 cytogenetics
 - \uparrow prevalence with \uparrow patient age
 - Prognostic effect in AML remains controversial
 - IDH1 and IDH2 mutations may have different effects on prognosis

Dang L et al. *Trends Mol Med* 2010;16(9):387-97. Chou WC et al. *Leukemia* 2011;25(2):246-53. Patel JP et al. *N Engl J Med* 2012;366(2):1079-89. Medeiros BC et al. *Leukemia* 2017;31:272-81.

IDH in AML

- IDH1 in cytoplasm and IDH2 in mitochondria
- Cancer-associated IDHm produces 2-hydroxyglutarate (R-2-HG)
- IDH1/IDH2 mutations induce Bcl-2 dependence (Majeti, Nat Med, 2015)
- R-2-HG suppresses homologous recombination (Bindra, Sci Transl Med, 2017)

Enasidenib

Mechanism of action

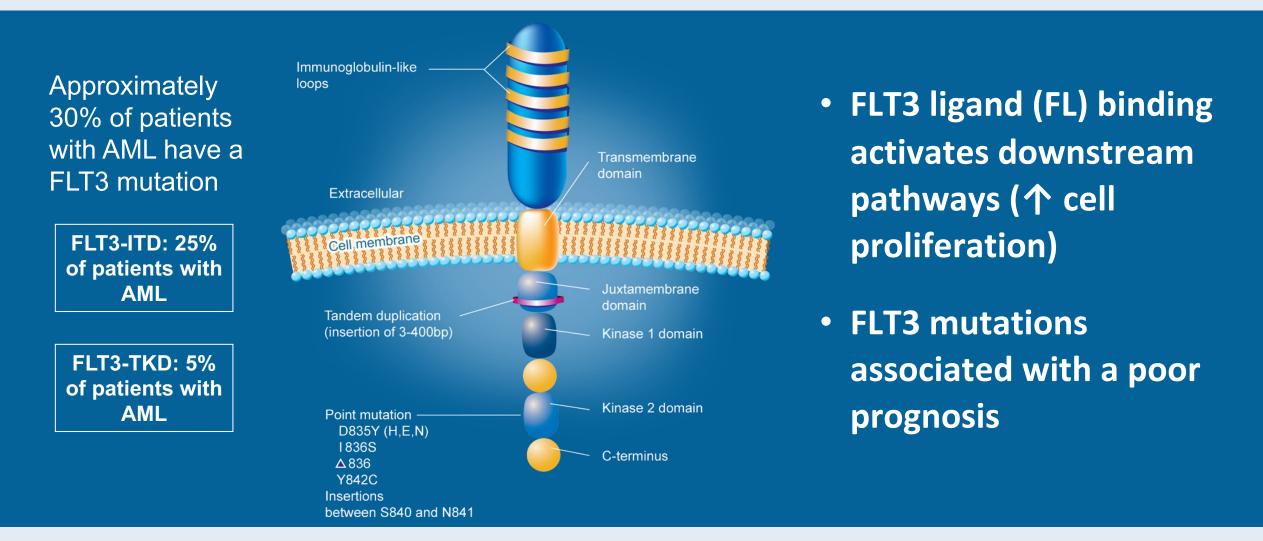
• IDH2 inhibitor

Indication

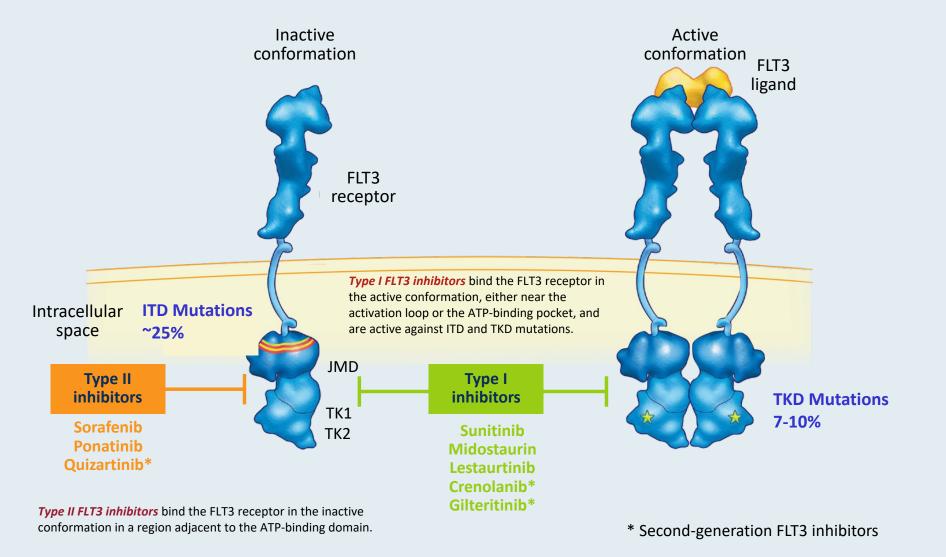
• For the treatment of relapsed or refractory AML with an IDH2 mutation as detected by an FDA-approved test

Recommended dose

• 100 mg orally once daily until disease progression or unacceptable toxicity

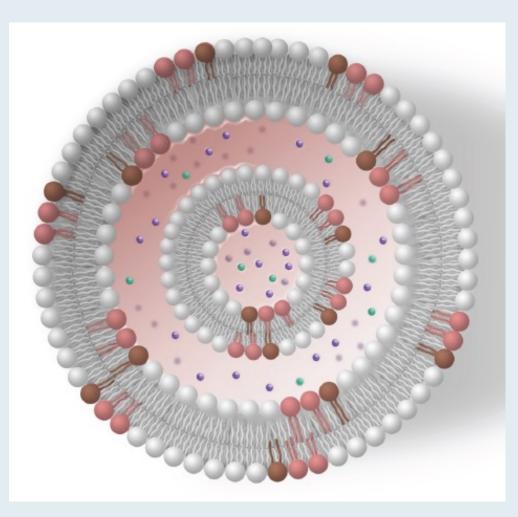


67-year-old man with relapsed FLT3 mutation-positive AML who received oral azacitidine in combination with a FLT3 inhibitor


FLT3 Mutations in AML

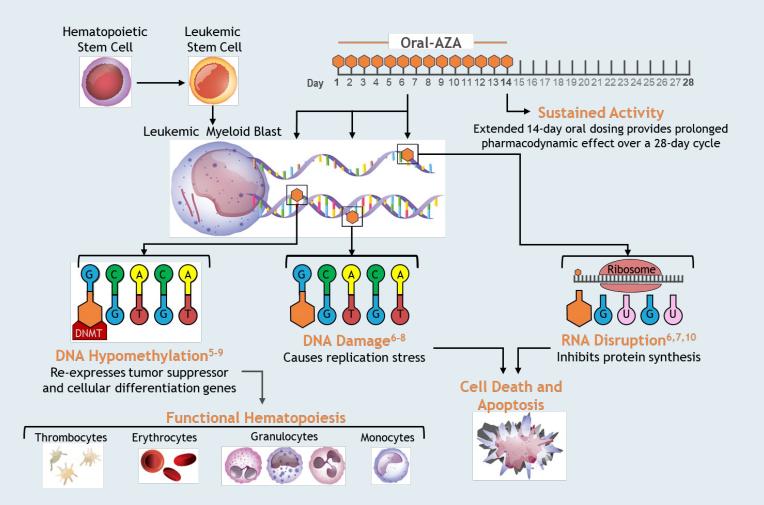
Litzow MR. *Blood* 2005;106:3331-2; Small D. *Hematology Am Soc Hematol Educ Program* 2006:178-84; Swords R et al. *Leukemia* 2012;26(10):2176-85; Griffith J et al. *Mol Cell* 2004;13(2):169-78; Levis M. *Hematology Am Soc Hematol Educ Program* 2013;2013:220-6.

FLT3 Mutations (ITD and TKD) Occur in Approximately 30% to 35% of Patients with AML



Daver N et al. Leukemia 2019;33:299-312.

CPX-351


- CPX-351 is a liposomal coformulation of cytarabine and daunorubicin designed to achieve synergistic antileukemia activity
 - 5:1 molar ratio of cytarabine: daunorubicin provides synergistic leukemia cell killing in vitro¹
 - In patients, CPX-351 preserved delivery of the 5:1 drug ratio for over 24 hours, with drug exposure maintained for 7 days²
 - Selective uptake of liposomes by bone marrow leukemia cells in xenograft models³

1. Tardi P et al. *Leuk Res.* 2009;33(1):129-139. 2. Feldman EJ et al. *J Clin Oncol.* 2011;29(8):979-985; 3. Lim WS et al. *Leuk Res.* 2010;34(9):1245-1223.

Oral Azacitidine (Oral-AZA, CC-486)

- Oral hypomethylating agent with a distinct pharmacokinetic/ pharmacodynamic profile from injectable AZA; the two are not bioequivalent^{1,2}
- Approved in the United States for continued Tx of AML in adult patients who achieved first CR/CRi post-IC and are not able to complete intensive curative therapy (eg, HSCT)³
 - Oral dosing allows for extended drug exposure during each Tx cycle to prolong AZA activity^{1,2}

1. Garcia-Manero et al. J Clin Oncol. 2011;29(18):2521–7. 2. Laille et al. PLoS One. 2015;10(8):e0135520. 3. Azacitidine tablets [package insert]. Princeton, NJ: Bristol-Myers Squibb Company; Rev. 9/2020. 4. Savona et al. Am J Hematol. 2018;93(10):1199–206. 5. Stresemann et al. Mol Cancer Ther. 2008;7:2998–3005. 6. Hollenbach et al. PLoS One. 2010;5(2):e9001. 7. Scott LJ. Drugs. 2016;76(8):889–900. 8. Stresemann C, Lyko F. Int J Cancer. 2008;123(1):8–13. 9. Aimiuwu et al. Blood. 2012;119(22):5229–38.

AML, acute myeloid leukemia; AZA, azacitidine; CR, complete remission; CRi, CR with incomplete blood count recovery; HMA, hypomethylating agent; HSCT, hematopoietic stem cell transplant; IC, intensive chemotherapy; PD, pharmacodynamic; PK, pharmacokinetic; pts, patients; Tx, treatment.

CC-486 (Oral Azacitidine)

Mechanism of action

• Oral DNA hypomethylating agent and epigenetic modifier

Indication

 For the treatment of acute myeloid leukemia in adult patients who achieved first complete remission or complete remission with incomplete blood count recovery following intensive induction chemotherapy and are not able to complete intensive curative therapy

Recommended dose

- 300 mg orally once daily on days 1 through 14 of each 28-day cycle
- Administer an antiemetic before each dose for at least the first 2 cycles

APPENDIX

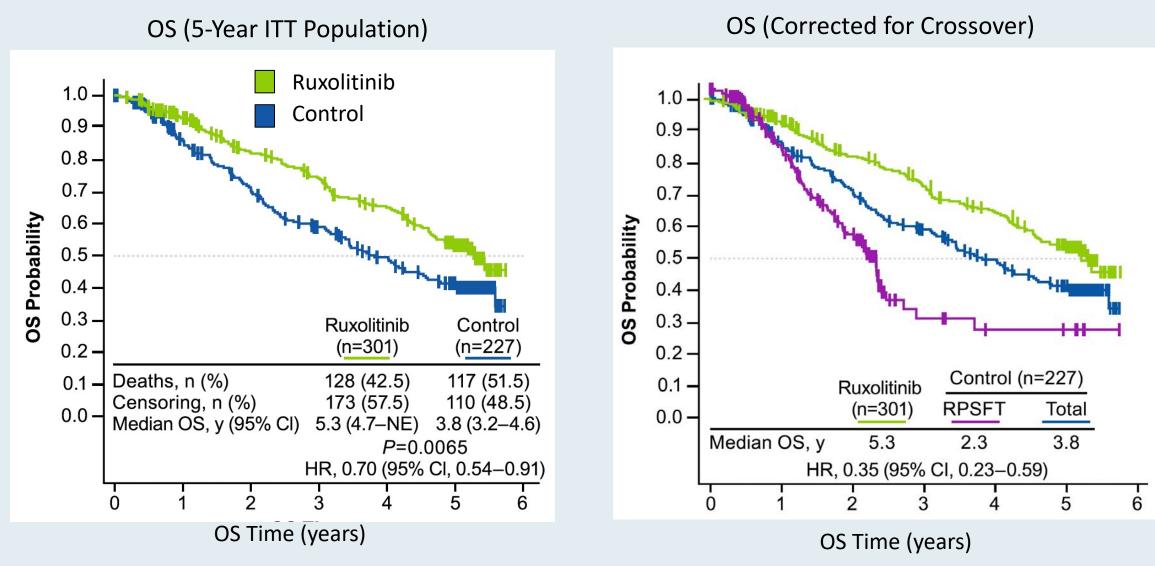
Myelofibrosis

Ruxolitinib

Verstovsek et al. Journal of Hematology & Oncology (2017) 10:156 DOI 10.1186/s13045-017-0527-7

Journal of Hematology & Oncology

RESEARCH


Open Access

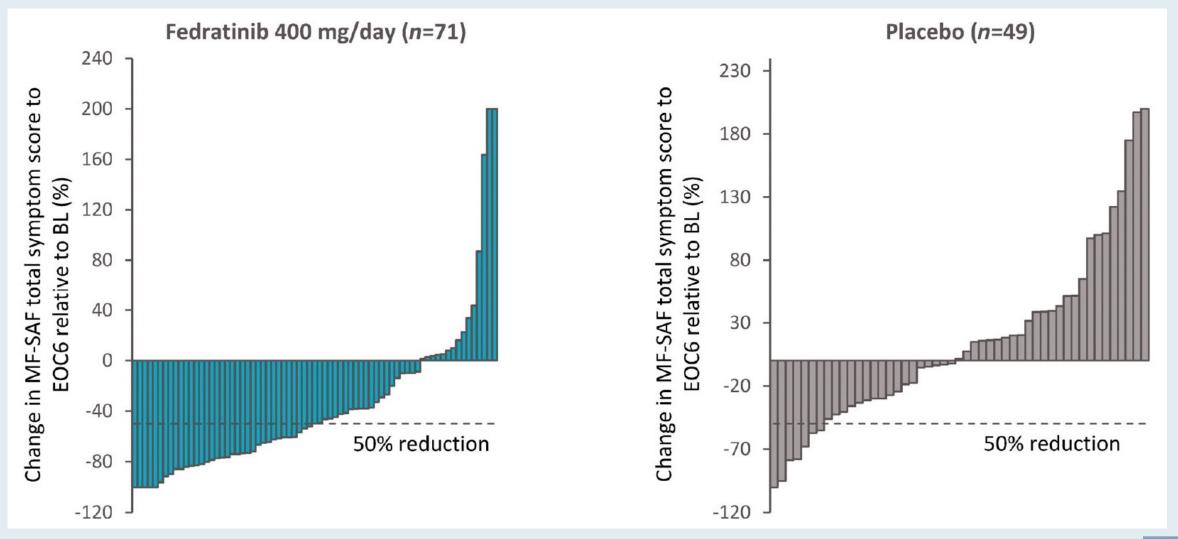
Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses

Srdan Verstovsek^{1*}, Jason Gotlib², Ruben A. Mesa³, Alessandro M. Vannucchi⁴, Jean-Jacques Kiladjian⁵, Francisco Cervantes⁶, Claire N. Harrison⁷, Ronald Paquette⁸, William Sun⁹, Ahmad Naim⁹, Peter Langmuir⁹, Tuochuan Dong¹⁰, Prashanth Gopalakrishna¹¹ and Vikas Gupta¹²

COMFORT-I and II Pooled Analyses: Long-Term Survival with Ruxolitinib

Verstovsek S et al. J Hematol Oncol 2017;10:156.

Fedratinib


bjh short report

Updated results of the placebo-controlled, phase III JAKARTA trial of fedratinib in patients with intermediate-2 or high-risk myelofibrosis

Animesh Pardanani,¹ D Ayalew Tefferi,¹ D Tamás Masszi,² Elena Mishchenko,³ Mark Drummond,⁴ Eric Jourdan,⁵ Alessandro Vannucchi,⁶ Mindaugas Jurgutis,⁷ Vincent Ribrag,⁸ Alessandro Rambaldi,^{9,10} Liang Piu Koh,¹¹ Shelonitda Rose,¹² Jun Zhang¹² and Claire Harrison¹³ Br J Haematol 2021;195:244-8.

JAKARTA: Change in Total Symptom Scores from Baseline to End of Cycle 6

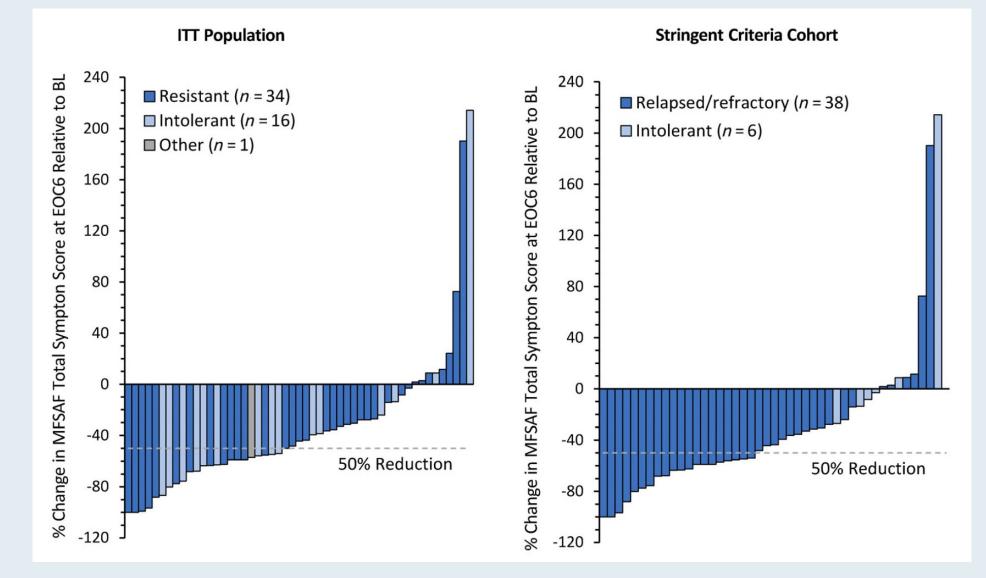
JAKARTA: Selected Adverse Events

	Fedratinib 400 mg (n = 96)		Placebo (n = 95)				
Adverse events	All grades	Grade ≥3	All grades	Grade ≥3			
Diarrhea	66%	5%	16%	0			
Nausea	62%	0	15%	0			
Anemia	40%	30%	14%	7%			
Vomiting	39%	3.1%	5%	0			
Fatigue	19%	5%	16%	1.1%			
Laboratory parameters							
Anemia	74%	34%	32%	10%			
Thrombocytopenia	47%	12%	26%	10%			
Neutropenia	23%	5%	13%	3.3%			
Biochemistry							
Lipase increased	35%	10%	7%	2.2%			

Pardanani A et al. Br J Haematol 2021;195:244-8.

RESEARCH ARTICLE

Am J Hematol 2020;95:594-603



Fedratinib in patients with myelofibrosis previously treated with ruxolitinib: An updated analysis of the JAKARTA2 study using stringent criteria for ruxolitinib failure

Claire N. Harrison¹ | Nicolaas Schaap² | Alessandro M. Vannucchi³ | Jean-Jacques Kiladjian⁴ | Eric Jourdan⁵ | Richard T. Silver⁶ | Harry C. Schouten⁷ | Francesco Passamonti⁸ | Sonja Zweegman⁹ | Moshe Talpaz¹⁰ | Srdan Verstovsek¹¹ | Shelonitda Rose¹² | Juan Shen¹² | Tymara Berry¹² | Carrie Brownstein¹² | Ruben A. Mesa¹³

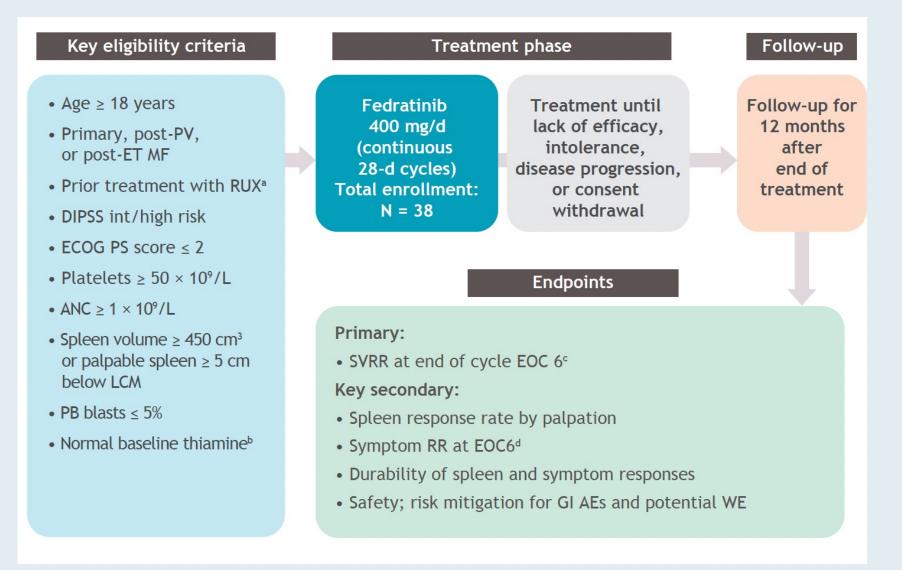
JAKARTA-2: Change from Baseline in Symptom Score

Harrison CN et al. Am J Hematol 2020;95:594-603.

JAKARTA-2: Treatment-Emergent Adverse Events (ITT Population)

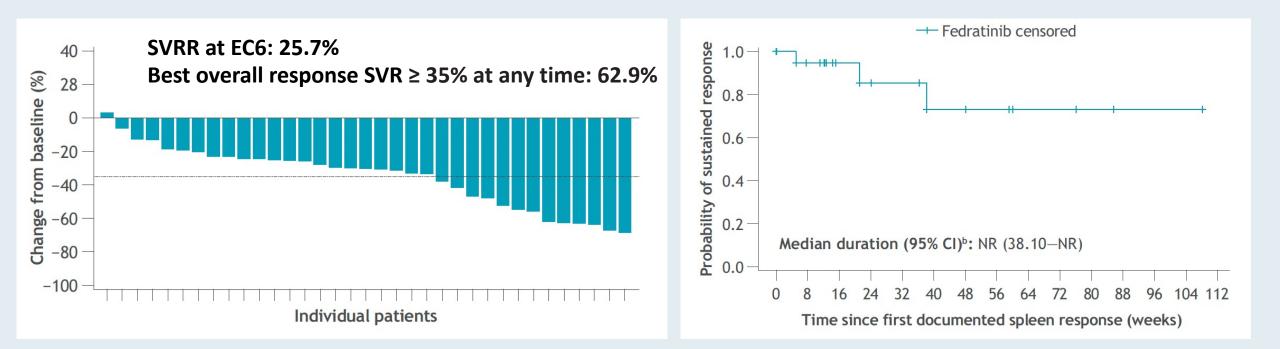
	ITT population (N = 97)		
Preferred term	Any Grade n (%)	Grade 3-4 n (%)	
Diarrhea	60 (62)	4 (4)	
Nausea	54 (56)	0	
Anemia	47 (49)	37 (38)	
Thrombocytopenia	26 (27)	21 (22)	
Vomiting	40 (41)	0	
Constipation	20 (21)	1 (1)	
Pruritus	17 (18)	0	
Fatigue	15 (16)	2 (2)	

No case of Wernicke encephalopathy occurred

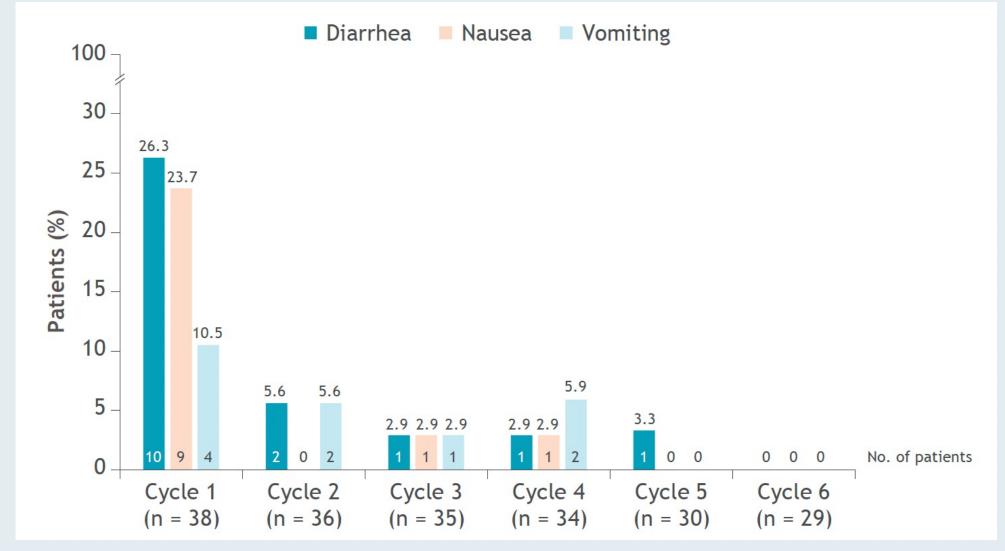

Harrison CN et al. Am J Hematol 2020;95:594-603.

Safety and Efficacy of Fedratinib in Patients with Primary, Post-Polycythemia Vera, and Post-Essential Thrombocythemia Myelofibrosis Previously Treated with Ruxolitinib: Primary Analysis of the FREEDOM Trial

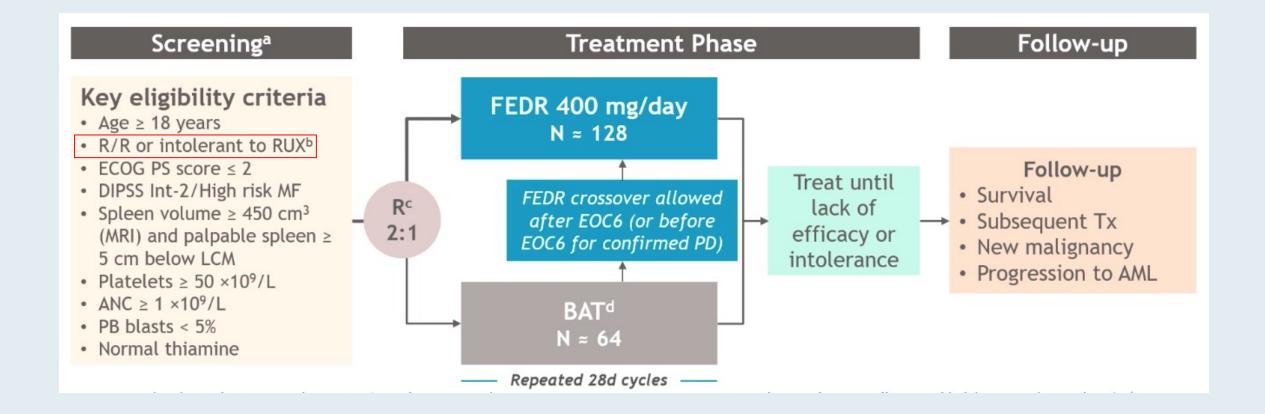
Gupta V et al ASH 2022; Abstract 1711



FREEDOM Phase III Study Design


FREEDOM: Change in Baseline Spleen Volume by MRI/CT at EOC6 and Durability of Spleen Size Response

Gupta V et al. ASH 2022; Abstract 1711.


FREEDOM: Gastrointestinal Treatment-Emergent Adverse Events by Treatment Cycle

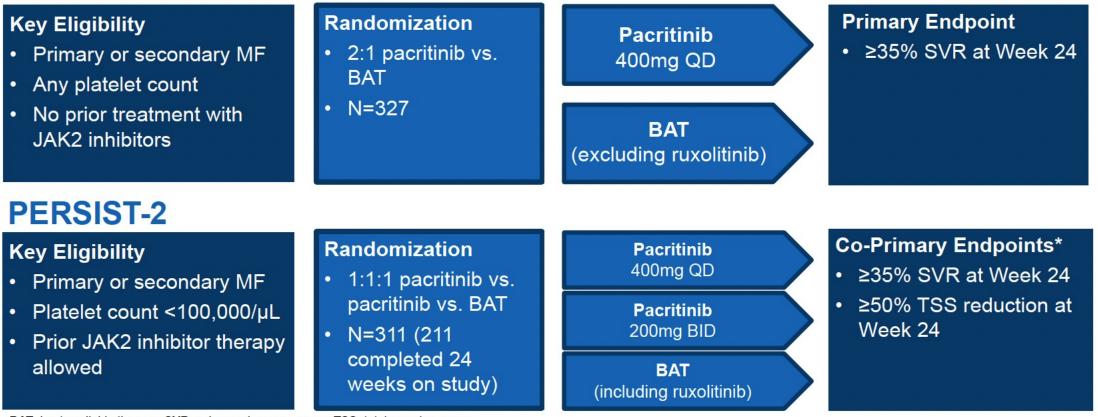
Gupta V et al. ASH 2022; Abstract 1711.

FREEDOM-2 Phase III Study Design

Pacritinib Granted Accelerated Approval for Use in Myelofibrosis with Severe Thrombocytopenia Press Release: February 28, 2022

"Pacritinib received accelerated approval from the FDA at a twice daily, 200-mg dose for patients with intermediate- or high-risk primary or secondary myelofibrosis who are experiencing severe thrombocytopenia with a platelet count below 50×10^9 /L. The agency's decision comes from results of the phase 3 PERSIST-2 study (NCT02055781).

Treatment with pacritinib at 200 mg resulted in a reduction in spleen volume of at least 35% for 29% of patients, vs 3% of patients who received the best available therapy, including ruxolitinib. As part of the post-approval plans for pacritinib, the phase 3 PACIFICA trial (NCT03165734) will be completed with results estimated in 2025.


The PERSIST-2 study, which assessed the use of pacritinib compared with best available therapy in patients with myelofibrosis and thrombocytopenia, enrolled 311 patients. Those who enrolled were randomized into 1 of 3 treatment regimens, including pacritinib once daily (n = 104), pacritinib twice daily (n = 107), or a best alternative treatment (n = 100). Best alternative treatments included ruxolitinib (45%), hydroxyurea (19%), and prednisone and/or prednisolone (13%).

https://www.cancernetwork.com/view/pacritinib-granted-accelerated-approval-for-use-in-myelofibrosis-with-severe-thrombocytopenia

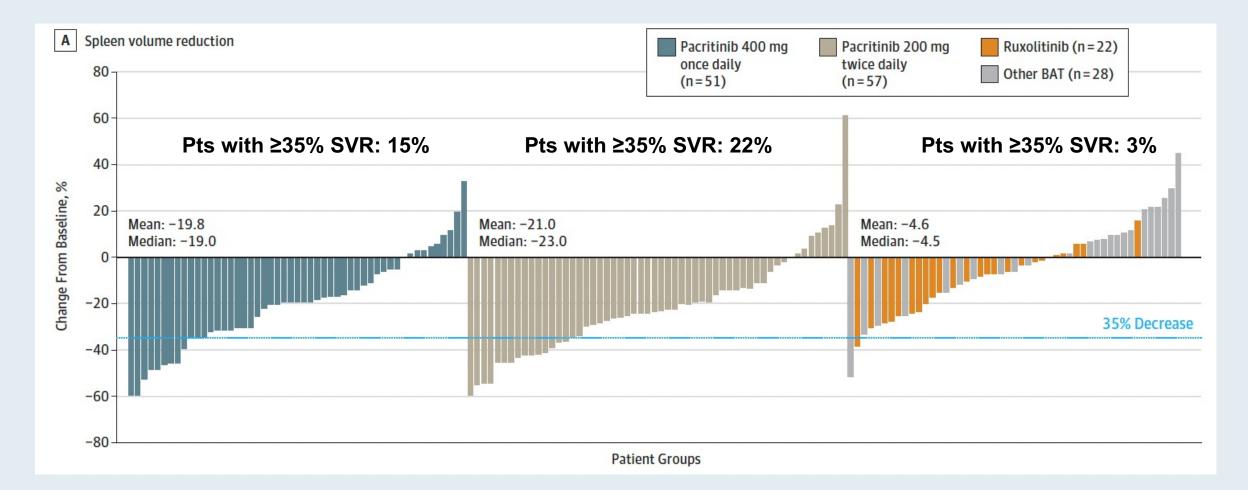
Phase III PERSIST-1 and PERSIST-2 Study Designs

PERSIST-1

BAT, best available therapy; **SVR**, spleen volume response; **TSS**, total symptom score * Primary analysis compared pooled pacritinib (400mg QD and 200mg BID) vs. BAT

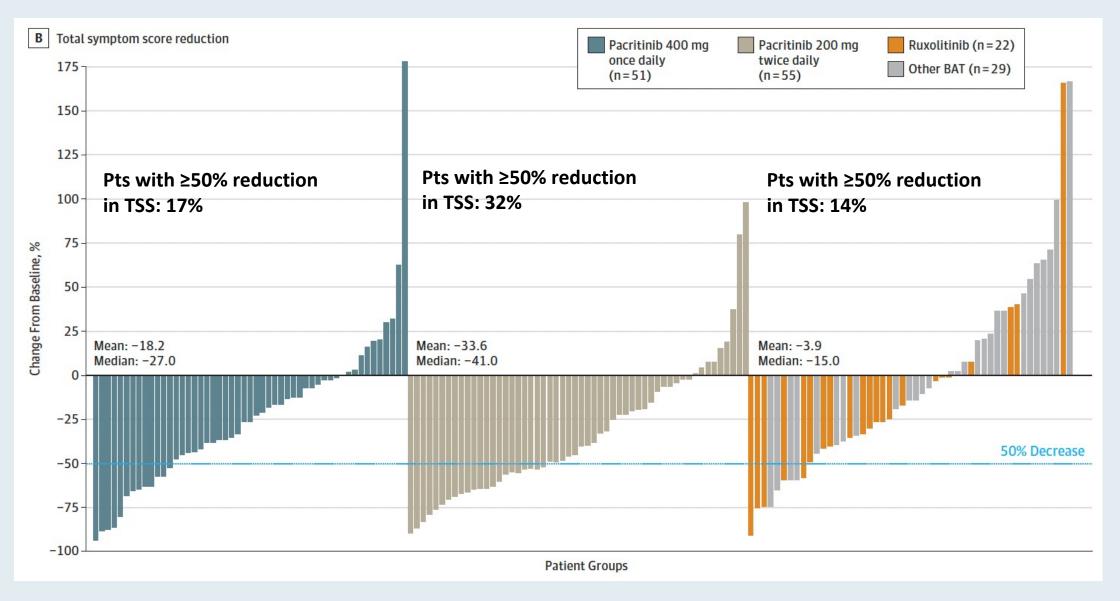
Research

JAMA Oncol 2018;4(5):652-9.


JAMA Oncology | Original Investigation

Pacritinib vs Best Available Therapy, Including Ruxolitinib, in Patients With Myelofibrosis A Randomized Clinical Trial

John Mascarenhas, MD; Ronald Hoffman, MD; Moshe Talpaz, MD; Aaron T. Gerds, MD; Brady Stein, MD; Vikas Gupta, MD, FRCP, FRCPath; Anita Szoke, MD; Mark Drummond, MBChB, PhD, FRCPath; Alexander Pristupa, MD; Tanya Granston, PhD; Robert Daly, PhD; Suliman Al-Fayoumi, PhD; Jennifer A. Callahan, MS; Jack W. Singer, MD; Jason Gotlib, MD; Catriona Jamieson, MD, PhD; Claire Harrison, MD, DM, FRCP, PRCPath; Ruben Mesa, MD, FACP; Srdan Verstovsek, MD, PhD



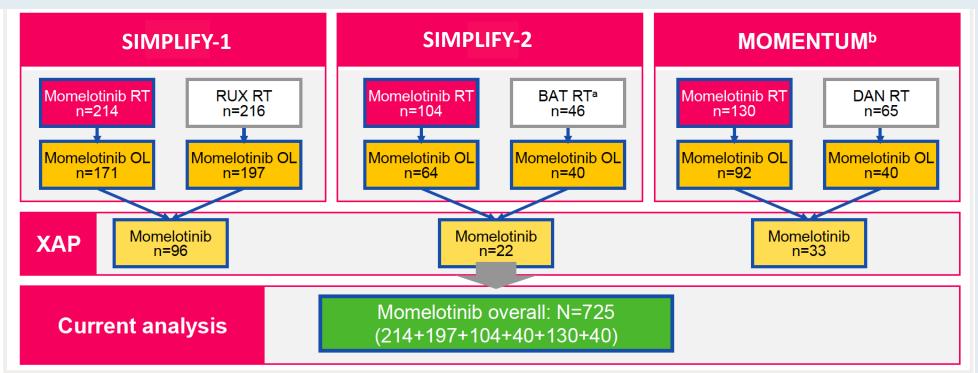
PERSIST-2: Spleen Volume Reduction

PERSIST-2: Reduction in Total Symptom Score

Mascarenhas J et al. JAMA Oncol 2018;4(5):652-9.

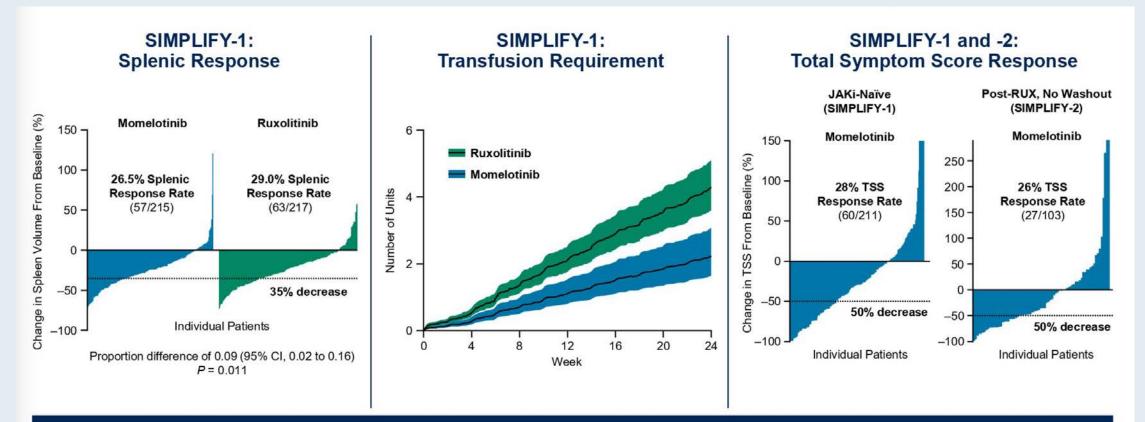
PACIFICA (PAC303) Phase III Study Design

2:1 Key eligibility criteria **Co-Primary endpoints** Randomization (N=399) PMF, PET-MF, PPV-MF SVR at 24 weeks TSS at 24 weeks DIPSS intermediate- or high-risk disease • Severe thrombocytopenia at baseline Pacritinib 200 mg BID Secondary endpoints $(<50 \times 10^{9}/L)$ EGOC performance status 0-2 Overall Survival JAK1/2 inhibitor-naïve or limited duration PGIC at 24 weeks Physician's Choice^c of prior JAK1/2 inhibitor^{a,b} Safety •


^a Up to 270 days of low-dose ruxolitinib or up to 90 days of higher dose ruxolitinib. ^b A 2-week washout will be required for MF directed therapy and at least 28 days for experimental MF therapies. ^c Physician's Choice therapy includes low-dose ruxolitinib (5 mg QD or BID), danazol, corticosteroids, or hydroxyurea. BID=twice daily; DIPSS=Dynamic International Prognostic Scoring System; JAK=Janus kinase; MF=myelofibrosis; PET-MF=post-essential thrombocythemia MF; PGIC=patient global impression of change; PMF=primary MF; PPV-MF=post-polycythemia vera MF; QD=once daily; SVR=spleen volume reduction; TSS= total symptom m score.

Momelotinib: Significant Anemia and/or Transfusion Dependence

Long-Term Safety with Momelotinib: Pooled Data from 3 Phase III Randomized-Controlled Trials



^aForty-six patients received at least 1 dose of RUX. ^bRollover to XAP was not complete at time of data cut. BAT, best available therapy; DAN, danazol; JAK, Janus kinase; JAKi, Janus kinase inhibitor; OL, open-label; RT, randomized treatment; RUX, ruxolitinib; S-1, SIMPLIFY-1; S-2, SIMPLIFY-2; XAP, extended access protocol.

- Median follow-up time was 20 months in S-1, 10 months in S-2, and 7 months in MOMENTUM
- The total follow-up time was 1261 patient-years in the 725 patients

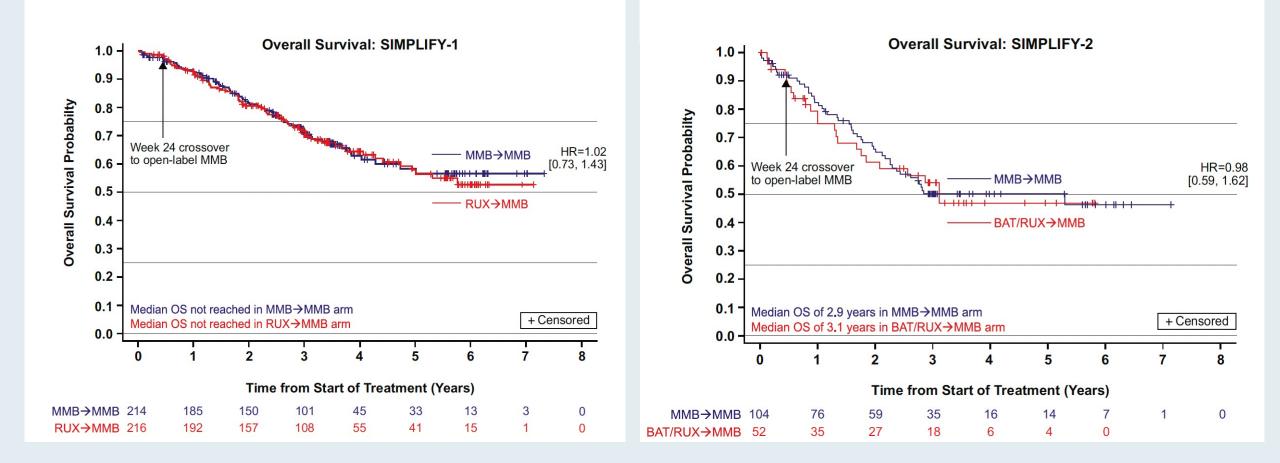
Overview of Phase III SIMPLIFY-1 and SIMPLIFY-2 Study Results

Phase 3 SIMPLIFY studies in JAKi-naïve and post-RUX patients with MF demonstrated momelotinib benefits on symptoms, spleen, and anemia.

Mesa R, et al. J Clin Oncol. 2017;35(34):3844–3850.; Harrison CN, et al. Lancet Haematol. 2018;5(2):e73–e81. Mesa R, et al. Leuk Lymphoma. 2022; Mar 7:1–5.

Leukemia 2022;36:2261–68

ARTICLE OPEN


CHRONIC MYELOPROLIFERATIVE NEOPLASMS

Overall survival in the SIMPLIFY-1 and SIMPLIFY-2 phase 3 trials of momelotinib in patients with myelofibrosis

Ruben Mesa (**b**¹^{\vee}, Claire Harrison², Stephen T. Oh (**b**³, Aaron T. Gerds (**b**⁴, Vikas Gupta (**b**⁵, John Catalano⁶, Francisco Cervantes⁷, Timothy Devos⁸, Marek Hus⁹, Jean-Jacques Kiladjian (**b**¹⁰, Ewa Lech-Maranda¹¹, Donal McLornan (**b**², Alessandro M. Vannucchi¹², Uwe Platzbecker (**b**¹³, Mei Huang¹⁴, Bryan Strouse¹⁴, Barbara Klencke (**b**¹⁴ and Srdan Verstovsek (**b**¹⁵)

Overall Survival in the SIMPLIFY-1 and SIMPLIFY-2 Phase III Trials of Momelotinib in Myelofibrosis

Momelotinib Yields Statistically Significant Improvement in Symptoms for Myelofibrosis Press Release: January 27, 2022

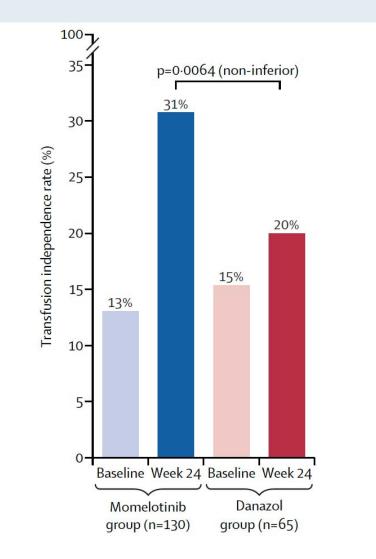
"Topline findings from the phase 3 MOMENTUM study indicated that patients with myelofibrosis experienced a statistically significant reduction in symptoms following treatment with momelotinib.

Treatment with momelotinib resulted in a statistically significant reduction in symptoms for patients with myelofibrosis, according to a press release of the topline findings from the pivotal phase 3 MOMENTUM trial (NCT04173494).

In a population of 195 patients, specifically 130 who received momelotinib and 65 who received danazol, 25% and 9% of patients, respectively, had a total symptom score of more than 50% (P = .0095). Additionally, 31% of patients in the momelotinib arm and 20% in the control arm were transfusion independent following treatment (one-sided P = .0064), indicating non-inferiority. Investigators also reported a splenic response rate of over 35% in 23% of patients in the experimental arm compared with 3% of patients in the control arm (P = .0006).

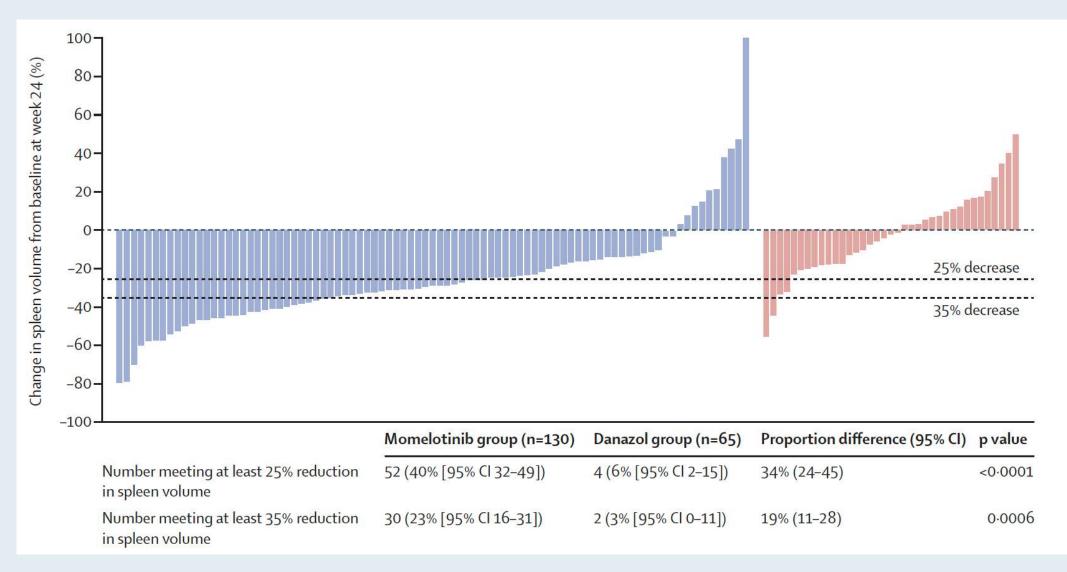
The full data are set to be presented at an upcoming medical meeting and plans have been put in place to submit a new drug application for the agent in the second quarter of 2022."

Lancet 2023;401-269-80


Momelotinib versus danazol in symptomatic patients with anaemia and myelofibrosis (MOMENTUM): results from an international, double-blind, randomised, controlled, phase 3 study

CrossMark

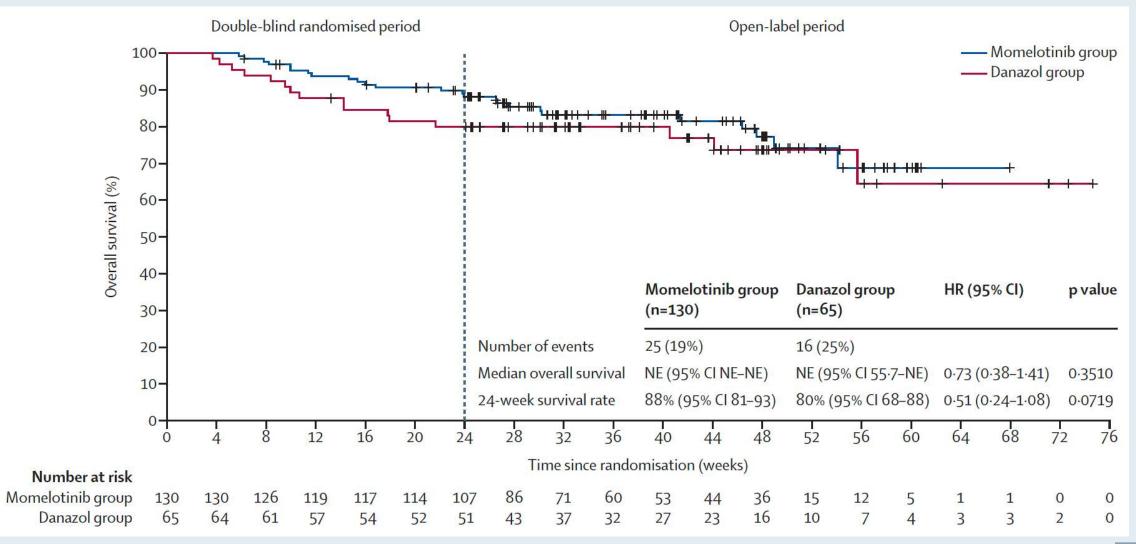
Srdan Verstovsek, Aaron T Gerds, Alessandro M Vannucchi, Haifa Kathrin Al-Ali, David Lavie, Andrew T Kuykendall, Sebastian Grosicki, Alessandra Iurlo, Yeow Tee Goh, Mihaela C Lazaroiu, Miklos Egyed, Maria Laura Fox, Donal McLornan, Andrew Perkins, Sung-Soo Yoon, Vikas Gupta, Jean-Jacques Kiladjian, Nikki Granacher, Sung-Eun Lee, Luminita Ocroteala, Francesco Passamonti, Claire N Harrison, Barbara J Klencke, Sunhee Ro, Rafe Donahue, Jun Kawashima, Ruben Mesa, on behalf of MOMENTUM Study Investigators*


MOMENTUM: Change in Transfusion Independence Rate from Baseline to Week 24

Verstovsek S et al. Lancet 2023;401:269-80.

MOMENTUM: Percentage Change of Spleen Volume from Baseline to Week 24 for Each Patient

Verstovsek S et al. Lancet 2023;401:269-80.


MOMENTUM: Treatment-Emergent Adverse Events

	Momelotinib group (n=130)		Danazol group (n=65)	
	Any grade	Grade ≥3	Any grade	Grade ≥3
Non-haematological abnormalities (prefer	red term)			
Diarrhoea	29 <mark>(</mark> 22%)	0	6 (9%)	1 (2%)
Nausea	21 (16%)	3 (2%)	6 (9%)	2 (3%)
Asthenia	17 (13%)	1(1%)	6 (9%)	1 (2%)
Pruritus	14 (11%)	2 (2%)	7 (11%)	0
Weight decreased	14 (11%)	0	4 (6%)	0
Blood creatinine increased	10 (8%)	1 (1%)	10 (15%)	2 (3%)
Dyspnoea	10 (8%)	3 (2%)	9 (14%)	1 (2%)
Peripheral oedema	10 (8%)	2 (2%)	9 (14%)	0
Fatigue	8 (6%)	1(1%)	7 (11%)	2 (3%)
Acute kidney injury	6 (5%)	4 (3%)	8 (12%)	6 (9%)
Haematological abnormalities*				
Anaemia	129 (99%)	79 (61%)	65 (100%)	49 (75%)
Thrombocytopenia	99 (76%)	36 (28%)	40 (62%)	17 (26%)
Neutropenia	38 (29%)	16 (12%)	17 (26%)	<mark>6 (9%)</mark>

Data are n (%). *Haematological abnormalities are based on laboratory values. The data shown are for events of the worst grade during the 24-week randomised treatment phase of the study, regardless of whether this grade was a change from baseline.

MOMENTUM: Overall Survival (ITT Population)

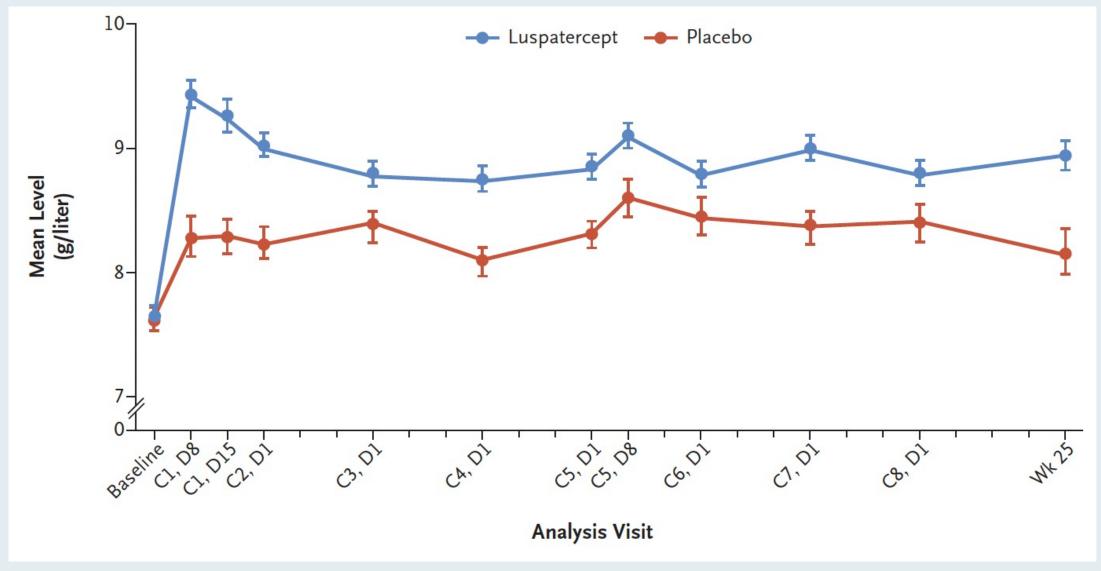
N Engl J Med 2020;382:140-51.

The NEW ENGLAND JOURNAL of MEDICINE

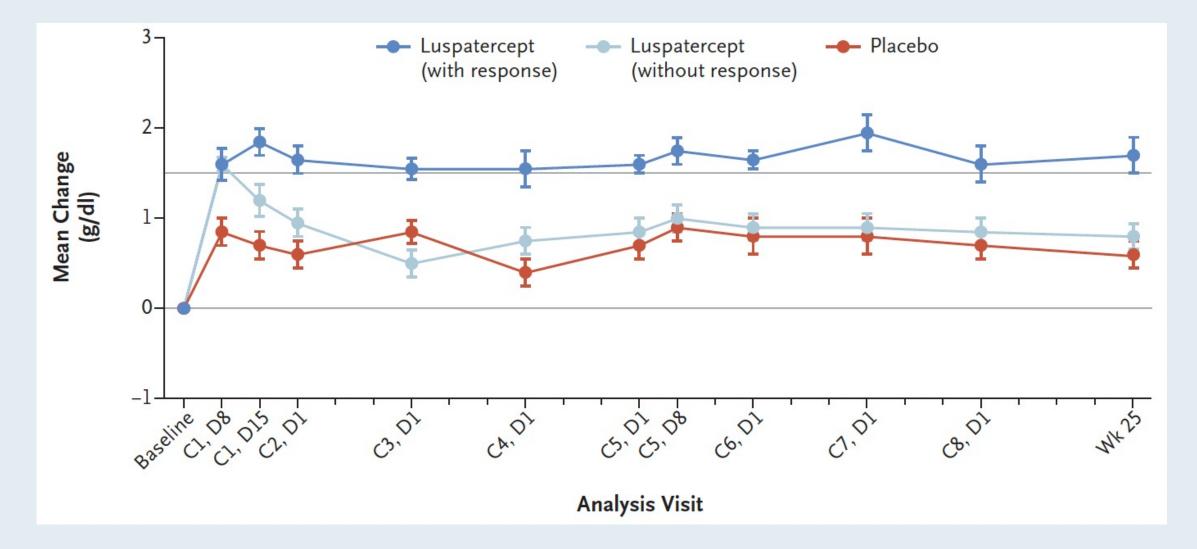
ORIGINAL ARTICLE

Luspatercept in Patients with Lower-Risk Myelodysplastic Syndromes

P. Fenaux, U. Platzbecker, G.J. Mufti, G. Garcia-Manero, R. Buckstein, V. Santini, M. Díez-Campelo, C. Finelli, M. Cazzola, O. Ilhan, M.A. Sekeres, J.F. Falantes, B. Arrizabalaga, F. Salvi, V. Giai, P. Vyas, D. Bowen, D. Selleslag, A.E. DeZern, J.G. Jurcic, U. Germing, K.S. Götze, B. Quesnel, O. Beyne-Rauzy, T. Cluzeau, M.-T. Voso, D. Mazure, E. Vellenga, P.L. Greenberg, E. Hellström-Lindberg, A.M. Zeidan, L. Adès, A. Verma, M.R. Savona, A. Laadem, A. Benzohra, J. Zhang, A. Rampersad, D.R. Dunshee, P.G. Linde, M.L. Sherman, R.S. Komrokji, and A.F. List



MEDALIST: Erythroid Response and Increase in Mean Hemoglobin Level


End Point	Luspatercept (N=153)	Placebo (N = 76)
Erythroid response during wk 1–24*		
No. of patients (% [95% CI])	81 (53 [45-61])	9 (12 [6-21])
Reduction of ≥4 red-cell units/8 wk — no./total no. (%)†	52/107 (49)	8/56 (14)
Mean increase in hemoglobin level of ≥1.5 g/dl — no./total no. (%)‡	29/46 (63)	1/20 (5)
Erythroid response during wk 1–48*		
No. of patients (% [95% CI])	90 (59 [51–67])	13 (17 [9–27])
Reduction of ≥4 red-cell units/8 wk — no./total no. (%)†	58/107 (54)	12/56 (21)
Mean increase in hemoglobin level of ≥1.5 g/dl — no./total no. (%)‡	32/46 (70)	1/20 (5)
Mean increase in hemoglobin level of ≥1.0 g/dl — no. (% [95% CI])§		
During wk 1–24	54 (35 [28–43])	6 (8 [3–16])
During wk 1-48	63 (41 [33–49])	8 (11 [5-20])

MEDALIST: Change in Mean Observed Hemoglobin Level over Time

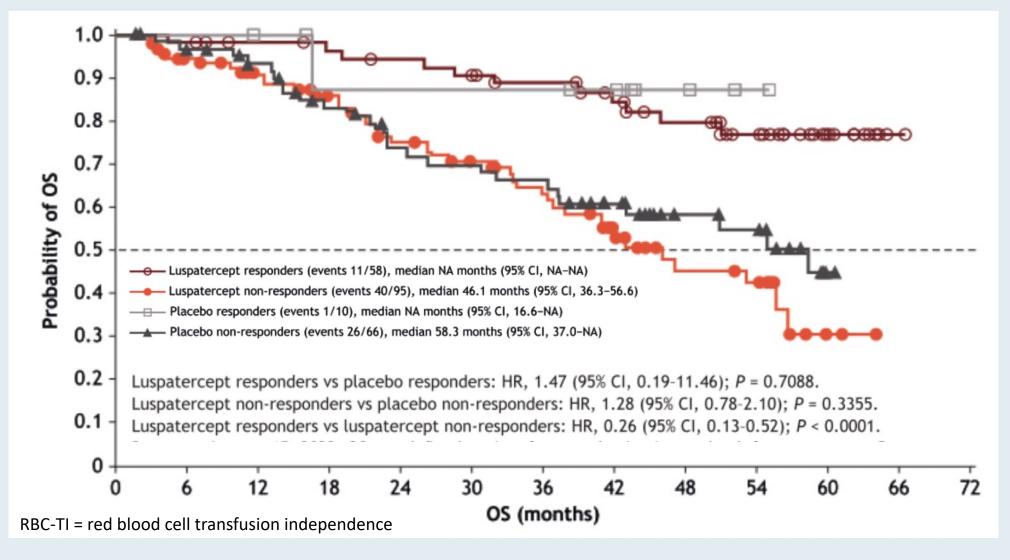
MEDALIST: Change from Baseline in Hemoglobin Level

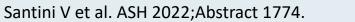
MEDALIST: Adverse Events Occurring in at Least 10% of Patients

Event	Luspatercept (N=153)		Placebo (N=76)	
	Any Grade	Grade 3	Any Grade	Grade 3
	num	ber of patients	with event (percen	t)
General disorder or administration-site condition				
Fatigue	41 (27)	7 (5)	10 (13)	2 (3)
Asthenia	31 (20)	4 (3)	9 (12)	0
Peripheral edema	25 (16)	0	13 (17)	1 (1)
Gastrointestinal disorder				
Diarrhea	34 (22)	0	7 (9)	0
Nausea†	31 (20)	1 (1)	6 (8)	0
Constipation	17 (11)	0	7 (9)	0
Nervous system disorder				
Dizziness	30 (20)	0	4 (5)	0
Headache	24 (16)	1 (1)	5 (7)	0
Musculoskeletal or connective-tissue disorder				
Back pain†	29 (19)	3 (2)	5 (7)	0
Arthralgia	8 (5)	1 (1)	9 (12)	2 (3)
Respiratory, thoracic, or mediastinal disorder				
Dyspnea†	23 (15)	1 (1)	5 (7)	0
Cough	27 (18)	0	10 (13)	0
Infection or infestation				
Bronchitis†	17 (11)	1 (1)	1 (1)	0
Urinary tract infection†	17 (11)	2 (1)	4 (5)	3 (4)

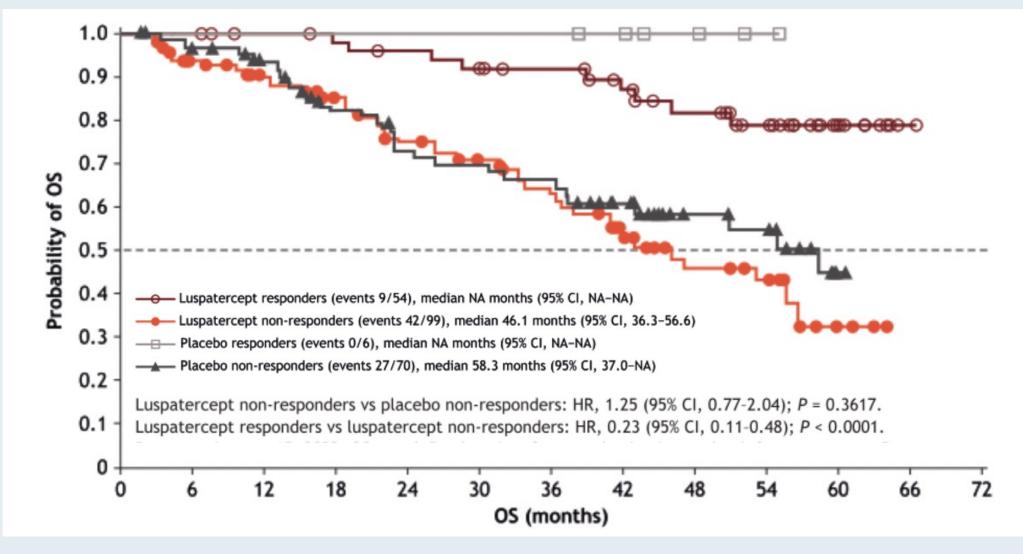
RTP RESEARCH TO PRACTICE

Fenaux P et al. *N Engl J Med* 2020;382:140-51.

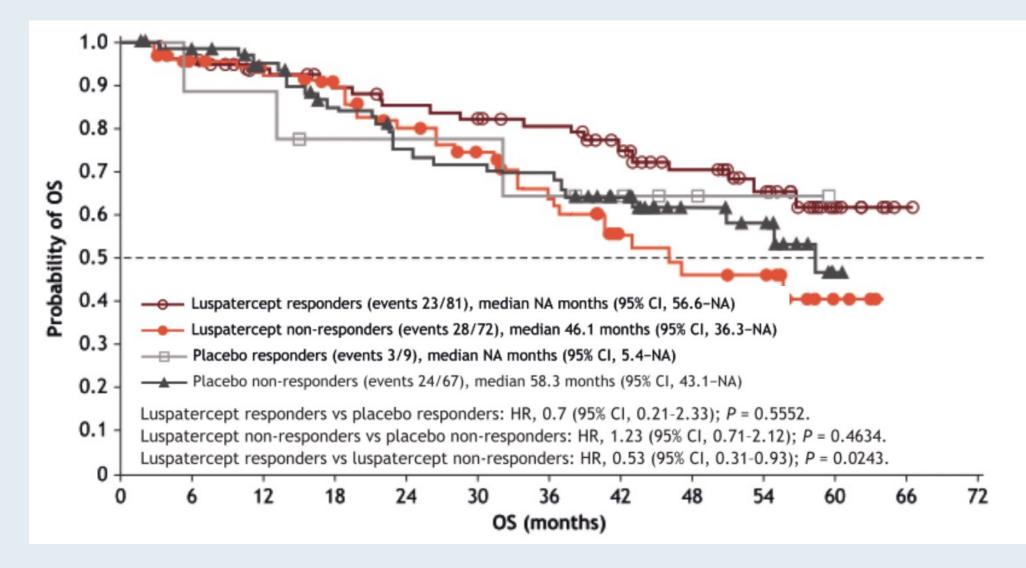

Overall survival and progression-free survival of patients following luspatercept treatment in the MEDALIST trial


Valeria Santini,¹ Pierre Fenaux,² Amer M. Zeidan,³ Rami S. Komrokji,⁴ Rena Buckstein,⁵ Esther N. Oliva,⁶ Xianwei Ha,⁷ Dimana Miteva,⁸ Aylin Yucel,⁷ Jose Alberto Nadal,⁸ Uwe Platzbecker⁹

ASH 2022; Abstract 1774



MEDALIST: Overall Survival by RBC-TI ≥8 Weeks During Weeks 1 to 24 Response and Treatment Arm (ITT Population)

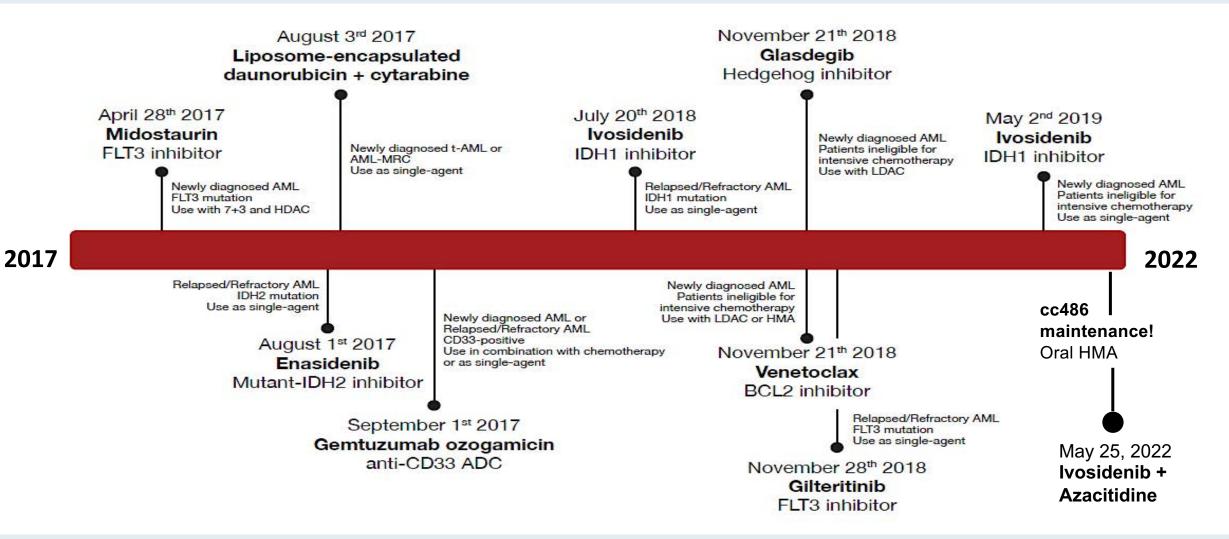

MEDALIST: Overall Survival by Mean Increase in Hb ≥1 g/dL Response During Weeks 1 to 24

Santini V et al. ASH 2022; Abstract 1774.

MEDALIST: Overall Survival by Modified Hematologic Improvement – Erythroid Response During Weeks 1 to 24

MEDALIST Conclusions

- Patients who achieved a response had an increased probability of extended OS
 - Patients treated with luspatercept had a 5 times greater probability of response, defined as RBC-TI ≥ 8 weeks during weeks 1-24, than patients treated with placebo
 - Patients treated with luspatercept who achieved an increase in Hb ≥ 1 g/dL in the first 24 weeks of treatment had extended OS
 - Similarly, achievement of RBC-TI ≥ 8 weeks or mHI-E in the first 24 weeks correlated with significant extension of OS
 - Responders (RBC-TI) in the placebo group were more likely to have a low baseline transfusion burden (< 4 units/8 weeks) than patients treated with luspatercept


- There were no significant differences in PFS between patients treated with luspatercept or placebo in the ITT population, measured as time from MDS diagnosis to AML progression
- Patients with LR-MDS with certain baseline characteristics associated with greater OS and PFS may derive greater survival benefit from luspatercept than placebo
 - Patients treated with luspatercept with IPSS-R
 Very low-risk MDS were more likely to achieve
 OS > 36 months
 - Patients treated with luspatercept with a baseline serum EPO level of 100 to < 200 U/L were more likely to achieve PFS > 36 months

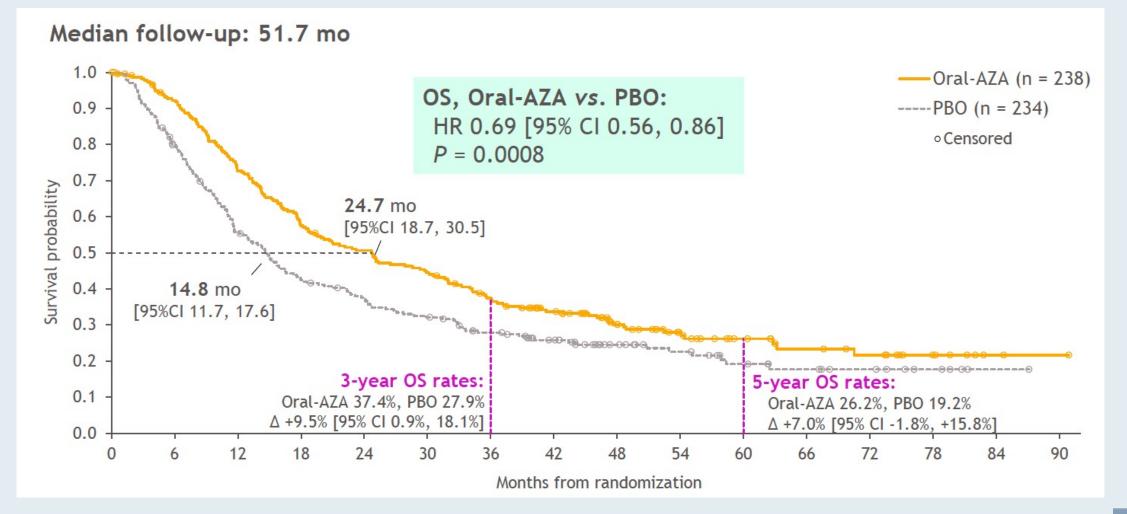
The Rapidly Evolving Treatment Landscape of AML: FDA Approvals

Richard-Carpentier G, DiNardo CD. *Hematology Am Soc Educ Program* 2019(1):548-56.

Content Courtesy of Courtney D DiNardo, MD, MSCE

Long-term overall survival with oral azacitidine in patients with acute myeloid leukemia in first remission after intensive chemotherapy: updated results from the phase 3 QUAZAR AML-001 trial

Andrew H Wei,^{1,2} Hartmut Döhner,³ Hamid Sayar,⁴ Farhad Ravandi,⁵ Pau Montesinos,⁶ Hervé Dombret,^{7,8} Dominik Selleslag,⁹ Kimmo Porkka,^{10,11} Jun-Ho Jang,¹² Barry Skikne,^{13,14} CL Beach,¹⁴ Olivia Yu Tian,¹⁴ and Gail J Roboz^{15,16}


¹The Alfred Hospital, Melbourne, Australia; ²Australian Centre for Blood Diseases, Monash University, Melbourne, Australia; ³Ulm University Hospital, Ulm, Germany; ⁴Indiana University Cancer Center, Indianapolis, IN; ⁵The University of Texas MD Anderson Cancer Center, Houston, TX; ⁶Hospital Universitario La Fe de Valencia, Valencia, Spain; ⁷Institut de Recherche Saint Louis, Université de Paris, Paris, France; ⁸Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France; ⁹AZ Sint-Jan Brugge-Oostende AV, Brugge, Belgium; ¹⁰iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland; ¹¹Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; ¹²Samsung Medical Center, Seoul, Republic of Korea; ¹³University of Kansas Medical Center, Kansas City, KS; ¹⁴Bristol Myers Squibb, Princeton, NJ; ¹⁵Weil Cornell Medical College, New York, NY; ¹⁶New York Presbyterian Hospital, New York, NY

Presentation 871

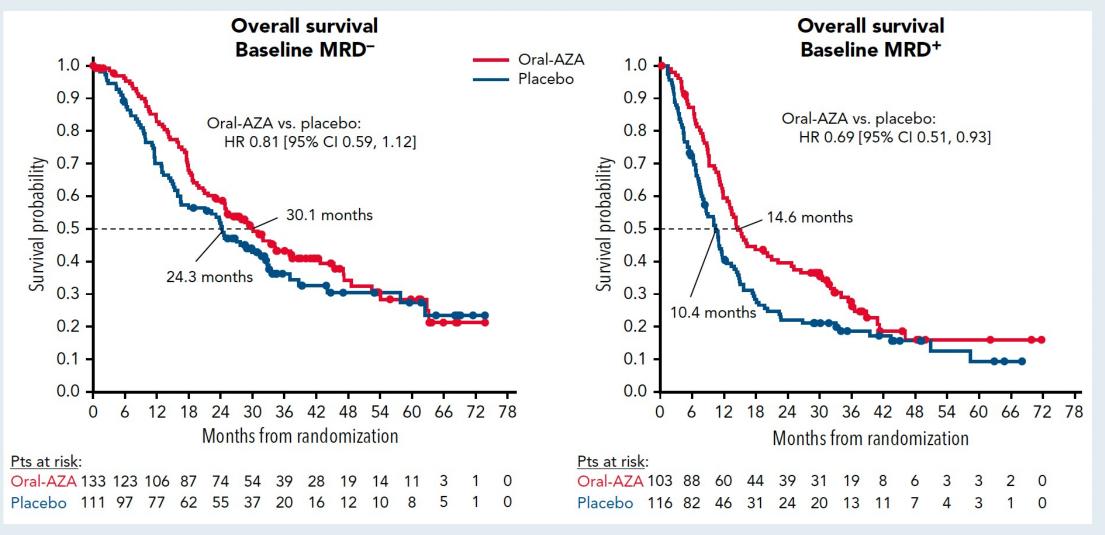
ASH 2021

QUAZAR AML-001: Long-Term Overall Survival with Oral Azacitidine in AML in First Remission After Intensive Chemotherapy

QUAZAR AML-001: Safety Summary and Select Adverse Events (AEs)

	CC-486 (N = 236)		Placebo (N = 233)	
	Any grade	Grade 3 or 4	Any grade	Grade 3 or 4
AEs leading to dose interruptions	43%	—	17%	—
AEs leading to dose reductions	16%	—	3%	—
AEs leading to discontinuation	13%	—	4%	—
Nausea	65%	3%	24%	<1%
Vomiting	60%	3%	10%	0
Diarrhea	50%	5%	21%	1%
Neutropenia	44%	41%	26%	24%
Thrombocytopenia	33%	22%	27%	21%
Anemia	20%	14%	18%	13%

Wei AH et al. N Engl J Med 2020;383:2526-37.


CLINICAL TRIALS AND OBSERVATIONS

Oral azacitidine prolongs survival of patients with AML in remission independently of measurable residual disease status

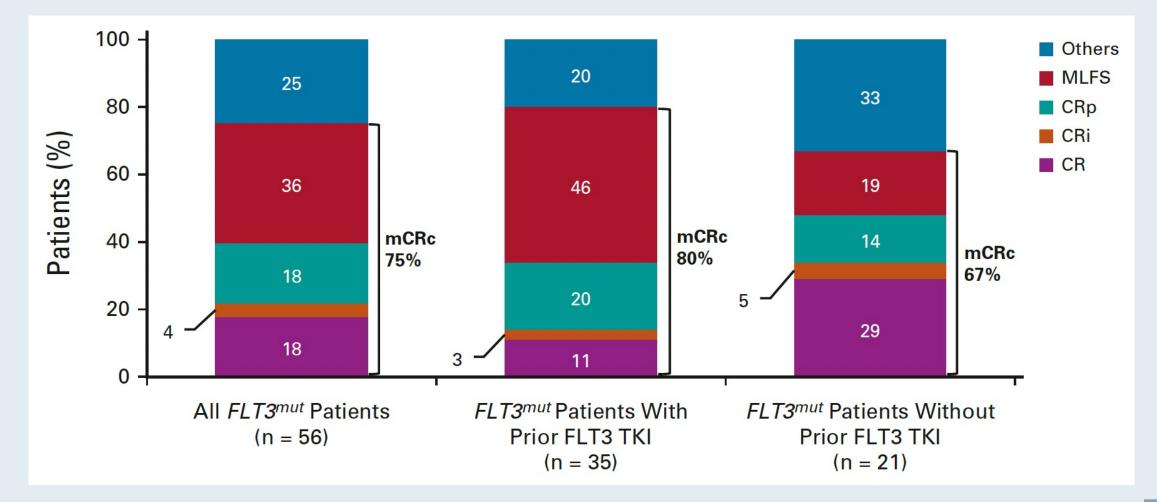
Gail J. Roboz,^{1,2} Farhad Ravandi,³ Andrew H. Wei,^{4,5} Hervé Dombret,^{6,7} Felicitas Thol,⁸ Maria Teresa Voso,⁹ Andre C. Schuh,¹⁰ Kimmo Porkka,¹¹ Ignazia La Torre,¹² Barry Skikne,^{13,14} Jianhua Zhong,¹³ C. L. Beach,¹³ Alberto Risueño,¹⁵ Daniel L. Menezes,¹³ Gert Ossenkoppele,¹⁶ and Hartmut Döhner¹⁷

QUAZAR AML-001: Overall Survival by Baseline MRD Status

MRD = minimal residual disease

Roboz GJ et al. *Blood* 2022 April;139(14):2145-55.

Venetoclax Plus Gilteritinib for FLT3-Mutated Relapsed/Refractory Acute Myeloid Leukemia

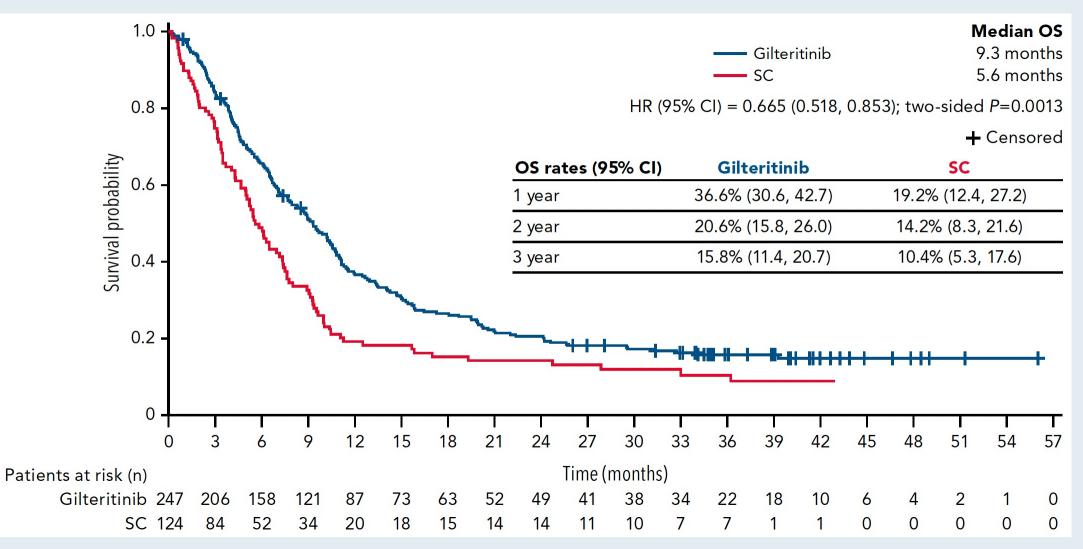

reports

Naval Daver, MD¹; Alexander E. Perl, MD²; Joseph Maly, MD³; Mark Levis, MD, PhD⁴; Ellen Ritchie, MD⁵; Mark Litzow, MD⁶; James McCloskey, MD⁷; Catherine C. Smith, MD⁸; Gary Schiller, MD⁹; Terrence Bradley, MD^{10,11}; Ramon V. Tiu, MD¹²; Kiran Naqvi, MD¹³; Monique Dail, PhD¹³; Deanna Brackman, PhD¹⁴; Satya Siddani, PhD¹⁴; Jing Wang, PhD¹⁴; Brenda Chyla, PhD¹⁴; Paul Lee, MD, PhD¹⁴; and Jessica K. Altman, MD¹⁵

J Clin Oncol 2022 December;40:4048-59

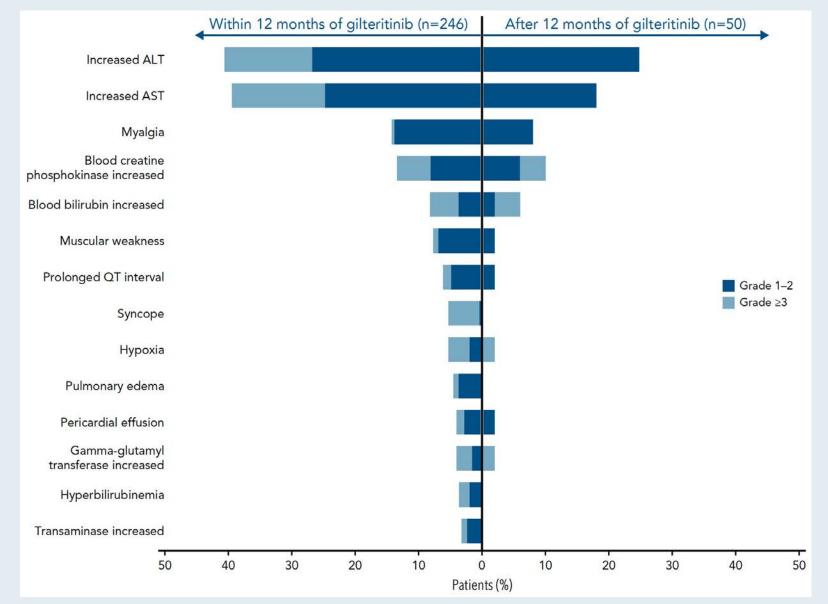
Modified Complete Reponse (mCRc) Rate to Venetoclax and Gilteritinib

Daver N et al. J Clin Oncol 2022 December;40:4048-59.


CLINICAL TRIALS AND OBSERVATIONS

Follow-up of patients with R/R *FLT3*-mutation–positive AML treated with gilteritinib in the phase 3 ADMIRAL trial

Alexander E. Perl,¹ Richard A. Larson,² Nikolai A. Podoltsev,³ Stephen Strickland,⁴ Eunice S. Wang,⁵ Ehab Atallah,⁶ Gary J. Schiller,⁷ Giovanni Martinelli,⁸ Andreas Neubauer,⁹ Jorge Sierra,¹⁰ Pau Montesinos,¹¹ Christian Récher,¹² Sung-Soo Yoon,¹³ Naoko Hosono,¹⁴ Masahiro Onozawa,¹⁵ Shigeru Chiba,¹⁶ Hee-Je Kim,¹⁷ Nahla Hasabou,¹⁸ Qiaoyang Lu,¹⁸ Ramon Tiu,¹⁸ and Mark J. Levis¹⁹



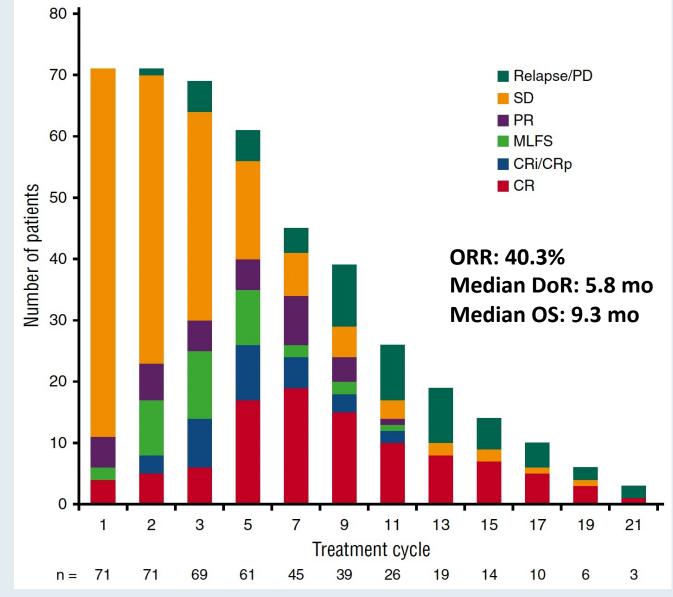
ADMIRAL: Overall Survival (ITT Population)

ADMIRAL: Adverse Events of Interest

RTP RESEARCH TO PRACTICE

Perl AE et al. Blood 2022 June;139(23):3366-75

CLINICAL TRIALS AND OBSERVATIONS


Blood 2017;130(6):722-31

Enasidenib in mutant *IDH2* relapsed or refractory acute myeloid leukemia

Eytan M. Stein,^{1,2,*} Courtney D. DiNardo,^{3,*} Daniel A. Pollyea,⁴ Amir T. Fathi,^{5,6} Gail J. Roboz,^{2,7} Jessica K. Altman,⁸ Richard M. Stone,⁹ Daniel J. DeAngelo,⁹ Ross L. Levine,¹ Ian W. Flinn,¹⁰ Hagop M. Kantarjian,³ Robert Collins,¹¹ Manish R. Patel,¹² Arthur E. Frankel,¹¹ Anthony Stein,¹³ Mikkael A. Sekeres,¹⁴ Ronan T. Swords,¹⁵ Bruno C. Medeiros,¹⁶ Christophe Willekens,^{17,18} Paresh Vyas,^{19,20} Alessandra Tosolini,²¹ Qiang Xu,²¹ Robert D. Knight,²¹ Katharine E. Yen,²² Sam Agresta,²² Stephane de Botton,^{17,18,†} and Martin S. Tallman^{1,2,†}

Evolution of Response with Enasidenib in R/R AML with IDH2 Mutation

RTP RESEARCH TO PRACTICE

Stein EM et al. *Blood* 2017;130(6):722-31.

Grade 3/4 Treatment-Related Treatment-Emergent AEs with Enasidenib

	Enasidenib 100 mg per day (n = 153)	
TEAE	No.	%
Hyperbilirubinemia*	13	8
IDH differentiation syndrome†	11	7
Anemia	10	7
Thrombocytopenia‡	8	5
Tumor lysis syndrome	5	3
Decreased appetite	3	2
Leukocytosis	2	1
Fatigue	2	1
Nausea	2	1
Lipase increased	2	1

N Engl J Med 2018;378(25):2386-98

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML

C.D. DiNardo, E.M. Stein, S. de Botton, G.J. Roboz, J.K. Altman, A.S. Mims,
R. Swords, R.H. Collins, G.N. Mannis, D.A. Pollyea, W. Donnellan, A.T. Fathi,
A. Pigneux, H.P. Erba, G.T. Prince, A.S. Stein, G.L. Uy, J.M. Foran, E. Traer,
R.K. Stuart, M.L. Arellano, J.L. Slack, M.A. Sekeres, C. Willekens, S. Choe, H. Wang,
V. Zhang, K.E. Yen, S.M. Kapsalis, H. Yang, D. Dai, B. Fan, M. Goldwasser, H. Liu,
S. Agresta, B. Wu, E.C. Attar, M.S. Tallman, R.M. Stone, and H.M. Kantarjian

Response to Ivosidenib in R/R AML with IDH1 Mutation

Clinical endpoint	Primary efficacy population (N = 125)		
Complete remission (CR)	21.6%		
CR + CR with partial hematologic recovery	30.4%		
Overall response rate	41.6%		
Median DoR	8.2 months		
Attained transfusion independence	35%		

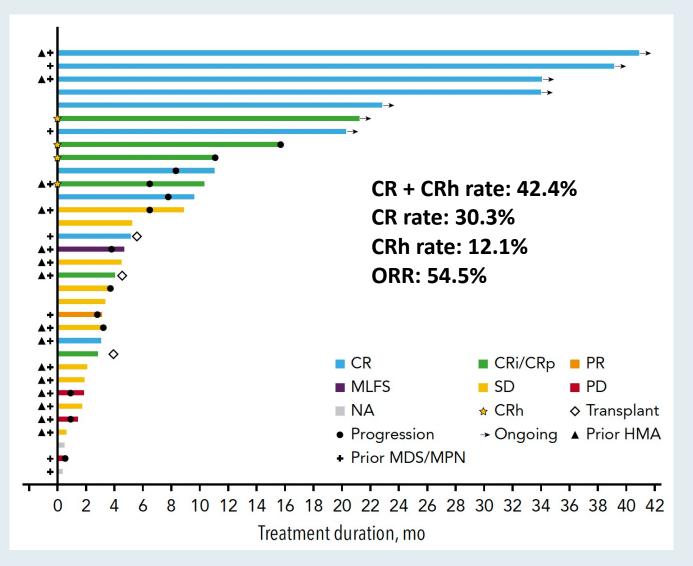
Grade ≥3 Treatment-Related Adverse Events

Event	Relapsed or Refractory AML and Starting Dose of Ivosidenib of 500 mg Daily (N=179)	Overall Population (N=258)
	no. of patie	nts (%)
≥1 Treatment-related adverse event of grade 3 or higher	37 (20.7)	66 (25.6)
Prolongation of the QT interval on ECG	14 (7.8)	18 (7.0)
IDH differentiation syndrome†	7 (3.9)	12 (4.7)
Anemia	4 (2.2)	6 (2.3)
Thrombocytopenia	3 (1.7)	5 (1.9)
Leukocytosis	3 (1.7)	3 (1.2)
Febrile neutropenia	1 (0.6)	3 (1.2)
Diarrhea	1 (0.6)	3 (1.2)
Platelet count decreased	3 (1.7)	3 (1.2)
Нурохіа	2 (1.1)	3 (1.2)

DiNardo CD et al. *N Engl J Med* 2018;378(25):2386-98.

Blood 2020;135(7):463-71

MYELOID NEOPLASIA


Ivosidenib induces deep durable remissions in patients with newly diagnosed *IDH1*-mutant acute myeloid leukemia

Plenary Paper

Gail J. Roboz,^{1,*} Courtney D. DiNardo,^{2,*} Eytan M. Stein,³ Stéphane de Botton,⁴ Alice S. Mims,⁵ Gabrielle T. Prince,⁶ Jessica K. Altman,⁷ Martha L. Arellano,⁸ Will Donnellan,⁹ Harry P. Erba,¹⁰ Gabriel N. Mannis,¹¹ Daniel A. Pollyea,¹² Anthony S. Stein,¹³ Geoffrey L. Uy,¹⁴ Justin M. Watts,¹⁵ Amir T. Fathi,¹⁶ Hagop M. Kantarjian,² Martin S. Tallman,³ Sung Choe,¹⁷ David Dai,¹⁷ Bin Fan,¹⁷ Hongfang Wang,¹⁷ Vickie Zhang,¹⁷ Katharine E. Yen,¹⁷ Stephanie M. Kapsalis,¹⁷ Denice Hickman,¹⁷ Hua Liu,¹⁷ Samuel V. Agresta,¹⁷ Bin Wu,¹⁷ Eyal C. Attar,¹⁷ and Richard M. Stone¹⁸

Response and Duration of Response to Ivosidenib

Roboz GJ et al. *Blood* 2020;135(7):463-71.

Treatment-Emergent Adverse Events with Ivosidenib

	Ivosidenib 500 mg, N = 34	
Patients with AE, n (%)	Any grade	Grade ≥3
Any AE	34 (100)	27 (79)
Diarrhea	18 (53)	2 (6)
Fatigue	16 (47)	4 (12)
Nausea	13 (38)	2 (6)
Decreased appetite	12 (35)	1 (3)
Thrombocytopenia	9 (26)	5 (15)
Anemia	9 (26)	4 (12)
Leukocytosis	9 (26)	1 (3)
Peripheral edema	9 (26)	0

	Ivosidenib 500 mg, N = 34	
Patients with AE, n (%)	Any grade	Grade ≥3
Dyspnea	8 (24)	1 (3)
Dizziness	8 (24)	0
Hypomagnesemia	8 (24)	0
Abdominal pain	7 (21)	1 (3)
Arthralgia	7 (21)	1 (3)
Constipation	7 (21)	1 (3)
Epistaxis	7 (21)	0
Hypokalemia	7 (21)	1 (3)
Insomnia	7 (21)	0

What I Tell My Patients: **Faculty Physicians and Nurses Discuss Patient Education About New Treatments and Clinical Trials** Fifteenth Annual RTP Symposium Series Held During the Annual ONS Congress Acute Myeloid Leukemia, Myelodysplastic Syndromes and Myelofibrosis Saturday, April 29, 2023 6:00 AM - 7:30 AM Faculty Ilene Galinsky, NP **Richard M Stone, MD** Ruben A Mesa, MD (Virtual) Sara M Tinsley-Vance, PhD, APRN, **Daniel A Pollyea, MD, MS AOCN**

Moderator Neil Love, MD

What I Tell My Patients: Faculty Physicians and Nurses Discuss Patient Education About New Treatments and Clinical Trials

Fifteenth Annual RTP Symposium Series Held During the Annual ONS Congress

Prostate Cancer

Saturday, April 29, 2023 12:15 PM – 1:45 PM

Faculty

Neeraj Agarwal, MD, FASCO Kathy D Burns, RN, MSN, AGACNP-BC, OCN Susan K Roethke, MSN, CRNP, AOCNP, ANP-BC Sandy Srinivas, MD Moderator

Neil Love, MD

Thank you for joining us! Please take a moment to complete the survey currently up on Zoom. Your feedback is very important to us. The survey will remain open up to 5 minutes after the meeting ends.

In-person attendees can use the networked iPads[®] to claim NCPD credit or use the QR code as instructed in the program syllabus.

Virtual attendees: The NCPD credit link is posted in the chat room.

NCPD/ONCC credit information will be emailed to each participant within 1 to 2 business days.

