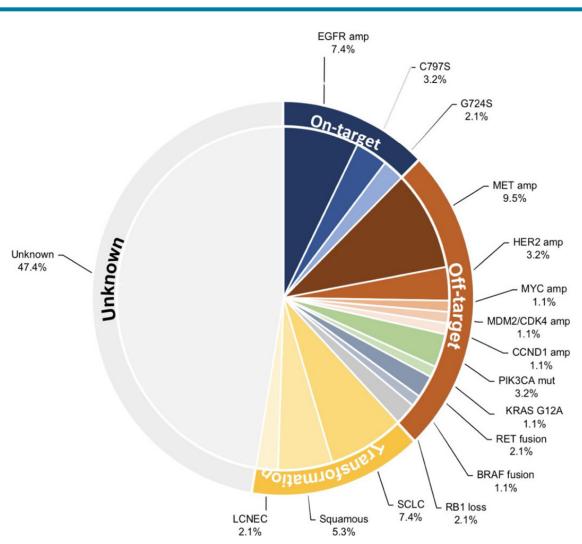
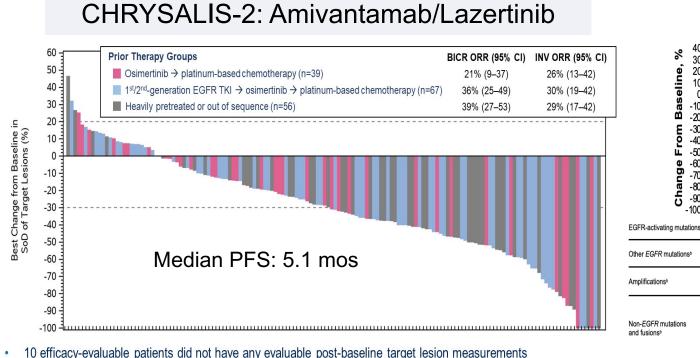
Targeted Treatment of Metastatic Lung Cancer

Ibiayi Dagogo-Jack, MD Assistant Professor of Medicine Massachusetts General Hospital Cancer Center Harvard Medical School


How do you generally approach therapeutic selection for patients with metastatic non-small cell lung cancer (NSCLC) and EGFR mutations who experience disease progression on front-line osimertinib? Do you believe patritumab deruxtecan and/or amivantamab/lazertinib will play a role in this setting in the near future?

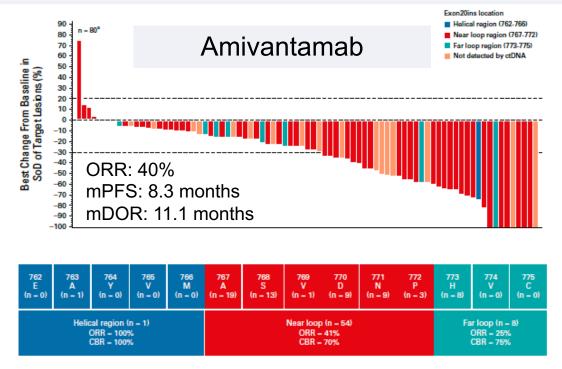
Approach to EGFR+ NSCLC After Progression on 1st Line Osimertinib


What is the extent of progression?

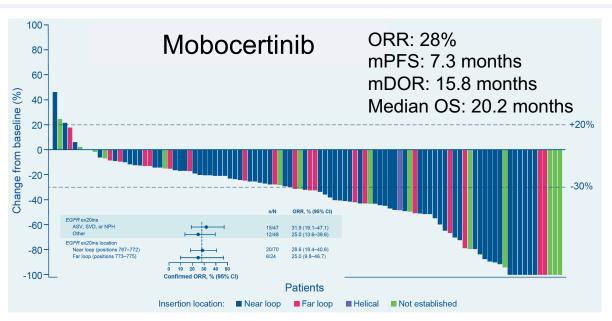
- Consider local therapy and continuing osimertinib beyond progression
- Progressing brain metastases?
- What is the molecular basis of progression?
 - Repeat biopsy (tissue vs plasma)
- How aggressive is the progression?
 - Could this be SCLC?
 - > Symptomatic?
- Next Line Treatment Options?
 - Chemo +/- Osimertinib vs Clinical Trial vs Off-Label Combination

Antibody-Based Therapies for EGFR+ NSCLC Post-Osimertinb: Patritumab Deruxtecan & Amivantamab

Antibody-drug conjugates and bispecific antibodies have broad activity post-osimertinib. I anticipate approval of these therapies in the future for the post-osimertinib setting.


 Response rates are higher in pts with EGFR/METbased resistance by NGS (29% vs 47%)

In which line of treatment do you administer targeted therapy to your patients with metastatic NSCLC and EGFR exon 20 insertion mutations? How do you select between amivantamab and mobocertinib?



Management of EGFR Exon 20+ NSCLC

- PCR assays miss ~50% of EGFR exon 20 insertions.
- Drug discontinuation for toxicity: Amivantamab (10%), Mobocertinib (17%). I start with Amivantamab.
- We need better targeted therapies for EGFR ex20 mutations with brain mets.
- Note: ~40% of pts had CNS as a site of 1st progression on Mobocertinib.

Toxicities: Infusion reactions (66%), rash (86%), paronychia (45%), edema (18%)

Toxicities: Diarrhea (91%, 21% grade >3), nausea (34%), rash (45%), paronychia (38%), QTC prolongation (11%), rare cardiomyopathy

Park JCO 2021; Zhou JAMA Oncology 2021; Ramalingam ESMO 2022; Ab 988P

In which line of treatment do you administer targeted therapy to your patients with metastatic NSCLC and MET exon 14 mutations? How do you select between capmatinib and tepotinib?

Management of NSCLC Harboring MET Exon 14 Skipping Alterations

- RNA-based NGS is the most optimal strategy for detecting MET skipping alterations.
- Tepotinib and Capmatinib are approved in a line-agnostic fashion. Both drugs have excellent CNS activity. I prioritize TKI therapy in the 1st line over chemotherapy + immunotherapy due to efficacy in the 1st line and potential toxicity of the reverse sequence.
- Side effects from these TKIs can impact QoL, including edema. Both are great options, but I start with Capmatinib given the higher response rate, acknowledging lack of head-to-head data.

	*Not A Formal Comparison			
Response & Toxicity	Capmatinib Tx Naive n = 28	Capmatinib Prior Tx n = 69	Tepotinib Tx Naive n = 69	Tepotinib Prior Tx n = 83
Confirmed ORR, %	68	41	44.9	44.6
Disease Control Rate, %	96	78	68.1	72.3
Median PFS, months	12.4	5.4	8.5	10.9
Dose Reduction, %	23 (Pooled cohort)		27.8 (Pooled cohort)	
Dose Discontinuation, %	11 (Pooled cohort)		10.6 (Pooled cohort)	

In which line of treatment do you administer targeted therapy for your patients with metastatic NSCLC and HER2 mutations? What about for those with HER2 overexpression or amplification?

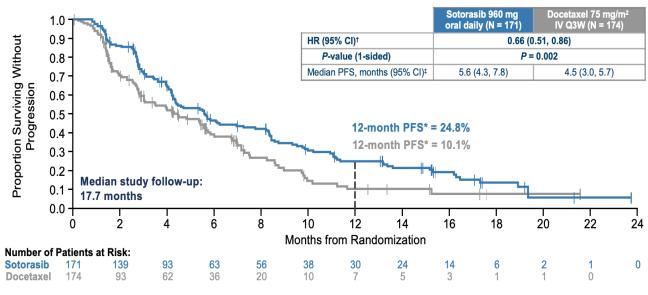
Management of HER2-Mutant NSCLC

- Trastuzumab deruxtecan is approved for NSCLC with a HER2 <u>mutation</u> (not amplification).
- There are data supporting antibody-drug conjugates (T-DXd and T-DM1) for other HER2 alterations, but these are not FDA-approved indications. I currently do not check for HER2 overexpression.
- Brain metastases are common (as high as 47% of patients in a retrospective study!)
- The FDA-approved dose is 5.4 mg/kg. Higher doses are associated with more toxicity/pneumonitis.

DESTINY Lung-02	Prespecified early cohort		
Response Assessment	T-DXd 5.4 mg/kg n = 52	T-DXd 6.4 mg/kg n = 28	
Confirmed Objective Response Rate, n (%) [95% CI]	28 (53.8) [39.5, 67.8]	12 (42.9) [24.5, 62.8]	
Best overall response, n (%) Complete Response Partial Response Stable Disease Progressive Disease Not evaluable	1 (1.9) 27 (51.9) 19 (36.5) 2 (3.8) 3 (5.8)	1 (3.6) 11 (39.3) 14 (50.0) 1 (3.6) 1 (3.6)	
Disease Control Rate, n (%) [95% CI]	47 (90.4) [79.0, 96.8]	26 (92.9) [76.5, 99.1]	
Interstitial Lung Disease, %	5.9	14.0	
Dose Reduction/Drug Discontinuation, %	9.9/7.9	26/16	

I reserve T-DXd for the 2nd-line setting Stay tuned for DESTINY-Lung04!

In which line of treatment do you administer targeted therapy to your patients with metastatic NSCLC and KRAS G12C mutations? How do you select between sotorasib and adagrasib?



Management of KRAS G12C-mutant NSCLC

- Sotorasib and Adagrasib have comparable antitumor activity. We don't have head-to-head studies but the safety profile of Sotorasib is slightly more favorable.
- We have more data for Adagrasib in patients with (treated) brain metastases.
- I reserve Adagrasib and Sotorasib for the 2nd-line setting. I would consider prioritizing Adagrasib over Sotorasib in a patient with brain metastases. I tend to use Sotorasib for all others.

	*Not A Formal Comparison		
Response & Toxicity	Sotorasib n = 174	Adagrasib n = 112	
Confirmed ORR, n (%)	41	48 (42.9)	
Disease Control Rate, n (%)	84	89 (79.5)	
Median PFS, months	6.3	6.5	
Median OS, months	12.5	12.6	
Intracranial ORR, %		33	
Dose Reduction, %	22.2	51.7	
Dose Discontinuation, %	7.1	6.9	

CodeBreak 200: Sotorasib vs Docetaxel

ORR: 28.1% vs 13.2%, Median DOR: 8.6 vs 6.8 mo

Overall Survival: 10.6 vs 11.3 mo (not statistically significant)