MODULE 3: Genitourinary Cancers

Sandy Srinivas, MD

Professor of Oncology Clinical Research Leader, GU Oncology Stanford University Stanford, California

Questions

- 1. What is your current approach to endocrine therapy (in addition to radiation therapy) for locally advanced prostate cancer?
- 2. How do you select among enzalutamide, apalutamide and darolutamide for your patients with nonmetastatic castration-resistant prostate cancer? Have you or would you use abiraterone in this setting?
- 3. What is the optimal therapeutic approach for a patient with metastatic hormone-sensitive prostate cancer, and how does this vary based on disease volume and symptomatology?
- 4. In general, when do you believe ¹⁷⁷Lu-PSMA-617 should be introduced into treatment for patients with metastatic castration-resistant prostate cancer (mCRPC), and how do you sequence this strategy relative to other evidence-based options? What side effects/tolerability issues are associated with this agent?
- 5. Which patients with mCRPC should undergo genetic testing, and what type (eg, germline versus somatic, panel versus one-off)? How should PARP inhibitors be incorporated into the treatment of patients with and without documented homologous recombination repair (HRR) gene mutations? Would you combine one of these agents with an AR pathway inhibitor for a patient with or without an HRR abnormality outside of a trial?

Discussion Question

What is your current approach to endocrine therapy for locally advanced prostate cancer, in addition to radiation therapy?

Endocrine Rx for Locally Advanced PC

- Primary:
 - NCCN low risk: none; Intermediate favorable none; intermediate unfavorable-6 mos; high risk- 1.5 years; Very high risk: ADT/abiraterone for 1.5-2 years; Node positive- ADT/abiraterone 1.5-2 years
- Salvage
 - SOC- 6 months- ADT GETUG-16
 - Controversial about duration and what the agent should be
 - None vs 6 months vs 1.5-2 yrs
 - Strategies for escalation/de-escalation ongoing

Discussion Question

How do you select among enzalutamide, apalutamide and darolutamide for your patients with nonmetastatic castration-resistant prostate cancer (CRPC)? Have you used or would you use abiraterone in this setting?

Chalk Talk – Sandy Srinivas, MD

nmCRPC: PROSPER/SPARTAN/ARAMIS: Results

Characteristic	cteristic PROSPER		SPARTAN		ARAMIS	
	Enzalutamide + ADT (n = 933)	Placebo + ADT (n = 468)	Apalutamide + ADT (n = 806)	Placebo + ADT (n = 401)	Darolutamide + ADT N=955	Placebo +ADT N=554
MFS, mos	36.6	14.7 HR-0.29	40.5	16.2 HR 0.28	40.4	18.4 HR 0.41
OS, mos	67	56.3	73.9	59.9 HR 0.78	NR	NR HR 0.69
 PSA progression (mos) 	37.2	3.9 HR 0.07	40.5	3.7 HR 0.07	33.2	7.3 HR 0.13

	SPARTAN		PROSPER		ARAMIS	
Safety	APA	РВО	ENZA	PBO	DARO	PBO
	(n = 803)	(n = 398)	(n = 930)	(n = 465)	(n = 954)	(n = 554)
Any AEs, n (%)	781 (97.0)	373 (94.0)	876 (94)	380 (82)	794 (83.2)	426 (76.9)
Any serious AEs, n (%)	290 (36.0)	99 (25.0)	372 (40)	100 (22)	237 (24.8)	111 (20.0)
AEs leading to discontinuation, %	15.0	7.3	17.0	9.0	8.9	8.7
AEs (all grades), %						
Fatigue	33.0	21.0	46.0	22.0	13.2	8.3
Hypertension	28.0	21.0	18.0	6.0	7.8	6.5
Rash	26.0	6.3	4.0	3.0	3.1	1.1
Falls	22.0	9.5	18.0	5.0	5.2	4.9
Fractures	18.0	7.5	18.0	6.0	5.5	3.6
Mental impairment disorders	5.1	3.0	8.0	2.0	2.0	1.8

Hussain NEJM 2018; Sternberg NEJM 2020; Smith NEJM 2018; Smith Eur Urol 2021; Fizazi NEJM 2019; Fiazi NEJM 2020.

Chalk Talk – Sandy Srinivas, MD

nmCRPC

- Abiraterone
- IMAAGEN study: 131 pts
- PSA \geq 50% reduction = 87%
- No level 1 evidence

Discussion Question

What is the optimal therapeutic approach for a patient with metastatic hormone-sensitive prostate cancer, and how does this vary with disease volume and symptomatology?

Choices in mHSPC

- ADT is the backbone for the treatment of mHSPC
- Adding either docetaxel or abiraterone improved OS by 30%
- Benefit of docetaxel clear in high volume vs low volume disease
- Debate over docetaxel vs abiraterone: multiple choices; efficacy the same
- ARI: apalutamide/Enzalutamide superior to ADT alone
- Triple Rx: PEACE 1: ADT + Docetaxel + Abiraterone >ADT + Docetaxel
- ARASENS: ADT + Docetaxel + Darolutamide > ADT + Docetaxel
- Selection of Rx: High volume vs low volume; de novo vs metachronous; chemo fitness; frailty; co-morbidities; # HTN meds; cardiac health; support @home

mHSPC trials

Trial Name	Experimental arm	Comparator arm	rPFS	OS
CHAARTED 1	Docetaxel	ADT		HR: 0.72; 57.6 vs 44 mos
STAMPEDE–C ²	Docetaxel	ADT		HR: 0.81; 59.1 vs 43.1 mos
LATITUDE ³	Abiraterone	ADT	33 v 14.8 mos HR 0.47	HR: 0.66; 53 vs 36 mos
STAMPEDE-G 4	Abiraterone	ADT		HR :0.6; 79 vs 46 mos
ARCHES 5	Enzalutamide	ADT	HR: 0.39 NR vs 19	HR: 0.66; NR vs NR
ENZAMET 6	Enzalutamide	ADT+NSAA With docetaxel	HR-0.34 HR: 0.48	HR- 0.53 HR: 90
TITAN 7	Apalutamide	ADT	HR- 0.48	HR: 0.65 NR vs 52.2
PEACE-1 ⁸	Abiraterone	ADT+Docetaxel	4.5 yrs vs 2 HR-0.5	HR: 0.75
ARASENS ⁹	Darolutamide	ADT+Docetaxel	NR	HR: 0.68; NR vs 48.9 mos

1.Sweeney C NEJM 2015; Kyriakopoulos J Clin Oncol 2018 2.Clarke N Ann Oncol 2019; 3. Fizazi K Lancet Oncol 2019; 4.James ND Intl J Cancer 2022; 5.Armstrong A J Clin Oncol 2019. Armstrong AJ J Clin Oncol 2022; 6.Davis NEJM 2019; 7.Chi KN NEJM 2019; Chi KN J Clin Oncol 2021 8.Fizazi Lancet 2022; 9.Smith MR NEJM 2022

In general, when do you believe ¹⁷⁷Lu-PSMA-617 should be introduced into treatment for patients with metastatic CRPC (mCRPC), and how do you sequence this strategy relative to other evidence-based options? What side effects or tolerability issues are associated with this agent?

VISION: Phase 3 randomized study Lu177

Chalk Talk – Sandy Srinivas, MD

Improvement in Longevity:

Primary endpoints: ¹⁷⁷Lu-PSMA-617 prolonged OS

Secondary endpoint: RECIST v1.1 responses favored the ¹⁷⁷Lu-PSMA-617 arm in patients with measurable disease

Secondary endpoint: PSA responses favored the ¹⁷⁷Lu-PSMA-617 arm among evaluable patients

Morris ASCO 2021; Sartor NEJM 2021

Treatment-Emergent Adverse Events of Interest

	FAS safety set (N = 734)				
	All gra	ades	Grade 3–5 ^b		
Patients with TEAEs of interest ^a	¹⁷⁷ Lu-PSMA-617	BSoC only	¹⁷⁷ Lu-PSMA-617	BSoC only	
	+ BSoC (n = 529)	(n = 205)	+ BSoC (n = 529)	(n = 205)	
	n (%)	n (%)	n (%)	n (%)	
Fatigue (including asthenia)	260 (49.1)	60 (29.3)	37 (7.0)	5 (2.4)	
Bone marrow suppression	251 (47.4)	36 (17.6)	124 (23.4)	14 (6.8)	
Leukopenia	66 (12.5)	4 (2.0)	13 (2.5)	1 (0.5)	
Lymphopenia	75 (14.2)	8 (3.9)	41 (7.8)	1 (0.5)	
Anemia	168 (31.8)	27 (13.2)	68 (12.9)	10 (4.9)	
Thrombocytopenia	91 (17.2)	9 (4.4)	42 (7.9)	2 (1.0)	
Dry mouth	208 (39.3)	2 (1.0)	0 (0.0)	0 (0.0)	
Nausea and vomiting	208 (39.3)	35 (17.1)	8 (1.5)	1 (0.5)	
Renal effects	46 (8.7)	12 (5.9)	18 (3.4)	6 (2.9)	
Second primary malignancies	11 (2.1)	2 (1.0)	4 (0.8)	1 (0.5)	
Intracranial hemorrhage	7 (1.3)	3 (1.5)	5 (0.9)	2 (1.0)	
Months of exposure – median (range)	¹⁷⁷ Lu-PSMA-617 + BSoC (n = 529)		BSoC only (n = 205)		
BSoC	7.56 (0.3–31.3)		2.07 (0.0–26.0)		
¹⁷⁷ Lu-PSMA-617	6.90 (0.3–10.2)		-		

BSoC, best standard of care; FAS, full analysis set; TEAE, treatment-emergent adverse event. ^aRandomized treatment-emergent safety topics were defined as any safety topic that occurred on or after start of randomized treatment up to 30 days after last administration of randomized treatment or prior to the initiation of subsequent anticancer treatment. ^bPatients with multiple grades for a safety topic are only counted under the maximum grade. **Reference:** Sartor O et al. *N Engl J Med.* 2021;385(12):1091-1103. Which patients with mCRPC should undergo genetic testing, and what type (eg, germline versus somatic, panel versus one-off)? How should PARP inhibitors be incorporated into therapy for patients with and without documented homologous recombination repair (HRR) gene mutations? Would you combine one of these agents with an AR (androgen receptor) pathway inhibitor for a patient with or without an HRR abnormality outside of a trial?

BRCA +/mCRPC

- Testing done in all newly dx mHSPC; mCRPC
- Olaparib approved pre-docetaxel: PROfound study: rPFS in cohort A: 7.4 vs 3.6 mos; OS- 19.1 vs 14.7 mos
- Rucaparib approved post NHT and docetaxel: TRITON2:ORR of 43.5%
- Recent data :
- Magnitude: Niraparib+ Abiraterone vs Placebo +abiraterone
- HRRm+: Niraparib +Abiraterone improved rPFS:0.73; 16.5 vs 13.7 mos; HRRm-:Neg
- PROpel: Olaparib+Abiraterone vs Placebo +abiraterone
- rPFS: 24.8 vs 16.6 mos; HR-0.66; HRRm+: HR-0.5; HRRm-: HR- 0.76