Inside the Issue: Integrating Bispecific Antibodies into the Management of Multiple Myeloma — Patient Selection and Toxicity Management

A CME/MOC-Accredited Live Webinar

Tuesday, July 18, 2023 5:00 PM – 6:00 PM ET

Faculty Hans Lee, MD Saad Zafar Usmani, MD, MBA

Faculty

Hans Lee, MD Associate Professor Director, Multiple Myeloma Clinical Research Department of Lymphoma/Myeloma The University of Texas MD Anderson Cancer Center Houston, Texas

Moderator

Neil Love, MD Research To Practice

Saad Zafar Usmani, MD, MBA Chief of Myeloma Service Memorial Sloan Kettering Cancer Center New York, New York

Commercial Support

This activity is supported by educational grants from Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Pfizer Inc, and Regeneron Pharmaceuticals Inc.

Dr Love — Disclosures

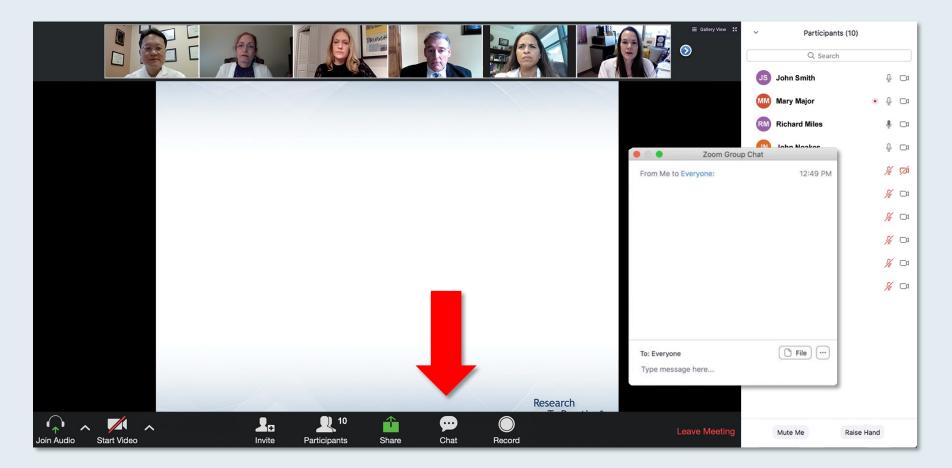
Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab US Inc, Gilead Sciences Inc, Grail Inc, GSK, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc, and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Lee — Disclosures

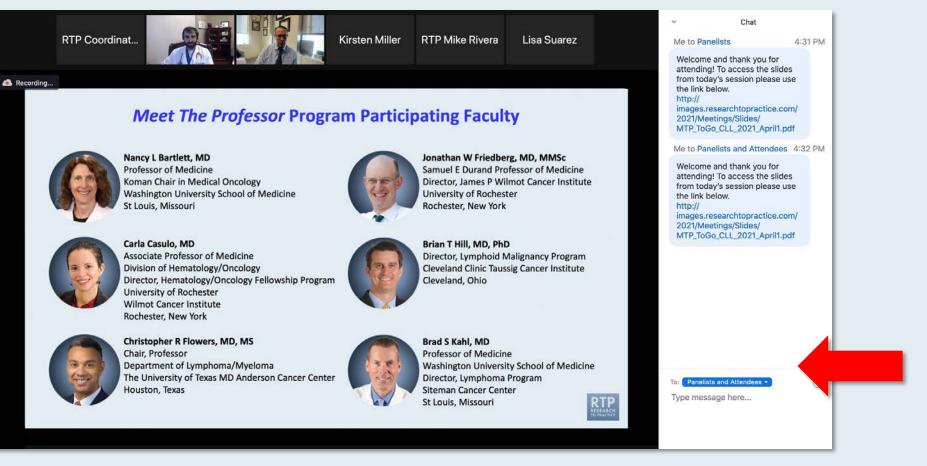
Consulting Agreements	Bristol Myers Squibb, Celgene Corporation, Genentech, a member of the Roche Group, GSK, Janssen Biotech Inc, Monte Rosa Therapeutics, Pfizer Inc, Regeneron Pharmaceuticals Inc, Sanofi, Takeda Pharmaceuticals USA Inc
Contracted Research	Amgen Inc, Bristol Myers Squibb, GSK, Janssen Biotech Inc, Regeneron Pharmaceuticals Inc, Takeda Pharmaceuticals USA Inc
Data and Safety Monitoring Board/Committee	Allogene Therapeutics



Dr Usmani — Disclosures

Advisory Committee and Consulting Agreements	AbbVie Inc, Amgen Inc, Bristol Myers Squibb, Celgene Corporation, EdoPharma, Genentech, a member of the Roche Group, Gilead Sciences Inc, GSK, Janssen Biotech Inc, Oncopeptides, Sanofi, Seagen Inc, Secura Bio, SkylineDX, Takeda Pharmaceuticals USA Inc, TeneoBio
Contracted Research	Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Bristol Myers Squibb, Celgene Corporation, GSK, Janssen Biotech Inc, Merck, Pharmacyclics LLC, an AbbVie Company, Sanofi, Seagen Inc, SkylineDX, Takeda Pharmaceuticals USA Inc
Data and Safety Monitoring Board/Committee	GSK

We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

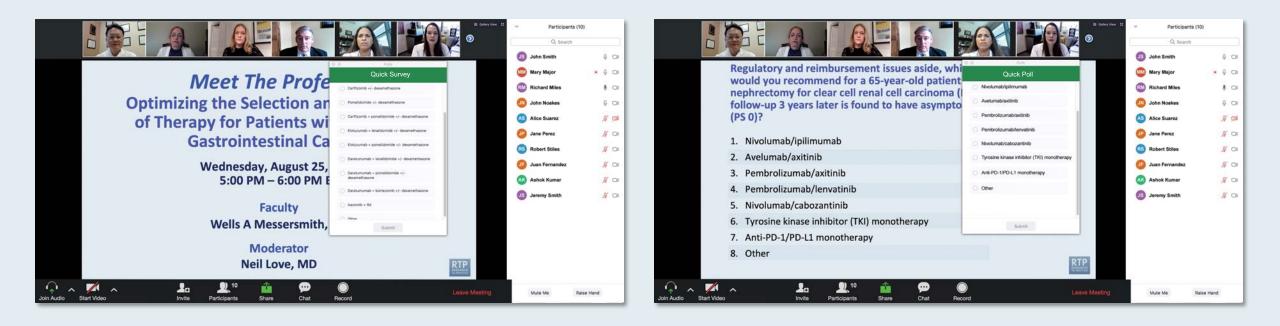
Familiarizing Yourself with the Zoom Interface

Expand chat submission box



Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface


Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY

WITH DR NEIL LOVE

Key Presentations from the 64th American Society of Hematology (ASH) Annual Meeting: Multiple Myeloma Edition

DR JACOB P LAUBACH DANA-FARBER CANCER INSTITUTE

Dr Jacob P Laubach – Key Presentatio Oncology Today with Dr Neil Love —

(15)

Inside the Issue: Current and Future Management of ER-Positive Metastatic Breast Cancer After Disease Progression on a CDK4/6 Inhibitor

A CME/MOC-Accredited Live Webinar

Thursday, July 20, 2023 5:00 PM – 6:00 PM ET

Faculty Aditya Bardia, MD, MPH Erika Hamilton, MD

Meet The Professor Optimizing the Management of Soft Tissue Sarcoma and Related Connective Tissue Disorders

> Tuesday, July 25, 2023 5:00 PM – 6:00 PM ET

Faculty Richard F Riedel, MD

The Implications of Recent Data Sets for the Management of Hepatocellular Carcinoma

A CME/MOC-Accredited Virtual Event

Thursday, July 27, 2023 5:00 PM – 6:00 PM ET

Faculty Ghassan Abou-Alfa, MD, MBA Daneng Li, MD

Inside the Issue: Exploring the Current and Future Management of High-Risk, Hormone-Sensitive Nonmetastatic Prostate Cancer

A CME/MOC-Accredited Live Webinar

Monday, July 31, 2023 5:00 PM – 6:00 PM ET

Faculty Neal D Shore, MD Mary-Ellen Taplin, MD

Inside the Issue: The Current and Future Role of CD20 x CD3 Bispecific Antibodies in the Management of Non-Hodgkin Lymphoma

A CME/MOC-Accredited Live Webinar

Wednesday, August 2, 2023 5:00 PM – 6:00 PM ET

Faculty Martin Hutchings, MD, PhD Loretta J Nastoupil, MD

Inside the Issue: Optimizing the Management of Metastatic Pancreatic Cancer

A CME/MOC-Accredited Live Webinar

Tuesday, August 8, 2023 5:00 PM – 6:00 PM ET

Faculty Eileen M O'Reilly, MD Zev Wainberg, MD, MSc

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Inside the Issue: Integrating Bispecific Antibodies into the Management of Multiple Myeloma — Patient Selection and Toxicity Management

A CME/MOC-Accredited Live Webinar

Tuesday, July 18, 2023 5:00 PM – 6:00 PM ET

Faculty Hans Lee, MD Saad Zafar Usmani, MD, MBA

Faculty

Hans Lee, MD Associate Professor Director, Multiple Myeloma Clinical Research Department of Lymphoma/Myeloma The University of Texas MD Anderson Cancer Center Houston, Texas

Moderator

Neil Love, MD Research To Practice

Saad Zafar Usmani, MD, MBA Chief of Myeloma Service Memorial Sloan Kettering Cancer Center New York, New York

Survey Participants

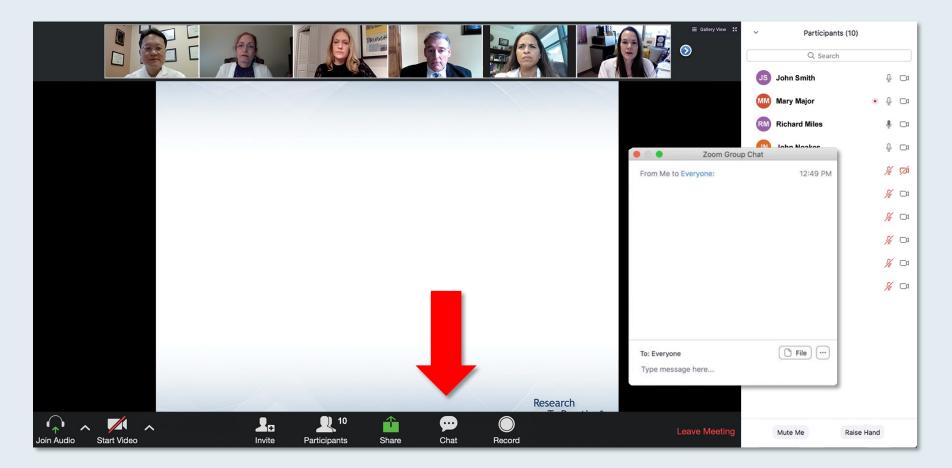
Amrita Krishnan, MD

Director of the Judy and Bernard Briskin Center for Multiple Myeloma Research Professor of Hematology/Hematopoietic Cell Transplantation City of Hope Cancer Center Duarte, California

Noopur Raje, MD Director, Center for Multiple Myeloma Massachusetts General Hospital Cancer Center Professor of Medicine Harvard Medical School Boston, Massachusetts

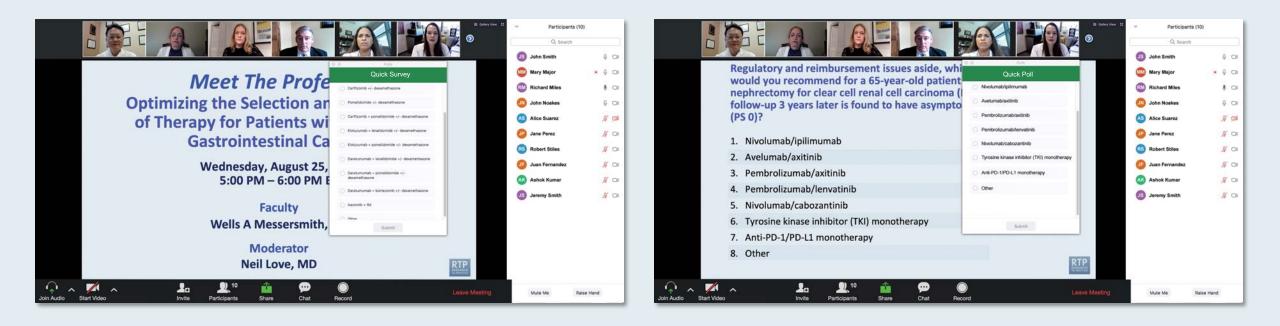
Ajay K Nooka, MD, MPH

Professor, Department of Hematology and Medical Oncology Medical Director Winship Data and Technology Applications Shared Resource Winship Cancer Institute Emory University School of Medicine Atlanta, Georgia



Jeffrey A Zonder, MD

Professor of Oncology Leader, Multiple Myeloma and Amyloidosis Multidisciplinary Team Karmanos Cancer Institute Wayne State University Detroit, Michigan


We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

Inside the Issue: Current and Future Management of ER-Positive Metastatic Breast Cancer After Disease Progression on a CDK4/6 Inhibitor

A CME/MOC-Accredited Live Webinar

Thursday, July 20, 2023 5:00 PM – 6:00 PM ET

Faculty Aditya Bardia, MD, MPH Erika Hamilton, MD

Meet The Professor Optimizing the Management of Soft Tissue Sarcoma and Related Connective Tissue Disorders

> Tuesday, July 25, 2023 5:00 PM – 6:00 PM ET

Faculty Richard F Riedel, MD

The Implications of Recent Data Sets for the Management of Hepatocellular Carcinoma

A CME/MOC-Accredited Virtual Event

Thursday, July 27, 2023 5:00 PM – 6:00 PM ET

Faculty Ghassan Abou-Alfa, MD, MBA Daneng Li, MD

Inside the Issue: Exploring the Current and Future Management of High-Risk, Hormone-Sensitive Nonmetastatic Prostate Cancer

A CME/MOC-Accredited Live Webinar

Monday, July 31, 2023 5:00 PM – 6:00 PM ET

Faculty Neal D Shore, MD Mary-Ellen Taplin, MD

Inside the Issue: The Current and Future Role of CD20 x CD3 Bispecific Antibodies in the Management of Non-Hodgkin Lymphoma

A CME/MOC-Accredited Live Webinar

Wednesday, August 2, 2023 5:00 PM – 6:00 PM ET

Faculty Martin Hutchings, MD, PhD Loretta J Nastoupil, MD

Inside the Issue: Optimizing the Management of Metastatic Pancreatic Cancer

A CME/MOC-Accredited Live Webinar

Tuesday, August 8, 2023 5:00 PM – 6:00 PM ET

Faculty Eileen M O'Reilly, MD Zev Wainberg, MD, MSc

ONCOLOGY TODAY

WITH DR NEIL LOVE

Key Presentations from the 64th American Society of Hematology (ASH) Annual Meeting: Multiple Myeloma Edition

DR JACOB P LAUBACH DANA-FARBER CANCER INSTITUTE

Dr Jacob P Laubach – Key Presentatio Oncology Today with Dr Neil Love —

(15)

Inside the Issue: Integrating Bispecific Antibodies into the Management of Multiple Myeloma — Patient Selection and Toxicity Management

A CME/MOC-Accredited Live Webinar

Tuesday, July 18, 2023 5:00 PM – 6:00 PM ET

Faculty Hans Lee, MD Saad Zafar Usmani, MD, MBA

Commercial Support

This activity is supported by educational grants from Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Pfizer Inc, and Regeneron Pharmaceuticals Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Lee — Disclosures

Consulting Agreements	Bristol Myers Squibb, Celgene Corporation, Genentech, a member of the Roche Group, GSK, Janssen Biotech Inc, Monte Rosa Therapeutics, Pfizer Inc, Regeneron Pharmaceuticals Inc, Sanofi, Takeda Pharmaceuticals USA Inc
Contracted Research	Amgen Inc, Bristol Myers Squibb, GSK, Janssen Biotech Inc, Regeneron Pharmaceuticals Inc, Takeda Pharmaceuticals USA Inc
Data and Safety Monitoring Board/Committee	Allogene Therapeutics

Dr Usmani — Disclosures

Advisory Committee and Consulting Agreements	AbbVie Inc, Amgen Inc, Bristol Myers Squibb, Celgene Corporation, EdoPharma, Genentech, a member of the Roche Group, Gilead Sciences Inc, GSK, Janssen Biotech Inc, Oncopeptides, Sanofi, Seagen Inc, Secura Bio, SkylineDX, Takeda Pharmaceuticals USA Inc, TeneoBio
Contracted Research	Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Bristol Myers Squibb, Celgene Corporation, GSK, Janssen Biotech Inc, Merck, Pharmacyclics LLC, an AbbVie Company, Sanofi, Seagen Inc, SkylineDX, Takeda Pharmaceuticals USA Inc
Data and Safety Monitoring Board/Committee	GSK

Available Data with and Current and Future Role of Bispecific Antibodies in Multiple Myeloma

July 10, 2023

Hans Lee, MD

Associate Professor Director, Multiple Myeloma Clinical Research Department of Lymphoma/Myeloma The University of Texas MD Anderson Cancer Center

> Memorial Sloan Kettering Cancer Center

MD ANDERSON (

The Case for Bispecifics in Relapsed/Refractory Multiple Myeloma

Saad Z. Usmani, MD MBA FACP Chief of Myeloma Service

Hans Lee, MD

- Moreau P et al. Teclistamab in relapsed or refractory multiple myeloma. *N Engl J Med* 2022 August 11;387(6):495-505.
- Moreau P et al. Long-term follow-up from MajesTEC-1 of teclistamab, a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM). ASCO 2023;Abstract 8011.
- Lee HC et al. LINKER-MM1 study: Linvoseltamab (REGN5458) in patients with relapsed/refractory multiple myeloma. ASCO 2023;Abstract 8006.
- Wong SW et al. Alnuctamab (ALNUC; BMS-986349; CC-93269), a BCMA × CD3 T-cell engager, in patients (pts) with relapsed/refractory multiple myeloma (RRMM): Latest results from a phase 1 first-in-human clinical study. EHA 2023;Abstract P883.
- Mohty M et al. Elranatamab, a B-cell maturation antigen (BCMA)-CD3 bispecific antibody, for patients with relapsed/refractory multiple myeloma: Extended follow up and biweekly administration from MAGNETISMM-3. EHA 2023;Abstract S196.

Hans Lee, MD (continued)

- Touzeau C et al. Evaluating teclistamab in patients with relapsed/refractory multiple myeloma following exposure to other B-cell maturation antigen (BCMA)-targeted agents. EHA 2022;Abstract S184.
- Nooka AK et al. Efficacy and safety of elranatamab in patients with relapsed/refractory multiple myeloma (RRMM) and prior B-cell maturation antigen (BCMA)-directed therapies: A pooled analysis from MagnetisMM studies. ASCO 2023;Abstract 8008.
- Chari A et al. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. *N Engl J Med* 2022 December 15;387(24):2232-44.
- Carlo-Stella C et al. RG6234, a GPRC5D x CD3 T-cell engaging bispecific antibody, is highly active in patients (pts) with relapsed/refractory multiple myeloma (RRMM): Updated intravenous (IV) and first subcutaneous (SC) results from a phase I dose-escalation study. ASH 2022;Abstract 161.
- Lesokhin AM et al. Enduring responses after 1-year, fixed-duration cevostamab therapy in patients with relapsed/refractory multiple myeloma: Early experience from a phase I study. ASH 2022;Abstract 4415.

Hans Lee, MD (continued)

- Dholaria BR et al. Talquetamab (tal) + daratumumab (dara) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): Updated TRiMM-2 results. ASCO 2023;Abstract 8003.
- Cohen YC et al. First results from the RedirecTT-1 study with teclistamab (tec) + talquetamab (tal) simultaneously targeting BCMA and GPRC5D in patients (pts) with relapsed/refractory multiple myeloma (RRMM). ASCO 2023;Abstract 8002.

Saad Zafar Usmani, MD, MBA

- Usmani SZ et al. Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): A multicentre, open-label, single-arm, phase 1 study. *Lancet* 2021 August 21;398(10301):665-74.
- Moreau P et al. Teclistamab in relapsed or refractory multiple myeloma. *N Engl J Med* 2022 August 11;387(6):495-505.
- Voorhees PM et al. A phase 1 first-in-human study of Abbv-383, a BCMA × CD3 bispecific T-cell-redirecting antibody, as monotherapy in patients with relapsed/refractory multiple myeloma. ASH 2022;Abstract 4401.
- Bahlis NJ et al. Efficacy and safety of elranatamab in patients with relapsed/refractory multiple myeloma naïve to B-cell maturation antigen (BCMA)-directed therapies: Results from cohort a of the MagnetisMM-3 study. ASH 2022;Abstract 391.

Saad Zafar Usmani, MD, MBA (continued)

- Lesokhin AM et al. Enduring responses after 1-year, fixed-duration cevostamab therapy in patients with relapsed/refractory multiple myeloma: Early experience from a phase I study. ASH 2022;Abstract 4415.
- Wong SW et al. Alnuctamab (ALNUC; BMS-986349; CC-93269), a BCMA x CD3 T-cell engager, in patients (pts) with relapsed/refractory multiple myeloma (RRMM): Latest results from a phase 1 first-in-human clinical study. EHA 2023; Abstract P883.
- Carlo-Stella C et al. RG6234, a GPRC5D x CD3 T-cell engaging bispecific antibody, is highly active in patients (pts) with relapsed/refractory multiple myeloma (RRMM): Updated intravenous (IV) and first subcutaneous (SC) results from a phase I dose-escalation study. ASH 2022;Abstract 161.

Agenda

MODULE 1: Biology/Immunology; Overview

MODULE 2: Current Available Data

MODULE 3: Clinical Investigator Survey

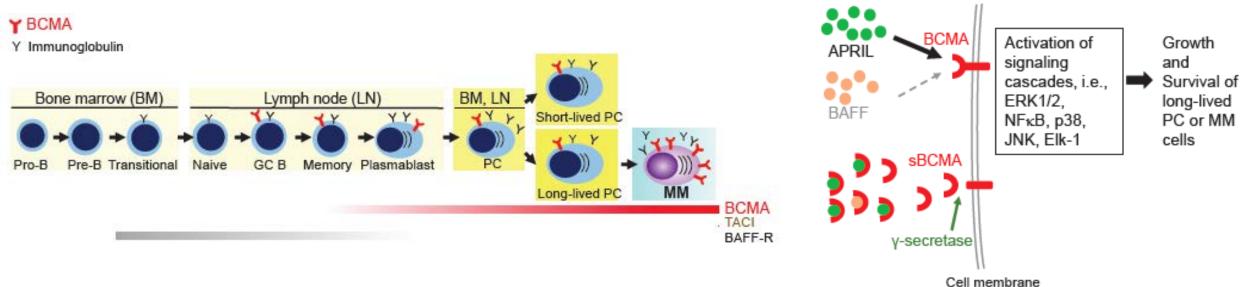
MODULE 4: Combinations/Ongoing Trials

MODULE 5: Faculty Cases

Agenda

MODULE 1: Biology/Immunology; Overview

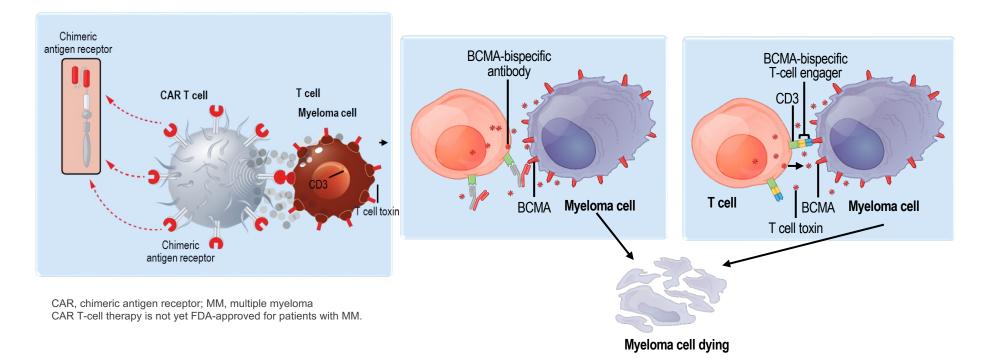
MODULE 2: Current Available Data


MODULE 3: Clinical Investigator Survey

MODULE 4: Combinations/Ongoing Trials

MODULE 5: Faculty Cases

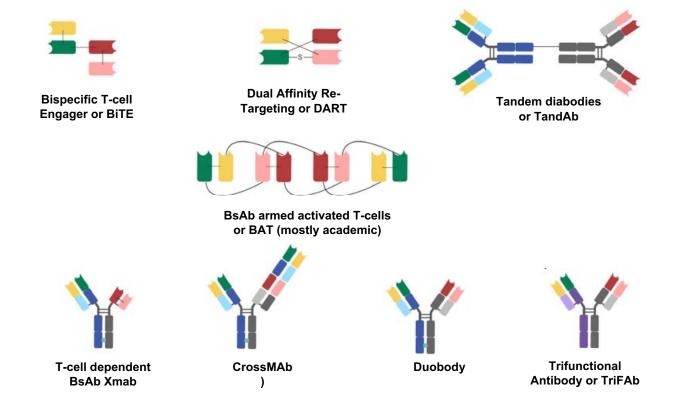
B-cell Maturation Antigen (BCMA)



Cell memorane

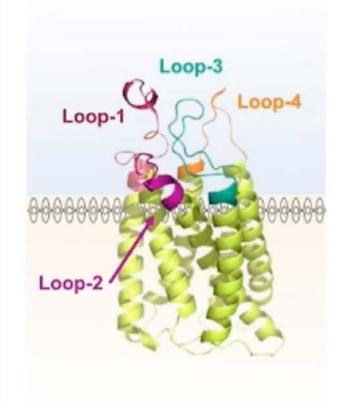
Courtesy of Hans Lee, MD

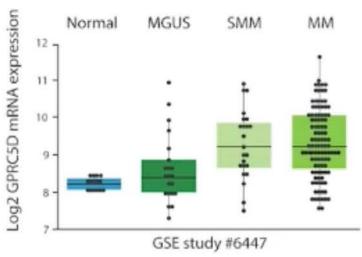
Cho et al, Frontiers in Immunology, 2018


This is the age of immune therapy in MM therapeutics – our collective aim is cure.

Courtesy of Saad Zafar Usmani, MD, MBA

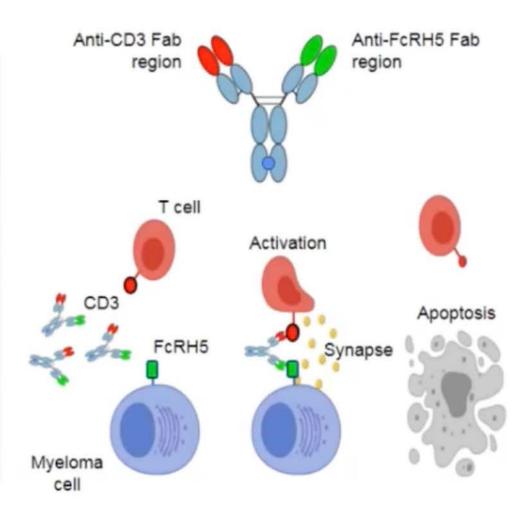
Adapted from Cho S-F et al. Front Immunol. 2018;9:1821.


Bispecific Antibodies (BsAbs) – Many Different Platforms



Adapted from Lejeune M et al. Front Immunol 2020 11:762.

G Protein-Coupled Receptor Class C Group 5 Member D (GPRC5D)


- Orphan G protein-coupled receptor of unknown function
- Limited expression in healthy human tissue, primarily in plasma cells and hair follicles¹⁻²
- Highly expressed in myeloma cells and associated with poor prognostic factors in multiple myeloma (MM)¹⁻³
- No known shed peptides or extracellular domain shedding (reduced risk for sink effect)
- Ideal target for CD3 redirection

Fc receptor-homolog5 (FcRH5)

- Fc receptor-homolog 5 (FcRH5)
 - Expressed on myeloma cells with near 100% prevalence¹
 - Expression on myeloma and plasma cells > normal B cells¹
- Cevostamab
 - Humanized IgG-based T-cell-engaging bispecific antibody¹
 - Targets FcRH5 on myeloma cells and CD3 on T cells¹
- Ongoing Phase I dose-escalation and expansion trial (NCT03275103) is evaluating the safety and activity of cevostamab monotherapy in patients with RRMM²

BCMA Bispecific T-Cell Antibodies Clinical Data

Drug	Ν	Route/Schedule	ORR at RP2D or higher doses tested to-date	CRS	Comments
AMG 420	42	4-week continuous IV	70% (400 ug/day, N=10)	All grade (38%), grade 3/4 (2%)	Grade 3 PN (2); 1 death due to hepatic failure (adenovirus)
Alnuctamab	73	SC q week C1-C3, then q2 week C3-6, then q4 week C7+	65%, 57% ≥ VGPR (30 mg, N=26)	All grade (56%), grade 2 (12%), grade 3/4 (0%)	2 BCMA binding domains
Teclistamab	165	SC q week	63%, 59% ≥ VGPR	All grade (72%), grade 2 21%, Grade 3/4 (1%)	Median PFS 12.4 months Median DOR 24 months
TNB-383B (ABBV-383)	75	IV q3 weeks	60%, 43% ≥ VGPR (60 mg, N=60)	All grade (72%), grade 3/4 (2%)	No step-up dosing; 2 BCMA binding domains with attenuated CD3 binding domain
Linvoseltamab	252	IV q week, then q2 weeks starting week 16, then q4 weeks starting week 24 if ≥ VGPR	71%, 59% ≥ VGPR (200 mg cohort, N=117)	All grade (45%), grade 2 (9%), grade 3 (1%), (200 mg cohort, N=227)	6-month median DOR: 84% 6-month median PFS: 73%
AMG 701	85	IV q week	83%, 50% ≥ VGPR (18 mg, N=6)	All grade (65%), grade 3 (9%), grade 4 (0%)	
Elranatamab	123	SC q week, then q2 weeks after 6 cycles with \ge PR for \ge 2 months	61%, 55% ≥ VGPR (76 mg SC, N=123) (MagnetisMM-3)	All grade (56%), grade 2 (14%); grade 3/4 (0%)	12 month median DOR: 74% 12-month median PFS: 57%

Topp et al, JCO, 2020; Wong et al, EHA 2023; Mohty et al EHA 2023; D'Souza et al, JCO, 2022; Lee et al, ASCO 2023; Harrison et al, ASH 2020; Bahlis et al, ASH 2022 MD ANDERSON CANCER CENTER Courtesy of Hans Lee, MD

Non-BCMA Bispecific T-Cell Antibodies in Clinical Development

Drug	Ν	Route/Schedule	ORR at RP2D or higher doses tested to-date	CRS	Comments
Talquetamab (GPRC5D x CD3)	74	SC q week SC q2 weeks	74%, 59% ≥ VGPR (0.4 mg/kg q week, N=143)	79% All grade, 2% grade 3/4 (0.4 mg/kg q week, N=143)	Other unique AEs: dysgeusia, skin exfoliation, nail disorders
		73%, 57% ≥ VGPR (0.8 mg//kg q2 weeks, N=145)	72% All grade, 1% grade 3/4 (0.8 mg//kg q2 weeks, N=145)	50% ORR (8/16) in prior BCMA bispecific or CART	
RG6234 (GPRC5D x CD3)	51	IV q2 week x 1 year (fixed duration)	71%, 57% ≥ VGPR (IV, N = 49)	82% All grade, 2% grade ≥ 3 (IV)	2:1 (GPRC5D:CD3) configuration
020)		SC q2 weeks x 1 year (fixed duration)	60%, 40% ≥ VGPR (SC, N=48)	78% All grade, 2% grade ≥ 3 (IV)	56% ORR (10/18) prior BCMA exposed
Cevostamab (FcRH5 x CD3)	161	IV q3 weeks x 17 cycles (fixed duration)	57% (132-198 mg, N=60)	All grade (81%) Grade 3/4 (1%)	 14% ICANS (all grade 1/2) 33% prior BCMA exposed 8/16 patients maintained response ≥ 6 months after stopping therapy

Chari et al, *NEJM*, 2022; Chari et al, *ASH* 2022; Carlo-Stella et al, *ASH*, 2022; Trudel et al, *ASH* 2021; Lesokhin et al, ASH 2022.

Agenda

MODULE 1: Biology/Immunology; Overview

MODULE 2: Current Available Data

MODULE 3: Clinical Investigator Survey

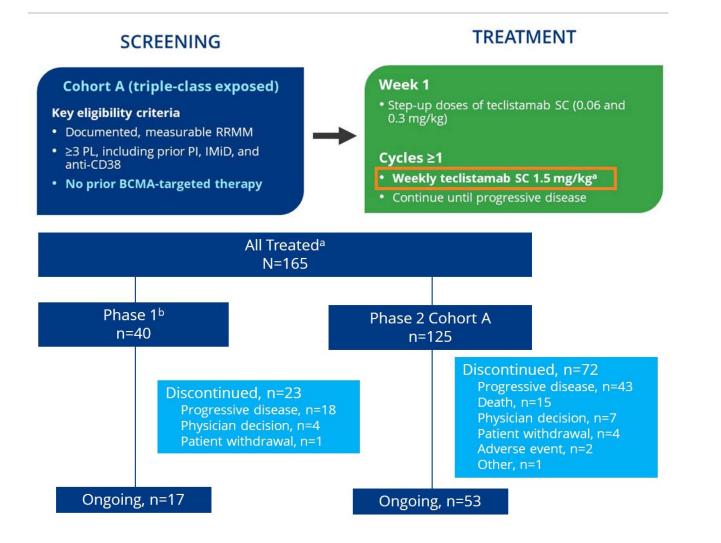
MODULE 4: Combinations/Ongoing Trials

MODULE 5: Faculty Cases

Teclistamab – 1st EMA/FDA Approved BsAb for MM

Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): a multicentre. open-label, singlearm, phase 1 study Lancet 2021; 398: 665-74

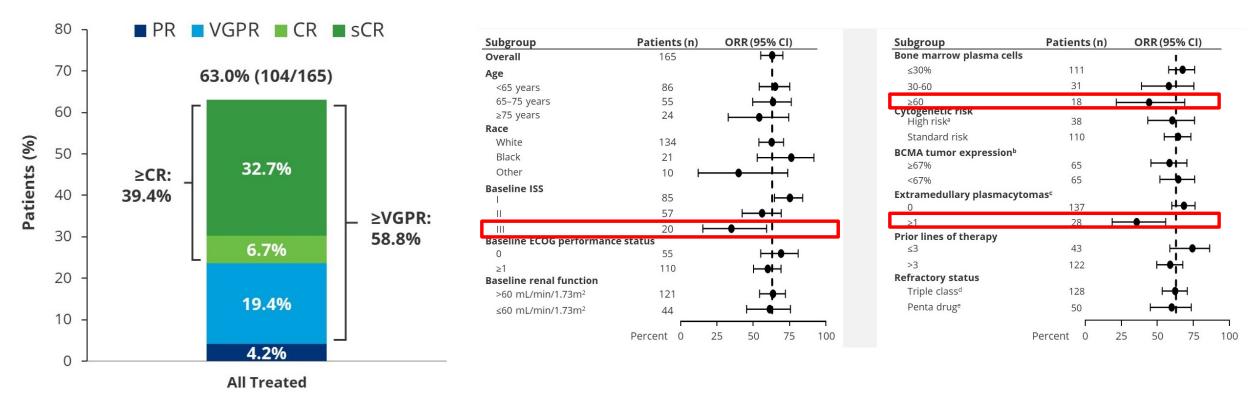
Saad Z Usmani, Alfred L Garfall, Niels W C J van de Donk, Hareth Nahi, Jesus F San-Miguel, Albert Oriol, Laura Rosinol, Ajai Chari, Manisha Bhutani, Lionel Karlin, Lotfi Benboubker, Lixia Pei, Raluca Verona, Suzette Girgis, Tara Stephenson, Yusri Elsayed, Jeffrey Infante, Jenna D Goldberg, Arnob Banerjee, María-Victoria Mateos, Amrita Krishnan


> The NEW ENGLAND JOURNAL of MEDICINE ESTABLISHED IN 1812 AUGUST 11, 2022 VOL. 387 NO. 6

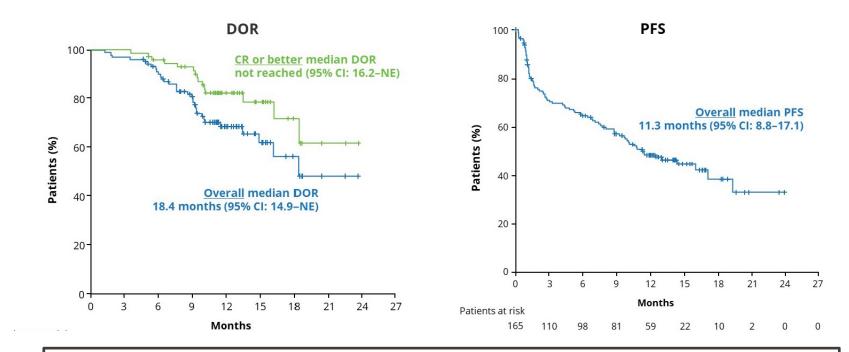
Teclistamab in Relapsed or Refractory Multiple Myeloma

P. Moreau, A.L. Garfall, N.W.C.J. van de Donk, H. Nahi, J.F. San-Miguel, A. Oriol, A.K. Nooka, T. Martin, L. Rosinol, A. Chari, L. Karlin, L. Benboubker, M.-V. Mateos, N. Bahlis, R. Popat, B. Besemer, J. Martínez-López, S. Sidana, M. Delforge, L. Pei, D. Trancucci, R. Verona, S. Girgis, S.X.W. Lin, Y. Olyslager, M. Jaffe, C. Uhlar, T. Stephenson, R. Van Rampelbergh, A. Banerjee, J.D. Goldberg, R. Kobos, A. Krishnan, and S.Z. Usmani

Teclistamab – MajesTEC-1

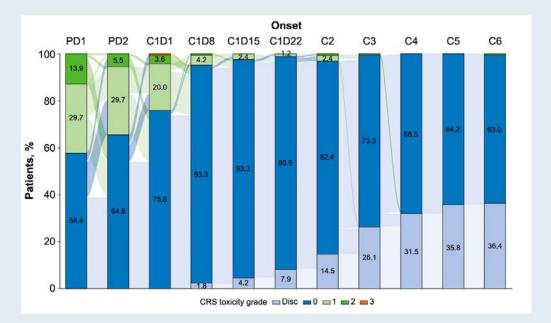

Patients with confirmed complete response (CR) or better for ≥6 months (phase 2) could switch to q2 week dosing

Courtesy of Hans Lee, MD


Nooka et al, ASCO 2022; Moreau et al, NEJM, 2022

Teclistamab – MajesTEC-1 (Efficacy)

ORR^a


Teclistamab – MajesTEC-1 (Efficacy)

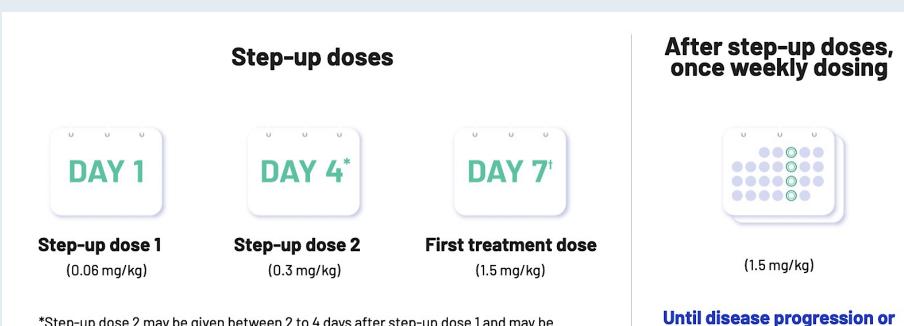
Updated ASCO 2023 Data (22-month follow-up) Median DOR: 24 months Median PFS: 12.5 months Patients who transitioned from QW to Q2W dosing: median DOR of 20.5 months from the date of switch.

Courtesy of Hans Lee, MD Nooka et al, ASCO 2022; Moreau et al, NEJM, 2022, Moreau et al, ASCO, 2023, Bhutani et al, ASCO 2023.

CRS Onset and Management in Patients Receiving Teclistamab on the MajesTEC-1 Study

CRS events, No. (%)	CRS events managed with tocilizumab ($N = 68$)	CRS events not managed with tocilizumab ($N = 127$)
CRS events, any grade	68 (100)	127 (100)
Subsequent CRS events	13 (19.1)	63 (49.6)
Grade 1 CRS events	31 (45.6)	122 (96.1)
Subsequent CRS events (any grade) ^a	4 (12.9)	61 (50.0)
Subsequent CRS events (grade ≥ 2) ^a	1 (3.2)	3 (2.5)
Grade \geq 2 CRS events	37 (54.4)	5 (3.9)
Subsequent CRS events (any grade) ^b	9 (24.3)	2 (40.0)
Subsequent CRS events (grade ≥ 2) ^b	6 (16.2)	0

Note: Table shows numbers of events (overall, 119 patients experienced 195 CRS events in the study). CRS was graded according to American Society for Transplantation and Cellular Therapy criteria.⁶


Abbreviation: CRS, cytokine release syndrome.

^aPercentages based on the number of grade 1 CRS events as denominator.

^bPercentages based on the number of grade ≥ 2 CRS events as denominator.

Teclistamab: Step-Up Dosing

unacceptable toxicity

*Step-up dose 2 may be given between 2 to 4 days after step-up dose 1 and may be given up to 7 days after step-up dose 1 to allow for resolution of adverse reactions. [†]First treatment dose may be given between 2 to 4 days after step-up dose 2 and may be given up to 7 days after step-up dose 2 to allow for resolution of adverse reactions.

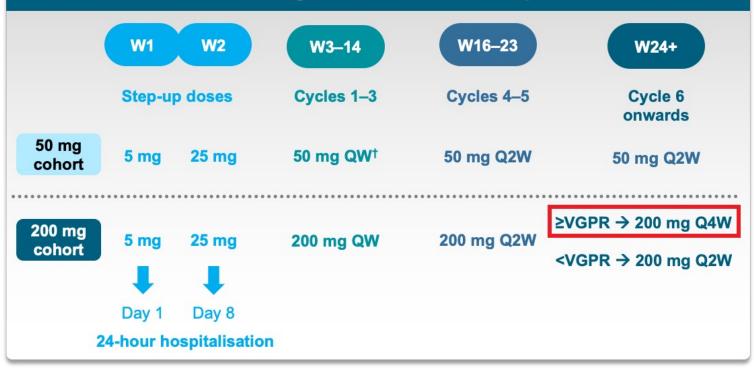
Due to the risk of CRS and neurologic toxicity, including ICANS, patients should be hospitalized for 48 hours after administration of all doses within the TECVAYLI[™] step-up dosing schedule.

Remember: Dose is based on actual body weight. Dose reductions are not recommended, and dose delays may be required to manage toxicities.

Commercial Teclistamab Use at MSKCC

- Oct-Nov 2022: P/T Committee packet for institutional approvals, SOP development, staff training, REMS registration, etc.
- Phase I (Nov 2022-March 2023): Inpatient monitoring , assess safety data.
- Phase II (April 2023-onwards): Early discharge after step-up dosing all pts, early intervention with Toci for persistent fevers.
- Phase III (June 2023-onwards): All outpatient dosing for selected pts
- Dosing schedule: Response adapted reduction in dosing frequency.

Linvoseltamab – LINKER-MM1 study


Key eligibility criteria for Phase 2

- Active MM by IMWG criteria
- Progression on or after at least three lines of therapy, including an IMiD, a PI and an anti-CD38 Ab, or triple-refractory disease (refractory to at least one IMiD + one PI + one anti-CD38 Ab)

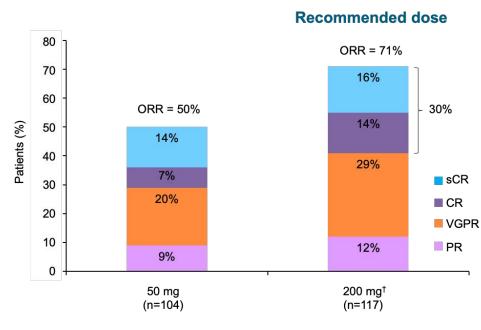
Key Phase 2 objectives

- Primary: to assess the antitumour activity as measured by ORR as determined by a blinded IRC (IMWG criteria)
- Secondary: ORR by investigator assessment, DOR, PFS, MRD status and OS

Linvoseltamab IV dosing schedule for Phase 2 expansion cohorts

[†]Patients in the 50 mg cohort who progress within 4–12 weeks of treatment were allowed to escalate to 200 mg dosing.

Ab, antibody; CD, cluster of differentiation; DOR, duration of response; IMiD, immunomodulatory drug; IMWG, International Myeloma Working Group; IRC, independent review

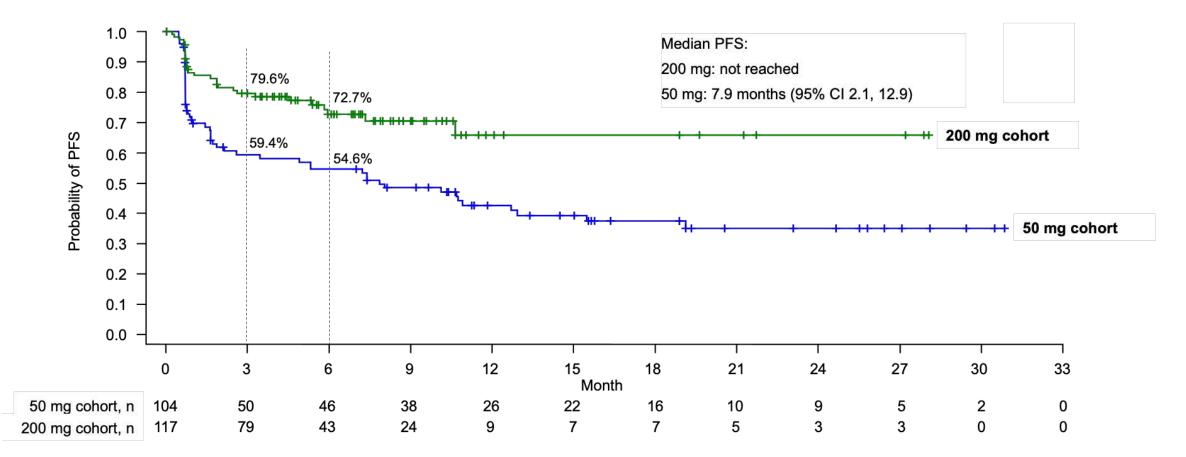

committee; IV, intravenous; MM, multiple myeloma; MRD, minimal residual disease; ORR, objective response rate; OS, overall survival; PFS, progression-free survival;

PI, proteasome inhibitor; QW, once every week; Q2W, once every 2 weeks; Q4W, once every 4 weeks; VGPR, very good partial response; W, week.

Courtesy of Hans Lee, MD

Lee et al, ASCO 2023

Linvoseltamab – LINKER-MM1 study (Efficacy)



Subgroup		Responders	Total (N)		ORR (95% CI)
Age	18–64	29	44	· · · · · · · · · · · · · · · · · · ·	65.9 (50.1, 79.5)
	65–74	33	42		78.6 (63.2, 89.7)
	≥75	21	31	·	67.7 (48.6, 83.3)
Race	White	61	83	·	73.5 (62.7, 82.6)
	Non-White	20	31	• • • • • • • • • • • • • • • • • • •	64.5 (45.4, 80.8)
ISS stage	1	33	45	· · · · · · · · · · · · · · · · · · ·	73.3 (58.1, 85.4)
	II	32	44	·	72.7 (57.2, 85.0)
	Ш	13	22	• • • • • • • • • • • • • • • • • • •	59.1 (36.4, 79.3)
EMP status	Without EMP	73	100	·	73.0 (63.2, 81.4)
	With EMP	9	16	• • • • • • • • • • • • • • • • • • • •	56.3 (29.9, 80.2)
Cytogenetic risk	Standard	55	71	·	77.5 (66.0, 86.5)
	High	26	42	• • ••••••••••••••••••••••••••••••••••	61.9 (45.6, 76.4)
Baseline BMPC	<50%	48	62	·	77.4 (65.0, 87.1)
	≥50%	13	26	→ →	50.0 (29.9, 70.1)
Baseline soluble	<400 ng/mL	48	57	¦●	84.2 (72.1, 92.5)
BCMA	≥400 ng/mL	28	51	⊢•¦	54.9 (40.3, 68.9)
Refractory status (mutually exclusive	Triple-refractory	13	19	· · · · · · · · · · · · · · · · · · ·	68.4 (43.4, 87.4)
	Quad-refractory	30	39		76.9 (60.7, 88.9)
categories)	Penta-refractory	17	28	• • • • • • • • • • • • • • • • • • •	60.7 (40.6, 78.5)

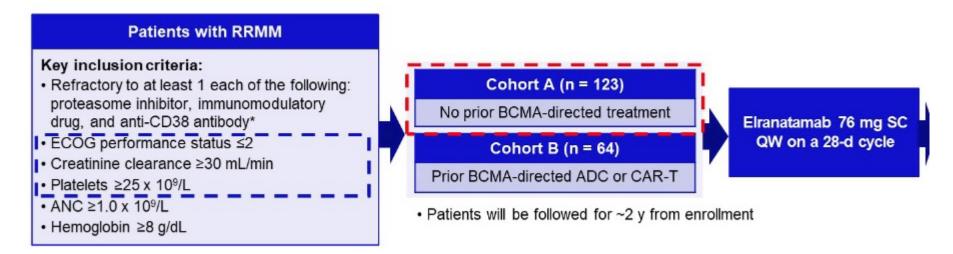
[†]Includes patients from dose escalation and dose expansion parts of the study.

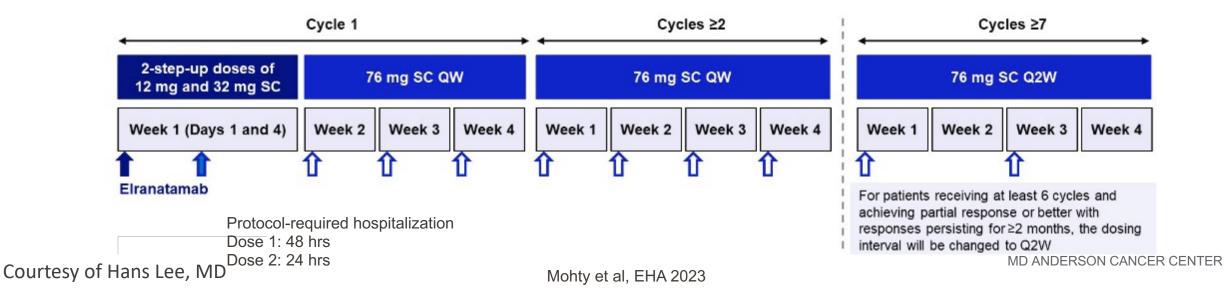
BCMA, B-cell maturation antigen; BMPC, bone marrow plasma cell; CI, confidence interval; EMP, extramedullary plasmacytoma; ISS, International Staging System; ORR, objective response rate.

Linvoseltamab – LINKER-MM1 study (Efficacy)

Data cut-off: 28 Feb 2023. Median duration of follow-up for 50 mg was 7.7 months (range 0.3–31.3) and for 200 mg was 5.6 months (range 0.2–28.2).

[†]PFS as measured using the IMWG criteria¹


¹Kumar S, et al. Lancet Oncol. 2016;17:8,E328-E346


CI, confidence interval; IMWG, International Myeloma Working Group; PFS, progression-free survival.

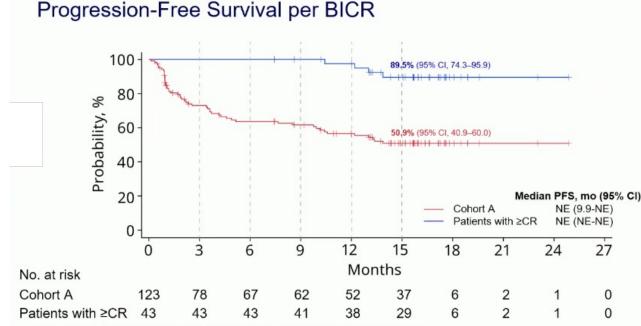
Courtesy of Hans Lee, MD

Lee et al, ASCO 2023

Elranatamab - MagnetisMM-3 Study - Schema

Elranatamab - MagnetisMM-3 (Efficacy)

ORR: 61%, 55% ≥ VGPR


Subgroup	Patients (N)	ORR (95% CI)
All Patients	94	
Baseline Cytogenetics High Risk Not High-Risk	26 57	
Baseline Extramedullary Disease		
Yes	28	
ino	00	
Baseline Bone Marrow Plasma Cells <50%	71	H
≥50%	18	⊢
Disease stage 1–2	75	F=-1
3	15	
Samber of Prior Lines ≤5 >5	61 33	
Age (Years) <65 ≥65 <75 ≥75	32 62 74 20	
Sex Male Female	50 44	
Race White Others	56 23	
Penta Refractory Yes No	37 57	
ECOG 0 1–2	37 57	0 25 50 75 100 Percent

MD ANDERSON CANCER CENTER

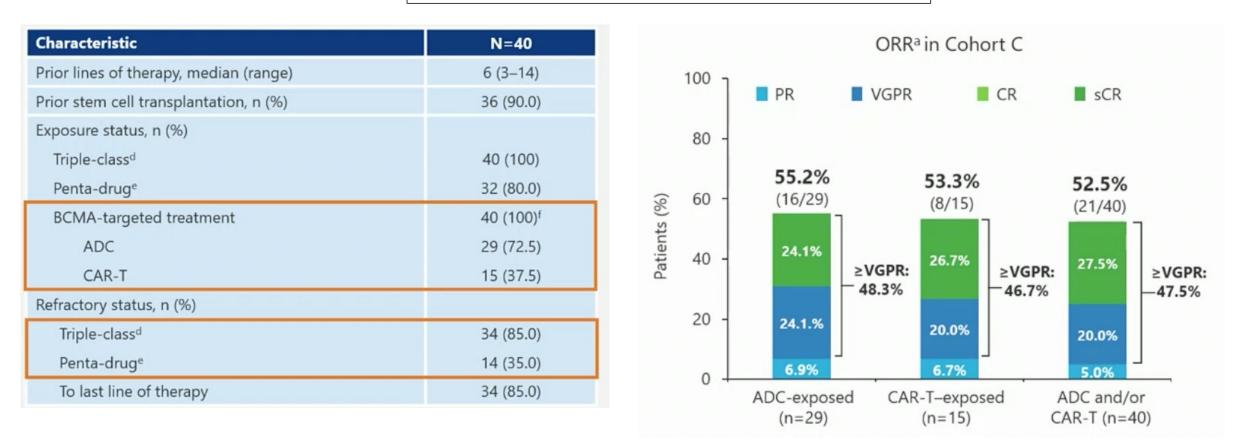
Courtesy of Hans Lee, MD

Bahlis et al, ASH 2022; Mohty et al, EHA 2023

Elranatamab - MagnetisMM-3 (Efficacy)

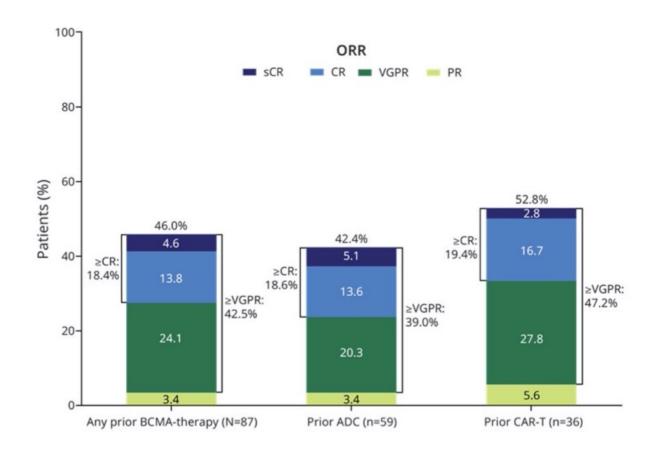
BICR=blinded independent central review; CI=confidence intervat, CR=complete response; NE=not evaluable; PFS=progression-free survival

Updated EHA 2023 Data (14.7-month follow-up)


12-month median: DOR: 74%

12-month median: PFS: 57%

Patients that transitioned to q2 week dosing: 40 (80%) patients switched to q2 week dosing and maintained or improved response \geq 6 months after switch


Sequencing BCMA-Directed Immunotherapies CART and/or ADC -> Bispecific

Teclistamab Cohort C of MagesTEC-1 Study

Sequencing BCMA-Directed Immunotherapies CART and/or ADC -> Bispecific

Pooled Analysis of Elranatamab in MagnetisMM-1, MagnetisMM-2, MagnetisMM-3, MagnetisMM-9 studies

Median PFS: 5.5 months Prior ADC PFS: 3.9 months Prior CAR-T PFS: 10.0 months

Median DOR: 17.1 months Prior ADC DOR: 13.6 months Prior CAR-T DOR: NE

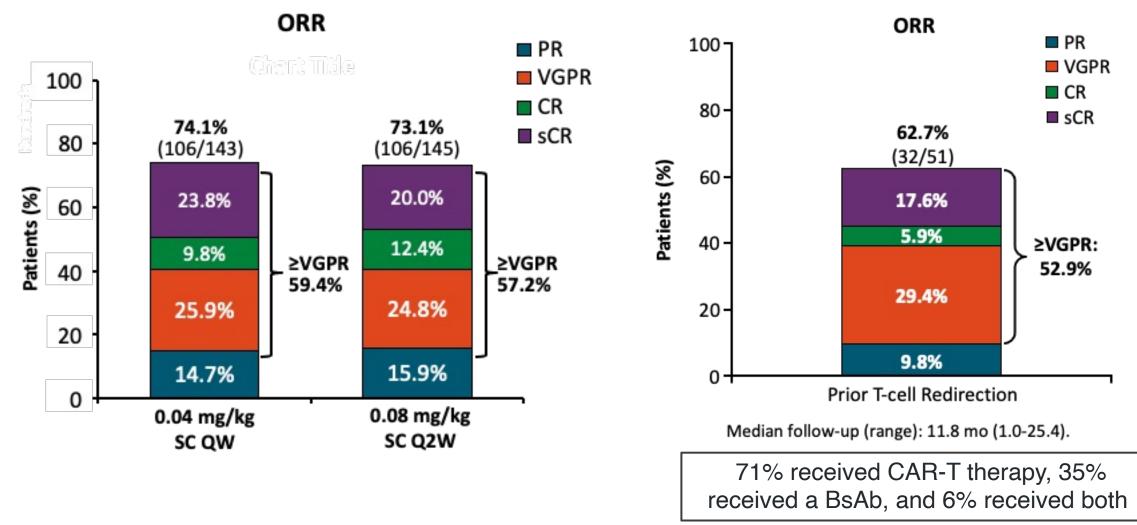
Linvoseltamab Teclistamab **ABBV-383** Elranatamab Alnuctamab (n=165) (n=167) (n=118) (n=123) (n=68) SC IV IV SC SC Route 76mg/Q1W <mark>Q1W x 8 w</mark> Dose and schedule 1.5mg/kg/QW Q1W x 16w **Q**3W <mark>W≥16: Q2W</mark> C≥7: Q2W if PR Q2WC3-C7 <mark>C≥7 Q4W</mark> Median prior LoT 5 (2-14) 6 (2-17) 5 (1-15) 5 (2-12) 4 (3-11) Triple refractory 77.6% 90% 61% 96% 63% CRS, G≥3 72.1%, 0.6% 47.9%, 0.6% 57.7%, 0% 53%, 0% 54%, 3% Neurotoxicity, G≥3 3%, 0 4%, 0 NR, 6 pts 2 pts, 3% 4, 3.4 76.4%, 44.8% Infections, G≥3 NR 66.7%, 35% 32%, 17% 34%, 9% ORR (%) 63% 75% 60%/81%* *at 61% 53% 200-800 mg ≥40 mg ≥CR (%) 39.4% 16% 20%/30%* 27.6% 23% Median PFS (m) NE 11.3 M Not reported Not reported Not reported (95% CI) (8.8-17.1) (10.4-NE) Median DoR (m) Not reached Not reported NE Not reported 18.4 m (95% CI) (14.9-NE) (12.0-NE) MRD - (10⁻⁵) 26.7% 4/10 Not reported 90.9% (n=22) 16/20

Summary of BCMA Bispecific Antibodies

Moreau P et al. NEJM 2022; Bahlis N et al. ASH 2022; Wong S et al. ASH 2022; Voorhees PM et al. ASH 2022 ;

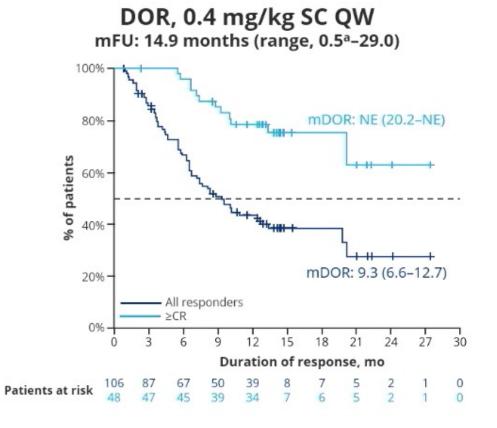
Courtesy of Saad Zafar Usmani, MD, MBA

Talquetamab (GPRC5d x CD3 Bispecific) - MonumenTAL-1

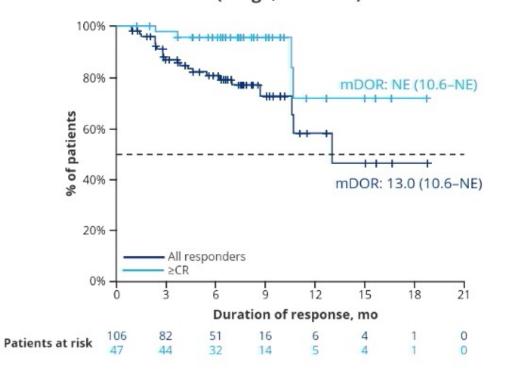

Phase I: progression on or intolerance to all established therapies; ECOG PS 0-1

Phase II: ≥3 prior lines of therapy that included a PI, an IMiD, and an anti-CD38 antibody; ECOG PS 0–2 → Talquetamab 0.4 mg/kg SC QW* (n = 143)
 → Talquetamab 0.8 mg/kg SC Q2W* (n = 145)

Prior T-Cell Redirection Group: Talquetamab Either 0.4 mg/kg SC QW or 0.8 mg/kg SC Q2W (n = 51)


*Previous anti-BCMA therapy allowed; T-cell redirection therapy naive.

Talquetamab (MonumenTAL-1) - Efficacy


Chari et al, ASH, 2022; Chari et al, NEJM, 2022.

Talquetamab (MonumenTAL-1) - Efficacy

mPFS: 7.5 months (95% CI: 5.7–9.4; 33% censored)

DOR, 0.8 mg/kg SC Q2W mFU: 8.6 (range, 0.2^a-22.5)

11.9 months (95% CI: 8.4-NE; 61% censored)

Summary of non-BCMA Bispecific Antibodies

	Talqueta (n=28		Forimtamig (n=57)	Cevostamab (n=157)
Target	GPRC5d-CD3 2		2+1 GPRC5d-CD3	FcRH5-CD3
Route	SC (n=143)	SC (N=145)	SC	IV
Dose and schedule	o.4 mg/kg QW	o.8mg/kg Q2W	1200-7200 mcg/kg Q2W	Q ₃ W
Median prior LoT	5 (2-13)	5 (2-17)	4 (2-14)	6 (2-18)
Triple refractory	74.1%	69%	71.9%	85%
CRS, G≥3	79%, 2.1%	72.4%, 0.7%	78.9%, 1.8%	81%, 1.2%
Neurotoxicity, G≥3	13.9%, 1.6%	10%, 1.8%	12.3%, .6%	14.3%, 0.6%
Infections, G≥3	57.3%, 16.8%-	50.3%, 11.7%	45.6%, 26.4%	45%, ND
ORR (%)	74.1%	73.1%	63.6%	56.7% 132-198mg
≥CR (%)	33.6%	32.4%	25.5%	8.4%
Median PFS (m) (95% Cl)	7.5 (5.7-9.4)	11.9 (8.4-NE)	NR	NR
Median DoR (m) (95% Cl)	9.3 (6.6-12.7)	13.0 (10.6-NE)	12.5 (1.2-12.5)	11.5 (6-18.4)
MRD – (10 ⁻⁵)	NR	NR	10/14	7/10

Summary of Bispecific Antibodies - Infections

	Teclistamab n=165	Elranatamab n=123	Alnuctamab n=68 (sc)	ABBV-838 n=118	Talquetamab n=288 [o.4-o.8mg/kg]*	Cevostamab n=161	Forimtamig n=57 (SC)
Median FUP (months, m)	14.1 M	10.4 M	4.1 M	4.3–8.om	14.9 – 8.6 m	8.8 m	8.om
Overall, n (%) Grade 3-4, n (%) Bacterial Fungal Viral Opportunistic infections 1. PJP 2. CMV	126 (76.4) 74 (44.8) ND ND ND 6 patients NR (*1 patients with Adenoviral pneumonia)	82 (66.7) 43 (35) ND ND 6 (4.9) 10 (8.1)	23 (34) 6 (9) ND ND ND ND ND	38 (32) 20 (17) ND ND ND ND ND	57.3%-50.3% 16.8%-11.7% 5(3.5%)-4(2.8%) ND 3 patients	45% ND ND ND ND	26 (45.6) 15 (26.4) ND ND ND ND
COVID infections, n (%) Overall Grade 3-4 Infectious death, n (%)	29 (17.6) 20 (12.1) 16/27	31 (25.2) 14 (11.4) NR	ND ND ND	ND ND 4 pts	13(9.1) – 16(11) 0.7% - 2.1% NR	ND	12 (24.6) 2 (3.6) ND

Moreau P et al. NEJM 2022; Lesokhin A et al. ASH 2022. ; Wong S et al. ASH 2022; Voorhees PM et al. ASH 2022; Chari A et al. NEJM 2023; Carlo-Stella et al. ASH 2022; Trudel S et al. ASH 2021

Myeloma Bispecific Antibodies Summary

ADVANTAGES

- "Off-the-shelf" format provides immediate ACCESS to patients in immediate need of therapy
- Strong efficacy (comparable to some autologous CART products)

DISADVANTAGES

- Continuous dosing (vs. CART)
- Adverse events
 - CRS common; Grade 3/4 CRS and neurotoxicity rare; severe CRS is mitigated by step-up dosing strategy (still requires inpatient monitoring)
 - Drug- or target-specific AEs
 - Infection risk
 - GPRC5D: dysgeusia, skin exfoliation, nail disorders

Pros/Cons of Bispecifics

• Pros:

丰

Memorial Sloan Kettering

Cancer Center.

- Off the shelf
- Low grade cytokine release syndrome (CRS)
- Low incidence of neurotoxicity (NT)
- Many targets: BCMA, GPRC5D, FCRH5
- Ability to combine with other mechanisms of actions
- Cons:
 - Not every patient is responding to BsAbs.
 - Continuous therapy model associated with infection risk
 - Hypogammaglobulinemia requiring IVIg administration
 - VZV/PJP Prophylaxis
 - Logistic challenges for community at large during first cycle of monitoring and managing CRS/NT

Agenda

MODULE 1: Biology/Immunology; Overview

MODULE 2: Current Available Data

MODULE 3: Clinical Investigator Survey

MODULE 4: Combinations/Ongoing Trials

MODULE 5: Faculty Cases

Based on your personal clinical experience and knowledge of available data, in general how would you compare the <u>antitumor activity</u> (response, duration of response, etc) of BCMA-targeted bispecific antibodies to that of BCMA-targeted chimeric antigen receptor (CAR) T-cell therapy for patients with <u>standard-risk</u> relapsed/refractory (R/R) multiple myeloma (MM)?

Dr Lee	BCMA-targeted CAR T-cell therapy has somewhat greater antitumor activity			
Dr Usmani	BCMA-targeted CAR T-cell therapy has somewhat greater antitumor activity			
Dr Krishnan	BCMA-targeted CAR T-cell therapy has somewhat greater antitumor activity			
Dr Nooka	BCMA-targeted CAR T-cell therapy has somewhat greater antitumor activity			
Dr Raje	BCMA-targeted CAR T-cell therapy has significantly greater antitumor activity			
Dr Zonder	BCMA-targeted CAR T-cell therapy has somewhat greater antitumor activity			

Based on your personal clinical experience and knowledge of available data, in general how would you compare the <u>cytokine release syndrome (CRS) and related toxicity</u> with BCMA-targeted bispecific antibodies to that with BCMA-targeted CAR T-cell therapy for patients with R/R MM?

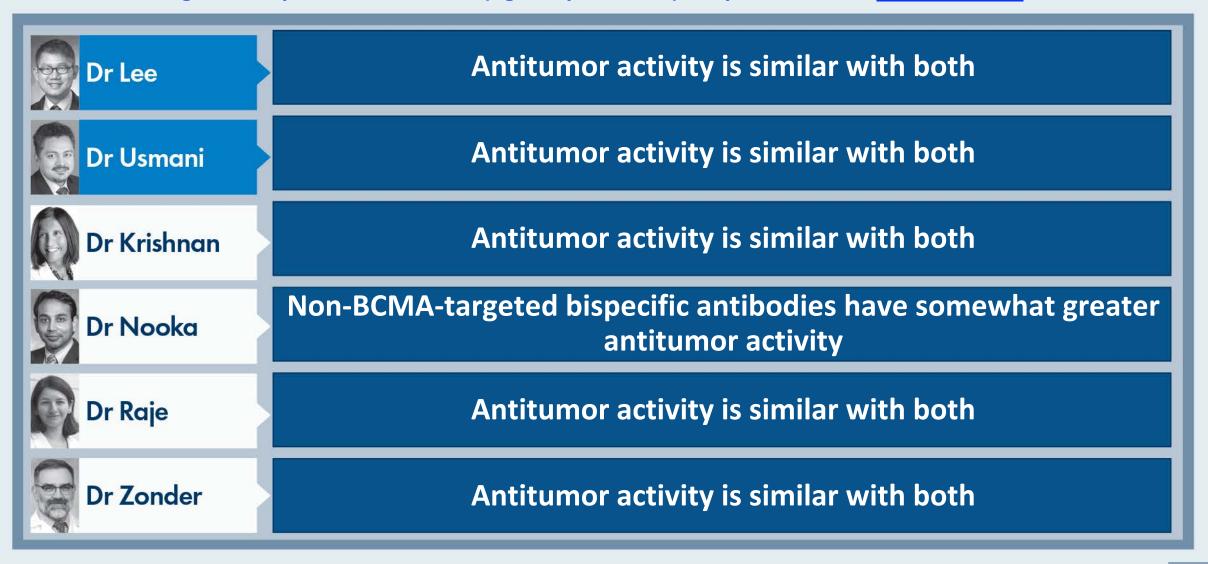
Dr Lee	BCMA-targeted CAR T-cell therapy has somewhat more CRS and related toxicity			
Dr Usmani	BCMA-targeted CAR T-cell therapy has significantly more CRS and related toxicity			
Dr Krishnan	BCMA-targeted CAR T-cell therapy has somewhat more CRS and related toxicity			
Dr Nooka	BCMA-targeted CAR T-cell therapy has significantly more CRS and related toxicity			
Dr Raje	BCMA-targeted CAR T-cell therapy has somewhat more CRS and related toxicity			
Dr Zonder	BCMA-targeted CAR T-cell therapy has somewhat more CRS and related toxicity			

Based on your personal clinical experience and knowledge of available data, in general how would you compare the <u>quality of life</u> (QoL) (eg, inconvenience, related considerations) with BCMA-targeted bispecific antibodies to that with BCMA-targeted CAR T-cell therapy for patients with R/R MM?

Dr Lee	BCMA-targeted CAR T-cell therapy has somewhat better QoL			
Dr Usmani	BCMA-targeted bispecific antibodies have somewhat better QoL			
Dr Krishnan	BCMA-targeted CAR T-cell therapy has somewhat better QoL			
Dr Nooka	BCMA-targeted bispecific antibodies have somewhat better QoL			
Dr Raje	BCMA-targeted CAR T-cell therapy has somewhat better QoL			
Dr Zonder	QoL is similar with both			

Based on your personal clinical experience and knowledge of available data, in general how would you compare the <u>antitumor activity</u> of the FDA-approved BCMA-targeted bispecific antibody teclistamab to that of unapproved BCMA-targeted bispecific antibodies (eg, elranatamab, linvoseltamab or alnuctamab) for patients with <u>standard-risk</u> R/R MM?

Dr Lee	Antitumor activity is similar with both			
Dr Usmani	Antitumor activity is similar with both			
Dr Krishnan	Antitumor activity is similar with both			
Dr Nooka	Antitumor activity is similar with both			
Dr Raje	Antitumor activity is similar with both			
Dr Zonder	Antitumor activity is similar with both			



Based on your personal clinical experience and knowledge of available data, in general how would you compare the <u>CRS and related toxicity</u> of the FDA-approved BCMA-targeted bispecific antibody teclistamab to that of unapproved BCMA-targeted bispecific antibodies (eg, elranatamab, linvoseltamab or alnuctamab) for patients with R/R MM?

Dr Lee	Teclistamab has somewhat more CRS and related toxicity			
Dr Usmani	CRS and related toxicity is similar with both			
Dr Krishnan	Teclistamab has somewhat more CRS and related toxicity			
Dr Nooka	CRS and related toxicity is similar with both			
Dr Raje	CRS and related toxicity is similar with both			
Dr Zonder	CRS and related toxicity is similar with both			

Based on your personal clinical experience and knowledge of available data, in general how would you compare the <u>antitumor activity</u> of BCMA-targeted bispecific antibodies (eg, teclistamab) to that of non-BCMA-targeted bispecific antibodies (eg, talquetamab) for patients with <u>standard-risk</u> R/R MM?

Based on your personal clinical experience and knowledge of available data, in general how would you compare the <u>antitumor activity</u> of idecabtagene vicleucel to that of ciltacabtagene autoleucel for patients with R/R MM?

Dr Lee	Ciltacabtagene autoleucel has somewhat greater antitumor activity				
Dr Usmani	Ciltacabtagene autoleucel has significantly greater antitumor activity				
Dr Krishnan	Ciltacabtagene autoleucel has somewhat greater antitumor activity				
Dr Nooka	Ciltacabtagene autoleucel has significantly greater antitumor activity				
Dr Raje	Ciltacabtagene autoleucel has significantly greater antitumor activity				
Dr Zonder	Ciltacabtagene autoleucel has somewhat greater antitumor activity				

Based on your personal clinical experience and knowledge of available data, in general how would you compare the <u>CRS and related toxicity</u> of idecabtagene vicleucel to that of ciltacabtagene autoleucel for patients with R/R MM?

Dr Lee	Ciltacabtagene autoleucel has somewhat more CRS and related toxicity			
Dr Usmani	CRS and related toxicity is similar with both			
Dr Krishnan	Ciltacabtagene autoleucel has somewhat more CRS and related toxicity			
Dr Nooka	Ciltacabtagene autoleucel has significantly more CRS and related toxicity			
Dr Raje	CRS and related toxicity is similar with both			
Dr Zonder	Ciltacabtagene autoleucel has somewhat more CRS and related toxicity			

Please provide an example of a patient with R/R MM to whom you would administer a bispecific antibody but whom you would not refer for CAR T-cell therapy.

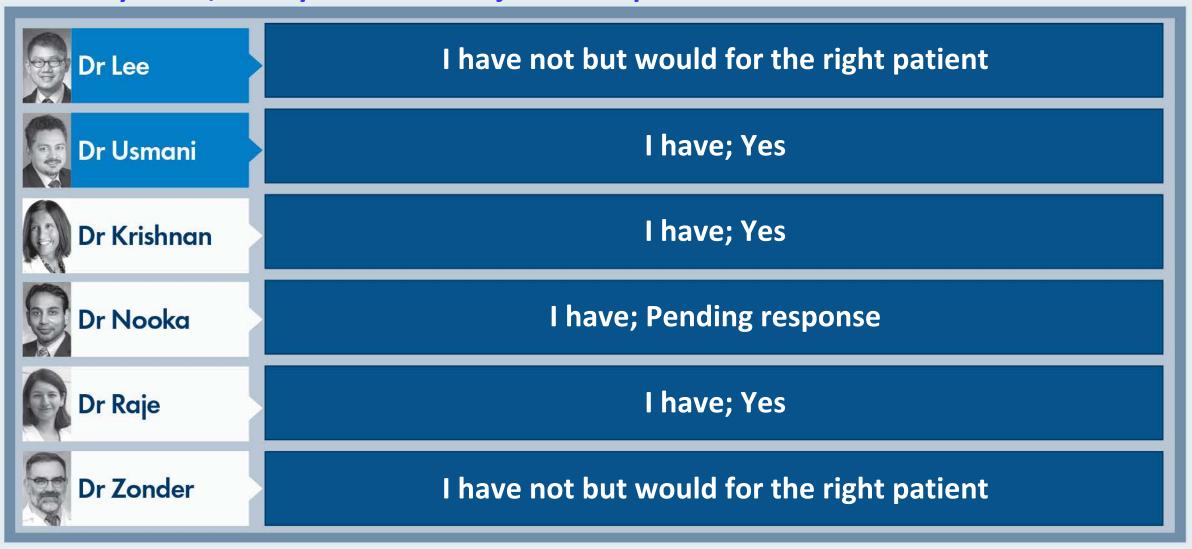
Dr Lee	Triple-class refractory patient with rapidly progressing disease with no time for apheresis, manufacture and infusion of CAR T-cell therapy				
Dr Usmani	Intermediate-fit or frail patient by IMWG criteria				
Dr Krishnan	75-year-old with rapidly progressive EM disease after DRd, KPd, CyBorD				
Dr Nooka	55-year-old patient with a PS of 1; 5 lines of therapy; EF = 30%				
Dr Raje	Patient with frailty and renal failure				
Dr Zonder	Older, frail patient with pre-existing neurocognitive issues which may make certainty about therapy-related neuro effects difficult				

IMWG = International Myeloma Working Group; EM = extramedullary

A <u>younger patient with standard-risk MM</u> who receives initial treatment with RVd/daratumumab undergoes autologous stem cell transplant (ASCT) and experiences disease relapse after completing 2 years of maintenance lenalidomide. Regulatory and reimbursement issues aside, at what point, if any, would you like to treat this patient with a <u>bispecific antibody</u>? Which bispecific antibody?

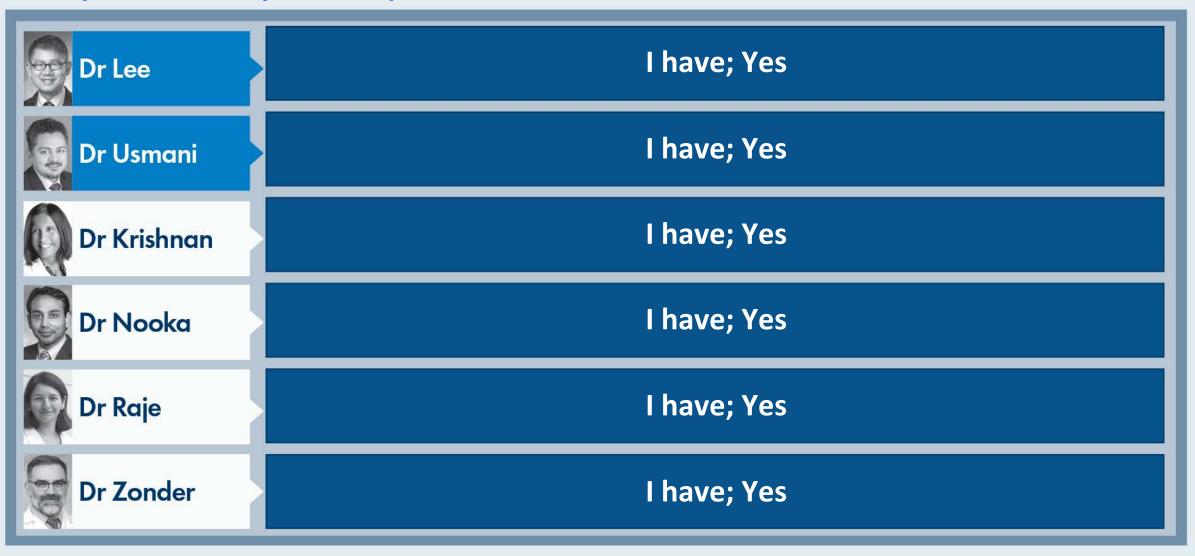
	Time of therapy	Specific agent	
Dr Lee	At second relapse	Talquetamab if prior BCMA CAR T; otherwise, BCMA-targeted bispecific antibody	
Dr Usmani	At first relapse Teclistamab		
Dr Krishnan	At second relapse	Talquetamab	
Dr Nooka	At second relapse	BCMA-targeted bispecific antibody	
Dr Raje	I would not recommend a bispecific antibody for this patient	NA	
Dr Zonder	At second relapse Teclistamab		

An <u>older patient with standard-risk MM</u> receives initial treatment with Rd/daratumumab and experiences disease relapse after completing 2 years of maintenance lenalidomide. Regulatory and reimbursement issues aside, at what point, if any, would you like to treat this patient with a <u>bispecific antibody</u>? Which bispecific antibody?


	Time of therapy Specific agent		
Dr Lee	At first relapse	Teclistamab or another BCMA- targeted bispecific antibody	
Dr Usmani	At first relapse	Teclistamab	
Dr Krishnan	At second relapse	Teclistamab	
Dr Nooka	At first relapse	BCMA-targeted bispecific antibody	
Dr Raje	At second relapse	e Elranatamab	
Dr Zonder	At first relapse	Teclistamab	

Assuming you had access to both for a patient with multiregimen-relapsed MM who is eligible to receive both a bispecific antibody and CAR T-cell therapy, regulatory and reimbursement issues aside, how would you generally sequence them?

Dr Lee	CAR T-cell therapy \rightarrow bispecific antibody			
Dr Usmani	CAR T-cell therapy \rightarrow bispecific antibody			
Dr Krishnan	CAR T-cell therapy \rightarrow bispecific antibody			
Dr Nooka	CAR T-cell therapy \rightarrow bispecific antibody			
Dr Raje	CAR T-cell therapy \rightarrow bispecific antibody			
Dr Zonder	CAR T-cell therapy \rightarrow bispecific antibody			



Have you administered or would you administer BCMA-targeted CAR T-cell therapy to a patient with R/R MM who had previously received a BCMA-targeted bispecific antibody? If so, have you seen an objective response?

Have you administered or would you administer a BCMA-targeted bispecific antibody to a patient with R/R MM who had previously received BCMA-targeted CAR T-cell therapy? If so, have you seen an objective response?

Please describe the last patient with R/R MM to whom you administered a bispecific antibody, either on or off protocol.

	Clinical characteristics	Treatment	Outcome	CRS
Dr Lee	78 y/o F, 11 prior treatments	Teclistamab	MR	None
Dr Usmani	78 y/o F, 5 prior treatments	Teclistamab	sCR/MRD-neg	Grade 1 CRS
Dr Krishnan	81 y/o F, 3 prior treatments	Cevostamab	CR	Multiple infections
Dr Nooka	49 y/o F, RVd→SCT→IRd mtx	Teclistamab/ daratumumab on protocol	Pending	Grade 1 CRS
Dr Raje	83 y/o F, 4 prior treatments	Teclistamab	CR	None
Dr Zonder	48 y/o M, 5 prior treatments	Teclistamab	CR	Grade 2 CRS

MRD = minimal residual disease; mtx = maintenance

Please describe the last patient with R/R MM to whom you administered CAR T-cell therapy, either on or off protocol.

	Clinical characteristics	Treatment	Outcome	CRS
Dr Lee	61 y/o M, 4 prior treatments	Ciltacabtagene autoleucel	Not evaluable, day 20+	Grade 1 CRS, Grade 3 ICANS
Dr Usmani	78 y/o M, 5 prior treatments	Ciltacabtagene autoleucel	VGPR	Grade 2 CRS, Grade 2 NT
Dr Krishnan	75 y/o M, 6 prior treatments	Idecabtagene vicleucel	CR	NT infection
Dr Nooka	61 y/o M, 4 prior treatments	Ciltacabtagene autoleucel	PR	Grade 2 CRS
Dr Raje	62 y/o F, 4 prior treatments	Ciltacabtagene autoleucel	CR	Grade 2 CRS
Dr Zonder	65 y/o F, 5 prior treatments	Ciltacabtagene autoleucel	CR	Grade 1 CRS

NT = neurotoxicity

Do you expect that bispecific antibodies will ultimately be administered by general medical oncologists in an outpatient setting?

If talquetamab receives FDA approval, what would be your sequencing preference for teclistamab and talquetamab?

Dr Lee	Teclistamab → talquetamab
Dr Usmani	Teclistamab → talquetamab
Dr Krishnan	Talquetamab → teclistamab
Dr Nooka	Teclistamab → talquetamab
Dr Raje	Teclistamab → talquetamab
Dr Zonder	Teclistamab → talquetamab

What would you predict to be the outcome of a Phase III randomized trial evaluating <u>teclistamab/daratumumab/lenalidomide versus daratumumab/lenalidomide/dexamethasone</u> for patients with newly diagnosed MM who are not eligible for ASCT?

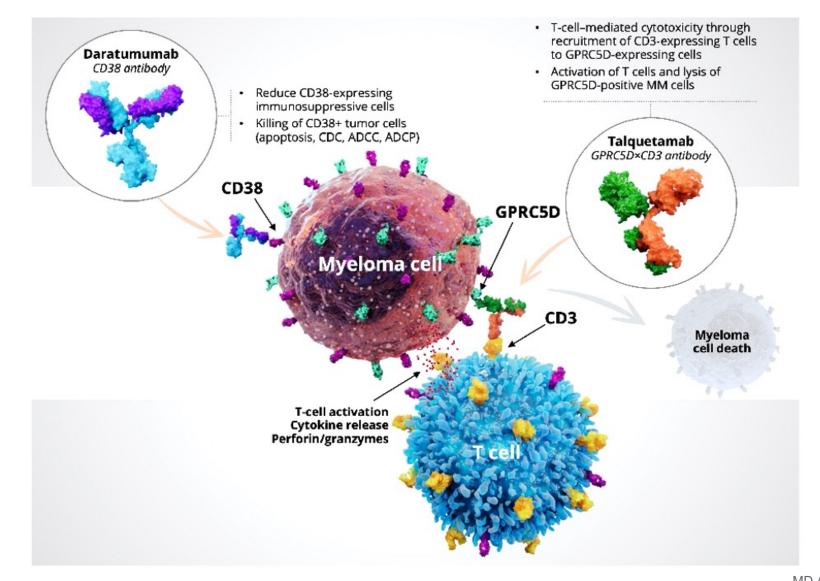
Dr Lee	Teclistamab/daratumumab/lenalidomide is more efficacious
Dr Usmani	Teclistamab/daratumumab/lenalidomide is more efficacious
Dr Krishnan	Teclistamab/daratumumab/lenalidomide is more efficacious
Dr Nooka	Teclistamab/daratumumab/lenalidomide is more efficacious
Dr Raje	Teclistamab/daratumumab/lenalidomide is more efficacious
Dr Zonder	Teclistamab/daratumumab/lenalidomide is more efficacious

What would you predict to be the outcome of a Phase III randomized trial evaluating <u>elranatamab versus lenalidomide</u> for patients with newly diagnosed MM who have minimal residual disease after undergoing ASCT?

Dr Lee	Elranatamab is more efficacious
Dr Usmani	Elranatamab is more efficacious
Dr Krishnan	Elranatamab is more efficacious
Dr Nooka	Elranatamab is more efficacious
Dr Raje	Elranatamab is more efficacious
Dr Zonder	Elranatamab is more efficacious

Agenda

MODULE 1: Biology/Immunology; Overview


MODULE 2: Current Available Data

MODULE 3: Clinical Investigator Survey

MODULE 4: Combinations/Ongoing Trials

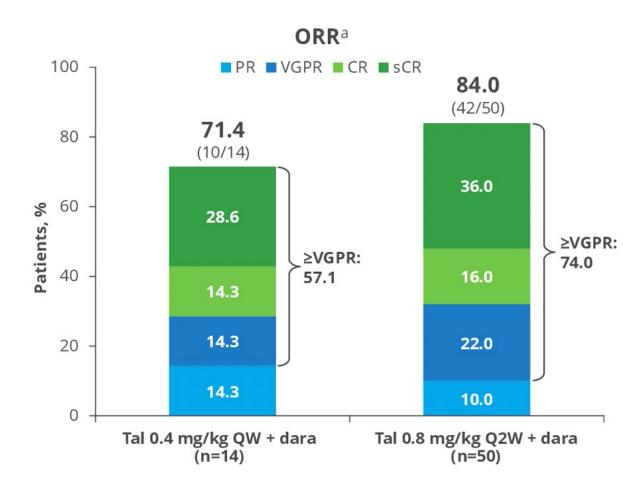
MODULE 5: Faculty Cases

Courtesy of Hans Lee, MD

Dholaria et al, ASCO, 2023.

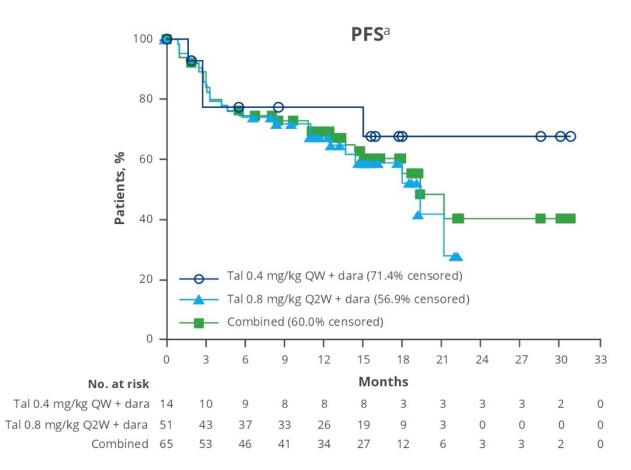
Key eligibility criteria

- MM per IMWG
- ≥3 prior LOT^a or double refractory to PI and IMiD
- Anti-CD38 mAb >90 days prior allowed
- Refractory to anti-CD38 mAb and prior BsAb or CAR-T allowed


Tal^{b,c} 0.4 mg/kg SC QW or 0.8 mg/kg SC Q2W + Dara^d 1800 mg SC QW (cycles 1–2) Q2W (cycles 3–6) Q4W (cycles ≥7)¹

• Dara given first if both administered on same day

• Option to transition to tal Q2W or Q4W^e


Key objectives

- Part 1: Identify RP2D(s)
- Part 2: Safety at RP2D(s)
- Antitumor activity

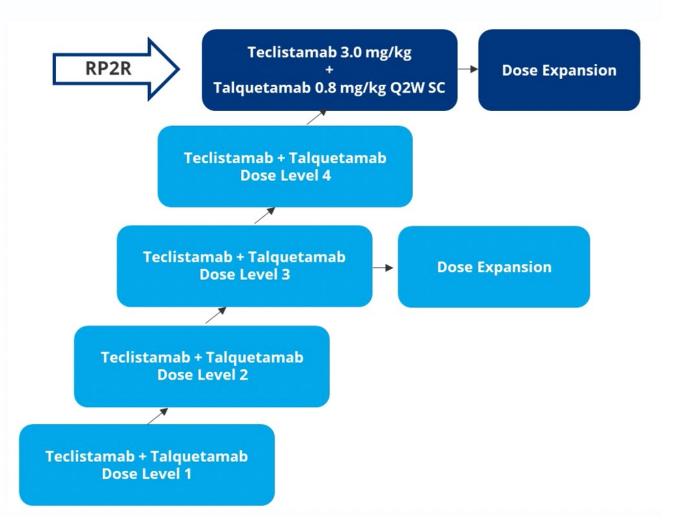
Parameter	Tal 0.4 mg/kg QW + dara (n=14)	Tal 0.8 mg/kg Q2W + dara (n=50)
Median (range) follow-up, mo	16.8 (1.9–31.0)	15.0 (1.0–23.3)
Median (range) time to first response, mo	1.0 (0.9–2.4)	1.0 (0.9–8.3)
ORR in anti-CD38, n (%) Naive Exposed Refractory	3/3 (100.0) 7/11 (63.6) 7/11 (63.6)	5/5 (100.0) 37/45 (82.2) 32/40 (80.0)
ORR in T-cell redirection therapy ^b exposed, n (%) CAR-T BsAb	4/6 (66.7) ^c 1/2 (50.0) 4/5 (80.0)	15/19 (78.9) 8/9 (88.9) 7/10 (70.0)

MD ANDERSON CANCER CENTER

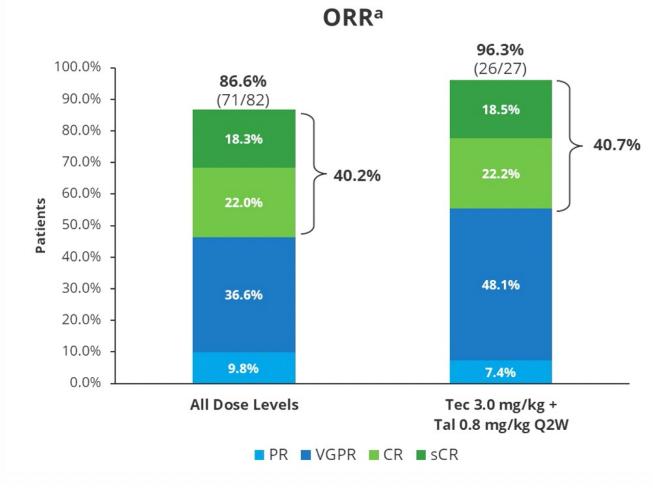
Parameter	Tal 0.4 mg/kg QW + dara (n=14)	Tal 0.8 mg/kg Q2W + dara (n=51)
Median PFS,	NR	19.4
mo (range)	(2.73–NE)	(12.5–NE)
12-mo PFS,	77.4	67.4
% (95% Cl)	(44.9–92.1)	(52.3–78.6)
Median OS,	NR	NR
mo (range)	(NE–NE)	(NE–NE)
12-mo OS,	92.3	91.5
% (95% Cl)	(56.6–98.9)	(78.8–96.7)

Teclistamab + Talquetamab (RedirecTT-1)

Primary objectives

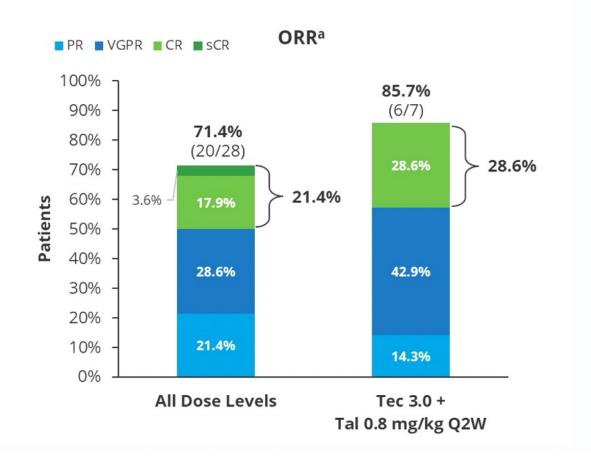

- Evaluate safety
- Identify RP2R(s) and schedule for the combination

Secondary objectives


 Preliminary anticancer activity of each study treatment at RP2R(s) in Part 2, PK, immunogenicity

Key eligibility criteria

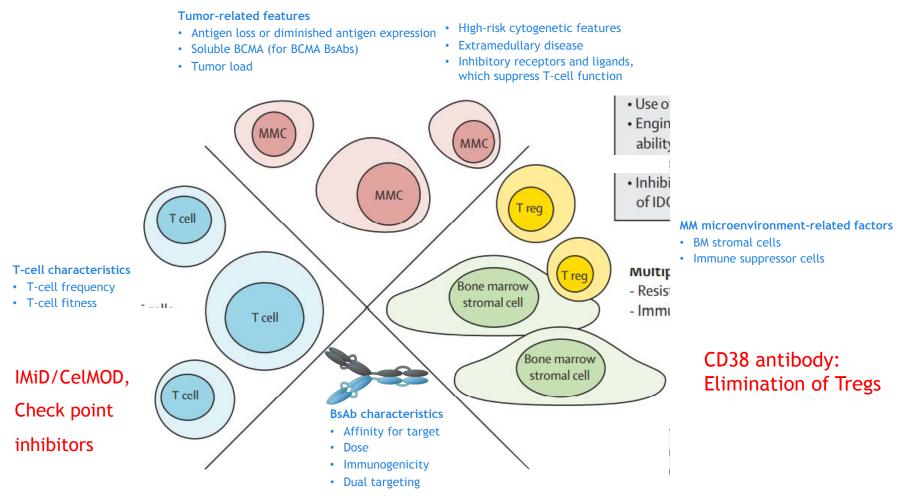
- Measurable MM
- RR or intolerant to established therapies, including last LOT
- Exposed to a PI, IMiD, and anti-CD38 mAb


Teclistamab + Talquetamab (RedirecTT-1)

- ORR was high 86.6% across dose levels studied and 96.3% at the RP2R
- At data cutoff, 61% (57/93) of patients remained on treatment

	All Dose Levels N=93	Tec 3.0 mg/kg+ Tal 0.8 mg/kg Q2W n=34
Median follow-up, months (range)	13.4 (0.3–25.6)	8.1 (0.7–15.0)
Median DOR ^b , months (95% Cl)	NE (NE–NE)	NE (NE–NE)
Median time to first response ^b , months (range)	1.97 (0–7.7)	1.48 (0–4.0)
Median time to best response ^b , months (range)	3.98 (1.1–15.7)	3.22 (1.4–10.7)
Median PFS, months (95% Cl)	20.9 (13.0–NE)	NE (9.9–NE)
9-month PFS rate (95% CI)	70.1 (58.0–79.4)	77.1 (50.8–90.5)

Teclistamab + Talquetamab (RedirecTT-1)


- All were soft tissue plasmacytomas
- At the RP2R (n=11):
 - Median follow-up 7.2 mo (range 0.7-14.2)
 - 85.7% (6/7) ORR
 - 28.6% (2/7) ≥CR

	All Dose Levels N=35	Tec 3.0 mg/kg+ Tal 0.8 mg/kg Q2W N=11
Median DOR ^b , months (95% Cl)	12.9 (4.17–NE)	NE (4.17–NE)
Median PFS, months (95% Cl)	6.1 (2.5–9.9)	9.9 (2.4–NE)

Planned or Ongoing Phase 3 BCMA Bispecific Studies

Study	Description
MagnetisMM-7	Elranatamab vs. lenalidomide in NDMM patients who are minimal residual disease-positive after undergoing ASCT
MagnetisMM-6	Elranatamab, daratumumab, and lenalidomide vs. daratumumab, lenalidomide, and dexamethasone in patients with NDMM who are not candidates for ASCT
MagnetisMM-5	Elranatamab monotherapy vs. elranatamab + daratumumab vs daratumumab+ pomalidomide + dexamethasone in RRMM with prior lenalidomide and proteasome inhibitor
MajesTEC-4	Teclistamab + lenalidomide vs. lenalidomide in NDMM as maintenance therapy after ASCT
MajesTEC-7	Teclistamab, daratumumab, and, lenalidomide vs. daratumumab, lenalidomide, and dexamethasone in NDMM who are either ineligible or not intended for ASCT as initial therapy
MajesTEC-3	Teclistamab + daratumumab vs daratumumab, pomalidomide, and dexamethasone OR daratumumab, bortezomib, and dexamethasone in RRMM (1-3 lines of prior therapy) with prior lenalidomide and proteasome inhibitor
MajesTEC-9	Teclistamab monotherapy vs. pomalidomide, bortezomib, dexamethasone OR carfilzomib, dexamethasone in RRMM (1-3 lines prior therapy) with anti-CD38, mAb and lenalidomide
LINKER-MM3	Linvoseltamab vs. elotuzumab, pomalidomide, and dexamethasone in RRMM

Mechanisms of resistance to BsAbs

BCMA, B-cell maturation antigen; BM, bone marrow; BsAb, bispecific antibody; IMiD, immunomodulatory drug; MMC, multiple myeloma cell; Tregs, regulatory T-cells

Presented by: Saad Z. Usmani, MD MBA FACP, @szusmani

Adapted from: van de Donk N, Themeli M, Usmani SZ. Blood Cancer Discov 2021;2:302–18

Courtesy of Saad Zafar Usmani, MD, MBA

Agenda

MODULE 1: Biology/Immunology; Overview

MODULE 2: Current Available Data

MODULE 3: Clinical Investigator Survey

MODULE 4: Combinations/Ongoing Trials

MODULE 5: Faculty Cases

Case Presentation – Dr Usmani

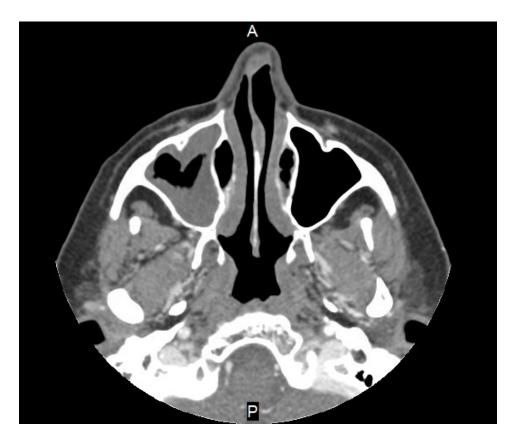
Case Description

- 49-year-old female with DS Stage IIIA IgG kappa RRMM on a BCMA-bispecific antibody.
- Diagnosed in 2/2012
- Amp 1q21, trisomy 9 and 15
- 10 prior lines of therapy including PIs, IMiDs, anti-CD38 mAb, cyclophosphamide, tandem ASCT, salvage ASCT, BCMA-directed CART cell therapy.
- Co-morbidities: HTN, hypothyroidism, asthma

Case Presentation – Dr Usmani (Cont)

Patient Treatment

- Patient had BCMA-directed CART cell therapy with Flu/Cy conditioning on study.
 - Initially had partial response but developed progressive disease after 5 months
- Patient was then enrolled on clinical trial for BCMA-bispecific antibody.
- Tolerated step-up dosing with G1 CRS.


AE Development

- During C3, patient developed nasal congestion, post-nasal drip, intermittent chills, diffuse myalgias.
- Respiratory viral panel positive for adenovirus
- CXR negative for infiltrates
- Adenovirus PCR, quantitative, blood checked with findings consistent with viremia
- Patient then developed diarrhea (~5x/day) with crampy abdominal pain→ stool positive for adenovirus
- PET/CT obtained to reassess response given history of extramedullary disease → no abnormal uptake or infiltrates in lungs
- Patient with hypogammaglobulinemia: IgG 240, IgM 12, IgA 15 mg/dL

AE Development

- Patient had persistent sinusitis symptoms with congestion, ear pressure, headaches and PND despite supportive measures.
- Patient saw ID and ENT.

AE Management

- Respiratory symptoms initially managed with supportive measures (anti-tussive agents, decongestants) but had persistent symptoms
- Patient received antibiotics for possible superimposed bacterial sinusitis and received steroid taper due to persistent symptoms with minimal improvement.
- Patient decided to undergo endoscopic sinus surgery for chronic rhinosinusitis → after a few weeks of recovery, symptoms improved
- Patient started on IVIG 4-6 weeks due to hypogammaglobulinemia
- Adenovirus PCR was repeated with down-trending viral copies
- Imodium PRN diarrhea

Patient Follow-Up

- Adenovirus viremia cleared
- Respiratory symptoms lasted for ~4-6 weeks
- Diarrhea symptoms resolved after 5 days
- Patient was able to restart on BCMA-bsAb.
- Patient progressed after C5 and had to come off the study

Case Presentation – Dr Lee

38 yo M with relapsed/refractory multiple myeloma

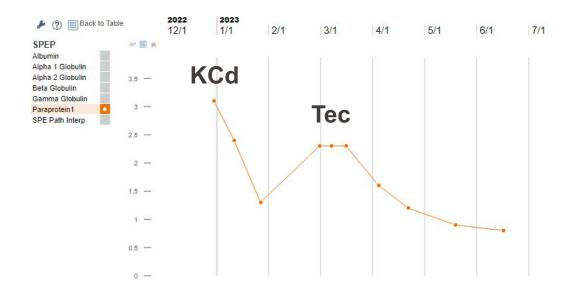
- Initial presentation with diffuse bone disease
- High-risk FISH with t(4;14). Additionally had del 13q, -16q, and +15.

Treatment History

- Line 1: CyBorD x 1 cycle -> VRd x 4 cycles with PR, followed by high-dose melphalan and autologous stem cell rescue with VGPR, then lenalidomide maintenance with continued VGPR, then PD (duration of response 1 year)
- Line 2: Daratumumab, Bortezomib, Dexamethasone x 3 cycles followed by Daratumumab, Ixazomib, Dexamethasone on protocol study with SD, then PD
- Line 3: Carfilzomib, Cyclophosphamide, Dexamethasone with PR, then PD (duration of response 1 month). Rapidly progressing disease with multiple new fractures, epidural disease requiring radiation therapy.

Case Presentation – Dr Lee (Cont)

38 yo M with relapsed/refractory myeloma


- Refractory to Bortezomib, ixazomib, carfilzomib, lenalidomide, daratumumab, cyclophosphamide.
- Best option is BCMA-targeted agent rapidly progressing disease makes BCMA CART not possible at the time
- Decision to proceed with standard-of-care teclistamab

Case Presentation – Dr Lee (Cont)

38 yo M with relapsed/refractory multiple myeloma

Teclistamab treatment course:

- Receives teclistamab step-up doses on day 1, 4, and 8 inpatient. Grade 1 CRS on day 6 and day 7 (resolved with tocilizumab x 1).
- Currently mid-C4 teclistamab (weekly dosing) with PR so far (ongoing duration of response of 4 months)

MD ANDERSON CANCER CENTER

The Case for Fixed Duration Treatment with Bispecific Antibodies

75 yo RRMM s/p 16 lines, diagnosed in 2001 Line 1: VAD induction, Mel-ASCT, PR Line 2: Thal-Dex, PR Line 3: Bor-Dex, PR Line 4: Len-Dex, PR Line 5: Bor-Dex, PR Line 6: Cyclo-Dex, SD Line 7: CyBorD, SD Line 8: RVd, PR Line 9: RVd-Cy, PR Line 10: Bendamustine-Bor-Dex, SD

Line 11: Rd, MR Line 12: Pom-Cy-Dex, SD Line 13: Dara, MR Line 14: Dara-Pom-Dex, PR Line 15: Dara-Pom-Cy-Dex. PR Line 16: Teclistamab in summer 2019. - Off s/p 8 cycles due to recurrent URIs, last dosed 01/2020 - Remained off therapy until late 2022, MRD-ve by NGS and flow at 10⁻⁵

Case Presentation – Dr Lee

66 yo F with relapsed/refractory multiple myeloma

- Initial presentation with anemia
- High-risk FISH with +1q21 (1 extra copy) and del 17 on conventional Cg.

Treatment History

- Line 1: VRd x 5 cycles with PR, followed by high-dose melphalan and autologous stem cell rescue with VGPR, then lenalidomide + elotuzumab maintenance on protocol with continued VGPR, then PD (duration of response 20 months)
- Line 2: Ixazomib, Lenalidomide, Dexamethasone with MR, then PD (duration of response 9 months)
- Line 3: Daratumumab, Pomalidomide, Dexamethasone with PR, then PD (duration of response 32 months)
- Line 4: Carfilzomib, Cyclophosphamide, Dexamethasone with PR, then PD (duration of response 7 months)

Case Presentation – Dr Lee (Cont)

66 yo F with relapsed/refractory myeloma

- Refractory to carfilzomib, ixazomib, lenalidomide, pomalidomide, daratumumab, elotuzumab, cyclophosphamide.
- Best option is BCMA-targeted agent No standard-of-care BCMA CART slot available at the time
- Decision to proceed with linvoseltamab (BCMA bispecific T-cell antibody) on study

Case Presentation – Dr Lee (Cont)

66 yo F with relapsed/refractory multiple myeloma

Linvoseltamab treatment course:

- Receives linvoseltamab step-up doses on day 1 (5 mg) and day 8 (25 mg) with inpatient monitoring, and day 15 (200 mg) outpatient. No CRS/ICANS.
- De-escalates dosing frequency to q2 week for Cycles 3-10
- De-escalates dosing frequency to q4 week starting Cycle 11 once attaining VGPR
- Best response MRD negative CR by Cycle 15
- Remains in MRD negative CR (ongoing duration of response 16 months)

Case Presentation – Dr Usmani

Case Description

- 69-year-old female with R-ISS Stage 2 IgG kappa RRMM with gain 1q21 on a GPRC5Dbispecific antibody.
- 5 prior lines of therapy including PIs, IMiDs, anti-CD38 mAb, SLAMF7 mAb, cyclophosphamide.
- Deferred autologous stem cell transplant.
- Co-morbidities: home O2 (2-3L) for COPD and pulmonary hypertension; hypertension; obesity
- Baseline BMI prior to start of GPRC5D-bispecific antibody was 34

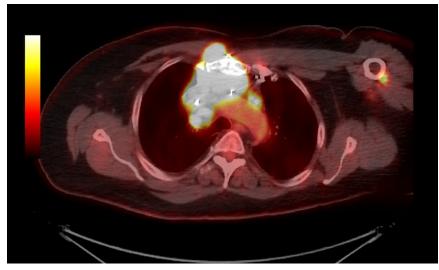
Patient Treatment

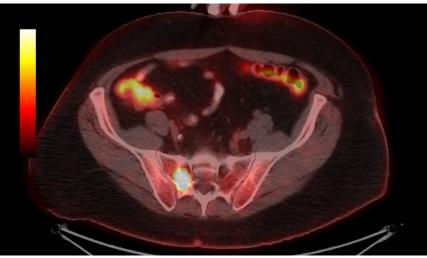
- Patient was enrolled on clinical trial for GPRC5D-bispecific antibody.
- Tolerated step-up dosing with G1 CRS.
- During C₂, she started noting mild nausea and decreased appetite as well as taste alteration.
- Patient responding well to GPRC5D-bAsb with MRD negative CR.
- GI work-up negative. Symptoms gradually worsened leading to an approximately 20% decrease in body weight after ~5 months of therapy.

AE Management

- Anti-emetic agents tried without significant relief: ondansetron, prochlorperazine, lorazepam, metoclopramide
- Patient tried dronabinol which initially helped with nausea, dysgeusia, and appetite but improvement only lasted a few weeks without significant improvement in weight
- Patient was also started on sucralfate
- GPRC5D bsAb was dose-reduced and transitioned to every other week dosing

Patient Follow-Up


- With dose reduction and change in dosing schedule, patient's dysgeusia, nausea/vomiting, and anorexia improved.
- She started to gain back weight
- Lowest BMI was 24 → latest BMI 31
- She has remained on treatment for about 18 months and remains in an MRD negative CR.



Case Presentation – Dr Usmani

Case Description

- 57-year-old male with R-ISS Stage 2 IgA kappa RRMM on an FcRH5-bispecific antibody.
- Diagnosed in 5/2017
- Standard risk cytogenetics
- 6 prior lines of therapy including PIs, IMiDs, anti-CD38 mAb, cyclophosphamide, ASCT
- Co-morbidities: HTN, CAD s/p CABG, obesity, peripheral neuropathy from prior bortezomib, HLD, NAFLD
- Significant back pain, chest wall pain, and right shoulder pain. PET/CT showed anterior mediastinal mass and multiple lytic bone lesions.

Patient Treatment

- Patient had salvage ASCT with progressive disease based on labs and PET/CT after 4 months.
- Received palliative RT to anterior mediastinal mass and shoulder due to significant pain despite opiates*.
- Patient enrolled on clinical trial for FcRH5-bispecific antibody.
- Tolerated step-up dosing with G1 CRS.
- Patient developed bone pain involving the shoulder, chest wall, and back with each treatment dose that would resolve after 24 to 48 hours with initial cycles.

*Patient with history of narcotic abuse and wanted to minimize opiate use for pain

AE Development

- During C₂, patient noticed increased numbness and tingling in the feet, which did not affect his activities of daily living and gait.
- He has a history of bortezomib-induced peripheral sensory neuropathy which improved after bortezomib was discontinued but did not resolve completely.
- Patient developed burning sensation in his feet especially worse at night with subsequent cycles

AE Management

- Patient was initially monitored with grade 1 peripheral sensory neuropathy
- With burning sensation, patient was started on gabapentin with some relief
- Sensory neuropathy does not affect his ADLs

Patient Follow-Up

- Peripheral sensory neuropathy has remained stable with burning sensation controlled with gabapentin
- Patient is in a VGPR on clinical trial with FcRH5-bispecific antibody

Case Presentation – Dr Lee

78 yo M with relapsed/refractory multiple myeloma

- Initial presentation with anemia, later developed diffuse bone disease at relapse
- Standard risk FISH. +Extramedullary disease at later relapse.

Treatment History

- 10 prior lines of therapy
- Refractory to bortezomib, carfilzomib, lenalidomide, pomalidomide, daratumumab, cyclophosphamide, belantamab mafodotin, mezigdomide

Case Presentation – Dr Lee (Cont)

78 yo M with relapsed/refractory multiple myeloma

- Patient prefers bispecific option over CART option as lack of caregiver needed during peri-CART period
- Line 11 therapy: Treated with FcRH5-targeted bispecific T-cell antibody
 - No CRS/ICANS (inpatient step-up dosing).
 - Best response: partial response (duration of response 4 months)

APPENDIX

Detailed Overview of Incidence and Management of CRS Observed with Teclistamab in the MajesTEC-1 Study for Patients with R/R MM

- CRS was observed in 72.1% of patients treated with teclistamab. Most events were Grade 1 or 2 and manageable, without treatment discontinuation.
- Most CRS events occurred during the step-up schedule, requiring vigilance during treatment initiation.
- Recommendation is to ensure fever is resolved and patients have no signs of infection before initiating the teclistamab step-up schedule or administering the next teclistamab dose, to avoid exacerbating CRS.
- Tocilizumab reduced the risk of subsequent CRS in patients receiving it for their first CRS event (20.0% vs 62.2% in those not receiving it), without affecting response to teclistamab.
- No baseline characteristics, including tumor burden or cytokine levels, appeared to clearly predict for CRS occurrence or severity.

Key Requirements of the Teclistamab Risk Evaluation and Mitigation Strategy (REMS)

- Receive training on the REMS requirements at www.TECVAYLIREMS.com using the Prescriber Training Program and the Adverse Reaction Management Guide.
- Successfully complete the Knowledge Assessment online.
- Enroll in the REMS by completing the Prescriber Enrollment Form online and submit it to the REMS.
- If teclistamab will be dispensed and administered in the same location, an Authorized Representative must complete the Pharmacy and Healthcare Setting certification.
- Counsel patients that they should be hospitalized and monitored for signs and symptoms of CRS and neurologic toxicity, including ICANS, for 48 hours after administration of all doses within the teclistamab step-up dosing schedule.

Recommendations for Management of Teclistamab-Associated CRS

Table 1: Recommendations for Management of CRS

Grade ^a	Presenting Symptoms	Actions
Grade 1	Temperature ≥100.4°F (38°C) ^b	 Withhold TECVAYLI until CRS resolves. Administer pretreatment medications prior to next dose of TECVAYLI.^c
Grade 2	Temperature ≥100.4°F (38°C) ^b with: Hypotension responsive to fluids and not requiring vasopressors. and/or Oxygen requirement of low-flow nasal cannula ^d or blow-by.	 Withhold TECVAYLI until CRS resolves. Administer pretreatment medications prior to next dose of TECVAYLI.^c Patients should be hospitalized for 48 hours following the next dose of TECVAYLI.^c
Grade 3	Temperature ≥100.4°F (38°C) ^b with: Hypotension requiring one vasopressor with or without vasopressin. and/or Oxygen requirement of high-flow nasal cannula ^d , facemask, non-rebreather mask, or Venturi mask.	 First Occurrence of Grade 3 CRS with Duration Less than 48 Hours: Withhold TECVAYLI until CRS resolves. Provide supportive therapy, which may include intensive care. Administer pretreatment medications prior to next dose of TECVAYLI. Patients should be hospitalized for 48 hours following the next dose of TECVAYLI.^c Recurrent Grade 3 CRS or Grade 3 CRS with Duration 48 hours or Longer: Permanently discontinue TECVAYLI. Provide supportive therapy, which may include intensive care.
Grade 4	Temperature ≥100.4°F (38°C) ^b with: Hypotension requiring multiple vasopressors (excluding vasopressin). and/or Oxygen requirement of positive pressure (e.g., continuous positive airway pressure (CPAP), bilevel positive airway pressure (BiPAP), intubation, and mechanical ventilation).	 Permanently discontinue TECVAYLI. Provide supportive therapy, which may include intensive care.

https://tecvaylirems.com/#Main

Inside the Issue: Current and Future Management of ER-Positive Metastatic Breast Cancer After Disease Progression on a CDK4/6 Inhibitor

A CME/MOC-Accredited Live Webinar

Thursday, July 20, 2023 5:00 PM – 6:00 PM ET

Faculty Aditya Bardia, MD, MPH Erika Hamilton, MD

> Moderator Neil Love, MD

Thank you for joining us!

Please take a moment to complete the survey currently up on Zoom. Your feedback is very important to us. The survey will remain open up to 5 minutes after the meeting ends.

CME and MOC credit information will be emailed to each participant within 5 business days.

