Inside the Issue: Optimizing the Management of Metastatic Urothelial Bladder Cancer

A CME/MOC-Accredited Live Webinar

Thursday, June 29, 2023 5:00 PM – 6:00 PM ET

Faculty Terence Friedlander, MD Petros Grivas, MD, PhD

Faculty

Terence Friedlander, MD

Professor of Medicine and Robert and Virginia O'Reilly Family Endowed Chair Chief, Division of Hematology/Oncology Zuckerberg San Francisco General Hospital Helen Diller Family Comprehensive Cancer Center University of California, San Francisco San Francisco, California

Moderator

Neil Love, MD Research To Practice

Petros Grivas, MD, PhD Professor, Department of Medicine Division of Oncology Clinical Director, Genitourinary Cancers Program University of Washington Professor, Clinical Research Division Fred Hutchinson Cancer Center Seattle, Washington

Commercial Support

This activity is supported by educational grants from Astellas and Seagen Inc, Gilead Sciences Inc, and Merck.

Dr Love — Disclosures

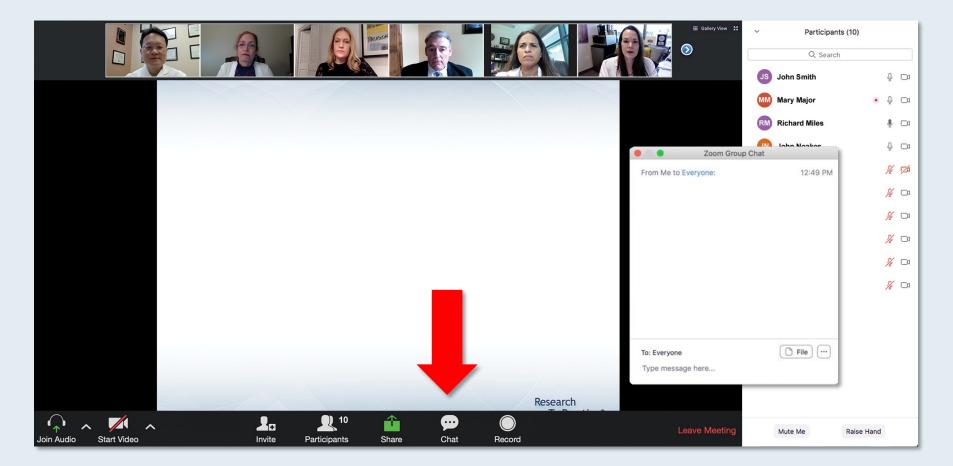
Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab US Inc, Gilead Sciences Inc, Grail Inc, GSK, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc, and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Friedlander — Disclosures

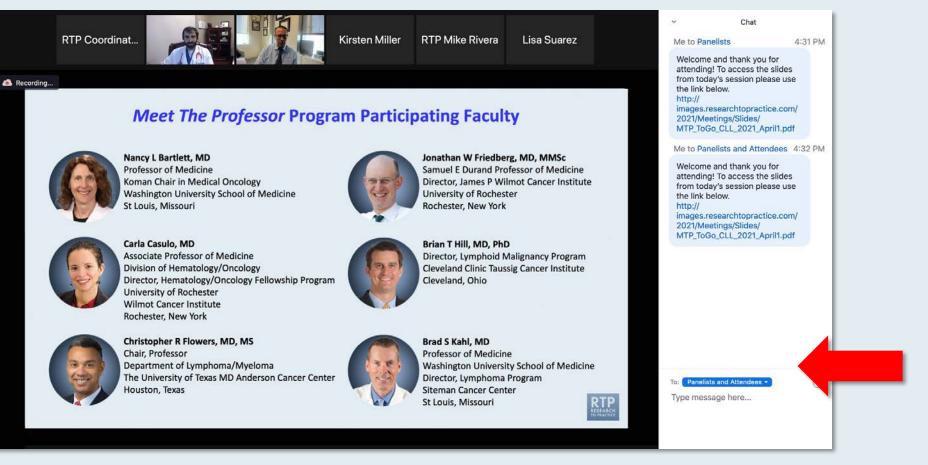
Advisory Committee	Aadi Bioscience, Astellas, Seagen Inc
Consulting Agreement	Merck
Contracted Research	Bristol Myers Squibb, Roche Laboratories Inc, Seagen Inc, Trishula Therapeutics Inc
Data and Safety Monitoring Board/Committee	AstraZeneca Pharmaceuticals LP



Dr Grivas — Disclosures

Consulting Agreements	4D Pharma PLC, Aadi Bioscience, Asieris Pharmaceuticals, Astellas, AstraZeneca Pharmaceuticals LP, BostonGene, Bristol Myers Squibb, CG Oncology, Dyania Health, Exelixis Inc, Fresenius Kabi AG, Genentech, a member of the Roche Group, Gilead Sciences Inc, Guardant Health, ImmunityBio, Infinity Pharmaceuticals Inc, Janssen Biotech Inc, Lucence, Merck KgaA, Merck Sharp & Dohme LLC, Mirati Therapeutics Inc, Pfizer Inc, PureTech Health, QED Therapeutics, Regeneron Pharmaceuticals Inc, Roche Laboratories Inc, Seagen Inc, Silverback Therapeutics Inc, Strata Oncology, UroGen Pharma
Contracted Research	Acrivon Therapeutics Inc, Bavarian Nordic, Bristol Myers Squibb, Clovis Oncology, Debiopharm, G1 Therapeutics Inc, Gilead Sciences Inc, GSK, Merck KGaA, Merck Sharp & Dohme LLC, Mirati Therapeutics Inc, Pfizer Inc, QED Therapeutics
Data and Safety Monitoring Board/Committee	Bristol Myers Squibb

We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

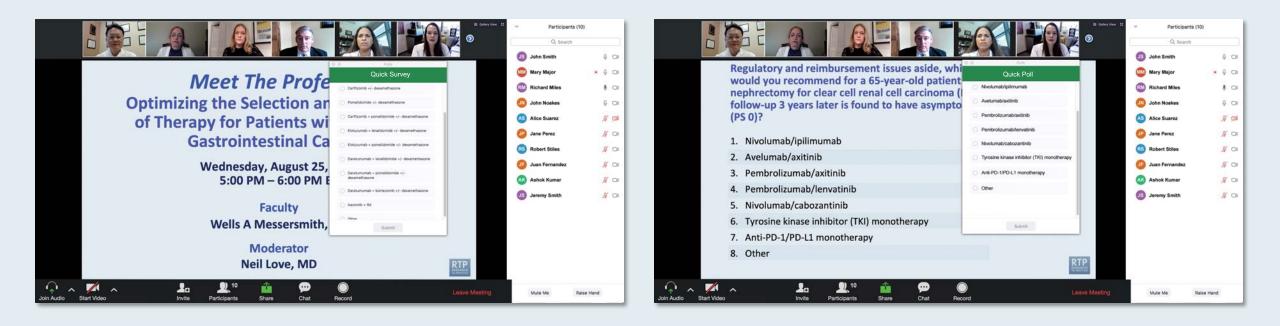
Familiarizing Yourself with the Zoom Interface

Expand chat submission box



Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface


Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY WITH DR NEIL LOVE

Managing Metastatic Urothelial Bladder Cancer

DR SCOTT TAGAWA WEILL CORNELL MEDICINE SANDRA AND EDWARD MEYER CANCER CENTER

Dr Scott Tagawa – Managing Metastati Oncology Today with Dr Neil Love —

(15) (30)

What I Tell My Patients: Faculty Physicians and Nurses Discuss Patient Education About New Treatments and Clinical Trials

Part 3 of a 3-Part Complimentary NCPD Webinar Series in Partnership with the 2023 ONS Congress

Chronic Lymphocytic Leukemia

Thursday, July 6, 2023 5:00 PM – 6:00 PM ET

Faculty Kristen E Battiato, AGNP-C Jennifer Woyach, MD

Inside the Issue: Novel Agents, Approaches and Strategies in the Management of Higher-Risk Myelodysplastic Syndromes

A CME/MOC-Accredited Live Webinar

Tuesday, July 11, 2023 5:00 PM – 6:00 PM ET

Faculty Guillermo Garcia-Manero, MD David Sallman, MD

Year in Review: Clinical Investigator Perspectives on the Most Relevant New Data Sets and Advances in Oncology A Multitumor CME/MOC-Accredited Live Webinar Series

Melanoma and Nonmelanoma Skin Cancers

Thursday, July 13, 2023 5:00 PM – 6:00 PM ET

> Faculty Omid Hamid, MD Evan J Lipson, MD

Inside the Issue: Integrating Bispecific Antibodies into the Management of Multiple Myeloma — Patient Selection and Toxicity Management

A CME/MOC-Accredited Live Webinar

Tuesday, July 18, 2023 5:00 PM – 6:00 PM ET

Faculty Hans Lee, MD Saad Zafar Usmani, MD, MBA

Inside the Issue: Current and Future Management of ER-Positive Metastatic Breast Cancer After Disease Progression on a CDK4/6 Inhibitor

A CME/MOC-Accredited Live Webinar

Thursday, July 20, 2023 5:00 PM – 6:00 PM ET

Faculty Aditya Bardia, MD, MPH Erika Hamilton, MD

Meet The Professor Optimizing the Management of Soft Tissue Sarcoma and Related Connective Tissue Disorders

> Tuesday, July 25, 2023 5:00 PM – 6:00 PM ET

Faculty Richard F Riedel, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Inside the Issue: Optimizing the Management of Metastatic Urothelial Bladder Cancer

A CME/MOC-Accredited Live Webinar

Thursday, June 29, 2023 5:00 PM – 6:00 PM ET

Faculty Terence Friedlander, MD Petros Grivas, MD, PhD

Faculty

Terence Friedlander, MD

Professor of Medicine and Robert and Virginia O'Reilly Family Endowed Chair Chief, Division of Hematology/Oncology Zuckerberg San Francisco General Hospital Helen Diller Family Comprehensive Cancer Center University of California, San Francisco San Francisco, California

Moderator

Neil Love, MD Research To Practice

Petros Grivas, MD, PhD Professor, Department of Medicine Division of Oncology Clinical Director, Genitourinary Cancers Program University of Washington Professor, Clinical Research Division Fred Hutchinson Cancer Center Seattle, Washington

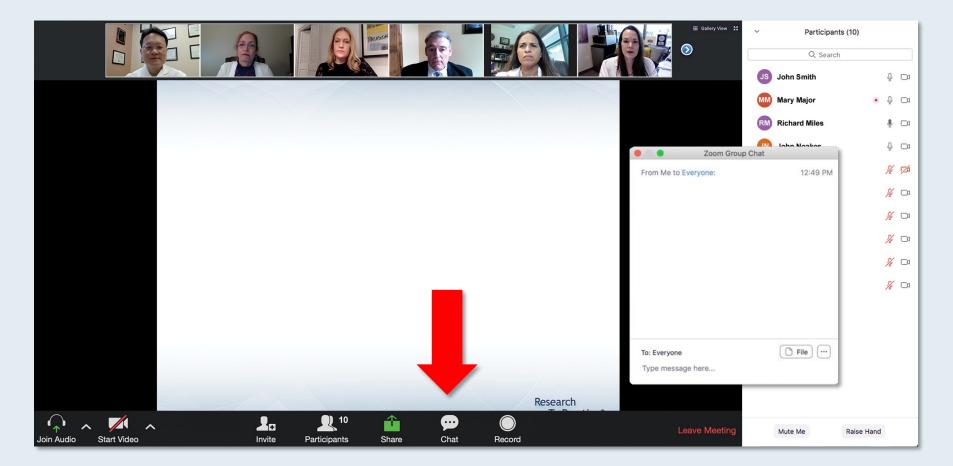
Survey Participants

Shilpa Gupta, MD Associate Professor Director, Genitourinary Oncology Program Taussig Cancer Institute, Cleveland Clinic Cleveland, Ohio

Elizabeth R Plimack, MD, MS Professor, Medical Oncology Deputy Director, Fox Chase Cancer Center Temple Health Philadelphia, Pennsylvania

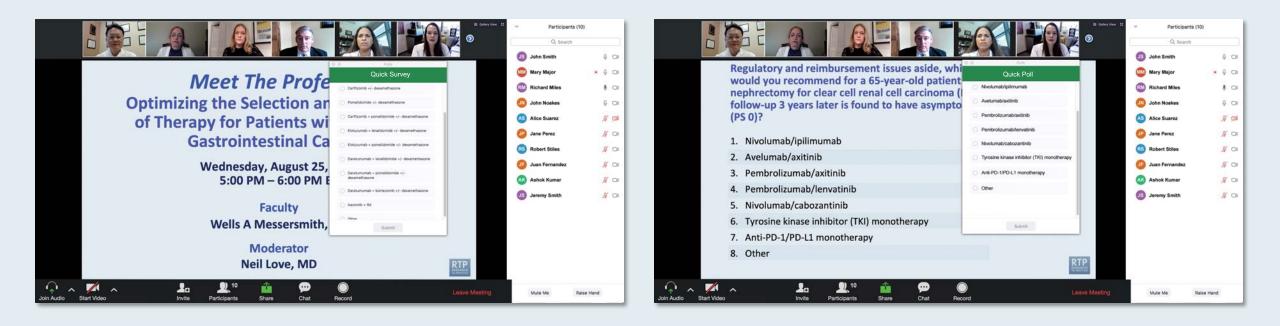
Daniel P Petrylak, MD

Professor of Internal Medicine (Medical Oncology) and Urology Yale School of Medicine New Haven, Connecticut



Guru P Sonpavde, MD

Director of Genitourinary Medical Oncology and Phase I Clinical Research Christopher K Glanz Chair for Bladder Cancer Research AdventHealth Cancer Institute Professor of Medicine University of Central Florida Orlando, Florida


We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

What I Tell My Patients: Faculty Physicians and Nurses Discuss Patient Education About New Treatments and Clinical Trials

Part 3 of a 3-Part Complimentary NCPD Webinar Series in Partnership with the 2023 ONS Congress

Chronic Lymphocytic Leukemia

Thursday, July 6, 2023 5:00 PM – 6:00 PM ET

Faculty Kristen E Battiato, AGNP-C Jennifer Woyach, MD

Inside the Issue: Novel Agents, Approaches and Strategies in the Management of Higher-Risk Myelodysplastic Syndromes

A CME/MOC-Accredited Live Webinar

Tuesday, July 11, 2023 5:00 PM – 6:00 PM ET

Faculty Guillermo Garcia-Manero, MD David Sallman, MD

Year in Review: Clinical Investigator Perspectives on the Most Relevant New Data Sets and Advances in Oncology A Multitumor CME/MOC-Accredited Live Webinar Series

Melanoma and Nonmelanoma Skin Cancers

Thursday, July 13, 2023 5:00 PM – 6:00 PM ET

> Faculty Omid Hamid, MD Evan J Lipson, MD

Inside the Issue: Integrating Bispecific Antibodies into the Management of Multiple Myeloma — Patient Selection and Toxicity Management

A CME/MOC-Accredited Live Webinar

Tuesday, July 18, 2023 5:00 PM – 6:00 PM ET

Faculty Hans Lee, MD Saad Zafar Usmani, MD, MBA

Inside the Issue: Current and Future Management of ER-Positive Metastatic Breast Cancer After Disease Progression on a CDK4/6 Inhibitor

A CME/MOC-Accredited Live Webinar

Thursday, July 20, 2023 5:00 PM – 6:00 PM ET

Faculty Aditya Bardia, MD, MPH Erika Hamilton, MD

Meet The Professor Optimizing the Management of Soft Tissue Sarcoma and Related Connective Tissue Disorders

> Tuesday, July 25, 2023 5:00 PM – 6:00 PM ET

Faculty Richard F Riedel, MD

ONCOLOGY TODAY WITH DR NEIL LOVE

Managing Metastatic Urothelial Bladder Cancer

DR SCOTT TAGAWA WEILL CORNELL MEDICINE SANDRA AND EDWARD MEYER CANCER CENTER

Dr Scott Tagawa – Managing Metastati Oncology Today with Dr Neil Love —

(15) (30)

Inside the Issue: Optimizing the Management of Metastatic Urothelial Bladder Cancer

A CME/MOC-Accredited Live Webinar

Thursday, June 29, 2023 5:00 PM – 6:00 PM ET

Faculty Terence Friedlander, MD Petros Grivas, MD, PhD

Commercial Support

This activity is supported by educational grants from Astellas and Seagen Inc, Gilead Sciences Inc, and Merck.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Friedlander — Disclosures

Advisory Committee	Aadi Bioscience, Astellas, Seagen Inc
Consulting Agreement	Merck
Contracted Research	Bristol Myers Squibb, Roche Laboratories Inc, Seagen Inc, Trishula Therapeutics Inc
Data and Safety Monitoring Board/Committee	AstraZeneca Pharmaceuticals LP

Dr Grivas — Disclosures

Consulting Agreements	4D Pharma PLC, Aadi Bioscience, Asieris Pharmaceuticals, Astellas, AstraZeneca Pharmaceuticals LP, BostonGene, Bristol Myers Squibb, CG Oncology, Dyania Health, Exelixis Inc, Fresenius Kabi AG, Genentech, a member of the Roche Group, Gilead Sciences Inc, Guardant Health, ImmunityBio, Infinity Pharmaceuticals Inc, Janssen Biotech Inc, Lucence, Merck KgaA, Merck Sharp & Dohme LLC, Mirati Therapeutics Inc, Pfizer Inc, PureTech Health, QED Therapeutics, Regeneron Pharmaceuticals Inc, Roche Laboratories Inc, Seagen Inc, Silverback Therapeutics Inc, Strata Oncology, UroGen Pharma
Contracted Research	Acrivon Therapeutics Inc, Bavarian Nordic, Bristol Myers Squibb, Clovis Oncology, Debiopharm, G1 Therapeutics Inc, Gilead Sciences Inc, GSK, Merck KGaA, Merck Sharp & Dohme LLC, Mirati Therapeutics Inc, Pfizer Inc, QED Therapeutics
Data and Safety Monitoring Board/Committee	Bristol Myers Squibb

Immunotherapy-Based Strategies for Metastatic Urothelial Bladder Cancer (mUBC)

Terence Friedlander, MD

Clinical Professor Helen Diller Family Comprehensive Cancer Center University of California, San Francisco Chief of Hematology-Oncology Zuckerberg San Francisco General Hospital San Francisco, California

> Available data, ongoing investigation and role of novel strategies in metastatic urothelial Ca

> > Petros Grivas, MD PhD

Professor, Dept. of Medicine, Division of Medical Oncology Clinical Director, Genitourinary Cancers Program University of Washington

> Professor, Clinical Research Division Fred Hutchinson Cancer Center

Terence Friedlander, MD

- Balar AV et al. Efficacy and safety of pembrolizumab in metastatic urothelial carcinoma: Results from KEYNOTE-045 and KEYNOTE-052 after up to 5 years of follow-up. *Ann Oncol* 2023 March;34(3):289-99.
- Powles T et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): A randomised, open-label, phase 3 trial. *Lancet Oncol* 2021 July;22(7):931-45.
- Swami U et al. Utilization of systemic therapy for treatment of advanced urothelial carcinoma: Lessons from real world experience. *Cancer Treat Res Commun* 2021;27:100325.
- Powles T et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. *N Engl J Med* 2020 September 24;383(13):1218-30.
- Powles T et al. Avelumab first-line maintenance for advanced urothelial carcinoma: Results from the JAVELIN Bladder 100 trial after ≥2 years of follow-Up. *J Clin Oncol* 2023 April 18;[Online ahead of print].
- Gupta S et al. Study EV-103 dose escalation/cohort A: Long-term outcome of enfortumab vedotin + pembrolizumab in first-line (1L) cisplatin-ineligible locally advanced or metastatic urothelial carcinoma (la/mUC) with nearly 4 years of follow-up. ASCO 2023;Abstract 4505.

Terence Friedlander, MD (continued)

- Friedlander TW et al. Enfortumab vedotin (EV) with or without pembrolizumab (P) in patients (pts) who are cisplatin-ineligible with previously untreated locally advanced or metastatic urothelial cancer (la/mUC): Additional 3-month follow-up on cohort K data. ASCO 2023;Abstract 4568.
- Tagawa ST et al. Updated outcomes in TROPHY-U-01 cohort 1, a phase 2 study of sacituzumab govitecan (SG) in patients (pts) with metastatic urothelial cancer (mUC) that progressed after platinum (PT)-based chemotherapy and a checkpoint inhibitor (CPI). ASCO 2023;Abstract 526.
- Grivas P et al. TROPHY-U-01 Cohort 3: Sacituzumab govitecan (SG) in combination with pembrolizumab (Pembro) in patients (pts) with metastatic urothelial cancer (mUC) who progressed after platinum (PLT)-based regimens. Genitourinary Cancers Symposium 2022;Abstract 434.
- Siefker-Radtke AO et al. Erdafitinib (ERDA) vs ERDA plus cetrelimab (ERDA + CET) for patients (pts) with metastatic urothelial carcinoma (mUC) and fibroblast growth factor receptor alterations (FGFRa): Final results from the phase 2 Norse study. ASCO 2023;Abstract 4504.

Petros Grivas, MD, PhD

- Necchi A et al. Erdafitinib (ERDA) in patients (pts) with locally advanced or metastatic urothelial carcinoma (mUC): Subgroup analyses of long-term efficacy outcomes of a pivotal phase II trial (BLC2001). ESMO 2020;Abstract 750P.
- Loriot Y et al. Phase 3 THOR study: Results of erdafitinib (erda) versus chemotherapy (chemo) in patients (pts) with advanced or metastatic urothelial cancer (mUC) with select fibroblast growth factor receptor alterations (FGFRalt). ASCO 2023;Abstract LBA4619.
- Yu EY et al. Enfortumab vedotin after PD-1 or PD-L1 inhibitors in cisplatin-ineligible patients with advanced urothelial carcinoma (EV-201): A multicentre, single-arm, phase 2 trial. *Lancet Oncol* 2021;22(6);872-82.
- Rosenberg JE et al. Long-term outcomes in EV-301: 24-month findings from the phase 3 trial of enfortumab vedotin versus chemotherapy in patients with previously treated advanced urothelial carcinoma. ASCO 2022;Abstract 4516.
- Tagawa ST et al. Updated outcomes in TROPHY-U-01 cohort 1, a phase 2 study of sacituzumab govitecan in patients with metastatic urothelial cancer that progressed after platinum (PT)based chemotherapy and a checkpoint inhibitor. Genitourinary Cancers Symposium 2023; Abstract 526.

Petros Grivas, MD, PhD (continued)

- Loriot Y et al. Safety analysis by UGT1A1 status of TROPHY-U-01 cohort 1, a phase 2 study of sacituzumab govitecan (SG) in patients (pts) with metastatic urothelial cancer (mUC) who progressed after platinum (PT)-based chemotherapy and a checkpoint inhibitor (CPI). ASCO 2023;Abstract 4514
- Petrylak DP et al. TROPHY-U-01 cohort 2, a phase 2 study of sacituzumab govitecan in platinumineligible patients with metastatic urothelial cancer who progressed after prior checkpoint inhibitor therapy. Genitourinary Cancers Symposium 2023;Abstract 520.
- Grivas P et al. Primary analysis of TROPHY-U-01 cohort 3, a phase 2 study of sacituzumab govitecan (SG) in combination with pembrolizumab (Pembro) in patients (pts) with metastatic urothelial cancer (mUC) that progressed after platinum (PT)-based therapy. Genitourinary Cancers Symposium 2023;Abstract 518.
- Sheng X et al. RC48-ADC for metastatic urothelial carcinoma with HER2-positive: Combined analysis of RC48-C005 and RC48-C009 trials. ASCO 2022;Abstract 4520.
- Xu Y et al. A phase II study of RC48-ADC in HER2-negative patients with locally advanced or metastatic urothelial carcinoma. ASCO 2022;Abstract 4519.

Agenda

INTRODUCTION

MODULE 1: First-Line Treatment of Metastatic Urothelial Bladder Cancer MODULE 2: Second-Line Therapy and Beyond

- Enfortumab vedotin
- Sacituzumab govitecan
- Erdafitinib
- HER2-targeted treatment
- Other novel strategies

Agenda

INTRODUCTION

MODULE 1: First-Line Treatment of Metastatic Urothelial Bladder Cancer

MODULE 2: Second-Line Therapy and Beyond

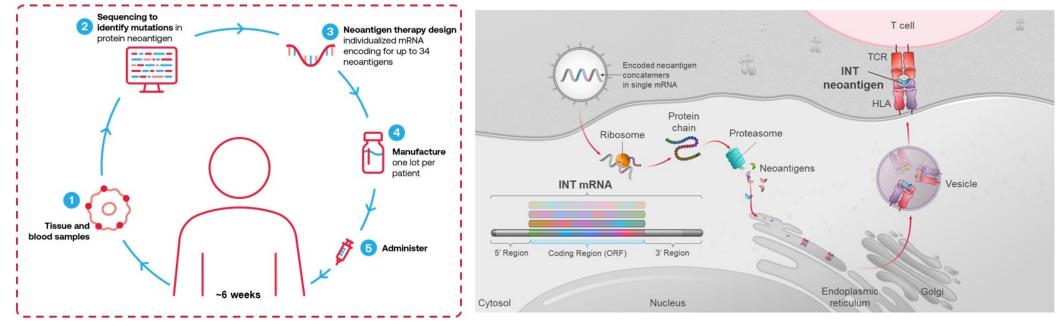
- Enfortumab vedotin
- Sacituzumab govitecan
- Erdafitinib
- HER2-targeted treatment
- Other novel strategies

Distant Metastasis-Free Survival Results From the Randomized, Phase 2 mRNA-4157-P201/ KEYNOTE-942 Trial

Adnan Khattak,^{1,2} Jeffrey S. Weber,³ Tarek Meniawy,⁴ Matthew H. Taylor,⁵ George Ansstas,⁶ Kevin B. Kim,⁷ Meredith McKean,⁸ Georgina V. Long,⁹ Ryan J. Sullivan,¹⁰ Mark B. Faries,¹¹ Thuy Tran,¹² C. Lance Cowey,¹³ Theresa M. Medina,¹⁴ Jennifer M. Segar,¹⁵ Victoria Atkinson,¹⁶ Geoffrey T. Gibney,¹⁷ Jason J. Luke,¹⁸ Elizabeth I. Buchbinder,¹⁹ Robert S. Meehan,²⁰ Matteo S. Carlino,^{9,21} Moderna Author's Group²⁰

¹Hollywood Private Hospital, Nedlands, Australia; ²Edith Cowan University, Perth, Australia; ³NYU Langone Medical Center, New York, NY; ⁴Saint John of God Subiaco Hospital, Subiaco, Australia; ⁵Earle A. Chiles Research Institute, Portland, OR, USA; ⁶Washington University School of Medicine, St Louis, MO, USA; ⁷California Pacific Medical Center Research Institute, Oakland, CA, USA; ⁸Sarah Cannon Research Institute, Nashville, TN, USA; ⁹Melanoma Institute Australia, Wollstonecraft, Australia; ¹⁰Massachusetts General Hospital, Boston, MA, USA; ¹¹The Angeles Clinic and Research Institute, Los Angeles, CA, USA; ¹²Yale-New Haven Hospital, New Haven, CT, USA; ¹³Baylor Charles A. Sammons Cancer Center, Dallas, TX, USA; ¹⁴University of Colorado, Aurora, CO, USA; ¹⁵The University of Arizona Cancer Center, Tucson, AZ, USA; ¹⁶Princess Alexandra Hospital, Woolloongabba, Australia; ¹⁷Lombardi Cancer Center, Washington, DC, USA; ¹⁸UPMC Hillman Cancer Center, Pittsburg, PA, USA; ¹⁹Dana-Farber Cancer Institute, Boston, MA, USA; ²⁰Moderna Inc., Cambridge, MA, USA; ²¹Westmead Hospital, Westmead, Australia.

Sponsored by Moderna, Inc., in collaboration with Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.


PRESENTED BY: Adnan Khattak, MBBS, FRACP, PhD Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Courtesy of Evan J Lipson, MD

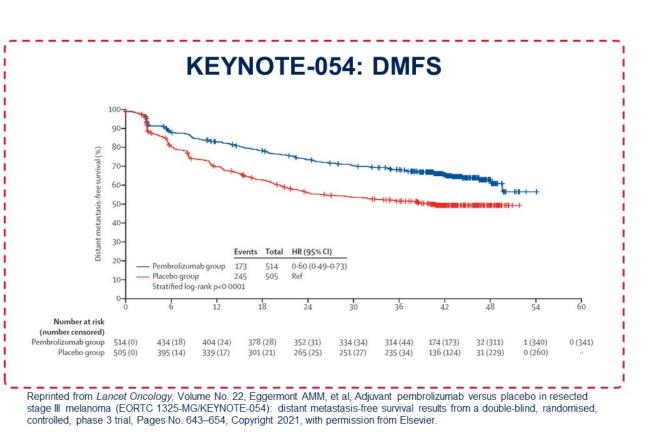
mRNA-4157 (V940) Mechanism of Action

- mRNA-4157 (V940) is an individualized neoantigen therapy designed to target an individual patient's unique tumor mutations and encodes up to 34 neoantigens^{1,2}
- Therapies targeting neoantigens can increase endogenous neoantigen T-cell responses and induce epitope spreading to novel antigens with the ability to drive antitumor responses and maintain memory with cytolytic properties, potentially producing longterm disease control for patients³⁻⁷

HLA, human leukocyte antigen; INT, individualized neoantigen therapy; ORF, open reading frame.

1. Burris HA, et al. *J Clin Oncol.* 2019;37(suppl 15). Abstract 2523. 2. Zhong S, et al. Cancer Res. 80(suppl 16). Abstract 6539. 3. Wirth TC, Kühnel F. Front Immunol. 2017;8:1848. 4. Ott PA, et al. Nature. 2017;547:217-221. 5. Hu Z, et al. Nat Med. 2021;27:515-525. 6. Ott PA, et al. Cell. 2020;183:347-362. 7. Palmer CD, et al. Nat Med. 2022;28:1619-1629.

PRESENTED BY: Adnan Khattak, MBBS, FRACP, PhD

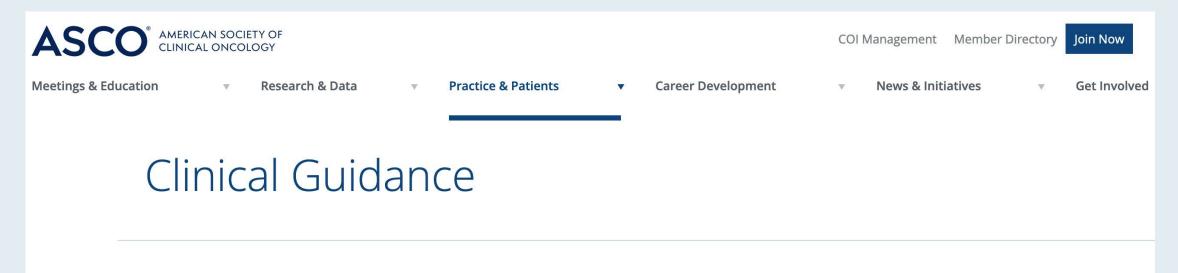

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Courtesy of Evan J Lipson, MD

Adjuvant ICI Therapy and DMFS in High-risk Melanoma

- Both RFS and DMFS have been evaluated as surrogates for overall survival. DMFS captures patients whose relapse is associated with a worse prognosis and who may need further systemic treatment¹
- The KEYNOTE-054 study showed that the 3.5year DMFS was significantly higher for patients receiving pembrolizumab (65.3%) versus placebo (49.4%) in the ITT population (P <0.0001)²
- These analyses suggest an unmet clinical need with high metastasis rates even with effective adjuvant melanoma therapy
- mRNA-4157 (V940) + pembrolizumab significantly improved RFS versus pembrolizumab monotherapy (HR = 0.561 [95% CI, 0.309,1.017; P = 0.0266]³
- Here, we report the first DMFS results from the mRNA-4157-P201/KEYNOTE-942 study

1. Amabile S, et al. J Clin Med. 2021;10:5475. 2. Eggermont AMM, et al. Lancet Oncol. 2021;22:643-654. 3. Khattak A, et al. Presented at the American Association for Cancer Research® (AACR) Annual Meeting; April 14-19, 2023; Orlando, FL, USA. Oral presentation CT001


PRESENTED BY: Adnan Khattak, MBBS, FRACP, PhD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Courtesy of Evan J Lipson, MD

ASCO Clinical Guidance – Drug Shortages

		_	
-	-	5	
		8	
		\succ	X

ASCO established a Drug Shortages Advisory Group to assist in the development of the below clinical guidance. View **Advisory Group membership and disclosures**. ASCO is proud to have collaborated with the Society of Gynecologic Oncology (SGO) to develop the general guidance below, adapted from their **communiqué** on carboplatin and cisplatin shortages. ASCO also endorses SGO's gynecologic cancer-specific guidance.

in

The statements below reflect the American Society of Clinical Oncology's position on the prioritization of antineoplastic agents in limited supply for first intervention; decisions should be based on specific goals of the therapy where evidence-based medicine has shown survival outcome and life-extending benefit in both early and advanced stages. For ethical guidance, please visit our **Ethical Principles and Implementation Strategies page**.

https://old-prod.asco.org/practice-patients/practice-support/drug-shortages/clinical-guidance

ASCO Clinical Guidance – Drug Shortages (Continued)

Effective immediately, ASCO recommends the following:

- 1. **Re-prioritize non-essential use of antineoplastic agents in limited supply.** If an alternative agent, intervention, or sequence with comparable efficacy and safety is available, then the limited agent should not be ordered.
- Increase the interval between cycles and/or reduce the total treatment dose when clinically acceptable. Where
 nationally recognized guidelines (e.g., ASCO, NCCN, etc.) state a range for cycle duration, default to the longer end of that range
 (e.g. if platinum is recommended every 3 to 4 weeks, default to every 4). Where guidelines indicate a range of dosing, default to
 the lowest therapeutically proper dose.
- 3. Minimize or omit the limited agent for recurrent agent-resistant cancers.
- 4. Minimize waste by optimizing vial size, dose rounding, and using multi-use vials.
- Institutions should establish a working multidisciplinary utilization committee to monitor drug shortages, provide and communicate internal policies on utilization, and act as an independent arbiter to promote equitable use of drugs in short supply.

https://old-prod.asco.org/practice-patients/practice-support/drug-shortages/clinical-guidance

ASCO Clinical Guidance – Drug Shortages (Continued)

Effective immediately, ASCO recommends the following:

- 6. Select an evidence-based alternative regimen if adequate supplies are unavailable and consider a second opinion consultation with oncology/hematology colleagues to discuss disease site-specific options.
- 7. Providers should offer counseling referrals (if available) to patients affected by shortage-related distress.
- 8. Clinicians should have support services available for shortage-related distress.

Institutions should communicate to clinical staff about measures being taken to address drug shortages and resources available to help oncology care teams manage distress.

•Drug shortages impact clinicians, members of oncology care teams and multidisciplinary allocation committees, and the inability of the care teams to provide optimal treatment may cause psychological or moral distress requiring support
•Institutions, practices, clinician societies, and others, should provide or offer referrals for support services such as peer to peer, counseling, discussion forums, or any other services addressing the distress or challenges inherent in providing care in the setting of drug shortages. Of note, ASCO member services also include the ASCO Safe Haven clinician support program, and several national resources focused on moral distress can be found here.

https://old-prod.asco.org/practice-patients/practice-support/drug-shortages/clinical-guidance

ASCO Urothelial Cancer Guidance

"The American Society of Clinical Oncology offers the following clinical guidance on treatment alternatives during shortages of antineoplastic agents. Decisions should be based on specific goals of the therapy where evidence-based medicine has shown survival outcomes and life-extending benefits in both early and advanced stages. For more information on ASCO's general principles during drug shortages, please visit ASCO's Clinical Guidance page. For further consideration of ethical guidance, please visit ASCO's Ethical Principles and Implementation Strategies page.

Disclaimer: Disease site-specific guidance for clinical management during drug shortages is provided by the American Society of Clinical Oncology, Inc. ("ASCO") for voluntary, informational use in the context of limited carboplatin or cisplatin availability. This and other guidance on ASCO's website (together "Guidance") is not a comprehensive or definitive guide to treatment options. New evidence may emerge between the time information is developed and when it is published or read and should only be used in conjunction with independent professional medical judgement. Guidance is based on expert opinion of the Drug Shortages Advisory Group and non-systematic review of relevant literature. It is not medical or pharmacologic advice and is not intended as a statement of the standard of care. ASCO does not endorse third-party drugs, devices, services, or therapies and assumes no responsibility for any harm arising from or related to the use of this information."

ASCO Urothelial Cancer Guidance

3. First-Line Systemic Therapy for Locally Advanced or Metastatic Disease (Stage IV)

A. Cisplatin eligible

Recommended options:

• Gemcitabine and cisplatin followed by avelumab maintenance therapy

• ddMVAC with growth factor support followed by avelumab maintenance therapy ALTERNATIVES:

- Enfortumab vedotin and pembrolizumab (EV/pembro)
- Pembrolizumab

B. Cisplatin ineligible

Recommended options:

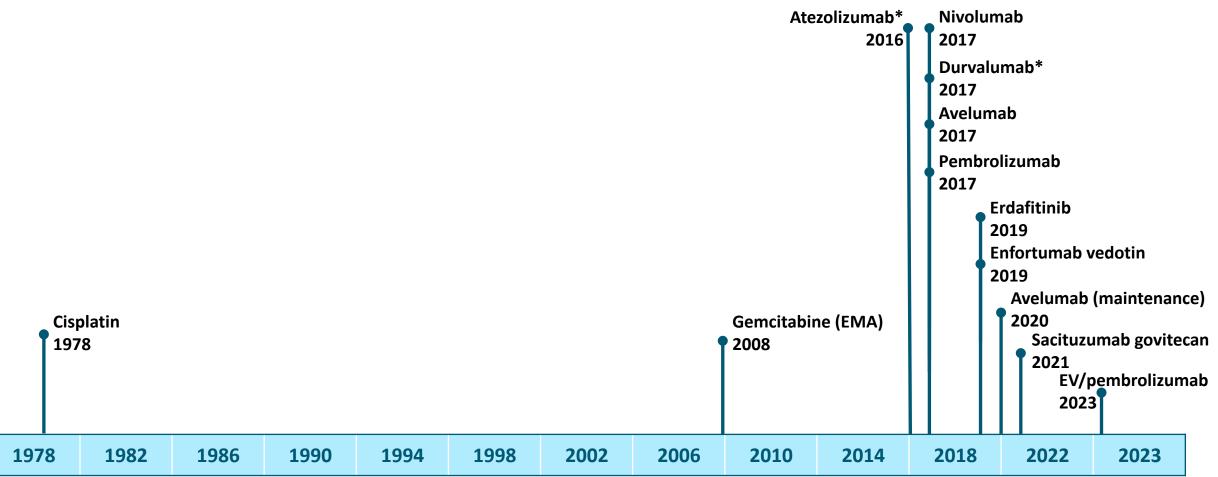
- Gemcitabine and carboplatin followed by avelumab maintenance therapy
- Enfortumab vedotin and pembrolizumab (EV/pembro)

ALTERNATIVES:

- Pembrolizumab
- Gemcitabine
- Gemcitabine + paclitaxel
- Ifosfamide, doxorubicin, and gemcitabine are options for patients with good kidney function and good performance status

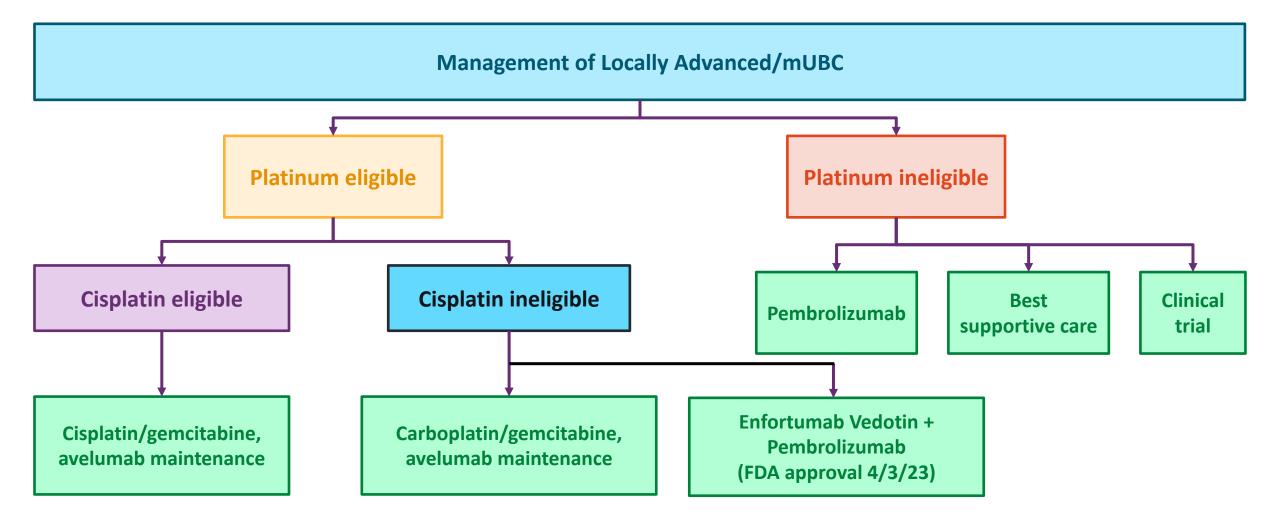
Agenda

INTRODUCTION


MODULE 1: First-Line Treatment of Metastatic Urothelial Bladder Cancer

MODULE 2: Second-Line Therapy and Beyond

- Enfortumab vedotin
- Sacituzumab govitecan
- Erdafitinib
- HER2-targeted treatment
- Other novel strategies


The Treatment Landscape for Locally Advanced/ Metastatic Urothelial Carcinoma Has Evolved Rapidly

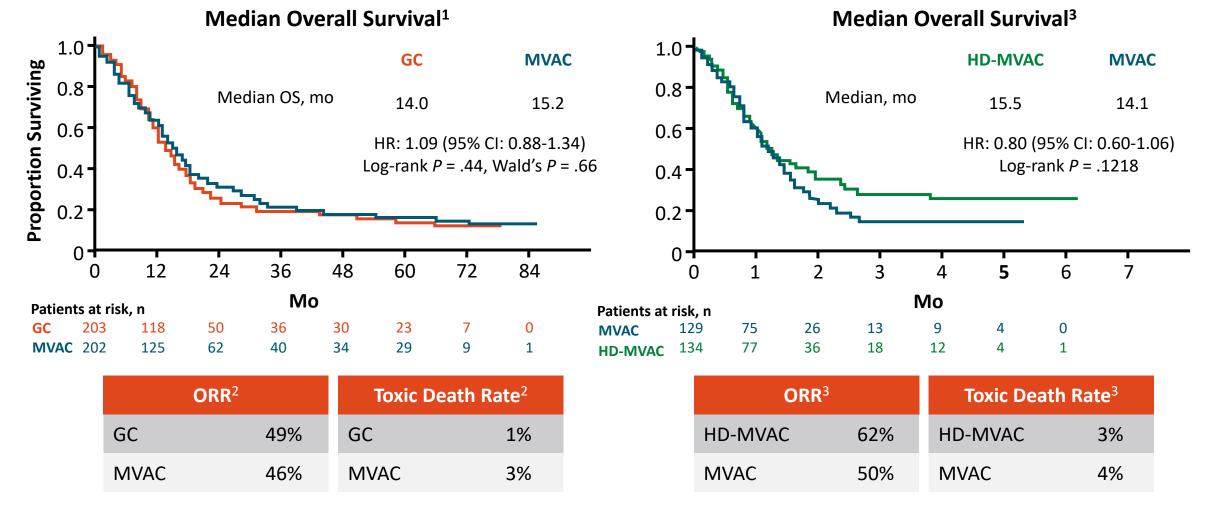
*Not FDA approved; indication withdrawn.

Cisplatin PI. www.ema.europa.eu/en/medicines/human/referrals/gemzar. Rhea. Clin Med Insights Oncol. 2021;15:11795549211044963. Nivolumab PI. Avelumab PI. Pembrolizumab PI. Erdafitinib PI. Enfortumab vedotin PI. Avelumab PI. Sacituzumab govitecan PI. Erdafitinib PI. Enfortumab vedotin PI. Avelumab PI. Sacituzumab govitecan PI.

Frontline Management of Locally Advanced/Metastatic Urothelial Carcinoma

Who is eligible for platinum chemotherapy?

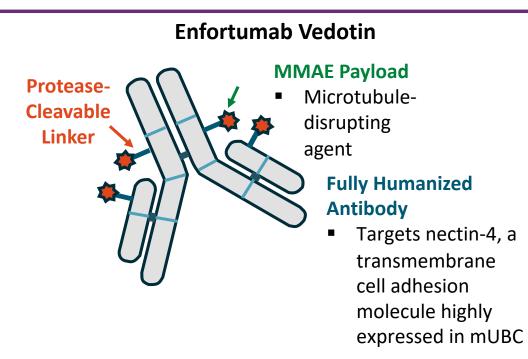
 Approximately 30% to 50% of patients are ineligible for cisplatin due to impairment in renal function and performance status¹


- Working Group cisplatin-unfit criteria include²
 - ECOG PS ≥2
 - Creatinine clearance <60 mL/min</p>
 - Grade \geq 2 peripheral neuropathy or hearing loss
 - NYHA Class III/IV heart failure

Who is ineligible for (even) carboplatin-based chemotherapy?

Survey of 60 medical oncologists:

What threshold ECOG PS should be used to define	ECOG PS	# Responses
"platinum-ineligibility"?	> / = 3	41/60 (68.3%)
What threshold Cr Cl should be used for "platinum-	< 30	# Responses
ineligibility"?	ml/min	41/60 (68.3%)
What grade of peripheral neuropathy would you consider for "platinum-ineligibility"?	> / = Grade 2	# Responses 32/60 (53.3%)
What class of Heart Failure do you consider to define	NYHA	# Responses
"platinum-ineligibility"?	Class III	48/60 (80%)
In a patient with ECOG PS 2, what Cr Cl cut-off would you use to define "platinum-ineligibility" differently of what is used for "cisplatin-ineligibility"?	< 30 ml/min	# Responses 29/60 (48.3%)


Frontline Cisplatin Regimens: Gem/Cis or ddMVAC

1. von der Maase. J Clin Oncol. 2005:23:4602. 2. von der Maase H. J Clin Oncol. 2000;18:3068. 3. Sternberg. J Clin Oncol. 2001;19:2638.

Courtesy of Terence Friedlander, MD

Enfortumab Vedotin: First Approved ADC in mUBC

■ FDA approval: for adults with locally advanced or mUBC who have previously received a PD-1 or PD-L1 inhibitor, and a platinum-containing CT or are ineligible for cisplatin-containing chemotherapy and have previously received ≥1 prior lines of therapy. Accelerated approval: in combination with pembrolizumab for the treatment of adult patients with locally advanced or metastatic urothelial cancer who are not eligible for cisplatin-containing chemotherapy

- EV 301- Randomized Phase III trial comparing EV to taxane/vinflunine chemotherapy
- Significant OS benefit
 - Median OS 12.91 vs 8.94 mo (HR: 0.70 (95% CI: 0.58-0.85; *P* = .00015)
- FDA approved in 2nd/3rd line mUBC in 2019

Courtesy of Terence Friedlander, MD

Samanta. Cell Mol Life Sci. 2015;72:645. Rosenberg. JCO. 2019; 37:2592. Enfortumab vedotin PI.

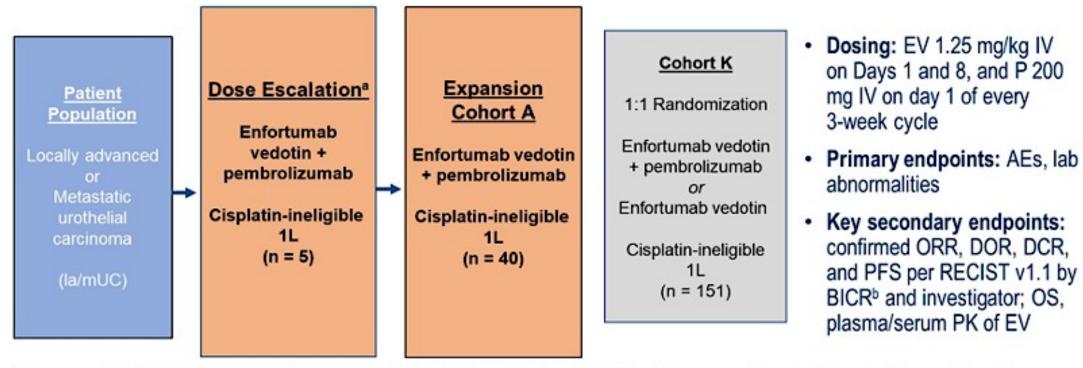
Study EV-103 Dose Escalation/Cohort A: Long-term Outcome of Enfortumab Vedotin + Pembrolizumab in First-line (1L) Cisplatin-ineligible Locally Advanced or Metastatic Urothelial Carcinoma (la/mUC) with Nearly 4 Years of Follow-up

Shilpa Gupta, MD¹; Jonathan E. Rosenberg, MD²; Rana R. McKay, MD³; Thomas W. Flaig, MD⁴; Daniel Peter Petrylak, MD⁵; Christopher J. Hoimes, DO⁶; Terence W. Friedlander, MD⁷; Mehmet Asim Bilen, MD⁸; Sandy Srinivas, MD⁹; Earle Burgess, MD¹⁰; Jaime R. Merchan, MD¹¹; Scott Tagawa, MD¹²; Jason Brown, MD¹³; Yao Yu, PhD¹⁴; Anne-Sophie Carret, MD¹⁴; Heidi S. Wirtz, PharmD, PhD¹⁴; Maria Guseva, MD, PharmD¹⁵; Blanca Homet Moreno, MD, PhD¹⁶; Matthew I. Milowsky, MD¹⁷

¹Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA; ²Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA; ³University of California San Diego, San Diego, CA, USA; ⁴University of Colorado Comprehensive Cancer Center, Aurora, CO, USA; ⁵Yale Cancer Center, New Haven, CT, USA; ⁶Duke Cancer Institute, Duke University, Durham, NC, USA; ⁷University of California San Francisco Medical Center, San Francisco, CA, USA; ⁸Winship Cancer Institute of Emory University, Atlanta, GA, USA; ⁹Stanford University Medical Center, Stanford, CA, USA; ¹⁰Atrium Health Levine Cancer Institute, Charlotte, NC, USA; ¹¹University of Miami, Miami, FL, USA; ¹²Weill Cornell Medical Center, New York, NY, USA; ¹³University Hospitals Cleveland Medical Center, Cleveland, OH, USA; ¹⁴Seagen Inc, Bothell, WA, USA; ¹⁵Astellas Phanna, Northbrook, IL, USA; ¹⁶Merck & Co., Inc., Rahway, NJ, USA; ¹⁷University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA

2023 ASCO ANNUAL MEETING

#ASCO23


PRESENTED IN: Dr. Shilpa Gupta, MD - @shilpaonc Presentation is property of the author and ASCO. Permission required for rouse, contact permissions@asco.org

EV-103 Study Design: EV/Pembrolizumab Cohorts

EV-103 is an open-label, multiple cohort, phase 1b/2 study

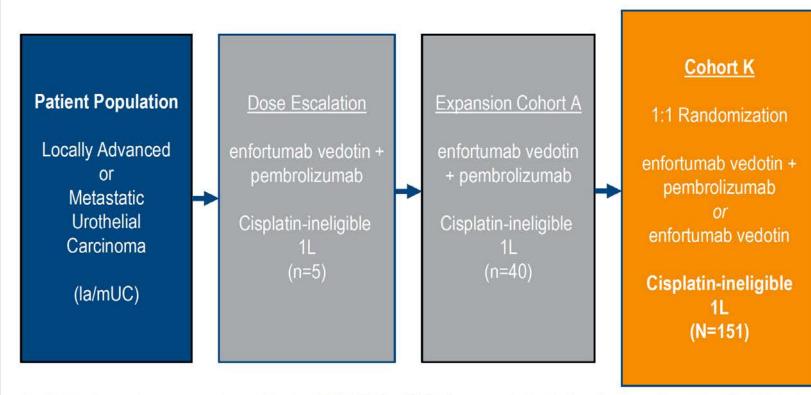
AE = adverse events; BICR = blinded independent central review; DCR = disease control rate; DOR = duration of response; EV = enfortumab vedotin; ORR = objective response rate; OS = overall survival; P = pembro; PFS = progression-free survival; PK = pharmacokinetics; 1L = first-line

Exploratory endpoints: biomarkers of activity including baseline PD-L1 status and Nectin-4 expression; Dose Escalation/Cohort A completed enrolment in Jan 2019; Data cutoff was 16 Sep 2022 4Patients: assigned to EV 1.25 mg/kg + pembro and for whom study treatment was administered as 1L therapy

The efficacy endpoints per RECIST v1.1 by BICR are presented for the first time herein. Results by investigator assessment have been previously published (Hoimes CJ, et al. JCO 2022).

EV-103 Dose Escalation Cohort A: Long-Term Efficacy Outcomes

ORR by BICR	Dose Escalation + Cohort A (N = 45)
Objective Response Rate, n (%)	33 (73.3)
95% CI ^a for ORR	58.1-85.4
Best Overall Response, n (%)	
Complete response	7 (15.6)
Partial response	26 (57.8)
Stable disease	5 (11.1)
Progressive disease	5 (11.1)
No assessment ^b	2 (4.4)
Disease Control Rate, n (%)	38 (84.4)
95% CI ^a for DCR	70.5-93.5
Concordance rate of BOR between BICR and INV ^c assessment	95.3%


BICR = blinded independent central review; BOR = best overall response; CI = confidence interval; DCR = disease control rate; INV = investigator; ORR = objective response rate 4CI was computed using the Clopper-Pearson method (Clopper 1934) ¹Patients had no response assessment post-baseline 4ORR per INV assessment was 33/45 (73.3%)

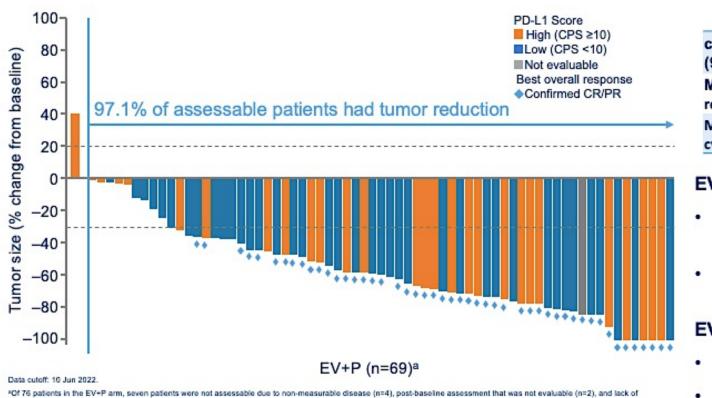
- Median duration of response was 22.1 months
- Median overall survival was 26.1 months

EV-103 Cohort K

Part of an open-label, multiple cohort, phase 1b/2 study in patients with urothelial carcinoma

- Dosing: EV 1.25 mg/kg IV on days 1 and 8, and P 200 mg IV on day 1 of every 3-week cycle
- **Primary endpoint:** confirmed ORR by RECIST v1.1 per BICR
- Key secondary endpoints: confirmed ORR per RECIST v1.1 by investigator, DOR, DCR, PFS, OS, safety/ tolerability, and lab abnormalities

Statistical considerations


.

- The sample size was based on precision of the estimate for ORR characterized by 95%Cls
- No formal statistical comparisons
 between the 2 treatment arms

Stratification factors: Liver metastases (present/absent) and ECOG PS (0 or 1/2); Exploratory endpoints: pharmacokinetics, antitherapeutic antibody, biomarkers of activity including baseline PD-L1 status and Nectin-4 expression, progression-free survival on subsequent therapy by investigator, patient reported outcomes; Cohort K completed enrollment on 11 Oct 2021; Data cutoff was 10 Jun 2022

EV-103 Cohort K: Efficacy and Safety

	EV+P ^b (n=76)	EV mono ^b (n=73)
cORR, n (%) (95% Cl)	49 (64.5) (52.7-75.1)	33 (45.2) (33.5-57.3)
Median time to objective response (range), mo	2.07 (1.1-6.6)	2.07 (1.9-15.4)
Median number of treatment cycles (range)	11.0 (1-29)	8.0 (1-33)

EV+P

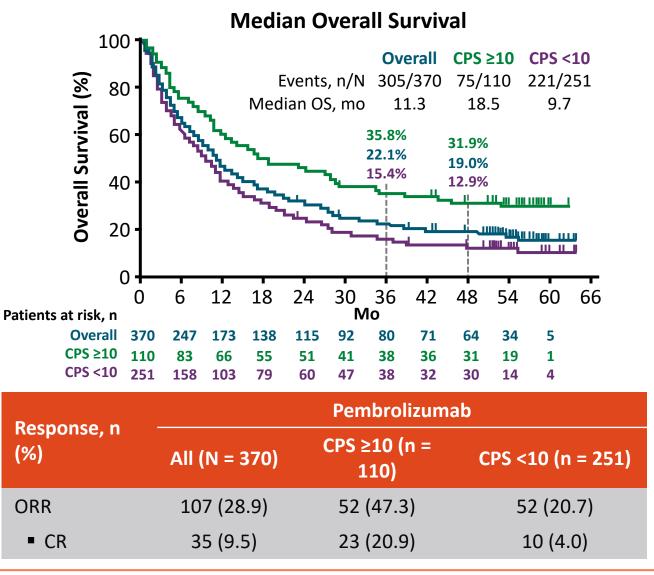
- 42/49 (85.7%) of responses observed at first assessment (week 9±1 week)
- Most common AEs were fatigue, peripheral sensory neuropathy, alopecia, and maculopapular rash

EV mono

- Activity is consistent with prior results in 2L+ la/mUC
- Safety profile consistent with previous studies

^bThere were no formal statistical comparisons between treatment arms.

post-baseline assessment (n=1).


KEYNOTE-052: Single-Agent Pembrolizumab in Locally Advanced mUBC

- Multisite, single-arm, open-label phase II trial
- Patients with locally advanced/metastatic urothelial cancer with measurable disease; no prior systemic chemotherapy and cisplatin-ineligible; ECOG PS 0-2 (N = 370)
- Primary endpoint: confirmed ORR per RECIST v1.1 by IRR
- Secondary endpoints: PFS, DoR per RECIST v1.1 by IRR, OS, safety
- Endpoints analyzed in full population and subgroups with PD-L1 CPS* ≥10 and CPS* <10

* Defined as number of PD-L1–staining cells divided by total number of viable tumor cells x100.

Balar. Ann Oncol. 2023;34:289.

Courtesy of Terence Friedlander, MD

KEYNOTE-361: First-Line Pembrolizumab, Chemotherapy, or Both in Advanced Urothelial Carcinoma

Randomized, open-label, phase III trial

Stratified by PD-L1 CPS* (\geq 10 vs <10) and choice of platinum

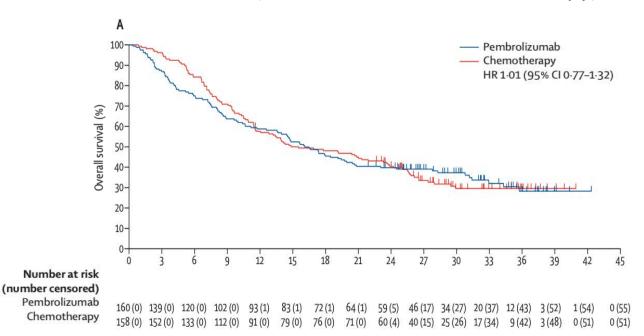
Patients 18 yr or older with unresectable locally advanced or metastatic UC (renal pelvis, ureter, bladder, urethra), no prior systemic tx for advanced disease, ECOG PS 0-2 (N = 1010) Pembrolizumab 200 mg Q3W + Gemcitabine 1000 mg/m² + Cisplatin 70 mg/m² or Carboplatin AUC 5 x up to 6 cycles (n = 351)

> **Pembrolizumab** 200 mg Q3W x up to 35 cycles (n = 307)

Gemcitabine 1000 mg/m², D1, D8 Q3W + Cisplatin 70 mg/m² or Carboplatin AUC 5, D1 Q3W x up to 6 cycles (n = 352) **Pembrolizumab** 200 mg Q3W x up to 29 cycles

- Primary endpoints: PFS (BICR), OS
- Secondary endpoints: ORR, DCR, DoR (BICR); safety

* Per PD-L1 pharmDx IHC assay. CPS = no. of PD-L1– staining tumor cells, lymphocytes, and macrophages divided by total no. viable tumor cells, multiplied by 100.


Median follow-up: 31.7 mo

Alva. ESMO 2020. Abstr LBA23. Powles. Lancet Oncol. 2021;22:931.

KEYNOTE-361: Comparing Pembrolizumab to Chemotherapy in Advanced Urothelial Carcinoma

	Pembrolizumab group (n=307)	Chemotherapy group (n=352)
Proportion of patients with a complete or partial response	93 (30·3%, 25·2–35·8)	158 (44·9%, 39·6–50·2)
Chosen to receive cisplatin	46/137 (33·6%, 25·7–42·1)	76/156 (48·7%, 40·6–56·8)
Chosen to receive carboplatin	47/170 (27·6%, 21·1–35·0)	82/196 (41·8%, 34·8-49·1)
Best overall response		
Complete response	34 (11%)	43 (12%)
Partial response	59 (19%)	115 (33%)
Stable disease	52 (17%)	109 (31%)
Progressive disease	118 (38%)	39 (11%)
Non-complete response or non-progressive disease	8 (3%)	16 (5%)
Not evaluable or assessed*	36 (12%)	30 (9%)
Median duration of complete or partial response, months	28∙2 (13∙5–not evaluable)	6·2 (5·8–6·5)
Estimated ongoing responses at 12 months	65% (54–74)	24% (17–31)
Estimated ongoing responses at 18 months	54% (43-64)	19% (13–26)

Overall Survival (Pembrolizumab vs Chemotherapy)

In general, what is your preferred first-line treatment regimen for a 65-year-old patient with metastatic urothelial bladder cancer (UBC) and a PS of 0 who has received no prior systemic therapy? Does PD-L1 level affect your treatment decision? How long would you continue treatment?

	Preferred treatment	Affected by PD-L1?	Duration
Dr Friedlander	Cisplatin/gemcitabine → avelumab	Νο	2 years
Dr Grivas	Cisplatin/gemcitabine → avelumab	Νο	4-6 cycles, avelumab until PD/toxicity
Dr Gupta	Cisplatin/gemcitabine → avelumab	Νο	2 years
Dr Petrylak	Cisplatin/gemcitabine → avelumab	Νο	4-6 cycles
Dr Plimack	Dose-dense MVAC → pembrolizumab	Νο	Chemo x 4, pembro x 2 years
Dr Sonpavde	Cisplatin/gemcitabine → avelumab	Νο	Until PD/toxicity*

* Stop after 1 year if complete remission; PD = progressive disease; MVAC = methotrexate/vinblastine/doxorubicin/cisplatin

In general, what is your preferred first-line treatment regimen for an 80-year-old patient with metastatic UBC who has received no prior systemic therapy and <u>is not a candidate for cisplatin</u>? Does PD-L1 level affect your treatment decision? How long would you continue treatment?

	Preferred treatment	Affected by PD-L1?	Duration	
Dr Friedlander	Pembrolizumab/EV	Νο	EV until toxicity, pembrolizumab 2 years	
Dr Grivas	Pembrolizumab/EV	Νο	EV until toxicity, pembrolizumab 2 years	
Dr Gupta	Carboplatin/gemcitabine → avelumab	Νο	2 years	
Dr Petrylak	Carboplatin/gemcitabine → avelumab	Νο	4-6 cycles	
Dr Plimack	Pembrolizumab/EV	Νο	Until toxicity or PD	
Dr Sonpavde	Pembrolizumab/EV	Νο	Until PD/toxicity	

EV = enfortumab vedotin; PD = progressive disease

In general, what is your preferred first-line treatment regimen for an 80-year-old patient with de novo metastatic UBC who has received no prior systemic therapy and <u>is not a candidate for cisplatin or carboplatin</u>? Does PD-L1 level affect your treatment decision? How long would you continue treatment?

	Preferred treatment	Affected by PD-L1?	Duration
Dr Friedlander	Pembrolizumab	Νο	2 years
Dr Grivas	Pembrolizumab	Νο	2 years
Dr Gupta	Pembrolizumab	Νο	2 years
Dr Petrylak	Enfortumab vedotin/ pembrolizumab	Νο	10 cycles
Dr Plimack	Enfortumab vedotin/ pembrolizumab	Νο	Until toxicity or PD
Dr Sonpavde	Pembrolizumab	Yes	Until PD/toxicity*

* Stop after 1 year if complete remission; PD = progressive disease

Agenda

INTRODUCTION

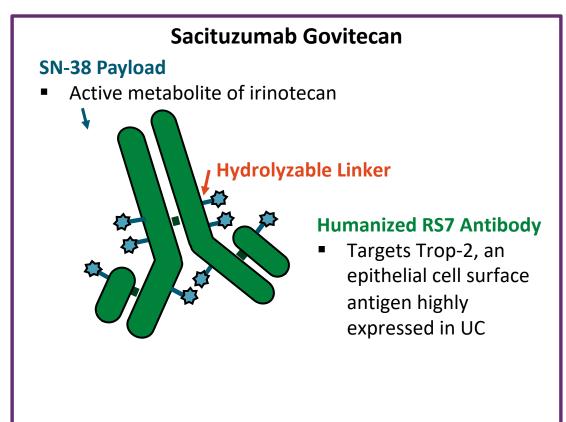
MODULE 1: First-Line Treatment of Metastatic Urothelial Bladder Cancer

MODULE 2: Second-Line Therapy and Beyond

- Enfortumab vedotin
- Sacituzumab govitecan
- Erdafitinib
- HER2-targeted treatment
- Other novel strategies

Advanced Urothelial Ca Treatment Algorithm

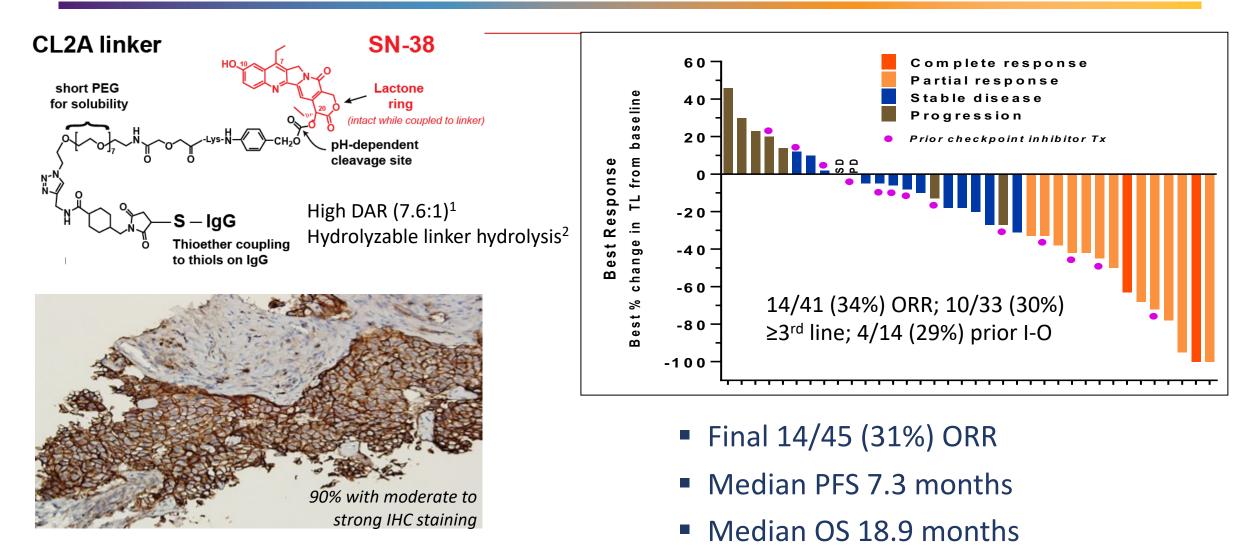
Disease State	Setting	Preferred Option	Other Options
Metastatic, no prior chemotherapy	Cisplatin-eligible	Cisplatin/gemcitabine f/b avelumab maintenance	aMVAC f/b avelumab maintenance
Metastatic, no prior chemotherapy	Cisplatin-ineligible	Gemcitabine/Carboplatin (in fit patients) f/b avelumab maintenance <i>OR</i> Pembrolizumab/Enfortumab-vedotin	Pembrolizumab Single agent chemotherapy
Metastatic, prior platinum chemotherapy or relapse within 1 year of perioperative cisplatin- based therapy		Pembrolizumab <i>OR</i> Erdafitinib (tumors with FGFR2/3 activating mutation or fusion) <i>OR</i> Enfortumab-vedotin (cisplatin-unfit pts)	Avelumab Nivolumab
Metastatic, prior chemotherapy & immunotherapy		Enfortumab-vedotin <i>OR</i> Sacituzumab-govitecan <i>OR</i> Erdafitinib (tumors with FGFR2/3 activating mutation or fusion)	Taxane (US) Vinflunine (EU)


Clinical trials are critical throughout disease spectrum & treatment settings!

Petros Grivas

What is on the horizon?

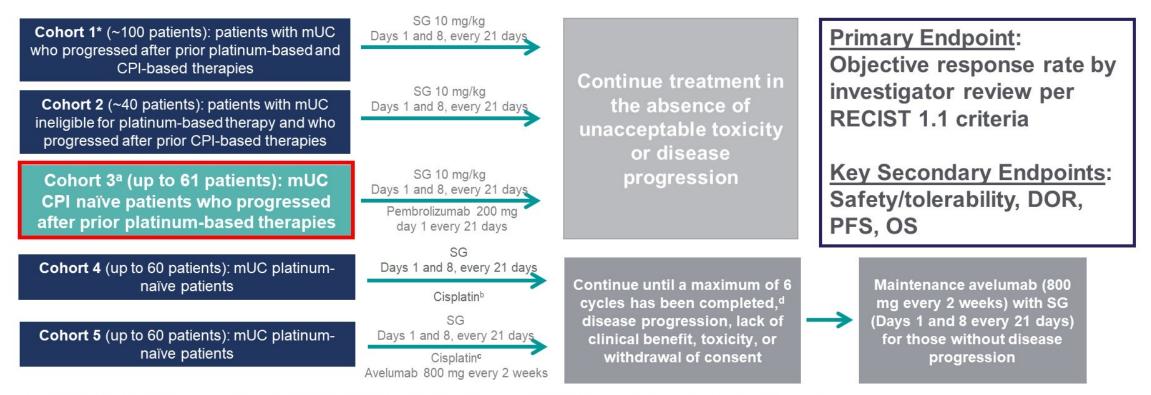
- Sacituzumab Govitecan
 - Accelerated approval as monotherapy in later line mUBC
 - TROPHY-U-01 cohort A
 - -N=113
 - 28% ORR, DOR 6.1 mo, mPFS 5.4 mo, mOS 10.9 mo


– Is there synergy with PD-1 immunotherapy?

 Accelerated FDA approval: for adults with locally advanced or metastatic UC who previously received a platinum-containing chemotherapy and either a PD-1 or PD-L1 inhibitor

Sacituzumab govitecan PI. Avellini. Oncotarget. 2017;8:58642. Starodub. Clin Cancer Res. 2015;21:3870. Cardillo. Bioconjugate Chem. 2015;26:919. Tagawa et al Journal of Clinical Oncology 2023 41:6_suppl, 526-526

Sacituzumab govitecan


Cardillo TM, et al. Bioconjug Chem 2015; 26:919-31
 Govindan SV, et al. Mol Cancer Ther 2013; 12:968-78

Tagawa S, et al. Ann Oncol (2017) 28 (suppl_5):v295-v329 Tagawa S, et al. J Clin Oncol 37, no. 7_suppl (March 1, 2019) 354-354

Courtesy of Petros Grivas, MD, PhD

TROPHY-U-01 Is a Registrational, Open-Label, Multicohort Phase 2 Trial in Patients With mUC

Key Inclusion Criteria: Age \geq 18 years, ECOG of 0/1, creatinine clearance (CrCl) \geq 30 mL/min,^{b,c} adequate hepatic function **Key Exclusion Criteria**: Immunodeficiency, active Hepatitis B or C, active secondary malignancy, or active brain metastases

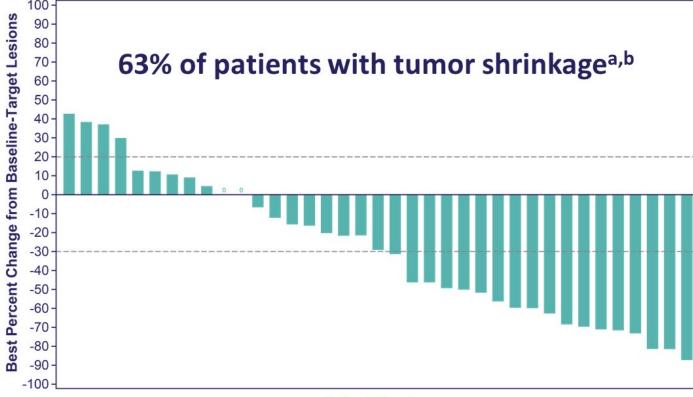
*Accelerated FDA approval for treatment of patients with locally advanced or mUC who previously received platinum-containing chemotherapy and PD-1/L1 inhibitor¹

^aExclusions for Cohort 3 only: active autoimmune disease or history of interstitial lung disease. ^bIn patients with CrCl ≥60 mL/min; ^cIn patients with creatinine clearance 50–60 mL/min. ^dFor patients who have not progressed, maintenance therapy will begin with infusions of avelumab (800 mg every 2 weeks beginning cycle 1, day 1 and every 2 weeks thereafter) followed by SG on days 1 and 8 every 21 days. CBR, clinical benefit rate; CPI, checkpoint inhibitor; CrCl, creatinine clearance; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; mUC, metastatic urothelial cancer; NR, not reached; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors; SG, sacituzumab govitecan. 1. TRODELVY[™] (sacituzumab govitecan-hziy). Prescribing Information. Immunomedics, Inc.; April 2021; EudraCT Number: 2018-001167-23; ClinicalTrials.gov Number: NCT03547973. IMMU-132-06 study.

ASCO[•] Genitourinary Cancers Symposium

Abstract # 434.

Courtesy of Terence Friedlander, MD


Grivas et al Journal of Clinical Oncology 2022 40:6_suppl, 434-434

5

Overall Response and Best % Change From Baseline in Tumor Size

- Median follow-up: 5.8 months (data cutoff date: 2021-09-24)
- Median time to response: 2 months (1.3–2.8; n=14)
- Median DOR not yet reached: N/A (2.80-N/A)
- Median PFS (95% CI), 5.5 months (1.7–NR); median OS, not reached

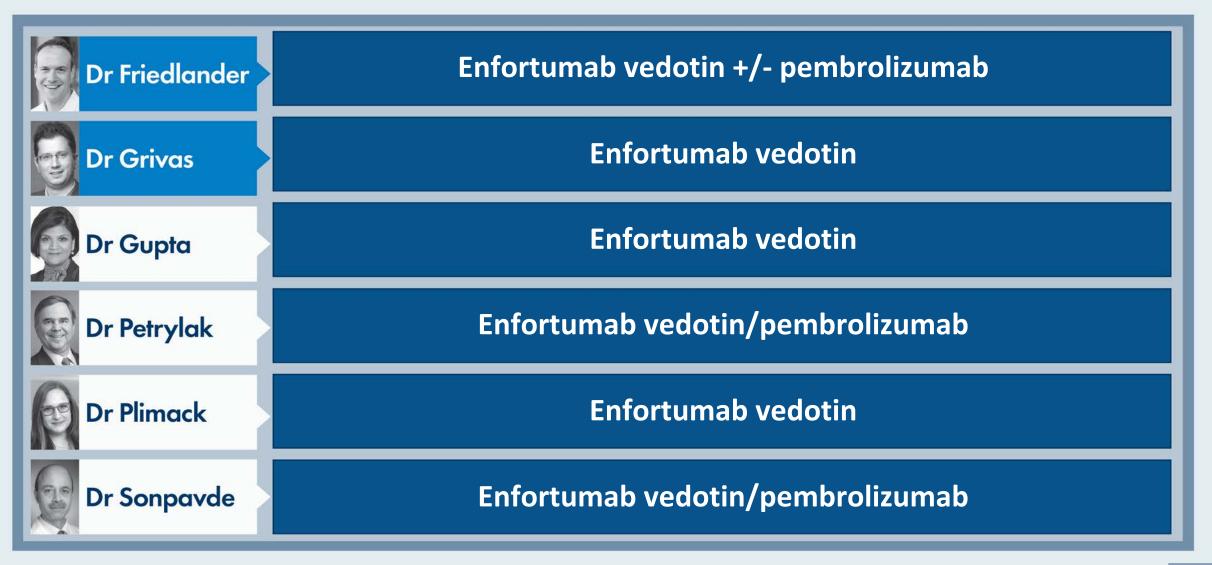
Cohort 3ª (N=41)
14 (34) [20.1-50.6]
14 (38)
1 (2)
13 (32)
11 (27)
4 (10)
12 (29)
4 (10)
25 (61) [44.5-75.8]

9

Patient Number

^aResponses assessed by investigator in the intent-to-treat population. ^bPatients without post-baseline assessments are not shown here. Cl, confidence interval; CR, complete response; DOR, duration of response; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease

ASCO[•] Genitourinary Cancers Symposium

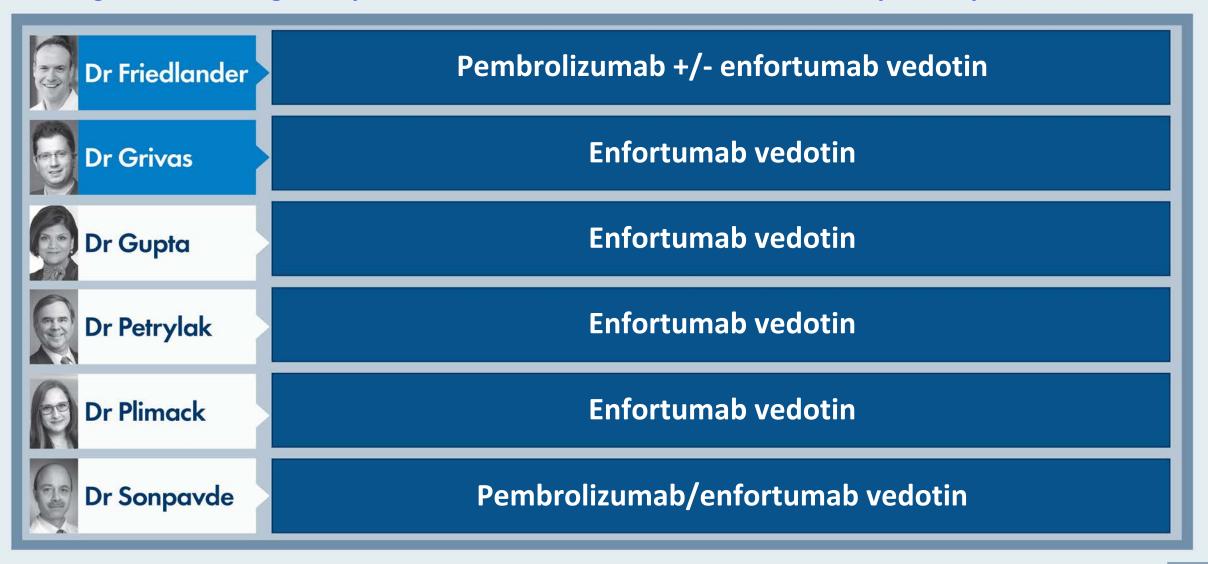

Courtesy of Terence Friedlander, MD

How would you generally sequence the following agents for a patient with metastatic UBC who is eligible to receive both?

Dr Friedlander	Enfortumab vedotin -> sacituzumab govitecan
Dr Grivas	Enfortumab vedotin $ ightarrow$ sacituzumab govitecan
Dr Gupta	Enfortumab vedotin $ ightarrow$ sacituzumab govitecan
Dr Petrylak	Enfortumab vedotin $ ightarrow$ sacituzumab govitecan
Dr Plimack	Enfortumab vedotin $ ightarrow$ sacituzumab govitecan
Dr Sonpavde	Enfortumab vedotin $ ightarrow$ sacituzumab govitecan



What would be your next line of therapy for a 65-year-old patient with metastatic UBC and a PS of 0 who experiences disease progression on your preferred first-line treatment?

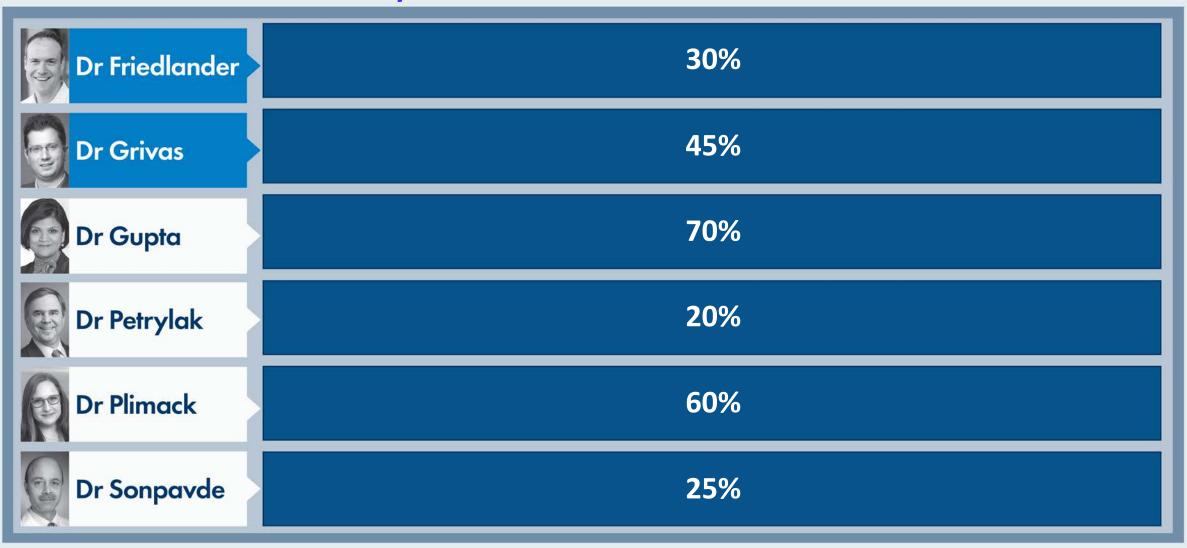


What would be your most likely next line of therapy for an 80-year-old patient with metastatic UBC who has received no prior systemic therapy, <u>is not a candidate for cisplatin</u> <u>or carboplatin</u> and experienced disease progression on your preferred first-line treatment?

A 65-year-old patient receives neoadjuvant cisplatin/gemcitabine followed by cystectomy and then adjuvant nivolumab for <u>FGFR wild-type</u> UBC but develops disease recurrence in the liver <u>9 months</u> after starting nivolumab. Regulatory and reimbursement issues aside, what would you likely recommend?

Based on available data and your clinical experience, approximately what proportion of patients who are receiving enfortumab vedotin for metastatic UBC will require a dose reduction due to toxicity?

Dr Friedlander	50%
Dr Grivas	90%
Dr Gupta	80%
Dr Petrylak	30%
Dr Plimack	50%
Dr Sonpavde	35%



What would be your next line of therapy for an 80-year-old patient with metastatic UBC who is not a candidate for cisplatin and experienced disease progression on your preferred first-line treatment?

Dr Friedlander	Sacituzumab govitecan
Dr Grivas	Carboplatin/gemcitabine
Dr Gupta	Enfortumab vedotin
Dr Petrylak	Enfortumab vedotin/pembrolizumab
Dr Plimack	Gemcitabine
Dr Sonpavde	Carboplatin/gemcitabine

Based on available data and your clinical experience, approximately what proportion of patients who are receiving sacituzumab govitecan for metastatic UBC will require a dose reduction due to toxicity?

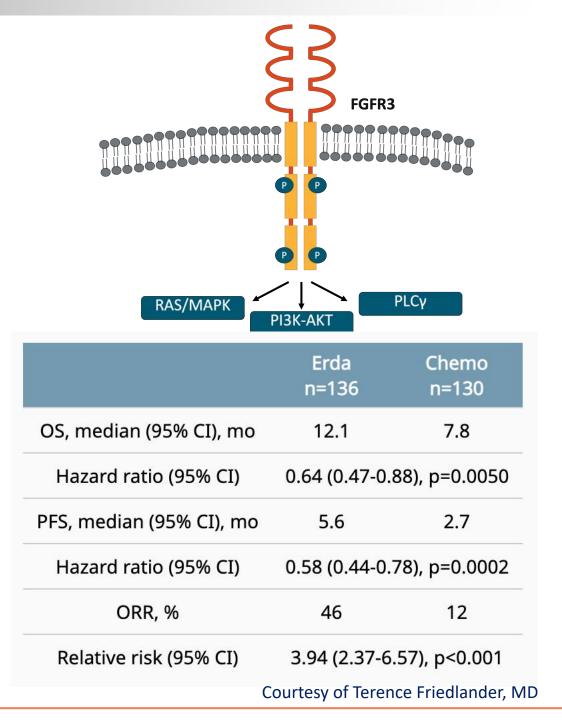
In general, when you administer sacituzumab govitecan for metastatic UBC, do you preemptively prescribe growth factors for the prevention of treatment-related neutropenia?

A patient who is experiencing a good response to sacituzumab govitecan for metastatic UBC is found to have an absolute neutrophil count of 900/mm³ without fever. What would be your treatment approach?

Dr Friedlander	Hold sacituzumab govitecan (SG) until counts return to normal, and restart at the same dose			
Dr Grivas	Hold SG until counts return to normal and start G-CSF if not already started; if already on G-CSF, SG at reduced dose			
Dr Gupta	Hold SG until counts return to normal, and restart at a reduced dose			
Dr Petrylak	Continue SG at a reduced dose			
Dr Plimack	Hold SG until counts return to normal, and restart at a reduced dose			
Dr Sonpavde	Hold SG until counts return to normal, and restart at the same dose			

In general, when you administer sacituzumab govitecan for metastatic UBC, do you preemptively initiate medication for ...?

	Nausea and vomiting	Diarrhea
Dr Friedlander	Yes	Yes
Dr Grivas	Yes	Νο
Dr Gupta	Yes	Yes
Dr Petrylak	Yes	Yes
Dr Plimack	Yes	Νο
Dr Sonpavde	Yes	Νο


What else is on the horizon?

 FGFR3 mutations present in ~20% of mUBC

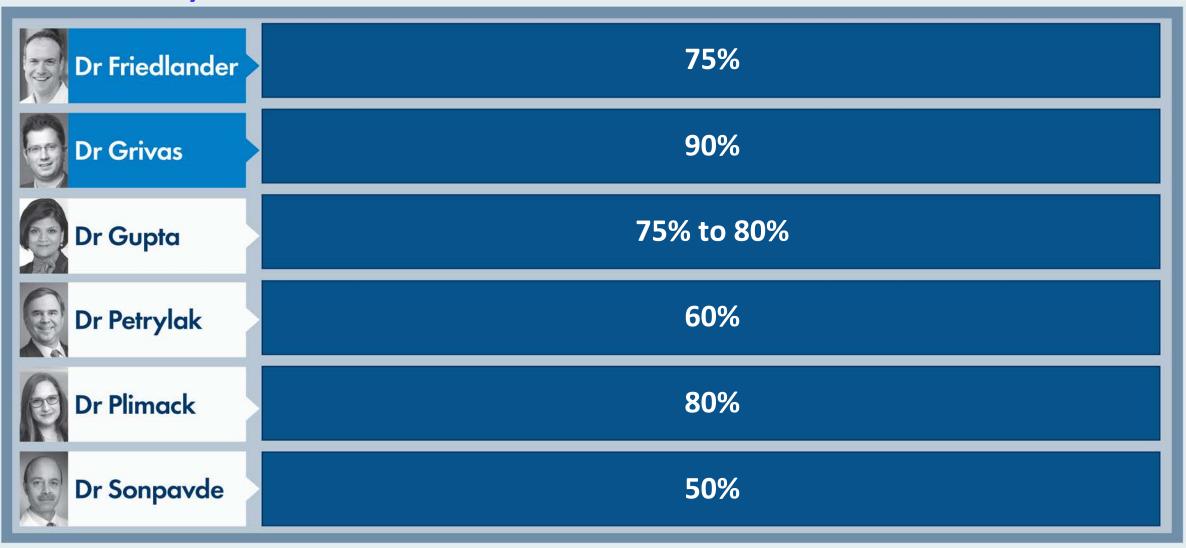
 Erdafitinib is an approved pan-FGFR inhibitor: Phase III THOR study

Is there synergy with PD-1 immunotherapy?

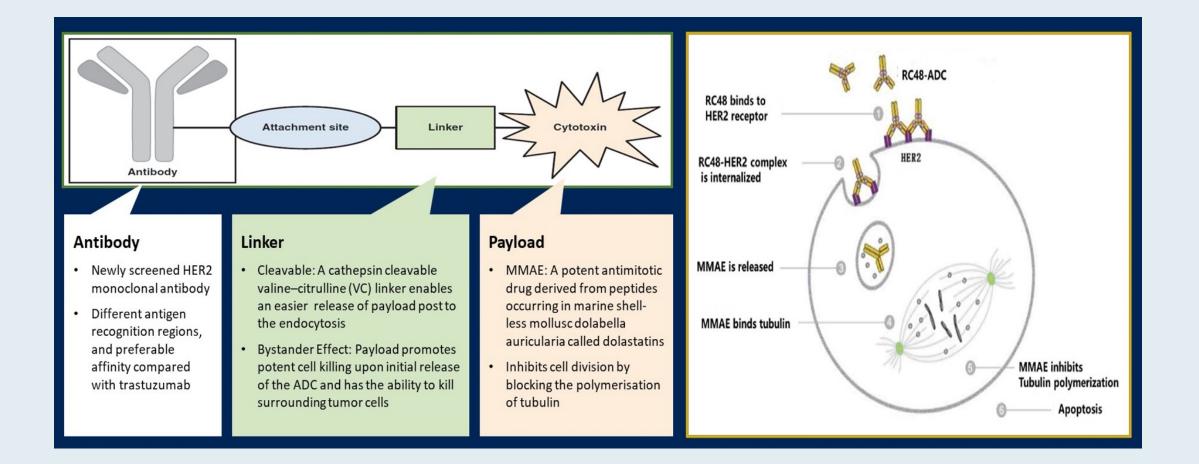
The Cancer Genome Atlas. Nature. 2014:507:315.
 Helsten. CCR. 2016;22:259.
 Li. Curr Urol Rep. 2016;17:12.
 Pandith. Urol Oncol. 2013;31:398.

How would you generally sequence the following agents for a patient with metastatic UBC who is eligible to receive all 3?

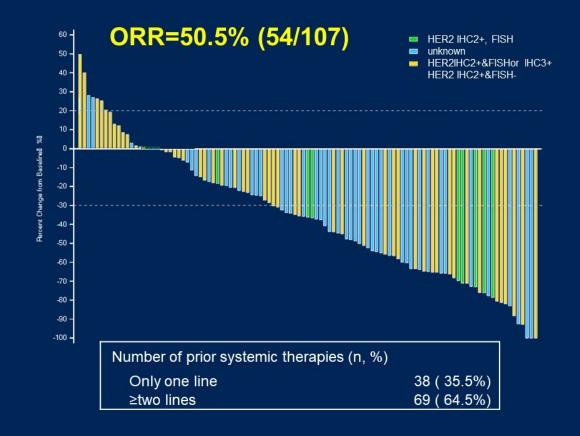
Dr Friedlander	Enfortumab vedotin $ ightarrow$ erdafitinib $ ightarrow$ sacituzumab govitecan
Dr Grivas	Erdafitinib $ ightarrow$ enfortumab vedotin $ ightarrow$ sacituzumab govitecan
Dr Gupta	Enfortumab vedotin $ ightarrow$ erdafitinib $ ightarrow$ sacituzumab govitecan
Dr Petrylak	Enfortumab vedotin $ ightarrow$ sacituzumab govitecan $ ightarrow$ erdafitinib
Dr Plimack	Enfortumab vedotin $ ightarrow$ erdafitinib $ ightarrow$ sacituzumab govitecan
Dr Sonpavde	Erdafitinib $ ightarrow$ enfortumab vedotin $ ightarrow$ sacituzumab govitecan



A 65-year-old patient receives neoadjuvant chemotherapy followed by cystectomy and then adjuvant nivolumab for UBC with an <u>FGFR mutation</u> but develops disease recurrence in the liver <u>9 months</u> after starting nivolumab. Regulatory and reimbursement issues aside, what would you likely recommend?



Based on available data and your clinical experience, approximately what proportion of patients who are receiving erdafitinib for metastatic UBC will require a dose reduction due to toxicity?

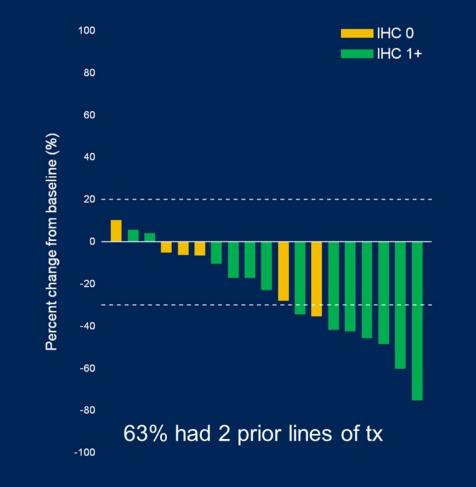

Disitamab Vedotin (RC48-ADC) Structure and Mechanisms of Action

RC48 active in HER2 2-3+ mUC (#4520 – Sheng et al)

Target Lesion Change from Baseline

Subgroup Analysis for cORR

Subgroups	cORR (%, 95% CI)
HER2 status	
IHC2+FISH+ or IHC3+ (n=45)	62.2% (46.5%, 76.2%)
IHC2+FISH- (n=53)	39.6% (26.5%, 54.0%)
Metastasis site	
Visceral Metastasis (n=97)	51.5% (41.2%, 61.8%)
Metastasis to Liver (n=48)	52.1% (37.2%, 66.7%)
Prior therapies	
Post PD1/PDL1 Treatments (n=27)	55.6% (35.3%, 74.5%)
Post 1 line of Chemotherapy (n=38)	50.0% (33.4%, 66.6%)
Post ≥2 Lines of Chemotherapy (n=69)	50.7% (38.4%, 63.0%)



PRESENTED BY: Matthew D. Galsky, MD

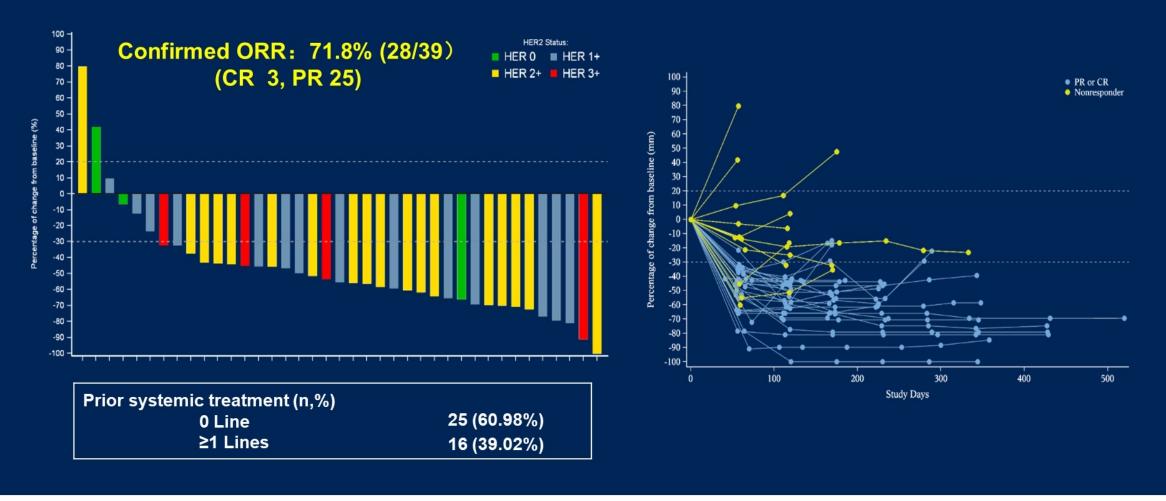
RC48 active in HER2 1+ mUC (#4519 – Xu et al)

Confirmed OR	R
n (%)	5 (26.3%)
95%CI	9.1%, 51.2%
Subgroups	cORR (%, 95% CI)
IHC 0 (n=6)	0
IHC 1+ (n=13)	38.5 (13.9, 68.4)

PRESENTED BY: Matthew D. Galsky, MD

RC48 AEs somewhat distinct from other ADCs

Adverse Event	RC48	Enfortumab Vedotin	Trastuzumab Deruxtecan
Neuropathy	+	+	
↑ AST	+	-/+	-
↓ neutrophils	+	-/+	+
Rash	_/+	+	-
↑ glucose	+	+	-
Diarrhea	-	-	+
Pneumonitis	-	-	+



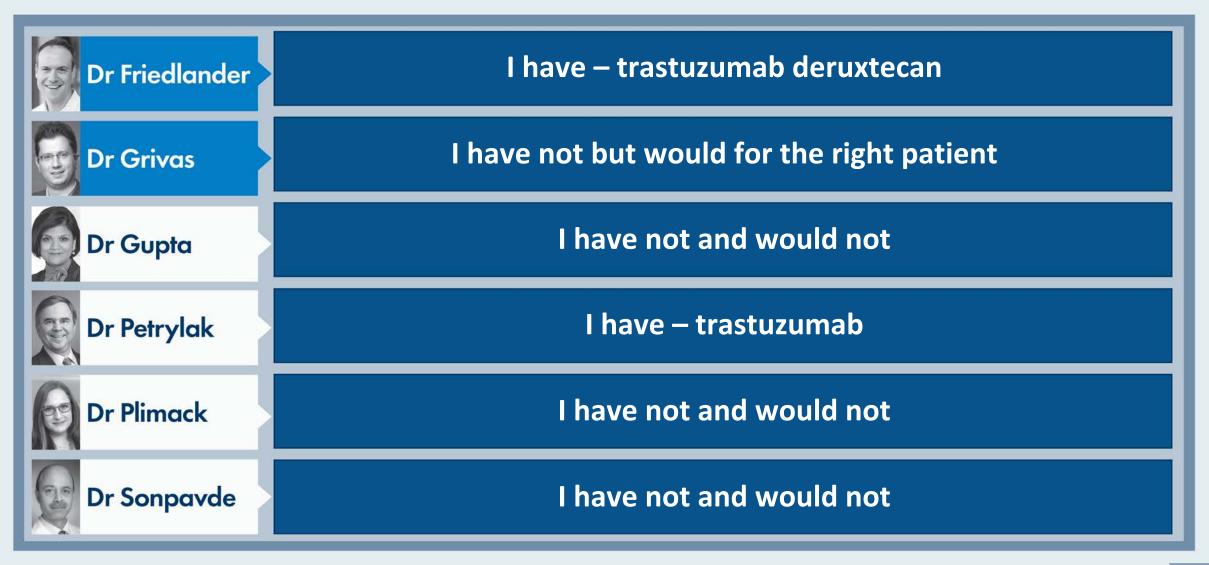
PRESENTED BY: Matthew D. Galsky, MD

RC48 + Toripalimab (#4520 – Sheng et al)

PRESENTED BY: Matthew D. Galsky, MD

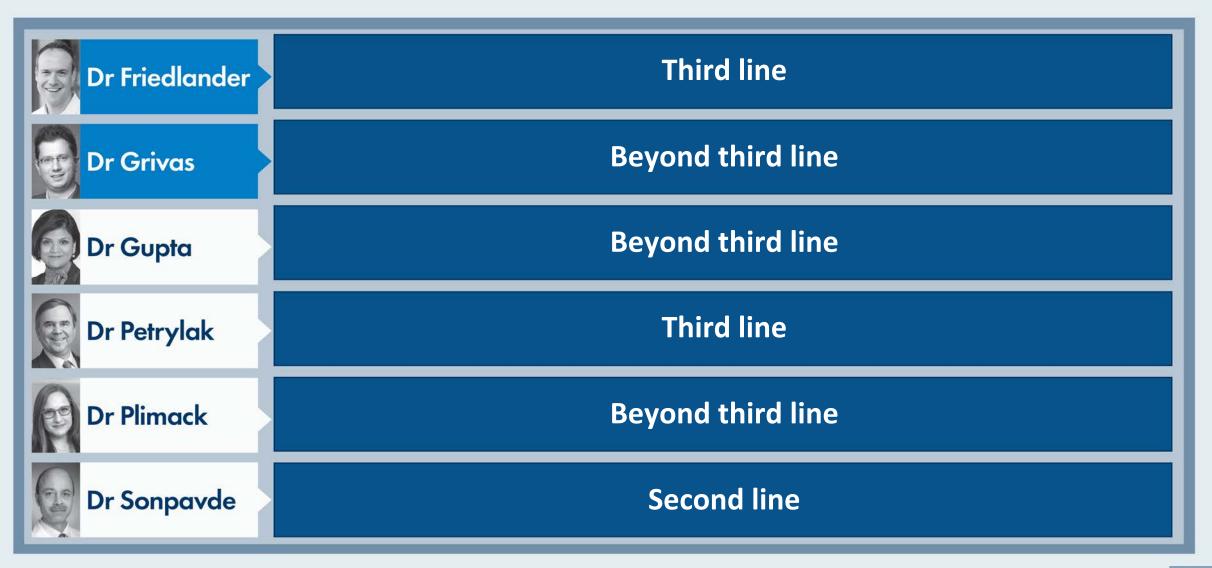
Is there something special about MMAE?

Reg <mark>imen</mark>	Payload	Ν	Population	HER2	ORR
Enfortumab vedotin + Pembrolizumab	MMAE (tubulin)	43	Cis-ineligible, tx naive	All	73%
Disitamab vedotin + Toripalimab	MMAE (tubulin)	39	60% tx naive	All	72%
Trastuzumab deruxtecan + Nivolumab	Dxd (Topo I)	26	Progressed despite prior platinum	2+ or 3+	36%
Sacitizumab govitecan + Pembroli <mark>zum</mark> ab	SN38 (Topo I)	41	Progressed despite prior platinum	All	34%
•		41	despite prior	All Friedlander, ASCO Galsky GU ASCO 2	2021; Shen


#ASC022

PRESENTED BY: Matthew D. Galsky, MD ASCO[®] AMERICAN SOCIETY OF CLINICAL ONCOLOGY KNOWLEDGE CONQUERS CANCER Regulatory and reimbursement issues aside, which agent or regimen would you be most likely to use for a patient with HER2-positive metastatic UBC?

Dr Friedlander	Trastuzumab/chemotherapy, disitamab vedotin, trastuzumab deruxtecan
Dr Grivas	Disitamab vedotin
Dr Gupta	Trastuzumab deruxtecan or disitamab vedotin
Dr Petrylak	Trastuzumab
Dr Plimack	Disitamab vedotin
Dr Sonpavde	Disitamab vedotin



Have you offered or would you offer HER2-targeted therapy to your patients with HER2-positive metastatic UBC outside of a protocol setting?

Regulatory and reimbursement issues aside, in which line of therapy would you generally offer targeted treatment to a patient with HER2-positive metastatic UBC?

APPENDIX

EV-103 Cohort K: First-Line Enfortumab Vedotin + Pembrolizumab in Cisplatin-Ineligible mUC

EV-103 Cohort K

Part of an open-label, multiple cohort, phase 1b/2 study in patients with urothelial carcinoma

			Cohort K
Patient Population	Dose Escalation	Expansion Cohort A	1:1 Randomization
Locally Advanced	EV+P	EV+P	
or Metastatic Urothelial	Cioplatin incligible	Ciaplatin incligible	EV+P or EV
Carcinoma	Cisplatin-ineligible 1L	Cisplatin-ineligible 1L	Cisplatin-ineligible
(la/mUC)	(n=5)	(n=40)	1L
			(N=151)

Stratification factors: Liver metastases (present/absent) and ECOG PS (0 or 1/2);

Exploratory endpoints: pharmacokinetics, antitherapeutic antibody, biomarkers of activity including baseline PD-L1 status and Nectin-4 expression, progression-free survival on subsequent therapy by investigator, patient reported outcomes

Friedlander et al. ASCO 2023. Journal of Clinical Oncology 2023 41:16_suppl, 4568-4568

EV-103 Cohort K: First-Line Enfortumab Vedotin + Pembrolizumab in Cisplatin-Ineligible mUC

EV+ 100 -90 80 Progression-free survival (%) 70 -60 -50 -40 -30 20 -0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (months EV+P **EV Mono** (N=76) (N=73) PFS events, n 33 37

Med	lian PFS and OS for E	V+P were not reached	
400	EV+P PFS	100	EV+P OS
100 - 90 -	*	100	
(% ^{80 -}	L	80 -	·
_07 Aal		<i>∞</i> ⁷⁰⁻	······································
NINS 60 -	L	val (%)	Ч <u>н</u>
9 50 -		+++ + ································	
-		<u>0</u>	

Progression-Free Survival per BICR and Overall Survival

8.2

(6.05, 15.28)

40.3

50 -Teres 40 -30 -20 -10 -0 -0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

														Tir	ne	(n	noi	nth	IS)											
No. at risk	76	75	74	72	70	70	67	66	65	64	64	60	55	49	45	39	37	30	26	22	21	18	14	8	6	4	2	2	1	1
																				/+ =7(ł				1		/ N N=		no 3)
OS ev	/ent	s,	n																2	23								3	0	
mOS	(95	%	С	I),	m	os												(2	1.3	-	_)				1		21 5.4		-)

81.5

17.6

69.7

18.2

No new safety signals

(8.31, -)

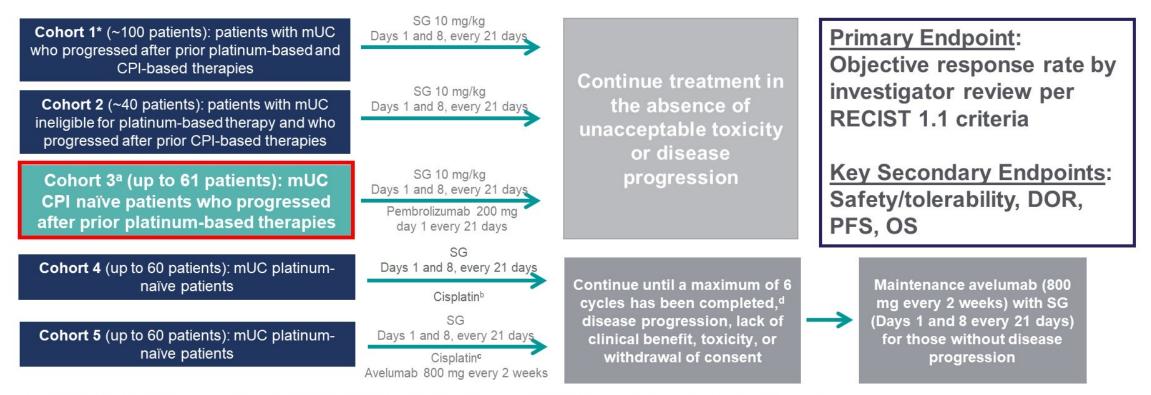
54.5

mPFS (95% CI), mos

PFS at 12 mos, %

Overall Response Rate by BICR EV+P: 64.5% confirmed ORR with rapid response

	EV+P (N=76)	EV Mono (N=73)
Confirmed ORR, n (%) (95% Cl)	49 (64.5) (52.7, 75.1)	33 (45.2) (33.5, 57.3)
Best overall response, n (%)		
Complete response	8 (10.5)	4 (5.5)
Partial response	41 (53.9)	29 (39.7)
Stable disease	17 (22.4)	25 (34.2)
Progressive disease	6 (7.9)	7 (9.6)
Not evaluable	3 (3.9)	5 (6.8)
No Assessment	1 (1.3)	3 (4.1)
Median time to objective response, mos (range)	2.07 (1.1, 6.6)	2.07 (1.9, 15.4)
Median number of treatment cycles (range)	12.0 (1, 34)	8.0 (1, 33)


Courtesy of Terence Friedlander, MD

Median follow-up time, mos

OS at 12 mos. %

TROPHY-U-01 Is a Registrational, Open-Label, Multicohort Phase 2 Trial in Patients With mUC

Key Inclusion Criteria: Age \geq 18 years, ECOG of 0/1, creatinine clearance (CrCl) \geq 30 mL/min,^{b,c} adequate hepatic function **Key Exclusion Criteria**: Immunodeficiency, active Hepatitis B or C, active secondary malignancy, or active brain metastases

*Accelerated FDA approval for treatment of patients with locally advanced or mUC who previously received platinum-containing chemotherapy and PD-1/L1 inhibitor¹

^aExclusions for Cohort 3 only: active autoimmune disease or history of interstitial lung disease. ^bIn patients with CrCl ≥60 mL/min; ^cIn patients with creatinine clearance 50–60 mL/min. ^dFor patients who have not progressed, maintenance therapy will begin with infusions of avelumab (800 mg every 2 weeks beginning cycle 1, day 1 and every 2 weeks thereafter) followed by SG on days 1 and 8 every 21 days. CBR, clinical benefit rate; CPI, checkpoint inhibitor; CrCl, creatinine clearance; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; mUC, metastatic urothelial cancer; NR, not reached; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; RECIST, Response Evaluation Criteria in Solid Tumors; SG, sacituzumab govitecan. 1. TRODELVY[™] (sacituzumab govitecan-hziy). Prescribing Information. Immunomedics, Inc.; April 2021; EudraCT Number: 2018-001167-23; ClinicalTrials.gov Number: NCT03547973. IMMU-132-06 study.

ASCO[•] Genitourinary Cancers Symposium

Abstract # 434.

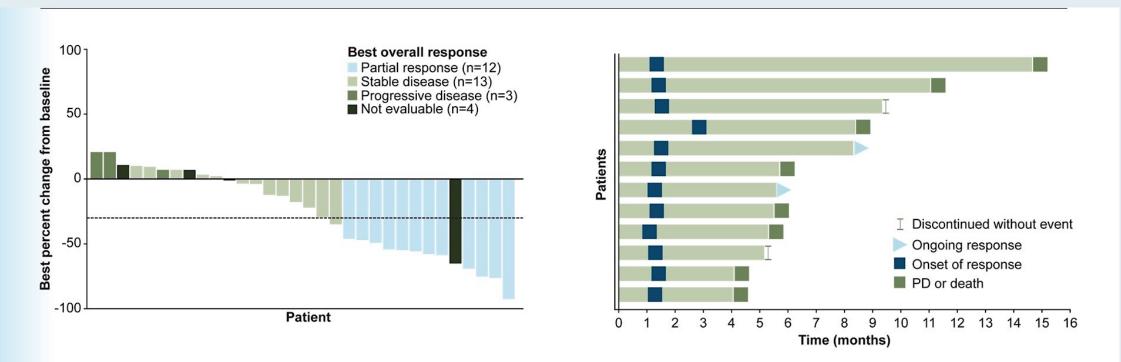
Courtesy of Terence Friedlander, MD

Grivas et al Journal of Clinical Oncology 2022 40:6_suppl, 434-434

5

TROPHY U-01 Cohort 3

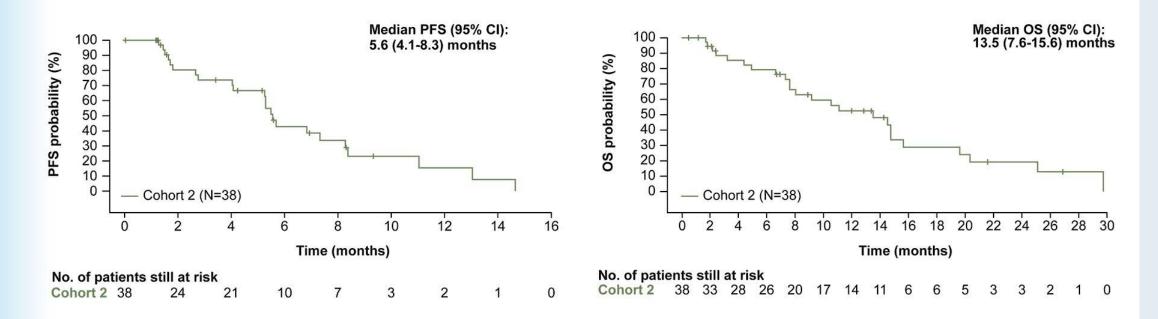
- Modest increase in ORR with addition of pembrolizumab
- Some long-term responders
 - Would this be seen with pembrolizumab monotherapy?
- More data needed to better understand interaction of SG and immunotherapy
- TROPiCS 04 Phase III monotherapy study of SG vs chemotherapy underway


TROPHY-U-01 Cohort 2, a Phase 2 Study of Sacituzumab Govitecan in Platinum-**Ineligible Patients With Metastatic Urothelial Cancer who Progressed After Prior Checkpoint Inhibitor Therapy**

Daniel P. Petrylak,¹ Scott T. Tagawa,² Rohit K. Jain,³ Manojkumar Bupathi,⁴ Arjun Balar,⁵ Arash Rezazadeh Kalebasty,⁶ Saby George,⁷ Phillip Palmbos,⁸ Luke Nordquist,⁹ Nancy Davis,¹⁰ Chethan Ramamurthy,¹¹ Cora N. Sternberg,² Yohann Loriot,¹² Neeraj Agarwal,¹³ Chandler Park,⁶ Julia Tonelli,¹⁴ Morganna Vance,¹⁴ Huafeng Zhou,¹⁴ and Petros Grivas¹⁵

¹Yale School of Medicine, New Haven, CT, USA; ²Weill Cornell Medical College of Cornell University, New York, NY, USA; ³H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; ⁴Rocky Mountain Cancer Centers, Littleton, CO, USA; ⁵New York University Langone Medical Center, New York, NY, USA; ⁶Norton Cancer Institute. Louisville. KY, USA: ⁷Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; ⁸University of Michigan, Ann Arbor, MI, USA; ⁹Urology Cancer Center, Omaha, NE, USA; ¹⁰Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; ¹¹University of Texas Health Science Center at San Antonio, San Antonio, TX, USA: ¹²Institut de Cancérologie Gustave Roussy, Université Paris-Saclay, Villejuif, France; ¹³Huntsman Cancer Institute, Salt Lake City, UT, USA; ¹⁴Gilead Sciences, Inc, Foster City, CA, USA; and ¹⁵University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA

TROPHY U-01 Cohort 2: Best Change in Target Lesions and Response Assessment from Start of Treatment to Disease Progression


- 69% of assessed patients (22/32) experienced target lesion reduction
- 2 patients had an ongoing response at data cutoff

^aPatients with missing percent change from baseline are not reported. PD, progressive disease.

Petrylak D et al. Genitourinary Cancers Symposium 2023; Abstract 520.

TROPHY U-01 Cohort 2: Progression-Free Survival and Overall Survival

- Median follow-up was 9.3 months
- Median PFS was 5.6 months (95% CI, 4.1-8.3)
- Median OS was13.5 months (95% CI, 7.6-15.6)

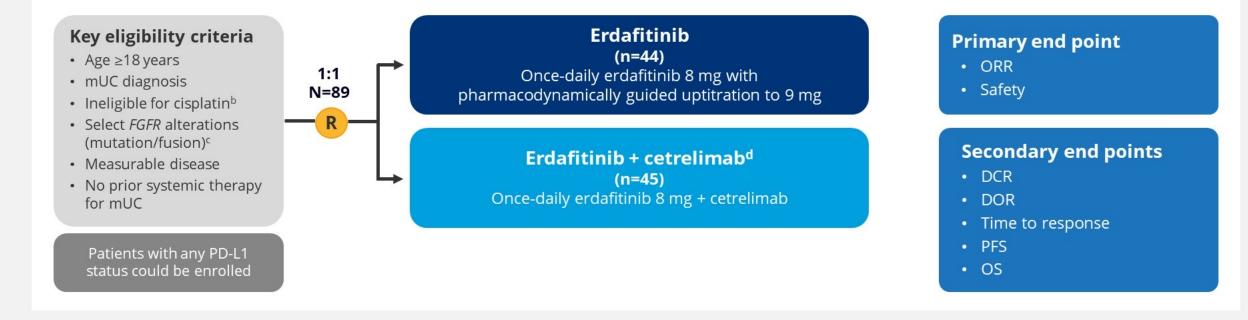
OS, overall survival; PFS, progression-free survival.

RTP RESEARCH TO PRACTICE

Petrylak D et al. Genitourinary Cancers Symposium 2023; Abstract 520.

TROPHY U-01 Cohort 2: Updated Safety Outcomes

TRAEs Occurring in >20% of Patients, n (%)	Cohort 2 (N=38)					
	All Grade	Grade ≥3				
Diarrhea	24 (63)	6 (16)				
Alopecia	19 (50)	0				
Nausea	18 (47)	0				
Neutropenia	17 (45)	13 (34)				
Fatigue	16 (42)	7 (18)				
Anemia	14 (37)	8 (21)				
Leukopenia	13 (34)	7 (18)				
Decreased appetite	10 (26)	0				


G-CSF, granulocyte colony-stimulating factor; SG, sacituzumab govitecan; TRAE, treatment-related adverse event.

- 26 (68%) patients had grade ≥3 TRAEs
 - The most common were neutropenia (34%), anemia (21%), leukopenia (18%), fatigue (18%), diarrhea (16%)
- 3 (8%) patients had treatment-related febrile neutropenia (2 with grade 3; 1 with grade 4)
- 14 (37%) patients had SG dose reduction due to TRAEs
- 7 (18%) patients discontinued treatment due to TRAEs
- · No treatment-related death occurred
- G-CSF was received by 7 (18%) patients for primary prophylaxis and 10 (26%) patients for secondary prophylaxis

Petrylak D et al. Genitourinary Cancers Symposium 2023; Abstract 520.

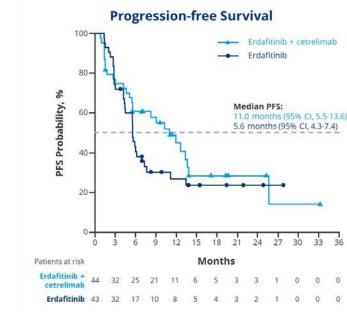
NORSE Phase 2 Study Design^a

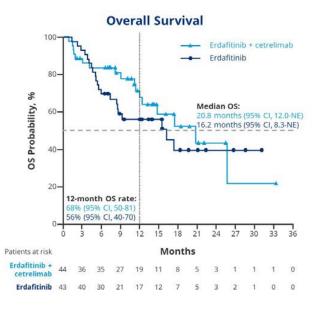
- Molecular eligibility was determined by central or local testing; a total of 1430 patients underwent central molecular screening^c
- No formal statistical comparisons between arms were prespecified

Courtesy of Terence Friedlander, MD

NORSE Trial: Erdafitinib +/-Pembrolizumab

Increase in ORR

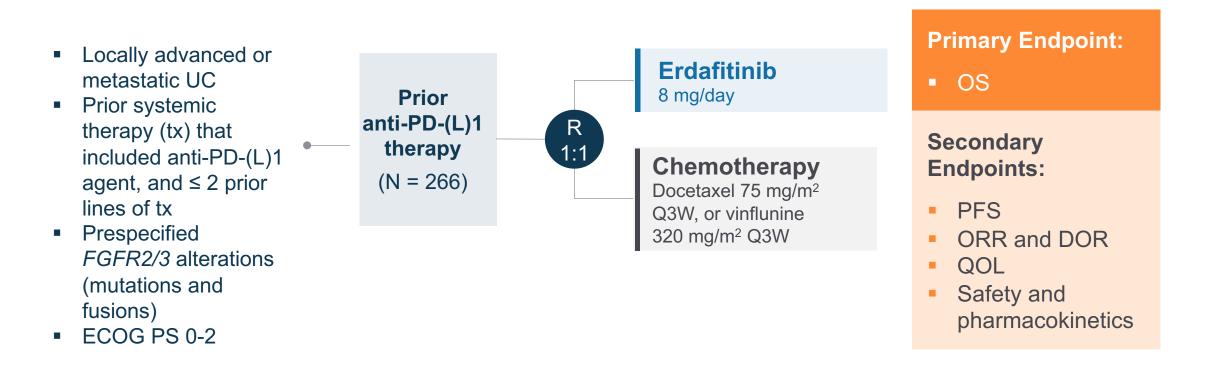

Better PFS/OS


synergistic?

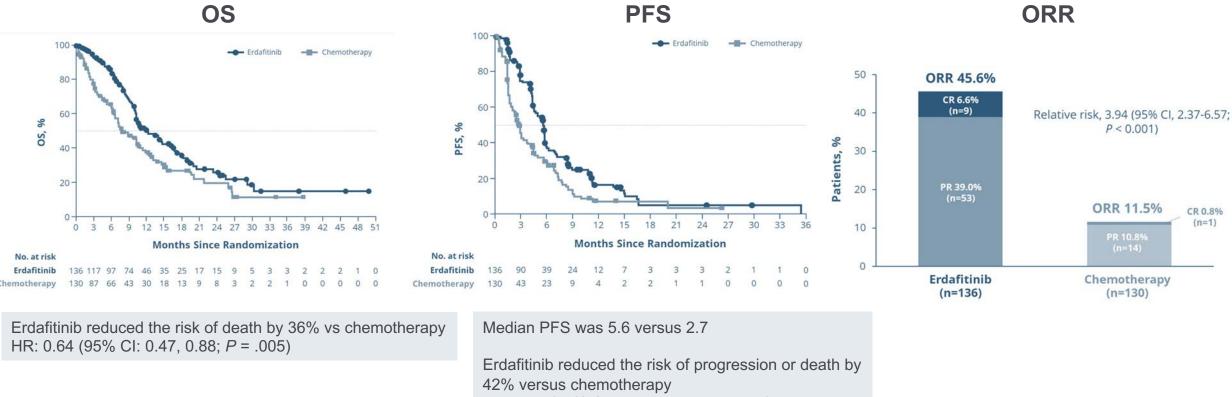
60 (95% CI, 38.8-69.6) ORR, 44.2% Confirmed (95% CI, 29.1-60.1) CR (n=6) 40 Patients, % Confirmed CR (n=1) Confirmed 20 Confirmed PR PR (n=18) (n=18) Is this additive or 0 **Erdafitinib + Cetrelimab** Erdafitinib (N=43)^a (N=44)^a Responses are investigator assessed.

ORR, 54.5%

No new safety signals



Siefker-Radke et al 2023 ASCO Annual Meeting J Clin Oncol 41, 2023 (suppl 16; abstr 4504)


Phase 3 THOR: Results of Erdafitinib vs Chemo in Advanced or Metastatic Urothelial Cancer With Fibroblast Growth Factor Receptor Alterations

THOR is a phase 3, randomized, open-label ongoing study of erdafitinib vs chemotherapy (vinflunine or docetaxel) or pembrolizumab in patients with metastatic or unresectable UC and selected FGFR alterations who have progressed on or after 1 prior line of therapy

Phase 3 THOR: Results of Erdafitinib vs Chemo in Advanced or Metastatic Urothelial Cancer With Fibroblast Growth Factor Receptor Alterations

Prior treatment with PD-(L)1, Erdafitinib significantly improved OS, PFS, and ORR vs investigator's choice of chemo.

HR: 0.58 (95% CI: 0.44, 0.78; *P* = .0002)

Overall survival (OS), Progression-free survival (PFS), Objective Response Rate (ORR) Loriot Y, et al. J Clin Oncol. 2023;41(suppl 17); abstr LBA4619.

Phase 3 THOR: Results of Erdafitinib vs Chemo in Advanced or Metastatic Urothelial Cancer With Fibroblast Growth Factor Receptor Alterations

Erdafitinib toxicity was consistent with known safety profile

Patients with AEs,	Erdafitinib (n=135)						
n (%) [,]	Any grade	Grade 3-4					
≥1 treatment-related AE	131 (97.0)	62 (45.9)					
Hyperphosphatemia	106 (78.5)	7 (5.2)					
Diarrhea	74 (54.8)	4 (3.0)					
Stomatitis	62 (45.9)	11 (8.1)					
Dry mouth	52 (38.5)	0					
PPE syndrome	41 (30.4)	13 (9.6)					
Onycholysis	31 (23.0)	8 (5.9)					
Patients who discontinued study treatment, n (%)							
Discontinuation due to treatment-related AEs	11 (8.1%)						

Patients with AEs,	Chemotherapy (n=112)							
n (%)	Any grade	Grade 3-4						
≥1 treatment-related AE	97 (86.6)	52 (46.4)						
Anemia	31 (27.7)	7 (6.3)						
Alopecia	24 (21.4)	0						
Nausea	22 (19.6)	2 (1.8) 15 (13.4)						
Neutropenia	21 (18.8)							
Leukopenia	13 (11.6)	9 (8.0)						
Febrile neutropenia	9 (8.0)	10 (8.9)						
Patients who discontinued study treatment, n (%)								
Discontinuation due to treatment-related AEs	15 (1	3.4)						

- 18 patients (13.3%) treatment-related serious AEs
- 1 treatment-related death occurred

- 27 patients (24.1%) treatment-related serious AEs
- 6 treatment-related deaths occurred

What I Tell My Patients: Faculty Physicians and Nurses Discuss Patient Education About New Treatments and Clinical Trials

Part 3 of a 3-Part Complimentary NCPD Webinar Series in Partnership with the 2023 ONS Congress

Chronic Lymphocytic Leukemia

Thursday, July 6, 2023 5:00 PM – 6:00 PM ET

Faculty Kristen E Battiato, AGNP-C Jennifer Woyach, MD

> Moderator Neil Love, MD

Thank you for joining us!

Please take a moment to complete the survey currently up on Zoom. Your feedback is very important to us. The survey will remain open up to 5 minutes after the meeting ends.

CME and MOC credit information will be emailed to each participant within 5 business days.

