Inside the Issue: Optimizing the Management of Metastatic Pancreatic Cancer

A CME/MOC-Accredited Live Webinar

Tuesday, August 8 5:00 PM – 6:00 PM ET

Faculty Eileen M O'Reilly, MD Zev Wainberg, MD, MSc

Faculty

Eileen M O'Reilly, MD

Winthrop Rockefeller Endowed Chair in Medical Oncology Section Head, Hepatopancreaticobiliary and Neuroendocrine Cancers Co-Director, Medical Initiatives David M Rubenstein Center for Pancreatic Cancer Research Chair, Human Research Protection Program and IRB Attending Physician, Member Memorial Sloan Kettering Cancer Center Professor of Medicine Weill Cornell Medical College New York, New York

Zev Wainberg, MD, MSc

Co-Director, GI Oncology Program Director of Early Phase Clinical Research Jonsson Comprehensive Cancer Center UCLA School of Medicine Los Angeles, California

Moderator Neil Love, MD Research To Practice

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Ipsen Biopharmaceuticals Inc, Merck, and Novocure Inc.

Dr Love — Disclosures

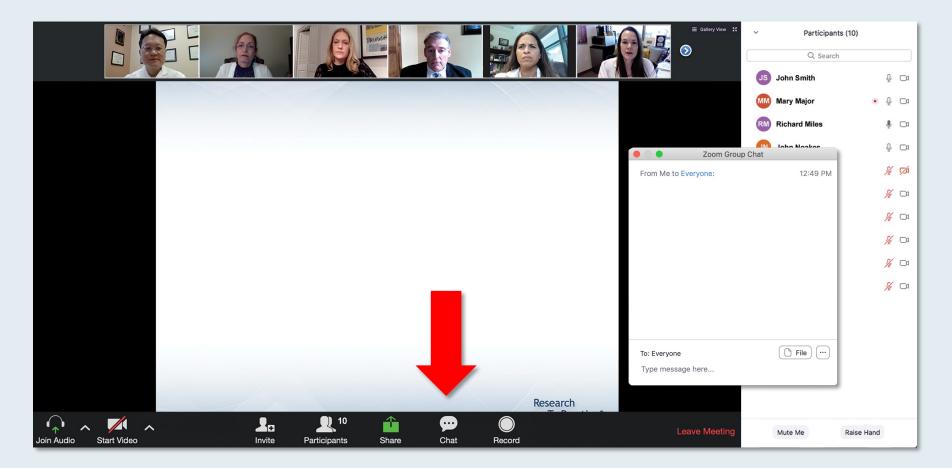
Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab US Inc, Gilead Sciences Inc, Grail Inc, GSK, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Legend Biotech, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc, and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr O'Reilly — Disclosures

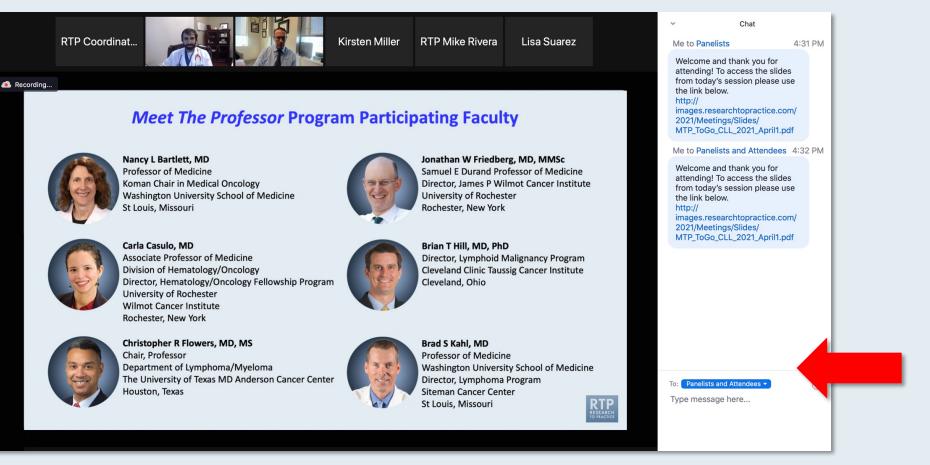
Consulting Agreements	Astellas, AstraZeneca Pharmaceuticals LP, Autem Therapeutics, Berry Genomics, BioNTech SE, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Eisai Inc, Exelixis Inc, FibroGen Inc, Genentech, a member of the Roche Group, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Merck, Merus BV, Neogene Therapeutics, Novartis, Servier Pharmaceuticals LLC, Tempus, Thetis Pharmaceuticals, Vector Pharma, Yiviva
Contracted Research	Agenus Inc, Arcus Biosciences, AstraZeneca Pharmaceuticals LP, BioNTech SE, Bristol Myers Squibb, Digestive Care Inc, Elicio Therapeutics,Genentech, a member of the Roche Group, Helsinn Healthcare SA, Puma Biotechnology Inc, QED Therapeutics, Yiviva
Nonrelevant Financial Relationship	Parker Institute for Cancer Immunotherapy



Dr Wainberg — Disclosures

Advisory Committee and Consulting Agreements	Amgen Inc, Arcus Biosciences, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Lilly, Merck, Novartis, Roche Laboratories Inc, Seagen Inc, Takeda Pharmaceuticals USA Inc
Contracted Research	Arcus Biosciences, Bristol Myers Squibb
Data and Safety Monitoring Board/Committee	Daiichi Sankyo Inc, Pfizer Inc

We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY WITH DR NEIL LOVE

Key Presentations Related to Gastrointestinal Cancers from Recent Major Oncology Conferences

DR RACHNA SHROFF UNIVERSITY OF ARIZONA CANCER CENTER

Dr Rachna Shroff – Key Presentations Oncology Today with Dr Neil Love —

(15) (30)

Meet The Professor Optimizing the Management of Melanoma

> Thursday, August 10, 2023 5:00 PM – 6:00 PM ET

Faculty Prof Georgina Long, AO, BSc, PhD, MBBS

What Clinicians Want to Know About Toxicity Considerations Associated with BTK Inhibitors

A CME/MOC-Accredited Virtual Event

Wednesday, August 30, 2023 5:00 PM – 6:00 PM ET

Faculty Nicole Lamanna, MD William G Wierda, MD, PhD

Consensus or Controversy? Documenting and Discussing Clinical Investigators' Practice Patterns in Myelofibrosis

A CME Satellite Symposium During the Society of Hematologic Oncology 2023 Annual Meeting

> Thursday, September 7, 2023 6:34 PM – 7:34 PM CT

Faculty Prithviraj Bose, MD Andrew T Kuykendall, MD

Moderator John Mascarenhas, MD

Cases from the Community: Investigators Discuss the Application of Available Research in the Care of Patients with Diffuse Large B-Cell Lymphoma

A CME Satellite Symposium During the Society of Hematologic Oncology 2023 Annual Meeting

> Friday, September 8, 2023 11:37 AM – 12:37 PM CT

Faculty Matthew Lunning, DO Laurie H Sehn, MD, MPH

Moderator Christopher R Flowers, MD, MS

Inside the Issue: Optimizing the Management of Metastatic BRCA-Negative, Triple-Negative Breast Cancer

A CME/MOC-Accredited Live Webinar

Monday, September 11, 2023 5:00 PM – 6:00 PM ET

Faculty Hope S Rugo, MD Tiffany A Traina, MD, FASCO

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Inside the Issue: Optimizing the Management of Metastatic Pancreatic Cancer

A CME/MOC-Accredited Live Webinar

Tuesday, August 8 5:00 PM – 6:00 PM ET

Faculty Eileen M O'Reilly, MD Zev Wainberg, MD, MSc

Faculty

Eileen M O'Reilly, MD

Winthrop Rockefeller Endowed Chair in Medical Oncology Section Head, Hepatopancreaticobiliary and Neuroendocrine Cancers Co-Director, Medical Initiatives David M Rubenstein Center for Pancreatic Cancer Research Chair, Human Research Protection Program and IRB Attending Physician, Member Memorial Sloan Kettering Cancer Center Professor of Medicine Weill Cornell Medical College New York, New York

Zev Wainberg, MD, MSc

Co-Director, GI Oncology Program Director of Early Phase Clinical Research Jonsson Comprehensive Cancer Center UCLA School of Medicine Los Angeles, California

Moderator Neil Love, MD Research To Practice

Survey Participants

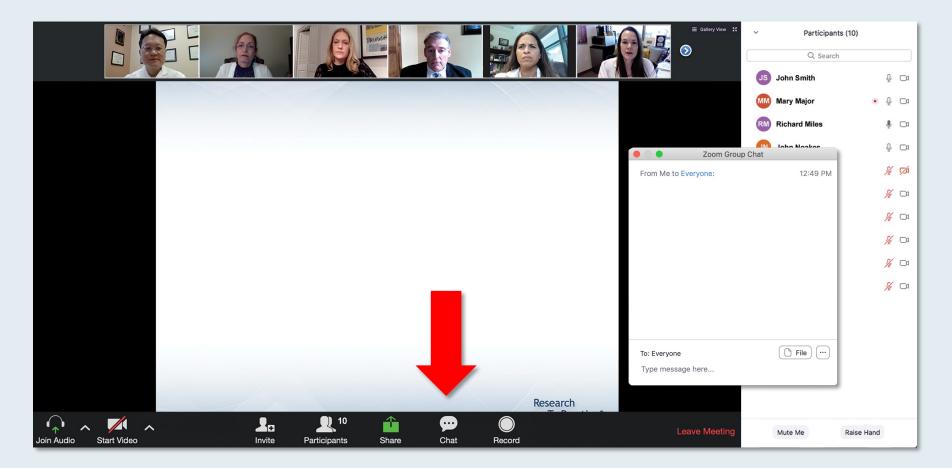
Tanios Bekaii-Saab, MD

Professor, Mayo Clinic College of Medicine and Science Program Leader, Gastrointestinal Cancer Mayo Clinic Cancer Center Consultant, Mayo Clinic in Arizona Chair, ACCRU Research Consortium Phoenix, Arizona

Philip A Philip, MD, PhD, FRCP Professor of Oncology and Pharmacology Leader, GI and Neuroendocrine Oncology Henry Ford Cancer Institute Wayne State University

Detroit, Michigan

Michael Pishvaian, MD, PhD Associate Professor, Department of Oncology Johns Hopkins University School of Medicine Washington, DC


Kristen K Ciombor, MD, MSCI Associate Professor of Medicine Division of Hematology/Oncology Vanderbilt-Ingram Cancer Center Nashville, Tennessee

Wells A Messersmith, MD Chief Medical Officer, Oncology Services Professor and Head, Division of Medical Oncology University of Colorado Cancer Center Aurora, Colorado

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

Meet The Professor Optimizing the Management of Melanoma

> Thursday, August 10, 2023 5:00 PM – 6:00 PM ET

Faculty Prof Georgina Long, AO, BSc, PhD, MBBS

What Clinicians Want to Know About Toxicity Considerations Associated with BTK Inhibitors

A CME/MOC-Accredited Virtual Event

Wednesday, August 30, 2023 5:00 PM – 6:00 PM ET

Faculty Nicole Lamanna, MD William G Wierda, MD, PhD

Consensus or Controversy? Documenting and Discussing Clinical Investigators' Practice Patterns in Myelofibrosis

A CME Satellite Symposium During the Society of Hematologic Oncology 2023 Annual Meeting

> Thursday, September 7, 2023 6:34 PM – 7:34 PM CT

Faculty Prithviraj Bose, MD Andrew T Kuykendall, MD

Moderator John Mascarenhas, MD

Cases from the Community: Investigators Discuss the Application of Available Research in the Care of Patients with Diffuse Large B-Cell Lymphoma

A CME Satellite Symposium During the Society of Hematologic Oncology 2023 Annual Meeting

> Friday, September 8, 2023 11:37 AM – 12:37 PM CT

Faculty Matthew Lunning, DO Laurie H Sehn, MD, MPH

Moderator Christopher R Flowers, MD, MS

Inside the Issue: Optimizing the Management of Metastatic BRCA-Negative, Triple-Negative Breast Cancer

A CME/MOC-Accredited Live Webinar

Monday, September 11, 2023 5:00 PM – 6:00 PM ET

Faculty Hope S Rugo, MD Tiffany A Traina, MD, FASCO

ONCOLOGY TODAY WITH DR NEIL LOVE

Key Presentations Related to Gastrointestinal Cancers from Recent Major Oncology Conferences

DR RACHNA SHROFF UNIVERSITY OF ARIZONA CANCER CENTER

Dr Rachna Shroff – Key Presentations Oncology Today with Dr Neil Love —

(15) (30)

Inside the Issue: Optimizing the Management of Metastatic Pancreatic Cancer

A CME/MOC-Accredited Live Webinar

Tuesday, August 8 5:00 PM – 6:00 PM ET

Faculty Eileen M O'Reilly, MD Zev Wainberg, MD, MSc

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Ipsen Biopharmaceuticals Inc, Merck, and Novocure Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr O'Reilly — Disclosures

Consulting Agreements	Astellas, AstraZeneca Pharmaceuticals LP, Autem Therapeutics, Berry Genomics, BioNTech SE, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Eisai Inc, Exelixis Inc, FibroGen Inc, Genentech, a member of the Roche Group, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Merck, Merus BV, Neogene Therapeutics, Novartis, Servier Pharmaceuticals LLC, Tempus, Thetis Pharmaceuticals, Vector Pharma, Yiviva
Contracted Research	Agenus Inc, Arcus Biosciences, AstraZeneca Pharmaceuticals LP, BioNTech SE, Bristol Myers Squibb, Digestive Care Inc, Elicio Therapeutics,Genentech, a member of the Roche Group, Helsinn Healthcare SA, Puma Biotechnology Inc, QED Therapeutics, Yiviva
Nonrelevant Financial Relationship	Parker Institute for Cancer Immunotherapy

Dr Wainberg — Disclosures

Advisory Committee and Consulting Agreements	Amgen Inc, Arcus Biosciences, Astellas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Lilly, Merck, Novartis, Roche Laboratories Inc, Seagen Inc, Takeda Pharmaceuticals USA Inc
Contracted Research	Arcus Biosciences, Bristol Myers Squibb
Data and Safety Monitoring Board/Committee	Daiichi Sankyo Inc, Pfizer Inc

Selection and Sequencing of Therapy for Patients with Metastatic Pancreatic Cancer

Zev Wainberg, MD, MSc

Research To Practice Current and Future Role of Biomarker-Based Decision-Making in Metastatic Pancreatic Cancer

Eileen M. O'Reilly, MD Memorial Sloan Kettering Cancer Center

08-03 2023

Memorial Sloan Kettering Cancer Center

Key Data Sets

Zev Wainberg, MD, MSc

- Conroy T et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. *N Engl J Med* 2011 May 12;364(19):1817-25.
- Von Hoff DD et al. Increased survival in pancreatic cancer with *nab*-paclitaxel plus gemcitabine. *N Engl J Med* 2013 October 31;369(18):1691-703.
- Wainberg ZA et al. NAPOLI-3: A randomized, open-label phase 3 study of liposomal irinotecan + 5-fluorouracil/leucovorin + oxaliplatin (NALIRIFOX) versus *nab*-paclitaxel + gemcitabine in treatment-naïve patients with metastatic pancreatic ductal adenocarcinoma (mPDAC). Gastrointestinal Cancers Symposium 2023;Abstract LBA 661.
- De Dosso S et al. Treatment landscape of metastatic pancreatic cancer. *Can Treat Rev* 2021;96:102180.
- Wang-Gillam A et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial. *Lancet* 2016 February 6;387(10018):545-57.

Key Data Sets

Zev Wainberg, MD, MSc (continued)

- Go S et al. Modified FOLFIRINOX versus S-1 as second-line chemotherapy in gemcitabine-failed metastatic pancreatic cancer patients: A randomised controlled trial (MPACA-3). *Eur J Cancer* 2021;157:21-30.
- Zaibet S et al. Gemcitabine + *nab*-paclitaxel or gemcitabine alone after FOLFIRINOX failure in patients with metastatic pancreatic adenocarcinoma: A real-world AGEO study. *Br J Cancer* 2022;126(10):1394-400.
- De la Fouchardière C et al. Evaluation of gemcitabine and paclitaxel versus gemcitabine alone after FOLFIRINOX failure or intolerance in metastatic pancreatic ductal adenocarcinoma: Results of the randomized phase III PRODIGE 65 – UCGI 36 – GEMPAX UNICANCER study. ESMO 2022;Abstract LBA60.
- Rivera F et al. Tumor treating fields in combination with gemcitabine or gemcitabine plus *nab*-paclitaxel in pancreatic cancer: Results of the PANOVA phase 2 study. *Pancreatology* 2019; 19(1):64-72.
- Picozzi VJ et al. Tumor treating fields (TTFields) concomitant with gemcitabine and *nab*-paclitaxel (GnP) for front-line treatment of locally advanced pancreatic cancer: The phase 3 PANOVA-3 study. Gastrointestinal Cancers Symposium 2023;Abstract TPS770.

Key Data Sets

Eileen M O'Reilly, MD

- Park W et al. Pancreatic cancer: A review. JAMA 2021 September 7;326(9):851-62.
- O'Reilly EM et al. Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation. *J Clin Oncol* 2020 May 1;38(13):1378-88.
- Kindler HL et al. Overall survival results from the POLO trial: A phase III study of active maintenance olaparib versus placebo for germline BRCA-mutated metastatic pancreatic cancer. *J Clin Oncol* 2022 December 1;40(34):3929-39.
- Asimgil H et al. Targeting the undruggable oncogenic KRAS: The dawn of hope. *JCI Insight* 2022 January 11;7(1):e153688.
- Strickler JH et al. Sotorasib in KRAS p.G12C-mutated advanced pancreatic cancer. *N Engl J Med* 2023 January 5;388(1):33-43.
- Bekaii-Saab TS et al. Adagrasib in advanced solid tumors harboring a KRAS G12C mutation.
 J Clin Oncol 2023 April 26;[Online ahead of print].

Key Data Sets

Eileen M O'Reilly, MD (continued)

- O'Reilly EM et al. AMPLIFY-201, a first-in-human safety and efficacy trial of adjuvant ELI-002 2P immunotherapy for patients with high-relapse risk with KRAS G12D- or G12Rmutated pancreatic and colorectal cancer. ASCO 2023;Abstract 2528.
- Varghese AM et al. Early-onset pancreas cancer: Clinical descriptors, genomics, and outcomes. *J Natl Cancer Inst* 2021 September 4;113(9):1194-202.
- Qin S et al. Nimotuzumab combined with gemcitabine versus gemcitabine in K-RAS wildtype locally advanced or metastatic pancreatic cancer: A prospective, randomizedcontrolled, double-blinded, multicenter, and phase III clinical trial. ASCO 2022;Abstract LBA4011.
- Wang X et al. NeoTACE: A multicenter, randomized study evaluating the efficacy and safety of neoadjuvant HAIC for TACE plus donafenib in BCLC B stage hepatocellular carcinoma outside of up-to-seven. ASCO 2023;Abstract TPS4186.
- Rojas LA et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. *Nature* 2023 June;618(7963):144-50.
- O'Kane GM et al. GATA6 expression distinguishes classical and basal-like subtypes in advanced pancreatic cancer. *Clin Cancer Res* 2020 September 15;26(18):4901-10.

Agenda

INTRODUCTION

MODULE 1: Selection and Sequencing of Therapy for Patients with Metastatic Pancreatic Cancer

MODULE 2: Ongoing Clinical Trials

MODULE 3: Current and Future Role of Biomarker-Based Decision-Making in Metastatic Pancreatic Cancer

MODULE 4: Clinical Investigator Survey

Agenda

INTRODUCTION

MODULE 1: Selection and Sequencing of Therapy for Patients with Metastatic Pancreatic Cancer

MODULE 2: Ongoing Clinical Trials

MODULE 3: Current and Future Role of Biomarker-Based Decision-Making in Metastatic Pancreatic Cancer

MODULE 4: Clinical Investigator Survey

Increasing Pancreatic Cancer Incidence in Young Women in the United States: A Population-Based Time-Trend Analysis, 2001–2018

Yazan Abboud,¹ Jamil S. Samaan,² Janice Oh,² Yi Jiang,¹ Navkiran Randhawa,³ Daniel Lew,¹ Jenan Ghaith,¹ Pranav Pala,⁴ ChristineAnn Leyson,¹ Rabindra Watson,¹ Quin Liu,¹ Kenneth Park,¹ Shirley Paski,¹ Arsen Osipov,⁵ Brent K. Larson,⁶ Andrew Hendifar,⁵ Katelyn Atkins,⁷ Nicholas N. Nissen,⁸ Debiao Li,⁹ Stephen J. Pandol,¹ Simon K. Lo,¹ and Srinivas Gaddam¹

Gastroenterology 2023 May;164(6):978-89.e6.

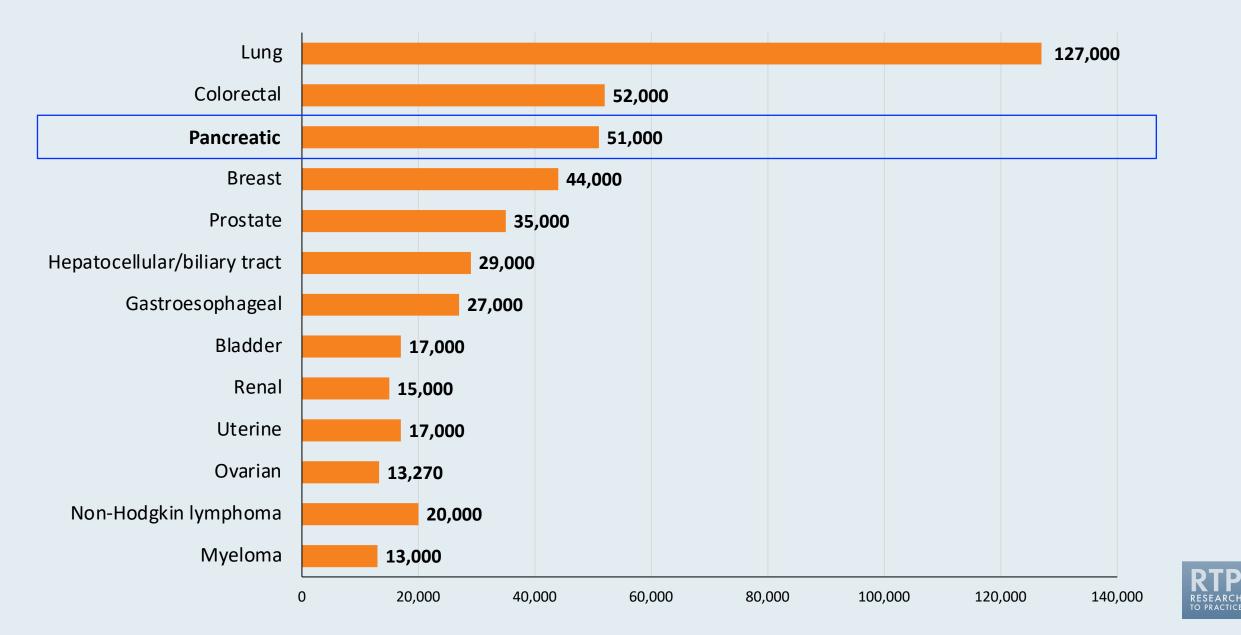
Cause for concern: the rising incidence of early-onset pancreatic cancer

Editorial

Lancet Gastroenterol Hepatol 2023 April;8(4):287.

<u>Clinical Research Relevance¹</u>

"Our research reveals a notable increase in the occurrence of pancreatic cancer among younger women, particularly among those of Black race. Furthermore, a significant proportion of these cases involve tumors situated in the head of pancreas, and are localized at the time-of-diagnosis."


Editorial²

"Funding for pancreatic cancer research has been historically neglected. In Europe, it receives less than 2% of cancer-related funding, and in the USA it is one of the most underfunded cancers relative to mortality burden."

¹Abboud Y et al. *Gastroenterology* 2023 May;164(6):978-89.e6; ² Lancet Gastroenterol Hepatol 2023 April;8(4):287.

US Mortality Rates of Common Cancers

Agenda

INTRODUCTION

MODULE 1: Selection and Sequencing of Therapy for Patients with Metastatic Pancreatic Cancer

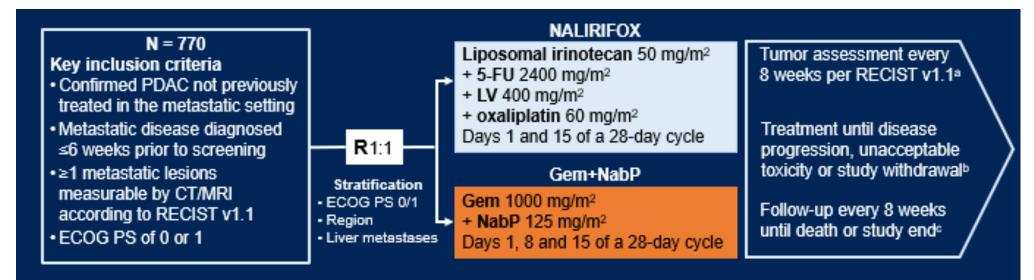
MODULE 2: Ongoing Clinical Trials

MODULE 3: Current and Future Role of Biomarker-Based Decision-Making in Metastatic Pancreatic Cancer

MODULE 4: Clinical Investigator Survey

Selection and Sequencing of Therapy for Patients with Metastatic Pancreatic Cancer

Zev Wainberg, MD, MSc


Dr Wainberg – Case Study 1

- 63-year-old with diabetes who presents with epigastric pain radiating to his back and a 10 lb weight loss
- Exam: Scleral icterus, jaundice
- Labs: ALT 37, AST 36, Tbili 4.5, Alk Phos 106, Alb 3.3
- CT A/P shows a 4.5 × 4.1 cm hypoenhancing heterogeneous mass in the pancreatic head with intrahepatic biliary dilatation and multiple hypoattenuating lesions in the liver measuring up to 3 cm in size
- ERCP: common bile duct stent is placed; LFTs normalized
- FNA of the liver lesion confirms adenocarcinoma
- Unable to obtain NGS given FNA and patient declines additional biopsy
- Germline testing reveals no abnormalities

Dr Wainberg – Case Study 1 (con't)

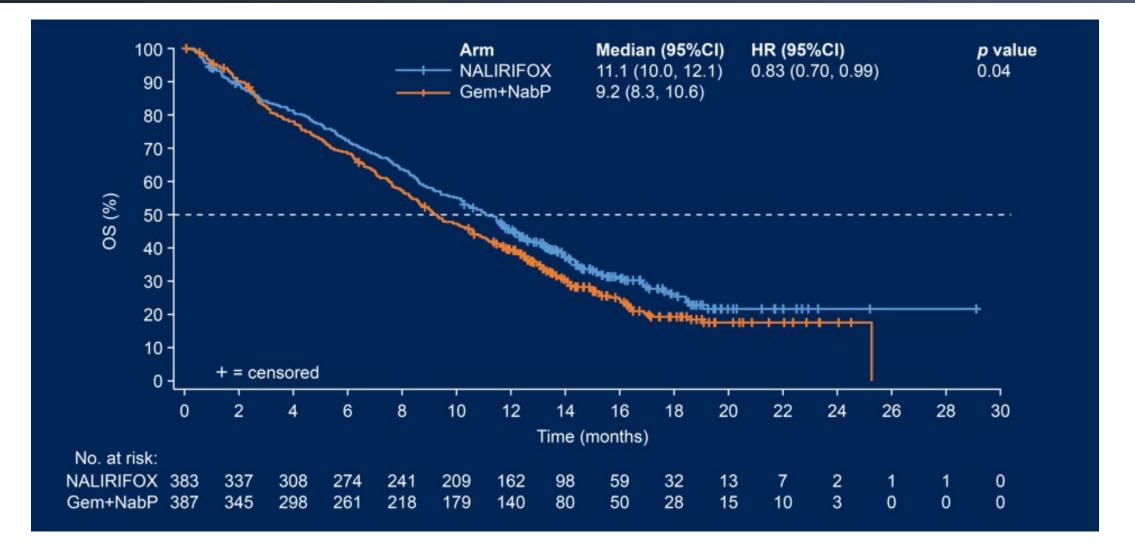
- He enrolls on the NAPOLI-3 trial and is randomized to chemotherapy with NALIRIFOX and responds well on follow-up imaging after cycle 4
- Requires a 20% dose reduction of oxaliplatin for peripheral neuropathy at cycle 8
- By cycle 10, neuropathy is becoming more bothersome, lingering into his off-week from treatment
- Oxaliplatin is discontinued, and he is on "maintenance" FOLFIRI
- By cycle 12, his CA 19-9 is increasing, and CT scans show stable disease
- Discussion with the patient and oxaliplatin re-introduced at a lower dose (45 mg/m²)

NAPOLI-3 Trial: First-Line Liposomal Irinotecan + 5-FU/Leucovorin + Oxaliplatin vs Nab-Paclitaxel + Gemcitabine

Primary endpoint: OS

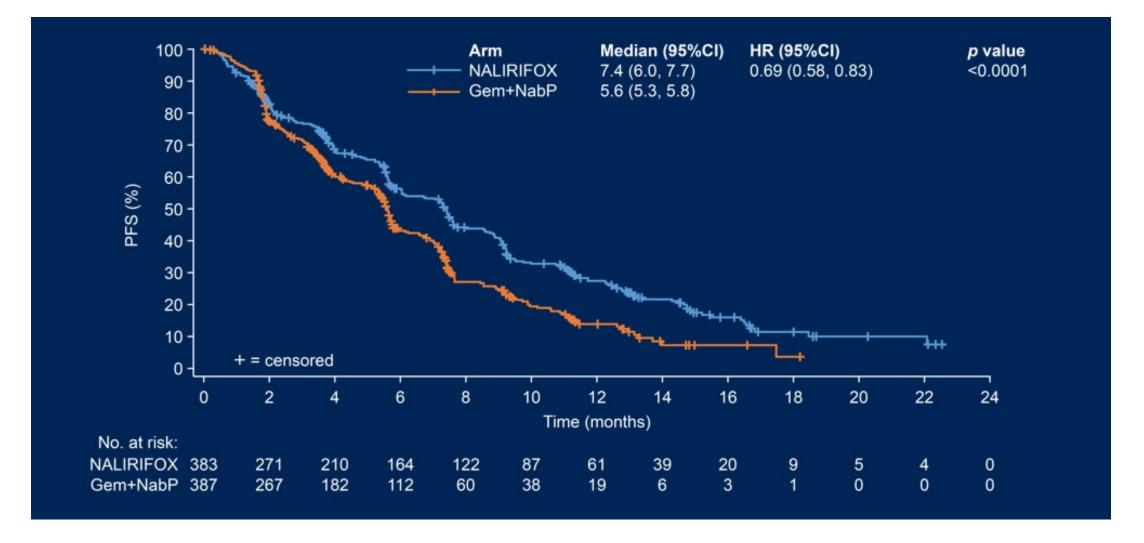
Secondary endpoints: PFS and ORR per investigator using RECIST v1.1, safety

Exploratory endpoints: HRQOL, biomarker assessments


<u>Statistical analysis:</u> Stratified log-rank test with 2-sided alpha of 0.05, 90% power <u>First patient enrolled:</u> February 2020

All data reported are based on a data cut-off of 23 July 2022

Overall median follow-up: 16.1 (95% CI:15.3–16.8) months


Wainberg ZA, et al. Presented at: the 2023 ASCO® GI Cancers Symposium; January 19-21, 2023; San Francisco, CA. Abstract LBA 661,

NAPOLI-3 Trial: mOS (ITT Population)

Wainberg ZA, et al. Presented at: the 2023 ASCO® GI Cancers Symposium; January 19-21, 2023; San Francisco, CA. Abstract LBA 661,

NAPOLI-3 Trial: mPFS per investigator (ITT population)

Wainberg ZA, et al. Presented at: the 2023 ASCO® GI Cancers Symposium; January 19-21, 2023; San Francisco, CA. Abstract LBA 661,

NAPOLI-3 Trial: Tumor Response & Subsequent Anti-Cancer Therapy

Tumor Response	NALIRIFOX (N = 383)	Gem+NabP (N = 387)
Objective response rate (95% CI), %	41.8 (36.8–46.9)	36.2 (31.4–41.2)
Best overall response, %		
Complete response	0.3	0.3
Partial response	41.5	35.9
Stable disease	25.8	26.1
Progressive disease	9.9	14.5
Not evaluable ^b	22.5	23.3

Subsequent Anti-Cancer Therapy	NALIRIFOX (N = 383)	Gem+NabP (N = 387)
Any further subsequent anti-cancer therapy, %	50.5	54.4
Systemic anti-neoplastic therapy ^a	50.5	54.1
Surgery	0.3	0.5
Radiotherapy	0.5	1.1

Wainberg ZA, et al. Presented at: the 2023 ASCO® GI Cancers Symposium; January 19-21, 2023; San Francisco, CA. Abstract LBA 661,

NAPOLI-3 Trial: Overall Summary of AEs

	NALIRIFOX (N = 370)	Gem+NabP (N = 379)
Median (range) duration of treatment, weeks	24.29 (0.4–100.9)	17.57 (0.7–81.7)
TEAEs all grade, %	99.7	99.2
Related to treatment regimen	95.1	92.9
TEAE Grade ≥3, %	87.0	86.0
Related to treatment regimen	70.8	68.1
Serious TEAEs, %	54.3	51.5
Related to treatment regimen	26.5	19.0
TEAEs leading to death, %	5.9	6.1
Related to treatment regimen	1.6	2.1

Wainberg ZA, et al. Presented at: the 2023 ASCO® GI Cancers Symposium; January 19-21, 2023; San Francisco, CA. Abstract LBA 661,

NAPOLI-3 Trial: Selected Any-Cause TEAEs in ≥10% of Patients

	NALIRIFOX (N = 370)		Gem+Nabl	P (N = 379)
Any-cause TEAEs in ≥10% of patients, % ^a	Any grade	Grade 3–4	Any Grade	Grade 3–4
Hematologic				
Neutropenia / neutrophil count decreased / febrile neutropenia	29.5 / 20.5 / 2.4	14.1 / 9.7 / 2.4	31.9 / 18.7 / 2.6	24.5 / 13.5 / 2.4
Anemia	26.2	10.5	40.4	17.4
Thrombocytopenia / platelet count decreased	13.5 / 10.5	0.8 / 0.8	22.7 / 17.9	3.7 / 2.4
Non-hematologic				
Diarrhea	70.5	20.3	36.7	4.5
Nausea	59.5	11.9	42.7	2.6
Vomiting	39.7	7.0	26.4	2.1
Hypokalemia	31.6	15.1	12.9	4.0
Peripheral neuropathy	17.8	3.2	17.4	5.8
Peripheral sensory neuropathy	15.1	3.5	13.5	2.9
Paresthesia	11.9	0.3	8.7	0.5
Pyrexia	10.5	0.8	23.0	1.6

Wainberg ZA, et al. Presented at: the 2023 ASCO® GI Cancers Symposium; January 19-21, 2023; San Francisco, CA. Abstract LBA 661,

Based on your personal clinical experience and knowledge of available data, in general how would you compare the global efficacy and tolerability of <u>gemcitabine/nab</u> paclitaxel to those of modified FOLFIRINOX?

	More efficacious	More tolerable	
Dr O'Reilly	Modified FOLFIRINOX	About the same	
Dr Wainberg	Modified FOLFIRINOX	Modified FOLFIRINOX	
Dr Bekaii-Saab	Modified FOLFIRINOX	About the same – gemcitabine/ nab paclitaxel more tolerable if given q2wk	
Dr Ciombor	Modified FOLFIRINOX	Modified FOLFIRINOX (if giving gemcitabine/nab paclitaxel weekly)	
Dr Messersmith	Modified FOLFIRINOX	About the same	
Dr Philip	Modified FOLFIRINOX	Gemcitabine/ <i>nab</i> paclitaxel (when used every other week)	
Dr Pishvaian	About the same	Gemcitabine/ <i>nab</i> paclitaxel (when used every other week)	

FOLFIRINOX = leucovorin/fluorouracil/irinotecan/oxaliplatin; *nab* paclitaxel = nanoparticle albumin-bound paclitaxel

Based on your personal clinical experience and knowledge of available data, in general how would you compare the global efficacy and tolerability of <u>NALIRIFOX to those of</u> gemcitabine/nab paclitaxel?

	More efficacious	More tolerable	
Dr O'Reilly	NALIRIFOX	About the same	
Dr Wainberg	NALIRIFOX	NALIRIFOX	
Dr Bekaii-Saab	NALIRIFOX	About the same – gemcitabine/ <i>nab</i> paclitaxel more tolerable if given q2wk	
Dr Ciombor	NALIRIFOX	Gemcitabine/ <i>nab</i> paclitaxel, especially if given q2wk	
Dr Messersmith	I have not used this agent	I have not used this agent	
Dr Philip	NALIRIFOX	About the same	
Dr Pishvaian	I have not used this agent	I have not used this agent	

NALIRIFOX = liposomal irinotecan/oxaliplatin/leucovorin/fluorouracil

Based on your personal clinical experience and knowledge of available data, in general how would you compare the global efficacy and tolerability of <u>NALIRIFOX to those of</u> modified FOLFIRINOX?

	More efficacious	More tolerable
Dr O'Reilly	About the same	About the same
Dr Wainberg	About the same	NALIRIFOX
Dr Bekaii-Saab	About the same	About the same
Dr Ciombor	About the same	About the same
Dr Messersmith	I have not used NALIRIFOX	I have not used NALIRIFOX
Dr Philip	About the same	NALIRIFOX
Dr Pishvaian	About the same	About the same

Dr Wainberg – Case Study 2

- 76-year-old woman presents with 1 month of progressive epigastric pain
- CT scan shows a 4-cm pancreatic body/tail mass, along with multiple hepatic lesions and retroperitoneal lymphadenopathy
- A core biopsy of 1 of the liver lesions confirms adenocarcinoma
 - Serum CA19-9 = 2450 U/mL
- She initiates gemcitabine and nab-paclitaxel and initially demonstrates a partial response on follow-up CT scans, with a 60% decline in CA19-9
- However, repeat imaging after cycle 4 shows progression in the size of her liver lesions and pancreatic head mass, with uptrending CA19-9
- She has Grade 1 neuropathy but otherwise remains highly functional, with an ECOG PS of 1

Dr Wainberg – Case Study 2(con't)

- Based on NAPOLI-1 Trial, she initiates 5-FU/liposomal irinotecan (NALIRI) and demonstrates a 30% decline in CA19-9, with improvement in weight and appetite
- Repeat imaging after cycle 5 shows disease stabilization in liver lesions and pancreatic mass
- She has Grade 1 diarrhea and grade 1 neuropathy but feels well overall

Beyond Front-Line Therapy For Metastatic Pancreatic Cancer

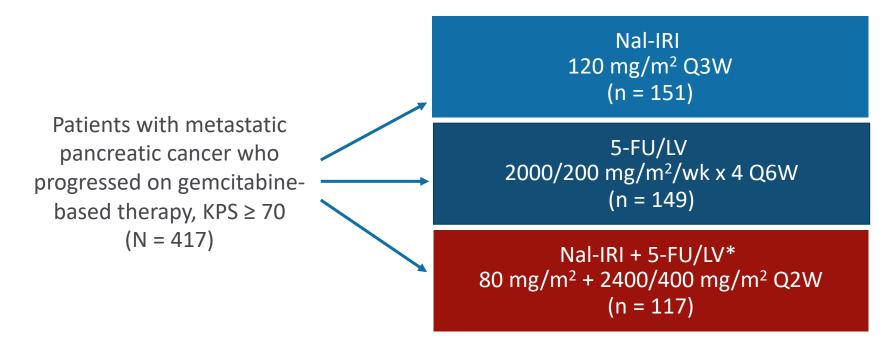
- Historically, 40% to 50% of patients are suitable candidates for post-progression treatment
 - Clinical deterioration often limits patient eligibility for further treatment
 - Limited clinical data (mostly single-arm; mixture of respective and prospective studies)
 - Before 2015, no approved drugs/regimens in this setting
 - Survival rates generally in the 4- to 6-month range for chemotherapy agents, either alone or in combination
 - Minimal to no responses observed from targeted or IO agents alone

• De Dosso S, et al. Can Treat Rev. 2021;96:102180.

NCCN Guidelines: Second-Line Treatment Decisions

Subsequent Therapy for Locally Advanced/Metastatic Disease and Therapy for Recurrent Disease

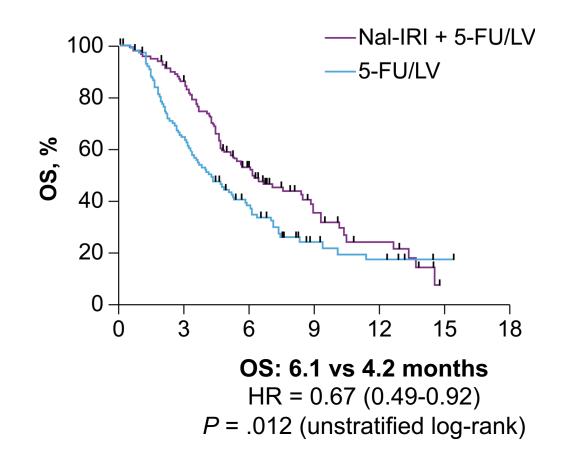
(If prior gemcitabine-based therapy)


- 5-FU + leucovorin + liposomal irinotecanⁿ (category 1 for metastatic disease)
- 5-FU + leucovorin + irinotecan (FOLFIRI)²⁴⁻²⁷
- FOLFIRINOX or modified FOLFIRINOX^{a,e,28}
- Oxaliplatin + 5-FU + leucovorin (OFF)
- FOLFOX
- Capecitabine + oxaliplatin
- Capecitabine
- Continuous infusion 5-FU

(If prior fluoropyrimidine-based therapy)

- Gemcitabine
- Gemcitabine + albumin-bound paclitaxel^f
- Gemcitabine + cisplatin (only for known BRCA1/2 or PALB2 mutations)
- Gemcitabine + erlotinib^{g,29}
- 5-FU + leucovorin + liposomal irinotecanⁿ (if no prior irinotecan)
- Gemcitabine + albumin-bound paclitaxel + cisplatin^{14,15} (category 2B)

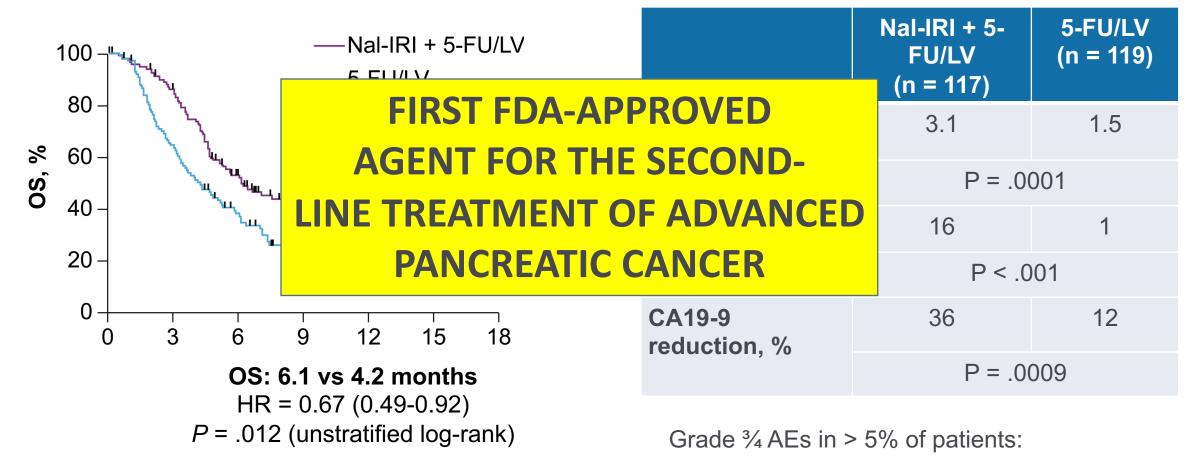
NAPOLI-1: Nanoliposomal Irinotecan ± 5-FU/LV vs 5-FU/LV After Progression on Gem-Based Therapy


Multicenter, randomized, open-label phase 3 trial

Primary endpoint: OS

*Combination arm added after safety data were available. Patients in 5-FU/LV arm used as controls for combination arm. Wang-Gillam A, et al. Lancet. 2016;387:545-557.

NAPOLI-1: Efficacy Results



	Nal-IRI + 5- FU/LV (n = 117)	5-FU/LV (n = 119)	
Median PFS, mos	3.1	1.5	
	P = .0001		
ORR, %	16	1	
	P < .0	01	
CA19-9 reduction, %	36	12	
	P = .00	009	

Grade ³⁄₄ AEs in > 5% of patients: Nausea, vomiting, diarrhea, anemia

*Combination arm added after safety data were available. Patients in 5-FU/LV arm used as controls for combination arm. Wang-Gillam A, et al. Lancet. 2016;387:545-557.

NAPOLI-1: Efficacy Results

Nausea, vomiting, diarrhea, anemia

*Combination arm added after safety data were available. Patients in 5-FU/LV arm used as controls for combination arm. Wang-Gillam A, et al. Lancet. 2016;387:545-557.

AEs, %	Nal-IRI + 5-FU/LV (n = 117)		5-FU/LV (n = 134)	
	Any Grade	Grade 3/4	Any Grade	Grade 3/4
Diarrhea	59	13	26	4
Vomiting	52	11	26	3
Nausea	51	8	34	3
Decreased appetite	44	4	32	2
Fatigue	40	14	28	4
Neutropenia	39	27	5	1
Anemia	38	9	23	7
Hypokalemia	12	3	9	2

Wang-Gillam A, et al. Lancet. 2016;387:545-557.

FOLFIRINOX as Second-Line Therapy?

- May be too toxic for many patients following 1L treatment with gemcitabine/nab-paclitaxel
- Efficacy/safety data limited mostly to small retrospective series subject to patient selection bias
- Randomized phase 3 trial in Korea (MPACA-3) comparing mFOLFIRINOX vs S-1 in this second-line setting (n = 80)

	mFOLFIRINOX	S-1	Significant?
ORR	15%	2%	<i>P</i> = .04
DCR	67%	37%	<i>P</i> = .007
PFS, median (and at 6 months)	5.2 months (40.7%)	2.2 months (10.6%)	Multivar HR 0.4, <i>P</i> = .002
OS, median (and at 6 and 12 months)	9.2 months (75% and 24%)	4.9 months (46% and 20%)	Multivar HR 0.4, <i>P</i> = .002

Current Maintenance Approaches

First-Line Chemotherapy ^[a]	Maintenance Recommendations
FOLFIRINOX	 Capecitabine 5-FU/LV FOLFIRI FOLFOX
Gemcitabine/nab-paclitaxel	 Gemcitabine Gemcitabine/nab-paclitaxel (modified schedule)
Platinum-based chemotherapy, <i>BRCA1/2</i> or <i>PALB2</i> mutations	PARP inhibitor (olaparib, rucaparib)

Dr Wainberg – Case Study 3

- 80-year-old woman presents with 1 month of weight loss and fatigue
- CT scan shows a 6-cm pancreatic body mass, along with 4 liver lesions and retroperitoneal lymphadenopathy
- CT guided biopsy of 1 of the liver lesions confirms adenocarcinoma
 - Serum CA19-9 = 85000 U/mL
- Tumor sent for NGS reveals MSS, point mutations seen in KRAS G12D, p53
- She initiates chemotherapy with low doses of modified FOLFIRINOX (irinotecan at 90 mg/meter squared, no bolus) and initially demonstrates a partial response on follow-up CT scans in all liver lesions, with a 40% decline in CA19-9
- However, repeat imaging after cycle 4 shows progression in the size of her liver lesions and pancreatic mass, with uptrending CA19-9
- She has Grade 1 neuropathy but otherwise remains highly functional, with an ECOG PS of 1

What Are the Data for Second-Line Treatment With Gemcitabine and Nab-Paclitaxel Post-FOLFIRINOX?

Type of Study	ORR, %	PFS, mos
Prospective cohort (N = 57) ^[a]	17.5	5.1
Retrospective (N = 28) ^[b]	18	3
Retrospective (N = 59) ^[c]	10	3
Prospective (N = 30) ^[d]	13.3	3.8
Retrospective (N = 100) ^[e]	Not reported	5.9

a. Portal A, et al. Br J Cancer. 2015;113:989-995; b. Zhang Y, et al. Exp Hematol Oncol 2015;4:29. c. Palacio S, et al. J Gastrointest Oncol. 2019;10:1133-1139. d. Mita N, et al. J Clin Med 2019; 8:761.e.Tsang et al. Am J Clin Oncol. 2019;42:196-201.

Agenda

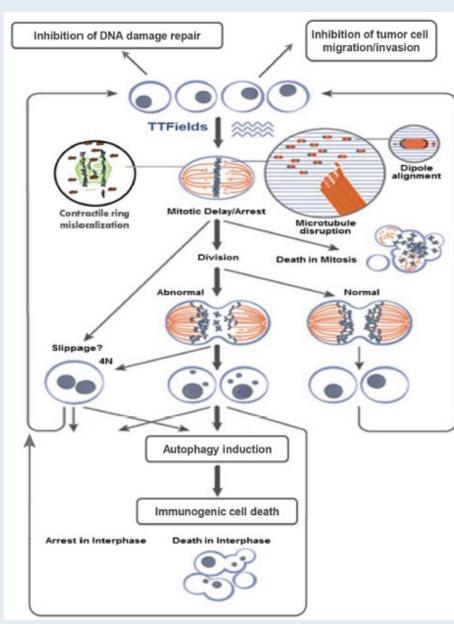
INTRODUCTION

MODULE 1: Selection and Sequencing of Therapy for Patients with Metastatic Pancreatic Cancer

MODULE 2: Ongoing Clinical Trials

MODULE 3: Current and Future Role of Biomarker-Based Decision-Making in Metastatic Pancreatic Cancer

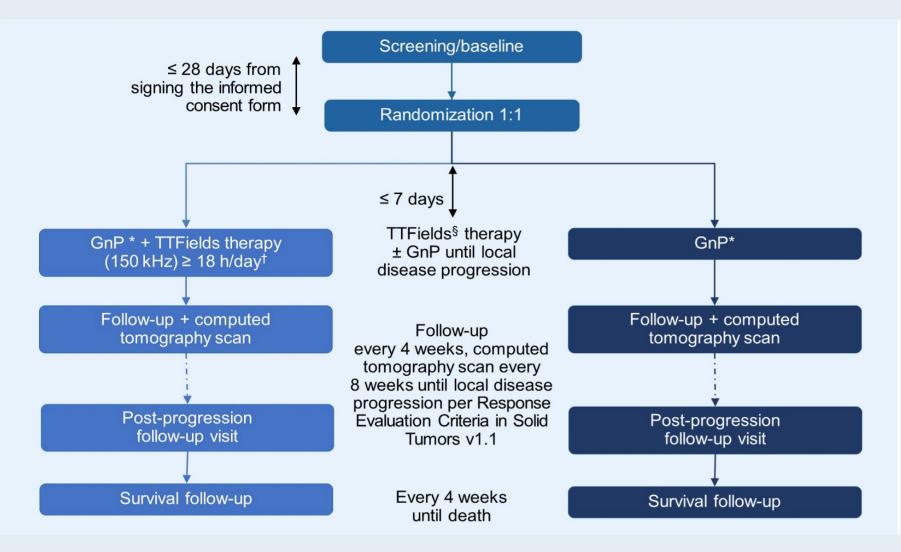
MODULE 4: Clinical Investigator Survey



For which ongoing Phase III clinical trials in pancreatic cancer are you most interested in seeing results?

Dr O'Reilly	ALLIANCE A021806, APOLLO	
Dr Wainberg	ALLIANCE A021806, adjuvant vs neoadjuvant European trial	
Dr Bekaii-Saab	ALLIANCE A021806	
Dr Ciombor	ALLIANCE A021806, TIGeR PaC	
Dr Messersmith	ALLIANCE A021806, KRAS inhibitor Phase II trials	
Dr Philip	ALLIANCE A021806, APOLLO	
Dr Pishvaian	ALLIANCE A021806, TIGeR PaC, Gemcitabine + <i>nab</i> paclitaxel/zolbetuximab in CLDN 18.2+ mPDAC	

PANOVA Phase II Study: Rationale and Mechanism of Action of TTFields



- TTFields have demonstrated survival benefit in glioblastoma.
- The treatment benefit of TTFields in a number of cancer types, including NSCLC, ovarian cancer, mesothelioma and brain metastases, is under investigation.
- This first proof-of-concept clinical study of TTFields in pancreatic cancer was initiated based on preclinical data on TTFields in pancreatic cancer models.

	TTFields + gemcitabine cohort (n = 20)	TTFields + gemcitabine + nab paclitaxel cohort (n = 20)
Median PFS	8.3 mo	12.7 mo
Median OS	14.9 mo	Not reached

PANOVA-3: An Ongoing Phase III Study of TTFields with Gemcitabine and *Nab* Paclitaxel as Front-Line Therapy for Locally Advanced Pancreatic Adenocarcinoma

Picozzi VJ et al. Gastrointestinal Cancers Symposium 2023; Abstract TPS770.

PANOVA-3: A Phase III study of tumor treating fields with gemcitabine/nab paclitaxel as front-line treatment for locally advanced PDAC (LAPC): What are your thoughts on the clinical need being addressed?

Dr O'Reilly	Interesting strategy, safe, well tolerated, would love to understand mechanism
Dr Wainberg	LAPC is understudied, so it will provide value of a local therapy here
Dr Bekaii-Saab	LAPC remains very challenging with very few patients achieving resection and almost none are curable
Dr Ciombor	Need for better treatments for LAPC is high, but not sure this is the best way
Dr Messersmith	We need a locoregional intervention in LAPC that adds efficacy over systemic therapy and better control of disease. Radiation therapy has not shown enough survival benefit
Dr Philip	There is a very high clinical need in LAPC
Dr Pishvaian	TTFields seem to have very limited efficacy, don't make much scientific sense, and require a lot from the patient

APOLLO: A randomized Phase II study of olaparib versus placebo after curative-intent therapy for patients with resected pancreatic cancer and a BRCA1, BRCA2 or PALB2 mutation: What are your thoughts on the clinical need being addressed?

Dr O'Reilly	Very straightforward, practical design and addresses a very practical question for a small patient population. Potential for practice change
Dr Wainberg	Important
Dr Bekaii-Saab	Although more patients are achieving cure from early-stage PDAC, most will recur and eventually die from their disease. This study addresses an important question for a subgroup with BRCA or PALB mutations
Dr Ciombor	Important to utilize and investigate targeted therapies in pancreas cancer when we can
Dr Messersmith	This is an important study addressing 5%-7% of patients with BRCA mutations. However, overall impact is limited given the very low frequency of BRCA mutations
Dr Philip	Very high unmet need to improve cure rates (relapse-free survival times) for resected patients
Dr Pishvaian	Could be effective for a small subset

NEO-Nal-IRI: A Phase II study of NALIRIFOX as preoperative treatment for PDAC: What are your thoughts on the clinical need being addressed?

Dr O'Reilly	Single-arm Phase II important proof of principle study – under way, adds to other neoadjuvant trials
Dr Wainberg	If we can prove a role for neoadjuvant, it will eliminate adjuvant
Dr Bekaii-Saab	Although improved preoperative approaches are needed to continue enhancing outcomes for early-stage PDAC, I am not sure another chemo backbone, at best slightly better than FOLFIRINOX, is the right strategy
Dr Ciombor	FOLFIRINOX is an adequate neoadjuvant chemo regimen for PDAC – in metastatic setting, though no head-to-head comparisons, NALIRIFOX not significantly better or less toxic than mFFX but much more expensive – would not expect this to be different in the neoadjuvant setting
Dr Messersmith	Not a major need by any means because at best it may offer a marginal benefit over existing strategies
Dr Philip	The role of neoadjuvant therapy for resectable PDAC is very important, BUT there are ongoing, definitive Phase III trials
Dr Pishvaian	We have FOLFIRINOX already, so we don't need this trial

Agenda

INTRODUCTION

MODULE 1: Selection and Sequencing of Therapy for Patients with Metastatic Pancreatic Cancer

MODULE 2: Ongoing Clinical Trials

MODULE 3: Current and Future Role of Biomarker-Based Decision-Making in Metastatic Pancreatic Cancer

MODULE 4: Clinical Investigator Survey

Research To Practice Current and Future Role of Biomarker-Based Decision-Making in Metastatic Pancreatic Cancer

Eileen M. O'Reilly, MD

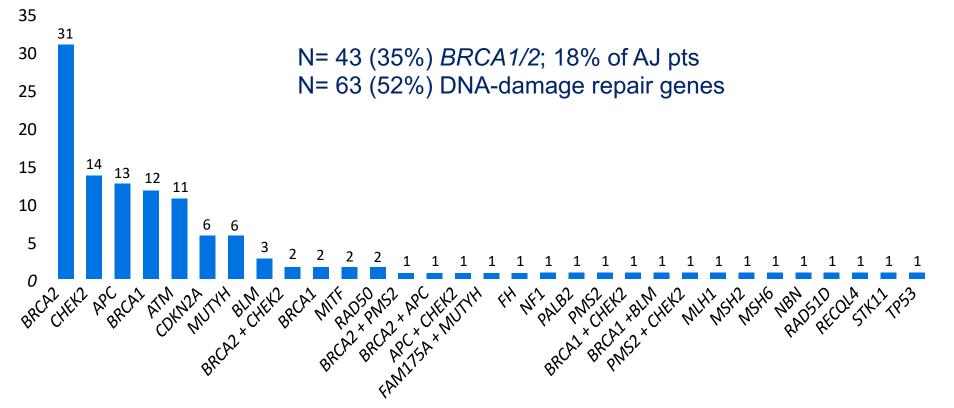
Memorial Sloan Kettering Cancer Center

08-03 2023

PDAC: Standard Therapy & Genomically Defined 2023 \rightarrow

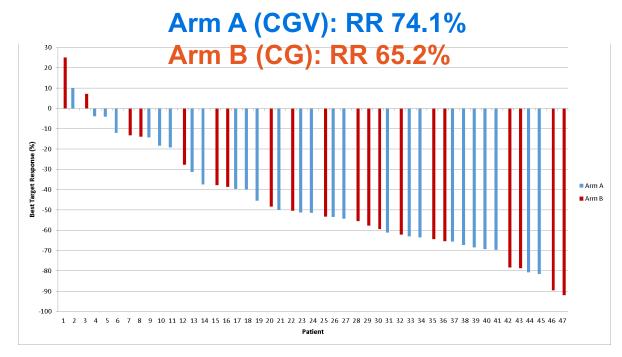

Untreated mPDAC ECOG 0-1

DNA Damage Repair Directed Therapy


Research To Practice Case #1A: gBRCA2

52-year-old female

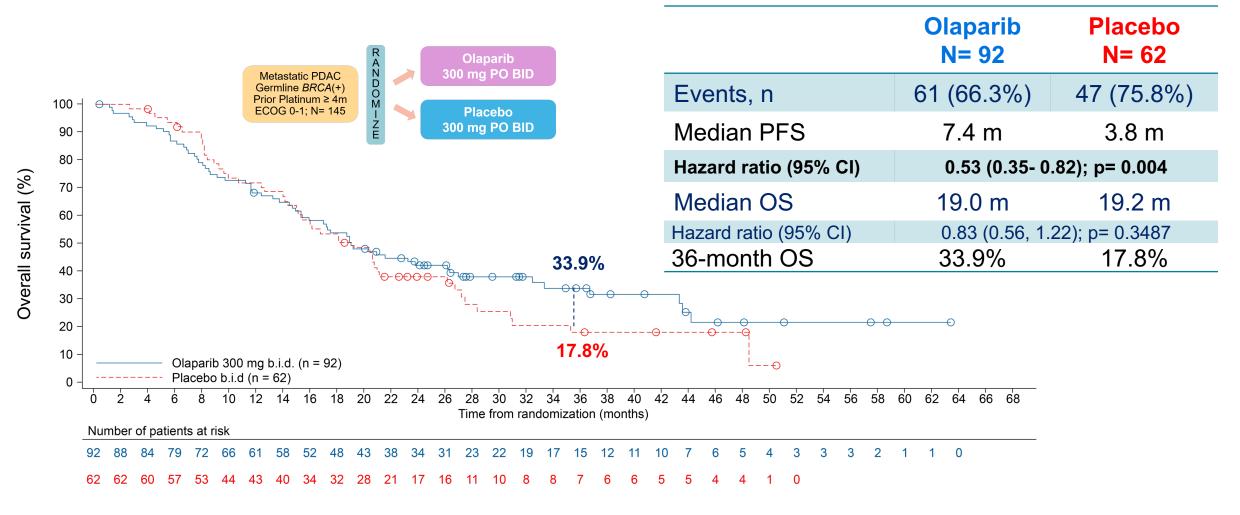
- 1 year history of progressive back pain
- Fm Hx gBRCA2, prostate ca
- CT: Tail primary, liver, nodes
- Ca 19-9 8,613 IU, CEA 14.1
- Cisplatin/gemcitabine x 8 cycles
- Confirmed gBRCA2
- Somatic: KRAS G12D, TP53, ARID1A MSS, TMB 2.3 Mut/Mb
- Maintenance therapy decision


Pathogenic Germline Alterations in PDAC N= 122/615 in 24 genes; 19%

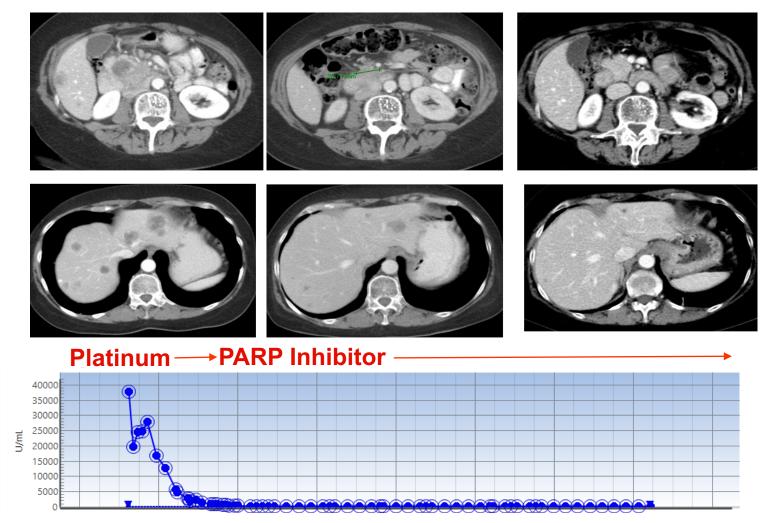
Pancreas cancer: Core HRD: 5-8% (including somatic BRCA1/2, PALB2)

Lowery. M. J Nat Cancer Inst, 2018. Park, W...O'Reilly, EM. JAMA, 2021

Research To Practice Cisplatin/Gem +/- Veliparib g*BRCA1/2, PALB2*: Randomized Phase II Advanced PDAC

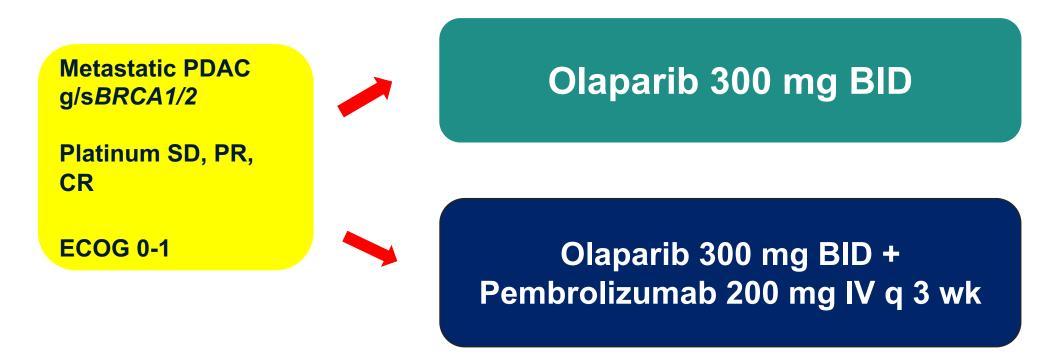

	Cis, Gem, V N= 27	Cis, Gem N= 23		
Response Rate	74%	65%		
Overall Survival	15.5 m	16.4 m		
Combined Analyses (N= 50)				
2-Year OS	31% (CI 1	7.8%- 44.4%)		
3-Year OS	18% (CI:8.1%- 30.7%)			
Platinum \rightarrow PARPi	23 m (c	CI: 6.5- 53.9)		

> Defines a standard regimen *BRCA1/2*, *PALB2*


O'Reilly, EM...Kelsen, DP. J Clin Oncol, 2020

Research To Practice POLO gBRCA: <u>Maintenance</u> Olaparib vs Placebo

Golan, T. New Eng J Med, 2019 Kindler, H. J Clin Oncol, 2022


Case #1B: 66 Years F: Platinum → PARPi g*BRCA* Met PDAC

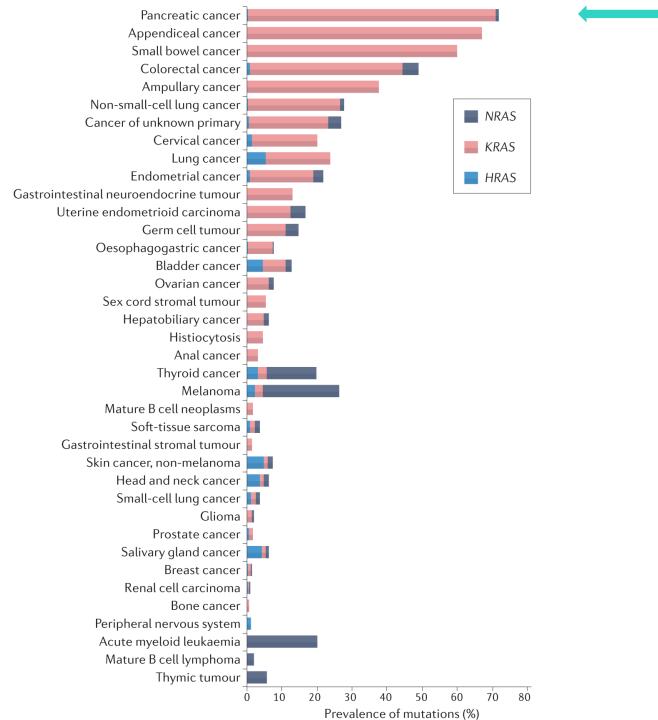
Ca 19-9 < ULN

Ca 19-9 37,500+

SWOG S2001: Olaparib +/- Pembrolizumab Maintenance Trial... Building on POLO

Primary endpoint: PFS (HR 0.6; 7→ 11.7 m)

APOLLO EA2192: Adjuvant Olaparib vs Placebo PDAC



Primary endpoint: Relapse free survival $22 \rightarrow 44$ months (90% power, 1 sided alpha; HR 0.5) Stratify: R0 vs R1; Platinum vs Non-platinum; Neoadjuvant vs No

KRAS Directed Therapy

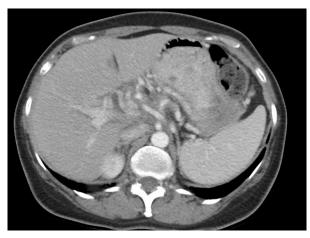
Research To Practice *RAS* Mutation Type per Disease

cbioportal TCGA, MSK IMPACT Cohorts, 2022

Case #2: 67-Year-Old F, KRAS G12C

Metastatic PDAC peritoneum, small lung mets

Never smoker

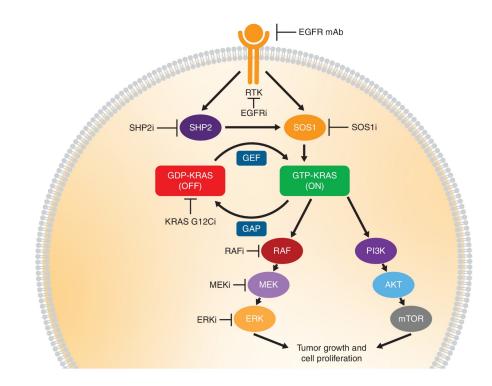

Strong Fm Hx cancer; germline NEG

Somatic genomics: *KRAS G12C, SMAD4, CDKN2A/B, MTAP* MSS, TMB 1.6 Mut/Mb

Treatment Course

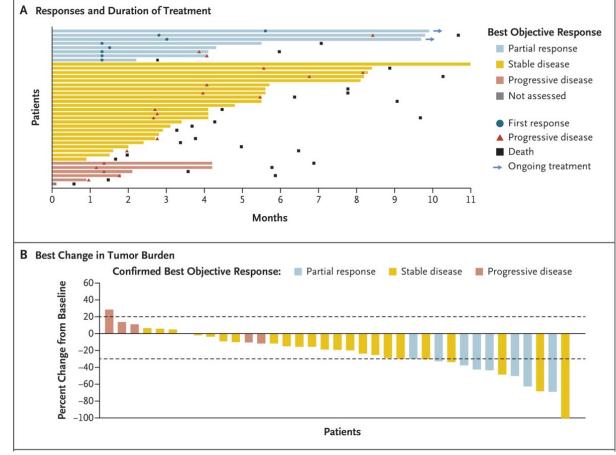
mFOLFIRINOX (poorly tolerated); POD Gemcitabine, nab-Paclitaxel; POD Investigational *KRAS* G12C inhibitor x 1 year: SD Major clinical improvement: ↓ pain, ↑5 kg+, returned to work

Allele Specific Small Molecule KRAS G12C Inhibition


KRAS^{G12C} covalent Inhibitors target approx. 13% of *KRAS* driven cancers

12 Cysteine residue Allosteric pocket on *KRAS* locks GTP bound G12C form in inactive state

Proof of principle targeting KRAS G12C


Most current inhibitors target GDP-bound 'OFF' form of *KRAS* Some drugs targeting cyclophilin A, 'ON' state

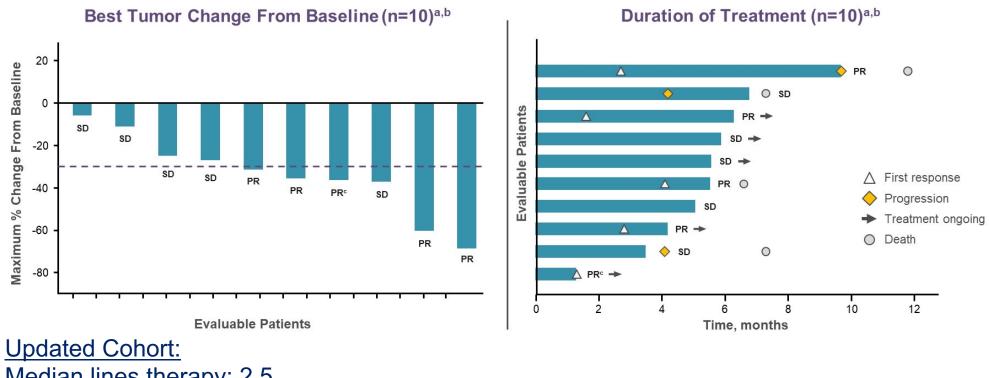
Hoffman, M. Cancer Discovery, 2022 Ostrem, JM.. Shokat, KM. Nature, 2013. Asmigil, H. JCl insight, 2022

		ワ	2		T		Ž	đ
	Total	CRC	PDAC	LUAD	UEC	IDC	STAD	EAC/GEJC
G12D -	51,309	18,548 (12.5%)	21,301 (37.0%)	4,525 (4.9%)	5,257 (8.0%)	375 (0.2%)	999 (3.6%)	302 (1.4%)
5 G12V -	<mark>39,</mark> 289	12,503 (8.5%)	16,2 <mark>54 (28.2%)</mark>	5,435 (5.9%)	4,089 (6.2%)	648 (0.3%)	190 (0.7%)	170 (0.8%)
Other -	25,968	13,841 (9.4%)	4,038 (7.0%)	4,303 (4.7%)	2,483 (3.8%)	478 (0.2%)	619 (2.2%)	208 (1.0%)
G12V - Other - G12C - G13D - AMP -	18,666	4,065 (2.7%)	659 (1.1%)	12,492 (13.6%)	1,120 (1.7%)	102 (0.05%)	190 (0.7%)	38 (0.2%)
G13D -	14,851	10,882 (7.4%)	309 (0.5%)	762 (0.8%)	1,996 (3.0%)	0 (0.0%)	619 (2.2%)	283 (1.3%)
AMP -	9,163	978 (0.7%)	62 (0.1%)	701 (0.8%)	0 (0.0%)	3,446 (1.5%)	1,332 (4.8%)	2,645 (12.3%)
	8,291	489 (0.3%)	7,293 (12.7%)	344 (0.4%)	97 (0.1%)	68 (0.03%)	0 (0.0%)	0 (0.0%)
G12R -	7,139	2,804 (1.9%)	206 (0.4%)	2,262 (2.5%)	1,606 (2.4%)	136 (0.1%)	48 (0.2%)	76 (0.4%)
Multiple -	3,991	1,441 (1.0%)	1,195 (2.1%)	959 (1.0%)	292 (0.4%)	0 (0.0%)	48 (0.2%)	57 (0.3%)
10	30 50	10 30 50	10 30 50	10 30 50	10 30 50	10 30 50	10 30 50	10 30 50
		Estim	ated new diagn	oses/patients pe	r year in the Un	ited States (1,00	00s)	

Allele Covalent Specific KRAS G12C Sotorasib in PDAC: CodeBreaK 100 Phase I/II Trial

Sotorasib (AMG510) 960 mg PO daily; *KRAS* G12C (Glyceine \rightarrow Cysteine)

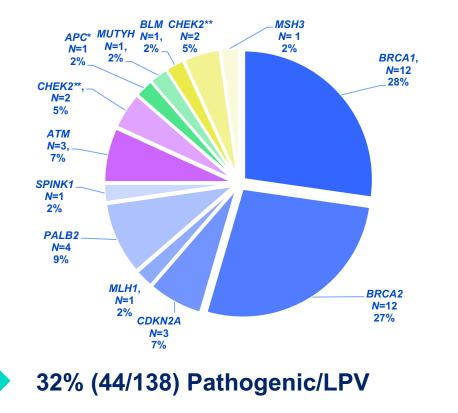
> <u>Summary</u> N= 38 PDAC Median 2 lines (1-8) RR 21% (N= 8) mDOR 5.7 m (1.9- NR) mPFS 4.0 m (2.8- 5.6) mOS 6.9 m (5.0- 9.1)


Hong, DS....Li, B. NEJM, 2020. NCT03600883, NCT03785249, NCT04006301

Courtesy of Eileen M O'Reilly, MD

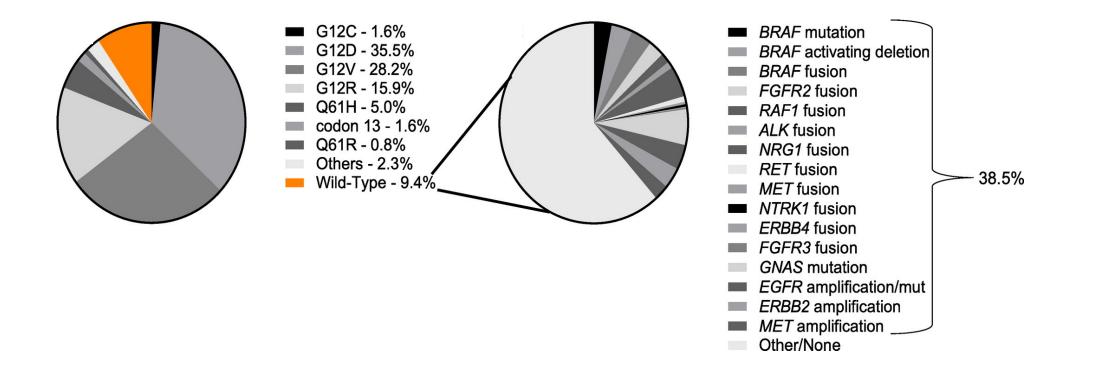
Strickler, JH...Hong, DS, NEJM, 2023

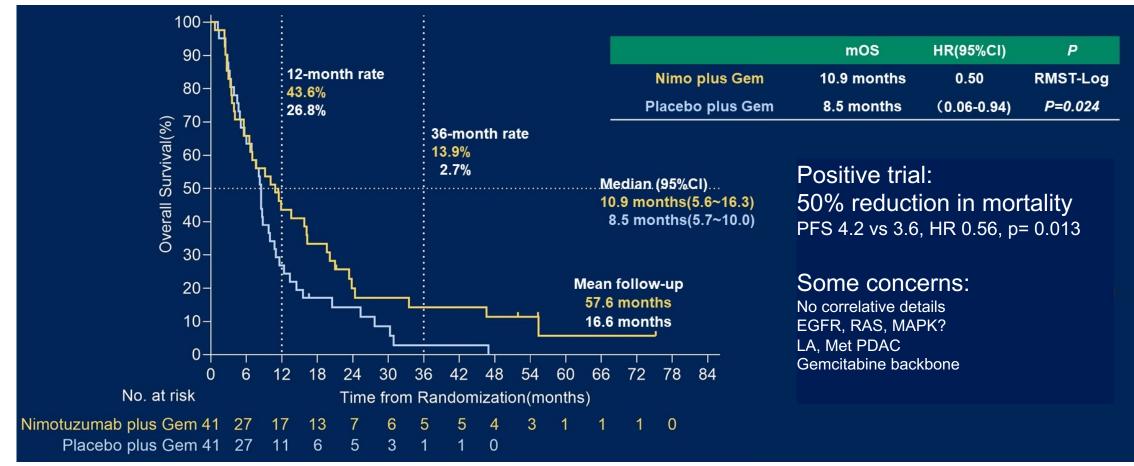
KRYSTAL-1: Adagrasib KRAS G12C in PDAC (N= 12; 21)


Adagrasib 600 mg PO BID; KRAS G12C (Glyceine → Cysteine)

Median lines therapy: 2.5 Median RR 33% Median duration of response 6.9 m Median PFS 5.4 m; Median OS: 8 m

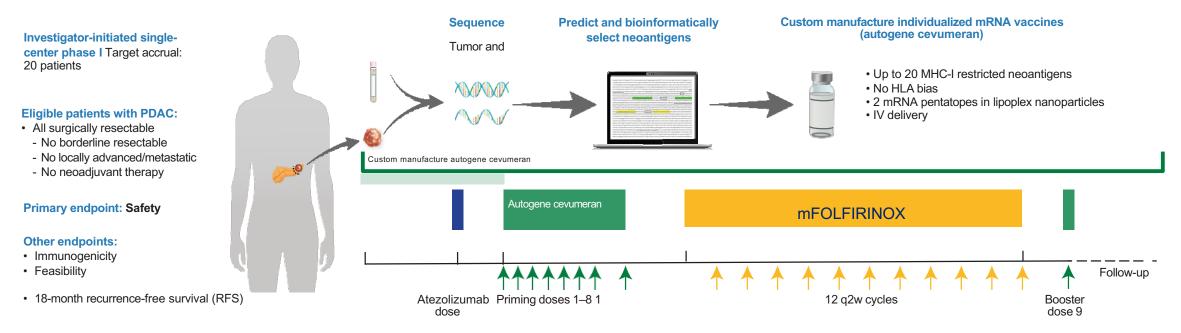
Early Onset PDAC (< 50 years): Germline & KRAS Alterations


N= 450 < 50 years 01/2008- 07/2019


KRAS Alteration	Ν	Percent
KRAS Alterations	110	83%
KRAS Amplification	1	1%
KRAS G12D	58	44%
KRAS G12V	25	19%
KRAS G12R	13	9%
KRAS G12C	1	1%
KRAS G12L	1	1%
KRAS Q61X	9	6%
NRAS Q61R	1	1%
RAS wild-type	21	16%

Varghese, A... O'Reilly, EM. J Nat Can Inst, 2021. Singhi, AD. Gastroenterology, 2019

Research To Practice **KRAS Wild-Type PDAC (~8% All PDAC)**



Phase III NOTABLE Trial Gemcitabine +/- Nimotuzumab KRAS WT PDAC

Qin, S. ASCO, 2022 Abstract LBA 4011 (In review)

Personalized Neoantigen Vaccines: Phase I Trial Autogene Cevumeran in Resected PDAC

Vaccination: safe, feasible, in clinically relevant timeline

Personalized mRNA vaccine expands neoantigen specific T cells; Highly immunogenic in 50% Immunity adjudicated: Elispot, T cell expansion; Immune responder required both (+) mRFS: Not Reached (N= 8) vs 13.7 m (N= 8) in immune responders vs non-responders, HR 0.08, p= 0.03

Agenda

INTRODUCTION

MODULE 1: Selection and Sequencing of Therapy for Patients with Metastatic Pancreatic Cancer

MODULE 2: Ongoing Clinical Trials

MODULE 3: Current and Future Role of Biomarker-Based Decision-Making in Metastatic Pancreatic Cancer

MODULE 4: Clinical Investigator Survey

Regulatory and reimbursement issues aside, what would you generally recommend as neoadjuvant therapy for a <u>65-year-old</u> patient with BRCA wild-type pancreatic adenocarcinoma (PDAC) and <u>no significant comorbidities if the disease was</u> ...?

	Borderline resectable	Resectable		
Dr O'Reilly	Modified FOLFIRINOX	Pending specific characteristics		
Dr Wainberg	FOLFIRINOX	None		
Dr Bekaii-Saab	FOLFIRINOX +/- CRT	FOLFIRINOX		
Dr Ciombor	FOLFIRINOX +/- CRT	FOLFIRINOX		
Dr Messersmith	FOLFIRINOX	FOLFIRINOX		
Dr Philip	FOLFIRINOX + CRT	FOLFIRINOX		
Dr Pishvaian	FOLFIRINOX	FOLFIRINOX		

FOLFIRINOX = leucovorin/fluorouracil/irinotecan/oxaliplatin; CRT = chemoradiation therapy

Regulatory and reimbursement issues aside, what would you generally recommend as adjuvant therapy after primary surgery for a <u>65-year-old</u> patient with BRCA wild-type PDAC and <u>no significant comorbidities</u>?

Dr O'Reilly	Modified FOLFIRINOX
Dr Wainberg	Modified FOLFIRINOX
Dr Bekaii-Saab	Modified FOLFIRINOX
Dr Ciombor	Modified FOLFIRINOX
Dr Messersmith	Modified FOLFIRINOX
Dr Philip	Modified FOLFIRINOX
Dr Pishvaian	Modified FOLFIRINOX

Regulatory and reimbursement issues aside, what would you generally recommend as first-line therapy for a <u>65-year-old</u> patient with <u>no significant comorbidities</u> and <u>moderately symptomatic</u> BRCA wild-type metastatic PDAC (mPDAC) to the <u>liver, bone and lungs</u>?

Dr O'Reilly	Modified FOLFIRINOX
Dr Wainberg	NALIRIFOX
Dr Bekaii-Saab	NALIRIFOX
Dr Ciombor	Modified FOLFIRINOX
Dr Messersmith	FOLFIRINOX
Dr Philip	Modified FOLFIRINOX
Dr Pishvaian	Modified FOLFIRINOX

Regulatory and reimbursement issues aside, what would you generally recommend as first-line therapy for a <u>65-year-old</u> patient with <u>no significant comorbidities</u> and <u>asymptomatic</u> BRCA wild-type mPDAC to the <u>lymph nodes and lungs</u>?

Dr O'Reilly	Modified FOLFIRINOX
Dr Wainberg	NALIRIFOX
Dr Bekaii-Saab	NALIRIFOX
Dr Ciombor	Modified FOLFIRINOX
Dr Messersmith	FOLFIRINOX
Dr Philip	Modified FOLFIRINOX
Dr Pishvaian	Modified FOLFIRINOX

Regulatory and reimbursement issues aside, what would you generally recommend as second-line therapy for a <u>65-year-old</u> patient with BRCA wild-type mPDAC and <u>no significant comorbidities</u> who received <u>first-line gemcitabine/nab paclitaxel</u>?

Dr O'Reilly	Modified FOLFIRINOX
Dr Wainberg	Modified FOLFIRINOX
Dr Bekaii-Saab	Nal-IRI + 5-FU/LV
Dr Ciombor	Modified FOLFIRINOX
Dr Messersmith	Modified FOLFIRINOX
Dr Philip	Nal-IRI + 5-FU/LV
Dr Pishvaian	Nal-IRI + 5-FU/LV

Regulatory and reimbursement issues aside, what would you generally recommend as second-line therapy for a <u>65-year-old</u> patient with BRCA wild-type mPDAC and <u>no significant comorbidities</u> who received <u>first-line modified FOLFIRINOX</u>?

Dr O'Reilly	Gemcitabine/nab paclitaxel
Dr Wainberg	Gemcitabine/nab paclitaxel
Dr Bekaii-Saab	q2wk gemcitabine/nab paclitaxel
Dr Ciombor	q2wk gemcitabine/nab paclitaxel
Dr Messersmith	Gemcitabine/nab paclitaxel
Dr Philip	Gemcitabine/nab paclitaxel
Dr Pishvaian	q2wk gemcitabine/ <i>nab</i> paclitaxel

Regulatory and reimbursement issues aside, what would you generally recommend as second-line therapy for a <u>65-year-old</u> patient with BRCA wild-type mPDAC and <u>no significant comorbidities</u> who received <u>first-line NALIRIFOX</u>?

Dr O'Reilly	Gemcitabine/nab paclitaxel
Dr Wainberg	Gemcitabine/nab paclitaxel
Dr Bekaii-Saab	q2wk gemcitabine/ <i>nab</i> paclitaxel
Dr Ciombor	q2wk gemcitabine/ <i>nab</i> paclitaxel
Dr Messersmith	Gemcitabine/nab paclitaxel
Dr Philip	Gemcitabine/nab paclitaxel
Dr Pishvaian	q2wk gemcitabine/ <i>nab</i> paclitaxel

Regulatory and reimbursement issues aside, what would you generally recommend as first-line therapy for an <u>80-year-old</u> patient with <u>mild chronic renal failure (CRF), Type 2 diabetes mellitus (DM) and controlled</u> <u>hypertension</u> with <u>moderately symptomatic</u> BRCA wild-type mPDAC to the <u>liver, bone and lungs</u>?

Dr O'Reilly	Gemcitabine/nab paclitaxel (adjusted dose and schedule)
Dr Wainberg	Modified FOLFIRINOX or NALIRIFOX
Dr Bekaii-Saab	q2wk gemcitabine/ <i>nab</i> paclitaxel
Dr Ciombor	q2wk gemcitabine/ <i>nab</i> paclitaxel
Dr Messersmith	Modified FOLFIRINOX
Dr Philip	Lower-dose gemcitabine 800 mg/m ² and nab paclitaxel 100 mg/m ² , q2wk
Dr Pishvaian	q2wk gemcitabine/nab paclitaxel

Regulatory and reimbursement issues aside, what would you generally recommend as first-line therapy for an <u>80-year-old</u> patient with <u>mild CRF, Type 2 DM and controlled hypertension</u> with <u>asymptomatic BRCA wild-type mPDAC to the lymph nodes and lungs</u>?

Dr O'Reilly	Gemcitabine/nab paclitaxel (adjusted dose and schedule)
Dr Wainberg	Modified FOLFIRINOX or NALIRIFOX
Dr Bekaii-Saab	q2wk gemcitabine/nab paclitaxel
Dr Ciombor	q2wk gemcitabine/nab paclitaxel
Dr Messersmith	Modified FOLFIRINOX
Dr Philip	Lower-dose gemcitabine 800 mg/m ² and <i>nab</i> paclitaxel 100 mg/m ² , q2wk
Dr Pishvaian	q2wk gemcitabine/nab paclitaxel

Regulatory and reimbursement issues aside, what would you generally recommend as second-line therapy for an <u>80-year-old</u> patient with BRCA wild-type mPDAC, <u>mild CRF, Type 2 DM and controlled</u> <u>hypertension</u> who received <u>first-line gemcitabine/nab paclitaxel</u>?

Dr O'Reilly	Nal-IRI + 5-FU/LV
Dr Wainberg	Nal-IRI + 5-FU/LV
Dr Bekaii-Saab	Nal-IRI + 5-FU/LV
Dr Ciombor	Continuous infusion 5-FU
Dr Messersmith	Modified FOLFIRINOX
Dr Philip	Nal-IRI lower-dose (35-50 mg/m ²) + 5-FU/LV
Dr Pishvaian	Nal-IRI + 5-FU/LV

For a patient with PDAC and a germline BRCA mutation, what is the optimal point at which to introduce a PARP inhibitor?

Dr O'Reilly	As part of first-line therapy for metastatic disease
Dr Wainberg	As part of first-line therapy for metastatic disease
Dr Bekaii-Saab	As part of first-line therapy for metastatic disease
Dr Ciombor	As part of first-line therapy for metastatic disease (maintenance)
Dr Messersmith	As part of first-line therapy for metastatic disease
Dr Philip	As part of first-line therapy for metastatic disease
Dr Pishvaian	As part of first-line therapy for metastatic disease (maintenance)

For a patient with PDAC and a germline BRCA mutation to whom you would administer a PARP inhibitor, how would you do so?

Dr O'Reilly	As maintenance therapy after platinum-based chemotherapy	
Dr Wainberg	As maintenance therapy after platinum-based chemotherapy	
Dr Bekaii-Saab	If used, as maintenance therapy after platinum-based chemotherapy	
Dr Ciombor	As maintenance therapy after platinum-based chemotherapy	
Dr Messersmith	As maintenance therapy after platinum-based chemotherapy	
Dr Philip	As maintenance therapy after platinum-based chemotherapy	
Dr Pishvaian	As monotherapy, maintenance and third-line therapy for appropriately selected patients	

In general, when you administer olaparib, do you initiate preemptive medication for nausea and vomiting?

Dr O'Reilly	No
Dr Wainberg	No
Dr Bekaii-Saab	No
Dr Ciombor	Yes
Dr Messersmith	No
Dr Philip	No
Dr Pishvaian	No

Do you reduce the dose of olaparib for patients experiencing toxicity?

Dr O'Reilly	Yes	
Dr Wainberg	Yes, for bone marrow suppression	
Dr Bekaii-Saab	Yes, for bone marrow suppression and/or GI toxicities	
Dr Ciombor	Yes, from 300 mg $ ightarrow$ 250 mg; further down to 200 mg if needed	
Dr Messersmith	Yes	
Dr Philip	Yes	
Dr Pishvaian	Yes, from 300 mg po BID \rightarrow 200 mg \rightarrow 100 mg	

In general, when administering olaparib to a patient with PDAC, do you discuss the risk of developing myelodysplastic syndromes/acute myeloid leukemia?

Dr O'Reilly	Yes
Dr Wainberg	No
Dr Bekaii-Saab	Yes
Dr Ciombor	Yes
Dr Messersmith	No
Dr Philip	Yes
Dr Pishvaian	Yes

To approximately how many patients with mPDAC have you administered olaparib? Approximately how many of these patients have required a transfusion due to anemia?

	Number who received olaparib	Number who required transfusion
Dr O'Reilly	100	5
Dr Wainberg	12	7
Dr Bekaii-Saab	30	2-3
Dr Ciombor	4	2
Dr Messersmith	2	0
Dr Philip	10	2
Dr Pishvaian	20	1

What is the longest time for which you have maintained a patient with mPDAC on a PARP inhibitor?

Dr O'Reilly	7-8 years	
Dr Wainberg	3 years	
Dr Bekaii-Saab	130 weeks	
Dr Ciombor	16 weeks	
Dr Messersmith	12 weeks	
Dr Philip	36 weeks	
Dr Pishvaian	Over 5 years	

What is the percent chance that a patient will experience toxicity during treatment with <u>modified FOLFIRINOX</u> that will require withholding dosing or discontinuation? What is the primary toxicity patients experience that leads to withholding dosing?

	Chance of holding or discontinuation	Primary toxicity
Dr O'Reilly	50% to 75% over time	Fatigue, nausea, vomiting, diarrhea, neuropathy
Dr Wainberg	100%	Neuropathy, GI toxicity
Dr Bekaii-Saab	25%	Bone marrow suppression, neuropathy and GI toxicity
Dr Ciombor	30%	Neuropathy
Dr Messersmith	100% by cycle 4-6	Cytopenias, nausea/vomiting, fatigue
Dr Philip	30%	Myelosuppression, GI toxicity
Dr Pishvaian	30%	Myelosuppression or fatigue

What is the percent chance that a patient will experience toxicity during treatment with <u>gemcitabine/nab paclitaxel</u> that will require withholding dosing or discontinuation? What is the primary toxicity patients experience that leads to withholding dosing?

	Chance of holding or discontinuation	Primary toxicity
Dr O'Reilly	50%	Fatigue, alopecia, edema, neuropathy, rare HUS, pneumonitis
Dr Wainberg	100%	Cytopenias, neuropathy
Dr Bekaii-Saab	Weekly, 40%	Neuropathy and bone marrow suppression
Dr Ciombor	Weekly, 75%; q2wk, 25%	Cytopenias (weekly)
Dr Messersmith	100% by cycle 4-6	Cytopenias, fatigue
Dr Philip	40%	Myelosuppression, neuropathy, fatigue
Dr Pishvaian	90% (3 on/1 off) 10% (every other week)	Myelosuppression

HUS = hemolytic uremic syndrome

What is the percent chance that a patient will experience toxicity during treatment with <u>olaparib</u> that will require withholding dosing or discontinuation? What is the primary toxicity patients experience that leads to withholding dosing?

	Chance of holding or discontinuation	Primary toxicity
Dr O'Reilly	33%	Anemia, fatigue, nausea, vomiting, diarrhea
Dr Wainberg	100%	Cytopenias
Dr Bekaii-Saab	30%	GI toxicity, fatigue and cytopenias
Dr Ciombor	30%	Cytopenias
Dr Messersmith	Rarely used	Cytopenias, nausea/vomiting, fatigue
Dr Philip	25%	Myelosuppression, fatigue
Dr Pishvaian	50%	Myelosuppression

What is the percent chance that a patient will experience toxicity during treatment with <u>nal-IRI + 5-FU/LV</u> that will require withholding dosing or discontinuation? What is the primary toxicity patients experience that leads to withholding dosing?

	Chance of holding or discontinuation	Primary toxicity
Dr O'Reilly	50%	Fatigue, diarrhea
Dr Wainberg	100%	GI toxicity
Dr Bekaii-Saab	25%	GI toxicity
Dr Ciombor	30%	GI toxicity (diarrhea)
Dr Messersmith	Rarely used	Cytopenias, diarrhea
Dr Philip	25%	Myelosuppression, GI toxicity
Dr Pishvaian	25%	Myelosuppression

What is the percent chance that a patient will experience toxicity during treatment with <u>NALIRIFOX</u> that will require withholding dosing or discontinuation? What is the primary toxicity patients experience that leads to withholding dosing?

	Chance of holding or discontinuation	Primary toxicity
Dr O'Reilly	50%	Fatigue, nausea, vomiting, diarrhea
Dr Wainberg	100%	GI toxicity, neuropathy
Dr Bekaii-Saab	30%	Bone marrow suppression and GI toxicity
Dr Ciombor	30%	GI toxicity (diarrhea, nausea)
Dr Messersmith	Never used this agent	N/A
Dr Philip	25%	Myelosuppression, GI toxicity
Dr Pishvaian	Not enough experience with this agent	Not enough experience with this agent

Meet The Professor Optimizing the Management of Melanoma

> Thursday, August 10, 2023 5:00 PM – 6:00 PM ET

Faculty Prof Georgina Long, AO, BSc, PhD, MBBS

> Moderator Neil Love, MD

Thank you for joining us!

Please take a moment to complete the survey currently up on Zoom. Your feedback is very important to us. The survey will remain open up to 5 minutes after the meeting ends.

CME and MOC credit information will be emailed to each participant within 5 business days.

