Inside the Issue: Exploring the Current and Future Management of High-Risk, Hormone-Sensitive Nonmetastatic Prostate Cancer

A CME/MOC-Accredited Live Webinar

Monday, July 31, 2023 5:00 PM – 6:00 PM ET

Faculty Neal D Shore, MD Mary-Ellen Taplin, MD

Faculty

Neal D Shore, MD Medical Director Carolina Urologic Research Center Myrtle Beach, South Carolina

Moderator

Neil Love, MD Research To Practice

Mary-Ellen Taplin, MD Professor of Medicine Harvard School of Medicine Dana-Farber Cancer Institute Boston, Massachusetts

Commercial Support

This activity is supported by an educational grant from Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol Myers Squibb, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab US Inc, Gilead Sciences Inc, Grail Inc, GSK, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Legend Biotech, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Stemline Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc, and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Shore — Disclosures

AbbVie I Diagnost Inc, Baye Myers So Imaging, Consulting Agreements the Roch Lantheus Genetic Pacific Eo Promaxo Pharmao	nc, Accord Healthcare Inc, Alessa Therapeutics Inc, Amgen Inc, Antev Ltd, Arquer tics, Asieris Pharmaceuticals, Astellas, AstraZeneca Pharmaceuticals LP, Aura Biosciences er HealthCare Pharmaceuticals, BioProtect Ltd, Boston Scientific Corporation, Bristol quibb, CG Oncology, Clarity Pharmaceuticals, Dendreon Pharmaceuticals Inc, Exact Ferring Pharmaceuticals, FIZE Medical, Foundation Medicine, Genentech, a member of the Group, GenesisCare, ImmunityBio, Incyte Corporation, Invitae, Janssen Biotech Inc, 5, Lilly, MDxHealth, Merck, Minomic International Ltd, Myovant Sciences, Myriad Laboratories Inc, Nonagen Bioscience, Novartis, Nymox Pharmaceutical Corporation, dge, Palette Life Sciences, Pfizer Inc, Photocure, PlatformQ, ProFound Therapeutics, 7, Propella Therapeutics Inc, Protara Therapeutics, Sanofi, Specialty Networks, Telix reeuticals Limited, Tolmar, UroGen Pharma
---	--

Dr Taplin — Disclosures

Advisory Committee	AstraZeneca Pharmaceuticals LP, Blue Earth Diagnostics, Clovis Oncology, Janssen Biotech Inc, Propella Therapeutics Inc
Data and Safety Monitoring Board/Committee	Clovis Oncology, Pfizer Inc
Nonrelevant Financial Relationship	UpToDate, Wiley Clinical Healthcare Hub

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY WITH DR NEIL LOVE

Novel Agents and Strategies for the Treatment of Metastatic Castration-Resistant Prostate Cancer

DR EVAN YU Fred hutchinson cancer research center

Dr Evan Yu – Novel Agents and Strate Oncology Today with Dr Neil Love —

(30)

(15)

Inside the Issue: The Current and Future Role of CD20 x CD3 Bispecific Antibodies in the Management of Non-Hodgkin Lymphoma

A CME/MOC-Accredited Live Webinar

Wednesday, August 2, 2023 5:00 PM – 6:00 PM ET

Faculty Martin Hutchings, MD, PhD Loretta J Nastoupil, MD

Inside the Issue: Optimizing the Management of Metastatic Pancreatic Cancer

A CME/MOC-Accredited Live Webinar

Tuesday, August 8, 2023 5:00 PM – 6:00 PM ET

Faculty Eileen M O'Reilly, MD Zev Wainberg, MD, MSc

Meet The Professor Optimizing the Management of Melanoma

> Thursday, August 10, 2023 5:00 PM – 6:00 PM ET

Faculty Prof Georgina Long, AO, BSc, PhD, MBBS

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Inside the Issue: Exploring the Current and Future Management of High-Risk, Hormone-Sensitive Nonmetastatic Prostate Cancer

A CME/MOC-Accredited Live Webinar

Monday, July 31, 2023 5:00 PM – 6:00 PM ET

Faculty Neal D Shore, MD Mary-Ellen Taplin, MD

Faculty

Neal D Shore, MD Medical Director Carolina Urologic Research Center Myrtle Beach, South Carolina

Moderator

Neil Love, MD Research To Practice

Mary-Ellen Taplin, MD Professor of Medicine Harvard School of Medicine Dana-Farber Cancer Institute Boston, Massachusetts

Survey Participants

Raoul S Concepcion, MD Chief Science Officer US Urology Partners Nashville, Tennessee

Leonard G Gomella, MD

The Bernard W Godwin Professor of Prostate Cancer Chairman, Department of Urology Senior Director, Clinical Affairs, Sidney Kimmel Cancer Center Enterprise VP for Urology, Jefferson Health System

Thomas Jefferson University and Hospital Philadelphia, Pennsylvania

Shilpa Gupta, MD

Clinical Professor of Medicine Cleveland Clinic Lerner College of Medicine Case Western Reserve University Director, Genitourinary Oncology Program Taussig Cancer Institute, Cleveland Clinic Cleveland, Ohio

Jason Hafron, MD

Chief Medical Officer Director of Clinical Research Michigan Institute of Urology Professor of Urology Oakland University William Beaumont School of Medicine West Bloomfield, Michigan

David S Morris, MD

President and Co-Director of Advanced Therapeutics Center Urology Associates Nashville, Tennessee

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

Inside the Issue: The Current and Future Role of CD20 x CD3 Bispecific Antibodies in the Management of Non-Hodgkin Lymphoma

A CME/MOC-Accredited Live Webinar

Wednesday, August 2, 2023 5:00 PM – 6:00 PM ET

Faculty Martin Hutchings, MD, PhD Loretta J Nastoupil, MD

Inside the Issue: Optimizing the Management of Metastatic Pancreatic Cancer

A CME/MOC-Accredited Live Webinar

Tuesday, August 8, 2023 5:00 PM – 6:00 PM ET

Faculty Eileen M O'Reilly, MD Zev Wainberg, MD, MSc

Meet The Professor Optimizing the Management of Melanoma

> Thursday, August 10, 2023 5:00 PM – 6:00 PM ET

Faculty Prof Georgina Long, AO, BSc, PhD, MBBS

ONCOLOGY TODAY WITH DR NEIL LOVE

Novel Agents and Strategies for the Treatment of Metastatic Castration-Resistant Prostate Cancer

DR EVAN YU Fred hutchinson cancer research center

Dr Evan Yu – Novel Agents and Strate Oncology Today with Dr Neil Love —

(30)

(15)

Inside the Issue: Exploring the Current and Future Management of High-Risk, Hormone-Sensitive Nonmetastatic Prostate Cancer

A CME/MOC-Accredited Live Webinar

Monday, July 31, 2023 5:00 PM – 6:00 PM ET

Faculty Neal D Shore, MD Mary-Ellen Taplin, MD

Commercial Support

This activity is supported by an educational grant from Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Shore — Disclosures

AbbVie I Diagnost Inc, Baye Myers So Imaging, Consulting Agreements the Roch Lantheus Genetic Pacific Eo Promaxo Pharmao	nc, Accord Healthcare Inc, Alessa Therapeutics Inc, Amgen Inc, Antev Ltd, Arquer tics, Asieris Pharmaceuticals, Astellas, AstraZeneca Pharmaceuticals LP, Aura Biosciences er HealthCare Pharmaceuticals, BioProtect Ltd, Boston Scientific Corporation, Bristol quibb, CG Oncology, Clarity Pharmaceuticals, Dendreon Pharmaceuticals Inc, Exact Ferring Pharmaceuticals, FIZE Medical, Foundation Medicine, Genentech, a member of the Group, GenesisCare, ImmunityBio, Incyte Corporation, Invitae, Janssen Biotech Inc, 5, Lilly, MDxHealth, Merck, Minomic International Ltd, Myovant Sciences, Myriad Laboratories Inc, Nonagen Bioscience, Novartis, Nymox Pharmaceutical Corporation, dge, Palette Life Sciences, Pfizer Inc, Photocure, PlatformQ, ProFound Therapeutics, 7, Propella Therapeutics Inc, Protara Therapeutics, Sanofi, Specialty Networks, Telix reeuticals Limited, Tolmar, UroGen Pharma
---	--

Dr Taplin — Disclosures

Advisory Committee	AstraZeneca Pharmaceuticals LP, Blue Earth Diagnostics, Clovis Oncology, Janssen Biotech Inc, Propella Therapeutics Inc
Data and Safety Monitoring Board/Committee	Clovis Oncology, Pfizer Inc
Nonrelevant Financial Relationship	UpToDate, Wiley Clinical Healthcare Hub

Treatment Intensification for Locally Advanced and BCR Prostate Cancer Patients

Neal Shore, MD, FACS

Key Data Sets

Neal D Shore, MD

- Aggarwal R et al. PRESTO: A phase 3 open-label study of androgen annihilation in patients with high-risk biochemically relapsed prostate cancer (AFT-19). ESMO 2022;Abstract LBA63.
- ATLAS: A randomized, double-blind, placebo-controlled phase 3 study of [apalutamide] in subjects with high-risk, localized or locally advanced prostate cancer receiving treatment with primary radiation therapy. (NCT02531516)
- Attard G et al. Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: A meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol. *Lancet* 2022 January 29;399(10323):447-60.
- Bolla M et al. Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): A phase III randomised trial. *Lancet* 2002;360(9327):103-6.
- ENZARAD: Randomised phase 3 trial of enzalutamide in androgen deprivation therapy with radiation therapy for high risk, clinically localised, prostate cancer. (NCT02446444)

Key Data Sets

Neal D Shore, MD (continued)

- Nabid A et al. Duration of androgen deprivation therapy in high-risk prostate cancer: A randomized phase III trial. *Eur Urol* 2018;74(4):432-41.
- Polkinghorn WR et al. Androgen receptor signaling regulates DNA repair in prostate cancers. *Cancer Discov* 2013;3(11):1245-53.
- PEACE-2: A randomized phase III, factorial design, of cabazitaxel and pelvic radiotherapy in patients with localized prostate cancer and high-risk features of relapse. (NCT01952223)
- Shore ND et al. EMBARK: A phase 3 randomized study of enzalutamide or placebo plus leuprolide acetate and enzalutamide monotherapy in high-risk biochemically recurrent prostate cancer. AUA 2023;Abstract LBA02-09.

Agenda

INTRODUCTION: Interdisciplinary Management of Prostate Cancer

MODULE 1: Key Data Sets

MODULE 2: Faculty Survey

MODULE 3: Faculty Cases

Appendix

Agenda

INTRODUCTION: Interdisciplinary Management of Prostate Cancer

MODULE 1: Key Data Sets

MODULE 2: Faculty Survey

MODULE 3: Faculty Cases

Appendix

Agenda

INTRODUCTION: Interdisciplinary Management of Prostate Cancer

MODULE 1: Key Data Sets

MODULE 2: Faculty Survey

MODULE 3: Faculty Cases

Appendix

Treatment Intensification for Locally Advanced and BCR Prostate Cancer Patients

Neal Shore, MD, FACS
STAMPEDE: Abiraterone ± Enzalutamide in nmCSPC

Study design

- M0 pts in AAP comparison: continued FU with **no further** efficacy inspections
- 2019 amended the reporting plan* to split M1 & M0, power the 1^{ary} endpoint on MFS, meta-analyse with new data from AAP+ENZ comparison

STAMPEDE: Abiraterone ± Enzalutamide in nmCSPC

Metastasis-free survival

Courtesy of Neal D Shore, MD

ATLAS trial design

Courtesy of Neal D Shore, MD

ENZARAD (ANZUP 1303) STUDY SCHEMA

Study Chairs: Scott Williams & Paul Nguyen

Eligibility

Localized prostate cancer High risk of recurrence Suitable for EBRT

R

1:1

Stratification

Gleason score 8-10 T3-4 disease N1 disease PSA ≥20 ng/mL Brachytherapy boost Pelvic nodal RT Study Site Enzalutamide 160mg daily for 24 months + LHRHA for 24 months + RT starting after 16 weeks ± brachy ± nodal

n= 802 participants

Conventional NSAA for 6 months + LHRHA for 24 months + RT starting after 16 weeks ± brachy ± nodal

Endpoints

Metastasis-free survival (primary) Overall survival Cause specific survival PSA progression free survival Clinical progression free survival Castration-resistance Health related quality of life Adverse events Incremental cost-effectiveness

*Conventional Non-Steroidal Anti-Androgens: bicalutamide 50mg daily, nilutamide 150mg daily, or flutamide 250mg tid

PRESTO: A Phase 3 Open-Label Study of Androgen Annihilation in Patients with High-Risk Biochemically Relapsed Prostate Cancer (AFT-19)

Rahul Aggarwal, on behalf of the Alliance AFT-19 Study Investigators

Paris, France 11 SEP 2022

Study Schema

Prior radical prostatectomy

Biochemical recurrence with PSA > 0.5 ng/mL

 $\overline{}$

. .

.

—

Randomize

PSA-DT ≤ 9 months

No metastases on conventional imaging

Last dose of ADT > 9 months prior to study entry

Serum T > 150 ng/dL

Stratified by PSA doubling time (< 3 months vs. 3 – 9 months) Courtesy of Neal D Shore, MD

Aggarwal R et al. ESMO 2022;Abstract LBA63.

D

Follow

rm

Ц Ц

-ong

Arm B: ADT + apalutamide vs. ADT monotherapy

Median follow up 21.5 months

102 PSA PFS events

Median PSA progression-free survival

ADT + APA = 24.9 months (95% CI: 23.3 - 32.3) ADT alone = 20.3 months (95% CI: 18.2 - 22.9) Hazard ratio 0.52 (95% CI: 0.35 - 0.77) One-sided p-value = 0.00047)

Arm C: ADT + apalutamide + abiraterone acetate + prednisone vs. ADT monotherapy

Median follow up 21.3 months

102 PSA PFS events

Median PSA progression-free survival ADT + APA + AAP = 26.0months (95% CI: 22.9 - 32.5) ADT alone = 20.0 months (95% CI: 18.2 - 22.5) Hazard ratio = 0.48 (95% CI: 0.32 - 0.71) One-sided p-value = 0.00008

Most Common Grade ≥ 2 Adverse Events (N = 484)

	Arr (n =	n A 160)	Arm B (n = 163)		Arm C (n = 161)		
Adverse Events (AE)	Grade 2	Grade ≥ 3	Grade 2	Grade ≥ 3	Grade 2	Grade ≥ 3	
	n (%)	n (n (%)		n (%)	
Hypertension	19 (12)	12 (8)	25 (15)	12 (7)	18 (11)	31 (19)	
Hot flashes	19 (12)	1 (1)	8 (5)	0	23 (14)	0	
Fatigue	14 (9)	0	8 (5)	3 (2)	16 (10)	2 (1)	
Injection site reaction	9 (6)	0	10 (6)	0	11 (7)	0	
Insomnia	9 (6)	0	5 (3)	0	8 (5)	0	
Hyperglycemia	0	3 (2)	6 (4)	2 (1)	6 (4)	5 (3)	
Rash	2 (1)	1 (1)	7 (4)	3 (2)	3 (2)	5 (3)	
Erectile dysfunction	10 (6)	1 (1)	6 (4)	1 (1)	2 (1)	0	
Arthralgia	4 (3)	1 (1)	6 (4)	1 (1)	3 (2)	2 (1)	
Elevated ALT	1 (1)	0	1 (1)	0	2 (1)	0	

Summary of Adverse Events (N = 484)

	Arm A (n=160)	Arm B (n=163)	Arm C (n=161)
Adverse Events (AE)	n (%)	n (%)	n (%)
Any AE	145 (90.6)	148 (90.8)	155 (96.3)
Grade 3 or 4 AE	30 (18.8)	41 (25.2)	61 (37.9)
Any Serious AE	13 (8.1)	14 (8.6)	28 (17.4)
AE leading to treatment discontinuation	0 (0.0)	3 (1.8)	5 (3.1)

Limitations

- PSA-based rather than metastasis-free survival primary endpoint
 - Follow up is ongoing to estimate median metastasis-free survival in each study arm
- Metabolic imaging (e.g. fluciclovine or PSMA PET) not required at screening
 - Truly M0 biochemically recurrent CSPC population shrinking with stage migration
 - Role of metastasis-directed therapy in oligometastatic CSPC in conjunction with ADT remains to be defined

Conclusions

- PRESTO is the first phase 3 study to report results of ADT plus AR pathway inhibition in biochemically recurrent, non-metastatic, castration-sensitive prostate cancer
- The addition of apalutamide to androgen deprivation for a finite duration of treatment leads to a statistically significant prolongation of PSA progression-free survival
 - No adverse impact on time to testosterone recovery
 - Safety profile consistent with prior studies
- There does not appear to be further benefit with addition of abiraterone acetate + prednisone to apalutamide

Conclusions (continued)

- Follow up is ongoing to estimate the impact of ADT plus AR pathway inhibition on patient-reported outcomes, time to subsequent therapy, and metastasis-free survival
- Given that treatment decisions in biochemically recurrent prostate cancer are often predicated on PSA kinetics alone, ADT plus apalutamide for a finite treatment period could be considered for high-risk patients with a short PSA doubling time

Depth of PSA Nadir and Subsequent PSA Progression-Free Survival in Patients (pts) with High-Risk Biochemically Relapsed Prostate Cancer: Results from the Phase 3 PRESTO Study (AFT-19)

Aggarwal RR et al ASCO 2023;Abstract 5077.

A Prospective Trial of Apalutamide and Abiraterone Acetate plus Prednisone in Black and White Men with Metastatic Castrate-Resistant Prostate Cancer

George DJ et al ASCO 2023;Abstract 5015.

AUA-2023 CHICAGO * APR 28-MAY 1 EMBARK study design

^aStudy treatment was suspended once at week 37 if PSA was <0.2 ng/mL and restarted when PSA was ≥5.0 ng/mL (without prior RP) and ≥2 ng/mL (prior RP). ^bIntent-to-treat population. ^cPrimary endpoint and key secondary endpoints for enzalutamide combination and enzalutamide monotherapy are alpha-protected. *P*-value to determine significance for OS of combination and monotherapy treatment comparisons was dependent on outcomes of primary endpoint and key secondary endpoints. ^dSafety population. BICR, blinded independent central review; CT, computed tomography; d, day; EBRT, external beam radiotherapy; IM, intramuscular; MFS, metastasis-free survival; mo, month; MRI, magnetic resonance imaging; OS, overall survival; PSA, prostate-specific antigen; PSADT, PSA doubling time; q, every; R, randomization; RP, radical prostatectomy; w, weeks.

Courtesy of Neal D Shore, MD

Shore N et al. AUA 2023; Abstract LBA02-09.

AUA-2023 Primary endpoint — MFS for enzalutamide CHICAGO * APR 28-MAY 1 combination vs. leuprolide acetate

A consistent treatment effect was seen for investigator-assessed MFS: HR (95% CI): 0.47 (0.37-0.67); P<0.0001

Data cutoff: January 31, 2023. Symbols indicate censored data. aHR was based on a Cox regression model with treatment as the only covariate stratified by screening PSA, PSADT, and prior hormonal therapy as reported in the IWRS; relative to leuprolide acetate <1 favoring enzalutamide combination; the two-sided *P*-value was based on a stratified log-rank. CI, confidence interval; HR, hazard ratio; IWRS, interactive web response system; NR, not reached.

Courtesy of Neal D Shore, MD

AUA-2023 CHICAGO * APR 28-MAY 1 Key secondary endpoint — Time to PSA progression for enzalutamide combination vs. leuprolide acetate

Data cutoff: January 31, 2023. Symbols indicate censored data. ^aThe HR was based on a Cox regression model with treatment as the only covariate stratified by screening PSA, PSADT, and prior hormonal therapy as reported in the IWRS; relative to leuprolide acetate <1 favoring enzalutamide combination; the two-sided *P*-value is based on a stratified log-rank test.

Courtesy of Neal D Shore, MD

Shore N et al. AUA 2023;Abstract LBA02-09.

AUA-2023 CHICAGO * APR 28-MAY 1 Key secondary endpoint — MFS for enzalutamide monotherapy vs. leuprolide acetate

A consistent treatment effect was seen for investigator-assessed MFS: HR (95% CI): 0.56 (0.40–0.78); P=0.0006

Data cutoff: January 31, 2023. Symbols indicate censored data. The HR was based on a Cox regression model with treatment as the only covariate stratified by screening PSA, PSADT, and prior hormonal therapy as reported in the IWRS; relative to leuprolide acetate <1 favoring enzalutamide monotherapy; the two-sided *P*-value was based on a stratified log-rank test.

Courtesy of Neal D Shore, MD

Shore N et al. AUA 2023; Abstract LBA02-09.

AUA-2023 CHICAGO * APR 28-MAY 1 Safety profile

	Enzalutamide combination (n = 353)		Leuprolide acetate (n = 354)		Enzalutamide monotherapy (n = 354)	
Event, n (%) ^a	All grades	Grade ≥3	All grades	Grade ≥3	All grades	Grade ≥3
Any AE	343 (97.2)	164 (46.5)	345 (97.5)	151 (42.7)	347 (98.0)	177 (50.0)
Treatment-related AE	305 (86.4)	62 (17.6)	283 (79.9)	31 (8.8)	312 (88.1)	57 (16.1)
Serious AE	123 (34.8)	110 (31.2)	112 (31.6)	100 (28.2)	131 (37.0)	116 (32.8)
Treatment-related serious AE	26 (7.4)	22 (6.2)	8 (2.3)	7 (2.0)	17 (4.8)	17 (4.8)
AE leading to dose reduction	25 (7.1)	11 (3.1)	16 (4.5)	5 (1.4)	56 (15.8)	14 (4.0)
AE leading to permanent discontinuation	73 (20.7)	31 (8.8)	36 (10.2)	19 (5.4)	63 (17.8)	34 (9.6)
AE leading to death	6 (1.7) ^b	_	3 (0.8) ^b	_	8 (2.3) ^b	_

Median treatment duration excluding treatment suspension was 32.4 mo (range, 0.1–83.4 mo) for enzalutamide combination, 35.4 mo (range, 0.7–85.7 mo) for leuprolide acetate, and 45.9 mo (0.4–88.9 mo) for enzalutamide monotherapy.

The most common AE leading to study drug discontinuation was fatigue (enzalutamide combination, 3.4% [n = 12]; leuprolide acetate, 1.1% [n = 4]; enzalutamide monotherapy, 2.3% [n = 8]).

Data cutoff: January 31, 2023. Percentages may not total 100 because of rounding. Shown are AE that occurred from the time of first dose of study treatment through 30 days after permanent discontinuation. AE were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03. Grade 5 AE; none were considered treatment-related. AE, adverse event.

AUA-2023 CHICAGO * APR 28-MAY 1 Most common TEAEs

Most common TEAEs (>15% of	Enzalutamide combination (n = 353)		Leuprolide acetate (n = 354)		Enzalutamide monotherapy (n = 354)	
patients), n (%) ^a	All grades	Grade ≥3	All grades	Grade ≥3	All grades	Grade ≥3
Hot flash	243 (68.8)	2 (0.6)	203 (57.3)	3 (0.8)	77 (21.8)	1 (0.3)
Fatigue	151 (42.8)	12 (3.4)	116 (32.8)	5 (1.4)	165 (46.6)	14 (4.0)
Arthralgia	97 (27.5)	5 (1.4)	75 (21.2)	1 (0.3)	81 (22.9)	1 (0.3)
Hypertension	82 (23.2)	2 (0.6)	69 (19.5)	0	67 (18.9)	0
Fall	74 (21.0)	3 (0.8)	51 (14.4)	2 (0.6)	56 (15.8)	5 (1.4)
Back pain	60 (17.0)	1 (0.3)	54 (15.3)	0	62 (17.5)	1 (0.3)
Nausea	42 (11.9)	0	29 (8.2)	0	54 (15.3)	1 (0.3)
Gynecomastia	29 (8.2)	0	32 (9.0)	0	159 (44.9)	1 (0.3)
Nipple pain	11 (3.1)	0	4 (1.1)	0	54 (15.3)	0

 The most common AEs (>15% of patients) for all treatment cohorts were hot flash, fatigue; plus gynecomastia in the enzalutamide monotherapy cohort; most were grade <3.

Data cutoff: January 31, 2023. Percentages may not total 100 because of rounding. Shown are AEs that occurred from the time of first dose of study treatment through 30 days after permanent discontinuation. AEs were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03. TEAE, treatment-emergent AE.

Courtesy of Neal D Shore, MD

AUA-2023 CHICAGO * APR 28-MAY 1 Selected TEAEs of special interest

Clustered TEAEs of aposial interest	Enzalutamide combination (n = 353)		Leuprolide acetate (n = 354)		Enzalutamide monotherapy (n = 354)	
n (%) ^a	All grades	Grade ≥3	All grades	Grade ≥3	All grades	Grade ≥3
Fatigue ^b	178 (50.4) ^c	14 (4.0)	134 (37.9) ^c	6 (1.7)	191 (54.0) ^c	17 (4.8)
Musculoskeletal events ^d	163 (46.2) ^c	13 (3.7)	148 (41.8) ^c	4 (1.1)	158 (44.6) ^c	6 (1.7)
Hypertension	89 (25.2) ^c	27 (7.6)	74 (20.9)	21 (5.9)	77 (21.8) ^c	20 (5.6)
Fall	74 (21.0)	4 (1.1)	51 (14.4)	4 (1.1)	56 (15.8)	7 (2.0)
Fracture ^e	65 (18.4)	14 (4.0)	48 (13.6)	9 (2.5)	39 (11.0)	7 (2.0)
Cognitive and memory impairment	53 (15.0) ^c	2 (0.6)	23 (6.5)	2 (0.6)	50 (14.1) ^c	0
Loss of consciousness ^f	20 (5.7)	17 (4.8)	12 (3.4)	6 (1.7)	12 (3.4)	8 (2.3)
Ischemic heart disease	19 (5.4)	14 (4.0)	20 (5.6)	11 (3.1)	32 (9.0)	21 (5.9)
Other selected CV events ^g	18 (5.1)	13 (3.7)	17 (4.8)	10 (2.8)	13 (3.7)	8 (2.3)
Convulsion (seizure)	4 (1.1)	2 (0.6)	0	0	3 (0.8)	2 (0.6)

 The most common AEs of special interest for all treatment cohorts (≥10% of patients) were fatigue, fall, fracture, hypertension, and musculoskeletal events.

Data cutoff: January 31, 2023. Percentages may not total 100 because of rounding. Shown are AEs that occurred from the time of first dose of study treatment through 30 days after permanent discontinuation. AEs were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03. ^bFatigue events included asthenia. ^cThe most common (≥10% of patients) TEAEs. ^dMusculoskeletal events included back pain, arthralgia, myalgia, musculoskeletal pain, pain in extremity, musculoskeletal stiffness, muscular weakness, and muscle spasms. ^eFractures excluded tooth fracture and fracture of the penis. ^fLoss of consciousness included syncope and presyncope. ^gOther selected CV events included hemorrhagic central nervous system vascular conditions, and cardiac failure. CV, cardiovascular.

Courtesy of Neal D Shore, MD

Shore N et al. AUA 2023; Abstract LBA02-09.

Agenda

INTRODUCTION: Interdisciplinary Management of Prostate Cancer

MODULE 1: Key Data Sets

MODULE 2: Faculty Survey

MODULE 3: Faculty Cases

Appendix

What is your preferred ADT for patients with localized disease?

Dr Shore	Relugolix			
Dr Taplin	LHRH agonist			
Dr Concepcion	No preference			
Dr Gomella	No preference			
Dr Gupta	LHRH agonist or relugolix			
Dr Hafron	Start with degarelix and then add leuprolide			
Dr Morris	No preference			
Dr Plimack	No preference			

ADT = androgen deprivation therapy

What is your preferred ADT for patients with PSA-only (M0) disease?

Dr Shore	Relugolix			
Dr Taplin	LHRH agonist			
Dr Concepcion	No preference			
Dr Gomella	LHRH agonist			
Dr Gupta	LHRH agonist or relugolix			
Dr Hafron	I do not use ADT in this setting			
Dr Morris	LHRH agonist			
Dr Plimack	Relugolix			

What is your preferred ADT for patients with metastatic castration-sensitive prostate cancer?

Dr Shore	R	elugolix
Dr Taplin	LHR	RH agonist
Dr Concepcion	Νο	preference
Dr Gomella	D	egarelix
Dr Gupta	LHR	RH agonist
Dr Hafron	Start with degarelize	x and then add leuprolide
Dr Morris	LHR	RH agonist
Dr Plimack	Νο	preference

What is your preferred ADT for patients with metastatic castration-sensitive prostate cancer and a history of coronary artery disease?

Dr Shore	Relugolix			
Dr Taplin	Degarelix or relugolix			
Dr Concepcion	Relugolix			
Dr Gomella	Degarelix			
Dr Gupta	Relugolix			
Dr Hafron	Start with degarelix and then add leuprolide			
Dr Morris	No preference			
Dr Plimack	Relugolix			

Based on your personal clinical experience and knowledge of available data, what do you consider to be a relative or absolute contraindication to administering abiraterone?

	Relative contraindication	Absolute contraindication
Dr Shore	Diabetes/cardiovascular issues	Diabetes/unstable CHF
Dr Taplin	Liver disease	CHF
Dr Concepcion	HTN, CHF, CAD, liver dysfunction	Uncontrolled HTN, cirrhosis
Dr Gomella	High BP, liver issues	Liver failure
Dr Gupta	Poorly controlled diabetes, obesity	Significant cardiac disease
Dr Hafron	Cardiac, diabetes	None
Dr Morris	Poorly controlled diabetes	None
Dr Plimack	Diabetes	None

CHF = congestive heart failure; HTN = hypertension; CAD = coronary artery disease

What is the percent chance that a patient will experience toxicity during treatment with <u>abiraterone</u> that will require withholding dosing or discontinuation? What is the primary toxicity patients experience that leads to withholding dosing?

	Chance of holding or discontinuation	Primary toxicity
Dr Shore	20%	Glycemia
Dr Taplin	30%	HTN
Dr Concepcion	<10%	HTN, elevated LFTs, hypokalemia
Dr Gomella	50%	Edema, fatigue
Dr Gupta	50%	Hepatotoxicity, cardiac toxicity, fatigue
Dr Hafron	20%	Cardiac issues, worsening diabetes
Dr Morris	10%	Fatigue
Dr Plimack	20%	LFTs, edema

HTN = hypertension; LFT = liver function test

Based on your personal clinical experience and knowledge of available data, what do you consider to be a relative or absolute contraindication to administering enzalutamide?

	Relative contraindication	Absolute contraindication
Dr Shore	Cognition	CVA syndromes
Dr Taplin	Cognitive dysfunction	Seizure disorder
Dr Concepcion	Uncontrolled HTN, neurological dysfunction	History of seizures, malignant HTN
Dr Gomella	Advanced age, seizure history	Falls due to drug
Dr Gupta	Old age	Neurological dysfunction
Dr Hafron	Neurological	Seizures
Dr Morris	Recent CVA/MI	Seizure DO
Dr Plimack	Dementia	None

CVA = cerebral vascular accident (stroke); HTN = hypertension; MI = myocardial infarction

What is the percent chance that a patient will experience toxicity during treatment with <u>enzalutamide</u> that will require withholding dosing or discontinuation? What is the primary toxicity patients experience that leads to withholding dosing?

	Chance of holding or discontinuation	Primary toxicity
Dr Shore	20%	Cognitive
Dr Taplin	30%	HTN
Dr Concepcion	<10%	Seizures, uncontrolled HTN
Dr Gomella	25%	Cardiovascular events
Dr Gupta	70%	Neurologic symptoms, myalgias, fatigue
Dr Hafron	60%	Neurological
Dr Morris	25%	Fatigue, mental fog
Dr Plimack	20%	Fatigue

Based on your personal clinical experience and knowledge of available data, what do you consider to be a relative or absolute contraindication to administering apalutamide?

	Relative contraindication	Absolute contraindication
Dr Shore	Cognition	CVA syndromes, skin hypersensitivities
Dr Taplin	Uncontrolled HTN	None
Dr Concepcion	Uncontrolled HTN, neurological dysfunction	History of seizures, malignant HTN
Dr Gomella	Seizure, severe cardiovascular disease	Severe rash
Dr Gupta	N/A	N/A
Dr Hafron	Neurological	Seizures
Dr Morris	Recent CVA, MI, significant rash DO	Seizure DO
Dr Plimack	Need more experience and data	Need more experience and data

What is the percent chance that a patient will experience toxicity during treatment with <u>apalutamide</u> that will require withholding dosing or discontinuation? What is the primary toxicity patients experience that leads to withholding dosing?

	Chance of holding or discontinuation	Primary toxicity
Dr Shore	20%	Rash
Dr Taplin	20%	HTN
Dr Concepcion	<10%	Seizures, uncontrolled HTN
Dr Gomella	20%	Cardiovascular events
Dr Gupta	40%	Severe rash, fatigue
Dr Hafron	50%	Neurological, rash
Dr Morris	10%	Fatigue
Dr Plimack	Need more experience and data	Need more experience and data

Based on your personal clinical experience and knowledge of available data, what do you consider to be a relative or absolute contraindication to administering darolutamide?

	Relative contraindication	Absolute contraindication
Dr Shore	None	None
Dr Taplin	Uncontrolled HTN	None
Dr Concepcion	Neurological dysfunction	Severe asthenia
Dr Gomella	None usually	Cardiovascular events
Dr Gupta	N/A	N/A
Dr Hafron	None	Seizures
Dr Morris	Recent CVA, MI, seizure DO	None
Dr Plimack	Need more experience and data	Need more experience and data

What is the percent chance that a patient will experience toxicity during treatment with <u>darolutamide</u> that will require withholding dosing or discontinuation? What is the primary toxicity patients experience that leads to withholding dosing?

	Chance of holding or discontinuation	Primary toxicity
Dr Shore	10%	Body aches
Dr Taplin	10%	HTN
Dr Concepcion	<10%	Asthenia
Dr Gomella	10%	Cardiovascular events
Dr Gupta	40%	Fatigue
Dr Hafron	10%	Fatigue, increased LFTs, falls
Dr Morris	5%	N/A
Dr Plimack	Need more experience and data	Need more experience and data

For a patient with PSA-only (M0) prostate cancer for whom you are not able to access enzalutamide, would you consider substituting apalutamide or darolutamide, either with or without ADT, if you had access to both those agents?

Dr Shore	Yes, either apalutamide or darolutamide
Dr Taplin	Yes, either apalutamide or darolutamide
Dr Concepcion	Yes, either apalutamide or darolutamide
Dr Gomella	Yes, either apalutamide or darolutamide
Dr Gupta	Yes, either apalutamide or darolutamide
Dr Hafron	Yes, either apalutamide or darolutamide
Dr Morris	Yes, either apalutamide or darolutamide
Dr Plimack	Yes, either apalutamide or darolutamide

For a patient with PSA-only (M0) prostate cancer for whom you are not able to access apalutamide would you consider substituting enzalutamide or darolutamide, either with or without ADT, if you had access to both of those agents?

Dr Shore	Yes, darolutamide	
Dr Taplin	Yes, either darolutamide or enzalutamide	
Dr Concepcion	Yes, either darolutamide or enzalutamide	
Dr Gomella	Yes, either darolutamide or enzalutamide	
Dr Gupta	Yes, either darolutamide or enzalutamide	
Dr Hafron	Yes, either darolutamide or enzalutamide	
Dr Morris	Yes, darolutamide	
Dr Plimack	Yes, either darolutamide or enzalutamide	

Based on your personal clinical experience and knowledge of available data, in general how would you compare the <u>quality of life</u> (QoL) for patients receiving intermittent ADT (eg, relugolix), intermittent ADT in combination with enzalutamide or intermittent enzalutamide alone?

Dr Shore	Intermittent ADT has better QoL
Dr Taplin	Intermittent ADT has better QoL
Dr Concepcion	QoL is similar with all 3 regimens
Dr Gomella	QoL is similar with all 3 regimens
Dr Gupta	Intermittent ADT has better QoL
Dr Hafron	QoL is similar with all 3 regimens
Dr Morris	QoL is similar with all 3 regimens
Dr Plimack	Intermittent ADT has better QoL

Based on your personal clinical experience and knowledge of available data, in general how would you compare the <u>sexual function (libido/erectile function)</u> of patients receiving intermittent ADT (eg, relugolix), intermittent ADT in combination with enzalutamide or intermittent enzalutamide alone?

Dr Shore	Intermittent enzalutamide alone is associated with better sexual function	
Dr Taplin	Intermittent enzalutamide alone is associated with better sexual function	
Dr Concepcion	Sexual function is similar with all 3 regimens	
Dr Gomella	Intermittent ADT is associated with better sexual function	
Dr Gupta	Intermittent ADT is associated with better sexual function	
Dr Hafron	Sexual function is similar with all 3 regimens	
Dr Morris	Intermittent enzalutamide alone is associated with better sexual function	
Dr Plimack	Sexual function is similar with all 3 regimens	

Based on your personal clinical experience and knowledge of available data, how problematic do you consider the gynecomastia in patients receiving androgen signal blocking agents without ADT?

Dr Shore	Somewhat problematic
Dr Taplin	Somewhat problematic
Dr Concepcion	Somewhat problematic
Dr Gomella	Not at all problematic
Dr Gupta	Very problematic
Dr Hafron	Very problematic
Dr Morris	Somewhat problematic
Dr Plimack	Very problematic

How effective is radiation therapy (RT) at treating or preventing gynecomastia (eg, 1 preemptive dose of low-dose RT)?

Dr Shore	Very effective	
Dr Taplin	Not effective	
Dr Concepcion	Moderate	
Dr Gomella	Helpful but is rarely done today	
Dr Gupta	Somewhat	
Dr Hafron	It helps with pain in the breasts but does not prevent breast enlargement	
Dr Morris	Normally don't recommend, but if a patient is motivated it may be helpful	
Dr Plimack	I don't recommend this, it's not that effective after gynecomastia develops	

Regulatory and reimbursement issues aside, do you think a patient with high-risk M0 disease who would generally be offered ADT should also be offered the opportunity to alternatively receive enzalutamide monotherapy?

Dr Shore	Yes
Dr Taplin	Yes
Dr Concepcion	Yes
Dr Gomella	No
Dr Gupta	No
Dr Hafron	No
Dr Morris	Yes
Dr Plimack	No

Does your treatment approach differ for a patient with prostate cancer who experiences PSA-only relapse (M0) after primary local therapy and for whom conventional imaging is negative but PSMA PET is positive?

Dr Shore	May discuss adding PARP inhibitor if HRR mutation
Dr Taplin	Yes
Dr Concepcion	Yes
Dr Gomella	No
Dr Gupta	Yes
Dr Hafron	No
Dr Morris	No
Dr Plimack	No

What are the most common sites of oligometastatic disease that you have observed in patients who experience PSA-only relapse (M0) after primary local therapy and for whom conventional imaging is negative but PSMA PET is positive?

Dr Shore	Bone and lymph nodes	
Dr Taplin	Prostate bed, pelvic nodes, bone	
Dr Concepcion	Regional nodes	
Dr Gomella	Pelvic nodes followed by axial skeleton	
Dr Gupta	Bone and lymph nodes	
Dr Hafron	Soft tissue and bone	
Dr Morris	Small pelvic nodes (perirectal, iliac) isolated bony lesions in spine and ribs	
Dr Plimack	Lymph nodes	

What forms of localized therapy have you used for patients with prostate cancer and oligometastatic disease?

Dr Shore	SBRT
Dr Taplin	SBRT, EBRT, ablation after RT with relapse in same area
Dr Concepcion	Radiation therapy
Dr Gomella	SBRT
Dr Gupta	SBRT
Dr Hafron	SABR, EBRT
Dr Morris	SBRT primarily
Dr Plimack	Radiation therapy

SBRT = stereotactic body radiation therapy; EBRT = external beam RT; SABR = stereotactic ablative RT

For a patient receiving RT for localized prostate cancer, in what clinical situations would you generally recommend adding concurrent endocrine therapy?

Dr Shore	Grade Group (GG) 3-5
Dr Taplin	For all except the most favorable (ie, low risk or very favorable intermediate risk [3 + 4, 1-2 cores])
Dr Concepcion	N1 disease, HR/VHR
Dr Gomella	Intermediate- and high-risk disease
Dr Gupta	Rising PSA
Dr Hafron	For NCCN unfavorable disease and higher
Dr Morris	Intermediate risk short duration 6 mo, HR/VHR 18-24 mo
Dr Plimack	Node-positive or PSA >40 ng/mL and high stage/grade

In general, when recommending endocrine therapy for a patient receiving RT for localized prostate cancer, what is your usual treatment? For how long do you generally continue the endocrine therapy (ET)?

	ET	Duration
Dr Shore	GG3: ADT alone GG4, 5: ADT + abiraterone	18-24 months
Dr Taplin	ADT alone	6 mo intermediate, HR 24 mo
Dr Concepcion	ADT + abiraterone	2 years
Dr Gomella	ADT + apalutamide	Indefinitely
Dr Gupta	ADT + abiraterone	1-2 years
Dr Hafron	ADT alone	4 mo intermediate, HR 18-24 mo
Dr Morris	ADT +/- abiraterone	6 mo intermediate, HR/VHR 18-24 mo
Dr Plimack	ADT + abiraterone	2 years

HR/VHR = high risk to very high risk

A patient with localized prostate cancer who received RT is now experiencing PSA-only progression with no evidence of metastatic disease (M0). PSMA scan is negative. In general, when recommending endocrine therapy in this setting, what is your usual treatment? For how long do you generally continue treatment?

	ET	Duration
Dr Shore	ADT alone	9-12 months
Dr Taplin	ADT alone	9 months
Dr Concepcion	ADT + abiraterone	Indefinitely
Dr Gomella	ADT + enzalutamide	Indefinitely
Dr Gupta	ADT + apalutamide, enzalutamide or darolutamide	Until metastatic progression
Dr Hafron	ADT	Intermittent
Dr Morris	ADT +/- abiraterone	Induction 6 months, stop if PSA undetectable
Dr Plimack	ADT alone	9 months then consider intermittent

A patient with prostate cancer s/p RP followed by RT for PSA-only relapse is now experiencing further PSA-only progression with no evidence of metastatic disease (M0). PSMA scan is negative. Regulatory and reimbursement issues aside, what do you consider to be the optimal endocrine treatment in this setting?

Dr Shore	ADT + enzalutamide
Dr Taplin	ADT alone
Dr Concepcion	ADT + enzalutamide
Dr Gomella	ADT + enzalutamide
Dr Gupta	ADT alone
Dr Hafron	ADT + enzalutamide
Dr Morris	Discourage any ADT until documented metastasis; will likely change due to EMBARK
Dr Plimack	ADT alone

A patient with prostate cancer s/p RP followed by RT for PSA-only relapse is now experiencing further PSA-only progression with no evidence of metastatic disease (M0). PSMA scan is negative. In general, do you use intermittent or continuous treatment when administering endocrine therapy in this setting? For how long do you typically continue the endocrine therapy?

	ET dosing	ET duration
Dr Shore	Intermittent	8-12 months
Dr Taplin	Intermittent	9 months
Dr Concepcion	Continuous	6 months
Dr Gomella	Continuous	Indefinitely
Dr Gupta	Intermittent	Until progression or unacceptable toxicity
Dr Hafron	Continuous	2 years
Dr Morris	Intermittent	6 months
Dr Plimack	Intermittent	9 months

A patient with prostate cancer s/p RP followed by RT for PSA-only relapse receives ADT alone for further PSA progression. He is now experiencing PSA progression with no evidence of metastatic disease (MO). PSMA scan is negative. Regulatory and reimbursement issues aside, what do you consider to be the optimal endocrine treatment in this setting?

Dr Shore	Continue ADT and add enzalutamide
Dr Taplin	Continue ADT alone
Dr Concepcion	Continue ADT and add enzalutamide
Dr Gomella	Continue ADT and add enzalutamide
Dr Gupta	Continue ADT and add apalutamide, enzalutamide or darolutamide
Dr Hafron	Continue ADT and add darolutamide
Dr Morris	Continue ADT and add darolutamide
Dr Plimack	Continue ADT alone or with abiraterone or other 2nd-generation androgen receptor inhibitor

A patient with prostate cancer s/p RP followed by RT for PSA-only relapse receives ADT alone for further PSA progression. He is now experiencing PSA progression with no evidence of metastatic disease (MO). PSMA scan is negative. In general, do you use intermittent or continuous treatment when administering endocrine therapy in this setting? For how long do you typically continue the endocrine therapy?

	ET dosing	ET duration
Dr Shore	Continuous	Until radiographic progression
Dr Taplin	Continuous	Indefinitely
Dr Concepcion	Continuous	6 months
Dr Gomella	Continuous	Indefinitely
Dr Gupta	Intermittent	Until metastatic or significant PSA progression
Dr Hafron	Continuous	Indefinitely
Dr Morris	Continuous	Until metastatic progression on imaging
Dr Plimack	Continuous	Until metastatic progression on imaging

A patient who underwent RP for high-risk localized disease and received no further treatment is found to have metastatic disease. Genetic testing is negative for HRR mutations. Regulatory and reimbursement issues aside, what systemic treatment would you most likely recommend if the disease were ...?

	Asymptomatic, low volume	Symptomatic
Dr Shore	ADT + abiraterone, enzalutamide or apalutamide	ADT + abiraterone, enzalutamide or apalutamide
Dr Taplin	ADT + abiraterone	ADT + docetaxel + darolutamide
Dr Concepcion	ADT + enzalutamide	ADT + docetaxel + darolutamide
Dr Gomella	ADT + enzalutamide	ADT + docetaxel + darolutamide
Dr Gupta	ADT + apalutamide	ADT + docetaxel + abiraterone ADT + docetaxel + darolutamide
Dr Hafron	ADT + abiraterone	ADT + docetaxel + darolutamide
Dr Morris	ADT + apalutamide	ADT + docetaxel + darolutamide
Dr Plimack	ADT + abiraterone	ADT + docetaxel + darolutamide

A patient who underwent RT for localized high-risk prostate cancer and received no further treatment is found to have metastatic disease. Genetic testing is negative for HRR mutations. Regulatory and reimbursement issues aside, what systemic treatment would you most likely recommend if the disease were ...?

	Asymptomatic, low volume	Symptomatic
Dr Shore	ADT + secondary hormonal therapy +/- docetaxel	ADT + secondary hormonal therapy +/- docetaxel
Dr Taplin	ADT + abiraterone	ADT + abiraterone
Dr Concepcion	ADT + enzalutamide	ADT + docetaxel + darolutamide
Dr Gomella	ADT + enzalutamide	ADT + docetaxel + darolutamide
Dr Gupta	ADT + apalutamide	ADT + abiraterone, enzalutamide or apalutamide
Dr Hafron	ADT + abiraterone	ADT + docetaxel + darolutamide
Dr Morris	ADT + apalutamide	ADT + docetaxel + darolutamide
Dr Plimack	ADT + abiraterone	ADT + docetaxel + darolutamide

Agenda

INTRODUCTION: Interdisciplinary Management of Prostate Cancer

MODULE 1: Key Data Sets

MODULE 2: Faculty Survey

MODULE 3: Faculty Cases

Appendix

Clinical case (Scenario 1)

- 65 years old with rising PSA 3.2 to 6.1 over 2 years. Testosterone 320 ng/dL. Normal DRE.
- MRI prostate: 26 mL prostate. Extracapsular extension and seminal vesicle invasion. PIRADS 5
- Biopsy demonstrated Gleason 4+3=7 in 6 of 12 cores

Case (Scenario 2)

- MRI shows 1.4 cm left pelvic sidewall lymph node.
- CT abd/pelvis with left sided hydronephrosis from bladder thickening at left ureteral junction. Left pelvic lymphadenopathy. Bone scan negative. PSMA PET confirms cT4N1 disease.
- DRE cT4
- No significant comorbidities.

Which therapy would you recommend with EBRT?

- 1. ADT alone
- 2. ADT with bicalutamide
- 3. ADT with abiraterone/prednisone

Clinical Case: BCR

- 70 yo WM 18 months post RP
- PSA 5.0, PSADT 6 months
- Conventional Imaging (CT/BS) negative
- MedHx: ECOG 0; +HTN/elevated lipids
- Genomic profiling not done

Clinical Case: BCR, continued

Initiate therapy:

- a. ADT alone
- b. ADT + APA
- c. ADT + Enza
- d. Monotx Enza
- e. Wait till conventional imaging positive

Clinical Case: BCR, continued

Questions:

- 1: Role genomic molecular markers (Decipher[®], Prolaris[®], Onco*type* DX[®])
- 2: Role genetic alteration testing (germline, somatic)
- 3: Role PSMA PET
- 4: Role metastasis directed therapy (RT vs excision), +/- T suppression

Agenda

INTRODUCTION: Interdisciplinary Management of Prostate Cancer

MODULE 1: Key Data Sets

MODULE 2: Faculty Survey

MODULE 3: Faculty Cases

Appendix

ADT Is a Key Component of Treatment for High-Risk Prostate Cancer

Androgen deprivation therapy improves survival for men with high-risk prostate cancer when added to EBRT

ADT Potentiates Radiation Damage by Blocking DNA Damage Repair

18 Months of ADT Provides Better Quality of Life Than 36 months of ADT

PCS IV, 2000-2008

We Don't Know The Optimal Choice

ADT is not required for all patients & may not be enough for some patients

RT + ADT **RT Alone** PBRT alone (group 1) PBRT plus short-term ADT (group 2) PLNRT plus PBRT plus short-term ADT (group 3)

GETUG 16

6 mo ADT improved freedom from progression

- 50% no recurrence @10yrs w/ RT alone
- 29% recurred @ 10 yrs w/ RT + ADT

4-6 mo ADT improved freedom from progression 70% no recurrence @5yrs w/ RT alone 20% recurred @ 5 yrs w/ prostate bed RT + ADT

SPPORT

Courtesy of Neal D Shore, MD

PEACE-2: Phase III Trial of Cabazitaxel and Pelvic Irradiation in Patients With High-risk Localized Prostate Cancer

n= 750 pts (completed)

Study sponsor: Unicancer

Courtesy of Neal D Shore, MD

STAMPEDE: Abiraterone ± Enzalutamide in nmCSPC

- Baseline characteristics well balanced
- Median age = 68
- Median PSA = 34
- 39% N1
- 79% Gleason 8-10
- 97% patients newly diagnosed
 - 85% receiving radiation
 - 15% receiving primary ADT
- Median follow-up = 72 months
- No benefit to abi + enza vs. abi alone
 arms combined

Improvement in PFS, MFS, and OS with the Addition of Abiraterone and Prednisolone to ADT – Very High Risk

STAMPEDE 1,974 PTS. Median 6-year follow up.

Node positive or 2 of the following: T3/4, Gleason 8-10, PSA >40, high-risk relapse

Metastasis-free survival

Overall survival

Median age 68. 73% T3/4. 79% GI8-10. Median PSA 34. 39% Node-positive

No additional benefit to enzalutamide in addition to abiraterone.

Courtesy of Neal D Shore, MD

Attard G Lancet 2021; 399:447.

Treatment Options For High-Risk Prostate Cancer

HIGH- OR VERY-HIGH	I-RISK GROUP	
EXPECTED PATIENT SURVIVAL ^I		High-Risk No very high-risk features and exactly one bigh-risk feature:
1	EBRT ^p + ADT ^u (1.5–3 y; category 1) or EBRT ^p + brachytherapy ^p + ADT ^u (1–3 y; category 1 for ADT) or EBRT ^p + ADT ^u (2 y) + abiraterone ^{ee} (for very-high-risk only ^{ff})	 cT3a OR Grade Group 4 or 5 OR PSA > 20 ng/ml
>5 y or symptomatic ^{dd}	RP ^q + PLND ^{gg} ∢	Very High-Risk Has at least one of the following: • cT3b to T4 OR • Primary pattern 5 OR • 2 to 3 high-risk features
≤5 y and asymptomatic	Observation' or ADT ^{u,hh} or EBRT ^{p,hh}	• >4 cores with Grade Group 4 or 5

Cancer

Network[®]

Prostate Cancer

NCCN

Courtesy of Neal D Shore, MD

ADT with External Beam Radiation For Very High-Risk Prostate Cancer

24 months of ADT with abiraterone

Very High-Risk

Has at least one of the following:

- cT3b to T4 OR
- Primary pattern 5 OR
- 2 to 3 high-risk features
- >4 cores with Grade Group 4 or 5

Biochemically recurrent prostate cancer

Men with biochemically recurrent prostate cancer following radical prostatectomy and a short PSA doubling time are at high risk for the development of distant metastases and prostate cancer related mortality¹

Intermittent androgen deprivation therapy (ADT) is a standard treatment approach for biochemically recurrent prostate cancer²

A prior phase 3 study demonstrated non-inferiority of intermittent versus continuous ADT with respect to overall survival, with improvement in several key QOL parameters³

1. Pound CR, et al. JAMA 1999; 2. NCCN Guidelines version 4.2022; 3. Crook JM, et al. NEJM 2012

Study Objectives

To compare each experimental arm versus control with respect to:

Primary Objective: PSA progression-free survival, with PSA progression defined as **nadir + 2 ng/mL** during treatment or > 0.2 ng/mL following treatment confirmed by repeat measurement (> 2 wks)

Secondary Objectives:

PSA progression-free survival in testosterone-evaluable population (T > 50 ng/dL) Time to recovery of serum testosterone (T > 50 ng/dL) Safety profile

36-month PSA progression-free survival rate

Metastasis-free survival

Time to castration resistance

Short- and long-term patient reported quality of life
Baseline Characteristics

		Arm A (N = 166)	Arm B (N = 168)	Arm C (N = 169)	Overall Study Cohort (N =503)
Median Age		67.0	66.0	67.3	66.7
(Q1, Q3)		(60.3, 71.1)	(60.7, 70.3)	(62.4, 71.3)	(61.2, 70.9)
Race (%)	American Indian/Alaska Native	1 (0.6)	0 (0.0)	2 (1.2)	3 (0.6)
	Asian	3 (1.8)	0 (0.0)	10 (5.9)	13 (2.6)
	Black or African-American	7 (4.2)	13 (7.7)	12 (7.1)	32 (6.4)
	Native Hawaiian/Pacific Islander	1 (0.6)	0 (0.0)	1 (0.6)	2 (0.4)
	Other	2 (1.2)	1 (0.6)	2 (1.2)	5 (1.0)
	White	142 (85.5)	144 (85.7)	135 (79.9)	421 (83.7)
	Unknown/Not Reported/Missing	10 (6.0)	10 (6.0)	7 (4.1)	27 (5.4)
Ethnicity (%)	Hispanic	10 (6.0)	10 (6.0)	7 (4.1)	27 (5.4)
	Non-Hispanic	151 (91.0)	152 (90.5)	155 (91.7)	458 (91.1)
	Unknown/Not Reported/Missing	5 (3.0)	6 (3.6)	7 (4.1)	18 (3.6)

Baseline Characteristics, cont.

	Arm A (n = 166)	Arm B (n = 168)	Arm C (n = 169)	Overall Study Cohort (N = 503)
Median PSA at study entry, ng/mL (Q1, Q3)	1.73 (1.01, 3.20)	1.80 (0.97, 3.58)	1.77 (0.95, 4.21)	1.77 (0.97,3.57)
PSA doubling time strata (%) < 3 months 3 – 9 months	43 (25.9) 123 (74.1)	43 (25.6) 125 (74.4)	44 (26.0) 125 (74.0)	130 (25.8) 373 (74.2)
Median time interval between radical prostatectomy and study entry, years (Q1, Q3)	4.6 (2.8, 7.3)	4.7 (2.8, 6.5)	4.0 (2.8, 6.8)	4.4 (2.8, 6.8)
Prior radiation, N (%)	147 (88.6)	142 (84.5)	137 (81.1)	426 (84.7)
Prior androgen deprivation therapy, N (%)	71 (42.8)	75 (44.6)	67 (39.6)	213 (42.35)

PSA Progression-Free Survival by PSA Doubling Time

AUA 2023 **CHICAGO *** APR 28-MAY 1

EMBARK: A Phase 3 Randomized Study of Enzalutamide or Placebo Plus Leuprolide Acetate and Enzalutamide Monotherapy in High-Risk Biochemically Recurrent Prostate Cancer

<u>Neal D. Shore</u>,¹ Murilo de Almeida Luz,² Ugo De Giorgi,³ Martin Gleave,⁴ Geoffrey T. Gotto,⁵ Gabriel P. Haas,⁶ Miguel Ramirez-Backhaus,⁷ Antti Rannikko,⁸ Jamal Tarazi,⁹ Swetha Sridharan,¹⁰ Jennifer Sugg,⁶ Yiyun Tang,¹¹ Ronald F. Tutrone, Jr.,¹² Balaji Venugopal,¹³ Arnauld Villers,¹⁴ Henry H. Woo,¹⁵ Fabian Zohren,¹⁶ Stephen J. Freedland¹⁷

¹Carolina Urologic Research Center/GenesisCare US, Myrtle Beach, SC, USA; ²Erasto Gaertner Hospital, Curitiba, Brazil; ³IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Meldola, Italy; ⁴University of British Columbia, Vancouver, BC, Canada; ⁵University of Calgary, Calgary, AB, Canada; ⁶Astellas Pharma Inc., Northbrook, IL, USA; ⁷Servicio de Urología, Fundación Instituto Valenciano de Oncología, Valencia, Spain; ⁸University of Helsinki and Helsinki University Hospital, Helsinki, Finland; ⁹Pfizer Inc., Collegeville, PA, USA; ¹⁰Calvary Mater, Newcastle, NSW, Australia; ¹¹Pfizer Inc., San Francisco, CA, USA; ¹²Chesapeake Urology Research Associates, Towson, MD, USA; ¹³Beatson West of Scotland Cancer Centre, University of Glasgow, Glasgow, UK; ¹⁴University of Lille, Department of Urology, Claude Huriez Hospital, CHU LILLE, Lille, France; ¹⁵Sydney Adventist Hospital, Sydney, NSW, Australia; ¹⁶Pfizer Inc., Cambridge, MA, USA; ¹⁷Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA

ASCO[°] Genitourinary Cancers Symposium

- Within 10 years following definitive therapy, between 20–50% of patients experience disease recurrence characterized by rising PSA levels.¹⁻³
- Limited level 1 clinical data exist for the treatment of patients with BCR.
- Patients with high-risk BCR are at increased risk of prostate cancer-specific mortality.³⁻⁵
- Evidence from phase 3 clinical trials demonstrates that treatment intensification with ARSI, such as enzalutamide, consistently improves patient outcomes across the prostate cancer continuum.⁶⁻¹⁰

The objective of EMBARK was to evaluate enzalutamide in combination with leuprolide acetate and enzalutamide monotherapy in patients with high-risk BCR.

1. Kupelian PA, et al. *Cancer.* 2002;95:2302–7. 2. Kupelian PA et al. *Urology.* 2006;68;593–8. 3. Freedland SJ et al. *JAMA*. 2005;294:433–9. 4. Freedland SJ, et al. *J Clin Oncol.* 2007; 25:1765–71. 5. Markowski MC, et al. *Clin Genitourin Cancer.* 2019;17:470–1. 6. Scher HI, et al. *N Engl J Med.* 2012;367:1187–97. 7. Beer TM, et al. *N Engl J Med.* 2014;371:424–33. 8. Hussain M, et al. *N Engl J Med.* 2018;378:2465–74. 9. Armstrong AJ, et al. *J Clin Oncol.* 2019;37:2974–86. 10. Davis ID, et al. *N Engl J Med.* 2019;381:121–31. ARSI, androgen receptor signaling inhibitor; BCR, biochemical recurrence; PSA, prostate-specific antigen.

AUA-2023 CHICAGO * APR 28-MAY 1 Demographics

	Enzalutamide combination	Leuprolide acetate	Enzalutamide monotherapy
Characteristic	(n = 355)	(n = 358)	(n = 355)
Age, median (range), yr	69 (51–87)	70 (50–92)	69 (49–93)
Race, n (%)ª White	293 (82.5)	301 (84.1)	295 (83.1)
Asian	26 (7.3)	26 (7.3)	26 (7.3)
Black	16 (4.5)	16 (4.5)	15 (4.2)
Other ^b	10 (2.8)	10 (2.8)	5 (1.4)
PSADT, n (%) ^c ≤3 mo	69 (19.4)	80 (22.3)	76 (21.4)
>3 to ≤9 mo	285 (80.3)	277 (77.4)	278 (78.3)
PSADT, median, mo	4.6	5.0	5.0
Serum PSA, median, n (%), ng/mL ^d	5.0	5.5	5.3
≤10	278 (78.3)	273 (76.3)	272 (76.6)
>10	77 (21.7)	83 (23.2)	82 (23.1)
Prior hormonal therapy, n (%)	107 (30.1)	113 (31.6)	112 (31.5)
RP alone, n (%)	90 (25.4)	75 (20.9)	99 (27.9)
RT alone, n (%)	86 (24.2)	104 (29.1)	90 (25.4)
RP and RT, n (%)	179 (50.4)	179 (50.0)	166 (46.8)

^aNot reported included: enzalutamide combination, n = 10 (2.8%); leuprolide acetate, n = 5 (1.4%); enzalutamide monotherapy, n = 14 (3.9%). ^bIncludes patients who identified as multiple races (enzalutamide combination, n = 5; leuprolide acetate, n = 9; enzalutamide monotherapy, n = 5), American Indian or Alaskan Native (enzalutamide combination, n = 4; leuprolide acetate, n = 1; enzalutamide monotherapy, n = 0), Native Hawaiian or other Pacific Islander (enzalutamide combination, n = 1; leuprolide acetate and enzalutamide monotherapy, n = 0). ^oMissing included n = 1 (0.3%) for each treatment group. ^aMissing included: leuprolide acetate, n = 2; enzalutamide monotherapy, n = 1. RT, radiation therapy; yr, year. Courtesy of Neal D Shore, MD

AUA-2023 Subgroup analysis of MFS for enzalutamide CHICAGO * APR 28-MAY 1 combination vs. leuprolide acetate

		Enzalutamide combination	Leuprolide acetate		
Subgroup		Events, n /patients, n			MFS HR (95% CI)
All patients		45/355	92/358	↓	0.42 (0.30–0.61)
PSADT	≤3 mo	14/69	30/80		0.46 (0.24–0.88)
	>3 to ≤6 mo	18/187	35/142		0.33 (0.19–0.59)
	>6 to ≤9 mo	13/98	27/135	•	0.63 (0.32–1.22)
Baseline age	≤65 years	11/81	28/91	· · · · · · · · · · · · · · · · · · ·	0.40 (0.20–0.81)
	≥65 years	34/274	64/267	· • • • • • • • • • • • • • • • • • • •	0.44 (0.29–0.67)
Geographic region	North America	22/144	32/137	⊢	0.62 (0.36–1.06)
	Europe	14/130	33/128	⊢ •i	0.35 (0.19–0.66)
	ROW	9/81	27/93		0.32 (0.15–0.68)
Baseline PSA	≤10 ng/mL	31/278	64/273	⊢ ⊸⊷1	0.42 (0.27–0.64)
	>10 ng/mL	14/77	28/83	· · · · · · · · · · · · · · · · · · ·	0.45 (0.24–0.85)
Prior hormonal therapy	Yes	19/107	34/113	H	0.48 (0.28–0.85)
	No	26/248	58/245	⊢ • — •	0.39 (0.25–0.62)
Prior RP	Yes	26/269	61/254	⊢ • 1	0.36 (0.23–0.58)
	No	19/86	31/104	⊢	0.57 (0.32–1.00)
				0.0 0.5 1.0 1.5	2.0

Favors enzalutamide combination Favors leuprolide acetate

Data cutoff: January 31, 2023. For all patients, HR and 95% CI are based on stratified Cox regression model stratified by randomization stratification factors; for subgroups, HR and 95% CI are based on unstratified Cox regression model. Courtesy of Neal D Shore, MD
Shore N et al. AUA 2023;Ab

Shore N et al. AUA 2023;Abstract LBA02-09.

AUA-2023 CHICAGO * APR 28-MAY 1 Key secondary endpoint — Time to first use of new antineoplastic therapy for enzalutamide combination vs. leuprolide acetate

Data cutoff: January 31, 2023. Symbols indicate censored data. ^aThe HR was based on a Cox regression model with treatment as the only covariate stratified by screening PSA, PSADT, and prior hormonal therapy as reported in the IWRS; relative to leuprolide acetate <1 favoring enzalutamide combination; the two-sided *P*-value is based on a stratified log-rank test.

Courtesy of Neal D Shore, MD

Shore N et al. AUA 2023; Abstract LBA02-09.

AUA-2023 Key secondary endpoints — Enzalutamide CHICAGO * APR 28-MAY 1 monotherapy vs. leuprolide acetate

	Enzalutamide monotherapy (n = 355)	Leuprolide acetate (n = 358)
Events, n (%)	37 (10)	93 (26)
Median time to PSA progression (95% CI), mo	NR (NR)	NR (NR)

HR (95% CI): 0.33 (0.23–0.49); *P*<0.0001ª

	Enzalutamide monotherapy (n = 355)	Leuprolide acetate (n = 358)
Events, n (%)	84 (24)	140 (39)
Median time to first use of new antineoplastic therapy (95% CI), mo	NR (NR)	76.2 (71.3–NR)

Data cutoff: January 31, 2023. Symbols indicate censored data. a The HR was based on a Cox regression model with treatment as the only covariate stratified by screening PSA, PSADT, and prior hormonal therapy as reported in the IWRS; relative to leuprolide acetate <1 favoring enzalutamide monotherapy; the two-sided *P*-value was based on a stratified log-rank test.

AUA-2023 CHICAGO * APR 28-MAY 1 EMBARK: Conclusions

- In patients with high-risk BCR, compared with leuprolide acetate, enzalutamide combination demonstrated a statistically significant and clinically meaningful improvement in MFS (HR 0.42; 95% CI, 0.30–0.61; P<0.0001).
 - A consistent treatment effect in pre-specified subgroups
 - Significant delays in time to PSA progression and time to first new antineoplastic therapy
 - A trend toward improved survival in interim analysis (HR 0.59; 95% CI, 0.38–0.90; P=0.0142); study ongoing for final analysis
- Enzalutamide monotherapy also demonstrated statistically significant and clinically meaningful improvements in MFS (HR 0.63; 95% CI 0.46–0.87; P=0.0049), time to PSA progression, and time to first new antineoplastic therapy.
 - A trend toward improved survival in interim analysis
- No new safety signals observed to date with enzalutamide treatment

Enzalutamide in combination with ADT, if approved in this setting, has the potential to become a new standard of care for patients with high-risk BCR.

Courtesy of Neal D Shore, MD

Shore N et al. AUA 2023;Abstract LBA02-09.

Inside the Issue: The Current and Future Role of CD20 x CD3 Bispecific Antibodies in the Management of Non-Hodgkin Lymphoma

A CME/MOC-Accredited Live Webinar

Wednesday, August 2, 2023 5:00 PM – 6:00 PM ET

Faculty Martin Hutchings, MD, PhD Loretta J Nastoupil, MD

> Moderator Neil Love, MD

Thank you for joining us!

Please take a moment to complete the survey currently up on Zoom. Your feedback is very important to us. The survey will remain open up to 5 minutes after the meeting ends.

CME and MOC credit information will be emailed to each participant within 5 business days.

