Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Chronic Lymphocytic Leukemia (Part 3 of a 4-Part Series)

A CME Friday Satellite Symposium and Virtual Event Preceding the 65th ASH Annual Meeting

Friday, December 8, 2023 3:15 PM – 5:15 PM PT (6:15 PM – 8:15 PM ET)

Faculty

Farrukh T Awan, MD Matthew S Davids, MD, MMSc Stephen J Schuster, MD William G Wierda, MD, PhD Jennifer Woyach, MD

Moderator Neil Love, MD

Faculty

Farrukh T Awan, MD

Professor of Internal Medicine Director of Lymphoid Malignancies Program Harold C Simmons Comprehensive Cancer Center The University of Texas Southwestern Medical Center Dallas, Texas

William G Wierda, MD, PhD

Jane and John Justin Distinguished Chair in Leukemia Research in Honor of Dr Elihu Estey Section Chief, Chronic Lymphocytic Leukemia Center Medical Director Department of Leukemia Division of Cancer Medicine Executive Medical Director Inpatient Medical Services The University of Texas MD Anderson Cancer Center Houston, Texas

Moderator

Neil Love, MD Research To Practice Miami, Florida

Matthew S Davids, MD, MMSc Associate Professor of Medicine Harvard Medical School Director of Clinical Research Division of Lymphoma Dana-Farber Cancer Institute Boston, Massachusetts

Stephen J Schuster, MD

Director, Lymphoma Program and Lymphoma Translational Research Robert and Margarita Louis-Dreyfus Professor in CLL and Lymphoma Professor of Medicine, Hematology/Oncology University of Pennsylvania School of Medicine Philadelphia, Pennsylvania

Dr Awan — Disclosures

Consulting Agreements	AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Bristol Myers Squibb, Cardinal Health, Caribou Biosciences, Celgene Corporation, Cellectar Biosciences Inc, DAVA Oncology, Epizyme Inc, Genentech, a member of the Roche Group, Genmab US Inc, Gilead Sciences Inc, Incyte Corporation, Janssen Biotech Inc, Johnson & Johnson Pharmaceuticals, Karyopharm Therapeutics, Kite, A Gilead Company, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Pharmacyclics LLC, an AbbVie Company, Verastem Inc				
Contracted Research	Pharmacyclics LLC, an AbbVie Company				

Dr Davids — Disclosures

Consulting Agreements	AbbVie Inc, Adaptive Biotechnologies Corporation, Ascentage Pharma, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Bristol Myers Squibb, Genentech, a member of the Roche Group, Janssen Biotech Inc, Lilly, Merck, Novartis, Nuvalent
Contracted Research (Investigator on the Grant)	Novartis and Ascentage Pharma (grants manager to Dr Davids: Roberto Avalos, DFCI)
Nonrelevant Financial Relationship	German CLL Study Group (CLL17 safety monitoring board chair), UpToDate (authorship royalties)

Dr Schuster — Disclosures

Advisory Committee	Caribou Biosciences Inc, Genentech, a member of the Roche Group, Nordic Nanovector, Novartis, viTToria Biotherapeutics Inc		
Consulting Agreements	AbbVie Inc, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Caribou Biosciences Inc, Genentech, a member of the Roche Group, Genmab US Inc, Incyte Corporation, Janssen Biotech Inc, Kite, A Gilead Company, Legend Biotech, MorphoSys, Mustang Bio, Novartis		
Contracted Research	AbbVie Inc, Bristol Myers Squibb, DTRM Biopharma Co Ltd, Genentech, a member of the Roche Group, Genmab US Inc, Incyte Corporation, Juno Therapeutics, a Celgene Company, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Novartis		
Data and Safety Monitoring Board/Committee	Fate Therapeutics		
Inventor on Patent	"Combination therapies of chimeric antigen receptors and PD-1 inhibitors," Owned by Penn and licensed by Novartis		

Dr Wierda — Disclosures

Contracted Research	AbbVie Inc, Acerta Pharma — A member of the AstraZeneca Group, Accutar Biotechnology Inc, Bristol Myers Squibb, Cyclacel Pharmaceuticals Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, GSK, Janssen Biotech Inc, Juno Therapeutics, a Celgene Company, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Novartis, Numab Therapeutics AG, Nurix Therapeutics Inc — Supported by the NIH/NCI under award number P30 CA016672 and using MDACC Cancer Center Support Grant (CCSG) shared resources, Oncternal Therapeutics, Pharmacyclics LLC, an AbbVie Company
Nonrelevant Financial Relationship	National Comprehensive Cancer Network (Chair, CLL)

Dr Woyach — Disclosures

Advisory Committee and Consulting Agreements	AbbVie Inc, ArQule Inc, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Genentech, a member of the Roche Group, Janssen Biotech Inc, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Newave Pharmaceutical Inc, Pharmacyclics LLC, an AbbVie Company
Contracted Research	AbbVie Inc, Karyopharm Therapeutics, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MingSight Pharmaceuticals, MorphoSys, Schrödinger, Verastem Inc

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Bristol Myers Squibb, and Lilly.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

This educational activity contains discussion of published and/or investigational uses of agents that are not indicated by the Food and Drug Administration.

Research To Practice does not recommend the use of any agent outside of the labeled indications. Please refer to the official prescribing information for each product for discussion of approved indications, contraindications and warnings. The opinions expressed are those of the presenters and are not to be construed as those of the publisher or grantors.

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Multiple Myeloma (Part 4 of a 4-Part Series)

A CME Friday Satellite Symposium and Virtual Event Preceding the 65th ASH Annual Meeting

Friday, December 8, 2023 7:00 PM – 9:00 PM PT (10:00 PM – 12:00 AM ET)

Faculty

Amrita Krishnan, MD Sagar Lonial, MD Robert Z Orlowski, MD, PhD Noopur Raje, MD Paul G Richardson, MD

Moderator Neil Love, MD

JOIN US IN 2024 FOR THE RETURN OF

The Annual National General Medical Oncology Summit

A Multitumor CME/MOC- and NCPD-Accredited Educational Conference Developed in Partnership with Florida Cancer Specialists and Research Institute

MARCH 22-24, 2024

JW Marriott Miami Turnberry

To Learn More or to Register, Visit www.ResearchToPractice.com/Meetings/GMO2024

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the premeeting survey.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Complete Your Evaluation: Tap the CME/NCPD Evaluation button to complete your evaluation electronically to receive credit for your participation.

For assistance, please raise your hand. Devices will be collected at the conclusion of the activity.

Clinicians Attending via Zoom

Im

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

	_
<u></u>	

Answer Survey Questions: Complete the premeeting survey at the beginning of each module.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME/NCPD Credit: CME and NCPD credit links will be provided in the chat room at the conclusion of the program. MOC and ONCC credit information will be emailed to attendees within the next 2-3 business days.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

An email will be sent to all attendees when the activity is available.

 To learn more about our education programs, visit our website, <u>www.ResearchToPractice.com</u>

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Chronic Lymphocytic Leukemia (Part 3 of a 4-Part Series)

A CME Friday Satellite Symposium and Virtual Event Preceding the 65th ASH Annual Meeting

Friday, December 8, 2023 3:15 PM – 5:15 PM PT (6:15 PM – 8:15 PM ET)

Faculty

Farrukh T Awan, MD Matthew S Davids, MD, MMSc Stephen J Schuster, MD William G Wierda, MD, PhD Jennifer Woyach, MD

Moderator Neil Love, MD

Agenda

Module 1: Front-Line Treatment for Chronic Lymphocytic Leukemia (CLL) — Dr Wierda

Module 2: Novel Strategies Combining Bruton Tyrosine Kinase (BTK) and Bcl-2 Inhibitors in the Treatment of CLL — Dr Davids

Module 3: Optimal Management of Adverse Events with BTK and Bcl-2 Inhibitors; Considerations for Special Patient Populations — Dr Awan

Module 4: Selection and Sequencing of Therapies for Relapsed/Refractory CLL — Dr Woyach

Module 5: Promising Investigational Agents and Strategies — Dr Schuster

CLL Survey Respondents

John Allan, MD Farrukh Awan, MD Jennifer Brown, MD, PhD Jan Burger, MD, PhD John Byrd, MD Matthew Davids, MD, MMSc Brian Hill, MD, PhD Nitin Jain, MD Brad Kahl, MD Ann Lacasce, MD, MMSc

Shuo Ma, MD, PhD Susan O'Brien, MD Kerry Rogers, MD Laurie Sehn, MD, MPH Mitchell Smith, MD, PhD Constantine Tam, MBBS, MD Chaitra Ujjani, MD Julie Vose, MD, MBA William Wierda, MD, PhD Jennifer Woyach, MD

Consulting Faculty

Jan A Burger, MD, PhD The University of Texas MD Anderson Cancer Center Houston, Texas

Shuo Ma, MD, PhD Robert H Lurie Comprehensive Cancer Center Feinberg School of Medicine Northwestern University Chicago, Illinois

Professor Constantine Tam, MBBS, MD Alfred Health Monash University Melbourne, Australia

FDA Investigating 'Serious Risk' of Secondary Cancer After CAR-T Therapy Press Release: November 29, 2023

"The FDA has launched an investigation into what it called a 'serious risk' of T-cell malignancies in patients treated with autologous chimeric antigen receptor (CAR) T-cell therapies targeting B-cell maturation antigen (BCMA) or CD19.

The agency has received multiple reports of T-cell malignancies, including CAR-positive lymphomas, from clinical trials and postmarketing adverse event data sources, according to a statement posted on the FDA website. Serious outcomes of these secondary malignancies have included hospitalization and death. The notice and investigation pertain to all currently approved BCMA- and CD19-targeted CAR T-cell products.

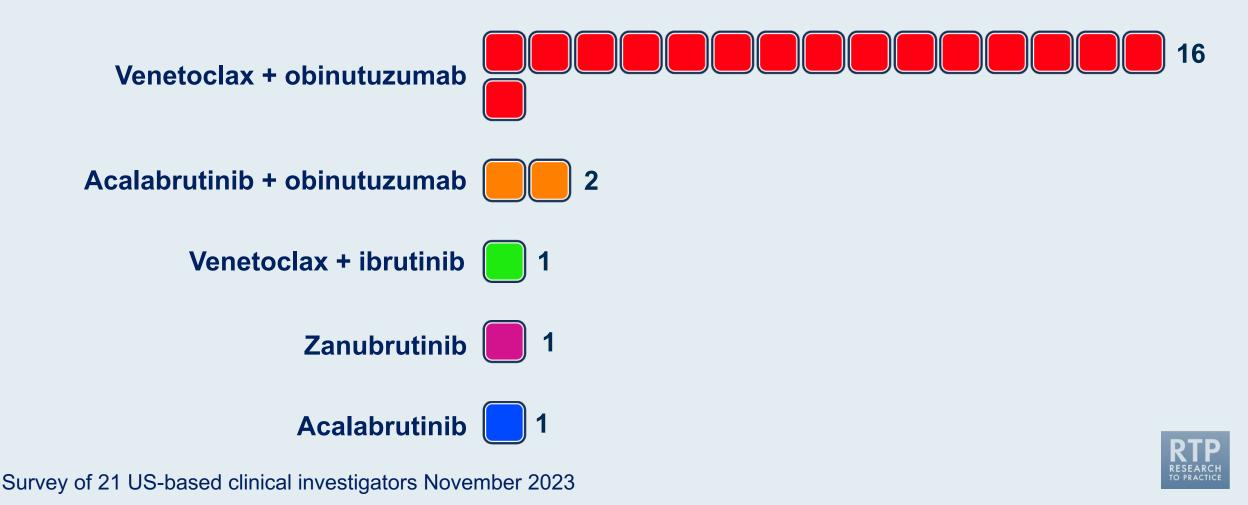
'Although the overall benefits of these products continue to outweigh their potential risks for their approved uses, FDA is investigating the identified risk of T-cell malignancy with serious outcomes, including hospitalizations and death, and is evaluating the need for regulatory action,' agency officials said in the statement. 'As with all gene therapy products with integrating vectors (lentiviral or retroviral vectors), the potential risk of developing secondary malignancies is labeled as a class warning in the US prescribing information for approved BCMA-directed and CD19-directed genetically modified autologous T-cell immunotherapies.'"

https://www.medpagetoday.com/hematologyoncology/hematology/107569

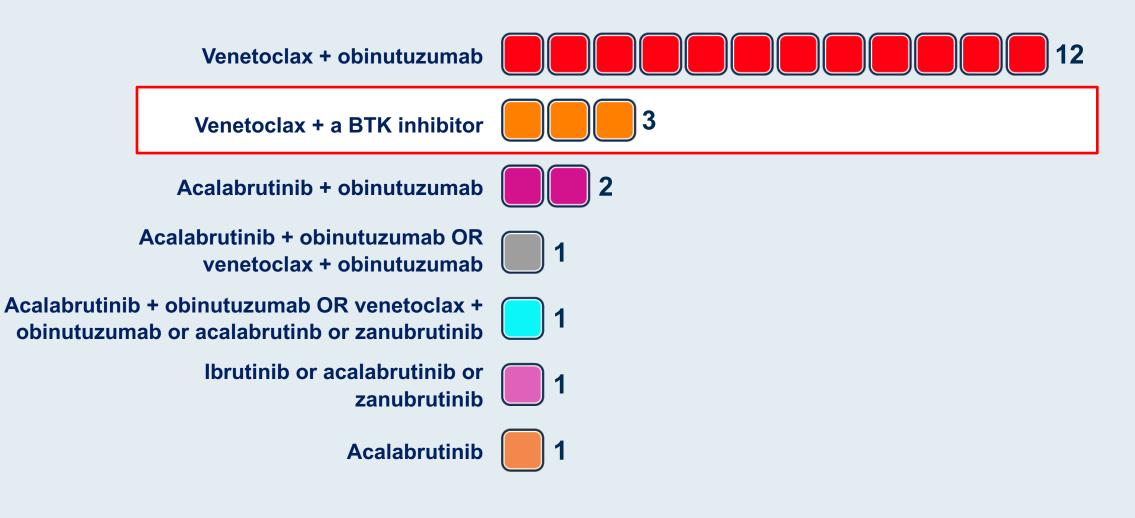
Agenda

Module 1: Front-Line Treatment for Chronic Lymphocytic Leukemia (CLL) — Dr Wierda

Module 2: Novel Strategies Combining Bruton Tyrosine Kinase (BTK) and Bcl-2 Inhibitors in the Treatment of CLL — Dr Davids


Module 3: Optimal Management of Adverse Events with BTK and Bcl-2 Inhibitors; Considerations for Special Patient Populations — Dr Awan

Module 4: Selection and Sequencing of Therapies for Relapsed/Refractory CLL — Dr Woyach

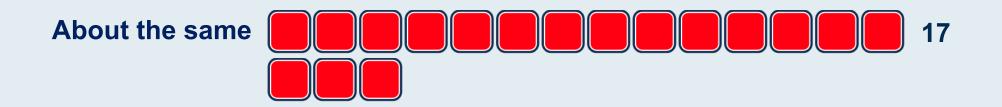

Module 5: Promising Investigational Agents and Strategies — Dr Schuster

<u>Regulatory and reimbursement issues aside</u>, what would be your preferred initial regimen for a <u>60-year-old</u> patient with <u>IGHV-</u> <u>mutated</u> CLL <u>without del(17p) or TP53 mutation</u> who requires treatment?

<u>Regulatory and reimbursement issues aside</u>, what would be your preferred initial regimen for a <u>60-year-old</u> patient with <u>IGHV-unmutated</u> CLL <u>without del(17p) or TP53 mutation</u> who requires treatment?

<u>Regulatory and reimbursement issues aside</u>, what would be your preferred initial regimen for a <u>60-year-old</u> patient with IGHV-mutated CLL <u>with del(17p)</u> who requires treatment?

Regulatory and reimbursement issues aside, when you are going to administer a BTK inhibitor as initial treatment for CLL, which do you generally prefer?



Zanubrutinib

Acalabrutinib

Based on current clinical trial data and your personal experience, how would you compare the global efficacy of ibrutinib, acalabrutinib and zanubrutinib for patients with CLL?

Zanubrutinib is most efficacious

What would be your most likely approach for a patient with newly diagnosed CLL to whom you decided to administer up-front venetoclax/obinutuzumab and who had detectable MRD (minimal residual disease) after completing 1 year of treatment?

Selection of first-line treatment for patients with CLL requiring active therapy; sequencing of BTK inhibitors and venetoclax/obinutuzumab

Professor Constantine Tam, MBBS, MD

Jan A Burger, MD, PhD

Choice of first-line BTK inhibitor

Shuo Ma, MD, PhD

Professor Constantine Tam, MBBS, MD

Update on Treatments for Patients with CLL

08 DEC 2023

William G. Wierda MD, PhD

Professor of Medicine

Section Head, CLL

Department of Leukemia

U.T. M.D. Anderson Cancer Center

Houston, TX USA

First-line Treatment for CLL

- First treatment is best opportunity to achieve therapeutic objectives deepest and most durable response
- Strategy to use best treatment option first
- Deeper remission correlated with longer remission duration

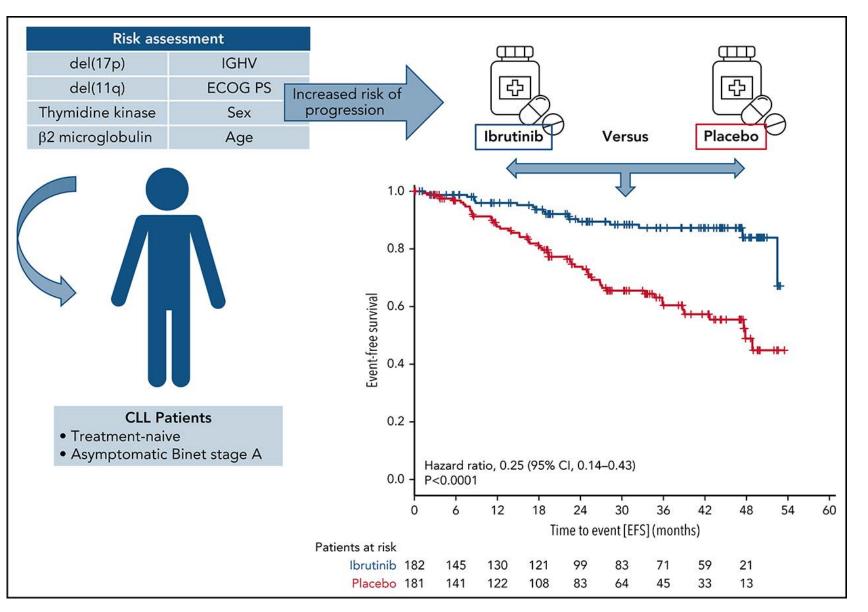
 uMRD important endpoint for finite-duration therapy
- Progression after finite-duration treatment ≠ resistance; targeted therapy retreatment is option

BTKi- vs. BCL-2i-based Treatment

BTK Inhibitor¹⁻⁴

- Easy initiation
- Continuous and indefinite therapy
- Very low TLS risk
- More cardiac risk
- Some favor in del(17p)/ mutated-*TP53*
- Activity in nodal disease

BCL-2 Inhibitor^{4,5}


- Risk for TLS requires monitoring for initiation
- Includes CD20 mAb immunosuppression
- Fixed duration
- Intact renal function important
- Concern for del(17p)/mutated-TP53
- Activity in BM and blood

Important for Selecting Treatment in CLL

- IGHV mutation status (for first line): does not change¹
- del(17p) status by FISH: can change²
 - Know % of cells with deletion
- *TP53* mutation status: **can change**²
- Age and comorbidities (cardiac and renal)
- *BTK* and *PLCG2* mutation status (in BTKi treated): can change³

1. Crombie. Am J Hematol. 2017;92:1393. 2. Chauffaille. Hematol Transfus Cell Ther. 2020;42:261. 3. Hallek. Am J Hematol. 2019;94:1266.

CLL12 Trial: IBR vs PBO in TN, Early-stage CLL

Langerbeins, P., et al. Blood 139(2):177, 2022

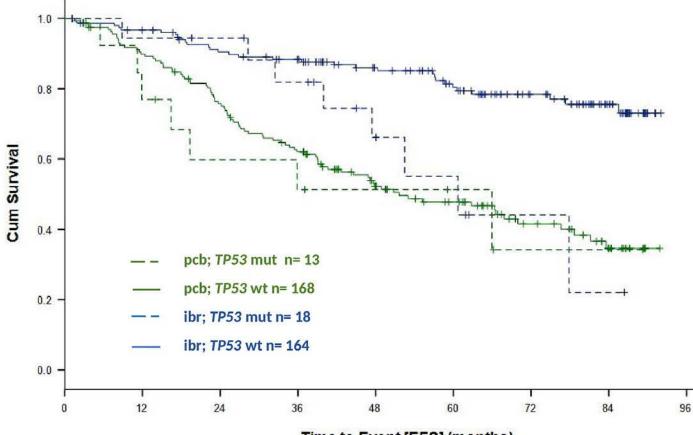

GCLLSG CLL12 – Genetic Markers

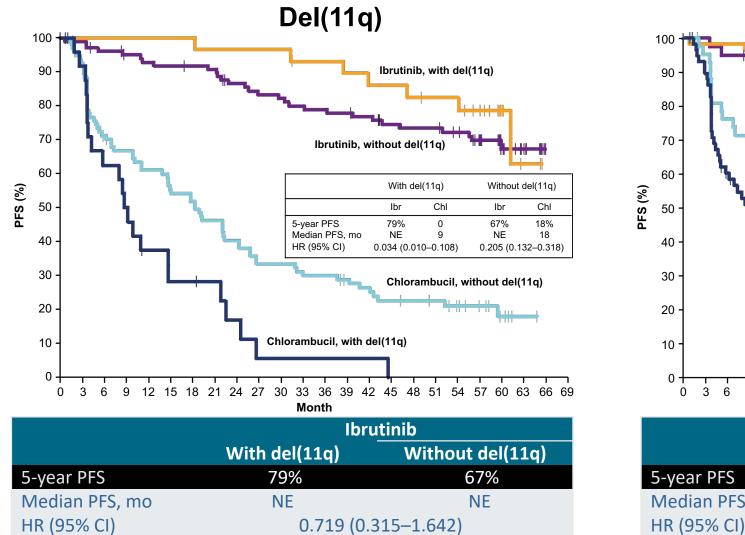
 Table 1: Prevalence of genomic aberrations and gene

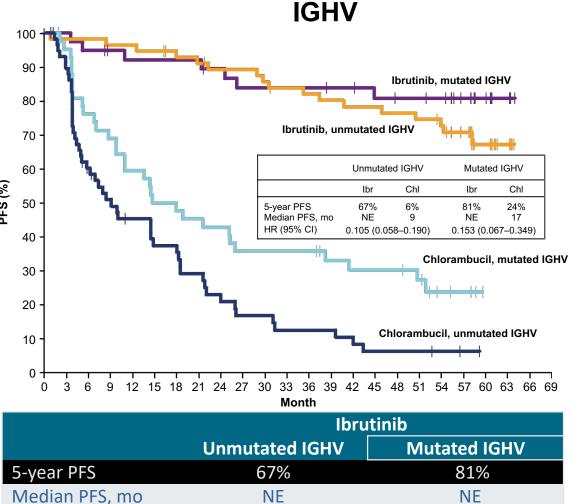
 mutations

Aberrations and mutations [%]	all	ibr	pcb	w+w
	n=515	n=182	n=181	n=152
U-IGHV	28.8	38.7	38.7	5.3
del (17p)	2.5	3.3	3.9	0.0
del (11q)	7.8	11.5	10.5	0.0
+ (12)	10.9	13.2	15.5	2.6
no abnormalities	18.1	19.8	16.6	17.8
del (13q)	60.8	52.2	53.6	79.6
NOTCH1	7.6	8.2	12.7	0.7
SF3B1	7.4	7.7	11.0	2.6
TP53	6.8	9.9	7.2	2.6
BIRC3	5.2	4.4	7.7	3.3
NFKBIE	4.9	7.7	4.4	2.0
MYD88	3.3	3.3	3.3	3.3
FBXW7	2.9	3.8	3.9	0.7
XPO1	1.9	1.1	4.4	0.0
NRAS/KRAS/BRAF	1.4	1.1	2.8	0.0
EGR2	0.6	1.6	0.0	0.0

Figure 1: Event free survival TP53

Time to Event [EFS] (months)


Ibrutinib - 10-Yr Follow-up Phase 2 Study


Median follow-up time (mo)*		113			117		
	Ν	mPFS (mo)	PFS at mFU	р	mOS (mo)	OS at mFU	р
All evaluable patients	84	85.9	39.5%		NR	58.5%	
No TP53 alteration	31	NR	56.9%		NR	75.3%	
TP53 alteration	53	67.3	30.3%	0.004	118	54.1%	0.036
IGHV mutated	28	117.2	57.1%		NR	77.0%	
IGHV unmutated	56	80.6	29.7%	0.057	118	52.7%	0.036
Treatment naïve	52	108	48.7%		NR	73.8%	
Prior treatment	32	49	22.4%	0.016	104	41.6%	0.004
TP53 alteration, treatment-naïve	34	81	38.6%		NR	69.7%	
TP53 alteration, prior treatment	19	44.4	19.7%	0.044	63	25.3%	0.002

*Reverse Kaplan-Meier estimate

FU - follow-up; m - median; mo – months; NR – not reached; OS - overall survival; PFS - progression-free survival

Ibrutinib Overcomes Poor Prognosis of Del(11q) and Unmutated IGHV in RESONATE-2

0.632(0.262 - 1.525)

Tedeschi A, et al. Presented at: European Hematology Association (EHA) Congress; June 14, 2019; Amsterdam, NL. Abstract S107.

ELEVATE-TN 6-Yr Follow-up – ACA±OBIN vs. ChI+OBIN

Figure 1. Investigator-assessed progression-free survival. ^aHR based on stratified Cox proportionalhazards model; ^bP-value based on stratified log-rank test. A, acalabrutinib; Clb, chlorambucil; O, obinutuzumab.

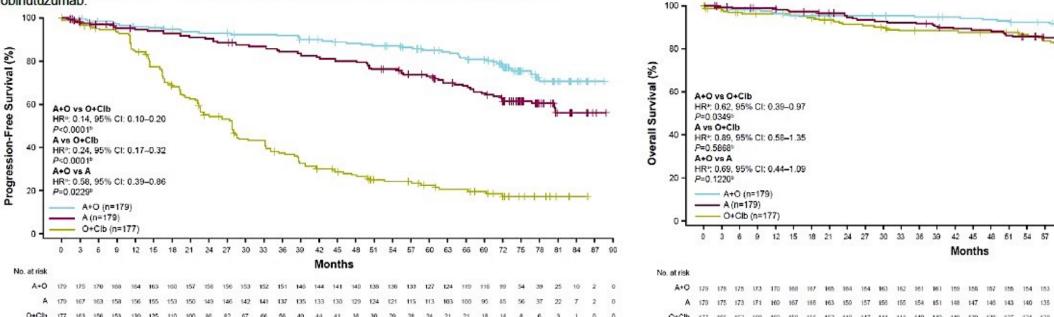
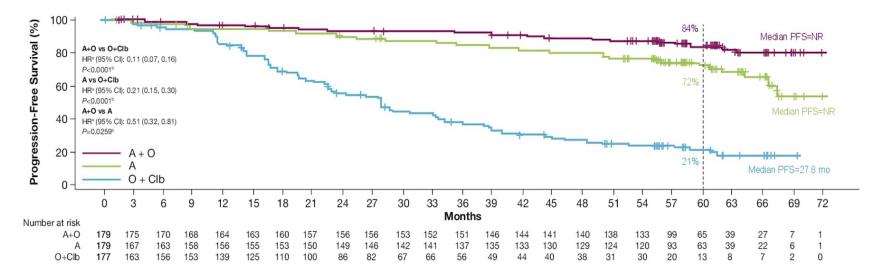
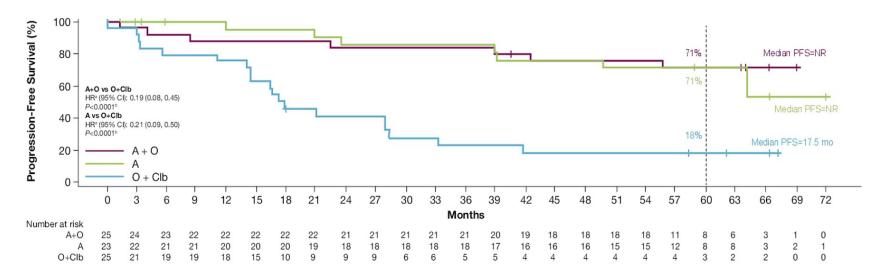


Figure 2. Overall survival. ^aHR based on stratified Cox proportional-hazards model; ^bP-value based on stratified log-rank test. A, acalabrutinib; Clb, chlorambucil; O, obinutuzumab.

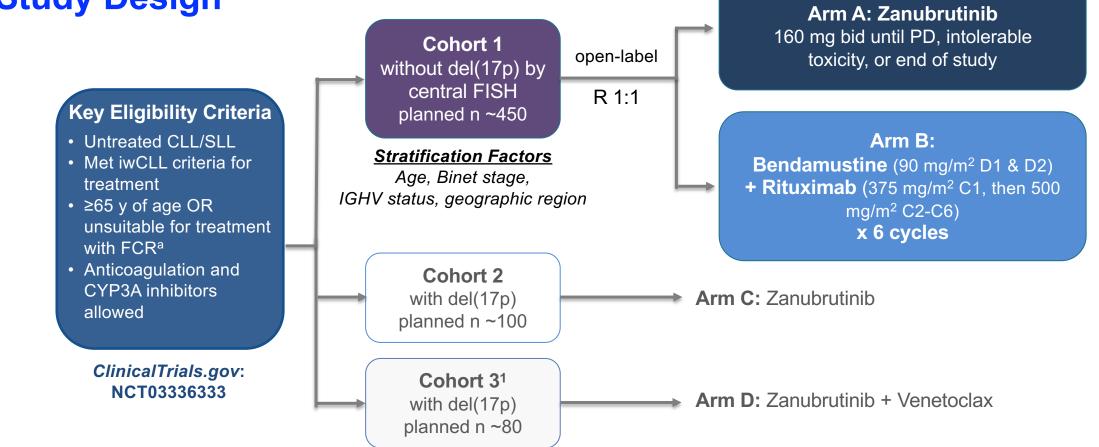

60 63 66 69

72 75 78

81


ELEVATE-TN Phase 3 Study: 5-Year Follow-Up PFS

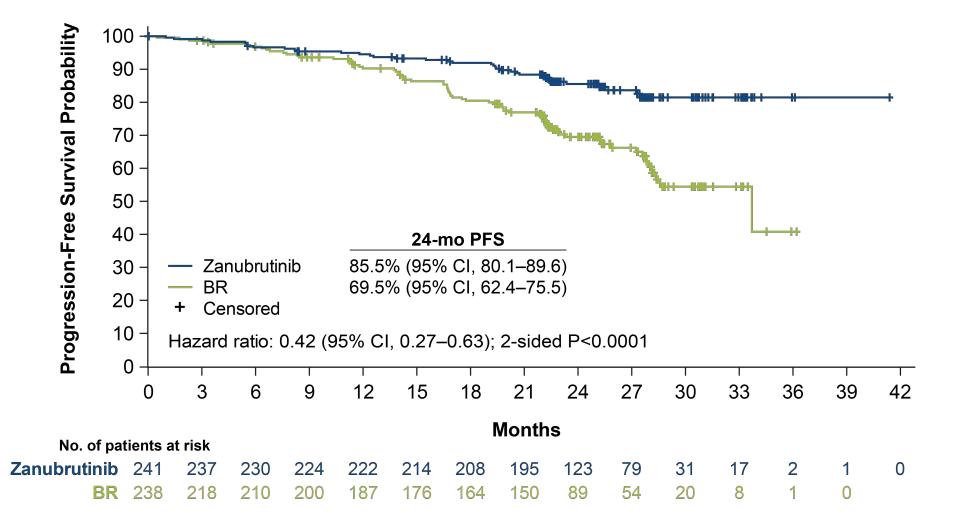
INV-Assessed PFS


Median follow-up: 58.2 months (range, 0.0-72.0)

INV-Assessed PFS in Patients With del(17p) and/or Mutated TP53

Sharman JP, et al. ASCO 2022. Abstract 7539. Sharman JP, et al. EHA 2022. Abstract P666

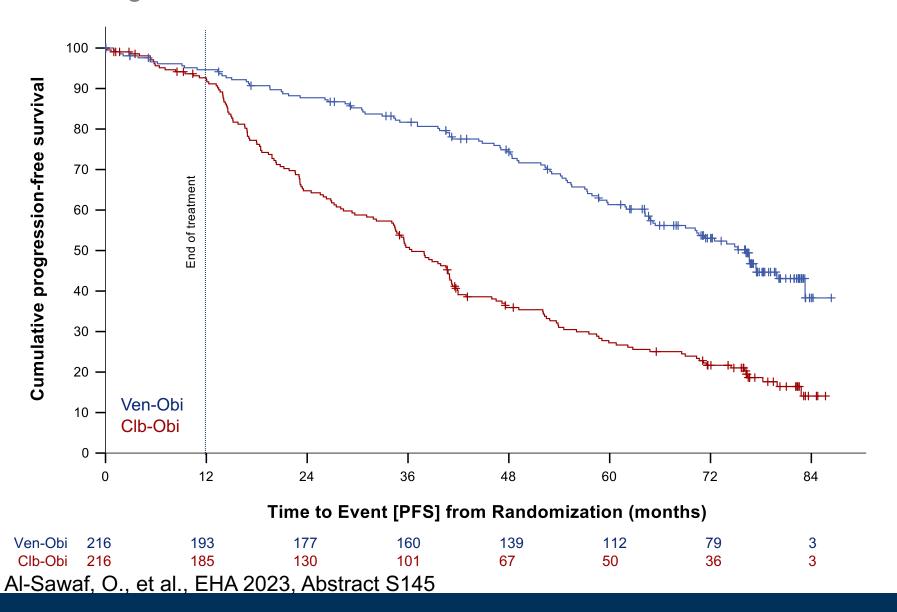
SEQUOIA (BGB-3111-304) Study Design



^aDefined as Cumulative Illness Rating Scale >6, creatinine clearance <70 mL/min, or a history of previous severe infection or multiple infections within the last 2 years. C, cycle; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; CYP3A, cytochrome P450, family 3, subfamily A; D, day; del(17p), chromosome 17p deletion; FCR, fludarabine, cyclophosphamide, and rituximab; FISH, fluorescence in-situ hybridization; IRC, independent review committee; IGHV, gene encoding the immunoglobulin heavy chain variable region; iwCLL, International Workshop on CLL; ORR, overall response rate; PD, progressive disease; R, randomized. 1. Tedeschi A, et al. ASH 2021. Abstract 67.

American Society of Hematology

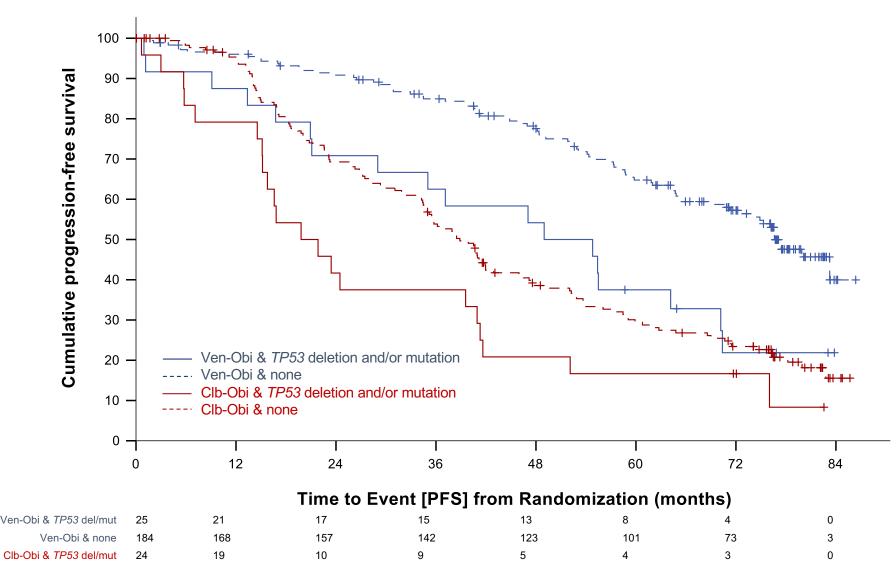
Tam, et al. ASH 2021, Abstract #396


SEQUOIA: Progression-Free Survival Per IRC Assessment

BR, bendamustine + rituximab; IRC, independent review committee; PFS, progression-free survival.

CLL14: PROGRESSION-FREE SURVIVAL

Investigator-assessed PFS


Median PFS Ven-Obi: 76.2 months Clb-Obi: 36.4 months

6-year PFS rate Ven-Obi: 53.1% Clb-Obi: 21.7%

HR 0.40, 95% CI [0.31-0.52] P<0.0001

CLL14: PROGRESSION-FREE SURVIVAL – TP53 STATUS

Median observation time 76.4 months

90

60

45

33

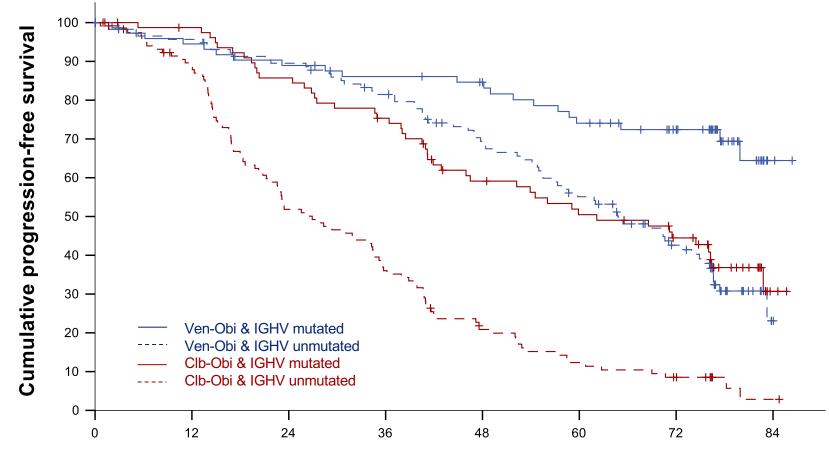
3

Median PFS

Ven-Obi & no *TP53*del/mut: 76.6 m Ven-Obi & *TP53*del/mut: 51.9 m *HR 2.29, 95% CI [1.37-3.83], p=0.001*

Clb-Obi & no *TP53*del/mut: 38.9 m Clb-Obi & *TP53*del/mut: 20.8 m *HR 1.66, 95% Cl [1.05-2.63], p=0.03*

117


160

Clb-Obi & none

184

CLL14: PROGRESSION-FREE SURVIVAL – IGHV STATUS

Median observation time 76.4 months

Median PFS

Ven-Obi & IGHVmut: NR Ven-Obi & IGHVunmut: 64.8 m *HR 0.38, 95%CI [0.23-0.61], p<0.001*

Clb-Obi & IGHVmut: 62.2 m Clb-Obi & IGHVunmut: 26.9 m *HR 0.33, 95% CI [0.23-0.47], p<0.001*

Time to Event [PFS] from Randomization (months)

Ven-Obi & IGHV mutated	76	68	64	60	57	49	39	2
Ven-Obi & IGHV unmutated	121	110	101	90	73	57	37	1
Clb-Obi & IGHV mutated	83	76	66	57	42	35	28	2
Clb-Obi & IGHV unmutated	123	101	59	41	22	13	8	1

Al-Sawaf, O., et al., EHA 2023, Abstract S145

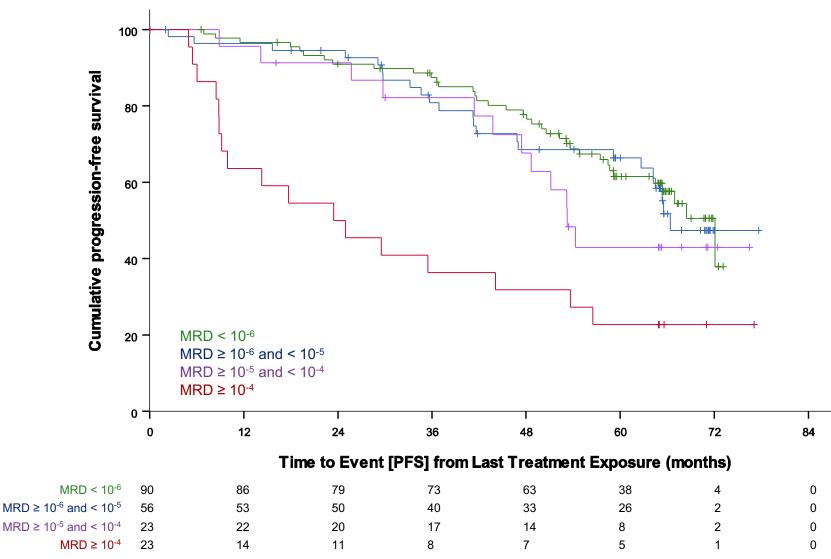
CLL14: PROGRESSION-FREE SURVIVAL

Multivariable models

Ven-Obi

COX regression PFS	Univariate comparison	Hazard ratio	95% Wald Cl	
Lymph node size				
≥ 5 cm	vs. < 5 cm	1.916	1.189-3.088	
IGHV mutational s	tatus			
unmutated	vs. mutated	2.258	1.268-4.021	
TP53 deletion/muta	ation			
Deleted and/or muta	ted vs. none	2.262	1.242-4.120	
				0,1 1,0 10,0
				Hazard ratio

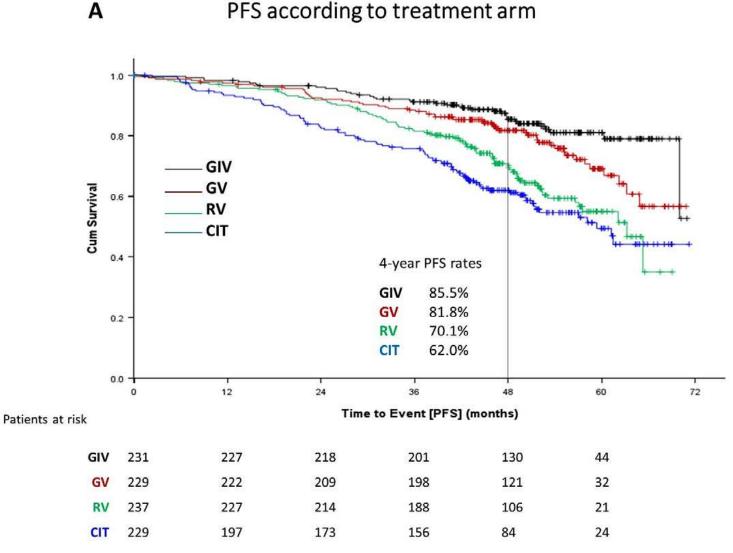
Clb-Obi


COX regression PFS	Univariate comparison	Hazard ratio	95% Wald Cl	
Absolute lymphocy	te count			
≥ 50 x 10 ⁹ /L	vs. < 50 x 10 ⁹ /L	1.467	1.038-2.073	
IGHV mutational st	atus			
unmutated	vs. mutated	2.908	2.002-4.224	
Deletion 11q				
del(11q)	vs. no del(11q)	1.823	1.194-2.785	-=-
Complex Karyotype	2			
CKT/HCKT	vs. NCKT	2.811	1.788-4.420	-8-
				0,1 1,0 10,0
				Hazard ratio

In the context of Ven-Obi, **max. lymph node size ≥ 5 cm, unmutated IGHV and** *TP53* deletion/mutation are independent negative prognostic factors for PFS.

Al-Sawaf, O., et al., EHA 2023, Abstract S145

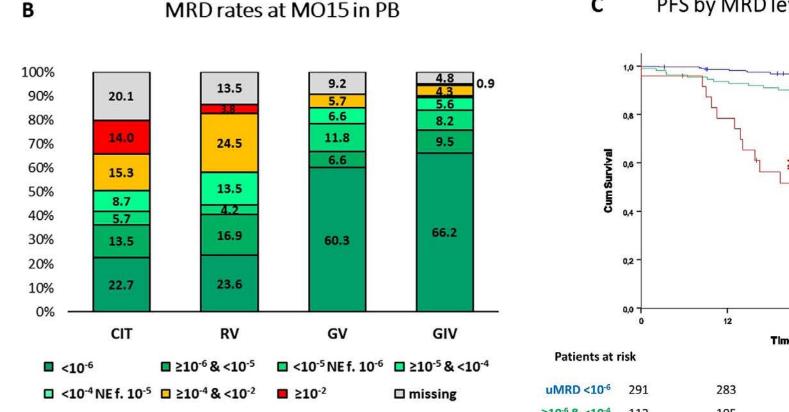
CLL14: PFS AFTER VEN-OBI ACCORDING TO MRD STATUS


End-of-treatment MRD status in peripheral blood, by NGS

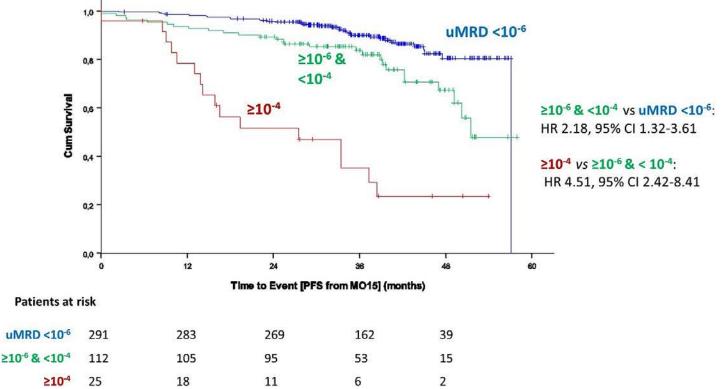
Depth of remission correlates with **longterm PFS**, indicating the prognostic value of the end-of-treatment MRD status.

Al-Sawaf, O., et al., EHA 2023, Abstract S145

First-line Venetoclax-based Combinations - PFS GAIA/CLL13 4-Yr Follow-up


PFS comparisons

GIV vs CIT:	HR 0.30, 97.5% CI 0.19-0.47, <i>p<0.001</i>
GIV vs RV:	HR 0.38, 97.5% CI 0.24-0.59, <i>p<0.001</i>
GIV vs <mark>GV</mark> :	HR 0.63, 97.5% CI 0.39-1.02, p=0.03
GV vs CIT:	HR 0.47, 97.5% CI 0.32-0.69, <i>p<0.001</i>
GV vs RV:	HR 0.57, 97.5% CI 0.38-0.84, <i>p=0.001</i>
RV vs CIT:	HR 0.78, 97.5% CI 0.55-1.10, p=0.1


Furstenau, M, et al. ASH 2023, Abstract 635

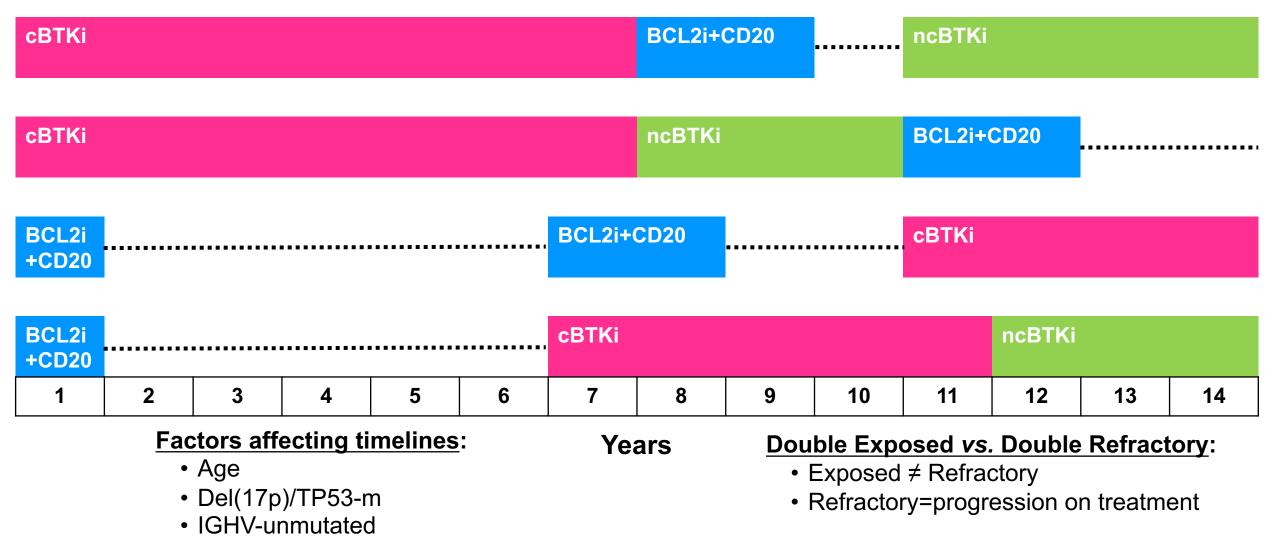
First-line Venetoclax-based Combinations - MRD GAIA/CLL13 4-Yr Follow-up

С

PFS by MRD level at MO15, pooled GV/GIV

Furstenau, M, et al. ASH 2023, Abstract 635

GAIA/CLL13: Multivariate Analysis for PFS with RVe/GVe/GIVe


	HR	95%CI	р
U-IGHV	1.85	1.20-2.84	0.005
RAS/RAFmut	1.87	1.14-3.06	0.01
CKT	1.66	1.07-2.56	0.02
β2MG>3.5mg/L	1.56	1.03-2.36	0.04
NOTCH1mut	1.54	1.02-2.33	0.04

U-IGHV, CKT and *NOTCH1* mutations were independent prognostic factors for CIT and RVe/GVe/GIVe.

RAS/RAF mutations were only prognostic with venetoclax therapy.

Tausch et al. ASH 2022, Abstract 345

Conceptual Targeted Agent Sequencing for CLL

- Del(11q)
- Complex karyotype

Select Ongoing First-line Phase III Clinical Trials

Trial	Subgroup	Ν	Status*	MRD		Treatment	Arms	
GAIA/CLL13 (NCT02950051)	Fit pts	926	Enrolled	Co-Primary	lbrVenOb	VenOb	VenR	FCR/BR
EA9161 (NCT03701282)	Fit, 18-69 yo	720	Enrolled	Secondary	lbrVenOb	lbrOb		
A041702 (NCT03737981)	≥70 yo	454	Enrolled	Secondary	lbrVenOb	lbrOb		
CRISTALLO (NCT04285567)	Fit pts [no del(17p)]	165	Enrolled	Primary	VenOb			FCR/BR
CLL17 (NCT04608318)	All pts	897	Enrolled	Secondary	IbrVen	VenOb	lbr	
ACE-CL-311 (NCT03836261)	All pts	780	Enrolling	Secondary	AcaVenOb	AcaVen		FCR/BR
GCLLSG (NCT05197192)	High-risk	650	Enrolling	Secondary	AcaVenOb	VenOb	-	
MAJIC (NCT05057494)	All	600	Enrolling	Secondary	AcaVen	VenOb		

Conclusions

- First-line treatment best opportunity to achieve goals of treatment
- No benefit to treating with first-line chemoimmunotherapy for most patients
- Individualize for selection of first-line treatment:
 - Age and comorbidities (cardiac, renal)
 - Del(17p)/*TP53*-m
 - IGHV-unmutated/del(11q)
 - Complex karyotype
- First-line cBTKi-based for del(17p)/TP53-m
- Emerging data will provide insights on optimizing finite-duration first-line treatments

Agenda

Module 1: Front-Line Treatment for Chronic Lymphocytic Leukemia (CLL) — Dr Wierda

Module 2: Novel Strategies Combining Bruton Tyrosine Kinase (BTK) and Bcl-2 Inhibitors in the Treatment of CLL — Dr Davids

Module 3: Optimal Management of Adverse Events with BTK and Bcl-2 Inhibitors; Considerations for Special Patient Populations — Dr Awan

Module 4: Selection and Sequencing of Therapies for Relapsed/Refractory CLL — Dr Woyach

Module 5: Promising Investigational Agents and Strategies — Dr Schuster

Have you administered or would you administer a BTK inhibitor in combination with venetoclax as first-line treatment for CLL outside of a clinical trial?

I haven't but would for the right patient

Survey of 21 US-based clinical investigators November 2023

Please describe a clinical scenario in which you have administered a BTK inhibitor in combination with venetoclax as first-line treatment for CLL outside of a clinical trial:

Patient age	Treatment	Response	Tolerability
60 years	Ibrutinib + venetoclax	uMRD	Palpitations, switched to acalabrutinib
65 years	Ibrutinib + venetoclax	CR, uMRD	Well tolerated
77 years	Ibrutinib + venetoclax	CR	Some side effects but continued both drugs
65 years	Ibrutinib + venetoclax	CR, uMRD	Besides cytopenia issues, well tolerated
50 years	Ibrutinib + venetoclax	CR, uMRD	Well tolerated
50 years	Ibrutinib + venetoclax	uMRD	Well tolerated, completed w/o dose reduction/interruption

CR = complete response; uMRD = undetectable minimal residual disease

Survey of 21 US-based clinical investigators November 2023

Please describe a clinical scenario in which you would administer a BTK inhibitor in combination with venetoclax as first-line treatment for CLL outside of a clinical trial:

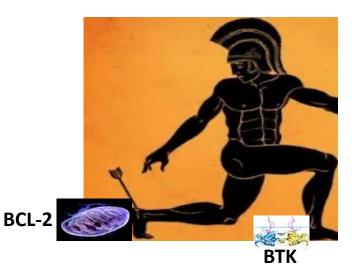
- TP53-mutated CLL in a patient with low tumor burden who wants a time-limited therapy
- Patient unable to take obinutuzumab but a candidate for combination therapy and interested in time-limited treatment
- Patient who insisted on an all-oral, time-limited therapy or had a severe allergic reaction to obinutuzumab and could not receive additional antibody
- Younger (<65) with IGHV-UM, NO del(17p)/TP53-M
- I would consider this for someone who had contraindications to obinutuzumab or needed to avoid infusions and preferred a fixed-duration treatment
- Younger and low-risk CLL
- I would consider for young pts with unmutated IGHV
- Need more data, but would consider for younger patient with high-risk CLL
- High-risk, bulky disease, younger than 70
- I would consider this only for patients who wants a time-limited approach and do not want to receive intravenous therapy.

Effectiveness and advantages of BTK/Bcl-2 combinations over obinutuzumab-containing regimens

Shuo Ma, MD, PhD

Professor Constantine Tam, MBBS, MD

Activity, safety and durability of responses with BTK inhibitors in combination with venetoclax

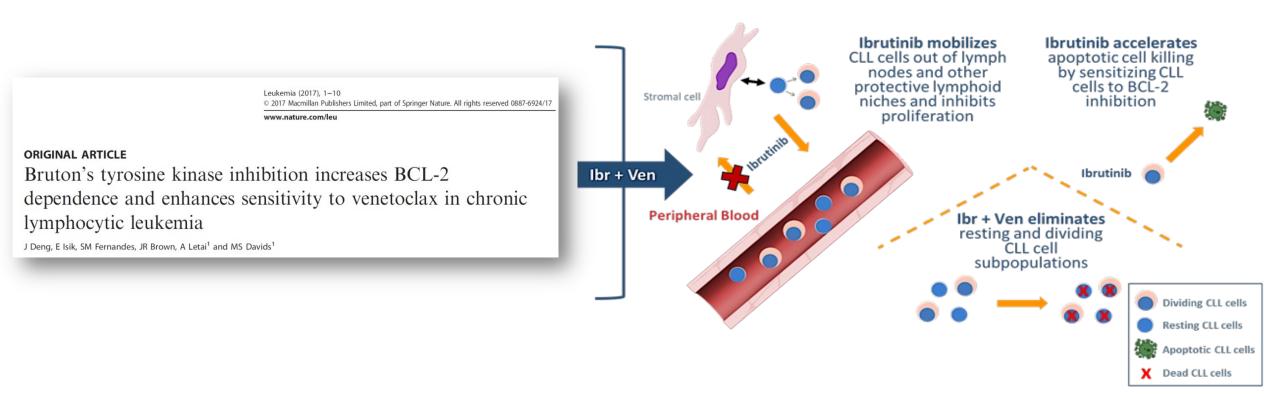


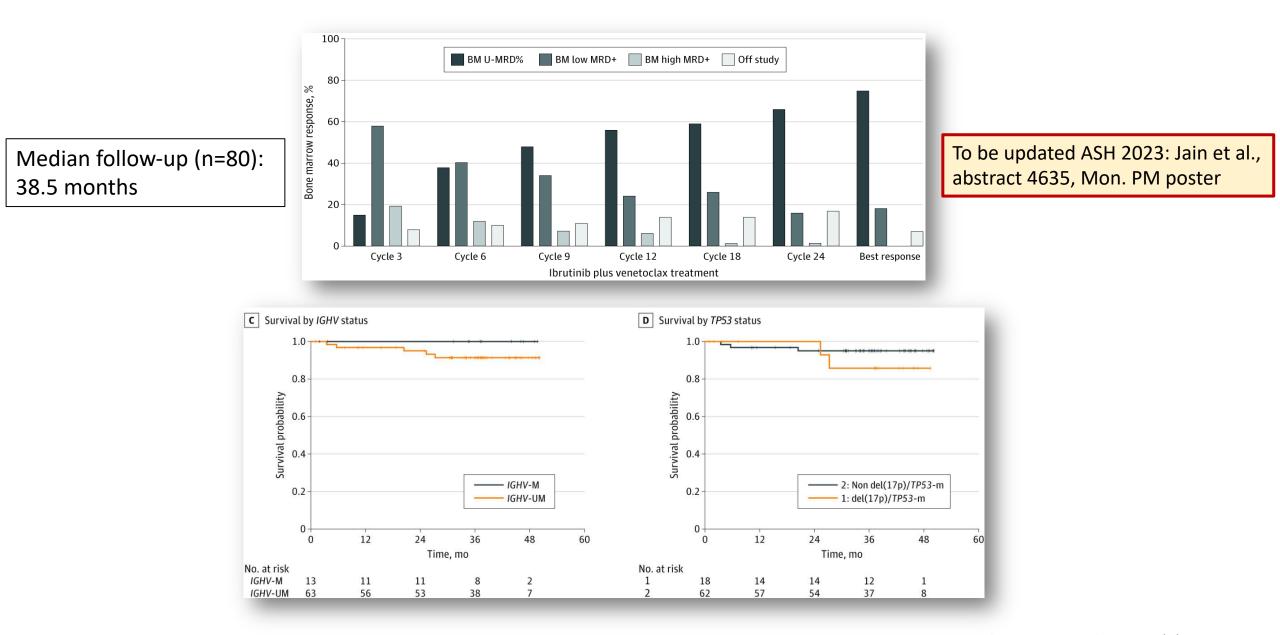
Jan A Burger, MD, PhD

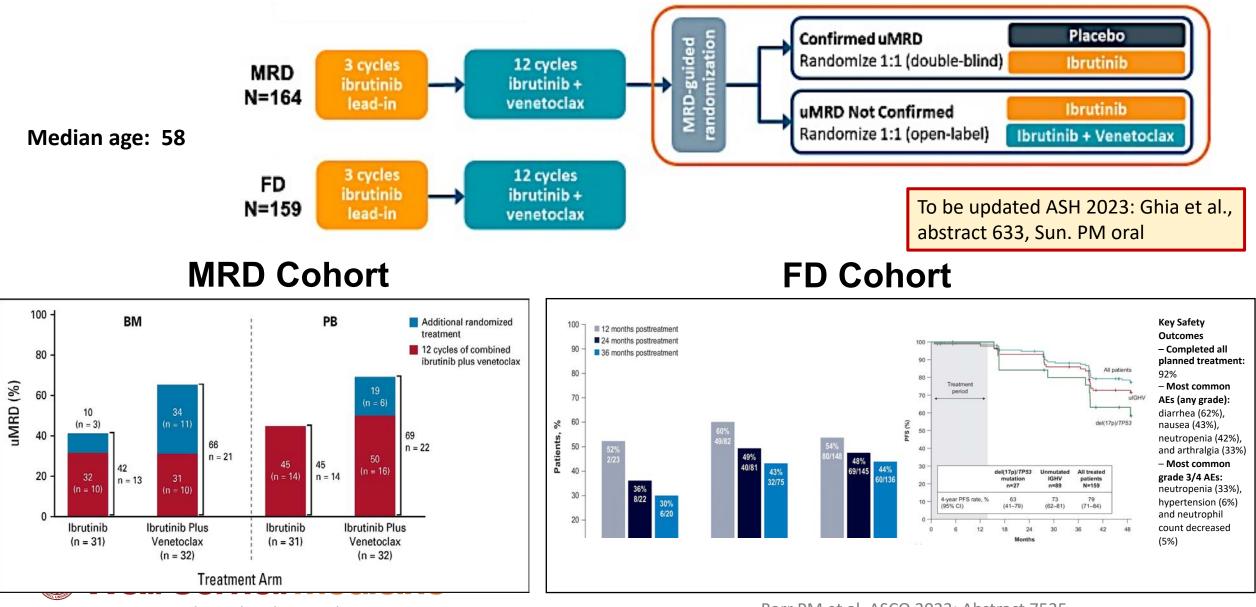
2023 Friday Satellite Symposium – Research To Practice

Novel Strategies Combining BTK and Bcl-2 Inhibitors in CLL

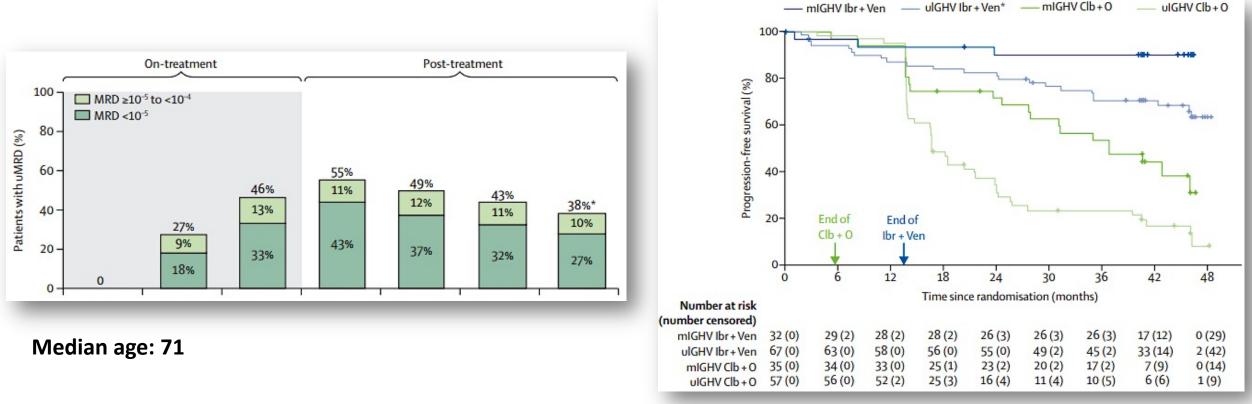
Matthew S. Davids, MD, MMSc


Clinical Research Director | Division of Lymphoma Dana-Farber Cancer Institute Associate Professor of Medicine Harvard Medical School December 8, 2023


San Diego, California, USA


Rationale for Combination BTKi/BCL-2i Therapy

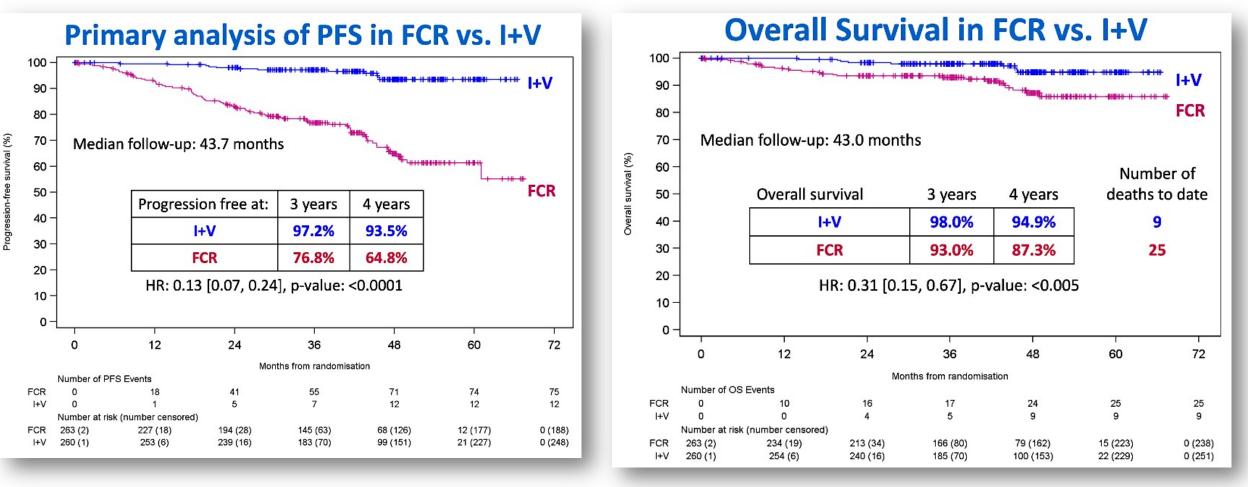
MD Anderson Ibr/Ven Phase 2 IST for Frontline CLL


CAPTIVATE: Ibr/Ven in a young, fit population

Wierda et al. J Clin Oncol, 2021

Barr PM et al. ASCO 2023; Abstract 7535.

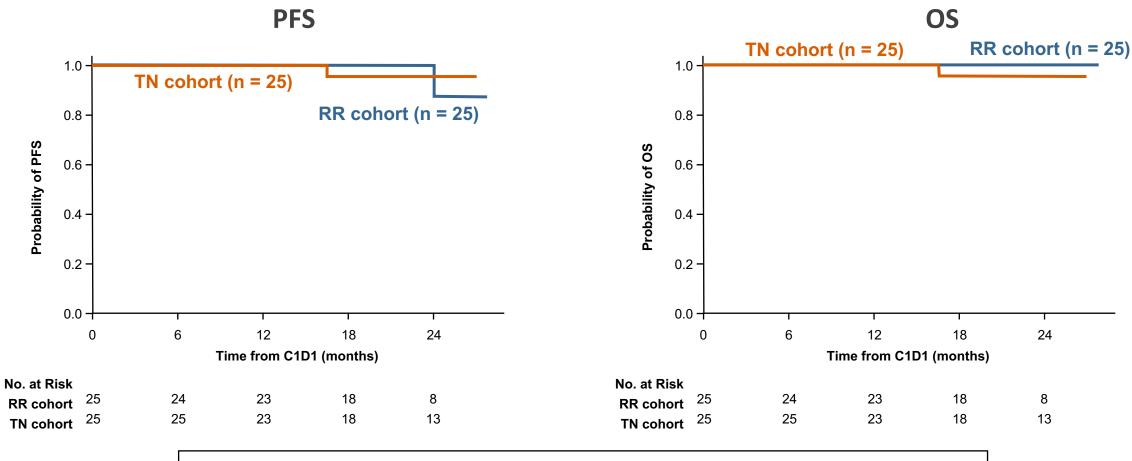
GLOW: Ibr/Ven in an older, co-morbid population



With median follow-up of 46 mo.:

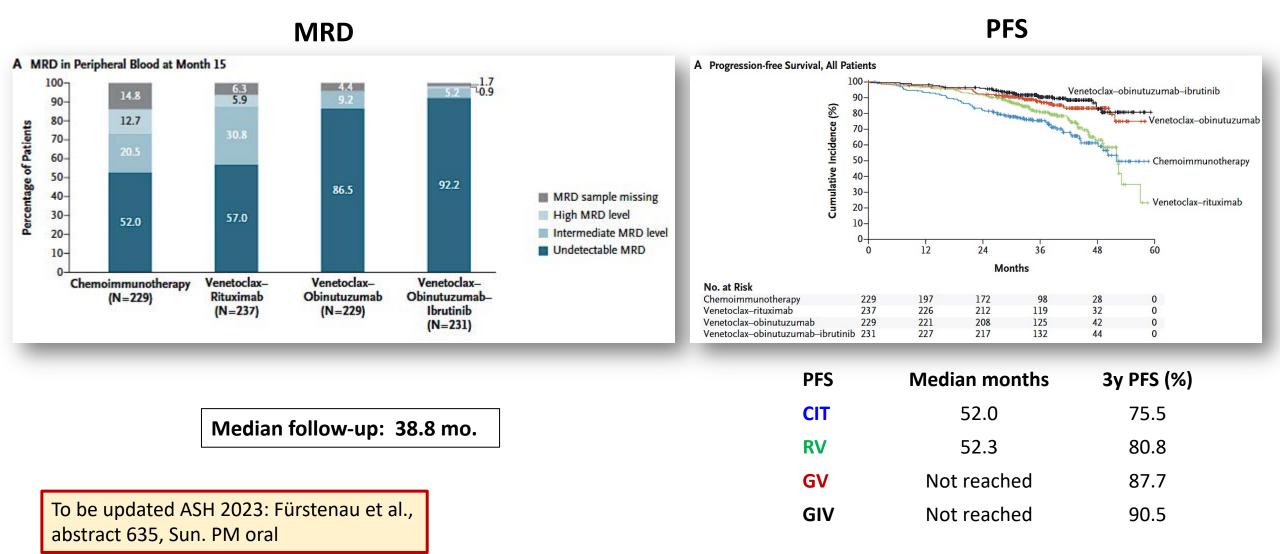
- 7/106 (6.6%) deaths due to TEAE
- 4 on treatment deaths due to CV complications in IV arm

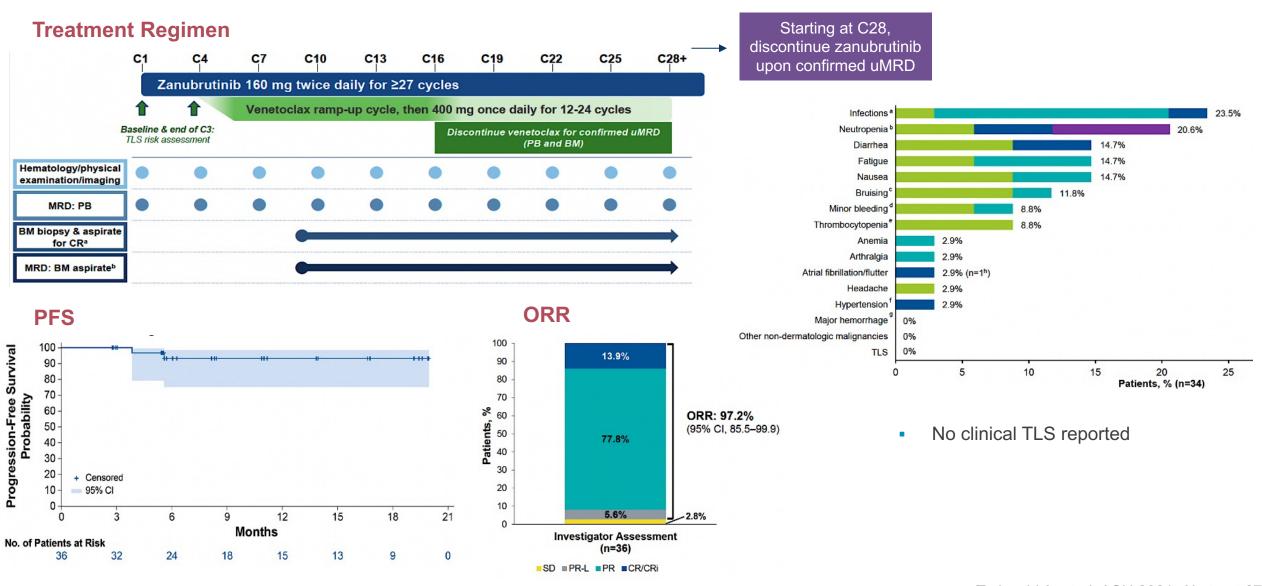
To be updated ASH 2023: Follows et al., abstract 634, Sun. PM oral


Phase 3 FLAIR: Ibr/Ven improves survival over FCR

Median age: 62

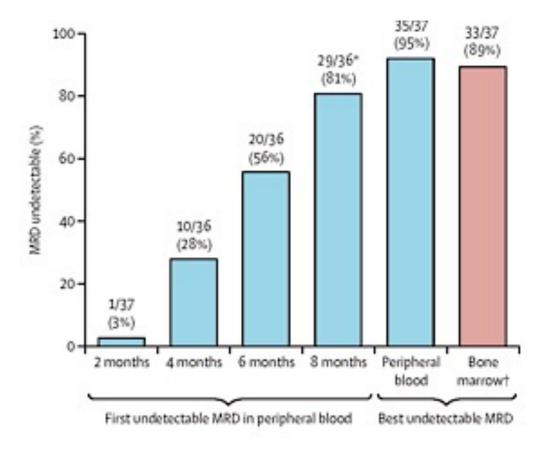
To be presented ASH 2023: Hillmen et al., abstract 631, Sun. PM oral


Triplet Therapy With IVO is Active, but Additional Toxicity is Observed


- **Cardiovascular toxicities were common:** HTN: 82%; AFib: 10%
- Grade 3/4 neutropenia: 66%

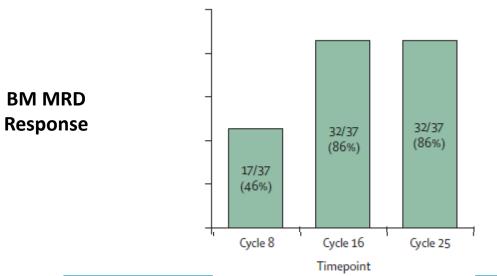
Rogers KA, et al. J Clin Oncol. 2020;38(31):3626-3637

How do triplet combos compare to doublets? <u>CLL13</u>


SEQUOIA Phase 3 Trial: Zanubrutinib + Venetoclax for Patients With TN Del(17p) CLL/SLL (Cohort 3)

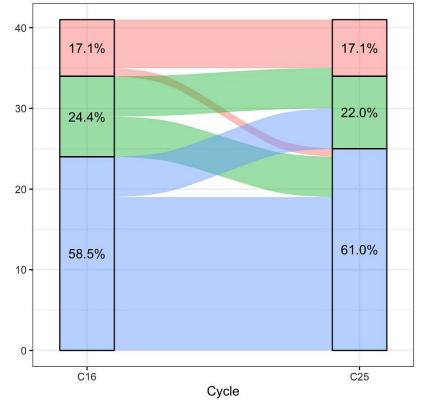
Tedeschi A, et al. ASH 2021. Abstract 67.

Triplet therapy with Zanubrutinib + Venetoclax + Obinutuzumab is active and well-tolerated (Phase 2 BOVen trial)


MRD Response

Safety profile

	Grade 1-2	Grade 3	Grade 4
Thrombocytopenia	20 (51%)	3 (8%)	0
Fatigue	20 (51%)	1 (3%)	0
Neutropenia	13 (33%)	2 (5%)	5 (13%)
Bruising	20 (51%)	0	0
Diarrhoea	18 (46%)	0	0
Infusion-related reaction	15 (39%)	1 (3%)	1 (3%)
Anaemia	16 (41%)	0	0
Cough	14 (36%)	0	0
Rash	10 (26%)	3 (8%)	0
Nausea	12 (31%)	0	0
Constipation	11 (28%)	0	0
Nasal congestion	10 (26%)	0	0
Gastroesophageal reflux disease	10 (26%)	0	0
Insomnia	9 (23%)	0	0
Myalgia	9 (23%)	0	0
Arthralgia	8 (21%)	0	0

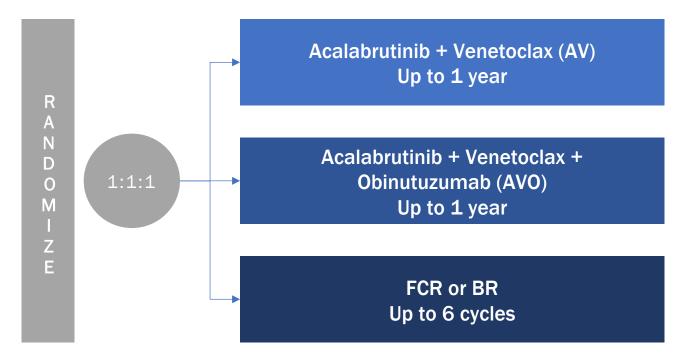

The Acalabrutinib + Venetoclax + Obinutuzumab (AVO) triplet is also active and well-tolerated

	AEs (N=37), %		All Grades	Grade ≥3
		Neutropenia	84	43
	Most frequent hematologic	Thrombocytopenia	81	27
	nematologic	Anemia	59	5
Safety profile		Fatigue	89	3
	Non-hematologic (≥50%)	Headache	76	3
	(20%)	Bruising	59	0
		IRR	25	3
	AEc of chocial interact	Hypertension	11	0
	AEs of special interest	Atrial fibrillation 3		3
		Laboratory TLS	5	5

Initial Cohort (n=37)

Updated analysis (n=68)

Blood MRD (ClonoSEQ) n=68


• 93% PFS with median follow-up ~3 yrs

Davids MS, et al. Lancet Oncol. 2021.

AMPLIFY (ACE-CL-311): Phase 3 Study of Acalabrutinib + Venetoclax ± Obinutuzumab vs FCR/BR in TN CLL Without Del(17p) or *TP53* Mutations

Key Eligibility Criteria

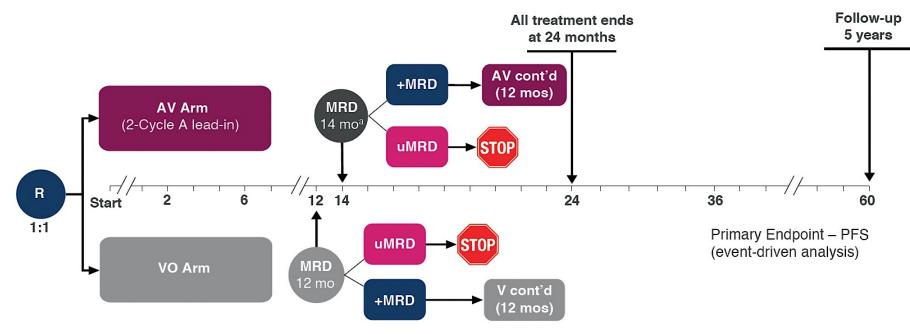
- Previously untreated CLL
- Without del(17p) or *TP*53 mutations
- ECOG PS ≤2

Primary endpoint

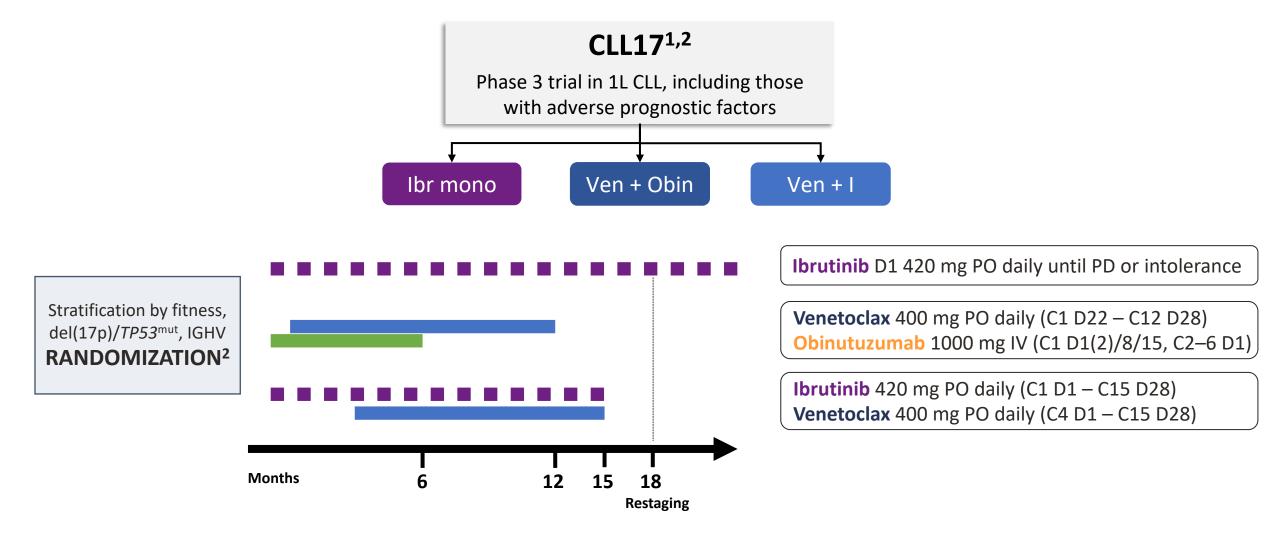
PFS (IRC assessed) of AV vs FCR/BR

Key secondary endpoints

- PFS (IRC assessed) of AVO vs FCR/BR
- PFS (INV assessed) of AV vs FCR/BR


The global MAJIC phase 3 study seeks to define the optimal MRD-guided venetoclax doublet for frontline CLL treatment

- N=~750 patients to be recruited
- Global study with ~40 sites
- FPI: Sept 2022


- TN CLL/SLL requiring treatment per 2018 iwCLL guidelines
- ECOG PS 0-2
- Anti-thrombotic agents permitted except for warfarin or equivalent vitamin K antagonists

Primary endpoint: INV-assessed PFS

Davids et al., ASH, 2021. Abstract 1553; Ryan CE, et al. [published correction appears in Future Oncol. 2023 Jan;19(3):271]. Future Oncol. 2022;18(33):3689-3699.

The CLL17 trial is comparing continuous BTKi to time-limited venetoclax-based doublets

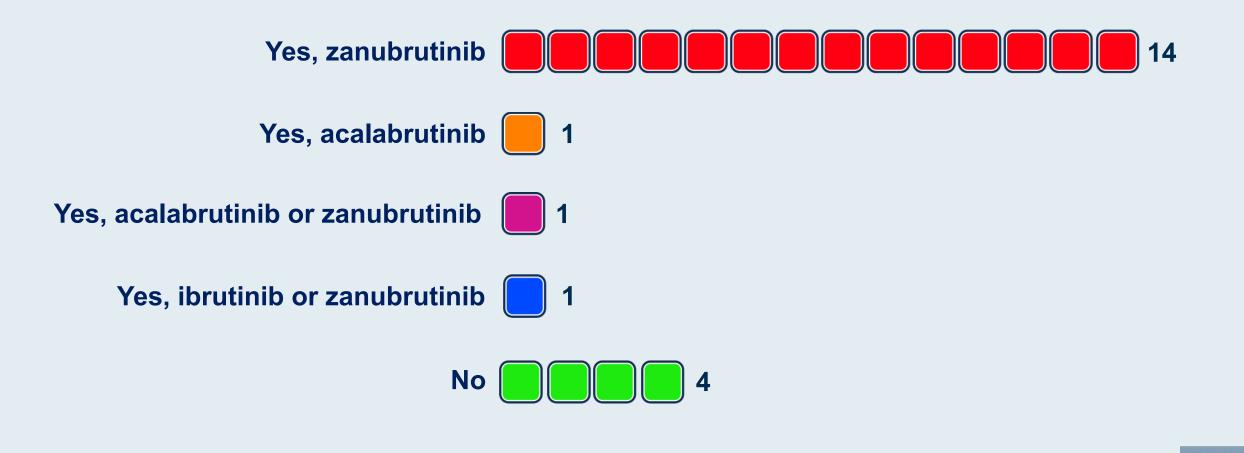
1. ClinicalTrials.gov. NCT04608318. Available at: https://www.clinicaltrials.gov/ct2/show/NCT04608318 (accessed August 2021); 2. DCLLSG. CLL17 Trial. Available at: https://www.dcllsg.de/en/trial/cll17/CLL17_Synopsis_v1.2_20200923.pdf (accessed August 2021)

- Ibrutinib + venetoclax is a highly active doublet, but tolerability can vary depending on the patient population
- This regimen has gained regulatory approval outside the US. It is not FDA-approved, but is listed as an option in NCCN guidelines
- Early data for more selective BTKi zanubrutinib and acalabrutinib with venetoclax look promising, with excellent activity and tolerability across a broad population of patients
- Whether triplets with obinutuzumab are better than doublets remains to be determined
- We await several ongoing randomized, phase 3 trials that will help to define the role for such regimens in clinical practice

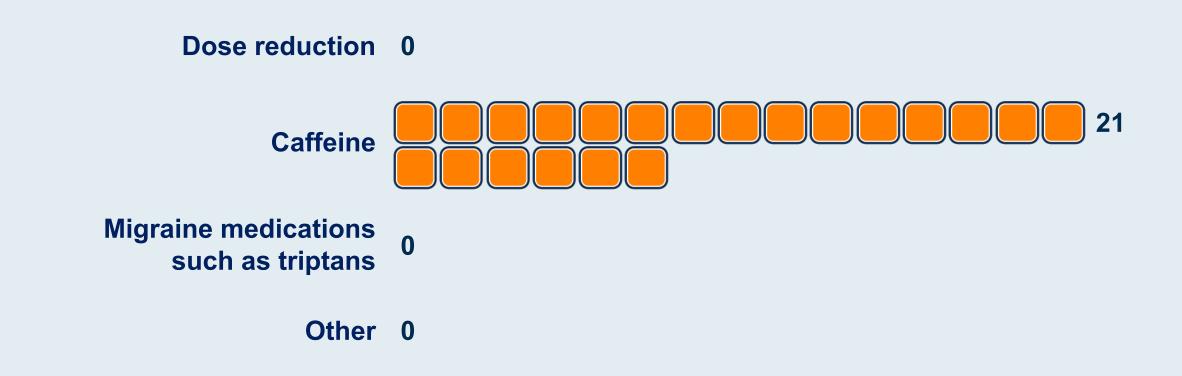
Agenda

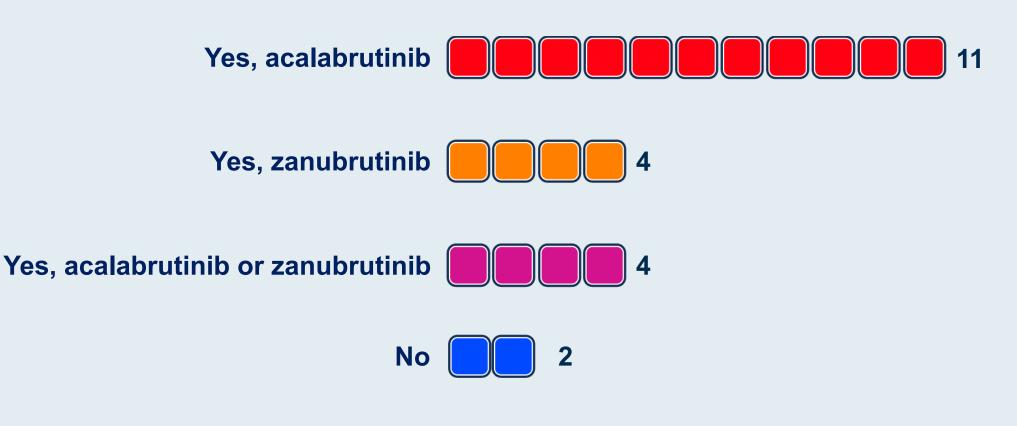
Module 1: Front-Line Treatment for Chronic Lymphocytic Leukemia (CLL) — Dr Wierda

Module 2: Novel Strategies Combining Bruton Tyrosine Kinase (BTK) and Bcl-2 Inhibitors in the Treatment of CLL — Dr Davids

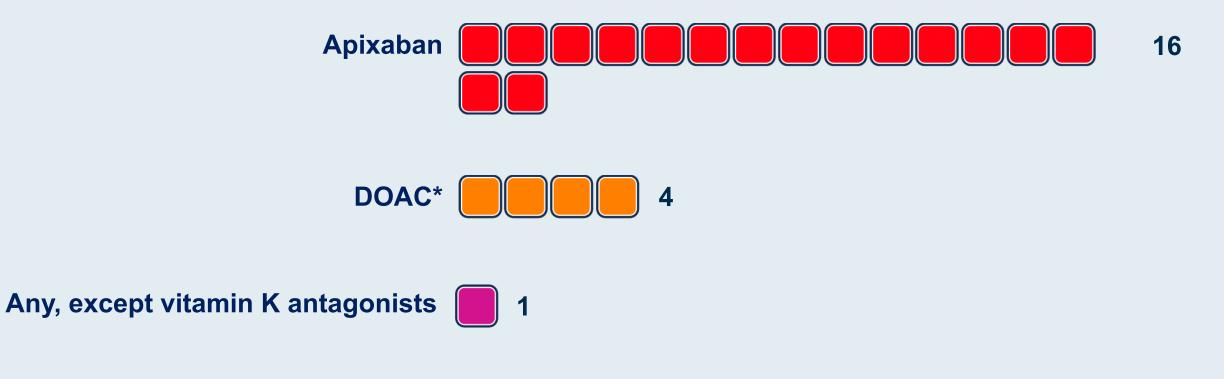

Module 3: Optimal Management of Adverse Events with BTK and Bcl-2 Inhibitors; Considerations for Special Patient Populations — Dr Awan

Module 4: Selection and Sequencing of Therapies for Relapsed/Refractory CLL — Dr Woyach


Module 5: Promising Investigational Agents and Strategies — Dr Schuster


Regulatory and reimbursement issues aside, do you have a preferred BTK inhibitor for a patient with a history of <u>migraine headache</u>?

Which management strategy would you generally recommend for a patient who was experiencing acalabrutinib-associated headache?



Regulatory and reimbursement issues aside, do you have a preferred BTK inhibitor for a patient with a history of <u>difficult-to-control hypertension</u>?

Which anticoagulant do you prefer for patients who are also receiving BTK inhibitors?

* Direct oral anticoagulant

Use of BTK inhibitors for patients with CLL and a history of atrial fibrillation (A-fib); monitoring and treatment for patients who develop A-fib while on a BTK inhibitor

Professor Constantine Tam, MBBS, MD

Frequency of tumor lysis syndrome with venetoclax/obinutuxumab for CLL; monitoring, prophylaxis and management

Jan A Burger, MD, PhD

Shuo Ma, MD, PhD

Farrukh T. Awan, M.D. Professor of Internal Medicine Director of Lymphoid Malignancies Program Dallas, TX, USA

Optimal Management of Adverse Events (AEs) with BTK and Bcl-2 Inhibitors; Considerations for Special Patient Populations

UTSouthwestern

Harold C. Simmons Comprehensive Cancer Center

Safety Issues

BTK Inhibitors

Ibrutinib/BTKi related toxicities of interest

- Bleeding
- Cardiovascular toxicities
 - Atrial fibrillation
 - Ventricular arrhythmias
 - Hypertension
- Infectious complications

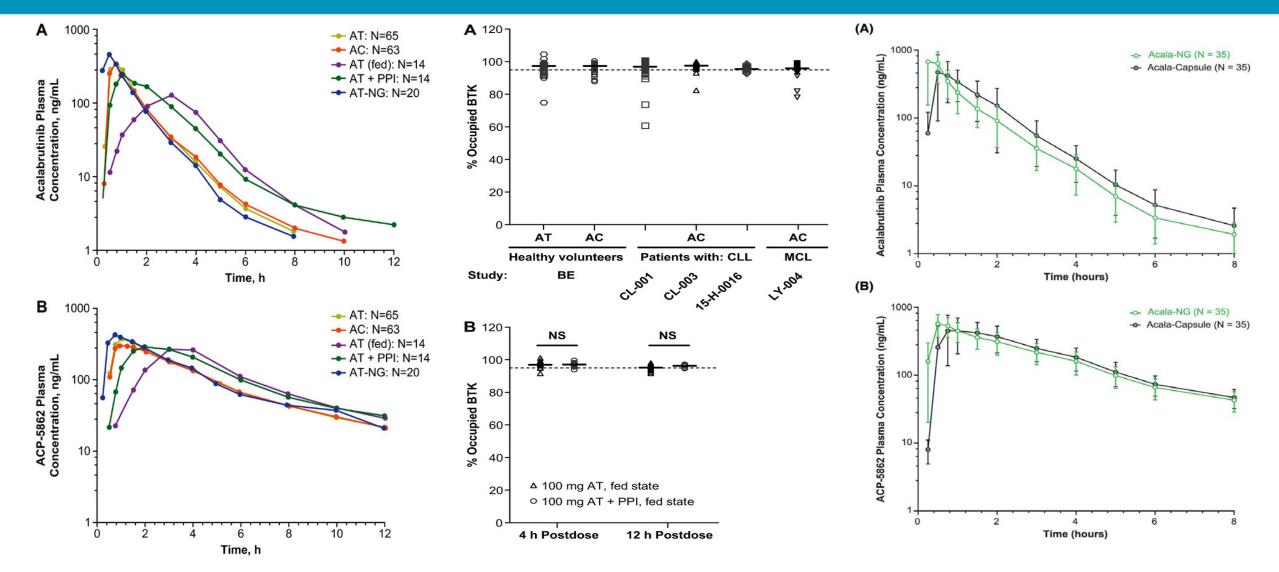
Comparison of E1912 and Alliance A041202 Trials: Median Age and Grade ≥3 TRAEs on IR Arm

Adverse Event	E1912 ¹ (N = 352)	Alliance A041202 ² (N = 181)
Median age, yr (range)	58 (28-70)	71 (65-86)
Infection, %	11.4	18
Atrial fibrillation, %	4.5	5
Bleeding, %	1.1	1
Hypertension, %	11.4	34
Deaths during active treatment +30 days, %	1	7

TRAEs = Treatment related Adverse events

This slide contains indirect trial comparisons. In the absence of head-to-head studies cross-trial comparisons cannot be made. Trials differ in design, study population, size, time period of recruitment, location of study sites.

1. Shanafelt. Blood. 2022;140:112. 2. Woyach. NEJM. 2018;379:2517.


ELEVATE-TN – Safety Analysis 5- Year Follow-Up

A+0 0+Clb Α (n=178) (n=179) (n=169) AEs of Clinical Interest, n (%) Grade ≥ 3 Any grade Grade ≥ 3 Grade ≥ 3 Any grade Any grade **Cardiac events** 43 (24.2) 17 (9.6) 39 (21.8) 18 (10.1) 13 (7.7) 3 (1.8) **Atrial fibrillation** 11 (6.2) 2 (1.1) 1(0.6)13 (7.3) 2(1.1)0 Bleeding 88 (49.4) 8 (4.5) 78 (43.6) 6 (3.4) 20 (11.8) 0 Major bleeding^a 12 (6.7) 8 (4.5) 8 (4.5) 6 (3.4) 2 (1.2) 0 **Hypertension** 17 (9.6) 8 (4.5) 16 (8.9) 7 (3.9) 6 (3.6) 5 (3.0) Infections 140 (78.7) 50 (28.1) 135 (75.4) 35 (19.6) 75 (44.4) 14 (8.3) Secondary primary malignancies 14 (7.9) 27 (15.1) 31 (17.4) 7 (3.9) 7 (4.1) 3 (1.8) Excluding nonmelanoma skin 17 (9.6) 12 (6.7) 5 (2.8) 3 (1.8) 2 (1.2) 13 (7.3)

^a Defined as any serious or grade \geq 3 hemorrhagic event, or any grade hemorrhagic event in the central nervous system.

1. Sharman JP, et al. ASCO 2022. Abstract 7539. 2. Sharman JP, et al. EHA 2022. Abstract P666.

ELEVATE-PLUS (New Acalabrutinib tablet formulation)

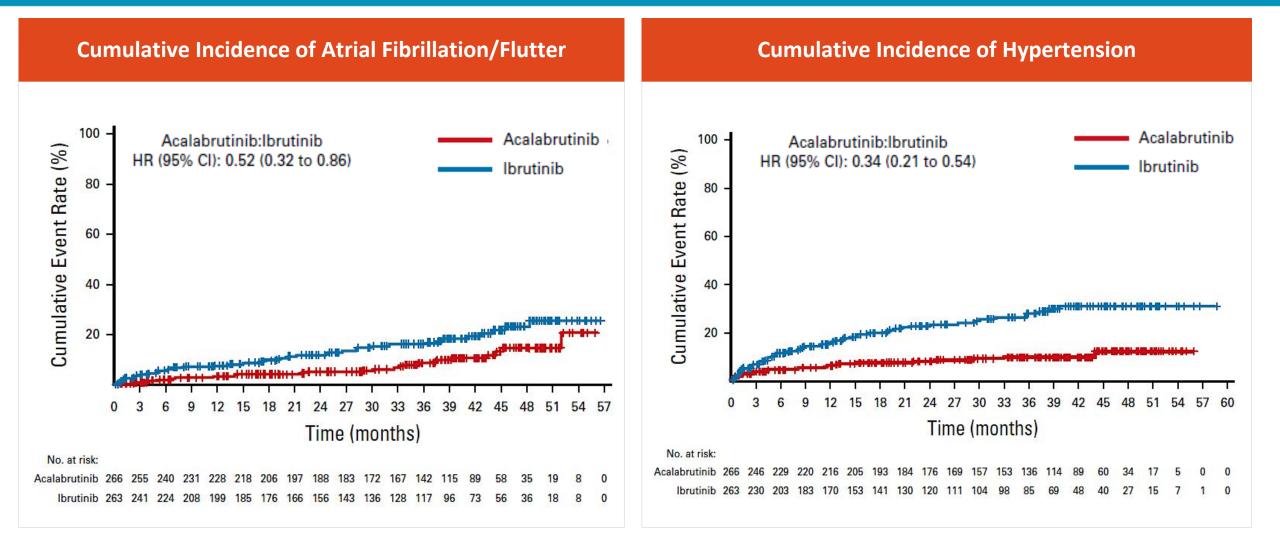
Clinical Pharm in Drug Dev, Volume: 11, Issue: 11, Pages: 1294-1307, First published: 27 August 2022, DOI: (10.1002/cpdd.1153); Brit J Clinical Pharma, Volume: 88, Issue: 10, Pages: 4573-4584, First published: 25 April 2022, DOI: (10.1111/bcp.15362)

SEQUOIA – Safety Analysis

		Cohort 1 – Without del(17p)					Cohc	ort 2 – With d	lel(17p)
	Zanu	Group A brutinib (n=2	240ª)		Group B BR (n=227 ^b)		Zar	Group C nubrutinib (n	=111)
Select AEs, %	All grade, %	Grade 3/4, %	Grade 5, %	All grade, %	Grade 3/4, %	Grade 5, %	All grade, %	Grade 3/4, %	Grade 5, %
Any	93	48	5	96	74	5°	98	52	3
Serious	37	25	5	50	39	5	41	32	3
Common AEs Contusion Upper respiratory tract infection Diarrhea Arthralgia Neutropenia Hypertension Headache Rash Nausea Anemia Thrombocytopenia Infusion-related reaction	19 17 14 14 15 12 11 11 10 5 4 <1 ^d	0 1 1 1 11 6 0 0 0 <1 2 0	0 0 0 0 0 0 0 0 0 0 0 0 0	4 12 13 9 57 9 7 19 33 19 13 19	0 1 1 <1 51 5 0 3 1 2 7 3	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	20 21 17 20 18 9 11 14 15 5 4 0	0 0 1 1 15 5 2 0 0 0 0 1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0
All bleeding AEs ^e All cardiac AEs ^e	45 14	3 4	<1 1	11 11	2 4	0 <1	51 15	5 4	0 1

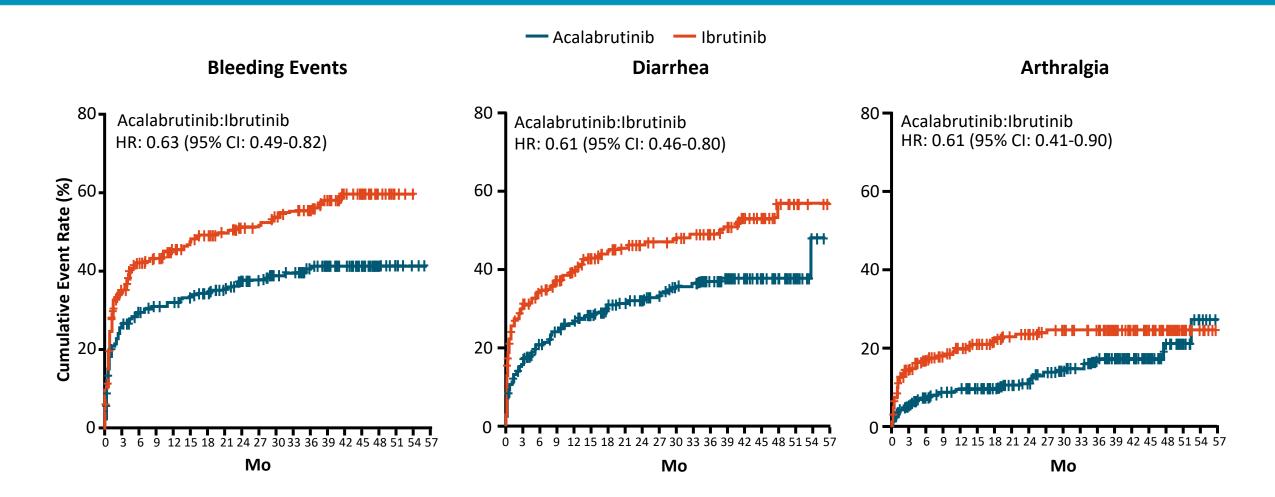
^a One patient in group A did not receive zanubrutinib and is not included in the safety analysis. ^b 11 patients in group B did not receive bendamustine-rituximab and are not included in the safety analysis. ^c Includes 1 patient who had a grade 5 event (confusion) that began prior to but ended after the data cutoff. ^d Due to amphotericin B infusion. ^e Grouped analyses.

Tam CS, et al. Lancet Oncol. 2022;23(8):1031-1043.


ELEVATE-RR: Acalabrutinib vs Ibrutinib Comparison of Adverse Events

	Acalabrutinib $(n = 266)$		Ibrutinib $(n = 263)$	
Event	Any Grade	$\mathbf{Grade} \geq 3$	Any Grade	Grade \geq 3
Diarrhea ^{a,b}	92 (34.6)	3 (1.1)	121 (46.0)	13 (4.9)
Headache ^{a,b}	92 (34.6)	4 (1.5)	53 (20.2)	0
Cough ^a	77 (28.9)	2 (0.8)	56 (21.3)	1 (0.4)
Fatigue ^b	54 (20.3)	9 (3.4)	44 (16.7)	0
Arthralgia ^a	42 (15.8)	0	60 (22.8)	2 (0.8)
Hypertension ^{a,b}	23 (8.6)	11 (4.1)	60 (22.8)	23 (8.7)
Contusion ^a	31 (11.7)	0	48 (18.3)	1 (0.4)
Atrial fibrillation ^a	24 (9.0)	*12 (4.5)	41 (15.6)	*9 (3.4)
Urinary tract infection ^a	22 (8.3)	3 (1.1)	36 (13.7)	6 (2.3)
Back pain ^a	20 (7.5)	0	34 (12.9)	2 (0.8)
Dyspepsia ^a	10 (3.8)	0	32 (12.2)	0

* Symptomatic, requiring urgent attention, and incompletely controlled medically, or controlled with device (e.g., pacemaker)


Byrd JC, et al. *J Clin Oncol.* 2021;39:3441-3452; Seymour JF et al. Blood 2023;142(8):687-99.

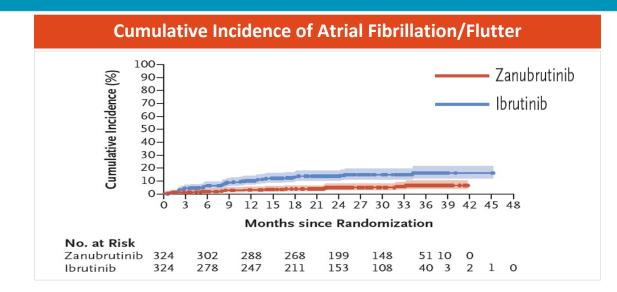
ELEVATE-RR: Safety Analysis

Byrd JC, et al. J Clin Oncol. 2021;39:3441-3452.

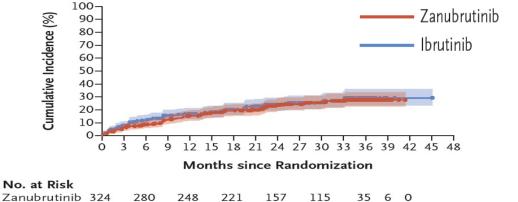
ELEVATE-RR: Additional Safety

Hillmen. EHA 2021. Abstr S145.

ALPINE: Events of Clinical Toxicity Interest


Safety analysis population	Zanubrutinib (n=324), n (%)		lbrutinib (n=324), n (%)	
	Any grade	Grade ≥ 3	Any grade	Grade ≥ 3
Cardiac disorders ^a	1 (0.3)		14 (4.3)	
Atrial fibrillation and flutter (key 2° endpoint)	17 (5.2)	8 (2.5)	43 (13.3)	13 (4.0)
Hemorrhage Major hemorrhage ^b	137 (42.3) 12 (3.7)	11 (3.4) 11 (3.4)	134 (41.4) 14 (4.3)	12 (3.7) 12 (3.7)
Hypertension	76 (23.5)	49 (15.1)	74 (22.8)	44 (13.6)
Infections	231 (71.3)	86 (26.5)	237 (73.1)	91 (28.1)
Neutropenia ^c	95 (2.3)	68 (21.0)	79 (24.4)	59 (18.2)
Thrombocytopenia ^c	42 (13)	11 (3.4)	50 (15.4)	17 (5.2)
Secondary primary malignancies Skin cancers	40 (12.3) 21 (6.5)	22 (6.8) 7 (2.2)	43 (13.3) 28 (8.6)	17 (5.2) 4 (1.2)

^aCardiac disorders leading to treatment discontinuation: zanubrutinib 0 patients and ibrutinib 7 (3.4%) patients. ^bIncludes serious or grade ≥3 hemorrhage and CNS bleeding of all grades. ^cPooled terms including neutropenia, neutrophil count decreased, and febrile neutropenia; thrombocytopenia and platelet count decreased.


AE = adverse event. All events are of any grade unless otherwise specified.

Brown JR, et al. N Engl J Med. 2023;388(4):319-332 & Supplementary appendix

ALPINE: Safety Analysis

Cumulative Incidence of Hypertension

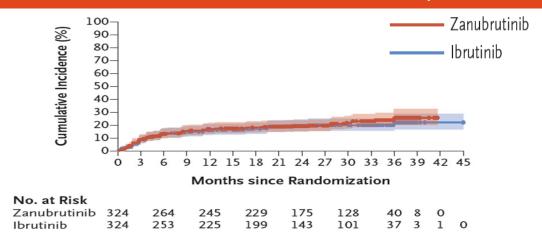
129

28 3 2

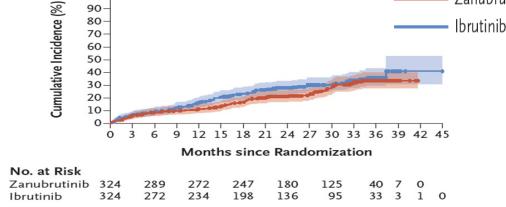
84

1 0

Cumulative Incidence of Grade ≥3 Neutropenia


186

324

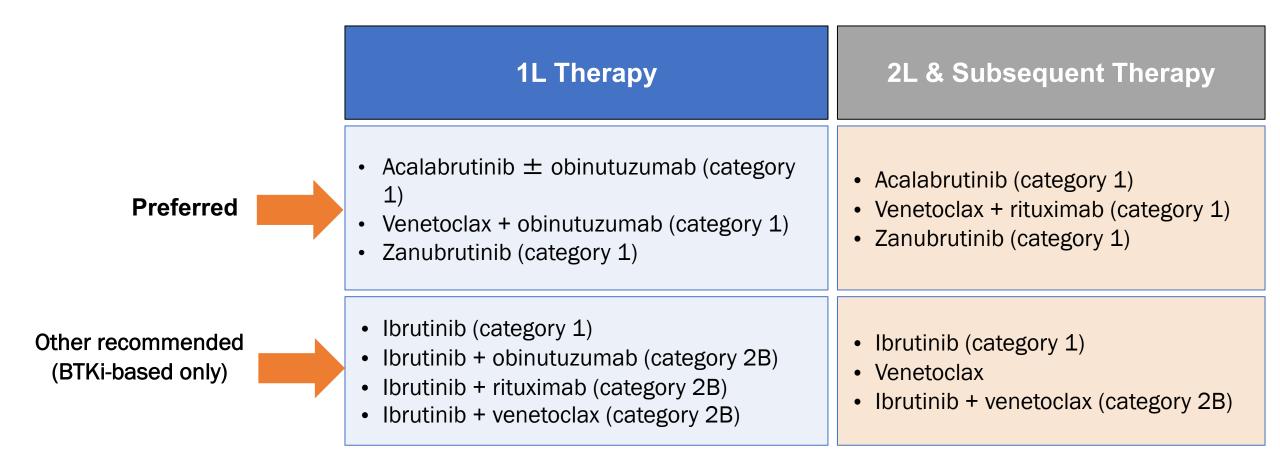

Ibrutinib

254

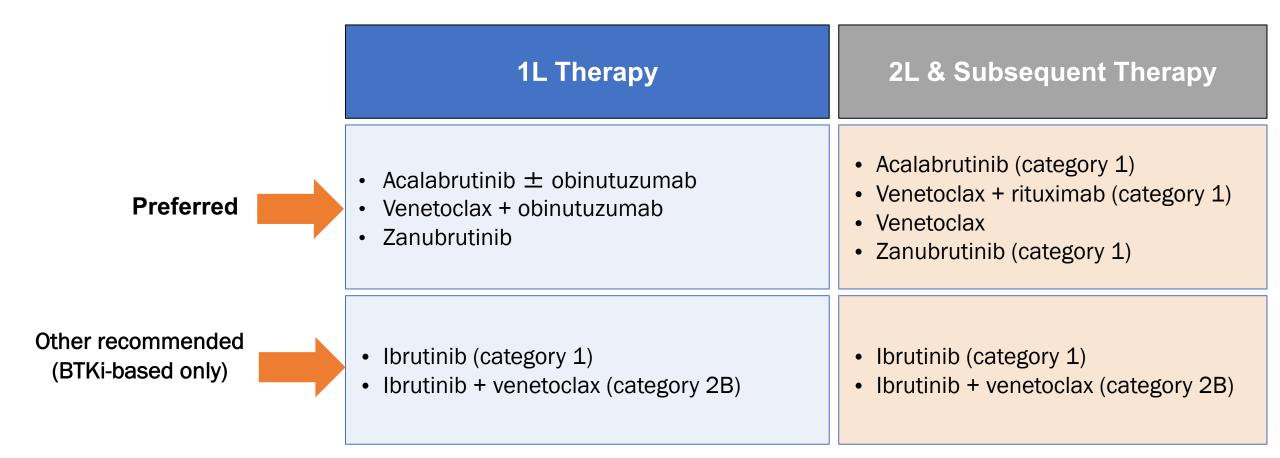
222

Cumulative Incidence of Grade ≥3 Infection Zanubrutinib

Adverse Events of Clinical Interest in H2H studies In my opinion worth considering with each patient...


All grades	Ibrutinib Elevate RR % (n=263)	Acalabrutinib Elevate RR % (n=266)	Ibrutinib Alpine % (n=324)	Zanubrutinib Alpine % (n=324)
Atrial Fib/Flutter	15.6	9.0	13.3	5.2
Hypertension	22.8	8.6	22.8	23.5
Bleeding events	51.3	38.0	41.1	42.3
Neutropenia	24.7	21.1	24.4	29.3

This slide contains indirect trial comparisons. In the absence of head-to-head studies cross-trial comparisons cannot be made. Trials differ in design, study population, size, time period of recruitment, location of study sites. Ref: Byrd JC, et al. J Clin Oncol. 2021;39:3441-3452, Brown JR, et al. N Engl J Med. 2023;388(4):319-332 & Supplementary Appendix


Ibrutinib in combination with venetoclax

	All treated paties (n = 159), n (%	
AEs	Any grade	Grade 3/4
Most common AEs*		
Diarrhea	99 (62)	5 (3)
Nausea	68 (43)	2 (1)
Neutropenia	66 (42)	52 (33)
Arthralgia	53 (33)	2 (1)
Hypertension	25 (16)	9 (6)
Neutrophil count decreased	16 (10)	8 (5)
Other AEs of clinical interest		
Atrial fibrillation	7 (4)	2 (1)
Major hemorrhage†	3 (2)	2 (1)
Laboratory safety parameters		
Hematology		
Neutrophils decreased	115 (72)	60 (38)
Platelets decreased	94 (59)	20 (13)
Hemoglobin decreased	31 (19)	0
Chemistry		
Corrected calcium decreased	61 (38)	1 (1)
Potassium increased	39 (25)	4 (3)
Uric acid increased	34 (21)	34 (21)
Creatinine increased	27 (17)	0

NCCN Guidelines del(17p)/TP53 Wildtype

NCCN Guidelines del(17p)/TP53 Mutation-Positive

1. NCCN Clinical Practice Guidelines in Oncology. Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma. Version 1.2024. https://www.nccn.org/professionals/physician_gls/pdf/cll.pdf.

Recommendations for the management of Bleeding and Cardiovascular Issues – BTKi

- Consider discontinuation of anti-platelet and anti-coagulants prior to starting
- Watch for bleeding closely especially early in the disease course
- Hold BTKi for 3-7 days prior to minor and major procedures
- Watch for signs and symptoms of cardiac arrhythmias
- Work closely with Cardio-Oncology colleagues
- Control hypertension aggressively
- Avoid the use of medications that impact drug concentrations

BTK Inhibitors: Cardiovascular Adverse Event Management

Atrial fibrillation/flutter

- Regularly monitor for cardiac arrythmias;
 ECG if symptoms develop (eg, palpitations, lightheadedness, syncope, chest pain) or new-onset dyspnea
- Cardiology comanagement recommended
- Not an absolute indication to discontinue BTK inhibitors
- Use anticoagulation with caution
- Manage cardiac arrythmias as appropriate
- For persistent atrial fibrillation, consider dose modification

Hypertension

- Document baseline blood pressure
- Monitor for new/ uncontrolled hypertension
- Initiate hypertensives as needed
- New or worsening hypertension increases risk of major cardiovascular events

Bcl-2 Antagonists

CLL14: Most Frequent Grade ≥3 Adverse Events With Obinutuzumab + Venetoclax or Chlorambucil

	Venetoclax-obinutuzumab (N=212)		Chlorambucil-obinutuzumab (N=214)	
	During Treatment	After Treatment	During Treatment	After Treatment
Neutropenia	51.9%	3.8%	47.2%	1.9%
Thrombocytopenia	14.2%	0.5%	15.0%	0.0%
Anemia	7.5%	1.9%	6.1%	0.5%
Febrile neutropenia	4.2%	0.9%	3.3%	0.5%
Leukopenia	2.4%	0.0%	4.7%	0.0%
Pneunomia	3.8%	3.3%	3.7%	1.4%
Infusion-related reaction	9.0%	0.0%	9.8%	0.5%
Tumour lysis syndrome	1.4%	0.0%	3.3%	0.0%

CLL11: Overview of Adverse Events

	Obin-Cl	b vs Clb	Obin-Clb vs R-Clb		
Event, n (%)	Obin-Clb (n = 241)	Clb (n = 116)	Obin-Clb (n = 336)	R-Clb (n = 321)	
≥1 AEs (any grade)	228 (95)	96 (83)	316 (94)	290 (90)	
Grade 3-5 AEs	179 (74)	59 (51)	241 (72)	191 (60)	
Serious AEs	113 (47)	45 (39)	150 (45)	124 (39)	
Grade 5 AEs - Second malignancies - Infections	19 (8) 11 (5) 1 (<1)	13 (11) 1 (<1) 7 (6)	23 (7) 12 (4) 2 (<1)	31 (10) 13 (4) 2 (<1)	

Management of Venetoclax-Associated Toxicities

	Tumor Lysis Syndrome	Debulking Strategies Prior to venetoclax ramp-up
Toxicity Management	 Potassium ↑ Uric acid ↑ Phosphate ↑ Calcium ↓ Clinical TLS	 Chemotherapy (eg, 2x bendamustine) OR Anti-CD20 Ab (eg, 3x obinutuzumab) OR BTK inhibitor (eg, ibrutinib for 3 mo)
	 Creatinine 个, cardiac arrythmia, seizure 	
Neutropenia	Risk Assessment	Risk Mitigation
In cases of grade 3/4 neutropenia or febrile neutropenia	 Low All LN <5 cm AND ALC <25 x 10⁹/L 	 Allopurinol (or rasburicase); oral hydration
 Pause venetoclax and resume when resolved to grade ≤1 	 Intermediate Any LN 5-10 cm OR ALC ≥25 x 10⁹/L 	 Allopurinol (or rasburicase); oral/IV hydration
 Use G-CSF when clinically indicated 	 High Any LN ≥10 cm <i>OR</i> Any LN ≥5 cm <i>AND</i> ALC ≥25 x 10⁹/L 	 Allopurinol (or rasburicase); IV hydration Consider hospitalization

Fischer. Hemtology Am Soc Hematol Educ Program. 2020;2020:357.

Conclusions

- Majority of patients do well with most novel therapies currently used for the treatment of patients with CLL
- Obinutuzumab more effective in CLL than rituximab but associated with greater infusion toxicity and TLS risk
- Consider patient and disease characteristics to determine if suitable for specific class of treatment
- TLS risk category can be reduced with obinutuzumab pretreatment
- Infusion reactions with obinutuzumab can be reduced by BTKi pretreatment
- Careful lab monitoring for TLS with hospitalization for selected patients has been shown to be safe

1. Kater. NEJM Evid. 2022;1(7). 2. Eichhorst. EHA 2022. Abstr LB2365. 3. Goede. EHA 2018. Abstr S151. 4. Bourrier. BMC Cancer. 2022;22:article 148. 5. Obinutuzumab PI. 6. Gribben. Br J Haematol. 2020;188:844.

Agenda

Module 1: Front-Line Treatment for Chronic Lymphocytic Leukemia (CLL) — Dr Wierda

Module 2: Novel Strategies Combining Bruton Tyrosine Kinase (BTK) and Bcl-2 Inhibitors in the Treatment of CLL — Dr Davids

Module 3: Optimal Management of Adverse Events with BTK and Bcl-2 Inhibitors; Considerations for Special Patient Populations — Dr Awan

Module 4: Selection and Sequencing of Therapies for Relapsed/Refractory CLL — Dr Woyach

Module 5: Promising Investigational Agents and Strategies — Dr Schuster

How do you generally administer venetoclax to patients with CLL who have experienced disease progression on a BTK inhibitor in the first-line setting?

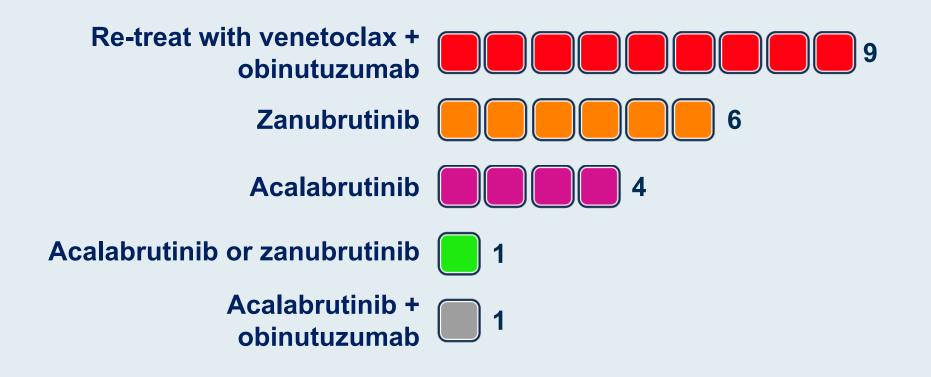
In combination with obinutuzumab

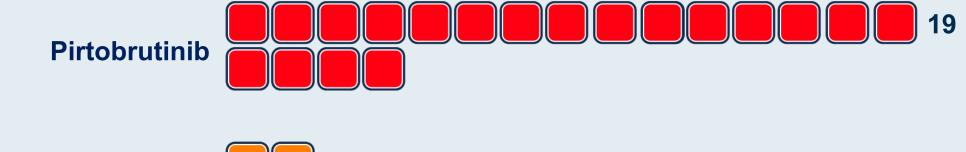
In combination with rituximab

As monotherapy or in combination with anti CD20

16

For a patient with CLL whose disease is progressing on a BTK inhibitor and for whom you are about to initiate venetoclax, do you generally continue the BTK inhibitor?





Which second-line systemic therapy would you recommend for a 60-year-old patient with IGHV-unmutated CLL without del(17p) or TP53 mutation who responds to venetoclax/obinutuzumab and then experiences disease progression 3 years after completing treatment?

Regulatory and reimbursement issues aside, which third-line therapy would you generally prefer for a patient with doublerefractory CLL?

Lisocabtagene maraleucel

Based on current clinical trial data and your personal experience, how would you compare the global tolerability/toxicity of pirtobrutinib to that of available covalent BTK inhibitors for patients with relapsed/refractory CLL?

Pirtobrutinib has less toxicity than ibrutinib, acalabrutinib and zanubrutinib

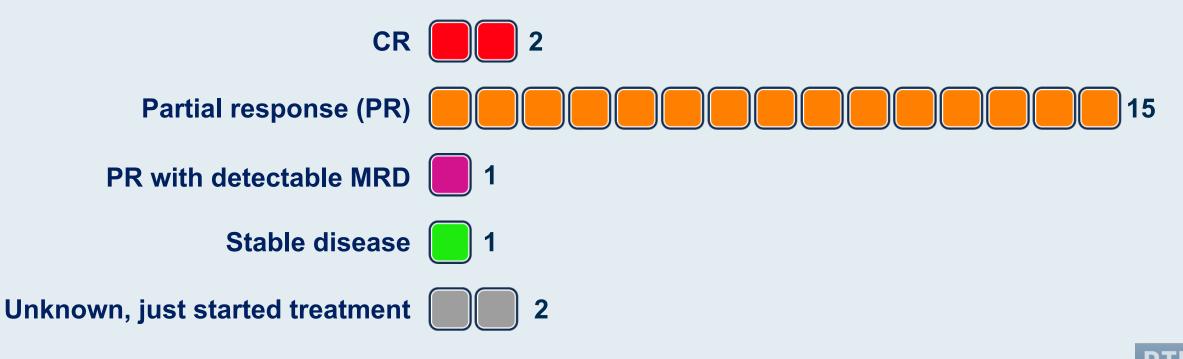
6

Pirtobrutinib has less toxicity than ibrutinib

Survey of 21 US-based clinical investigators November 2023

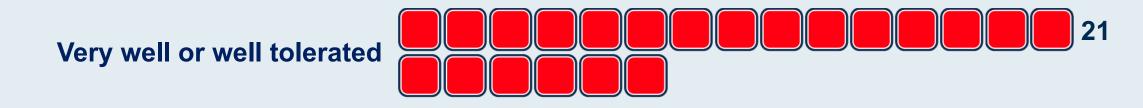
Based on current clinical trial data and your personal experience, is pirtobrutinib efficacious for patients with CLL who experience disease progression on a covalent BTK inhibitor?

Survey of 21 US-based clinical investigators November 2023


To approximately how many patients with CLL have you adminstered pirtobrutinib on or off protocol?

Median number of patients: 10 (range 1-40)

Describe the last patient with CLL to whom you administered pirtobrutinib:


Patient age: 69 (median; range 47-77)

Patient's response to therapy:

Describe the last patient with CLL to whom you administered pirtobrutinib:

Patient's tolerance of therapy:

Had the patient received a prior BTK inhibitor?

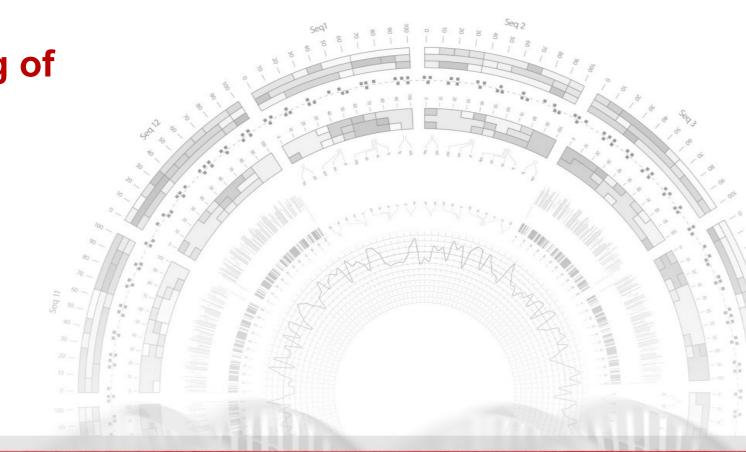
Survey of 21 US-based clinical investigators November 2023

Approach for patients with R/R CLL who have received at least 2 prior lines of therapy, including a BTK inhibitor and a Bcl-2 inhibitor; activity and tolerability of pirtobrutinib

Professor Constantine Tam, MBBS, MD

Strategies for overcoming resistance to BTK inhibitors in CLL

Shuo Ma, MD, PhD


Selection and Sequencing of Therapies for R/R CLL

Jennifer Woyach MD

 THE OHIO STATE UNIVERSITY

 COMPREHENSIVE CANCER CENTER

T II TI I A IIG

T G C G

G G C A THEATHICHTIGH T G IGHINGLATITA

		1011100 01011 001 1010001 10001 1010001 10	0001 10001 11 1010101011100 01011 001 10	10001 10001 1010001 10001 10001 11 1010	101011100 01011 001 1010001 10001 1010	001 10001 10001 11 101010

GT

NCCN Guidelines for Relapsed/Refractory CLL

SUGGESTED TREATMENT REGIMENS^{a,b,c,d} CLL/SLL without del(17p)/TP53 mutation

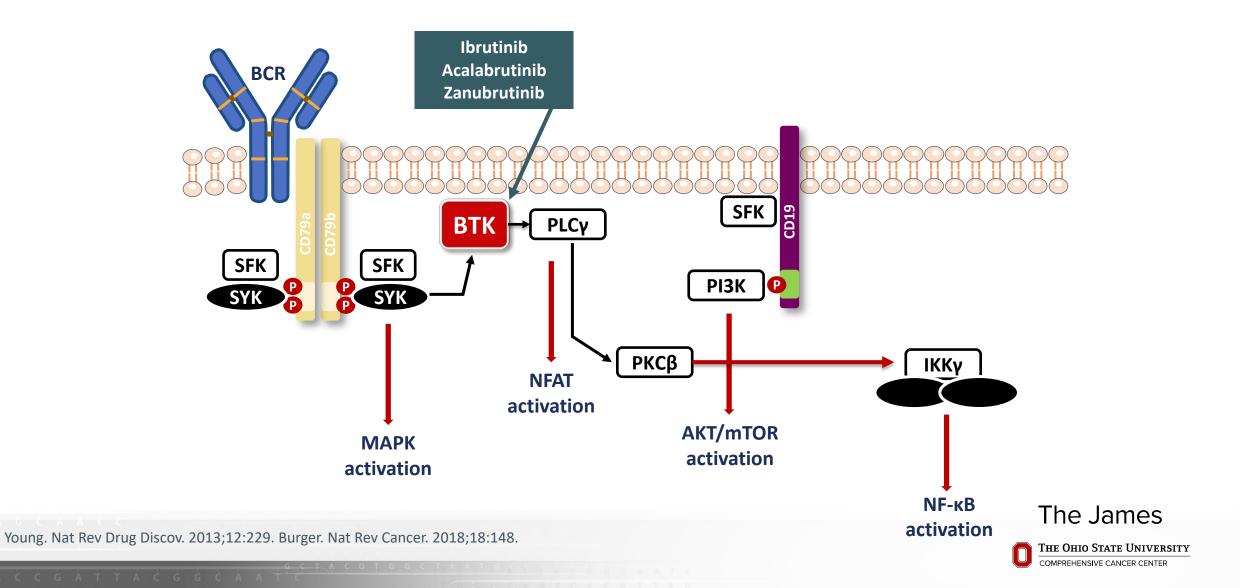
SECOND-LINE THERAPY OR THIRD-LINE THERAPY						
Preferred regimens • BTKi • Acalabrutinib ^{f,p,*} (category 1) • Zanubrutinib ^{f,p,*} (category 1) • BCL-2 inhibitor • Venetoclax ^{f,g} + rituximab ^e (category 1)	 <u>Other recommended regimens</u> Ibrutinib (category 1)^{f, h,*} Venetoclax^{f, g} 	 <u>Useful in certain circumstances</u> Retreatment with venetoclax^{f,g} + obinutuzumab (for relapse after a period of remission if previously used as first line therapy) Non-covalent (reversible) BTK inhibitor Pirtobrutinib (resistance or intolerance to prior covalent BTKi therapy)^q 				

* Covalent (irreversible) BTK inhibitors.

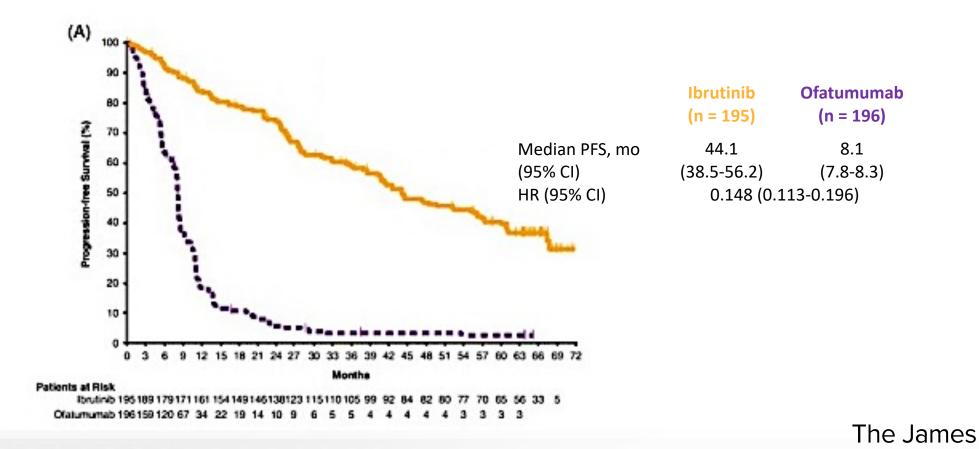
SUGGESTED TREATMENT REGIMENS^{a,b,c,d} CLL/SLL with del(17p)/TP53 mutation (alphabetical by category)

SECOND-LINE OR THIRI		
Preferred regimens • Acalabrutinib ^{f,p,*} (category 1) • Venetoclax ^{f,g} + rituximab (category 1) • Venetoclax ^{f,g} • Zanubrutinib ^{f,p,*} (category 1)	Other recommended regimens Ibrutinib^{f,h,*} (category 1) Alemtuzumab^t ± rituximab Duvelisib^f HDMP + rituximab Idelalisib^{f,u} ± rituximab Lenalidomide^s ± rituximab 	 <u>Useful in certain circumstances</u> Non-covalent (reversible) BTK inhibitor Pirtobrutinib (resistance or intolerance to prior covalent BTKi therapy)^q

NCCN Guidelines for Relapsed/Refractory CLL

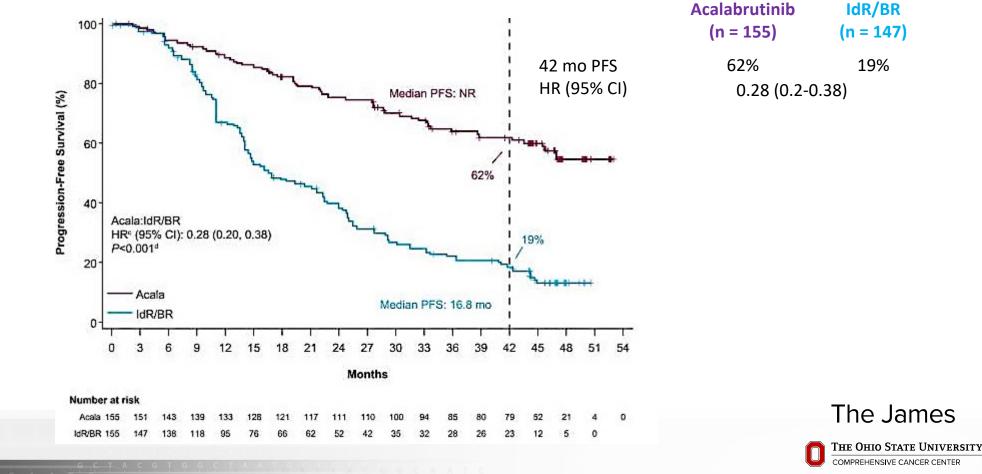

SUGGESTED TREATMENT REGIMENS^{a,b,c,d} CLL/SLL without del(17p)/TP53 mutation

SECO	ND-LINE THERAPY OR THIRD-LIN	IE THERAPY		
eferred regimens TKi Acalabrutin Zanubrutini SCL-2 inhibit Venetoclax	Other recommended regimens	Useful in certain circumstances	binutuzumab sion if by) ibitor erance to prior	
Covalent (ii Objective: To un	derstand the data beh	nind these guidelines		
Preferred regimens • Acalabrutinib ^{f,p,*} (category 1) • Venetoclax ^{f,g} + rituximab (category 1 • Venetoclax ^{f,g} • Zanubrutinib ^{f,p,*} (category 1)	Other recommended regimens Useful in certain circumstances • Ibrutinib ^{f,h,*} (category 1) • Non-covalent (reversible) BTK • Alemtuzumab ^t ± rituximab • Non-covalent (reversible) BTK • Duvelisib ^f • Pirtobrutinib (resistance or i to prior covalent BTKi therap • Idelalisib ^{f,u} ± rituximab • Lenalidomide ^s ± rituximab		tolerance	



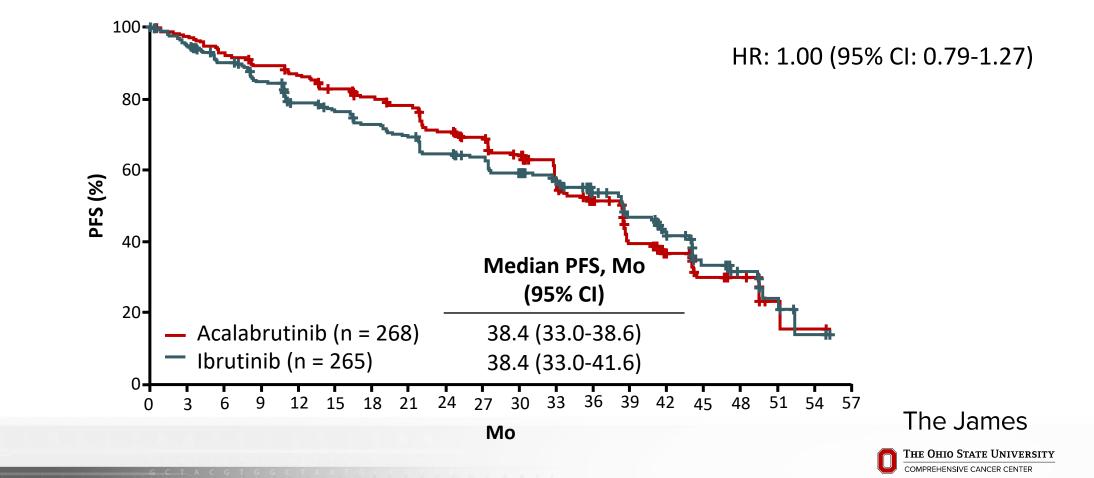
Targeting BCR Signaling in CLL

BTK Inhibitors Demonstrate Long Remission Durations: RESONATE


Phase III trial of ibrutinib vs ofatumumab for patients with CLL/SLL, ≥1 prior therapy

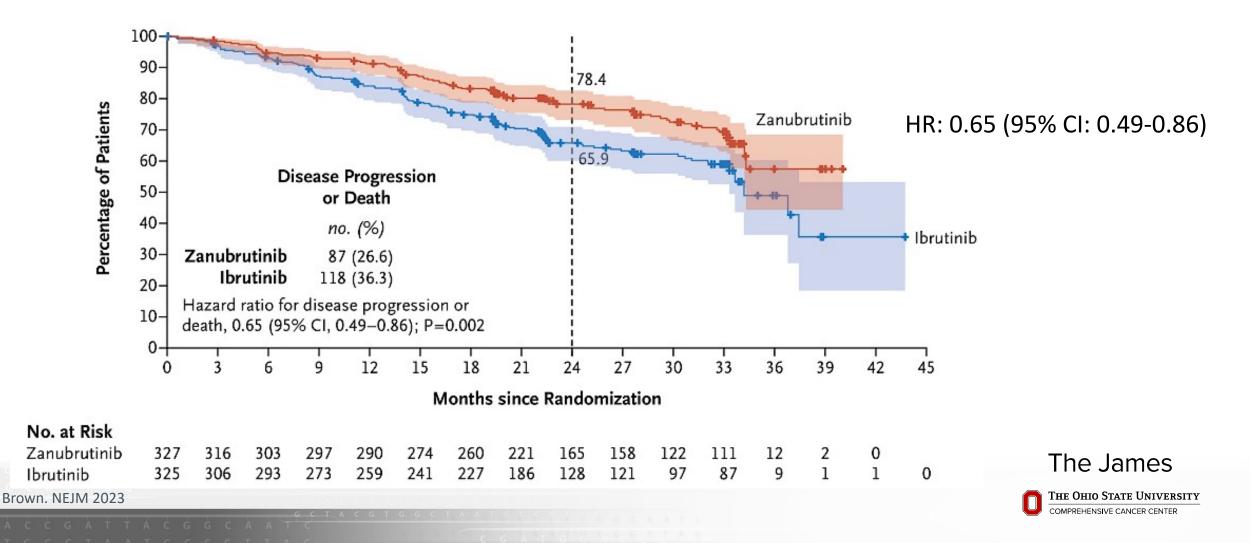
THE OHIO STATE UNIVERSITY

BTK Inhibitors Demonstrate Long Remission Durations: ASCEND

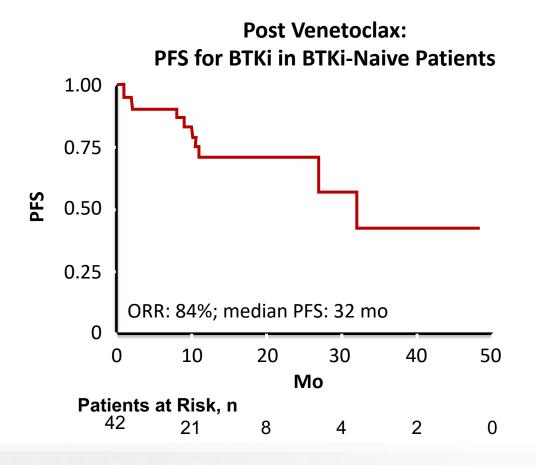

Phase III trial of **acalabrutinib** vs **idelalisib + rituximab** or **bendamustine + rituximab** for patients with R/R CLL

Ghia et al, Hemasphere 2022

Acalabrutinib vs Ibrutinib: ELEVATE-RR

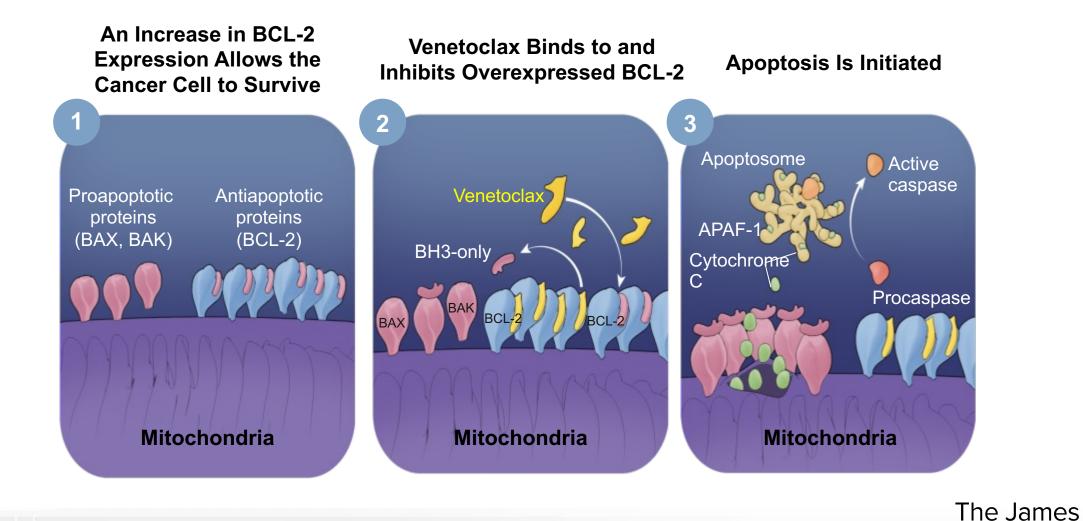

Phase III noninferiority trial of **acalabrutinib** vs **ibrutinib** for patients with previously treated CLL; presence of del(17p) or del(11q)

Byrd. JCO. 2021.

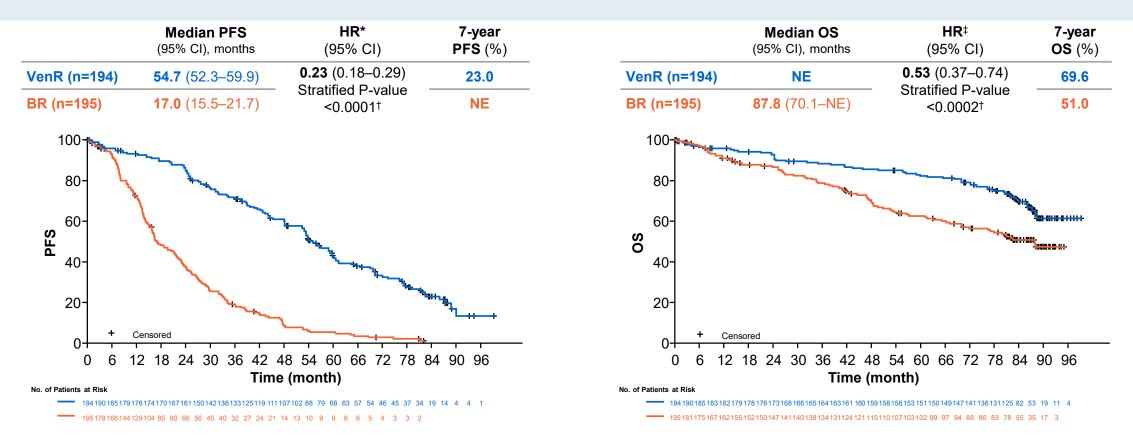

Zanubrutinib vs Ibrutinib: ALPINE

Phase III trial of zanubrutinib vs ibrutinib for patients with relapsed/refractory CLL

BTKi Demonstrate Efficacy Post-Venetoclax

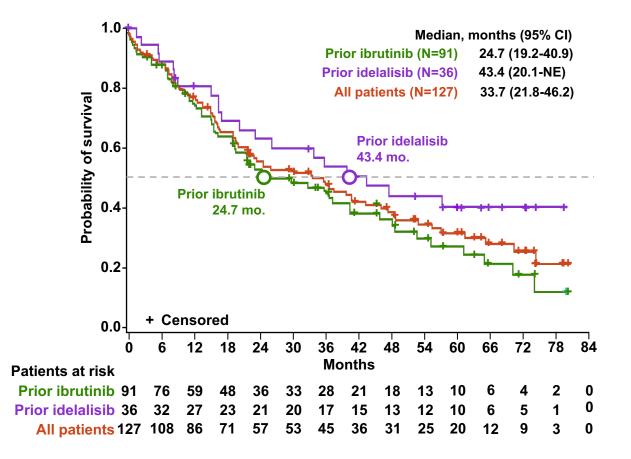

Multicenter retrospective study of outcomes in patients with CLL who discontinued venetoclax-based therapy (N = 326)

The James


BCL-2 Inhibition With Venetoclax

Kumar. ASCO 2015. Abstr 8576.

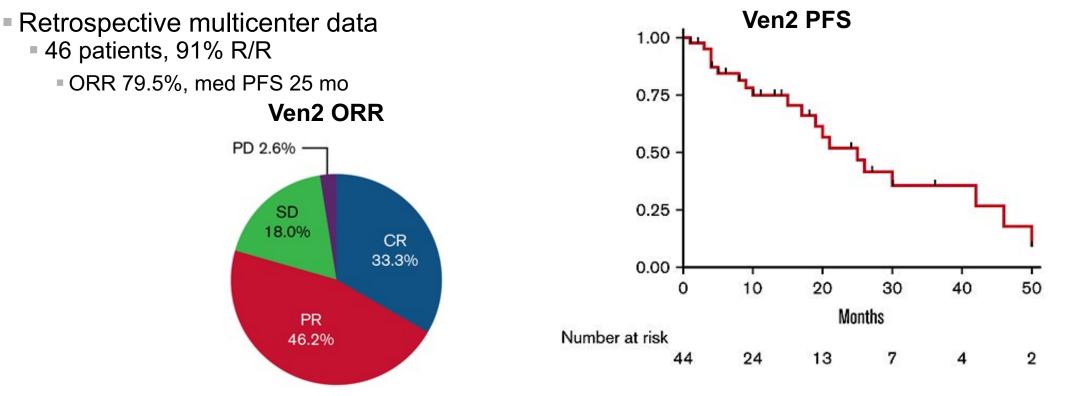
MURANO: 7-Year Progression-Free Survival and Overall Survival with Venetoclax in Combination with Rituximab


- Median follow-up for efficacy (range) was 86.8 months (0.3-99.2) for VenR and 84.4 months (0.0-95.0) for BR
- No new safety signals were identified since the 5-year data cut,¹ with all patients outside of the AE reporting window§

Kater AP et al. EHA 2023; Abstract S201.

Venetoclax is Effective in the Post-BTKi Setting

Multicenter study of venetoclax monotherapy in patients previously treated with ibrutinib or idelalisib



Woyach et al. iwCLL 2023

Venetoclax Retreatment Appears Promising

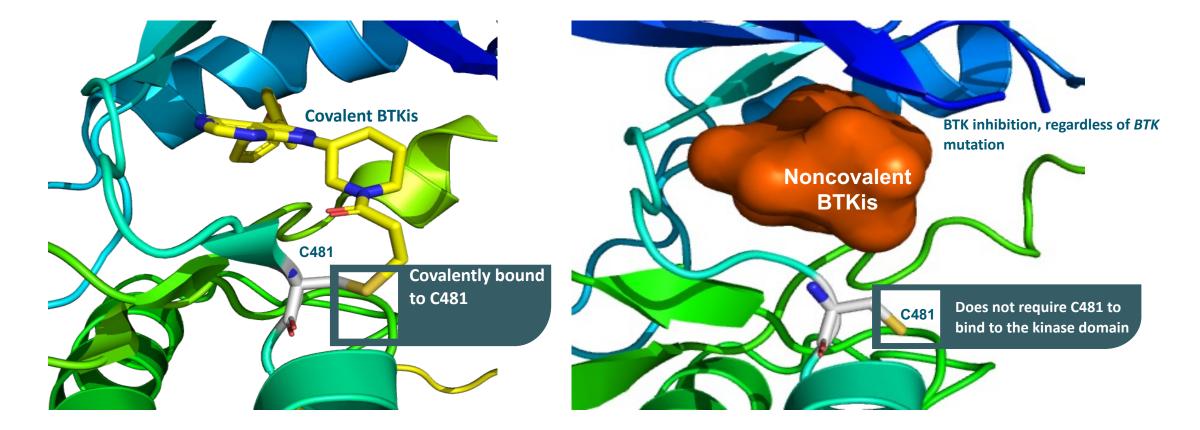
- MURANO retreatment data
 - 18 evaluable patients received subsequent venetoclax post-relapse
 - ORR 72.2%, 5.6% CR/Cri

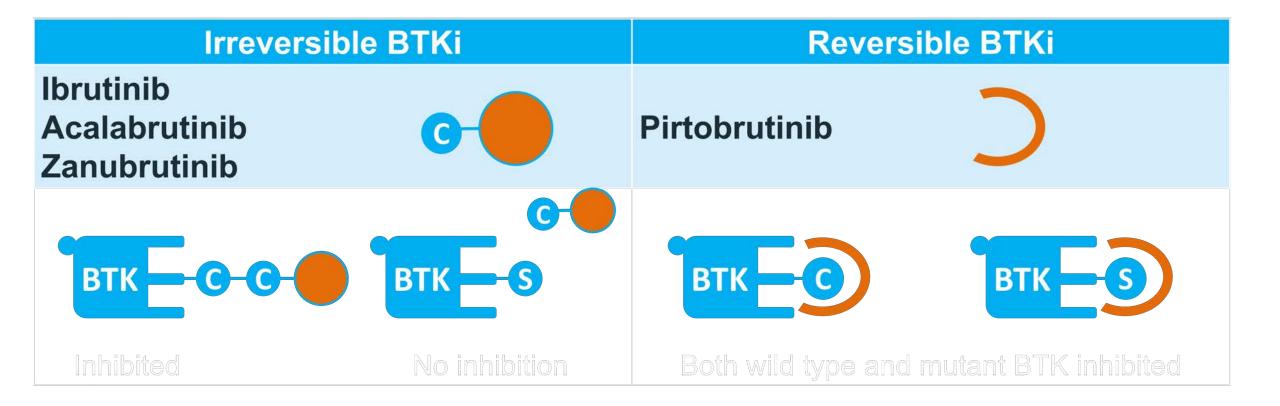
Seymour. Blood. 2022; Thompson. Blood. 2022

The James

- In the R/R setting (post-chemotherapy), both BTK and BCL-2 inhibitors are very effective
- With available data, it appears that BTKi and BCL-2i can be sequenced in either order
- Venetoclax has prospective evidence of efficacy post-BTKi
- Limited data on venetoclax re-treatment are promising

OMPREHENSIVE CANCER CEN

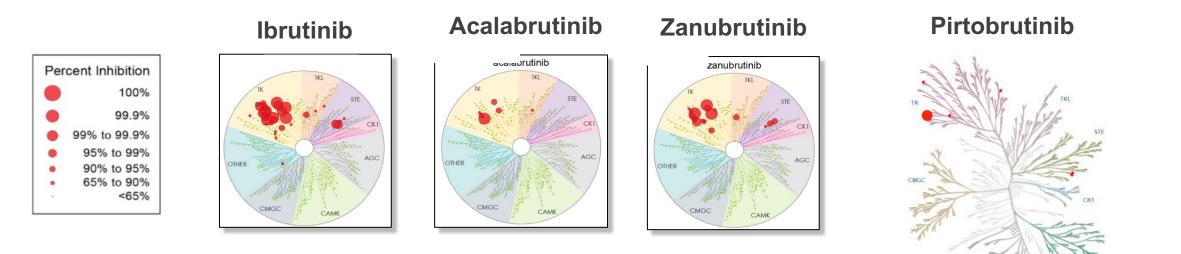

Noncovalent BTK Inhibition


Covalent BTK Inhibitors (Ibrutinib, Acalabrutinib, Zanubrutinib) Require C481 WT *BTK* for Activity

Noncovalent BTK Inhibitors (Pirtobrutinib, Nemtabrutinib) Are Active Against Both WT and C481-Mutated *BTK*

The James

THE OHIO STATE UNIVERSITY

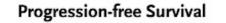


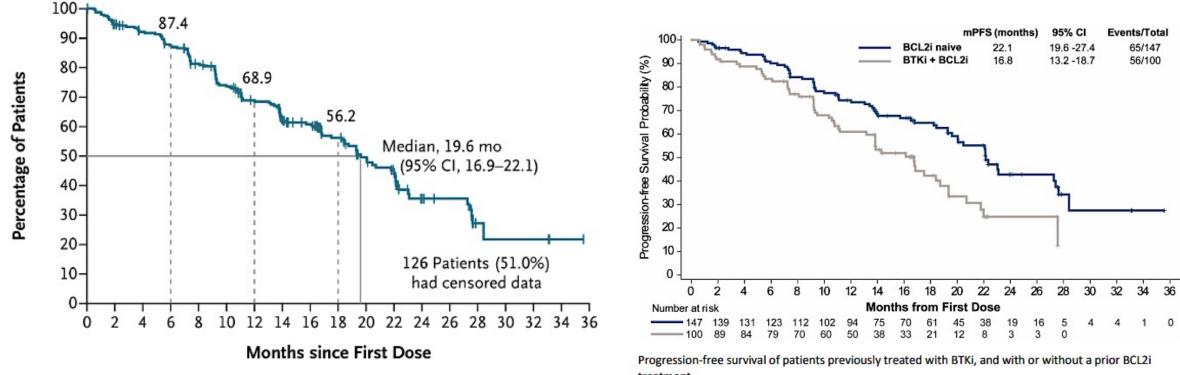
Tambaro. J Exp Pharmacol 2021

The James

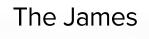
Selectivity Profile of Available BTKi

Increased selectivity is expected to lead to improved tolerability

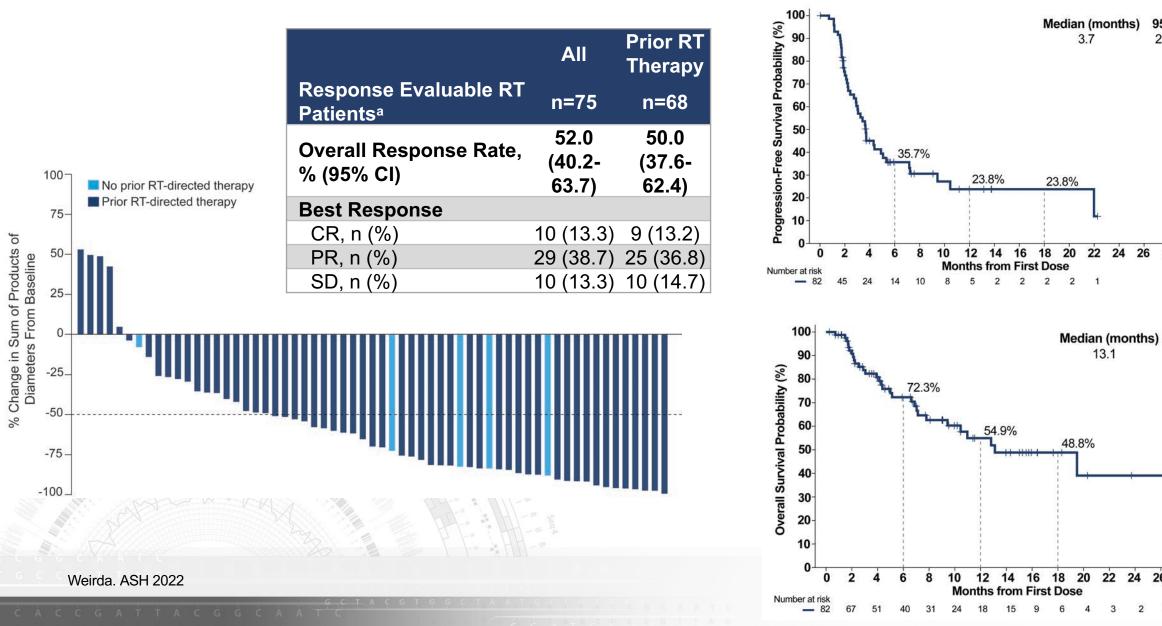




Kaptein A. Blood. 2018


Pirtobrutinib in Relapsed/Refractory CLL: BRUIN

Phase 1/2 study of 296 patients with CLL/SLL



No. at Risk 247 228 215 202 182 162 144 113 103 82 57 46 22 19 5 0 treatment.

Mato, Woyach. NEJM 2023

Pirtobrutinib in Richter Transformation: BRUIN

95% CI

2.9-5.1

28 30

95% CI

26

28 30

7.8-NE

26

Phase 3 Studies of Pirtobrutinib in CLL

NCT05254743: A study of pirtobrutinib versus ibrutinib in participants with CLL/SLL

NCT05023980: A study of pirtobrutinib versus bendamustine plus rituximab (BR) in untreated patients with CLL/SLL

NCT04965493: A trial of pirtobrutinib plus venetoclax and rituximab (PVR) versus venetoclax and rituximab (VR) in previously treated CLL/SLL

NCT04666038: Study of pirtobrutinib versus investigator's choice (IdelaR or BR) in patients with previously treated CLL/SLL

What do these data tell us?

- Noncovalent BTKi like pirtobrutinib, have efficacy in patients previously treated with cBTKi and those with dual-refractory CLL
- Pirtobrutinib also has preliminary efficacy in Richter's transformation
- Phase 3 studies are ongoing to compare pirtobrutinib versus standard of care agents in a variety of settings

Take home points

- Long-term follow-up confirms efficacy of BTKi and BCL2i in patients with R/R CLL
- While the definitive trials have not included patients previously treated with targeted agents, retrospective data suggest that BTKi \rightarrow BCL2i or BCL2i \rightarrow BTKi is appropriate
- Noncovalent BTKi like pirtobrutinib have demonstrated efficacy in patients previously treated with cBTKi
- Ongoing studies will confirm the place of pirtobrutinib in the current armamentarium of CLL therapies

FDA Grants Accelerated Approval to Pirtobrutinib for CLL and Small Lymphocytic Lymphoma Press Release: December 1, 2023

"On December 1, 2023, the Food and Drug Administration granted accelerated approval to pirtobrutinib for adults with chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL/SLL) who have received at least two prior lines of therapy, including a BTK inhibitor and a BCL-2 inhibitor.

Efficacy was evaluated in BRUIN (NCT03740529], an open-label, international, single-arm, multicohort trial that included 108 patients with CLL or SLL previously treated with at least two prior lines of therapy, including a BTK inhibitor and a BCL-2 inhibitor. Patients received a median of 5 prior lines of therapy. Seventy-seven percent of patients discontinued the last BTK inhibitor for refractory or progressive disease. Pirtobrutinib was administered orally at 200 mg once daily and was continued until disease progression or unacceptable toxicity.

The main efficacy outcome measures were overall response rate (ORR) and duration of response (DOR), as assessed by an independent review committee using 2018 iwCLL criteria. The ORR was 72% and median DOR was 12.2 months. All responses were partial responses.

The recommended pirtobrutinib dose is 200 mg orally once daily until disease progression or unacceptable toxicity."

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pirtobrutinib-chronic-lymphocytic-leukemia-and-small-lymphocytic

Agenda

Module 1: Front-Line Treatment for Chronic Lymphocytic Leukemia (CLL) — Dr Wierda

Module 2: Novel Strategies Combining Bruton Tyrosine Kinase (BTK) and Bcl-2 Inhibitors in the Treatment of CLL — Dr Davids

Module 3: Optimal Management of Adverse Events with BTK and Bcl-2 Inhibitors; Considerations for Special Patient Populations — Dr Awan

Module 4: Selection and Sequencing of Therapies for Relapsed/Refractory CLL — Dr Woyach

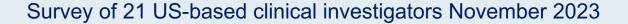
Module 5: Promising Investigational Agents and Strategies — Dr Schuster

To approximately how many patients with CLL have you adminstered CAR (chimeric antigen receptor) T-cell therapy on or off protocol?

Median number of patients: 5 (range 0-20)

Which specific clinical situations do you consider ideal for the use of CAR T-cell therapy for CLL?

- Failed BTK inhibitor, Bcl-2 inhibitor, anti-CD20
- Dual refractory disease, Richter's transformation
- Double refractory
- Richter's transformation
- Would like to see it explored in earlier lines of therapy, such as at time of progression on 1L covalent BTKi in high risk patients, or as a consolidation strategy in patients with suboptimal response to time-limited 1L ven combinations
- Richter's transformation to DLBCL or doublerefractory CLL
- Consolidation of BTK response and for patients with Richter's transformation
- Richter's transformation
- Double refractory if pirtobrutinib not available


- High-risk CLL in MRD+ remission on 2nd- or 3rd-line therapy
- Double-refractory CLL
- Double refractory to ven and covalent BTKi and also refractory to pirtobrutinib, Still with adequate PS/comorbidities to permit CAR-T administration
- Triple refractory
- Richter's transformation, triple-refractory CLL
- Double refractory and/or when behaving like Richter's transformation
- Best outcomes for patients with stable or responsive disease to bridging therapies, i.e., pirtobrutinib or venetoclax + REPOCH followed by CAR-T or ven + BTKi

Survey of 21 US-based clinical investigators November 2023

<u>Regulatory and reimbursement issues aside</u>, what would be your preferred approach to Richter's transformation in a patient with CLL?

- Combined targeted BTK inhibitor and venetoclax + anti-CD20
- Clinical trial; CAR-T if trial not possible
- Chemoimmunotherapy then allo-SCT
- R-CHOP
- Cytoreduction without chemotherapy if possible and then CAR-T as soon as approved
- Venetoclax + R-CHOP
- Depends on prior treatment and TP53 status.
- Clinical trial or R-CHOP or R-EPOCH +/- BTK
- R-CHOP plus ven
- Pola-R-CHP
- Bispecific or chemo followed by CAR-T
- Ven/R-CHOP followed by alloSCT if in remission
- Epcoritamab
- R-CHOP + venetoclax or BTKi + venetoclax in patients who are not resistant to these agents
- Chemo + ven and then alloSCT
- R-EPOCH/ibrutinib

Investigation of CD19-directed chimeric antigen receptor (CAR) T-cell therapy for patients with CLL

Jan A Burger, MD, PhD

Antitumor activity observed with pirtobrutinib and the bispecific antibody epcoritamab among patients with Richter's transformation

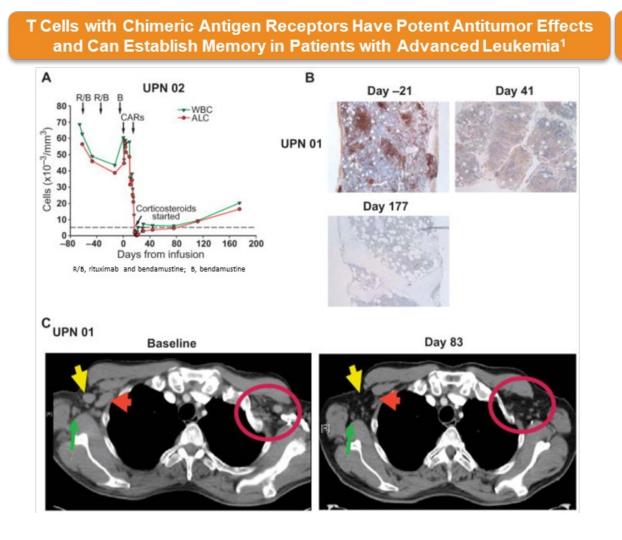
Professor Constantine Tam, MBBS, MD

Beyond the Guidelines: Promising Investigational Agents and Strategies for CLL

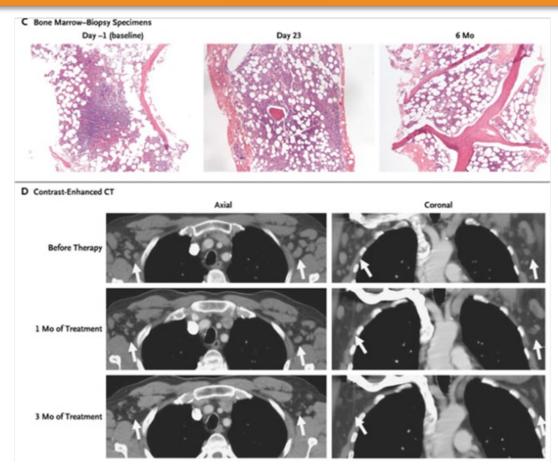
Stephen J. Schuster, M.D.

Professor of Medicine Perelman School of Medicine, University of Pennsylvania Director, Lymphoma Program & Lymphoma Translational Research Abramson Cancer Center, University of Pennsylvania

FDA-approved CD19-directed CAR-T products for mature B-cell cancers

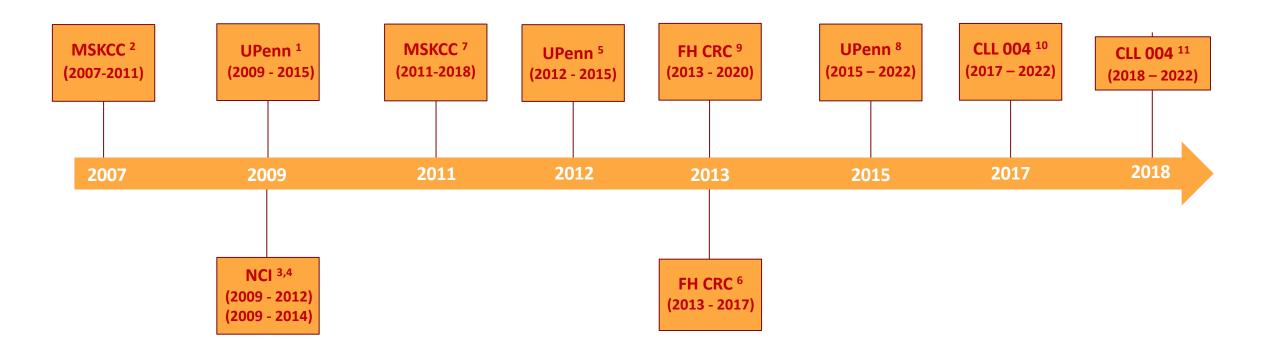

CD19 binding domain FMC63

 T cell costimulatory receptor signaling 	domain
 TCRζ activation domain 	


n	domain	

T cell cytoplasm							
TCR7 CD28 or 4-1BB	Construct	Indication(s)	Approval date	Apheresis product for manufacturing	CAR+ cell dose	Bridging therapy	Lymphodepletion
	CD3ζ - CD28 - ScFv FMC63	≥ 3 rd line of therapy for LBCL	October 2017	Fresh, bulk PBMC	0.6 - 6.0 ×10 ⁸	Not studied in pivotal trial	Cy/Flu 500/30 × 3d
Axicabtagene		\geq 3 rd line of therapy for FL	March 2021				
ciloleucel ^{1,2,3}		1° refractory or relapsed < 12 months of 1 st line therapy for LBCL	April 2022				
Tisagenlecleucel ^{4,5}	CD3ζ - 4-1BB - scFv FMC63	≥ 3 rd line of therapy for LBCL	May 2018	Cryopreserved,	2 × 10 ⁶ / kg	92% received in	Cy/Flu 250/25 × 3d or
		\geq 3 rd line of therapy for FL	May 2022	bulk PBMC	(max. 2 × 10 ⁸)	pivotal trial	benda. 90 x 2d
Lisocabtagene maraleucel ^{6,7}	tEGFR -CD3ζ - 4-1BB - ScFv FMC63 CD3ζ - CD28 - ScFv FMC63	≥ 3 rd line of therapy for LBCL	February 2021	- Fresh, isolated CD8+ & CD4+ cells	100 × 10 ⁶ as 1:1 CD8+:CD4+	59% received in pivotal trial	Cy/Flu 300/30 × 3d
		1° refractory or relapsed < 12 months of 1 st line therapy for LBCL	June 2022				
LBCtxtargetBccette PBMC, peripheral blood mononuclear cells relapsed / refractory MCL Cy/Flu, cyclophosphamide/fludarabine			¹ Locke, et al. Lancet Oncol. 2019;20:321×420 ⁶ / kg July 2020 Fresh, B cell depleted ² Jacobson et al. Lancet Oncol. 2022;23(())1912-2 × 10 ⁸) 6 Abwaitaistriae t al. Lancet 2020;396: 839–52.				
FL, follicular lymphoma MCL, mantle cell lymph			103. ⁷ Abramson et al. Blood. 2023;141(14):1675-1684. ³ Locke et al. N Engl J Med. 2022;386(7):640-654. ⁸ Wang, et al. N Engl J Med. 2020;382(14):1331-				
···, ·········,···,·········			⁴ Schuster, et al. N Engl J Med. 2019:380:45-56.				

CTL019: 2nd-generation CD19-directed 4-1BB-TCRζ CAR-T cells



Chimeric Antigen Receptor-modified T Cells in Chronic Lymphoid Leukemia²

^{1.} Kalos M, et al. Sci Transl Med. 2011;10:95ra73; ^{2.} Porter DL, et al. N Engl J Med. 2011;365:725-33.

CAR-T cell therapy of CLL: a decade of progress

¹ Porter, et al. Sci Transl Med. 2015;7:303ra139.
 ² Brentjens, et al. Blood. 2011;118(18):4817-4828.
 ³ Kochenderfer, et al. Blood. 2012;119(12):2709-2720.
 ⁴ Kochenderfer, et al. J Clin Oncol. 2014;33:540-549.
 ⁵ Frey, et al. J Clin Oncol. 2020;38:2862-2871.

⁶ Turtle, et al. J Clin Oncol. 2017;35:3010-3020.
⁷ Geyer, et al. Molecular Therapy 2018;26(8):1896-1905.
⁸ Gill, et al. Blood Adv. 2022;6(21):5774-5785.
⁹ Gauthier et al. Blood. 2020;135(19):1650-1660.
¹⁰ Siddiqi, et al. Blood. 2022;139(12):1794-1806.
¹¹Siddiqi, et al. The Lancet. 2023;402(10402):641-654.

Clinical trials of autologous CD19-directed CAR-T cell therapy for CLL

Trial (year posted – published)	N	CAR	CAR T combination	Prior BTKi / BCL-2i	Risk Factors	Lympho- depletion	ORR / CRR	Progression-free survival	CRS* <u>></u> Gr.3	Neurotoxicity <u>></u> Gr.3
UPenn ¹ (2009 - 2015)	14	āCD19 + 4-1BB-CD3ζ	no	0/0	median prior Rx: 5 del17p: 6 (43%)	Benda, n = 6 Flu/Cy, n = 3 Pent/Cy, n = 5	57% / 29%	18 month PFS = 29%	43%	7%
MSKCC ² (2007-2011)	8	āCD19 + CD28-CD3ζ	no	0/0	median prior Rx: 3 del17p: 2 (25%)	none, n = 4 Cy, n = 4	0% / 0 %	n/a	not reported	not reported
NCI ³ (2009 - 2012)	4	āCD19 + CD28-CD3ζ	no	0/0	median prior Rx: 4	Flu/Cy + IL-2, n = 4	75% / 25%	not reported 1 CR at 15 mo. 2 PR at 7 mo. 1 SD at 6 mo.	100%	25%
NCI ⁴ (2009 - 2014)	4	āCD19 + CD28-CD3ζ	no	0/0	median prior Rx: 3	Flu/Cy, n = 4	100% / 75%	not reported 3 CR at 14, 15, 23 mo. 1 PR at 4 mo.	50%	25%
UPenn ⁵ (2012 - 2015)	32	āCD19 + 4-1BB-CD3ζ	no	9 (28%) / 1 (3%)	median prior Rx: 3.5 del17p/TP53m: 9 (28%)	Flu/Cy, n = 20 Benda, n = 8 Pent/Cy, n = 2 OFAO, n = 1 GEMOX, n = 1	44% / 28%	median PFS, all patients = 1 mo. 36-month PFS, CR patients = 67%	24%	8%
Fred Hutchinson CRC ⁶ (2013 - 2017)	24	āCD19 + 4-1BB-CD3ζ-EGFRt with 1:1 CD4:CD8 CAR-T cell ratio	no	24 (100%) / 6 (25%)	median prior Rx: 5 del17p: 14 (58%)	Flu/Cy, n = 21 Cy, n = 1 Flu, n = 2	71% / 17%	median PFS, all patients = 8.5 mo.	8%	25%
MSKCC ⁷ (2011-2018)	8	āCD19 + CD28-CD3ζ	$PCR \rightarrow CAR T$	0/0	<cr 1<sup="" after="">st Rx (PCR x 6)</cr>	Cy, n = 8	38% / 25% (<i>post</i> CAR T)	median PFS = 13.6 mo. (2 CRs with PD at 29 and 53 mo.)	0	0
UPenn ⁸ (2015 - 2022)	19	āCD19 + 4-1BB-CD3ζ	lbr → CAR T + lbr	19 (100%) / NR	median prior Rx: 2 del17p: 13 (68%)	Benda, n = 6 Flu/Cy, n = 13	68% / 53%* (*best CRR; 72% MRD-)	48-month PFS = 70%	11%	5%
Fred Hutchinson CRC ⁹ (2013 - 2020)	19	āCD19 + 4-1BB-CD3ζ-EGFRt with 1:1 CD4:CD8 CAR-T cell ratio	lbr → CAR T + lbr	19 (100%) / 11 (58%)	median prior Rx: 5 (all failed prior Ibr) del17p: 14 (74%)	Flu/Cy, n = 19	83% / 22%* (*at 1-mo.; 61% MRD-)	1-year PFS = 38% with lbr vs. 1-year PFS = 50% without lbr	0	26%
BMS sponsored ¹⁰ (2017 – 2022)	23	āCD19 + 4-1BB-CD3ζ-EGFRt with 1:1 CD4:CD8 CAR-T cell ratio	no	23 (100%) / 15 (65%)	median prior Rx: 4 del17p/TP53m: 22 (96%)	Flu/Cy, n = 23	82% / 45% (65% MRD-)	median PFS = 18 mo.	9%	22%
BMS sponsored ¹¹ (2018 – 2022)	117	āCD19 + 4-1BB-CD3ζ-EGFRt with 1:1 CD4:CD8 CAR-T cell ratio	no	117 (100%) / 89 (76%)	all (100%) BTKi failures 70 (60%) BCL-2i failures median prior Rx: 5 del17p/TP53m: 103 (88%)	Flu/Cy, n=117	48% / 18% (n=96, efficacy- evaluable)	median PFS = 18 mo.	9%	19%

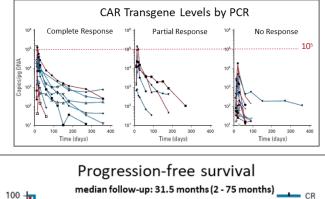
N, number infused; CAR, chimeric antigen receptor; BTKi, Bruton tyrosine kinase inhibitor; BCL-2i, venetoclax; NR, not, reported; OOR, overall response rate; SD, stable, disease; mo., month; PFS, progression-free survival; CRS, cytokine release syndrome (*scales differ between studies); Benda, bendamustine; Flu/Cy, fludarabine/cyclophosphamide; Pent/Cy, pentostatin/cyclophosphamide; OFAO, oxaliplatin, fludarabine, oxaliplatin; PCR, pentostatin, cyclophosphamide; rituximab; Br, ibrutinib

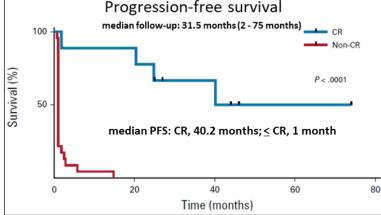
¹ Porter, et al. Sci Transl Med. 2015;7:303ra139.; ² Brentjens, et al. Blood. 2011;118(18):4817-4828.; ³ Kochenderfer, et al. J Clin Oncol. 2014;33:540-549.; ⁵ Frey, et al. J Clin Oncol. 2020;38:2862-2871.; ⁶ Turtle, et al. J Clin Oncol. 2017;35:3010-3020.;

⁷ Geyer, et al. Molecular Therapy 2018;26(8):1896-1905.; ⁸ Gill, et al. Blood Adv. 2022;6(21):5774-5785.; ⁹ Gauthier et al. Blood. 2020;135(19):1650-1660.; ¹⁰ Siddiqi, et al. Blood. 2022;139(12):1794-1806.; ¹¹Siddiqi, et al. The Lancet. 2023;402(10402):641-654.

Outcomes of CAR-T cells in relapsed CLL

UPenn (2012 - 2015)

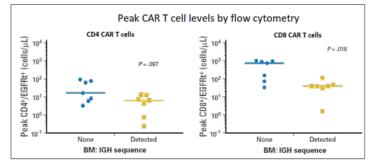

UPenn CTL019 Dose Optimization Study

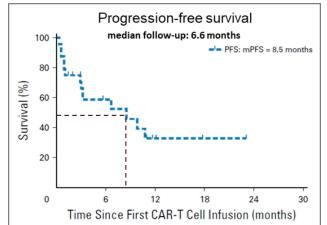

N = 32

4-week CR rate: 28%

4-week OR rate: 44%

Median PFS: 1 months (for CR: 40.2 months)

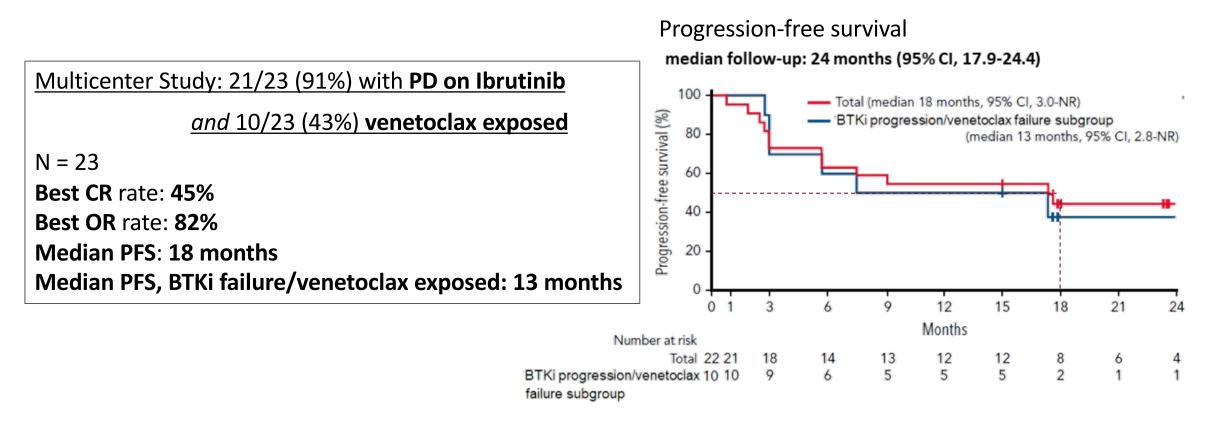



Frey, et al. J Clin Oncol. 2020;38:2862-2871.

Fred Hutchinson CRC (2013 - 2017)

Prior Ibrutinib Study

N = 24 [19/24 (79%) with PD on Ibrutinib] 4-week CR rate: 21% 4-week OR rate: 74% Median PFS: 8.5 months



Turtle, et al. J Clin Oncol. 2017;35:3010-3020.

Outcomes of CAR-T cells in relapsed CLL

Multicenter Study

(2018 – 2022)

Outcomes of CAR-T cells in relapsed CLL

Multicenter Study (2018 – 2022)

All patients were BTKi treatment failures

Multicenter Study: all patients BTKi failures

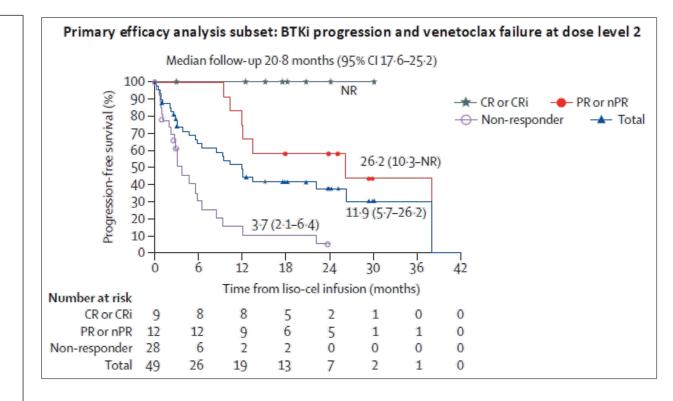
```
N = 117 (efficacy set, n = 96)
```

Best CR rate: 18%

Best OR rate: 48%

Median PFS: 18 months

Median response duration: 35 months Median response duration for CR: not reached


N = 49 (BTKi progression and venetoclax failure at DL2)

Best CR rate: 18%

Best OR rate: 43%

Median PFS: 12 months

Median response duration: 35 months Median response duration for CR: not reached

Siddiqi, et al. The Lancet. 2023;402(10402):641-654.

Outcomes of CAR-T therapies in relapsed CLL

How can we do better?

Ibrutinib improves T cell number and function in CLL

Plenary Paper

LYMPHOID NEOPLASIA

Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes

Jason A. Dubovsky,¹ Kyle A. Beckwith,^{1,2} Gayathri Natarajan,³ Jennifer A. Woyach,¹ Samantha Jaglowski,¹ Yiming Zhong,¹ Joshua D. Hessler,¹ Ta-Ming Liu,¹ Betty Y. Chang,⁴ Karilyn M. Larkin,¹ Matthew R. Stefanovski,¹ Danielle L. Chappell,¹ Frank W. Frissora,¹ Lisa L. Smith,¹ Kelly A. Smucker,¹ Joseph M. Flynn,¹ Jeffrey A. Jones,¹ Leslie A. Andritsos,¹ Kami Maddocks,¹ Amy M. Lehman,⁵ Richard Furman,⁶ Jeff Sharman,⁷ Anjali Mishra,¹ Michael A. Caligiuri,¹ Abhay R. Satoskar,⁸ Joseph J. Buggy,⁴ Natarajan Muthusamy,¹ Amy J. Johnson,^{1,9} and John C. Byrd^{1,9}

¹Department of Internal Medicine, Division of Hematology, ²Medical Scientist Training Program, and ³Department of Microbiology, The Ohio State University, Columbus, OH; ⁴Pharmacyclics, Inc., Sunnyvale, CA; ⁵Center for Biostatistics, The Ohio State University, Columbus, OH; ⁶Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medical College, New York, NY; ⁷Willamette Valley Cancer Institute/US Oncology, Springfield, OR; and ⁸Department of Pathology, and ⁹Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH

- Ibrutinib is a clinically viable irreversible ITK inhibitor¹
- Ibrutinib inhibits the formation of Th2 but not Th1 immunity¹

From www.blaadjournal.org by guest on October 8, 2016. For personal use on

Regular Article

IMMUNOBIOLOGY

Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia

Joseph A. Fraietta,^{1,2,*} Kyle A. Beckwith,^{3,*} Prachi R. Patel,^{1,2} Marco Ruella,^{1,2} Zhaohui Zheng,^{1,2} David M. Barrett,⁴ Simon F. Lacey,^{1,2} Jan Joseph Melenhorst,^{1,2} Shannon E. McGettigan,^{1,2} Danielle R. Cook,^{1,2} Changfeng Zhang,^{1,2} Jun Xu,^{1,2} Priscilla Do,³ Jessica Hulitt,⁴ Sagar B. Kudchodkar,^{1,2} Alexandria P. Cogdill,^{1,2} Saar Gill,^{1,5} David L. Porter,^{1,2,5} Jennifer A. Woyach,³ Meixiao Long,³ Amy J. Johnson,³ Kami Maddocks,³ Natarajan Muthusamy,³ Bruce L. Levine,^{1,2,6} Carl H. June,^{1,2,6} John C. Byrd,^{3,*} and Marcela V. Maus^{7,*}

- Ibrutinib treatment of CLL enhances the generation of CAR-T cells for adoptive immunotherapy²
- Concurrent ibrutinib therapy improves the engraftment and therapeutic efficacy of anti-CD19 CAR T cells in mouse models²

¹Dubovsky, et al. Blood. 2013;122:2539-2549; ²Fraietta, et al. Blood. 2016;127(9):1117-1127.

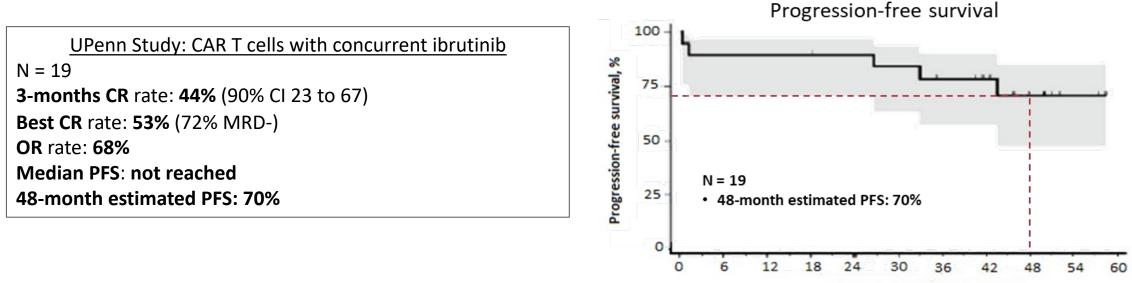
Ibrutinib improves T cell number and function in CLL

CLINICAL MEDICINE

The Journal of Clinical Investigation

Ibrutinib treatment improves T cell number and function in CLL patients

Meixiao Long,^{1,2} Kyle Beckwith,^{1,2,3} Priscilla Do,^{1,2,3} Bethany L. Mundy,^{1,2} Amber Gordon,^{1,2} Amy M. Lehman,^{2,4} Kami J. Maddocks,^{1,2} Carolyn Cheney,² Jeffrey A. Jones,^{1,2} Joseph M. Flynn,¹ Leslie A. Andritsos,^{1,2} Farrukh Awan,^{1,2} Joseph A. Fraietta,⁵ Carl H. June,⁵ Marcela V. Maus,⁶ Jennifer A. Woyach,^{1,2} Michael A. Caligiuri,^{1,2} Amy J. Johnson,^{1,2} Natarajan Muthusamy,^{1,2} and John C. Byrd^{1,2}

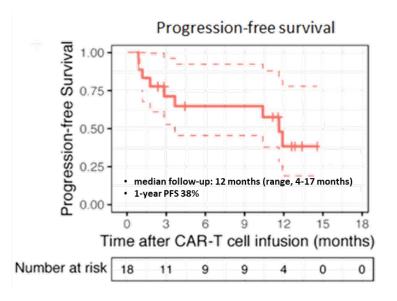

Ibrutinib treatment:

- increases *in vivo* persistence of activated CD4+ and CD8+ T cells, via diminished activationinduced cell death through ITK inhibition
- decreases the Treg/CD4+ T cell ratio
- diminishes the immune-suppressive properties of CLL cells through BTK-independent and BTKdependent mechanisms:
 - **1.** decreased PD-1 expression by T cells
 - 2. decreased CTLA-4 expression by T cells
 - 3. decreased CD200 (OX-2) expression by CLL cells
 - 4. decreased BTLA expression by CLL cells
 - 5. decreased IL-10 production by CLL cells

Outcome of CAR-T with concurrent ibrutinib in r/r CLL

UPenn

- Patients on ibrutinib for at least 6 months with best response to ibrutinib < PR
 - 3 patients had prior CAR T


Time since infusion (months)

Outcome of CAR-T with concurrent ibrutinib in r/r CLL

Fred Hutchinson CRC

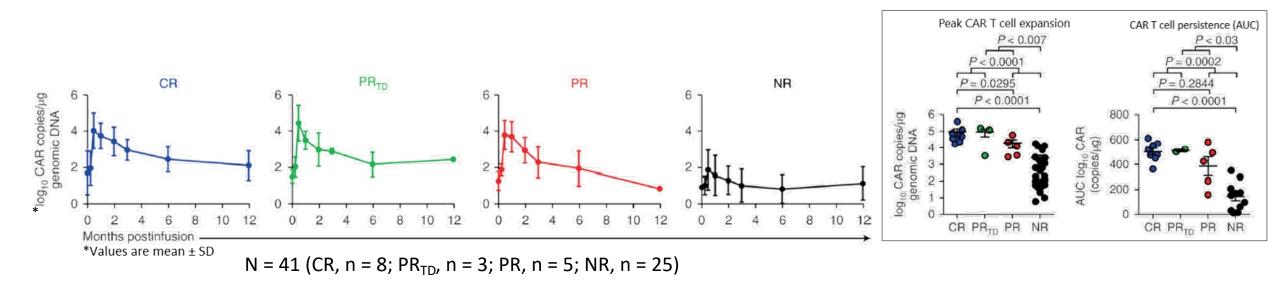
- Ibrutinib began
 <u>></u> 2 weeks before leukapheresis and continued for
 <u>></u> 3 months after CAR T-cell infusion
 - All patients had previously failed ibrutinib (PD, n = 18; SD, n = 1)

FHCRC Study: CAR T cells with concurrent ibrutinib
N = 19
CR rate: 22%
OR rate: 83%
1-year PFS: 38%

Gauthier et al. Blood. 2020;135(19):1650-1660.

Multicenter Study (2018 - 2021)

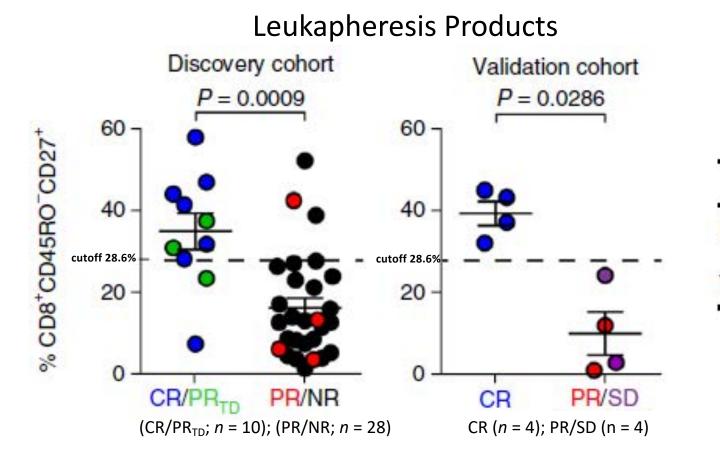
- Ibrutinib began at enrollment, continued through leukapheresis and for 90 days after CAR T-cell infusion (liso-cel)
 - All patients were BTKi treatment failures


Parameter	All Evaluable Patients (N=19)	DL1 (n=4)	DL2 (n=15)	
Common grade 3/4 TEAEs, n (%)				
Neutropenia/neutrophil count decrease	17 (89)	3 (75)	14 (93)	
Anemia	9 (47)	3 (75)	6 (40)	
Febrile neutropenia	5 (26)	1 (25)	4 (27)	
AEs of special interest				
Grade 3 CRS, n (%)	1 (5)	1 (25)	0	
Time to CRS onset, median (range), days	6.5 (1-13)	8 (6-13)	5.5 (1-8)	
Duration of CRS, median (range), days	6 (3-13)	6.5 (4-7)	5.5 (3-13)	
Grade ≥3 NEs, n (%)	3 (16)	0	3 (20)	
Time to NE onset, median (range), days	8 (5-12)	9 (6-12)	8 (5-10)	
Duration of NE, median (range), days	6.5 (4-8)	8 (8-8)	5 (2.5-6.5)	

Wierda et al. ICML. 2021; abstract 1084088

Outcomes of CAR-T therapies in relapsed CLL

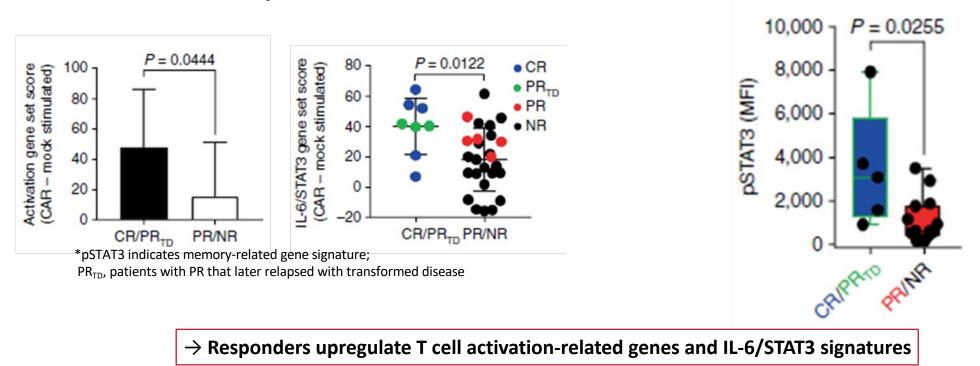
What CAR T cell characteristics impact *initial response* and *duration of response* in CLL?


• CAR-T cell expansion kinetics and response in CLL patients

CR, complete remission; PR_{TD}, partial remission with late relapse of transformed disease; PR, partial response; NR, no response

Fraietta, et al. Nat Med 2018; 24:563–571.

• CD27⁺ CD45RO⁻ (memory phenotype) CD8⁺ T cell content in leukapheresis product and response


Leukapheresis biomarker (CD8 ⁺ CD45RO ⁻ CD27 ⁺)				
	Specificity	Sensitivity		
Discovery	89%	80%		
Validation	100%	100%		

Fraietta, et al. Nat Med 2018; 24:563–571.

• Genomic and phenotypic evaluation of CLL patient-derived CAR-T cells

Change in expression of T cell-activation gene set signatures in pre-infusion CAR-T cells from CR and non-CR patients

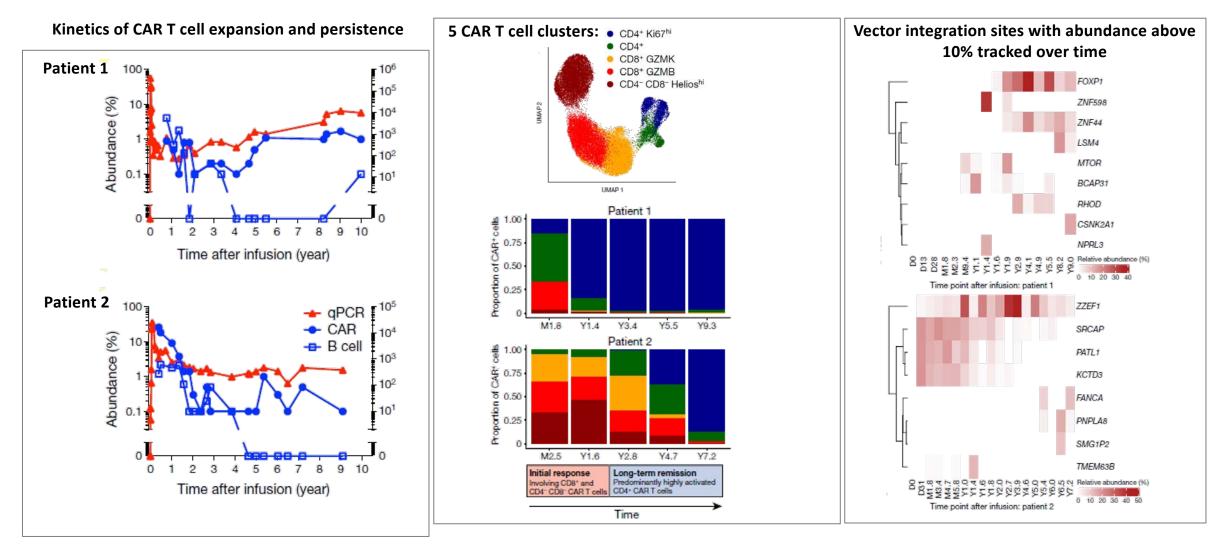
Change in pSTAT3 levels of pre-infusion CAR-T cells from CR and non-CR patients

Fraietta, et al. Nat Med 2018; 24:563–571.

• Genomic evaluation of CLL patient-derived CAR T cells

Genes significantly up- or down-regulated Early memory T cell Nonexhausted T cell Naive vs. activated T_H2 Cd4* T cell Unstimulated vs. stimulated memory T cell Resting vs. bystander activated CD4* T cel Conventional vs. effector memory T cell Multipotent vs. progenitor CD4* T cell Memory vs. effector CD8⁺ T cell Exhausted vs. effector T cell Exhausted T cell Activated T₁₂ vs. naive CD4⁺ T cell Stimulated vs. unstimulated memory T cell Glycolysis Hypoxia Effector vs. memory CD8* T cell Apoptosis

ightarrow Responders upregulate T cell memory-related gene sets


→ Non-responders upregulate programs involved in effector T-cell differentiation, glycolysis, exhaustion and apoptosis

CR, complete remission; PR_{TD}, partial remission with late relapse of transformed disease; PR, partial response; NR, no response

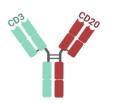
Decade-long remissions in CLL with persistence of CD4+ CAR-T cells

• Studies of CAR T cells in 2 patients with CLL in complete remissions since 2010

Melenhorst, et al. Nature. 2022;602(7897):503-509.

What CAR-T cell characteristics impact <u>initial response</u> and <u>duration of response</u> in CLL?

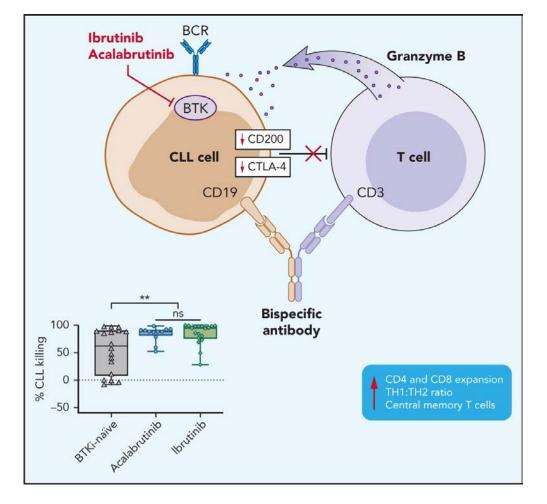
Initial Response ^{1,2}	Remission Duration ^{2,3}
 magnitude of CAR T cell expansion after infusion high proportion of memory T cells in the pre- infusion apheresis product limited CAR T cell conversion to an exhausted phenotype after infusion CD8+ and/or γδ CAR T cell expansion mediate early cytotoxic response to CLL cells 	 CAR transgene integration into specific genes that promote clonal expansion and/or cell survival has been observed (<i>e.g.,</i> TET2), but is not required persistence of cytotoxic CD4+ CAR T cells


¹Fraietta, *et al*. Nat Med. 2018;24:563–571. ²Melenhorst, et al. Nature. 2022;602(7897):503-509. ³Fraietta, et al. Nature. 2018;558,307–312.

CAR T-cell therapy for CLL: Where does it fit?

- CAR-T cell therapy can achieve durable remissions in some patients with relapsed and/or refractory CLL.
 - The safety profile is manageable.
- CAR-T cell therapy can be administered to CLL patients while on ibrutinib.
 - Ibrutinib may facilitate CAR-T cell production and reduces severity of CRS.
- Biologic features of patients' T cells and their CAR-T cell products may each, in part, determine the response of CLL to CAR-T cell therapy.
- CD19-directed CAR-T cell therapy of CLL should be integrated into our treatment approach to poor prognosis and relapsed or refractory CLL as additional data emerge.

FDA-approved bispecific T-cell engaging antibodies for B-cell cancers

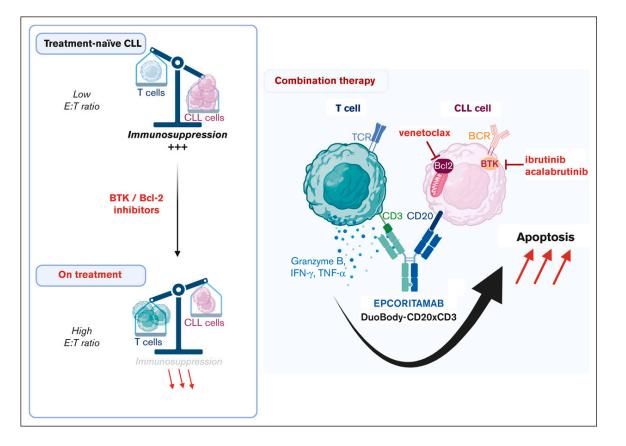

Bispecific antibody	Targets	Design	Ig Fragment Formats	Indication(s)	Ref.
blinatumomab	CD19 x CD3		 two murine scFv joined by a glycine-serine linker 9 and monovalent CD3 binding •CD19 (clone HD37) and anti-CD3 (clone L2K-07) 	 CD19-positive B-cell precursor ALL in 1st or 2nd CR with MRD <u>></u> 0.1% relapsed or refractory CD19- positive B-cell precursor ALL 	1, 2
mosunetuzumab	CD20 x CD3		 numanized mouse heterodimeric lgG1-based antibody monovalent CD20 and monovalent CD3c binding modified Fc devoid of FcyR and complement binding 	 relapsed/refractory FL after <u>></u> 2 lines of systemic therapy 	3
glofitamab	(CD20) ₂ x CD3		 huma=ized mouse lgG1-based antibody bival n CD20 and monovalent CD3¢ binding mod p Fc devoid of FcyR and complement binding 	 relapsed/refractory DLBCL NOS or LBCL arising from FL after <u>></u> 2 lines of systemic therapy 	4
epcoritamab	CD20 x CD3		 humanized pouse IgG1-based heterodimeric antibody menovale + CD20 and monovalent CD3 binding Ig + Fc + diffed to minimize Fc-dependent effector functions and to pontrol Fab-arm exchange of mAb half-molecules, result is g in high bispecific product yield 	 relapsed/refractory DLBCL NOS, LBCL arising from indolent lymphoma, or high- grade BCL after <u>></u> 2 lines of systemic therapy 	5

Ig, immunoglobulin; scFv, single-chain variable fragment; mAb, monoclonal antibody; Fc, fragment crystallizable; FcγR, Fc gamma receptor; ALL, acute lymphoblastic leukemia; DLBCL, diffuse large B-cell lymphoma; LBCL, large B-cell lymphoma; FL, follicular lymphoma; BCL, B-cell lymphoma

¹Dufner V, et al. Blood Adv 2019;3:2491; ²Goebeler ME, et al. J Clin Oncol 2016; 34:1104; ³Schuster SJ, et al. ASH 2019, Plenary Abstract 6; ⁴Hutchings M, et al. ASH 2020, Abstract 403; ⁵Hutchings M, et al. ASH 2020, Abstract 406.

BTK inhibitors increase CD19/CD3-bispecific antibody cytotoxicity against CLL cells *in vitro*

Mhibik, et al. Blood, 2021;138(19),1843-1854.


- BTK inhibitors, independent of ITK inhibition, downregulate immunosuppressive effectors in CLL cells
- CD19/CD3-bispecific antibody-induced cytotoxicity is enhanced in PBMCs from patients treated with BTK inhibitors

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Copyright © 2023 American Society of Hematology

In vitro cytotoxicity of epcoritamab (CD20xCD3-bispecific antibody) against CLL cells is increased by concurrent BTK or BCL-2 inhibition

- Epcoritamab-mediated killing of CLL cells by autologous T cells correlates with the effector-to-target ratio but not CD20 expression
- Epcoritamab efficacy is increased by concurrent use of a BTKi or venetoclax, supporting combination therapy

Promising Investigational Agents and Strategies for CLL

ASH Annual Meeting & Exposition: Abstracts of interest

CAR-T cells

- Saturday, December 9, 2023, 5:15 PM (Oral): Liso-cel in R/R CLL/SLL: 24-Month Median Follow-up of TRANSCEND CLL 004 (abstract 330)
- <u>Saturday, December 9, 2023, 10:45 AM (Oral)</u>: Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy for Richter's Transformation: An International Multicenter Retrospective Study (abstract 108)
- <u>Saturday, December 9, 2023, 5:30 PM-7:30 PM (Poster)</u>: Seven-Day Vein-to-Vein Point-of-Care Manufactured CD19 CAR T Cells (GLPG5201) in Relapsed/Refractory CLL/SLL Including Richter's Transformation: Results from the Phase 1 Euplagia-1 Trial (abstract 2112)
- <u>Sunday, December 10, 2023, 6:00 PM-8:00 PM (Poster)</u>: Varnimcabtagene Autoleucel (ARI-0001) for Relapsed or Refractory Chronic Lymphocytic Leukemia and Richter Transformation (abstract 3483)
- <u>Sunday, December 10, 2023, 6:00 PM-8:00 PM (Poster)</u>: Real-World Tisagenlecleucel Outcomes in Richter-Transformed Chronic Lymphocytic Leukemia: A Center for International Blood & Marrow Transplant Research (CIBMTR) Analysis (abstract 705)
- Monday, December 11, 2023, 6:00 PM-8:00 PM (Poster): A Compilation of Experiences in Utilizing CAR-T Cell Therapy for Richter's Transformation (abstract 4638)

Bispecific antibodies

- <u>Saturday, December 9, 2023, 5:00 PM (Oral)</u>: Time Limited Exposure to a ROR1 Targeting Bispecific T Cell Engager (NVG-111) Leads to Durable Responses in Subjects with Relapsed Refractory Chronic Lymphocytic Leukemia and Mantle Cell Lymphoma (abstract 329)
- <u>Saturday, December 9, 2023, 5:30 PM-7:30 PM (Poster)</u>: Fine Tuning Bispecific Activity in CLL: Harmonizing a CD19/20-T Cell Bispecific with a CD28 or 4-1BBL Costimulatory Bispecific (abstract 2058)

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Chronic Lymphocytic Leukemia (Part 3 of a 4-Part Series)

A CME Friday Satellite Symposium and Virtual Event Preceding the 65th ASH Annual Meeting

Friday, December 8, 2023 3:15 PM – 5:15 PM PT (6:15 PM – 8:15 PM ET)

Faculty

Farrukh T Awan, MD Matthew S Davids, MD, MMSc Stephen J Schuster, MD William G Wierda, MD, PhD Jennifer Woyach, MD

Moderator Neil Love, MD

Beyond the Guidelines: Clinical Investigator Perspectives on the Management of Multiple Myeloma (Part 4 of a 4-Part Series)

A CME Friday Satellite Symposium and Virtual Event Preceding the 65th ASH Annual Meeting

Friday, December 8, 2023 7:00 PM – 9:00 PM PT (10:00 PM – 12:00 AM ET)

Faculty

Amrita Krishnan, MD Sagar Lonial, MD Robert Z Orlowski, MD, PhD Noopur Raje, MD Paul G Richardson, MD

Moderator Neil Love, MD

Thank you for joining us! Your feedback is very important to us.

Please complete the survey currently up on the iPads for attendees in the room and on Zoom for those attending virtually. The survey will remain open up to 5 minutes after the meeting ends.

How to Obtain CME Credit

In-person attendees: Please refer to the program syllabus for the CME credit link or QR code. You may also use the iPads available in the meeting room to complete the course evaluation. Online/Zoom attendees: The CME credit link is posted in the chat room.

