Cases from the Community: Investigators Discuss Available Research Guiding the Care of Patients with Hepatobiliary Cancers

Part 3 of a 3-Part CME Symposium Series Held in Conjunction with the 2023 ASCO Gastrointestinal Cancers Symposium

> Friday, January 20, 2023 6:00 PM – 7:30 PM PT

Faculty

Richard S Finn, MD Lipika Goyal, MD, MPhil **Professor Arndt Vogel, MD**

Moderator Robin K (Katie) Kelley, MD

Faculty

Richard S Finn, MD

Professor, Department of Medicine Division of Hematology/Oncology David Geffen School of Medicine at UCLA Director, Signal Transduction and Therapeutics Program Jonsson Comprehensive Cancer Center at UCLA Los Angeles, California

Professor Arndt Vogel, MD Managing Senior Consultant Department of Gastroenterology, Hepatology and Endocrinology Hannover Medical School Hannover, Germany

Lipika Goyal, MD, MPhil Director of Gastrointestinal Oncology Stanford Cancer Center Associate Professor Stanford University School of Medicine Palo Alto, California

Moderator

Robin K (Katie) Kelley, MD Professor of Clinical Medicine Division of Hematology/Oncology Helen Diller Family Comprehensive Cancer Center University of California, San Francisco (UCSF) San Francisco, California

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group, Incyte Corporation, and Merck.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Richard S Finn, MD — Disclosures Faculty

Advisory Committee	CStone Pharmaceuticals
Consulting Agreements	AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb Company, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group, Hengrui Therapeutics Inc, Lilly, Merck, Pfizer Inc
Contracted Research (to Institution)	Adaptimmune, Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb Company, Eisai Inc, Genentech, a member of the Roche Group, Lilly, Merck, Pfizer Inc
Data and Safety Monitoring Board/Committee	AstraZeneca Pharmaceuticals LP, Hengrui Therapeutics Inc
Speakers Bureau	Genentech, a member of the Roche Group

Lipika Goyal, MD, MPhil — Disclosures Faculty

Advisory Board and Consulting Agreements	Alentis Therapeutics AG, Black Diamond Therapeutics Inc, Exelixis Inc, Genentech, a member of the Roche Group, H3 Biomedicine, Incyte Corporation, Kinnate Biopharma, Merck, QED Therapeutics, Servier Pharmaceuticals LLC, Sirtex Medical Ltd, Surface Oncology, Taiho Oncology Inc, TransThera Biosciences, Tyra Biosciences
Data and Safety Monitoring Board/Committee	AstraZeneca Pharmaceuticals LP

Professor Arndt Vogel, MD — Disclosures Faculty

Consulting Agreements	Amgen Inc, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Böhringer Mannheim, Bristol-Myers Squibb Company, BTG, Daiichi Sankyo Inc, Eisai Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Merck Sharp & Dohme LLC, Pierre Fabre, Roche Laboratories Inc, Servier Pharmaceuticals LLC, Sirtex Medical Ltd, Taiho Oncology Inc, Terumo Medical Corporation
Speaker	Advanced Accelerator Applications, Amgen Inc, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Böhringer Mannheim, Bristol-Myers Squibb Company, BTG, Daiichi Sankyo Inc, Eisai Inc, GlaxoSmithKline, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Jiangsu Hengrui Medicine Co Ltd, Merck Sharp & Dohme LLC, Pierre Fabre, Roche Laboratories Inc, Servier Pharmaceuticals LLC, Sirtex Medical Ltd, Taiho Oncology Inc, Terumo Medical Corporation

Robin K Kelley, MD — Disclosures Moderator

Advisory Board	Kinnate Biopharma
Advisory Board or Steering Committee (to Institution)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Exelixis Inc, Ipsen Biopharmaceuticals Inc, Merck
Advisory Committee	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Exelixis Inc, Ipsen Biopharmaceuticals Inc, Kinnate Biopharma, Merck
Research Funding to Institution	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb Company, EMD Serono Inc, Exelixis Inc, Genentech, a member of the Roche Group, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Novartis, Partner Therapeutics, QED Therapeutics, Relay Therapeutics, Surface Oncology, Taiho Oncology Inc
Uncompensated Service on IDMC	Genentech, a member of the Roche Group, Merck

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the pre- and postmeeting surveys. Survey results will be presented and discussed throughout the meeting.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Complete Your Evaluation: Tap the CME Evaluation button to complete your evaluation electronically to receive credit for your participation.

For assistance, please raise your hand. Devices will be collected at the conclusion of the activity.

Clinicians Attending via Zoom

|--|

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the pre- and postmeeting surveys. Survey results will be presented and discussed throughout the meeting.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME Credit: A CME credit link will be provided in the chat room at the conclusion of the program.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

An email will be sent to all attendees when the activity is available.

 To learn more about our education programs, visit our website, <u>www.ResearchToPractice.com</u>

Cases from the Community: Investigators Discuss Available Research Guiding the Care of Patients with Hepatobiliary Cancers

Part 3 of a 3-Part CME Symposium Series Held in Conjunction with the 2023 ASCO Gastrointestinal Cancers Symposium

> Friday, January 20, 2023 6:00 PM – 7:30 PM PT

Faculty

Richard S Finn, MD Lipika Goyal, MD, MPhil **Professor Arndt Vogel, MD**

Moderator Robin K (Katie) Kelley, MD

Agenda

Module 1: First-Line Treatment for Advanced Hepatocellular Carcinoma (HCC) — Dr Finn

Module 2: Selection and Sequencing of Therapies for Relapsed/Refractory HCC — Dr Kelley

Module 3: Current and Future Role of Immunotherapy in the Treatment of Advanced Biliary Tract Cancers (BTCs) — Prof Vogel

Module 4: Integration of Targeted Therapy into the Management of Advanced BTCs — Dr Goyal

Susmitha Apuri, MD Florida Cancer Specialists Lutz, Florida

Lionel A Kankeu Fonkoua, MD Mayo Clinic Rochester, Minnesota

Warren S Brenner, MD Lynn Cancer Institute Boca Raton, Florida

Jeremy Lorber, MD Cedars-Sinai Medical Center Beverly Hills, California

Farshid Dayyani, MD, PhD Stern Center for Cancer Clinical Trials and Research Orange, California

Joseph Martins, MD UT Health Science Center Tyler, Texas

Priya Rudolph, MD Georgia Cancer Specialists Athens, Georgia

Niyati A Nathwani, MD Carolina Blood and Cancer Care Associates Charlotte, North Carolina

Liudmila N Schafer, MD Saint Luke's Cancer Institute Kansas City, Missouri

MODULE 1: First-Line Treatment for Advanced Hepatocellular Carcinoma (HCC) — Dr Finn

Case Presentation: 70-year-old man with newly diagnosed metastatic HCC receives atezolizumab/bevacizumab

Dr Warren Brenner (Boca Raton, Florida)

QUESTIONS FOR THE FACULTY

"My questions for the investigators are...

Is there a role for genetic profiling in patients with HCC? Is a biopsy really necessary in patients with clinical HCC and high alpha-fetoprotein (greater than 400)?

Warren S Brenner, MD

How are the investigators choosing between atezolizumab and bevacizumab and dual checkpoint inhibitor therapy based on the HIMALAYA trial?

Are there any clinical parameters to decide between the two regimens? Are patients with hepatitis-associated HCC more likely to respond to one regimen versus another?

Do all patients with HCC receiving bevacizumab require upper endoscopy prior to initiating therapy?"

Case Presentation: 59-year-old woman with a history of hepatitis C and chronic kidney disease on dialysis with localized HCC s/p surgical resection — the patient developed metastatic disease 10 months later

Dr Liudmila Schafer (Kansas City, Missouri)

QUESTIONS FOR THE FACULTY

Liudmila N Schafer, MD

"For most of the patients we see after primary surgery we follow up with surveillance, but is there a role for adjuvant systemic therapy, including immunotherapy?

This patient developed metastatic disease to the liver and nodes within 10 months of surgery but otherwise has a good performance status, although she is on dialysis. What treatment would you recommend?"

Current Role of Systemic Therapy in Front-line HCC

Richard S. Finn, MD

Professor of Clinical Medicine Division of Hematology/Oncology Director, Signal Transduction and Therapeutics Program Jonsson Comprehensive Cancer Center Geffen School of Medicine at UCLA

Front-line

BCLC management of HCC-2022: Where to use Systemic Therapy

IMbrave150 Study Design

Key eligibility

- Locally advanced or metastatic and/or unresectable HCC
- No prior systemic therapy
- ECOG PS 0-1
- Child-Pugh class A liver function

Stratification

- Region (Asia excluding Japan^a/Rest of world)
- ECOG (0/1)
- Macrovascular invasion and/or extrahepatic spread (Presence/Absence)
- Baseline AFP (<400/≥400 ng/mL)

Co-primary endpoints

- OS
- IRF-assessed PFS per RECIST 1.1

No exclusion for main PVT

Secondary endpoints included:

- IRF-assessed ORR, DOR per RECIST 1.1 and HCC mRECIST^b
- PROs: TTD^c of QOL, physical and role functioning (EORTC QLQ-C30)
- Safety and tolerability assessed based on the nature, frequency and severity of AEs per NCI CTCAE version 4.0

^a Japan is included in rest of world. ^b Tumor assessment by computed tomography or magnetic resonance imaging was done at baseline and every 6 weeks until 54 weeks, then every 9 weeks thereafter. ^c Time from randomization to first decrease from baseline of ≥ 10 points maintained for 2 consecutive assessments or 1 assessment followed by death from any cause within 3 weeks. AFP, α-fetoprotein; CTCAE, Common Terminology Criteria for Adverse Events; ECOG PS, Eastern Cooperative Oncology Group Performance Status; EORTC QLQ-C30, European Organization for Research and Treatment of Cancer quality-of-life questionnaire for cancer; IRF, independent review facility; mRECIST, modified RECIST; NCI, National Cancer Institute; PRO, patient-reported outcomes; QOL, quality of life; TTD, time to deterioration.

Baseline patient characteristics (ITT)^a

n (%)	Atezo + Bev (n = 336)	Sorafenib (n = 165)
Median age (range), years	64 (26-88)	66 (33-87)
Male	277 (82)	137 (83)
Asia excluding Japan rest of world ^b	133 (40) 203 (60)	68 (41) 97 (59)
ECOG PS 0 1	209 (62) 127 (38)	103 (62) 62 (38)
Child-Pugh score A5 A6	239 (72) 94 (28)	121 (73) 44 (27)
Barcelona Clinic Liver Cancer stage B C	52 (15) 276 (82)	26 (16) 133 (81)
AFP at baseline ≥ 400 ng/mL	126 (38)	61 (37)
MVI present	129 (38)	71 (43)
EHS present	212 (63)	93 (56)
MVI and/or EHS present	258 (77)	120 (73)
Varices at baseline	88 (26)	43 (26)
Varices treated at baseline	36 (11)	23 (14)
HCC etiology		
Hepatitis B	164 (49)	76 (46)
Hepatitis C	72 (21)	36 (22)
Non-viral ^c	100 (30)	53 (32)

EHS, extrahepatic spread; ITT, intention to treat, MVI, macrovascular invasion.^a All randomised patients. ^b Includes United States, Australia, New Zealand, and Japan. ^c Includes alcohol, other and unknown non–hepatitis B and C causes.

IMbrave150 Trial Key Efficacy Data: Updated OS and PFS

- Primary analysis OS/PFS HR: 0.58/0.59 (median follow-up: 8.6 mo)

• Finn RS et al NEJM 2020, Finn RS et al ASCO GI 2021, Cheng AL J Hep 2022

Updated response and duration of response

	Updated analysis ^a				
	RECIS	ST 1.1	HCC mF	RECIST	
	Atezo + Bev (n = 326)	Sorafenib (n = 159)	Atezo + Bev (n = 325)	Sorafenib (n = 158)	
Confirmed ORR (95% CI), %	30 (25, 35)	11 (7, 17)	35 (30, 41)	14 (9, 20)	
CR, n (%)	25 (8)	1 (< 1)	39 (12)	4 (3)	
PR, n (%)	72 (22)	17 (11)	76 (23)	18 (11)	
SD, n (%)	144 (44)	69 (43)	121 (37)	65 (41)	
DCR, n (%)	241 (74)	87 (55)	236 (73)	87 (55)	
PD, n (%)	63 (19)	40 (25)	65 (20)	40 (25)	
Ongoing response, n (%)	54 (56)	5 (28)	58 (50)	6 (27)	
Median DOR (95% CI), mo ^ь	18.1 (14.6, NE)	14.9 (4.9, 17.0)	16.3 (13.1, 21.4)	12.6 (6.1, 17.7)	

Clinical cutoff: August 31, 2020; median follow-up: 15.6 mo. DCR, disease control rate. ^a Only patients with measurable disease at baseline were included in the analysis of ORR. ^b Only confirmed responders were included in the analysis of ORR and DOR.

PRESENTED AT:

Gastrointestinal Cancers Symposium Slides are the property of the author, permission required for reuse.

PRESENTED BY: Dr Richard S Finr https://bit.ly/3m2WYcl Cheng AL J Hep 2022

#GI21

TRAEs: ≥ 10% any grade in either arm

Atezo + Bev (n = 329)

Sorafenib (n = 156)

Finn et al , N Engl J Med 2020.

HIMALAYA study design

HIMALAYA was an open-label, multicenter, global, Phase 3 trial

*Treatment continued until disease progression. Patients with progressive disease who, in the investigator's opinion, continued to benefit from treatment and met the criteria for treatment in the setting of progressive disease could continue treatment. [†]The T75+D arm was closed following a preplanned analysis of a Phase 2 study. Patients randomized to this arm (n=153) could continue treatment following arm closure. Results from this arm are not reported in this presentation.

BID, twice a day; EGD, esophagogastroduodenoscopy; Q4W, every 4 weeks.

ASCO[•] Gastrointestinal Cancers Symposium

PRESENTED BY: Ghassan K Abou-Alfa, MD, MBA NEJM Evidence 2022

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Baseline characteristics

Characteristic	T300+D (n=393)	Durvalumab (n=389)	Sorafenib (n=389)	Characteristic	T300+D (n=393)	Durvalumab (n=389)	Sorafenib (n=389)
Male sex, n (%)	327 (83.2)	323 (83.0)	337 (86.6)	Child-Pugh			
Median age (range), years	65.0 (22–86)	64.0 (20-86)	64.0 (18–88)	classification, [⊤] n (%) A	392 (99.7)	388 (99.7)	386 (99.2)
Region, n (%) Asia (excluding Japan)	156 (39.7)	167 (42.9)	156 (40.1)	B Missing	0 1 (0.3)	1 (0.3) 0	3 (0.8) 0
Rest of world (including Japan)	237 (60.3)	222 (57.1)́	233 (59.9)	ALBI grade, n (%)			
Viral etiology, ^{*,†} n (%) HBV HCV	122 (31.0) 110 (28.0)	119 (30.6) 107 (27.5)	119 (30.6) 104 (26.7)	1 2 3	217 (55.2) 174 (44.3) 1 (0.3)	198 (50.9) 189 (48.6) 2 (0.5)	203 (52.2) 185 (47.6) 1 (0.3)
Nonviral	161 (41.0)	163 (41.9)	166 (42.7)	MVI,† n (%)	103 (26.2)	94 (24.2)	100 (25.7)
ECOG PS, n (%)	244 (62 1)	237 (60 9)	241 (62 0)	EHS,† n (%)	209 (53.2)	212 (54.5)	203 (52.2)
	148 (37.7)	150 (38.6)	147 (37.8)	PD-L1 positive, [‡] n (%)	148 (37.7)	154 (39.6)	148 (38.0)
BCLC,' n (%) B C	77 (19.6) 316 (80.4)	80 (20.6) 309 (79.4)	66 (17.0) 323 (83.0)	AFP ≥400 ng/ml,† n (%)	145 (36.9)	137 (35.2)	124 (31.9)

*HBV: patients who tested positive for HBsAg or anti-HBc with detectable HBV DNA; HCV: patients who tested positive for HCV or had history of HCV infection; Nonviral: no active viral hepatitis identified. [†]Determined at screening. [‡]Defined as tumor area positivity score ≥1%.

T300+D, tremelimumab 300 mg × 1 dose + durvalumab 1500 mg Q4W.

ASCO[•] Gastrointestinal Cancers Symposium

PRESENTED BY: Ghassan K Abou-Alfa, MD, MBA

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Primary objective: overall survival for T300+D vs sorafenib

Data cut-off: August 27, 2021. Median duration of follow-up was 33.18 (95% CI, 31.74–34.53) months for T300+D and 32.23 (95% CI, 30.42–33.71) months for sorafenib. CI, confidence interval; HR, hazard ratio; OS, overall survival; T300+D, tremelimumab 300 mg × 1 dose + durvalumab 1500 mg Q4W.

> Ghassan K Abou-Alfa, MD, MBA NEJM Evidence 2022

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse

Secondary objective: overall survival for durvalumab vs sorafenib

Data cut-off: August 27, 2021. Median duration of follow-up was 32.56 (95% CI, 31.57–33.71) months for durvalumab and 32.23 (95% CI, 30.42–33.71) months for sorafenib. CI, confidence interval; HR, hazard ratio; NI, noninferiority; OS, overall survival.

ASCO[•] Gastrointestinal Cancers Symposium

Ghassan K Abou-Alfa, MD, MBA NEJM Evidence 2022

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Progression-free survival

#GI22 PRESENTED BY: Ghassan K Abou-Alfa, MD, MBA NEJM Evidence 2022

*Versus sorafenib. [†]Percent calculated from total patients in the safety analysis set: T300+D, N=388; durvalumab, N=388, sorafenib, n=374.

ASCO Gastrointestinal

Cancers Symposium

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse

CI, confidence interval; DCO, data cutoff; HR, hazard ratio; PFS, progression-free survival; T300+D, tremelimumab 300 mg × 1 dose + durvalumab 1500 mg Q4W; TTP, time to progression.

Tumor response

	T300+D (n=393)	Durvalumab (n=389)	Sorafenib (n=389)
ORR,* n (%)	79 (20.1)	66 (17.0)	20 (5.1)
CR, n (%)	12 (3.1)	6 (1.5)	0
PR, n (%)	67 (17.0)	60 (15.4)	20 (5.1)
SD,† n (%)	157 (39.9)	147 (37.8)	216 (55.5)
PD, n (%)	157 (39.9)	176 (45.2)	153 (39.3)
DCR, %	60.1	54.8	60.7
Median DoR, [‡] months 25 th percentile 75 th percentile	22.34 8.54 NR	16.82 7.43 NR	18.43 6.51 25.99
Median TTR (95% CI), months	2.17 (1.84–3.98)	2.09 (1.87–3.98)	3.78 (1.89–8.44)
Remaining in response, [‡] % 6 months 12 months	82.3 65.8	81.8 57.8	78.9 63.2

*By investigator assessment according to RECIST v1.1. Responses are confirmed. [†]Defined as neither sufficient decrease in sum of diameters to qualify for PR nor sufficient increase to qualify for PD. [‡]Calculated using Kaplan-Meier technique.

Cl, confidence interval; CR, complete response; DCR, disease control rate; DoR, duration of response; NR, not reached; ORR, objective response rate; PD, progressive disease; PR, partial response; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1; SD, stable disease; T300+D, tremelimumab 300 mg × 1 dose + durvalumab 1500 mg Q4W; TTR, time to response.

Safety and tolerability

Event, n (%)	T300+D (n=388)	Durvalumab (n=388)	Sorafenib (n=374)
Any AE	378 (97.4)	345 (88.9)	357 (95.5)
Any TRAE*	294 (75.8)	202 (52.1)	317 (84.8)
Any grade 3/4 AE	196 (50.5)	144 (37.1)	196 (52.4)
Any grade 3/4 TRAE	100 (25.8)	50 (12.9)	138 (36.9)
Any serious TRAE	68 (17.5)	32 (8.2)	35 (9.4)
Any TRAE leading to death	9 (2.3) [†]	0	3 (0.8)‡
Any TRAE leading to discontinuation	32 (8.2)	16 (4.1)	41 (11.0)

Includes AEs with onset or increase in severity on or after the date of the first dose through 90 days following the date of the last dose or the date of initiation of the first subsequent therapy.

*Treatment-related was as assessed by investigator. †Nervous system disorder (n=1), acute respiratory distress syndrome (n=1), hepatitis (n=1), immune-mediated hepatitis (n=2), pneumonitis (n=1), hepatic failure (n=1), myasthenia gravis (n=1). [‡]Hematuria (n=1), cerebral hematoma (n=1), hepatic failure (n=1).

AE, adverse event; SMQ, Standardized MedDRA Query; T300+D, tremelimumab 300 mg × 1 dose + durvalumab 1500 mg Q4W; TRAE, treatment-related adverse event.

PRESENTED BY: Ghassan K Abou-Alfa, MD, MBA

Immune-mediated adverse events

Event, n (%)	T300+D (n=388)				Durvalumab (n=388)			
	All grades	Grade 3 or 4	Received high-dose steroids	Leading to discontinuation	All grades	Grade 3 or 4	Received high-dose steroids	Leading to discontinuation
Patients with immune- mediated event	139 (35.8)	49 (12.6)	78 (20.1)	22 (5.7)	64 (16.5)	25 (6.4)	37 (9.5)	10 (2.6)
Hepatic events	29 (7.5)	16 (4.1)	29 (7.5)	9 (2.3)	26 (6.7)	17 (4.4)	25 (6.4)	5 (1.3)
Diarrhea/colitis	23 (5.9)	14 (3.6)	20 (5.2)	5 (1.3)	3 (0.8)	1 (0.3)	2 (0.5)	1 (0.3)
Dermatitis/rash	19 (4.9)	7 (1.8)	12 (3.1)	2 (0.5)	3 (0.8)	1 (0.3)	3 (0.8)	1 (0.3)
Pancreatic events	9 (2.3)	7 (1.8)	7 (1.8)	0	2 (0.5)	1 (0.3)	2 (0.5)	0
Adrenal insufficiency	6 (1.5)	1 (0.3)	1 (0.3)	0	6 (1.5)	3 (0.8)	3 (0.8)	0
Hyperthyroid events	18 (4.6)	1 (0.3)	2 (0.5)	0	4 (1.0)	0	0	0
Hypothyroid events	42 (10.8)	0	1 (0.3)	0	19 (4.9)	0	0	0
Pneumonitis	5 (1.3)	0	4 (1.0)	1 (0.3)	3 (0.8)	1 (0.3)	3 (0.8)	2 (0.5)
Renal events	4 (1.0)	2 (0.5)	3 (0.8)	2 (0.5)	0	0	0	0

Includes adverse events with onset or increase in severity on or after the date of the first dose through 90 days following the date of the last dose or the date of initiation of the first subsequent therapy. Patients may have had >1 event. Events include those that occurred in ≥1% of patients in either treatment arm.

T300+D, tremelimumab 300 mg × 1 dose + durvalumab 1500 mg Q4W.

ASCO[•] Gastrointestinal Cancers Symposium

PRESENTED BY: Ghassan K Abou-Alfa, MD, MBA

Tislelizumab

Cancer Immunology, Immunotherapy (2018) 67:1079–1090 https://doi.org/10.1007/s00262-018-2160-x

ORIGINAL ARTICLE

The binding of an anti-PD-1 antibody to FcyRI has a profound impact on its biological functions

Tong Zhang¹ · Xiaomin Song¹ · Lanlan Xu¹ · Jie Ma¹ · Yanjuan Zhang¹ · Wenfeng Gong¹ · Yilu Zhang¹ · Xiaosui Zhou¹ · Zuobai Wang¹ · Yali Wang¹ · Yingdi Shi¹ · Huichen Bai¹ · Ning Liu¹ · Xiaolong Yang¹ · Xinxin Cui¹ · Yanping Cao¹ · Qi Liu¹ · Jing Song¹ · Yucheng Li¹ · Zhiyu Tang¹ · Mingming Guo¹ · Lai Wang¹ · Kang Li¹

• Tislelizumab, a monoclonal antibody with high binding affinity for PD-1, was specifically engineered to minimize Fcγ receptor binding on macrophages
RATIONALE-301: Study Design

Randomized, open-label, multicenter, multiregional phase 3 study

Primary endpoint: OS in the ITT population

Key secondary endpoints: ORR, PFS, and DoR by BIRC per RECIST v1.1, and safety

Stratification factors: Macrovascular invasion (present vs absent), extrahepatic spread (present vs absent), ECOG PS (0 vs 1), etiology (HCV vs other^a), geography (Asia [excluding Japan], vs Japan vs rest of world)

^aIncludes HBV. Abbreviations: BCLC, Barcelona Clinic Liver Cancer; BID, twice daily; BIRC, blinded independent review committee; DoR, duration of response; ECOG PS, European Cooperative Oncology Group performance status; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; ITT, intent-to-treat; IV, intravenous; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PO, oral; Q3W, once every 3 weeks; RECIST, Response Evaluation Criteria In Solid Tumors.

Abstract LBA36

ASCO[•] Gastrointestinal Cancers Symposium

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

RATIONALE-301: Overall Survival

Tislelizumab demonstrated OS noninferiority^a vs sorafenib; OS superiority vs sorafenib was not met

Data cutoff: July 11, 2022. OS was assessed in the ITT population. ^aPrespecified boundary of NI: upper bound of 95.003% CI of stratified HR <1.08; pre-specified boundary of superiority: one-sided P value <0.0223 (approximate HR <0.8352). ^bHR was based on a Cox proportional hazard model including treatment as a covariate, geography (Asia [including Japan] vs rest of world [EU/US]), macrovascular invasion and/or extrahepatic spread (present vs absent), etiology (HCV vs other), and ECOG PS (0 vs 1) as stratification factors. ^cOne-sided stratified log-rank test. Abbreviations: CI, confidence interval; ECOG PS, European Cooperative Oncology Group performance status; HCV, hepatitis C virus; HR, hazard ratio; ITT, intent-to-treat; NI, non-inferiority; OS, overall survival.

Cancers Symposium

Masatoshi Kudo PRESENTED BY: **#GI22**

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

RATIONALE-301: Overall Response Rate by IRC

Tislelizumab was associated with a higher ORR and more durable responses vs sorafenib

Data cutoff: July 11, 2022. ORR was assessed in the ITT population. ^aConfirmed responses; ^bPatients with no postbaseline tumor assessment (not assessable) or a nonevaluable tumor assessment. ^cPatients were assessed as non-CR/non-PD if the IRC was not able to identify the target lesions at screening. Patients with no target lesions were evaluated based on the assessment of nontarget lesions or the presence of new lesions. ^dPatients who had PD or died were excluded from this analysis. Abbreviations: CI, confidence interval; CR, complete response; DoR, duration of response; IRC, independent review committee; ITT, intent-to-treat; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.

Abstract LBA36

ASCO Gastrointestinal Cancers Symposium

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

RATIONALE-301: Progression-Free Survival by IRC

The median PFS was longer with sorafenib versus tislelizumab

Data cutoff: July 11, 2022. PFS was assessed in the ITT population. ^aHR was based on a Cox proportional hazard model including treatment as a covariate, geography (Asia [including Japan] vs rest of world [EU/US]), macrovascular invasion and/or extrahepatic spread (present vs absent), etiology (HCV vs other), and ECOG PS (0 vs 1) as stratification factors. Abbreviations: CI, confidence interval; ECOG PS, European Cooperative Oncology Group performance status; HCV, hepatitis C virus; HR, hazard ratio; IRC, independent review committee; ITT, intent-to-treat; PFS, progression-free survival.

ASCO Gastrointestinal

Cancers Symposium

#GI22

PRESENTED BY:

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

RATIONALE-301: Safety Summary

TEAEs and treatment-related TEAEs at grade \geq 3 were less frequent with tislelizumab and treatment with tislelizumab led to fewer discontinuations/dose modifications vs sorafenib

Patients	Tislelizumab (n=338)	Sorafenib (n=324)
Safety, n (%)		
Any TEAE	325 (96.2)	324 (100.0)
Treatment-related	259 (76.6)	311 (96.0)
TEAE at ≥grade 3	163 (48.2)	212 (65.4)
Treatment-related	75 (22.2)	173 (53.4)
Serious TEAE	101 (29.9)	91 (28.1)
Treatment-related	40 (11.8)	33 (10.2)
TEAE leading to discontinuation	37 (10.9)	60 (18.5)
Treatment-related	21 (6.2)	33 (10.2)
TEAE leading to drug modification ^a	105 (31.1)	210 (64.8)
Treatment-related	68 (20.1)	187 (57.7)
TEAE leading to death	15 (4.4)	17 (5.2)
Treatment-related	3 (0.9)	2 (0.6)
Immune-mediated AEs	58 (17.2)	10 (3.1)
Immune-mediated AEs treated with systemic corticosteroids	43 (12.7)	10 (3.1)
Immune-mediated AEs in ≥5% of patients		
Hepatitis	18 (5.3)	1 (0.3)
Hypothyroidism	18 (5.3)	0 (0)
Treatment		
Median duration of treatment, months	4.1	2.7

Safety was assessed in the safety population. Data cutoff: July 11, 2022. ^aDrug modification included an interrupted/held or reduced dose. Abbreviations: AE, adverse event; TEAE, treatment-emergent adverse event.

Cancers Symposium

Abstract LBA36 Masatoshi Kudo

PRESENTED BY:

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Alternative First-Line TKI Options

Sorafenib OS: 10.7 months Placebo OS: 7.9 months

PRESENTED BY:

Lenvatinib OS: 13.6 months Sorafenib OS: 12.3 months

1. Llovet JM et al. N Engl J Med. 2008;359:378-390. 2. Kudo M et al. Lancet. 2018;391:1163-1173.

ASCO[•] Gastrointestinal Cancers Symposium

LEAP-002: Overall Survival, ITT, FA

^aDid not reach superiority threshold, one-sided α =0.0185. Data cutoff date for FA: 21 June 2022.

Finn RS et al ESMO 2022; Abstract LBA34

Conclusions:

- We have made tremendous progress in improving the survival of patients with advanced HCC
- The introduction of IO in the front-line setting is practice changing
 - No clear biomarker or patient population to serve as predictive markers of benefit
- Not every patient will be a candidate for IO combinations
 Consider TKIs or single agent IO
- Studies evaluating the role of IO in earlier stage disease are ongoing

Atezolizumab Plus Bevacizumab is the First Treatment Combination to Reduce the Risk of Liver Cancer Returning in Early-Stage HCC Press Release: January 18, 2023

The Phase III IMbrave050 study met its primary endpoint of recurrence-free survival (RFS) at the prespecified interim analysis. The study is evaluating atezolizumab in combination with bevacizumab as adjuvant treatment following surgery for people with early-stage hepatocellular carcinoma (HCC) at high risk of disease recurrence. The atezolizumab combination showed a statistically significant improvement in RFS in the intention-to-treat population of HCC patients who have an increased risk of recurrence following resection or ablation with curative intent, compared with active surveillance.

Overall survival data were immature at the time of interim analysis and follow-up will continue to the next analysis. Safety for atezolizumab and bevacizumab was consistent with the known safety profile of each therapeutic agent and with the underlying disease.

MODULE 2: Selection and Sequencing of Therapies for Relapsed/Refractory HCC — Dr Kelley

Case Presentation: 65-year-old man with metastatic HCC and a past medical history of hepatitis C develops ILD on atezolizumab/bevacizumab

Dr Priya Rudolph (Athens, Georgia)

QUESTIONS FOR THE FACULTY

Priya Rudolph, MD, PhD

"The patient developed dyspnea on exertion. CT scan showed ground-glass opacities. He was COVID-negative, but he had been cleaning his boat and possibly inhaled some strong chemicals. We held treatment and put him on a steroid taper. Are there any data to suggest that continuing single-agent bevacizumab has any efficacy, and can we just continue that for a while?

What would you recommend as his next systemic therapy?"

- What is your usual next systemic therapy after atezolizumab/bevacizumab, and what factors do you consider in this decision?
- What is your usual first-line systemic therapy for a patient with a contraindication to immunotherapy such as a major autoimmune disorder?

Dr Lionel Kankeu Fonkoua (Rochester, Minnesota)

68-year-old man with post-transplant recurrence develops metastatic HCC and receives lenvatinib followed by cabozantinib followed by regorafenib

79-year-old man with metastatic HCC who is s/p treatment with atezolizumab/bevacizumab, lenvatinib and currently cabozantinib

Dr Susmitha Apuri (Lutz, Florida)

QUESTIONS FOR THE FACULTY

Lionel A Kankeu Fonkoua, MD

"The patient had a transplant years ago for multifocal HCC in the background of alcoholic cirrhosis and was doing fine on immunosuppressive therapy but had a post-transplant recurrence. He started on lenvatinib and then eventually progressed, switched to cabozantinib and then progressed and was placed on regorafenib. In a patient like this, would you consider atezolizumab/bevacizumab?

The patient wanted to remain aggressive, but I just didn't feel comfortable knowing the graft failure rate is about 30% to 40% in this patient population.

The second question is, there have been some data suggesting that activating mutations in 6-catenin actually confer resistance to immune checkpoint inhibition. Would that be a factor in this setting — in a patient who you already have reservations?"

QUESTIONS FOR THE FACULTY

Susmitha Apuri, MD

"He's on cabozantinib right now with an ECOG PS of 0. He's back to his woodworking. He has a PIK3CA somatic mutation. Would an agent like alpelisib be helpful? Would he be a candidate for ipilimumab/nivolumab."

Selection and Sequencing of Therapies for Advanced HCC: Second-Line and Beyond

Katie Kelley, MD

Helen Diller Family Comprehensive Cancer Center University of California, San Francisco

Outline

- Increasing utilization of subsequent lines of therapies in HCC
- Currently available 2nd line therapies
 - Agents with FDA approval after progression on sorafenib
 - Role for sorafenib, lenvatinib, or other multikinase tyrosine kinase inhibitors (TKI) after 1st line immune checkpoint inhibitor (ICI)-based combinations?
 - Role for anti-PD-(L)1 and anti-CTLA-4 combination regimens after prior ICIbased combinations?
- Factors in selection and sequencing of $\geq 2^{nd}$ line treatment options
- Other promising agents and strategies under investigation as subsequent lines of therapy

Increasing Uptake of Subsequent Lines of Therapy

- A meaningful number of patients receive $\geq 2^{nd}$ line therapies
- Increase may be due to:
 - More efficacious 1st line options?
 - Better supportive care?
 - Stage migration?

Incidence of \geq 2nd line therapy in IMbrave150:

Table S1. Follow-up systemic treatment for hepatocellular carcinoma

	Atezolizumab plus bevacizumab (n=336)	Sorafenib (n=165)
≥1 systemic treatment*	120 (36)	86 (52)
Second-line therapy	102 (30)	81 (49)
Third-line therapy	33 (10)	39 (24)

Cheng et al. J Hepatol 2022;76:862-73

Incidence of subsequent therapies post 2nd line durva/treme in Study 22:

SUPPLEMENTAL TABLE 9 (online only). Subsequent Cancer Therapya

	T300+D (n=75)	Durvalumab (n=104)	Tremelimumab (n=69)	T75+D (n=84)
Number of patients receiving post progression cancer therapy, n (%) ^b	32 (42.7)	37 (35.6)	22 (31.9)	32 (38.1)
Systemic therapy	27 (36.0)	31 (29.8)	19 (27.5)	27 (32.1)

Kelley et al. J Clin Oncol 2021; epub 22Jul21

Updated BCLC Algorithm 2022

Reig et al. J Hepatol. 2022

Beyond 1st Line:

Currently Approved 2nd Line Therapies for HCC

- Antiangiogenic therapies with USFDA approval and level 1 evidence:
 - Regorafenib: Multikinase inhibitor, similar to sorafenib including VEGFR1-3, BRAF, PDGFR, RET
 - Cabozantinib: Multikinase inhibitor with targets including VEGFR1-3, MET, AXL
 - Ramucirumab (serum AFP ≥400 ng/mL): Monoclonal antibody targeting VEGFR2
- ICI with USFDA accelerated approval based upon phase 1/2 studies:
 - Pembrolizumab: Anti-PD-1 ICI
 - Nivolumab + ipilimumab: Anti-PD-1 plus anti-CTLA-4 ICI combinations

All of these 2nd line treatments have been studied after sorafenib as 1st line treatment.

2nd Line Systemic Therapies With Level 1 Evidence

- Regorafenib improved OS as 2nd line therapy after progression on sorafenib in patients who tolerated sorafenib¹
- Cabozantinib improved OS as 2nd or 3rd line of therapy after sorafenib²
- Ramucirumab improved OS as 2nd line therapy after sorafenib in patients with AFP ≥ 400 ng/mL³
 - First biomarker-selected therapy in HCC

- 1. Bruix J, et al. Lancet. 2017;389(10064):56-66
- 2. Abou-Alfa G, et al. N Engl J Med. 2018;379(1):54-63
- 3. Zhu AX et al. Lancet Oncol. 2019;20(2):282-96

Role for Multikinase Inhibitors After 1st Line ICI-Based Therapy

- There is limited prospective data for treatment selection after 1st line ICIbased therapies; multikinase inhibition has biologic rationale
- Retrospective analysis of 71 patients treated with 2nd line TKI (sorafenib or lenvatinib) after 1st line atezo+beva reported median PFS 3.4 months, median OS 14.7 months¹
 - Median PFS was longest for lenvatinib-treated patients: 6.1 vs 2.5 months (p=0.004)
- A systematic literature review of cabozantinib treatment after prior ICI therapies showed benefit across range of tumor types including HCC²

Beyond 1st Line: Currently Approved 2nd Line Therapies for HCC

- Antiangiogenic therapies with USFDA approval and level 1 evidence:
 - Regorafenib: Multikinase inhibitor, similar to sorafenib including VEGFR1-3, BRAF, PDGFR, RET
 - Cabozantinib: Multikinase inhibitor with targets including VEGFR1-3, MET, AXL
 - Ramucirumab (serum AFP ≥400 ng/mL): Monoclonal antibody targeting VEGFR2
- ICI with USFDA accelerated approval based upon phase 1/2 studies:
 - Pembrolizumab: Anti-PD-1 ICI
 - Nivolumab + ipilimumab: Anti-PD-1 plus anti-CTLA-4 ICI combinations

All of these 2nd line treatments have been studied after sorafenib as 1st line treatment.

2nd Line ICI Therapies with Accelerated Approvals

- Pembrolizumab
 - KEYNOTE 240¹ did not improve OS but showed durable ORR 18.3%; KEYNOTE-394² improved OS, PFS, and ORR compared to placebo
- Nivolumab + Ipilimumab³
 - Deep and durable responses in ~30% by RECIST 1.1
 - Median DOR > ~17 months
 - Steroids required ~25-50%

CheckMate-040: Nivolumab + Ipilimumab Cohort³

- 1. Finn RS, et al. *J Clin Oncol.* 2020;38(3):193-202
- 2. Clinicaltrials.gov, NCT03062358; Qin et al. GI ASCO 2022
- 3. Yau T, et al. JAMA Oncol. 2020;6(11):e204564

KEYNOTE-394 Study Design (NCT03062358) and Statistical Considerations

 Overall Type I error = 0.025 controlled across testing of OS, PFS, and ORR¹

- Initial allocation PFS = 0.002; OS = 0.023
- Re-allocated per multiplicity strategy specified in the protocol among 3 endpoints above
- Per protocol, there were 2 interim and 1 final analysis for OS and 1 interim and 1 final analysis for PFS and ORR
 - Interim analysis for PFS and ORR at the time of OS 1st interim analysis
 - Final analysis at the time of OS 2nd interim analysis
- Efficacy boundaries
 - P = 0.0193 for OS (final analysis cutoff, June 30, 2021, based on 350 observed events)
 - P = 0.0134 for PFS and P = 0.0091 for ORR (at 2nd interim cutoff, June 30, 2020; only if OS criteria met)

"Histologically, cytologically, or radiographically confirmed HCC. "Based on investigator assessment. 1. Maurer W, Bretz F. Stat Biopharm Res. 2013; 5(4): 311-20. 2. Finn RS et al. J Clin Oncol. 2020;38:193-202 Median time from randomization to data cutoff for the final analysis was 33.8 months (range 18.7-49.0) and 21.8 months (range 6.7-37.0) for the 2nd interim analysis.

Baseline Demographics and Clinical Characteristics

	Pembrolizumab n = 300	Placebo n = 153		Pembrolizumab n = 300
Age, median (range), years	54 (22-82)	54 (22-78)	Hepatitis B status	
≥65 years, n (%)	69 (23.0)	29 (19.0)	·	
Male	257 (85.7)	126 (82.4)	Positive ^b	236 (78.7)
Region ^a			Hepatitis C status	
China	255 (85.0)	132 (86.3)		
Ex-China	45 (15.0)	21 (13.7)	Positive ^c	5 (1.7)
ECOG PS1	176 (58.7)	93 (60.8)	Prior first-line treatment	
Child-Pugh Class A	300 (100.0)	153 (100.0)		
α-fetoprotein ≥200 ng/mL	169 (56.3)	78 (51.0)	Sorafenib	272 (90.7)
Extrahepatic spread	232 (77.3)	120 (78.4)		
Macrovascular invasion	33 (11.0)	17 (11.1)	Oxaliplatin-based chemotherapy	28 (9.3)
BCLC stage C	277 (92.3)	146 (95.4)		

n (%) unless otherwise specified. Percentages may not equal 100 because of rounding. "Region for China includes China Mainland, Hong Kong, and Taiwan; region for ex-China includes Republic of Korea and Malaysia. "Hepatitis B status was collected from the electronic case report form and positive was defined as hepatitis B surface antigen positive and/or detectable HBV DNA based on investigator assessment. "Hepatitis C was collected from the electronic case report form and positive was defined as anti-hepatitis C antibody positive and detectable HCV RNA based on investigator assessment.

Overall Survival

*One-sided P for testing difference. Data cutoff: June 30, 2021 (final analysis). Includes both with/without prior exposure to other post-study systemic anticancer therapies.

Objective Response

	Pembrolizumab n = 300	Placebo n = 153	
ORR (CR + PR), % (95% CI)	12.7 (9.1-17.0)	1.3 (0.2-4.6)	
Estimated treatment difference, (95% CI; Pª)	11.4 (6.7-16.0); < <u>0.0001</u>		required for statistical
Best overall response, n (%)			significance
CR	6 (2.0)	1 (0.7)	
PR	32 (10.7)	1 (0.7)	
SD	115 (38.3)	70 (45.8)	
Sustained SD ^b	26 (8.7)	8 (5.2)	
PD	129 (43.0)	72 (47.1)	
Not evaluable	10 (3.3)	1 (0.7)	
Not assessable ^c	8 (2.7)	8 (5.2)	
DOR, ^d median (range), mo	23.9 (2.8 to 32.0+)	5.6 (3.0+ to 5.6)	

*One-sided P for testing difference. *Duration of stable disease ≥23 weeks (stable disease within 24-week scan window or later). Includes patients with a baseline assessment (by investigator or blinded independent central review) but no postbaseline assessment on the data cutoff date, including discontinuation or death before the first postbaseline scan. 4Assessed in the 38 patients in the pembrolizum ab group and 2 patients in the placebo group who had a confirmed complete response or partial response. Data cutoff: June 30, 2020 (second-interim analysis).

Overall Survival Based on Meta-Analysis of KEYNOTE-394 and KEYNOTE-240

Role of Anti-PD-(L)1 and Anti-CTLA-4 Therapies After Prior ICI-based Combinations

- There is no established role for ICI monotherapy after receipt of prior ICI monotherapy or in combination
- Combination of anti-PD-(L)1 + anti-CTLA-4 has shown potential for eliciting responses after progression on anti-PD-(L)1 monotherapy in multiple tumor types^{1,2}
- A retrospective analysis of patients treated with nivolumab plus ipilimumab after 1st line atezo+beva reported objective responses in 3 of 10 (30%) patients treated³

Selection and Sequencing of $\geq 2^{nd}$ Line Treatments

Factors to consider:

- Which 1st line therapy was received?
 - What was response and duration?
 - What was AE profile?
- Contraindication to ICI?
 - E.g. transplant, prior high-grade immune-related toxicity, significant autoimmune disease
- Contraindication to anti-angiogenic therapies?
 - E.g. significant vascular disease, severe proteinuria, non-healing wounds, high risk for bleeding
- AFP
- Liver function

Current consensus strategies:

- Progressed on 1st line ICI-based combination → 2nd line TKI
- Progressed on 1^{st} line TKI $\rightarrow 2^{nd}$ line ICI or ICI combination
- Contraindication to ICI → TKI or ramucirumab if AFP ≥ 400 ng/mL
- Contraindication to anti-angiogenic therapy → pembrolizumab, nivolumab + ipilimumab
- Discontinued 1st line therapy for reasons other than progression → individualized treatment decision
- Child Pugh B liver function → limited data; ICI monotherapy has shown acceptable safety in small studies in Child Pugh B HCC; consider empiric TKI dose reduction
- Clinical trials are needed!

NCCN Guidelines Version 4.2022 Hepatocellular Carcinoma

PRINCIPLES OF SYSTEMIC THERAPY

First-Line Systemic Therapy

Preferred Regimens	Other Recommended Regimens	Useful in Certain Circumstances
 Atezolizumab + bevacizumab (Child-Pugh Class A only) (category 1)^{a,b,c,1} Tremelimumab-actl + durvalumab (category 1)^{b,2} 	 Sorafenib (Child-Pugh Class A) ([category 1] or B7)^{d,e,3,4} Lenvatinib (Child-Pugh Class A only)^{5,6} (category 1) Durvalumab^{b,7} Pembrolizumab^{b,8} (category 2B) 	 Nivolumab^{b,9} (if ineligible for tyrosine kinase inhibitors [TKIs] or other anti-angiogenic agents) (Child-Pugh Class A or B) (category 2B)
Subsequent-Line Therapy ^f if Disease Progression ^g		
Options	Other Recommended Regimens	Useful in Certain Circumstances
 Regorafenib (Child-Pugh Class A only) (category 1)^{h,10} Cabozantinib (Child-Pugh Class A only) (category 1)^{i,11} Ramucirumab (AFP ≥400 ng/mL and Child-Pugh 	 Nivolumab + ipilimumab (Child-Pugh Class A only)^{b,i,13} Pembrolizumab 	 Nivolumab (Child-Pugh Class B only)^{b,j,17-20} (category 2B) Dostarlimab-gxly^{b,j,l,21,22} for MSI-H/dMMR tumors

Current Summary of $\geq 2^{nd}$ Line HCC Therapy

- 2nd line treatment options:
 - Anti-angiogenic: Regorafenib, cabozantinib, ramucirumab (if AFP ≥ 400 ng/mL)
 - Lenvatinib, sorafenib also reasonable options
 - Immunotherapy: Pembrolizumab, nivolumab + ipilimumab
- All current FDA-approved treatments have been studied after 1st line sorafenib (or as 1st line)
- Current selection of 2nd line treatment is based upon 1st line therapy received plus comorbidity profile
- Need $\geq 2^{nd}$ line clinical trials to inform choice of treatment after ICI-based 1st line therapy
 - Phase 3 IMbrave251 trial ongoing of 2nd line sorafenib or lenvatinib ± atezolizumab (NCT04770896)
- New immuno-oncology strategies and combinations are being studied in early-phase trials

IMbrave251 Study Design

Efficacy objectives

- Primary: OS
- Secondary: PFS,* ORR,* DoR,* TTP,* TTD in PROs

Safety objective

 Incidence and severity of AEs

Exploratory objectives

- Biomarkers
- Pharmacokinetics

NCT04770896

New Agents and Strategies Under Investigation for Subsequent HCC Therapy

- ICI combinations with targeted therapies
- ICI combinations with complementary immune checkpoint pathways
 - LAG-3, TIGIT, others
- Inhibition of immunosuppressive myeloid pathways
- Promoting/boosting tumor immunogenicity
 - Locoregional therapy combinations, oncolytic viruses, cellular therapies targeting tumor antigens
- Many others!

MODULE 3: Current and Future Role of Immunotherapy in the Treatment of Advanced Biliary Tract Cancers (BTCs) — Prof Vogel

Case Presentation: 75-year-old woman with metastatic cholangiocarcinoma who received first-line gemcitabine/ cisplatin with durvalumab

Dr Warren Brenner (Boca Raton, Florida)

QUESTIONS FOR THE FACULTY

"My questions for the investigators are...

Are there subtypes, such as gallbladder cancer versus intrahepatic versus extrahepatic cholangiocarcinoma, that may respond differently to these agents, particularly checkpoint inhibitors?

Warren S Brenner, MD

Is there any differential effect based on PD-L1 and tumor mutational burden? And what are the management options for patients with progressive disease who have no targetable mutations?

Another question for the investigators is, there are a lot of liquid biopsies with high tumor mutational burden readings. I think the original pembrolizumab pan-tumor approval was based on the Foundation TMB. Do they use tumor mutational burden reported on liquid biopsies?"

Case Presentation: 72-year-old man with localized cholangiocarcinoma deemed potentially resectable with tumor response

Dr Jeremy Lorber (Beverly Hills, California)

QUESTIONS FOR THE FACULTY

Jeremy Lorber, MD

"The surgeon deemed him not a surgical candidate for the time being but potentially in the future. He's thus far had a partial response to durvalumab, gemcitabine and cisplatin. He's tolerated it very well. He's still not a perfect surgical candidate, and the surgeon ideally would like further response before considering resection. Any suggestions? Would you consider radiation therapy?"

Current and Future Role of Immunotherapy in the Treatment of Advanced Biliary Tract Cancers (BTCs)

Arndt Vogel

Biliary Tract Cancers: a heterogeneous disease entity

Anatomic heterogeneity

Genetic heterogeneity

Banales et al. Nat Rev Gastroent Hepatol 2020

Vogel/Saborowski Journal of Hepatology, 2022

Diagnosis and Management of Biliary Tract Cancer

Vogel A et al. Annals of Oncology 2022

BTC: low prevalence of established IO biomarkers

TMB^{high} 226/6130 iCCAs (3.7%)

MSI^{high} 75/6130 iCCAs (1.2%)

Vogel/Saborowski Journal of Hepatology 2002

Biliary Tract Cancers: 10-30% with "immunogenic" phenotype according to "multi-omic" classification

Extrahepatic CCA, n=189; \rightarrow 11% immune subclass

Montal et al, J. Hepatol 2020

Intrahepatic CCA, n=900 \rightarrow 10% immune classical

Martin-Serrano et al, GUT 2022

Intrahepatic, n=566 \rightarrow 13% immunogenic

Job et al. Hepatology 2020

Intra- and extrahepatic, n=217 \rightarrow 30% "immun-responsive"

Deng et al, Hepatology 2022

Pembrolizumab in Advanced BTC with Proficient MMR/MSS: KEYNOTE-158

N=104, multicenter basket trial biliary tract cancer (BTC) cohort with planned biomarker analyses

 \geq 1 prior line of therapy, median 2

ICC, ECC, GBC % not reported

PD-L1+ (CPS ≥1, 22C3) 59%

99 with proficient mismatch repair (pMMR), 5 unknown

Treatment-related AE Grade 3-5 in 13.5% Confirmed PR (central) in 5.8% overall 6.6% for PD-L1+ 2.9% PD-L1mPFS 2.0 months mOS 7.4 months

Chemo-free approaches: IO +/- MEK in BTC: Atezolizumab (PD-L1) + Cobimetinib (MEK)

Rationale:

MEK inhibition enhances MHC1 expression, PD-L1 expression, and CD8+ T cell infiltration

Formally positive (primary EP PFS) Low ORR

Yarchoan et al, JCI 2021

IO + anti-angiogenic Pembrolizumab/Lenvatinib

N= 32 PFS 4.9 mo OS: 11.0 mo ORR: 25% AB

AE 3/4: 62%

Lin J, et al. Hepatobiliary Surg Nutr. 2020

IO + IO (BTC subgroup CA209-538) Nivolumab/Ipilimumab

N= 39 PFS: 2.9 mo OS: 5.7 mo ORR: 23%

IR-AE: 49% (15% >= 3°)

Table 2. Antitumor Activity of Ipilimumab and Nivolumab

	No. (%)					
	-		Cholangiocarcinoma			
Best overall response	Total cohort (n = 39)	Gallbladder (n = 13)	Intrahepatic (n = 16)	Extrahepatic (n = 10)		
Objective response rate (CR or PR)	9 (23)	4 (31)	5 (31)	0		
Disease control rate (CR, PR, or SD)	17 (44)	9 (70)	7 (44)	1 (10)		
CR	0	0	0	0		
PR	9 (23)	4 (31)	5 (31)	0		
SD	8 (21)	5 (39)	2 (13)	1 (10)		
No assessment ^a	9 (23)	2 (15)	3 (19)	4 (40)		
Progressive disease	13 (33)	2 (15)	6 (37)	5 (50)		
Duration of response, median (range), mo ^b	Not reached (2.5-23+)	2.5+, 5.7, 11.8+, and 23+ mo	3, 4.2, 9, 10.8, and 14.8 mo	NA		

Klein et al, JAMA Oncol 2020

MediTreme Study: Best Objective Response

- Objective response rates were similar in the GemCis + D cohort and GemCis + D + T cohort, and were higher compared with the BMC.
- Complete response rates were lower in GemCis + D + T cohort, whereas BMC and GemCis + D cohorts exhibited similar CR rates.
- GemCis + D + T cohort had the highest partial response rate among the three cohorts.
- The Biomarker cohort had the highest rate of stable disease among the three cohorts.
- Disease progression was not observed in the GemCis + D cohort.

CR = complete response; D = durvalumab; GemCis = gemcitabine/cisplatin; OS = median overall survival; RR = response rates; PD = progressive disease; PR = partial response; SD = stable disease; T = tremelimumab.

Oh D-Y et al. Poster presented at ASCO Virtual Annual Meeting; May 29-31, 2020.

IO-Phase-III studies in BTC: TOPAZ-1 & KEYNOTE-966

TOPAZ-1: Durvalumab + GemCis Improved OS vs. GemCis

Oh D-Y, et al. @ ASCO GI

Efficacy data 2ndary objectives: PFS and ORR

Relevant Subgroups: "RACE"

	Durvalumab + GemCis (n=341)	Placebo + GemCis (n=344)
Region, n (%)		
Asia	178 (52.2)	196 (57.0)
Rest of the world	163 (47.8)	148 (43.0)

Oh D-Y et al. Gastrointestinal Cancers Symposium 2022.

ORR MEDITREME (Chemo + Durva, all Asian): 73% ORR Topaz: 26%

Relevant Subgroups: "anatomic location"

	,					ا + G	Durvalumab emCis (n=341)			+ Ge	Placebo mCis (n=344)
Primary tumor lo Intrahepatic ch Extrahepatic c Gallbladder ca	br location at diagnosis, n (%) 190 (55.7) 193 c cholangiocarcinoma 66 (19.4) 65 r cancer 85 (24.9) 86			193 (56.1) 65 (18.9) 86 (25.0)							
Primary tum	or location	IC E' G	CC CC BC 0.1				بــــــــــــــــــــــــــــــــــــ	Hazard	1 1 1 1 ratio (95% CI	1.5	0.76 (0.58–0.98) 0.76 (0.49–1.19) 0.94 (0.65–1.37)
							Favors durvalu	imab + Gem	Cis Favors p	lacebo +	GemCis
Primary tumor site	80		_			0.57 (0.34, 0.04)					
Extrahenatic	73					0.37 (0.34-0.94)		On	D-Y et al. Ga	strointes	tinal Cancers Symposium 2022.
Hilar	57	-		1		0.59 (0.32-1.09)					
Gallbladder	149					0.61 (0.42-0.89)					
Ampulla	20	-			_	0.62 (0.21-1.82)					
Not specified	31			+		0.98 (0.46-2.11)					
		0.25	0.50	1.00	2.00						
		Cispla	tin–Gemcitabine Better	Gemcita Bette	bine er						

Valle et al, NEJM 2010

Adverse events profile

-	Durvalumab + GemCis (n=338)	Placebo + GemCis (n=342)
Any grade 3/4 AE	256 (75.7)	266 (77.8)
Any grade 3/4 TRAE	212 (62.7)	222 (64.9)

No added Durvalumab-associated toxicity

Immune-mediated AEs

Event, n (%)	Durva + GemCi	lumab s (n=338)	Placebo + GemCis (n=342)		
	Any grade	Grade ≥3	Any grade	Grade ≥3	
Any immune-mediated AE*	43 (12.7)	8 (2.4)	16 (4.7)	5 (1.5)	
Hypothyroid events	20 (5.9)	0	5 (1.5)	0	
Dermatitis/rash	12 (3.6)	3 (0.9)	1 (0.3)	0	
Pneumonitis	3 (0.9)	1 (0.3)	2 (0.6)	1 (0.3)	
Hepatic events	4 (1.2)	2 (0.6)	2 (0.6)	1 (0.3)	
Adrenal insufficiency	4 (1.2)	0	1 (0.3)	0	
Diarrhea/colitis	2 (0.6)	1 (0.3)	1 (0.3)	1 (0.3)	
Hyperthyroid events	2 (0.6)	0	0	0	
Type 1 diabetes mellitus	1 (0.3)	1 (0.3)	0	0	
Pancreatic events	1 (0.3)	0	2 (0.6)	1 (0.3)	
Hypophysitis	1 (0.3)	0	0	0	
Thyroiditis	1 (0.3)	0	0	0	
Renal events	0	0	2 (0.6)	0	
Myositis	0	0	1 (0.3)	1 (0.3)	
Other rare/miscellaneous [†]	1 (0.3)	1 (0.3)	1 (0.3)	1 (0.3)	

irAE: 12.7%

9.5% Hypothyroid events or Dermatitis

Oh D-Y et al. Gastrointestinal Cancers Symposium 2022.

TOPAZ update @ ESMO 2022

Table 1. Best objective response

	Durvalumab + GemCis (N=341)	Placebo + GemCis (N=343)
Responders, ^{1,*} n (%)	91 (26.7)	64 (18.7)
Complete response,1 n (%)	7 (2.1)	2 (0.6)
Partial response,1 n (%)	84 (24.6)	62 (18.1)
Non-responders, n (%)	250 (73.3)	279 (81.3)
Stable disease, n (%)	200 (58.7)	220 (64.1)
Progressive disease, [†] n (%)	47 (13.8)	51 (14.9)
Not evaluable	3 (0.9)	8 (2.3)

*Confirmed response; [†]Death recorded within 13 weeks after randomisation is considered progression GemCis, gemcitabine and cisplatin

Do-Youn Oh et al, ESMO 2022 poster 56P

Responders: late separation, but strong long-term effect

SD: early & continuous separation

PD: no separation

Speculation: "initial 6 mo" of responses influenced by "lifting" of selected SD pts

OS in subgroups by PD-L1 expression

Tumor Area Positivity (TAP) score using the Ventana PD-L1 (SP263) Assay

at any intensity (TAP score)

IMMUCHEC: an exploratory IO trial in BTC

Aim: identify early "signal of activity" for different IO combinations

Cis: 25 mg/m² on D1 + D8; Q3W; max. 8 cycles in Arm B + D + E & max. number of cycles at investigator's discretion in Arm C

Arndt Vogel

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

IMMUCHEC: an exploratory IO trial in BTC

Objective Response Rate (ORR) as per investigators' assessment according to RECIST v1.1

What did we learn?

- 1. Addition of IO to chemo did not improve ORR (negative trial)
 - 1. compared to TOPAZ: small cohort?
 - 2. compared to TOPAZ: non-Asian cohort
- 2. mOS in control arm longer than in previous phase 2 and 3 trials
 - 1. small cohort
 - 2. overall improved post progression care in participating institutions?
- 3. Omitting Platinum cannot be compensated for by IO
- 4. Trend for improved OS in ArmD (Gem/Cis + Durva + single dose Tremelimumab)

Rationale ADVANCE:

Molecular Subclasses of iCCA

	Int	flamed iCCA	Non-Infl	amed iCCA	>
	Immune Classical	Inflammatory Stroma	Hepatic Stem-like	Tumor Classical	Desert-like
	High immune				Low immune recruitment
Immune & Stroma		Stromal deposition			
	Type I IFN	T exhaustion	M2 macrophages		Tregs
Structural aberrations	753 mut	KRAS mut	BAP1, IDH1/2 mut, FGFR2 fus. Focal CNV losses (i.e. SAV1)	KRAS mut	Focal CNV losses + <i>TP53</i> mut
Signaling pathways	Metabolism	TGFB/AKT/mTOR	NOTCH/YAP1	MYC Cell cycle	Mitotic spindle, WNT

Martin-Serrano et al, GUT 2022

Derazantinib targets: Atez FGFR1 FGFR2 FGFR3 PD CSF1-R VEGF-R2

Atezolizumab:

Derazantinib "sensitizes" to IO

- Reprogram suppressive M2 macrophages
- Restore T-cell activity
- Improve susceptibility to IO

Ongoing Trials IO + Chemo 1st line

	Arm A	Arm B	Primary EP	Populati on
KEYNOTE-966 * Phase 3 NCT04003636	Gem/Cis	Gem/Cis/ Pembro	OS	1st line N = 1048
IMbrave151 Phase 2 * NCT04677504	Gem/Cis/ Atezo	Gem/Cis/ Atezo/Bev	PFS	1st line N = 150

* RESULTS EXPECTED EARLY 2023

Ongoing IO + Locoregional Therapy (LRT) Combinations in Advanced BTC

Combination Targets	Agents	Trial Design: Phase, Population	Sample Size	NCT		
ICI + LRT	Durvalumab ± tremelimumab + ablation	Phase 2, advanced HCC or BTC	90	NCT02821754		
	Durvalumab + tremelimumab + RT	Phase 2, advanced >1L HCC or BTC	70	NCT03482102		
	Durvalumab ± tremelimumab + Y90 SIRT	Phase 2, locally-advanced ICC	50	NCT04238637		
	Nivolumab + RT ± ipilimumab	RP2, advanced BTC or pancreas cancer	160	NCT02866383		
Key: 1L=1 st line; 2L=2 nd line; RP2, RP3=randomized phase 2 or 3 trial; LRT=locoregional therapy; RT=radiation therapy; SIRT=selective internal radiation therapy						

TAKE HOME: Immunotherapy in BTC

TOPAZ-1: Positive Phase III data and FDA approval for Gem/Cis + Durvalumab (vs Gem/Cis)

- →FDA & EMA approved
- \rightarrow subgroup analysis:
- \rightarrow no significant difference depending on region/ethnicity and tumor location (trends?)

No established biomarker to select for patients who benefit from IO

 \rightarrow personal opinion: there will not be a "single" marker

Data expected in the near future:

KN-966 (Gem/Cis +- Pembro) Combination of IO+ locoregional therapies Combination of IO+ targeted therapies

MODULE 4: Integration of Targeted Therapy into the Management of Advanced BTCs — Dr Goyal

Dr Lionel Kankeu Fonkoua (Rochester, Minnesota)

77-year-old woman with intrahepatic cholangiocarcinoma considered unresectable an FGFR2-KIAA1598 fusion was detected on NGS

60-year-old man with metastatic cholangiocarcinoma with severe muscle pain on pemigatinib

Dr Joseph Martins (Tyler, Texas)

QUESTIONS FOR THE FACULTY

Lionel A Kankeu Fonkoua, MD

"She wanted to preserve her quality of life and was very reluctant to try chemotherapy, so we started pemigatinib. She has mild hyperphosphatemia, which we managed with dietary changes. Otherwise, she tolerated it well. Her 6-month PET restaging demonstrated that the avidity had resolved, so very impressive response with just pemigatinib.

We had her evaluated by a surgeon, and she was taken for a left hepatectomy and now is under surveillance. Is there any role for using cfDNA as part of the surveillance strategy but also to pick up potential clonal mutations that may evolve?"

QUESTIONS FOR THE FACULTY

Joseph Martins, MD

"We were thinking of hospice for him, but the next-generation sequencing showed an FGFR fusion, so we started pemigatinib.

Immediately, his tumor markers started coming down, his liver pain got better and now he's doing great. However, he's having a lot of bone and muscle pain, which is a listed side effect of that drug.

Have they seen muscle aches and muscle pain bad enough to cause a need for hydrocodone? What other side effects are seen? How do they deal with hyperphosphatemia?"

Dr Farshid Dayyani (Orange, California)

53-year-old man with recurrent metastatic cholangiocarcinoma with a BRAF V600E mutation treated with dabrafenib/trametinib

64-year-old woman with cholangiocarcinoma with an IDH1 mutation is treated with ivosidenib

Dr Niyati Nathwani (Charlotte, North Carolina)

QUESTIONS FOR THE FACULTY

Farshid Dayyani, MD, PhD

"He had a great quick response. Within 4 weeks, his CA19-9 normalized, and the MRD assay turned negative. He trucked along for about a year, but more recently his Signatera has slowly gone up. I repeated his liquid biopsy, and the BRAF clone is gone and his original p53-mutant clone is taking over. The question is, do you continue dabrafenib/trametinib or switch to another regimen?"

QUESTIONS FOR THE FACULTY

Niyati A Nathwani, MD

"She's currently getting concurrent treatment with radiation and capecitabine. We also did biomarker testing, which did show an IDH1 mutation. Should we use ivosidenib after completing concurrent chemoradiation? I'm guessing there's no differentiation syndrome with this agent in cholangiocarcinoma, but what is their experience with this?"

Integration of Targeted Therapy into the Management of Advanced BTCs

Lipika Goyal, MD, Mphil Associate Professor Director of Gastrointestinal Oncology Stanford School of Medicine Research to Practice CME 2023 ASCO Gastrointestinal Cancers Symposium January 20, 2023

Systemic Therapy for Cholangiocarcinoma

BRAF, v-raf murine sarcoma viral oncogene homolog B; CAR, chimeric antigen receptor; FGFR2, fibroblast growth factor receptor 2; FOLFOX, folinic acid, fluorouracil and oxaliplatin; HER2, human epidermal growth factor receptor; IDH, isocitrate dehydrogenase; MAPK, mitogen-activated protein kinase; NTRK, neurotrophic tyrosine kinase; PI3K, phosphatidylinositol-3-kinase; RET, rearranged during transfection. Image credit: Clipart Panda.
Anatomic Classification of Biliary Tract Cancer

Goyal L, et al. *N Engl J Med*, 2022

Biliary Tract Cancer: Frequent Actionable Alterations

FGFR1-3 fusions, mutations, and amplifications (3%)

IDH1/2 mutation (2%)

EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; GBCA, gallbladder carcinoma; HER2, human epidermal growth factor receptor 2; ICC, intrahepatic cholangiocarcinoma; IDH, isocitrate dehydrogenase; MAP, mitogen-activated protein kinase; MET, mesenchymal to epithelial transition; PIK3CA, phosphatidylinositol 3-kinase catalytic alpha polypeptide; RET, rearranged during transfection; RNF43, ring finger protein 43. Adapted from Valle JW, et al. Cancer Discov 2017;7(9):943–962.

Role for Liquid Biopsy in Biliary Tract Cancer?

Evaluating Targeted Therapy in an Uncommon Cancer: Approaches

ABC10, ABC transporter 10; BRAF, v-raf murine sarcoma viral oncogene homolog B; FGFR2, fibroblast growth factor receptor 2; HER2, human epidermal growth factor 2; IDH, isocitrate dehydrogenase; MSI, microsatellite instability; NTRK, neurotrophic tyrosine receptor kinase; RET, rearranged during transfection. Valle JW, et al. Cancer Discov 2017;7(9):943–962.

Selective FGFR Inhibitors for FGFR2 Fusions or Rearrangement Positive Cholangiocarcinoma^{1–4}

ORR: 35.5% (updated: 37.0%) DCR: 82.2% (updated 82.4%) PFS (updated): 7.0 months ORR: 18.8% (updated: 23.1%) DCR: 83.3% (updated: 84.3%) PFS (updated): 7.3 months

ATP, adenosine triphosphate; DCR, disease control rate; FGFR, fibroblast growth factor receptor; ORR, overall response rate; PFS, progression-free survival. 1. Javle M, et al. J Clin Oncol 2018;36(3):276–282; 2. Javle M, et al. ASCO Gastrointestinal (GI) Cancers Symposium, 2021; 3. Abou-Alfa GK, et al. Lancet Oncol 2020;21(5):671–684; 4. Abou-Alfa GK et al. ASCO 2021;Abstract 4086.

FOENIX-CCA2 Study of Futibatinib for FGFR2-Rearranged Intrahepatic Cholangiocarcinoma

ORR: 42% Median duration of response: 9.7 months PFS: 9.0 months

RLY-4008, FGFR2-specific inhibitor, in FGFR2-fusion or Rearrangement+ Cholangiocarcinoma

Radiographic tumor regression and response per RECIST 1.1 across all doses

BID, twice daily; BOR, best overall response; CCA, cholangiocarcinoma; DoR, duration of response; FGFR, fibroblast growth factor receptors; FGFRi, fibroblast growth factor receptor inhibitor; ORR, objective response rate; PD, progressive disease; PR, partial response; QD, once daily; QDi once daily on an intermittent schedule; RP2D, recommended phase 2 dose; SD, stable disease; uPR, unconfirmed partial response. Hollebecque A, et al. Ann Onc 2022;33(suppl_7):S808-S869.

A Phase II Study Of FGFR1-3 Inhibitor Tinengotinib As Monotherapy In Patients With Advanced Or Metastatic Cholangiocarcinoma :Interim Analysis

Figure 2. Study Design

Patients

- ≥18 years, advanced/metastatic CCA with/without FGFR alterations;
- At least one line of prior systemic chemotherapy;
- ECOG ≤ 1;
- measurable lesion as defined by RECIST V1.1 criteria
- Adequate organ function

Oral tinengotinib 10 mg once daily 28-day cycles Until progression or toxicity

F/R: FGFR2 fusion or rearrangement.

Subject 02-040, 01-037, 01-044 no baseline cfDNA NGS data was detected, only historical FGFR data available.

RAGNAR Trial of Erdafitinib for Cholangiocarcinoma with Prespecified FGFR Alterations: Expansion Cohort Results

Randomized, double-blind, placebo-controlled, multicenter phase 3 trial

Key eligibility criteria

- ≥18 years of age
- · Histologically confirmed diagnosis of cholangiocarcinoma
- Centrally confirmed IDH1 mutation status by next-generation sequencing
- ECOG performance status score 0 or 1
- 1–2 prior therapies (at least 1 gemcitabine- or 5-fluorouracil-containing regimen)
- Measurable lesion as defined by RECIST v1.1
- Adequate hematologic, hepatic and renal function

Primary end point: PFS Secondary end points: OS, ORR, safety, QOL

An independent data monitoring throughout the study

ECOG, Eastern Cooperative Oncology Group; IDH, isocitrate dehydrogenase; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; QD, once daily; QOL, quality of life; RECIST, Response Evaluation Criteria in Solid Tumors. Abou-Alfa GK, et al. Lancet Oncol 2020;21:796-807; NCT02989857.

Ivosidenib in IDH-Mutant Cholangiocarcinoma (Contd.)

CI, confidence interval; HR, hazard ratio; IDH1, isocitrate dehydrogenase 1; PFS, progression-free survival. Abou-Alfa GK, et al. Lancet Oncol 2020;21:796–807.

Evaluating Targeted Therapy in an Uncommon Cancer: Approaches

ABC10, ABC transporter 10; BRAF, v-raf murine sarcoma viral oncogene homolog B; FGFR2, fibroblast growth factor receptor 2; HER2, human epidermal growth factor 2; IDH, isocitrate dehydrogenase; MSI, microsatellite instability; NTRK, neurotrophic tyrosine receptor kinase; RET, rearranged during transfection. Valle JW, et al. Cancer Discov 2017;7(9):943–962.

Dabrafenib/Trametinib: ROAR

Phase 2 Study: BRAF V600E–Mutant Advanced Solid Tumors

BID, twice daily; BRAF, v-raf murine sarcoma viral oncogene homolog B; BTC, biliary tract cancer; BID, twice daily; DOR, duration of response; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; QD, once daily; RECIST, Response Evaluation Criteria in Solid Tumors; WHO, World Health Organization. Wainberg ZA, et al,. J Clin Onc 2019 37:4(Suppl):187–187.

Dabrafenib/Trametinib: ROAR

CI, confidence interval; DOR, duration of response; ORR, objective response rate; OS, overall survival; PFS, progression-free survival. Subbiah V, et al. Lancet Oncol 2020; 21:1234–43.

Targeting HER2 overexpression/amplification

Zanidatamab

ORR 23% Median DOR 10.8 months (0.7-25.4) N=39 patients

ORR 36.4% Median DOR 7.4 months (n=22) ORR 40% Median DOR 7.4 months (3.2-NE) (n=20)

DOR, duration of response; HER2, human epidermal growth factor receptor 2; ORR, objective response rate

Javle M et al. Lancet Oncol 2021;22(9):1290-1300; Ohba A et al. ASCO 2022; Abstract 4006; Meric-Bernstam F et al. Gastrointestinal Cancers Symposium 2021; Abstract 299.

Targeting NTRK and RET Fusions

Larotrectinib in TRK Fusion–Positive Cancers

Entrectinib in NTRK Fusion-positive Solid Tumors A 40 **ORR 57%** change from baseline in sum of largest diameter in target lesions (%) 20 0 -20 -40 Cholangiocarcinoma Colorectal -60 Breast Sarcoma Gvnaecological Pancreatic Greatest -80 Thyroid NSCLC MASC Neuroendocrine tumou -100 Patients

Pralsetinib in RET Fusion-positive Solid Tumors

Selpercatinib in RET Fusion–positive Solid Tumors

Drilon A, et al, N Engl J Med 2018;378:731–9; Doebele RC, et al. Lancet Oncol. 2020;21(2):271–282; Subbiah V, et al, 2022 Nat Med 2022;28:1640–1645; Subbiah V, et al. Lancet Oncol 2022;12:S1470-2045(22)00541–1

Other Actionable Signatures in Cholangiocarcinoma^{1,2}

BRCA, breast cancer gene; DNA, deoxyribonucleic acid; KRAS, Kirsten rat sarcoma viral oncogene homolog; PIK3CA, phosphatidylinositol-4,5-biphosphate 3-kinase catalyic alpha polypeptide; RNF43, ring finger protein 43; RSPO, recurrent R-spondin. 1. Valle JW, et al. Cancer Discov 2017;7(9):943–962; 2. Le DT, et al. Science 2017;357(6349):409–413.

NCCN NCCN Netwo	nal prehensive NC er Bil prk®	CN Guidelines Version 5.2022 iary Tract Cancers		NCCN Guidelines Index Table of Contents Discussion
		PRINCIPLES OF SYSTEMIC THE	RAPY	
Primary Treatme	ent for Unresectab	le and Metastatic Disease		
Preferred Regime	ns	Other Recommended Regimens	Useful in Certain C	<u>Circumstances</u>
 Gemcitabine + ci Durvalumab + ge cisplatin (catego 	isplatin ⁴ (category 1 emcitabine + ory 1) ^{d,e,5}	 5-fluorouracil + oxaliplatin 5-fluorouracil + cisplatin (category 2B) Capecitabine + cisplatin (category 2B) Capecitabine + oxaliplatin Gemcitabine + albumin-bound paclitaxel Gemcitabine + capecitabine Gemcitabine + oxaliplatin Gemcitabine + cisplatin + albumin-bound paclitax Single agents: 5-fluorouracil Capecitabine Gemcitabine 	 For NTRK gene for Entrectinib⁶⁻⁸ Larotrectinib⁹ For MSI-H/dMMR Pembrolizumab For RET gene fus Pralsetinib (cate Selpercatinib for 	usion-positive tumors: tumors: e,f,10,11 sion-positive tumors: egory 2B) ¹² or CCA (category 2B) ¹²
Subsequent-Line	Therapy for Biliar	y Tract Cancers if Disease Progression ^g		
Preferred Regimen • FOLFOX ¹⁴	 Other Recomme FOLFIRI¹⁵ (cate Regorafenib¹⁶ Liposomal irino Durvalumab + g See also: Prefe and Metastatic 	nded Regimens egory 2B) (category 2B) otecan + fluorouracil + leucovorin (category 2B) ¹⁷ gemcitabine + cisplatin (category 2B) ^{e,h,5} rred and Other Recommended Regimens for Unresect Disease above	table • For NSI-H/dMMR tumors: • Pembrolizumab ^{e,f,h,10,11} • Dostarlimab-gxly ^{e,h,i,18,19} • For MSI - H/tumors: • Category 2B)	or CCA with <i>IDH1</i> nutations Ivosidenib ^{26,27} or <i>RET</i> gene fusion- ositive tumors: Selpercatinib for CCA ¹³ Pralsetinib (category 2B) ¹²
Durvalumab + gemcit recurrent disease >6 i See NCCN Guideline There are limited clinic Molecular profiling of 2019;25:744-750. Treatment selection of dysfunction. For patients who hav subsequent use of im Dostarlimab-gxly is a i that have progressed An FDA-approved bio	tabine + cisplatin is also months after surgery with s for Management of Im cal trial data to support p cancer patients enables depends on clinical factor e not been previously tre munotherapy in patients recommended treatmen on or following prior treat similar is an appropriate	a recommended treatment option for patients who developed th curative intent and >6 months after completion of adjuvant the <u>munotherapy-Related Toxicities</u> . Dembrolizumab in this setting. Sicklick JK, Kato S, Okamura R, e personalized combination therapy: the I-PREDICT study. Nat M ors including previous treatment regimen/agent and extent of five eated with a checkpoint inhibitor because there is a lack of data is who have previously been treated with a checkpoint inhibitor. t option for patients with MSI-H/dMMR recurrent or advanced turatment and who have no satisfactory alternative treatment option substitute for trastuzumab.	• For IMB-H tumors: • Pembrolizumab ^{e,f,h,20} • For <i>BRAF</i> -V600E mutated tumors • Dabrafenib + (constrained trametinib ^{21,22} • For CCA with pro- r <i>FGFR2</i> fusions or r rearrangements: • Pemigatinib ²³ • Infigratinib ²⁴ • Futibatinib ²⁵ is.	or HER2-positive tumors: Trastuzumab ¹ + pertuzumab ²⁸ ivolumab ^{e,h,29} category 2B) envatinib + embrolizumab ^{e,h,30} category 2B)

Conclusions

Precision Oncology is Key for Management of Advanced Cholangiocarcinoma

2L, second line; BRAF, v-raf murine sarcoma viral oncogene homolog B; FDA, US Food and Drug Administration; FGFR, fibroblast growth factor receptor; FOLFOX, folinic acid, fluorouracil and oxaliplatin; Gem/Cis, gemcitabine/ cisplatin; IDH, isocitrate dehydrogenase; MEK, mitogen-activated protein kinase kinase; MSI, microsatellite instability; NTRK, neurotrophic tyrosine kinase.

1.

2.

Valle JW, et al. Cancer Discov 2017;7(9):943–962; Goyal L, et al. Cancer Treat Rev 2021;95:102170; National Comprehensive Cancer Network (2021). Hepatobiliary cancers: NCCN evidence blocks. Version 1.2021. Available at: https://www.nccn.org/professionals/physician_gls/pdf/hepatobiliary_blocks.pdf; Abou-Alfa GK, et al (2019). Ann Oncol (ESMO Congress Abstracts), 30(suppl_5). Abstract 1867; Subbiah V, et al. Lancet 2020;21(9):1234–1243.

Cases from the Community: Investigators Discuss Available Research Guiding the Care of Patients with Hepatobiliary Cancers

Part 3 of a 3-Part CME Symposium Series Held in Conjunction with the 2023 ASCO Gastrointestinal Cancers Symposium

> Friday, January 20, 2023 6:00 PM – 7:30 PM PT

Faculty

Richard S Finn, MD Lipika Goyal, MD, MPhil **Professor Arndt Vogel, MD**

Moderator Robin K (Katie) Kelley, MD

Thank you for attending!

CME Credit Information

For those participating in person today, please remit your CME credit form as you exit the meeting room.

For all others, a CME credit link will be provided in the chat room at the conclusion of the program.

