Video Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Breast Cancer

A CME Symposium Held in Conjunction with the 2023 ASCO[®] Annual Meeting

Monday, June 5, 2023 7:00 PM – 9:30 PM CT Faculty Komal Jhaveri, MD Joyce O'Shaughnessy, MD Kevin Kalinsky, MD, MS Hope S Rugo, MD Ian E Krop, MD, PhD Prof Peter Schmid, FRCP, MD, PhD

> Moderator Neil Love, MD

Faculty

Komal Jhaveri, MD

Associate Attending Physician Breast Medicine Service and Early Drug Development Service Section Head, Endocrine Therapy Research Program Clinical Director, Early Drug Development Service Department of Medicine Memorial Sloan Kettering Cancer Center Assistant Professor of Medicine Weill Cornell College of Medicine New York, New York

Kevin Kalinsky, MD, MS

Associate Professor Department of Hematology and Medical Oncology Emory University School of Medicine Director, Glenn Family Breast Center Director, Breast Medical Oncology Winship Cancer Institute of Emory University Atlanta, Georgia

Ian E Krop, MD, PhD Associate Cancer Center Director for Clinical Research Director, Clinical Trials Office Yale Cancer Center New Haven, Connecticut

Cancer Research Baylor University Medical Center Director, Breast Cancer Research Program Texas Oncology US Oncology Dallas, Texas

Joyce O'Shaughnessy, MD

Celebrating Women Chair in Breast

Hope S Rugo, MD
Professor of Medicine
Director, Breast Oncology and Clinical Trials Education
University of California, San Francisco
Helen Diller Family Comprehensive Cancer Center
San Francisco, California

Professor Peter Schmid, FRCP, MD, PhD Lead, Centre of Experimental Cancer Medicine Barts Cancer Institute London, United Kingdom

Moderator Neil Love, MD Research To Practice Miami, Florida

Contributing Investigators

Sara A Hurvitz, MD

Professor of Medicine Director, Breast Cancer Clinical Trials Program Division of Hematology-Oncology David Geffen School of Medicine at UCLA Los Angeles, California

Tiffany A Traina, MD, FASCO Vice Chair, Department of Medicine Section Head, Triple-Negative Breast Cancer Clinical Research Program Associate Attending Physician Breast Medicine Service Memorial Sloan Kettering Cancer Center Associate Professor Weill Cornell Medical College New York, New York

Sara M Tolaney, MD, MPH

Chief, Division of Breast Oncology Associate Director, Susan F Smith Center for Women's Cancers Senior Physician Dana-Farber Cancer Institute Associate Professor of Medicine Harvard Medical School Boston, Massachusetts

The consulting investigator interviews will be developed into a special program.

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

An email will be sent to all attendees when the activity is available.

Dr Hurvitz — Disclosures

Contracted Research	Ambrx, Amgen Inc, Arvinas, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Celcuity, CytomX Therapeutics, Daiichi Sankyo Inc, Dantari, Dignitana AB, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, Greenwich LifeSciences Inc, GSK, Lilly, MacroGenics Inc, Novartis, OBI Pharma Inc, Orinove Inc, Orum Therapeutics, Pfizer Inc, Phoenix Molecular Designs, Pieris Pharmaceuticals Inc, Puma Biotechnology Inc, Radius Health Inc, Samumed, Sanofi, Seagen Inc, Stemline Therapeutics Inc, Zymeworks Inc	
Nonrelevant Financial Relationship	Ideal Implant (spouse)	

Dr Jhaveri — Disclosures

Consultant/Advisory Board	AbbVie Inc, AstraZeneca Pharmaceuticals LP, Blueprint Medicines, Bristol Myers Squibb, Daiichi Sankyo Inc, Eisai Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, Jounce Therapeutics, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Menarini Group, Novartis, Olema Oncology, Pfizer Inc, Scorpion Therapeutics, Seagen Inc, Stemline Therapeutics Inc, Sun Pharma Advanced Research Company Ltd, Taiho Oncology Inc
Research Funding	AstraZeneca Pharmaceuticals LP, Debiopharm, Genentech, a member of the Roche Group, Gilead Sciences Inc, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Novartis, Pfizer Inc, Puma Biotechnology Inc, Scorpion Therapeutics, Zymeworks Inc

Dr Kalinsky — Disclosures

Advisory Committee	4D Pharma PLC, AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Gilead Sciences Inc, Lilly, Menarini Silicon Biosystems, Merck, Mersana Therapeutics Inc, Myovant Sciences, Novartis, OncoSec Medical, Pfizer Inc, Puma Biotechnology Inc, Seagen Inc, Takeda Pharmaceuticals USA Inc
Contracted Research	Ascentage Pharma, AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Lilly, Novartis
Data and Safety Monitoring Board/Committee	Merck

Dr Krop — Disclosures

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, MacroGenics Inc, Seagen Inc			
Contracted Research	Genentech, a member of the Roche Group, MacroGenics Inc, Pfizer Inc			
Data and Safety Monitoring Board/Committee	Merck, Novartis			

Dr O'Shaughnessy — Disclosures

Advisory Committee and Consulting Agreements	AbbVie Inc, Agendia Inc, Amgen Inc, Aptitude Health, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol Myers Squibb, Carrick Therapeutics, Celgene Corporation, Daiichi Sankyo Inc, Eisai Inc, Fishawack Health, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genzyme Corporation, Gilead Sciences Inc, GSK, Incyte Corporation, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Novartis, Ontada, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Pierre Fabre, Puma Biotechnology Inc, Roche Laboratories Inc, Samsung Bioepis, Sanofi, Seagen Inc, Stemline Therapeutics Inc, Synthon, Theralink, Veru
Nonrelevant Financial Relationship	prIME Oncology

Dr Rugo — Disclosures

Consultancy/Advisory Support	Blueprint Medicines, Napo Pharmaceuticals Inc, Puma Biotechnology Inc		
Contracted Research	Ambrx, Astellas, AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, GSK, Lilly, Merck, Novartis, OBI Pharma Inc, Pfizer Inc, Pionyr Immunotherapeutics, Seagen Inc, Sermonix Pharmaceuticals, Taiho Oncology Inc, Veru Inc		
Travel Support to Academic Meetings	AstraZeneca Pharmaceuticals LP, Gilead Sciences Inc, Merck		

Prof Schmid — Disclosures

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Boehringer Ingelheim Pharmaceuticals Inc, Celgene Corporation, Eisai Inc, Merck, Novartis, Pfizer Inc, Puma Biotechnology Inc, Roche Laboratories Inc
Contracted Research	Astellas, AstraZeneca Pharmaceuticals LP, Genentech, a member of the Roche Group, Medivation Inc, a Pfizer Company, Novartis, OncoGenex Pharmaceuticals Inc, Roche Laboratories Inc

Dr Tolaney — Disclosures

Consulting Agreements	4D Pharma PLC, Aadi Bioscience, ARC Therapeutics, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Bristol Myers Squibb, CytomX Therapeutics, Daiichi Sankyo Inc, Eisai Inc, Ellipses Pharma, Genentech, a member of the Roche Group, Gilead Sciences Inc, Incyte Corporation, Infinity Pharmaceuticals Inc, Lilly, Menarini Group, Merck, Myovant Sciences, Novartis, OncoSec Medical, OncXerna Therapeutics Inc, Pfizer Inc, Reveal Genomics, Sanofi, Seagen Inc, Stemline Therapeutics Inc, Umoja Biopharma, Zentalis Pharmaceuticals, Zetagen, Zymeworks Inc	
Contracted Research	AstraZeneca Pharmaceuticals LP, Bristol Myers Squibb, Cyclacel Pharmaceuticals Inc, Eisai Inc, Exelixis Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, Lilly, Merck, NanoString Technologies, Nektar, Novartis, Pfizer Inc, Sanofi, Seagen Inc	

Dr Traina — Disclosures

Consulting or Advisory Role	AstraZeneca Pharmaceuticals LP, Biotheranostics Inc, Daiichi Sankyo Inc, Exact Sciences Corporation, G1 Therapeutics Inc, GE Healthcare, Genentech, a member of the Roche Group, Gilead Sciences Inc, GSK, Hengrui Therapeutics Inc, Merck, Novartis, Pfizer Inc, Stemline Therapeutics Inc, TerSera Therapeutics LLC
Research Funding (to	Astellas, AstraZeneca Pharmaceuticals LP, Ayala Pharmaceuticals, Daiichi
Institution)	Sankyo Inc, Genentech, a member of the Roche Group, Pfizer Inc

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Exact Sciences Corporation, Lilly, Merck, Natera Inc, Puma Biotechnology Inc, Seagen Inc, Stemline Therapeutics Inc, and TerSera Therapeutics LLC.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Friday June 2	Gastroesophageal Cancers 11:45 AM – 12:45 PM CT (12:45 PM – 1:45 PM ET) Non–Small Cell Lung Cancer 6:30 PM – 9:00 PM CT (7:30 PM – 10:00 PM ET)
Saturday June 3	Hepatobiliary Cancers 6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET) Prostate Cancer 7:00 PM - 9:00 PM CT (8:00 PM - 10:00 PM ET)
Sunday June 4	Ovarian Cancer 6:45 AM – 7:45 AM CT (7:45 AM – 8:45 AM ET) Lymphoma, Chronic Lymphocytic Leukemia and Multiple Myeloma 7:00 PM – 9:30 PM CT (8:00 PM – 10:30 PM ET)
Monday June 5	Urothelial Bladder Cancer 6:45 AM - 7:45 AM CT (7:45 AM - 8:45 AM ET) Breast Cancer 7:00 PM - 9:30 PM CT (8:00 PM - 10:30 PM ET)
Tuesday June 6	Renal Cell Carcinoma (Webinar) 7:00 AM - 8:00 AM CT (8:00 AM - 9:00 AM ET)

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the pre- and postmeeting surveys.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Complete Your Evaluation: Tap the CME Evaluation button to complete your evaluation electronically to receive credit for your participation.

For assistance, please raise your hand. Devices will be collected at the conclusion of the activity.

Clinicians Attending via Zoom

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the pre- and postmeeting surveys.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME Credit: A CME credit link will be provided in the chat room at the conclusion of the program.

Clinicians in Attendance: If you have not already done so, please take a moment to complete the premeeting survey on the iPads for attendees in the room and on Zoom for those attending virtually. Your input on this survey will be integral to the program today.

> A postmeeting survey will be posted toward the end of the session.

> > Thank you for your input.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

An email will be sent to all attendees when the activity is available.

 To learn more about our education programs, visit our website, <u>www.ResearchToPractice.com</u>

Video Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Breast Cancer

A CME Symposium Held in Conjunction with the 2023 ASCO[®] Annual Meeting

Monday, June 5, 2023 7:00 PM – 9:30 PM CT Faculty Komal Jhaveri, MD Joyce O'Shaughnessy, MD Kevin Kalinsky, MD, MS Hope S Rugo, MD Ian E Krop, MD, PhD Prof Peter Schmid, FRCP, MD, PhD

> Moderator Neil Love, MD

Agenda

Module 1: Long-Term Management of HER2-Positive Breast Cancer — Dr Krop

Module 2: Optimizing the Management of ER-Positive Localized Breast Cancer — Dr Kalinsky

Module 3: Considerations in the Care of Patients with ER-Positive mBC — Dr Jhaveri

Module 4: Novel and Emerging Strategies for ER-Positive mBC — Dr Rugo

Module 5: Evolving Clinical Decision-Making for Localized Triple-Negative Breast Cancer (TNBC) — Dr O'Shaughnessy

Module 6: Recent Advances in the Treatment of Metastatic TNBC (mTNBC) — Prof Schmid

Agenda

Module 1: Long-Term Management of HER2-Positive Breast Cancer — Dr Krop

Module 2: Optimizing the Management of ER-Positive Localized Breast Cancer — Dr Kalinsky

Module 3: Considerations in the Care of Patients with ER-Positive mBC — Dr Jhaveri

Module 4: Novel and Emerging Strategies for ER-Positive mBC — Dr Rugo

Module 5: Evolving Clinical Decision-Making for Localized Triple-Negative Breast Cancer (TNBC) — Dr O'Shaughnessy

Module 6: Recent Advances in the Treatment of Metastatic TNBC (mTNBC) — Prof Schmid

Management of CNS-only disease progression in patients with HER2-positive metastatic breast cancer

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

A patient with ER-negative, HER2-positive mBC receives first-line THP followed by second-line trastuzumab deruxtecan, to which she experiences a partial response. She then presents with a single brain metastasis, which is removed, but no evidence of systemic disease progression. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

Dr Jhaveri	Continue trastuzumab deruxtecan	Prof Schmid	Continue trastuzumab deruxtecan
Dr Kalinsky	Continue trastuzumab deruxtecan	Dr Hurvitz	Continue trastuzumab deruxtecan
Dr Krop	Continue trastuzumab deruxtecan	Dr Tolaney	Continue trastuzumab deruxtecan
Dr O'Shaughnessy	Continue trastuzumab deruxtecan	Dr Traina	Continue trastuzumab deruxtecan
Dr Rugo	Continue trastuzumab deruxtecan		

Synergy between tucatinib and HER2-targeted antibody-drug conjugates

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

Do you believe tucatinib has synergy with HER2-targeted antibody-drug conjugates through the upregulation of HER2?

Dr Jhaveri	Νο	Prof Schmid	I'm not sure
Dr Kalinsky	Yes	Dr Hurvitz	Yes, possibly
Dr Krop	l'm not sure	Dr Tolaney	Yes, at least preclinically
Dr O'Shaughnessy	Yes	Dr Traina	l'm not sure
Dr Rugo	Yes		

Management of trastuzumab deruxtecan-related adverse events

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

Have you readministered or would you readminister trastuzumab deruxtecan to a patient who developed <u>Grade 2</u> ILD?

What do you generally advise your patients who are about to begin treatment with trastuzumab deruxtecan regarding the potential for chemotherapy-like side effects (gastrointestinal toxicity, alopecia)?

Dr Jhaveri	They are very likely to occur	Prof Schmid	They are very likely to occur
Dr Kalinsky	Likely to occur but with less severity than w/ traditional chemo	Dr Hurvitz	They are very likely to occur
Dr Krop	They are very likely to occur	Dr Tolaney	They are very likely to occur
Dr O'Shaughnessy	Likely to occur but with less severity than w/ traditional chemo	Dr Traina	Likely to occur but with less severity than w/ traditional chemo
Dr Rugo	They are very likely to occur		

Patient selection for and practical implementation of postadjuvant neratinib

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

In what situations do you generally administer postadjuvant neratinib to patients with HER2-positive localized BC?

Dr Jhaveri	Very high-risk ER+	Prof Schmid	Practically never
Dr Kalinsky	High-risk HR+, significant residual disease after neoadj. tx	Dr Hurvitz	HR-positive, node- positive (high risk)
Dr Krop	ER+ with multiple positive nodes	Dr Tolaney	High-risk ER+ (residual node+ disease) after HER2-directed neoadj. tx with HP, then adj. T-DM1
Dr O'Shaughnessy	HR+, node+ with residual disease s/p neoadj. TCHP	Dr Traina	ER+, no pCR after neoadjuv. tx, high-risk LN+
Dr Rugo	Very high-risk HR+, not eligible for CompassHER2 RD		

When employing neratinib in the postadjuvant setting for localized HER2-positive BC, what initial dose do you typically use?

Dr Jhaveri	120 mg	Prof Schmid	N/A
Dr Kalinsky	120 mg	Dr Hurvitz	120 mg
Dr Krop	120 mg	Dr Tolaney	120 mg
Dr O'Shaughnessy	160 mg	Dr Traina	120 mg
Dr Rugo	120 mg		

Long-Term Management of HER2-Positive Breast Cancer

Ian Krop MD PhD June 2023

Yalecancer

YaleNewHaven**Health** Smilow Cancer Hospital

Treatment Paradigm for Metastatic HER2+ Breast Cancer (Circa 2013)

Efficacy of Chemotherapy + Trastuzumab or lapatinib is limited in ≥2rd line

San Antonio Breast Cancer Symposium – December 6-10, 2022

Updated OS Analysis of DESTINY-Breast03

Randomized, open-label, multicenter study (NCT03529110)

- Hormone receptor status
- Prior treatment with pertuzumab
- History of visceral disease

The prespecified OS interim analysis was planned with 153 events.^d At the time of data cutoff (July 25, 2022), 169 OS events were observed and the *P* value to achieve statistical significance was 0.013

BICR, blinded independent central review; DoR, duration of response; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; Q3W, every 3 weeks; R, randomization; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan.

aHER2 IHC 3+ or IHC 2+/ISH+ based on central confirmation. Progression during or within 6 months after completing adjuvant therapy involving trastuzumab and a taxane. 80% powered at 2-sided significance level of 5%. Information fraction of 61%, with a *P* value boundary to reach statistical significance of 0.008. The *P* value was recalculated based on the actual OS events at the data cutoff.

Updated Primary Endpoint: PFS by BICR

Hurvitz Sa et al. SABCS 2022; Abstract GS2-02. Hurvitz SA et al. Lancet 2023; 401:105-17.

Key Secondary Endpoint: Overall Survival

Hurvitz Sa et al. SABCS 2022; Abstract GS2-02. Hurvitz SA et al. Lancet 2023; 401:105-17.

Adjudicated Drug-Related Interstitial Lung Disease/Pneumonitis

	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any grade
T-DXd (n = 257)	11 (4.3)	26 (10.1)	2 (0.8)	0	0	39 (15.2)
T-DM1 (n = 261)	4 (1.5)	3 (1.1)	1 (0.4)	0	0	8 (3.1)

- Adjudicated drug-related ILD/pneumonitis rates were similar to other mBC trials with T-DXd^{1,2}
- With longer treatment exposure and follow-up, the ILD/pneumonitis rate increased from 10.5% in the PFS interim analysis³ to 15.2%
 - There were 4 additional grade 1, 8 additional grade 2, and no additional grade 3 events
- The overall incidence of grade 3 events (0.8%) was the same as in the PFS interim analysis³
- There were no adjudicated drug-related grade 4 or 5 events

ILD, interstitial lung disease; mBC, metastatic breast cancer; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan. 1. Modi S et al. N Engl J Med 2020; 382(7): 610-21. 2. Powell CA et al. ESMO Open 2022; 7(4): 100554. 3. Cortes J et al. N Engl J Med. 2022;386:1143-1154.

Hurvitz Sa et al. SABCS 2022; Abstract GS2-02. Hurvitz SA et al. Lancet 2023; 401:105-17.

DESTINY-Breast02

Randomized phase 3, open-label, multicenter study (NCT03523585)

BICR, blinded independent central review; CBR, clinical benefit rate; DoR, duration of response; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; mRECIST, modified Response Evaluation Criteria in Solid Tumors version 1.1; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PFS2; progression-free survival on the next line of therapy; Q3W, every 3 weeks; R, randomization, T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan; TPC, treatment of physician's choice.

^aPatients with clinically inactive brain metastases and patients with treated brain metastases that were no longer symptomatic and who require no treatment with corticosteroids or anticonvulsants could be included. ^bBICR assessed per mRECIST 1.1. ^cPFS2 was defined as the time from date of randomization to the first documented progression on the next line of therapy or death due to any cause, whichever came first. ^dDuration of follow up is defined as study duration = the date last known alive minus date of randomization plus 1.

Krop I et al. SABCS 2022; Abstract GS2-01.

Key Secondary Endpoint: OS

Patients still at risk

Time, months

T-DXd (406) 406 404 400 390 385 382 374 366 357 352 350 346 339 331 317 306 295 282 277 257 234 215 196 183 160 144 139 122 104 93 82 72 63 51 40 34 29 25 19 10 8 6 3 1 1 1 0 TPC (202) 202 192 187 182 178 173 167 161 157 151 142 136 130 124 118 114 111 10 106 95 89 79 76 72 61 53 50 46 38 33 29 28 25 22 22 18 15 13 12 7 6 5 4 3 1 1 0

In the TPC arm

- 69.3% (140/202) of patients who discontinued therapy received a new systemic anticancer
- 25.7% (52/202) of patients received T-DXd in the post-trial setting

^aThe boundary for statistical significance is 0.0040. HR, hazard ratio; mo, month; NE, not estimable; OS, overall survival; T-DXd, trastuzumab deruxtecan; TPC, treatment of physician's choice.

Krop I et al. SABCS 2022; Abstract GS2-01. Andre F et al. Lancet 2023; 401:1773-85.

Age Specific Efficacy of T-DXd

Median Progression Free Survival

 Efficacy in patients aged <65 and ≥65 years treated with T-DXd was generally similar; however no formal comparison was made

Median Overall Survival

	DESTINY-Breast01		DESTINY-Breast02		DESTINY-Breast03	
	<65	≥65	<65	≥65	<65	≥65
	(n = 140)	(n = 44)	(n = 321)	(n = 85)	(n = 212)	(n = 49)
mOS, months	28.1	30.9	NR	30.2	NR	NR
(95% CI)	(23.3-36.1)	(21.9-NE)	(35.5-NE)	(22.3-39.2)	(40.5-NE)	(26.3-NE)

12-month Landmark Overall Survival

Adapted from Krop et al, ASCO 2023

Age-specific safety and ILD rates for T-DXd

		T-DXd Pool	
	<65 (n = 668)	≥65 (n = 177)	≥75 (n = 33)
Median treatment duration, mo (range)	13.1 (0.7-44.0)	12.4 (0.7-45.1)	9.0 (0.7-35.6)
TEAE, n (%)	665 (99.6)	177 (100.0)	33 (100.0)
Drug-related	653 (97.8)	176 (99.4)	33 (100.0)
TEAEs grade ≥3, n (%)	358 (53.6)	116 (65.5)	17 (51.5)
Drug-related	291 (43.6)	96 (54.2)	13 (39.4)
Serious TEAEs, n (%)	162 (24.3)	57 (32.2)	10 (30.3)
Drug-related	77 (11.5)	29 (16.4)	5 (15.2)
TEAEs associated with drug discontinuation, n (%)	125 (18.7)	45 (25.4)	8 (24.2)
Drug-related	100 (15.0)	42 (23.7)	8 (24.2)
TEAEs associated with dose reduction, n (%)	163 (24.4)	51 (28.8)	10 (30.3)
Drug-related	156 (23.4)	47 (26.6)	8 (24.2)
TEAEs associated with dose interruption, n (%)	302 (45.2)	94 (53.1)	15 (45.5)
Drug-related	226 (33.8)	74 (41.8)	11 (33.3)
TEAEs associated with death, n (%)	17 (2.5)	10 (5.6)	0
Drug-related	4 (0.6)	3 (1.7)	0

Rates of ILD

	T-DXd Pool				
	<65 (n = 668)	≥65 (n = 177)	≥75 (n = 33)		
Any grade, n (%)	79 (11.8)	31 (17.5)	5 (15.2)		
1	21 (3.1)	7 (4.0)	0		
2	48 (7.2)	20 (11.3)	5 (15.2)		
3	4 (0.6)	3 (1.7)	0		
4	0	0	0		
5	6 (0.9)	1 (0.6)	0		
≥3	10 (1.5)	4 (2.3)	0		

Adapted from Krop et al, ASCO 2023

#ASCO23

HER2CLIMB Trial Design

Key Eligibility Criteria

R*

(2:1)

- HER2+ metastatic breast cancer
- Prior treatment with trastuzumab, pertuzumab, and T-DM1
- ECOG performance status 0 or 1
- Brain MRI at baseline
 - Previously treated stable brain metastases
 - Untreated brain metastases not needing immediate local therapy
 - Previously treated progressing brain metastases not needing immediate local therapy
 - No evidence of brain metastases

*Stratification factors: presence of brain metastases (yes/no), ECOG status (0 or 1), and region (US or Canada or rest of world)

https://clinicaltrials.gov/ct2/show/NCT02614794

HER2CLIMB Updated PFS results

HER2CLIMB Updated OS results

HER2CLIMB: Adverse Events

	Tucatinib combin n	nation (<i>N</i> = 404) (%)	Placebo combination ($N = 197$) n (%)	
Adverse event	Any grade	Grade \geq 3	Any grade	Grade \geq 3
Any adverse event	401 (99.3)	245 (60.6)	191 (97.0)	101 (51.3)
Diarrhea	331 (81.9)	53 (13.1)	106 (53.8)	17 (8.6)
Palmar-plantar erythrodysesthesia syndrome	264 (65.3)	57 (14.1)	105 (53.3)	18 (9.1)
Nausea	243 (60.1)	16 (4.0)	88 (44.7)	7 (3.6)
Fatigue	193 (47.8)	22 (5.4)	87 (44.2)	8 (4.1)
Vomiting	152 (37.6)	13 (3.2)	51 (25.9)	8 (4.1)
Decreased appetite	105 (26.0)	3 (0.7)	41 (20.8)	0
Stomatitis	105 (26.0)	10 (2.5)	28 (14.2)	1 (0.5)
Headache	96 (23.8)	3 (0.7)	40 (20.3)	3 (1.5)
Aspartate aminotransferase increased	89 (22.0)	19 (4.7)	22 (11.2)	1 (0.5)
Anemia	88 (21.8)	17 (4.2)	24 (12.2)	5 (2.5)
Alanine aminotransferase increased	85 (21.0)	23 (5.7)	13 (6.6)	1 (0.5)
Blood bilirubin increased	81 (20.0)	4 (1.0)	21 (10.7)	5 (2.5)

Curigliano G et al. Ann Oncol 2022 March;33(3):321-9.

NALA study design

Inclusion criteria

- Metastatic breast cancer (MBC)
- Centrally confirmed HER2+ disease
- ≥2 lines of HER2-directed therapy for MBC
- Asymptomatic and stable brain metastases permitted

Stratification variables

- Number of prior HER2 therapies for MBC
- Disease location
- HR status
- Geographic location

Endpoints

- Co-primary: PFS (centrally confirmed) and OS
- Secondary: PFS (local), ORR, DoR, CBR, intervention for CNS metastases, safety, health outcomes

Loperamide 4 mg with first dose of neratinib, followed by 2 mg every 4 h for first 3 d, then loperamide 2 mg every 6–8 h until end of Cycle 1. Thereafter as needed

#ASCO19 Slides are the property of the author permission required for reuse.

PRESENTED BY: Adam Brufsky

Abstract 1002

NALA Centrally Confirmed PFS

NALA Overall Survival Analysis

Saura et al, JCO 2020 38:3138

Most frequent grade 3/4 adverse events

	Neratinib + Capecitabine (n=303)		Lapatinib + Cape	citabine (n=311)
	All grade	Grade 3/4	All grade	Grade 3/4
Treatment-emergent AE, %	100	61	99	60
Diarrhea	83	24*	66	13*
Hand-foot syndrome	46	10	56	11
Hypokalemia	12	5	14	6
Nausea	53	4	42	3
Vomiting	46	4	31	2
Fatigue	34	3	31	3
Neutropenia	7	3	5	2
Asthenia	12	3	12	2
Decreased appetite	35	3	22	2
Dehydration	6	2	6	2

Treatment discontinuation due to treatment-emergent AEs: N+C: 10.9%; L+C: 14.5%

#ASCO19 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Adam Brufsky

Abstract 1002

*No Grade 4 diarrhea

NALA

CONTROL study: dose escalation of neratinib minimizes Grade 3 diarrhea

Outcome	L (n=137)	BL (n=64)	CL (n=136)	CL-PRN (n=104)	DE1 (n=60)	DE2 (n=62)	
Any grade diarrhea, n (%)	109 (80)	55 (86)	113 (83)	99 (95)	59 (98)	61 (98)	
Grade 1	33 (24)	15 (23)	38 (28)	34 (33)	24 (40)	23 (37)	
Grade 2	34 (25)	22 (34)	47 (35)	31 (30)	27 (45)	21 (34)	
Grade 3	42 (31)	18 (28)	28 (21)	34 (33)	8 (13)	17 (27)	DE1:
Grade 4	0	0	0	0	0	0	120 mg x 7d
Median episodes of grade 3 diarrhea, n	1	1	1	1	2	1	
Median time to first onset of grade 3 diarrhea, days	7.0	19.0	41.0	19.0	45.0	19.0	160 mg x 7d
Median cumulative duration of grade 3 diarrhea per patient, days	3.0	3.0	3.5	2.0	2.5	2.0	240 ma ad
Dose holds due to diarrhea, n (%)	20 (15)	12 (19)	22 (16)	15 (14)	7 (12)	8 (13)	
Discontinuations due to diarrhea, n (%)	28 (20)	7 (11)	5 (4)	8 (8)	2 (3)	4 (6)	
Hospitalizations due to diarrhea, n (%)	2 (2)	0	0	0	0	0	

HER2CLIMB OS Benefit in Patients with Active Brain Metastases

HR: hazard ratio computed from Cox proportional hazards model using stratification factors (ECOG performance status: 0/1, and Region of world: North America/Rest of World) at randomization. All P values are nominal.

 PRESENTED AT:
 2020ASCO ANNUAL MEETING
 #ASC020 Sides are the property of the author, permission required for reuse.
 PRESENTED BY: Nancy Lin, nlin@partners.org
 Abstract 1005
 11

Presented By Nancy Lin

Intracranial Response Rate (ORR-IC) in Patients with Active Brain Metastases and Measurable Intracranial Lesions at Baseline

Confirmed Objective Response Rate (RECIST 1.1)

	TUC+Tras+Cape (N=55)	Pbo+Tras+Cape (N=20)
Best Overall Intracranial Response ^a , n (%)		
Complete Response (CR)	3 (5.5)	1 (5.0)
Partial Response (PR)	23 (41.8)	3 (15.0)
Stable Disease (SD)	24 (43.6)	16 (80.0)
Progressive Disease (PD)	2 (3.6)	0
Not Available ^b	3 (5.5)	0
Subjects with Objective Response of Confirmed CR or PR, n	26	4
Duration of Intracranial Response (DOR-IC) ^e (95% CI) ^f , months	6.8 (5.5, 16.4)	3.0 (3.0, 10.3)

(a) Confirmed Best overall response assessed per RECIST 1.1. (b) Subjects with no post-baseline response assessments. (c) Twosided 95% exact confidence interval, computed using the Clopper-Pearson method (1934). (d Cochran-Mantel-Haenszel test controlling for stratification factors (ECOG performance status: 0/1, and Region of world: North America/Rest of World) at randomization. (e) As estimated using Kaplan-Meier methods. (f) Calculated using the complementary log-log transformation method (Collett, 1994).

PRESENTED AT:

2020ASCO ANNUAL MEETING Bildes are the property of the author, permission required for reuse.

PRESENTED BY: Nancy Lin, <u>nlin@partners.org</u>

^{*}Stratified Cochran-Mantel-Haenszel P value

Neratinib and Capecitabine for CNS disease

- TBCRC 022: Phase 2 trial of patients with progressive HER2+ brain metastases treated with neratinib (240 mg po QD) and capecitabine (750 mg/m² BID 14d on/7d off)(N=49)
 - Efficacy in cohort without previous lapatinib (N=37):
 - 49% CNS objective response rate*
 - 5.5 mo median PFS
- NALA
 - Decreased time to intervention for CNS metastases (trial allowed patients with baseline asymptomatic and stable brain metastases)
 - Overall cumulative incidence: 22.8% vs 29.2%; **p=0.043**

Saura et al. JCO 2020;38:3138-49. Freedman R et al. JCO 2019;37:1081

DB-03: Intracranial Response per BICR using RECIST 1.1

T-DXd (n = 36)	T-DM1 (n = 36)					
est Overall Response, n (%)ª						
10 (27.8)	1 (2.8)					
13 (36.1)	11 (30.6)					
6 (16.7)	7 (19.4)					
4 (11.1)	7 (19.4)					
1 (2.8)	8 (22.2)					
0	1 (2.8)					
2 (5.6)	1 (2.8)					
23	12					
	$\begin{array}{c} T-DXd\\ (n = 36) \end{array}$ %) ^a 10 (27.8) 13 (36.1) 6 (16.7) 4 (11.1) 1 (2.8) 0 2 (5.6) 23					

CR, complete response; DCR, disease control rate; mDOR, median duration of response; PD, progressive disease; PR, partial response; SD, stable disease; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan.

Table includes target and non-target lesions. Only patients with target lesion assessments are eligible for inclusion in waterfall

Red line at 20% indicates progressive disease; black line at -30% indicates partial response.

^aDenominator for percentages is the number of subjects in the full analysis set with brain metastases tumor assessment

Best %

Trastuzumab Deruxtecan in patients with progressive brain metastases

- Case series
 - Newly diagnosed HER2+ BM or progression after prior local therapy
 - CNS objective response in 7 of 10 pts (70%)
- DEBBRAH study
 - HER2+ or HER2 low with progression after local therapy
 - Intracranial response (RANO BM) in 6 of 12 pts (50%)
- TUXEDO study
 - Newly diagnosed HER2+ BM or progression after prior local therapy
 - RANO RR: 73% (N=15)

Kabraji et al, SABCS 2021 Bartsch et al, Nat Med 2022 28:1840 Perez-Garcia JM et al. SABCS 2022;Abstract PD7-02

Approach to Therapy for Metastatic HER2+ disease

Adapted from Modi et al, ESMO 2021

Unanswered questions in HER2+ MBC

What is the efficacy of T-DM1 after trastuzumab deruxtecan?

• Is there a role for neratinib or pyrotinib?

 What is comparative efficacy of T-DXd vs tucatinib in patients with active brain metastases?

Is there a role for neratinib for high risk HER2+ EBC?

ExteNET: Study design

- HER2+ breast cancer (local)
 IHC 3+ or ISH amplification
- Prior adjuvant trastuzumab & chemotherapy
- Lymph node –/+ or residual invasive disease after neoadjuvant therapy
- ER/PR + or –

- Primary endpoint: invasive disease-free survival (iDFS)
- Secondary endpoints: DFS-DCIS, time to distant recurrence, distant DFS, CNS metastases, overall survival, safety
- Other analyses: biomarkers, health outcome assessment (FACT-B, EQ-5d)
- Stratified by: nodes 0, 1–3 vs 4+, ER/PR status, concurrent vs sequential trastuzumab

Chan et al, ASCO Breast 2015

Outcomes in HR+, ≤1 year from trastuzumab, and with residual disease after neoadjuvant therapy

100 Invasive disease-free survival (%) 90-85.0% ∆7.4% 80 77.6% 70 60-50 Hazard ratio (95% CI) = 0.60 (0.33-1.07) Neratinib P-value (2 sided) = 0.086 - Placebo Years after randomization 126 121 113 100 93 91 91 88 84 99 151 143 103 99 94 159 125 107 Placeho

iDFS at 5yrs

Overall Survival

Chan et al Clin Breast Cancer 2021 Feb;21(1):80-91.e7.

Cumulative incidence of CNS disease as 1st site of recurrence

	CNS Events (No. Patients)	Cumulative Incidence of CNS Recurrences at 5 Years, % (95% CI)		
Population or Subgroup	Neratinib	Placebo	Neratinib	Placebo	
HR ⁺ /≤ 1-year population	4 (670)	12 (664)	0.7 (0.2-1.7)	2.1 (1.1-3.5)	
Nodal status					
Positive	4 (540)	10 (539)	0.8 (0.3-2.0)	2.2 (1.1-3.8)	
Negative	0 (130)	2 (125)	0 (NE)	1.9 (0.4-6.0)	
Prior trastuzumab regimen					
Concurrent	2 (411)	8 (415)	0.6 (0.1-1.9)	2.3 (1.1-4.3)	
Sequential	2 (259)	4 (249)	0.9 (0.2-3.0)	1.8 (0.6-4.3)	
Adjuvant or neoadjuvant therapy	10 - 2°2	50 - 50			
Adjuvant	3 (508)	6 (472)	0.7 (0.2-2.0)	1.5 (0.6-3.0)	
Neoadjuvant	1 (162)	6 (192)	0.7 (0.1-3.3)	3.7 (1.5-7.4)	
pCR status ^a	18 - 19 -				
No	1 (131)	5 (164)	0.8 (0.1-4.0)	3.6 (1.3-7.8)	
Yes	0 (17)	1 (21)	0 (NE)	5.0 (0.3-21.2)	

Who Should Receive Neratinib?

- Clear benefit (relative and absolute) in ER+HER2+ high risk patients
 - Must be balanced against significant toxicity risk
- No data giving neratinib after pertuzumab or T-DM1
 - All patients at sufficiently high risk to receive neratinib will have received pertuzumab and T-DM1
- So who should receive it?
 - Unclear, but my opinion is that it is reasonable option to consider in ER+ patients with multiple positive nodes after neoadjuvant therapy or multiple node positive patients who did not receive neoadjuvant therapy

Agenda

Module 1: Long-Term Management of HER2-Positive Breast Cancer — Dr Krop

Module 2: Optimizing the Management of ER-Positive Localized Breast Cancer — Dr Kalinsky

Module 3: Considerations in the Care of Patients with ER-Positive mBC — Dr Jhaveri

Module 4: Novel and Emerging Strategies for ER-Positive mBC — Dr Rugo

Module 5: Evolving Clinical Decision-Making for Localized Triple-Negative Breast Cancer (TNBC) — Dr O'Shaughnessy

Module 6: Recent Advances in the Treatment of Metastatic TNBC (mTNBC) — Prof Schmid

Ovarian function suppression to preserve fertility and prevent premature ovarian insufficiency; interrupting adjuvant hormonal therapy to attempt pregnancy

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

For premenopausal patients with <u>ER-positive, HER2-negative</u> BC who are about to receive adjuvant chemotherapy, do you generally offer the option of using ovarian function suppression during chemotherapy for fertility preservation or ovarian function preservation?

Dr Jhaveri	Yes, for both	Prof Schmid	Yes, for fertility preservation
Dr Kalinsky	Yes, for both	Dr Hurvitz	Yes, for fertility preservation
Dr Krop	Yes, for both	Dr Tolaney	Yes, for both
Dr O'Shaughnessy	Yes, for both	Dr Traina	Yes, for both
Dr Rugo	Yes, for fertility preservation		

Have you offered or would you offer a premenopausal patient with ER-positive localized BC the opportunity to discontinue adjuvant endocrine therapy in order to become pregnant?

Dr Jhaveri	I have not but would for the right patient	Prof Schmid	I have
Dr Kalinsky	I have	Dr Hurvitz	I have
Dr Krop	I have	Dr Tolaney	l have
Dr O'Shaughnessy	I have	Dr Traina	l have
Dr Rugo	I have		

Effects of ovarian ablation or suppression on breast cancer recurrence and survival: patient-level meta-analysis of 14,999 pre-menopausal women in 25 randomized trials

Early Breast Cancer Trialists Collaborative Group (EBCTCG)

Writing Committee: Richard Gray, Rosie Bradley, Jeremy Braybrooke, Mike Clarke, Robert Hills, Richard Peto, Jonas Bergh, Sandra Swain, Rodrigo Arriagada, Judith Bliss, Allan Hackshaw, Hyun-Ah Kim, Woo Chul Noh, John Yarnold, Nancy Davidson, Prudence Francis, Meredith Regan

Thinking Differently About Breast Cancer in Young Women

Abstract Discussion: 503, 504 and 505

Ines Vaz-Luis

Breast Cancer Survivorship Group - INSERM Unit 981, Villejuif, France Interdisciplinary Department for the Organization of Patient Pathways (DIOPP) - Gustave Roussy, Villejuif, France

Decision-Making & Standards of Care in Young Women Moving towards Tailored Approaches

"Still Refining Adjuvant Therapy in Premenopausal Women: Not Too Much, Not Too Little"

ET: endocrine treatment, CT: chemotherapy, OFS: Ovarian function suppression AI: aromatase inhibitors, N-: node negative, N+: node positive

WolfF & Rugo, JCO, 2016; Burstein, NEJM 2020; Andre, JCO 2022

Decision-Making & Standards of Care in Young Women

Moving towards Tailored Approaches

OFFSET (NRG BR009)

OPTIMA YOUNG

#ASCO23

Selection of patients for adjuvant tamoxifen monotherapy

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

Which adjuvant treatment would you most likely recommend for a <u>30-year-old</u> patient with ER-positive, HER2-negative, <u>node-</u> <u>negative</u> localized BC with a <u>21-gene RS of 8</u>?

Dr Jhaveri	Tamoxifen	Prof Schmid	OFS and letrozole
Dr Kalinsky	Tamoxifen	Dr Hurvitz	Tamoxifen
Dr Krop	Tamoxifen	Dr Tolaney	If ≤1 cm, tamoxifen; if larger or other high-risk features, consider adding OFS
Dr O'Shaughnessy	OFS and tamoxifen	Dr Traina	Tamoxifen
Dr Rugo	OFS and letrozole or anastrozole		

OFS = ovarian function suppression/ablation

Utility of genomic assays in the neoadjuvant setting; management of node-positive disease in postmenopausal patients with low-risk Recurrence Scores

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

Have you ordered or would you order a genomic assay in the neoadjuvant setting to assist with clinical decision-making for a patient with ER-positive, HER2-negative localized BC?

Dr Jhaveri	I have commonly	Prof Schmid	I have occasionally or rarely
Dr Kalinsky	I have occasionally or rarely	Dr Hurvitz	I have occasionally or rarely
Dr Krop	I have commonly	Dr Tolaney	I have commonly
Dr O'Shaughnessy	I have commonly	Dr Traina	I have occasionally or rarely
Dr Rugo	I have commonly		

In general, would you be comfortable withholding chemotherapy for a postmenopausal patient with ER-positive, HER2-negative localized BC, a 21-gene RS of 8 and <u>4 positive nodes</u>?

Dr Jhaveri	Νο	Prof Schmid	No
Dr Kalinsky	Yes, depending on age and comorbidities	Dr Hurvitz	Yes, after a balanced discussion
Dr Krop	Yes	Dr Tolaney	Νο
Dr O'Shaughnessy	Yes	Dr Traina	Νο
Dr Rugo	Νο		

Selection between abemaciclib and ribociclib in the adjuvant setting

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

Regulatory and reimbursement issues aside, would you generally recommend an adjuvant CDK4/6 inhibitor to a woman with a <u>Grade 3</u>, <u>3-cm</u>, ER-positive, HER2-negative localized BC with <u>1 positive node</u>?

Dr Jhaveri	Yes, abemaciclib	Prof Schmid	Yes, abemaciclib
Dr Kalinsky	Yes, either abemaciclib or ribociclib	Dr Hurvitz	Yes, ribociclib
Dr Krop	Yes, abemaciclib	Dr Tolaney	Yes, abemaciclib
Dr O'Shaughnessy	Yes, abemaciclib	Dr Traina	Yes, abemaciclib
Dr Rugo	Yes, either abemaciclib or ribociclib		

Cyclin' Through the Inhibitors

in HR+/HER2- early breast cancer

Nadia Harbeck

Breast Center, Dept. OB&GYN, LMU University Hospital, Munich, Germany

Conclusions

- monarchE and NATALEE have reached their primary endpoint (iDFS) in interim analysis abemaciclib and ribociclib improve iDFS in HR+/HER2- EBC
- Transfer to clinical practice still poses challenges
 - available evidence does not support replacing chemo by ET-based therapy (about 90% prior chemotherapy) ADAPTcycle addresses this issue; completed, results pending
 - avoid early discontinuations by continuous support with proactive information and therapy management (including dose reductions) for the additional 2-3y therapy
- NATALEE as well as monarch-E need longer follow-up to ascertain the full benefit of adjuvant CDK 4/6i, particularly for individual subgroups
- PENELOPE-B shows high risk for recurrence in HR+/HER2- EBC patients with non-pCR and ctDNA detection – consistent with findings in other subtypes
 - ctDNA dynamics prognostic adequately powered prospective trials needed to understand predictive benefit of ctDNA detection and clearance to optimize outcomes
 - · Optimal test system, sampling times, and therapeutic interventions need to be explored

PRESENTED BY

#ASCO23

Adjuvant CDK 4/6i – Main Take-Aways

- Good news for patients: Abemaciclib and Ribociclib increase chances for cure in HR+/HER2- early breast cancer (EBC) with acceptable safety profile
- But: We still have work to do further research is needed
 - Optimal therapy management to allow patients to complete intended therapy duration - eHealth support may be beneficial and empower patients
 - · Identification of patients still at risk despite optimal adjuvant therapy
 - Define new therapy options for these patients
- CDK 4/6i use in EBC raises questions for MBC (e.g. re-challenge, sequencing)
- Given their different indications, efficacy data, and side effect profiles, all available CDK 4/6i are valuable therapy options for breast cancer patients

PRESENTED BY:

#ASCO23

Potential utility of circulating tumor DNA assessment in breast cancer

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

Have you ordered or would you order a circulating tumor DNA assay to assist with clinical decision-making for a patient with BC?

Dr Jhaveri	I have not and would not	Prof Schmid	I have
Dr Kalinsky	I have not and would not	Dr Hurvitz	I have not and would not
Dr Krop	I have not and would not	Dr Tolaney	I have not and would not
Dr O'Shaughnessy	I have in the metastatic setting only	Dr Traina	I have
Dr Rugo	I have		

Detection of circulating tumor DNA following neoadjuvant chemotherapy and surgery to anticipate early relapse in ER positive and HER2 negative breast cancer: Analysis from the PENELOPE-B trial

Nicholas Turner, Frederik Marmé, Sung-Bae Kim, Hervé Bonnefoi, Jose Angel García-Sáenz, Antonio Antón Torres, Harry Bear, Hans Tesch, Mireia Melé Olivé, Nicole McCarthy, Josefina Cruz Jurado, Seock-Ah Im, Yuan Liu, Zhe Zhang, Karsten Weber, Bärbel Felder, Valentina Nekljudova, Toralf Reimer, Carsten Denkert, Sibylle Loibl

Abstract 502

PENELOPE-B: Trial Design

Turner N et al. ASCO 2023; Abstract 502.

ctDNA Analysis Methods

A tumor sample was exome sequenced, and up to 50 mutations were tracked in plasma using error-corrected sequencing for ctDNA detection (RaDaR assay).

PENELOPE-B: Conclusions

- Detection of ctDNA following neoadjuvant chemotherapy, and surgery, is associated with a very high risk of early relapse suggesting limited efficacy of adjuvant endocrine therapy
 - Studies of clinical imaging and experimental therapy are warranted for these patients
- 'Sensitivity' for future relapse is imperfect, in particular for later relapses, in patients who had prior neoadjuvant chemotherapy and surgery
 - Response to prior neoadjuvant chemotherapy may reduce ctDNA detection rates
 - Sequential testing improves 'sensitivity' for relapse
- Although ctDNA analysis has been approved by Medicare, use is likely not appropriate in deciding whether to give adjuvant CDK4/6 inhibitor in patients otherwise eligible, after neoadjuvant chemotherapy

Serial Postoperative ctDNA Monitoring of Breast Cancer Recurrence

Shaw JA et al. ASCO 2022;Abstract 562.

Exploratory Breast Lead Interval Study (EBLIS): ctDNA Detection in Serial Plasma Samples Predicts RFS and OS

Shaw JA et al. ASCO 2022; Abstract 562.

Monitoring for Response and Recurrence n Neoadjuvant-Treated Hormone Receptor-Positive HER2-Negative Breast Cancer by Personalized Circulating Tumor DNA Testing

Magbanua MJM et al.

San Antonio Breast Cancer Symposium 2022; Abstract P5-05-05.

Optimizing the Management of ER-Positive Localized Breast Cancer

Kevin Kalinsky, MD, MS

RxPONDER Schema

lational Cancer Institute-Designate

Kalinsky K et al. SABCS 2020; Abstract GS3-00.

Updated Analysis: Postmenopausal Women Have No Chemotherapy Benefit

Updated Analysis: Premenopausal Women Have Chemotherapy Benefit

¹ Kalinsky et al, New England Journal of Medicine: December 1, 2021

OFS Rate in Premenopausal Pts in Tx Arms Over Time

Though higher in endocrine therapy arm, OFS rate remains low and consistent in both arms

Site reported at fixed time points if premenopausal pts underwent OFS during previous time interval

BR009: Schema

* Tamoxifen can be used if AI is not tolerated

Mean Cognitive Function Score: Premenopausal

SWOG CANCER RESEARCH NETWORK

Kang I et al. SABCS 2022; Abstract GS1-04.

TAILORx: Updated Analysis - Effect of Age, RS, and Clinical Risk on Chemotherapy Benefit (ITT Population)

TEXT and SOFT Joint Analysis

- Premenopausal HR+
- ≤12 wks after surgery
- Planned OFS
- No planned chemo (N=1053)
 OR planned chemo (N=1607)

- Premenopausal HR+
- ≤12 wks after surgery
- No chemo (N=1419)
 OR
- Remain premenopausal ≤8 mos after chemo (N=1628)

Regan M et al. SABCS 2021; Abstract GS2-05.

No Chemotherapy Groups

>95% of women surviving at 12 years SOFT/TEXT trials

Regan M et al. SABCS 2021; Abstract GS2-05.

SOFT

Prior Chemotherapy Group

T+OFS vs T: absolute reduction in distant recurrence, 2.6% at 12 years reduction in death persists, absolute reduction 4.7% at 12 years E+OFS vs T: reductions of 4.5% and 4.0%, at 12 years E + OFS vs T + OFS: reductions in distant recurrence 1.9% SOFT 2.4% TEXT at 12 years; OS -0.7% SOFT and + 2.6% TEXT at 12 years

Overall Survival

12-yr:

- TEXT 87.0 (+2.6%)

84.4

-SOFT 82.9 (-0.7%)

83.6

12

5-yr:

94.5

95.0

92.4

95.0

Death

88

85

103

118

0-5 years

2694 pts 12774 pyfu

HR (95% CI)

1.57 (0.96-2.57)

1.10 (0.71-1.70)

E+OFS

T+OFS

E+OFS

T+OFS

Deaths

40

26

42

38

HR (95%CI)

1.06 (0.79-1.43)

0.85 (0.65-1.11)

Deaths

48

59

61

80

2395 pts

Years since randomization

>5 years

HR (95% CI)

16928 pyfu

0.84 (0.57-1.22)

0.74 (0.53-1.03)

SOFT

TEXT

SOFT/TEXT trials

80

60

20

E+OFS:

TEXT E+OFS:

T+OFS:

T+OFS:

At risk:

Surviving (%)

Regan M et al. SABCS 2021; Abstract GS2-05.

ASTRRA study design

Inclusion criteria

- · Premenopausal women
- Age ≤ 45 years
- ER+ stage I–III primary breast cancer

#ASC022

- Had been treated with definitive surgery and chemotherapy
- WHO performance status of 0-2

Ovarian function evaluation

- Serum FSH level ≥ 30 mIU/mL, menstruation
 - Evaluated every 6 months for 2 years
- Amenorrhea for 2 years

PRESENTED BY: Corresponding Author

Hee Jeong Kim MD, PhD

Professor, Asan Medical Center

 Permanent menopause group Excluded from the survival analysis

ASAN

Medical Center

Endpoints

- Primary: Disease Free Survival (DFS)
- · Secondary: Overall survival (OS)

Baek SY et al. ASCO 2022; Abstract 506.

2022 ASCO

ANNUAL MEETING

Comparisons between ASTRRA and SOFT trials

Korean Breast Cancer Society

		ASTRRA	SOFT-chemotherapy	
	Age	45 or less	Premenopausal	
	Median age	40	40	
	Lymph node positivity	55%	57%	
	HER2 over expression	14%	19%	
	Periods of ovarian function evauation for randomization	2 years	8 month	
	Treatment durations of OFS	2 years	5 years	
SOFT study: The Suppression of Ovaria OFS; Ovarian Function Suppression	n Function Trial		Francis PA et al, NEJM 201 Kim HA and Noh WC et al,	5 , JCO 2019
2022 ASCO #ASCO	PRESENTED BY: Corresponding Author Hee Jeong Kim MD, PhD	한국유방암학회 🔊 ASAN	Center ASCO d	AMERICAN SOCIETY C

KNOWLEDGE CONQUERS CANCER

Baek SY et al. ASCO 2022; Abstract 506.

Professor, Asan Medical Center

ANNUAL MEETING

Primary Endpoint – Disease Free Survival

Baek SY et al. ASCO 2022; Abstract 506.

Long Term Safety with OFS During Chemo for Fertility (PROMISE-GIM6)

Lambertini et al JNCI 2022

monarchE Study Design (NCT03155997)

Ki-67 is Prognostic, but Not Predictive of Abemaciclib Benefit

Within Cohort 1, similar abemaciclib treatment effects were observed regardless of Ki-67 index

Johnston SRD et al. SABCS 2022; Abstract GS1-09.

NATALEE study design^{1,2}

Primary End Point

- iDFS using STEEP criteria

Secondary End Points

- Recurrence-free survival
- Distant disease–free survival
- OS
- PROs
- Safety and tolerability
- PK

Exploratory End Points

- Locoregional recurrence–free survival
- Gene expression and alterations in tumor ctDNA/ctRNA samples

^a Enrollment of patients with stage II disease was capped at 40%. ^b5101 patients were randomized from 10 Jan 2019 to 20 April 2021. ^c Open-label design. ^d Per investigator choice. CT, chemotherapy; ctDNA/RNA, circulating tumor DNA/RNA; EBC, early breast cancer; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; IDFS, invasive disease-free survival; N, node; NSAI, nonsteroidal aromatase inhibitor; OS, overall survival; PAM50,

prediction analysis of microarray 50; PK, pharmacokinetics; PRO, patient reported outcome; R, randomized; STEEP, Standardized Definitions for Efficacy End Points in Adjuvant Breast Cancer Trials. 1. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03701334. Accessed April 6 2023. 2. Slamon DJ, et al. *J Clin Oncol.* 2019;37(15 suppl) [abstract TPS597].

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Patient disposition

Median follow-up of 34.0 months (minimum, 21 months)^a

Parameter, n %	RIB + NSAI n = 2549	NSAI alone n = 2552
Patients treated Patients with treatment ongoing ^b	2526 (99) 1984 (78)	2442 (96) 1826 (72)
Patients who discontinued NSAI	542 (21)	617 (24)
Primary reason for treatment discontinuation (NSAI) ^c Adverse Event Patient/Physician decision Disease relapse Other ^d Lost to follow-up Death ^e	118 (5) 256 (10) 142 (6) 13 (0.5) 8 (0.3) 5 (0.2)	105 (4) 296 (12) 186 (7) 15 (0.6) 12 (0.5) 3 (0.1)
Patients who completed ribociclib treatment ≥2 years (including ongoing) Completed 3 years RIB	1449 (57) 515 (20)	-
Primary reason for early discontinuation of RIB ^f Adverse Event	477 (19)	-

NSAI, nonsteroidal aromatase inhibitor; RIB, ribociclib.

#ASCO23

2023 ASCO

ANNUAL MEETING

^a Randomization to data cutoff of January 11, 2023. ^b In the RIB + NSAI arm, the treatment is considered ongoing if the patient is continuing either study treatment. ^c All components of treatment are discontinued if NSAI is discontinued. ^d Includes protocol deviations. ^e Causes of death in the RIB + NSAI arm were COVID-19 pneumonia, pulmonary embolism, and traffic accident, and in patients who had previously discontinued RIB but remained on NSAI, the causes of death were cardiac arrest and brain edema; for patients in the NSAI alone arm, the causes of death were myocardial infraction, sepsis, and unknown. ^f RIB could be discontinued early due to AEs, all other reasons for discontinuations would require both components be discontinued and are captured above.

PRESENTED BY: Dennis Slamon MD, PhD

Ribociclib achieved highly significant iDFS benefit

- Median follow-up for iDFS was 27.7 months
- Based on the *P* value of 0.0014, the IDMC concluded that the results met the criteria to demonstrate statistically significant and clinically superior efficacy
- Absolute iDFS benefit with RIB + NSAI at 3 years was 3.3%
- Risk of invasive disease was reduced by 25.2% with RIB + NSAI vs NSAI alone
- Ongoing patients will remain on treatment and follow-up will continue as prespecified

iDFS, invasive disease-free survival; IDMC, Independent Data Monitoring Committee; HR, hazard ratio; NSAI, nonsteroidal aromatase inhibitor; RIB, ribociclib. ^a One-sided *P* value.

PRESENTED BY: Dennis Slamon MD, PhD

#ASCO23

iDFS benefit was consistent across prespecified key subgroups

Subgroup	RIB + NSAI n = 2549	NSAI Alone n = 2552		HR	(95% CI)
Menopausal status					. ,
Men and premenopausal women	71/1126	93/1132	⊢∎¦ -I	0.722	(0.530-0.983)
Postmenopausal women	118/1423	144/1420	⊢• <mark>i−</mark> -i	0.781	(0.613-0.997)
AJCC stage					
Stage II	49/1011	65/1034	⊢ • <mark>⊢</mark> +1	0.761	(0.525-1.103)
Stage III	140/1528	172/1512		0.740	(0.592-0.925)
Prior CT					
Neoadjuvant	111/1085	132/1095	⊢ •−1	0.785	(0.610-1.011)
Adjuvant	63/1223	89/1220	⊢ ⊕ ∔I	0.671	(0.486-0.927)
Prior ET					
Yes	127/1824	157/1801	⊢ • ¦ −+	0.756	(0.598-0.955)
No	62/725	80/751	⊢∔∔	0.774	(0.556-1.079)
Region			I I		
North America/Western Europe/Oceania	111/1563	139/1565		0.759	(0.591-0.974)
Rest of world	78/986	98/987		0.757	(0.562-1.019)
Histological grade at time of surgery					. ,
Grade 1	9/213	12/217	· · · · · · · · · · · · · · · · · · ·	0.778	(0.328-1.846)
Grade 2	102/1460	125/1432	⊢ ∎ <mark>-</mark> -1	0.749	(0.577-0.973)
Grade 3	61/684	78/702	F-4-1	0.776	(0.555-1.085)
Ki-67 status ^a					. ,
Ki-67 ≤ 20%	76/1199	95/1236	⊢ ∳-↓	0.801	(0.593-1.083)
Ki-67 > 20%	82/920	105/938		0.746	(0.559-0.996)
Nodal status ^{b,c}					
NO	16/285	28/328		0.630	(0.341-1.165)
N1-N3	173/2261	208/2219	⊢ •¦1	0.771	(0.630-0.944)

^a From archival tumor tissue. ^b Nodal status classification according to AJCC staging. ^c Nodal status is from the worse stage derived per surgical specimen or at diagnosis.

Favors RIB + NSAI Favors NSAI alone

2023 ASCO

ANNUAL MEETING

OlympiA: Adjuvant Olaparib for Germline BRCA1/2-Mutated HER2- Early Breast Cancer

Randomized, double-blind phase III trial

- Primary endpoint: invasive DFS
- Secondary endpoints: OS, distant DFS, incidence of new cancers, QoL

OlympiA: Second Interim Analysis of iDFS and dDFS

Geyer CE et al. Ann Oncol 2022;33:1250.

OlympiA: Second Interim Analysis of OS

Agenda

Module 1: Long-Term Management of HER2-Positive Breast Cancer — Dr Krop

Module 2: Optimizing the Management of ER-Positive Localized Breast Cancer — Dr Kalinsky

Module 3: Considerations in the Care of Patients with ER-Positive mBC — Dr Jhaveri

Module 4: Novel and Emerging Strategies for ER-Positive mBC — Dr Rugo

Module 5: Evolving Clinical Decision-Making for Localized Triple-Negative Breast Cancer (TNBC) — Dr O'Shaughnessy

Module 6: Recent Advances in the Treatment of Metastatic TNBC (mTNBC) — Prof Schmid

Preference of CDK4/6 inhibitor in the metastatic setting

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

In general, which CDK4/6 inhibitor do you recommend in combination with endocrine therapy as first-line treatment for postmenopausal women with ER-positive, HER2-negative mBC?

Dr Jhaveri	Ribociclib	Prof Schmid	Ribociclib
Dr Kalinsky	Ribociclib	Dr Hurvitz	Ribociclib
Dr Krop	Ribociclib	Dr Tolaney	Ribociclib
Dr O'Shaughnessy	Ribociclib	Dr Traina	Ribociclib
Dr Rugo	No preference		

In general, which CDK4/6 inhibitor do you recommend in combination with endocrine therapy as first-line treatment for premenopausal women with ER-positive, HER2-negative mBC?

Dr Jhaveri	Ribociclib	Prof Schmid	Ribociclib
Dr Kalinsky	Ribociclib	Dr Hurvitz	Ribociclib
Dr Krop	Ribociclib	Dr Tolaney	Ribociclib
Dr O'Shaughnessy	Ribociclib	Dr Traina	Ribociclib
Dr Rugo	Ribociclib		

Sequencing of trastuzumab deruxtecan in ER-positive, HER2-low metastatic breast cancer

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

A woman who has completed 5 years of an adjuvant aromatase inhibitor for ERpositive, HER2 IHC 2+, FISH-negative BC develops <u>asymptomatic, low-volume,</u> <u>nonvisceral</u> metastases 3 years later. Regulatory and reimbursement issues aside, when would you most likely offer trastuzumab deruxtecan?

Dr Jhaveri	After 1 line of chemotherapy	Prof Schmid	After 1 line of chemotherapy
Dr Kalinsky	After 1 line of chemotherapy	Dr Hurvitz	After 1 line of chemotherapy
Dr Krop	After 1 line of chemotherapy	Dr Tolaney	After 1 line of chemotherapy
Dr O'Shaughnessy	After 1 line of chemotherapy or after 2 lines of endocrine therapy	Dr Traina	After 1 line of chemotherapy
Dr Rugo	After 1 line of chemotherapy		

Considerations in the Care of Patients with ER-Positive mBC

Komal Jhaveri, MD, FACP

Associate Attending, Breast Medicine and Early Drug Development Service Section Head, Endocrine Therapy Research Program Clinical Director, Early Drug Development Service Memorial Sloan Kettering Cancer Center

Associate Professor Weill Cornell Medical College New York, New York

Memorial Sloan Kettering Cancer Center

PFS in 1st and 2nd Line Treatment With CDK4/6 Inhibitors + ET

	1 st LINE TREATMENT		≥ 2 nd LINE TREATMENT		1 st AND 2 nd LINE TREATMENT		
	PALOMA-2	MONALEESA-2	MONARCH-3	MONALEESA-7	PALOMA-3	MONARCH-2	MONALEESA-3
Endocrine partner	Letrozole	Letrozole	Letrozole	Letrozole (or Tamoxifen) + LHRH agonist	Fulvestrant	Fulvestrant	Fulvestrant
CDK4/6 Inhibitor	Palbociclib	Ribociclib	Abemaciclib	Ribociclib	Palbociclib	Abemaciclib	Ribociclib
Patients on study, n	666	668	493	672	521	669	726
		Prima	ry Endpoint = PFS	6 (CDK4/6 inhibitor + ET	vs. ET)		
HR	0.58	0.56	0.54	0.55	0.46	0.55	0.59
Median PFS, months	27.6 vs 14.5 (13.1 mo)	25.3 vs 16 (9.3 mo)	28.2 vs 14.8 (13.4 mo)	23.8 vs 13 (10.8 mo)	9.5 vs 4.6 (4.9 mo)	16.4 vs 9.3 (7.1 mo)	20.5 vs 12.8 (7.7 mo)
		Seco	ndary Endpoint =	OS (CDK4/6 inhibitor + E	T vs. ET)		
HR	0.956	0.76	0.754	0.76	0.81	0.78	0.75
Median OS, months	53.9 vs 51.2	63.9 vs 51.4	67.1 vs 54.5*	58.7 vs 40.9	34.9 vs 28.0	45.8 vs 37.25	52.2 vs 41.5

* IA2

Cristofanilli et al, Lancet Oncology 2016; Finn et al, NEJM 2016; Hortobagyi et al, NEJM 2016; Tripathy et al, Lancet 2018; Sledge et al, JCO 2017; Goetz et al, ESMO 2022; Slamon et al, JCO 2018; Turner et al NEJM 2018; Sledge GW et al - JAMA Oncol. 2019; Slamon DJ, et al NEJM. Feb 2020; Rugo HS et al., Brain Cancer Res Treat. 2019; Finn et al ASCO2022, Neven et al ESMO Breast 2022, Sledge et al SABCS 2022

Ribociclib + ET vs Chemotherapy in HR+/HER2- Advanced BC *RIGHT Choice*

Phase 2 study of ribociclib + goserelin with hormonal therapy vs physician choice chemotherapy in HR+/HER2- inoperable locally advanced or mBC

QOL, quality of life; TFR, treatment failure rate; TTF, time to treatment failure; ULN, upper limit of normal.

Lu Y-S, et al. Presented at: San Antonio Breast Cancer Symposium (SABCS) 2022; December 6-10, 2022; San Antonio, TX. Presentation GS1-10.

RIGHT Choice PFS

RIGHT Choice *TTF and Response*

Dose Reductions

Parameter, n (%)	Ribociclib + ET (n = 112)	Combination CT (n = 100)
0	81 (72.3)	54 (54.0)
1	27 (24.1)	12 (12.0)
2	4 (3.6)	14 (14.0)
≥ 3	0	20 (20.0)

	Ribociclib + ET (n = 112)	Combination CT (n = 100)
ORR, %	65.2	60.0
CBR, %	80.4	72.7

RIGHT Choice Safety

AEs Irrespective of Causality

2 patients in ribociclib arm showed grade ≥ 3 QT prolongation

All-grade treatment-related serious AEs

- RIB + ET: 2/112
- Combo chemo: 8/100

All-grade serious AEs leading to discontinuation

- RIB + ET: 8/112
- Combo chemo: 23/100

Primary outcome analysis of the phase 3 SONIA trial (BOOG 2017-03)

<u>Gabe Sonke</u>, Annemiek van Ommen - Nijhof, Noor Wortelboer, Vincent van der Noort, Astrid Swinkels, Hedwig Blommestein, Aart Beeker, Karin Beelen, Lisanne Hamming, Joan Heijns, Aafke Honkoop, Paul de Jong, Quirine van Rossum - Schornagel, Christa van Schaik - van de Mheen, Jolien Tol, Cathrien Tromp - van Driel, Suzan Vrijaldenhoven, Elise van Leeuwen - Stok, Inge Konings, Agnes Jager

PFS1 analysis

#ASCO23

PRESENTED BY: Prof. Gabe S. Sonke, MD, PhD

Overall survival analysis

#ASCO23

PRESENTED BY: Prof. Gabe S. Sonke, MD, PhD

PALMIRA Study Design (NCT03809988)

1L: First-line; ABC: Advanced breast cancer; Al: Aromatase inhibitors; ET: Endocrine therapy; HER2[-]: Human Epidermal Growth Factor Receptor 2-negative; HR[+]: Hormone receptor-positive; IM: Intramuscular injection; PO: oral administration; PD: Progressive disease; R: Randomization.

*If pre-menopausal, ovarian function suppression method required.

#ASCO23

[†]Palbociclib dose could be reduced until 75 mg. If a dose reduction below 75 mg is required, treatment must be discontinued.

*Administration of endocrine therapy was chosen depending on the prior administered agent.

PRESENTED BY: Dr. ANTONIO LLOMBART CUSSAC, MD PhD

palmira

Primary Objective: Investigator-assessed PFS (ITT Population)

CI: Confidence interval; HR: Hazard ratio; ITT: Intention to treat; mo: Months; mPFS: Median progression-free survival; PFS: Progression-free survival.

PRESENTED BY: Dr. ANTONIO LLOMBART CUSSAC, MD PhD

palmira

EMERALD: Phase 3 Trial of Elacestrant vs ET in Post CDK4/6i Setting

Stratification Factors:

- ESR1-mutation status^e
- · Prior treatment with fulvestrant
- Presence of visceral metastases

EMERALD Results: Elacestrant vs SOC PFS Rate at 6 and 12 Months

Elacestrant demonstrated improved PFS versus SOC ET in patients with ER+/HER2- advanced/metastatic breast cancer following prior CDK4/6i therapy, particularly in *mESR1* cohort

EMERALD Results: Elacestrant vs SOC PFS by Duration of CDK4/6i in *mESR1* Cohort

≥ 6 Months CDK4/6i

≥ 12 Months CDK4/6i

≥ 18 Months CDK4/6i

	Elacestrant	SOC Hormonal Therapy
Median PFS, months (95% CI)	4.14 (2.20 - 7.79)	1.87 (1.87 - 3.29)
PFS rate at 12 months, % (95% CI)	26.02 (15.12 - 36.92)	6.45 (0.00 - 13.65)
Hazard ratio (95% CI)	0.517 (0.361 - 0.738)	

	Elacestrant	SOC Hormonal Therapy
Median PFS, months (95% CI)	8.61 (4.14 - 10.84)	1.91 (1.87 - 3.68)
PFS rate at 12 months, % (95% CI)	35.81 (21.84 - 49.78)	8.39 (0.00 - 17.66)
Hazard ratio (95% CI)	0.410 (0.262 - 0.634)	

Bardia A et al. SABCS 2022. Abstract GS3-01.

	Elacestrant	SOC Hormonal Therapy
Median PFS, months (95% CI)	8.61 (5.45 - 16.89)	2.10 (1.87 - 3.75)
PFS rate at 12 months, % (95% CI)	35.79 (19.54 - 52.05)	7.73 (0.00 - 20.20)
Hazard ratio (95% CI)	0.466 (0.270 - 0.791)	

EMERALD: Elacestrant Safety

Nausea Summary	Elacestrant (n=237)	SOC (n=230)
Grade 3 nausea, n (%)	6 (2.5%)	2 (0.9%)
Dose-reduction rate due to nausea, n (%)	3 (1.3%)	Not applicable
Discontinuation rate due to nausea, n (%)	3 (1.3%)	0 (0%)
Antiemetic use	8%	10.3% (AI) 1.3% (Ful)

AEs:

- Most AEs were grade 1 or 2
- Low-grade nausea was common in both treatment arms
- No grade 4 TRAEs

Treatment discontinuation:

- Elacestrant: 3.4%
- SOC: 0.9%
- No hematologic safety signal was observed
- No incidence of bradycardia

PARP Inhibitors FDA Approved for gBRCA-Mutated MBC

Improvement in PFS with PARP inhibitors compared with chemotherapy

TBCRC 048: A Phase 2 Study of Olaparib in MBC With Germline or Somatic Mutations in Homologous Recombination Pathway Genes

<i>PALB2</i> N=13	s <i>BRCA1/2</i> N=17^	ATM & CHEK2** N=17
Germline: 9/11 PR (82%) 10/11 had tumor regression; 1 SD > 1 yr	8/16 PR (50%)	0/13 germline 0/4 somatic
Somatic: 0/2 – both SD* (limited assessments)		

DESTINY-Breast04: Trial Design

DESTINY-Breast04 Phase 3 trial initiated to confirm the benefit of targeting HER2-low expression in mBC

Stratification factors

- Centrally assessed HER2 status^d (IHC 1+ vs IHC 2+/ISH-)
- 1 versus 2 prior lines of chemotherapy
- · HR+ (with vs without prior treatment with CDK4/6 inhibitor) versus HR-

DESTINY-Breast04: Population

```
60% HER2 1+, 40% HER2 2+
/ISH-
```

```
90% HR+ (n=499), 10% TNBC
(n=58)
```

		Hormone receptor-positive		All patients	
		T-DXd (n = 331)	TPC (n = 163)	T-DXd (n = 373)	TPC (n = 184)
	Age, median (range), years	57 (32-80)	56 (28-80)	58 (32-80)	56 (28-80)
	Female, n (%)	329 (99)	163 (100)	371 (99)	184 (100)
	Region, n (%)		· · ·	· · · · ·	
	Europe + Israel	149 (45)	73 (45)	166 (45)	85 (46)
	Asia	128 (39)	60 (37)	147 (39)	66 (36)
	North America	54 (16)	30 (18)	60 (16)	33 (18)
	HER2 status (IHC), n (%)				
600% HED2 1 ± 100% HED2 2 ±	1+	193 (58)	95 (58)	215 (58)	106 (58)
00%0 IILKZ IT _/ 40%0 IILKZ ZT	2+/ISH-	138 (42)	68 (42)	158 (42)	78 (42)
	ECOG performance status, %		17-17-04-0	NAMES OF BRIDE	
/ 1911-	0	187 (56)	95 (58)	200 (54)	105 (57)
	1	144 (44)	68 (42)	173 (46)	79 (43)
	Hormone receptor.ª n (%)				
90% HR+ (n=499), 10% INBC	Positive	328 (99)	162 (99)	333 (89)	166 (90)
	Negative	3 (1)	1 (1)	40 (11)	18 (10)
(n=58)	Brain metastases at baseline, n (%)	18 (5)	7 (4)	24 (6)	8 (4)
	Liver metastases at baseline, n (%)	247 (75)	116 (71)	266 (71)	123 (67)
	Lung metastases at baseline, n (%)	98 (30)	58 (36)	120 (32)	63 (34)
	Lines of systemic therapy (metastatic setting)	0 (4 0)	0.(4.0)	0 (1 0)	2 (4 0)
	Number of lines, median (range)	3 (1-9)	3 (1-8)	3 (1-9)	3 (1-8)
Median of 2 prior lines of ET and 1	1	23 (7)	14 (9)	39 (10)	19 (10)
· · · · · · · · · · · · · · · · · · ·	2	85 (26)	41 (25)	100 (27)	53 (29)
chemo	≥3	223 (67)	108 (66)	234 (63)	112 (61)
	Lines of chemotherapy (metastatic setting) Number of lines, median (range)	1 (0-3)	1 (0-2)	1 (0-3)	1 (0-2)
	Number of lines, n (%)				
	0	1 (0.3)	1 (0.6)	1 (0.3)	1 (0.5)
	2	203 (61.3)	93 (57.1)	221 (59.2)	100 (54.3)
	≥3	3 (0.9)	0 (42.5)	6 (1.6)	00 (40.1)
	Lines of endocrine therapy (metastatic setting)	0 (0.07			
	Number of lines, median (range)	2 (0-7)	2 (0-6)	2 (0-7)	2 (0-6)
	Number of lines, n (%)				
	1	28 (8)	17 (10)	60 (16)	34 (18)
	2	105 (32)	49 (30)	108 (29)	54 (29)
	≥3	88 (27)	44 (27)	90 (24)	45 (24)
700% of HD I received prior CDV//6	Prior targeted cancer therapy, n (%)				
10% UI TRT received prior CDR4/0	Targeted therapy	259 (78)	132 (81)	279 (75)	140 (76)
• • •	CDK4/6 inhibitor	233 (70)	115 (71)	239 (64)	119 (65)

Trastuzumab Deruxtecan in HER2-Low MBC DESTINY-Breast04 Phase 3: PFS

Trastuzumab Deruxtecan in HER2-Low MBC DESTINY-Breast04 Phase 3: OS

2022 FDA Approved T-DXd as the new SOC For HER2 Low (1+ or 2+/ISH-) MBC

	HR-P	ositive	HR-Negative		
Response	T-DXd (n = 333)	TPC (n = 166)	T-DXd (n = 40)	TPC (n = 18)	
Confirmed ORR, %	52.6	16.3	50.0	16.7	
CR	3.6	0.6	2.5	5.6	
PR	49.2	15.7	47.5	11.1	
PD	7.8	21.1	12.5	33.3	
NE	4.2	12.7	7.5	5.6	
CBR, %	71.2	34.3	62.5	27.8	
Median DOR, mo	10.7	6.8	8.6	4.9	

Adjudicated as Drug-Related ILD/Pneumonitis*

n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade
T-DXd (n = 371)	13 (3.5)	24 (6.5)	5 (1.3)	0	3 (0.8)	45 (12.1)
TPC (n = 172)	1 (0.6)	0	0	0	0	1 (0.6)

CBR, clinical benefit rate; CR, complete response; DOR, duration of response; NE, not evaluable; ORR, objective response rate; OS, overall survival; PD, progressive disease; PR, partial response. Cameron DA, et al. Presented at: 2020 ASCO Annual Meeting; June 3-7, 2022; Chicago, IL. Abstract LBA3; Modi S, et al. N Engl J Med. 2022;387:9-20.

Targeting Trop-2 with Sacituzumab Govitecan

SG is an anti-Trop2 ADC with

- High drug-to-antibody ratio (7.6:1)
- Topoisomerase inhibitor payload (SN38)
- Ability to exert bystander effect
- Granted accelerated approval by the FDA for metastatic TNBC

Sacituzumab Govitecan vs TPC in HR-Positive/HER2-Negative MBC *TROPiCS-02*

Metastatic or locally recurrent inoperable HR+/HER2- breast cancer that progressed after

- At least 1 endocrine therapy, taxane, and CDK4/6 inhibitor in any setting
- At least 2, but no more than 4, lines of chemotherapy for metastatic disease
- Measurable disease by RECIST 1.1

N=543

Stratification

- Visceral metastases (yes/no)
- Endocrine therapy in metastatic setting ≥6 months (yes/no)
- Prior lines of chemotherapies (2 vs 3/4)

BICR, blinded independent central review; LIR, local investigator review; IV, intravenous; PRO, patient-reported outcomes; RECIST, Response Evaluation Criteria in Solid Tumors. Rugo HS, et al. Presented at: San Antonio Breast Cancer Symposium (SABCS) 2022; December 6-10, 2022; San Antonio, TX. Presentation GS5-11.

Sacituzumab Govitecan in HR-Positive/HER2-Negative MBC TROPiCS-02 Phase 3: Efficacy

BICR-Assessed PFS in the ITT Population

98% prior CDK4/6 inhibitors Median 3 prior chemo

ITT, intention to treat; SG, sacituzumab govitecan.

Rugo H, et al. Presented at: 2020 ASCO Annual Meeting; May 29-31, 2020; Virtual. Abstract LBA1001.

PFS Analysis	SG (n = 272)	TPC (n = 271)	
Median PFS (95% CI), mo	5.5 (4.2, 7.0)	4.0 (3.1, 4.4)	
Stratified hazard ratio (95% CI)	0.66 (0.53-0.83)		
Stratified log rank <i>P</i> value	.0003		
6-Month PFS rate, % (95% CI)	46.1 (39.4, 52.6)	30.3 (23.6, 37.3)	
9-Month PFS rate, % (95% CI)	32.5 (25.9, 39.2)	17.3 (11.5, 24.2)	
12-Month PFS rate, % (95% CI)	21.3 (15.2, 28.1)	7.1 (2.8, 13.9)	

- SG resulted in a 34% reduction in the risk of PD/death
- SG resulted in PFS benefit consistent across all subgroup analyses, including patients with
 - ≥ 3 prior chemotherapy regimens in the metastatic setting
 - Visceral metastases
 - Endocrine therapy for MBC ≥ 6 months
TROPiCS-02 Key Secondary Endpoint: OS (Second Interim Analysis)

- SG showed statistically significant improvement in OS vs TPC with 21% reduction in the risk of death
- Patients who received SG survived a median of 3.2 months longer than those who received TPC

Agenda

Module 1: Long-Term Management of HER2-Positive Breast Cancer — Dr Krop

Module 2: Optimizing the Management of ER-Positive Localized Breast Cancer — Dr Kalinsky

Module 3: Considerations in the Care of Patients with ER-Positive mBC — Dr Jhaveri

Module 4: Novel and Emerging Strategies for ER-Positive mBC — Dr Rugo

Module 5: Evolving Clinical Decision-Making for Localized Triple-Negative Breast Cancer (TNBC) — Dr O'Shaughnessy

Module 6: Recent Advances in the Treatment of Metastatic TNBC (mTNBC) — Prof Schmid

Selection of therapy for ER-positive metastatic breast cancer progressing on a CDK4/6 inhibitor; future role of capivasertib

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

A patient who has been receiving a CDK4/6 inhibitor with letrozole for ER-positive, HER2-negative mBC experiences disease progression after 18 months. <u>Biomarker evaluation reveals an ESR1</u> <u>mutation but is negative for PIK3CA</u>. Regulatory and reimbursement issues aside, which systemic treatment would you most likely recommend?

Dr Jhaveri	Elacestrant	Prof Schmid	Continue the CDK4/6 inhibitor and switch endocrine therapy
Dr Kalinsky	Elacestrant	Dr Hurvitz	Elacestrant
Dr Krop	Continue the CDK4/6 inhibitor and switch endocrine therapy	Dr Tolaney	Elacestrant
Dr O'Shaughnessy	Elacestrant	Dr Traina	Elacestrant
Dr Rugo	Elacestrant		

A patient who has been receiving a CDK4/6 inhibitor with letrozole for ER-positive, HER2-negative mBC experiences disease progression after 18 months. <u>Biomarker evaluation reveals a PIK3CA</u> <u>mutation but is negative for ESR1</u>. Regulatory and reimbursement issues aside, which systemic treatment would you most likely recommend?

Dr Jhaveri	Alpelisib/fulvestrant	Prof Schmid	Alpelisib/fulvestrant
Dr Kalinsky	Alpelisib/fulvestrant	Dr Hurvitz	Alpelisib/fulvestrant
Dr Krop	Alpelisib/fulvestrant	Dr Tolaney	Alpelisib/fulvestrant
Dr O'Shaughnessy	Alpelisib/fulvestrant	Dr Traina	Alpelisib/fulvestrant
Dr Rugo	Alpelisib/fulvestrant		

A patient who has been receiving a CDK4/6 inhibitor with letrozole for ER-positive, HER2-negative mBC experiences disease progression after 18 months. <u>Biomarker evaluation reveals a PIK3CA</u> <u>mutation and an ESR1 mutation</u>. Regulatory and reimbursement issues aside, which systemic treatment would you most likely recommend?

Dr Jhaveri	Clinical trial	Prof Schmid	Alpelisib/fulvestrant
Dr Kalinsky	Alpelisib/fulvestrant	Dr Hurvitz	Alpelisib/fulvestrant
Dr Krop	Alpelisib/fulvestrant	Dr Tolaney	Alpelisib/fulvestrant
Dr O'Shaughnessy	Alpelisib/fulvestrant	Dr Traina	Alpelisib/fulvestrant or elacestrant, depending on disease volume, symptoms, etc
Dr Rugo	Alpelisib/fulvestrant		

If capivasertib were to become available, for which patients with ER-positive mBC would you prioritize its use?

Dr Jhaveri	Depends if approval is for all comers or only for patients with alteration	Prof Schmid	2 nd line after CDK4/6
Dr Kalinsky	Suspect it will be approved regardless of PIK3CA mutation or PI3K alteration	Dr Hurvitz	As 2 nd line for all, regardless of PIK3CA or ESR1 mutation status, w/ fulvestrant
Dr Krop	Patients with AKT pathway alterations	Dr Tolaney	After DP on 1L AI + CDK4/6i w/AKT pathway alteration (AKT/PI3K/PTEN)
Dr O'Shaughnessy	Patients with CDK4/i and AI pre- treated disease and DP, regardless of PI3K/AKT mutation status	Dr Traina	Would think about it for pts w/ PI3K and ESR1 WT as limited other options
Dr Rugo	Patients with alterations in the AKT signaling pathway		

AI = aromatase inhibitor; DP = disease progression

Comprehensive Cancer Center

Novel Investigational Strategies for ER-Positive mBC

Hope S. Rugo, MD

Professor of Medicine and Winterhof Professor of Breast Oncology

Director, Breast Oncology and Clinical Trials Education

University of California San Francisco Comprehensive Cancer Center

Resistance to ET + CDK4/6i: Now a High Unmet Need

Major Mechanisms of Resistance to CDK4/6 Inhibitors

Inhibiting AKT

- AKT pathway activation occurs in many HR+/HER2– ABC through alterations in *PIK3CA, AKT1 and PTEN*
 - May also occur in cancers without these genetic alterations
 - AKT signalling implicated in development of ET resistance
- Capivasertib is a potent, selective inhibitor of all three AKT isoforms (AKT1/2/3)

Turner et al, SABCS 2022; Jones RH, et al. Lancet Oncol 2020; Howell et al, Lancet Oncology 2022

Phase II FAKTION Trial

 Adding Capi to Fulv in PM women with AI resistant HR+ MBC (no prior CDKi) improved PFS and OS, with most benefit in altered population

CAPItello-291:

Phase III, randomized, double-blind, placebo-controlled study

Patients with HR+/HER2- ABC

- Men and pre-/post-menopausal women
- Recurrence or progression while on or <12 months from end of adjuvant AI, or progression while on prior AI for ABC
- ≤2 lines of prior endocrine therapy for ABC
- ≤1 line of chemotherapy for ABC
- Prior CDK4/6 inhibitors allowed (at least 51% required)
- No prior SERD, mTOR inhibitor, PI3K inhibitor, or AKT inhibitor
- HbA1c <8.0% (63.9 mmol/mol) and diabetes not requiring insulin allowed
- FFPE tumor sample from the primary/recurrent cancer available for retrospective central molecular testing

Summary of Demographics

- Median age ~59
- Asian 26%, Black 1%
- Primary ET resistance ~38%
- Visceral mets ~68%

- One line of prior ET for MBC ~75%
- Prior CDK4/6i for MBC ~70%
- Chemotherapy for ABC ~18%

Turner et al, SABCS 2022

AKT Pathway Alterations

Alteration; n (%)

Any AKT pathway	y alteration	155 (43.7)	134 (38.0)		
PIK3CA	Any <i>PIK3CA</i> only <i>PIK3CA</i> and <i>AKT1</i> <i>PIK3CA</i> and <i>PTEN</i>	116 (32.7) 110 (31.0) 2 (0.6) 4 (1.1)	103 (29.2) 92 (26.1) 2 (0.6) 9 (2.5)		
AKT1 only		18 (5.1)	15 (4.2)		
PTEN only		21 (5.9)	16 (4.5)		
Non-altered		200 (56.3)	219 (62.0)		
AKT pathway a Unknown No sample Preanalytica Post analyti	Ilteration not detected available al failure ical failure	142 (40.0) 58 (16.3) 10 (2.8) 39 (11.0) 9 (2.5)	171 (48.4) 48 (13.6) 4 (1.1) 34 (9.6) 10 (2.8)		

AKT pathway alteration status was determined centrally using next-generation sequencing in tumor tissue with the FoundationOne[®]CDx assay (and Burning Rock assay in China)

Turner et al, SABCS 2022

Dual primary endpoint: PFS in overall and AKT pathway-altered populations¹

Capivasertib plus fulvestrant provides a statistically significant and clinically meaningful improvement in PFS in the overall and the AKT pathway-altered populations

Summary of PFS by subgroups

Consistent clinically meaningful benefit with capivasertib + fulvestrant was observed across clinically relevant subgroups in both the overall population and AKT pathway-altered population

AKT pathway-altered population

Overall population

			Median PF	S, months							
		n	Capivasertib + fulvestrant	Placebo + fulvestrant		n	Capivasertib + fulvestrant	Placebo + fulvestrant			
Overall ^a		708	7.2	3.6	-	289	7.3	3.1			
Prior CDK4/6 inhibitor ^b	Yes	496	5.5	2.6	⊢ → 1	208	5.5	2.0	⊢		
	No	212	10.9	7.2	⊢ •	81	11.0	7.4	+ •	-	
Prior	Yes	129	3.8	2.1	⊢	53	4.0	2.0	++		
for ABC ^b	No	579	7.3	3.7	 1	236	7.4	3.5	· • •		
Liver	Yes	306	3.8	1.9	⊢ → 1	123	5.5	1.8	⊢		
metastases at baseline ^b	No	402	9.2	5.5	F • · · ·	166	9.1	3.7	F		
				0.25 Favours ca + fulve	0.50 1.0 apivasertib estrant (95% C	00 2.00 atio I) Favours placebo + fulvestrant			0.25 0.50 Favours capivasertib + fulvestrant	1.00 2.00 zard ratio 15% CI) Favours placebo + fulvestrant	

^aHR was estimated using the Cox proportional hazard model stratified by the presence of liver metastases, prior use of CDK4/6 inhibitor, and geographic region. ^bHR was estimated using the Cox proportional hazard model stratified by the presence of liver metastases and geographic region (prior CDK4/6 inhibitor subgroup), the presence of liver metastases and prior use of CDK4/6 inhibitor (prior chemotherapy for ABC subgroup [overall population]) and prior use of CDK4/6 inhibitor only (prior chemotherapy for ABC subgroup [AKT pathway-altered population] and liver metastases subgroup).

Oliveira et al, ESMO BC 2023

CAPItello 291: Safety Analysis

	Capivasertib + fulvestrant (n=355)					Placebo + fulvestrant (n=350)					
AE; n (%)	Any grade	Grade 1	Grade 2	Grade 3	Grade 4	Any grade	Grade 1	Grade 2	Grade 3	Grade 4	300 -
Any AE	343 (96.6)	52 (14.6)	139 (39.2)	139 (39.2)	9 (2.5)	288 (82.3)	115 (32.9)	118 (33.7)	44 (12.6)	10 (2.9)	
Diarrheaª	257 (72.4)	164 (46.2)	60 (16.9)	33 (9.3)	0	71 (20.3)	61 (17.4)	9 (2.6)	1 (0.3)	0	250 -
Rashª	135 (38.0)	57 (16.1)	35 (9.9)	43 (12.1)	0	25 (7.1)	19 (5.4)	5 (1.4)	1 (0.3)	0	c 200 -
Nausea	123 (34.6)	85 (23.9)	35 (9.9)	3 (0.8)	0	54 (15.4)	42 (12.0)	10 (2.9)	2 (0.6)	0	n AE,
Fatigue	74 (20.8)	49 (13.8)	23 (6.5)	2 (0.6)	0	45 (12.9)	35 (10.0)	8 (2.3)	2 (0.6)	0	150 - 011
Vomiting	73 (20.6)	54 (15.2)	13 (3.7)	6 (1.7)	0	17 (4.9)	10 (2.9)	5 (1.4)	2 (0.6)	0	nts w
Headache	60 (16.9)	47 (13.2)	12 (3.4)	1 (0.3)	0	43 (12.3)	33 (9.4)	8 (2.3)	2 (0.6)	0	Patie
Hyperglycemiaª	60 (16.9)	26 (7.3)	26 (7.3)	7 (2.0)	1 (0.3)	14 (4.0)	8 (2.3)	5 (1.4)	1 (0.3)	0	 50 -
Decreased appetite	59 (16.6)	37 (10.4)	21 (5.9)	1 (0.3)	0	22 (6.3)	11 (3.1)	9 (2.6)	2 (0.6)	0	0
Stomatitis	52 (14.6)	24 (6.8)	21 (5.9)	7 (2.0)	0	17 (4.9)	15 (4.3)	2 (0.6)	0	0	Capiva + fulves
Asthenia	47 (13.2)	29 (8.2)	14 (3.9)	4 (1.1)	0	36 (10.3)	31 (8.9)	3 (0.9)	2 (0.6)	0	D
Pruritus	44 (12.4)	32 (9.0)	10 (2.8)	2 (0.6)	0	23 (6.6)	19 (5.4)	4 (1.1)	0	0	

AEs leading to:

- Discontinuation capi/pla: 9.3 vs 0.6%
- Interruption capi/pla: 34.9 vs 10.3%
- Dose reduction capi/pla: 19.7 vs 1.7%

Median time to onset, Days

- Diarrhea: 8 (2-22)
- Rash: 12 (10-15)
- Hyperglycemia: 15 (1-51)

AEs leading to discontinuation

- Diarrhea: 2%
- Rash 4.5%
- Hyperglycemia: 0.3%

Rugo et al, ASCO 2023

Summary: Capivasertib and Fulvestrant

- Capivasertib/fulvestrant vs Pla/fulvestrant improved PFS in the overall population and in patients with tumor PIK3CA altered population; overall survival immature
- Efficacy in the subset of patients with non-altered tumors encouraging
 - Trial was not powered to look at this subgroup; small group with unknown mutation profile hard to take into account
- Benefit seen across subgroups including those with prior CDK4/6i & with visceral mets
- Safety
 - Overall well tolerated, low rate of hyperglycemia
- Data to be considered for regulatory approval
- Additional studies
 - CAPItello-292 (NCT04862663): Fulvestrant/Palbociclib +/- Capi; now being evaluated with ribociclib and abemaciclib combinations
 - Additional studies with ipatasertib with similar designs
 - New PIK3CA inhibitors: Inavolisib, RLY-2608
 - Mutant selective (H1047): LOX783, STX-H1047-PI3Kα
 - And more!

RLY-2608: Disease Stabilization Across *PIK3CA* Breast Cancer Genotypes

*Response confirmed after data cut-off

Preliminary data as of 03/09/2023

Mechanism of Action of New Endocrine Agents Targeting the ER Domain

1. Hanker AB et al. Cancer Cell. 2020;37:496-513 2. Lloyd MR, et al. Ther Adv Med Oncol 2022, Vol. 14: 1–25

SERENA-2 Phase 2 Trial: Camizestrant plus Fulvestrant

C 75 (n=74) C 150 (n=73) F (n=73) 1.0 Median duration 16.6 16.6 17.4 of follow-up, months camizestrant 300 mg (n=20) 58 (79.5) Events [n (%)] 50 (67.6) 51(69.9) CSP v5 amendment: 16Dec20 Median PFS, months 7.2 7.7 3.7 0.8 (90% CI) (3.7-10.9) (5.5 - 12.9)(2.0-6.0)Adjusted HR 0.58 0.67 Probability of PFS (90% CI)^a (0.41 - 0.81)(0.48 - 0.92)0.0161* camizestrant 75 mg (n=74) P value 0.0124* 0.6 R 0.4 camizestrant 150 mg (n=73) 0.2

0.0

74

73

C 75

C 150

Camizestrant 75 mg Camizestrant 150 mg

Fulvestrant 500 mg

6

33

37

9

27

32

3

50

50

Primary endpoint: PFS by investigator assessment

Demographics

Primary endpt:

Inv assessed PFS

- 90-95% white
- Imbalance in liver (not visceral) mets: 31 v 41 vs 48%
- Imbalance in ESR1m: 30 v 36 v 48%
- 77% one line ET, 63% prior AI; 50% prior CDK4/6i
- Prior chemo for MBC: 22 v 12 v 26%

F7337282214850*Statistically significant; aHRs adjusted for prior use of CDK4/6i and liver/lung metastases

12

21

25

Time (months)

15

14

12

18

6

21

2

2

24

1

0

27

0

=/3) F (n=/3)	
2) 53 (72.6)	
3.7	
4) (2.0-3.8)	
_	
58) -	
* _	
2) 53 (72.6) 3.7 4) (2.0-3.8) 8) -

Oliveira et al, SABCS 2022

No prior CDK4/6i

ESR1m detectable at baseline

	YES	C 75 (n=43)	C 150 (n=43)	F 500 (n=43)	NO	C 75 (n=31)	C 150 (n=30)	F 500 (n=30)
Liver	Events [n (%)]	31 (72.1)	32 (74.4)	39 (90.7)	Events [n (%)]	19 (61.3)	19 (63.3)	19 (63.3)
and/or	Median PFS,	7.2	5.6	2.0	Median PFS,	5.5	14.5	9.2
anu/or	months (90% CI)	(3.6-11.1)	(3.7-9.1)	(1.9-3.6)	months (90% CI)	(3.7-15.0)	(5.6-17.2)	(3.7-18.7)
lung mets	Adjusted HR	0.43	0.55	_	Adjusted HR	0.99	0.91	_
	(90% CI) ^a	(0.28-0.65)	(0.37-0.82)		(90% CI) ^a	(0.57-1.69)	(0.53-1.56)	

ESR1m not detectable at baseline

Biomarkers

 Camizestrant reduced ESR1 ctDNA to near zero by C2D1

Safety

- Very low rate discontinuation
- Interruption TRAEs ~med 7 days: ~10%
- Very low rate of grade 3 AEs
- All grade AEs (low-high dose):
 - Photopsia: 12-25%
 - Sinus bradycardia: 5-26%
 - More fatigue, arthragia, AST/ALT elevation at higher dose

Conclusion

- Met its primary endpoint
- No comment about dosing or imbalance in specific factors
 - Ph 3 trials ongoing
 - Dose: 75 mg

Imlunestrant: Phase Ia/b Trial

ARV-471 (PROTAC ER Degrader): VERITAC Phase II Expansion Trial

- ARV-471 directly binds an E3 ubiquitin ligase and ER to trigger ubiquitination of ER then proteasomal degradation
- >1 ET for MBC, a CDK4/6i

CBR, % (95% CI)

CBR, % (95% CI)

Patients with

mutant ESR1

- 35 pts at 200mg/d; 36 pts at 500 mg/d
- 58% ESR1 mutations; 79% prior fulvestrant, 45% liver mets

- Primary toxicities: fatigue, nausea, but <grade 2
- PFS All Patients 200 mg QD (n=35) Total (N=71) Events, n (%) 24 (68.6) 41 (57.7) 3.5 (1.8-7.8) 3.7 (1.9-8.3) mPFS, mo (95% CI) Mutant ESR1 200 mg QD (n=19) Total (n=41) Events, n (%) 12 (63.2) 22 (53.7) 500 mg QD 200 mg QD Total mPFS, mo (95% CI) 5.5 (1.8-8.5) 5.7 (3.6-9.4) (n=35) (n=36) (N=71) Median ER degradation was 69% 37.1 (21.5-55.1) 38.0 (26.8-50.3) 38.9 (23.1-56.5) (range: 28%-95%) Phase 3 VERITAC-2 Trial (n=19) (n=22) (n=41) Fulvestrant vs ARV471 200 mg/d 47.4 (24.4-71.1) 54.5 (32.2-75.6) 51.2 (35.1-67.1) Hurvitz, Schott et al, SABC 2022

Additional Phase III SERD Trials for MBC: Examples

Negative

for ESR1m

Positive for

ESR1m

CDK Inhibitors in Clinical Development

Drug	Target	Available and upcoming data	Trial
PF-07104091	CDK2	ASCO 2023 #3010 (PD)	NCT04553133
PF-07220060	CDK4	ASCO 2023 #3009 (PD)	NCT04557449
PF-06873600	CDK2/4/6	Hematologic and GI AEs; ORR 8% (Yap T et al, SABCS 2021)	NCT03519178 discontinued
PF-07220060 + PF-07104091	CDK4 + CDK2	Phase I/II study in progress	NCT05262400
BLU-222	CDK2	ASCO 2023 #3095 (P)	NCT05252416
Samuraciclib	CDK7	Combination with giredestrant Combination with elacestrant Phase II with fulvestrant	NCT04802759 TBD TBD
SY-5609	CDK7	GI AEs; activity in pancreatic cancer (ESMO 2021) Combo with Fulv in BC: ASCO 2023 #3081 (P)	NCT04247126
XL102	CDK7	GI AEs, combos ongoing (Patnaik A et al, SABCS 2022)	NCT04726332

... and more to come

Phase I of Samuraciclib (CDK7 inhibitor)

Adverse event	All grades, n (%)	Grade ≥3, n (%)		
Diarrhea	28 (90)	6 (19)		
Nausea	25 (81)	3 (10)		
Vomiting	23 (74)	1 (3)		
Fatigue	11 (36)	1 (3)		
Decreased appetite	9 (29)	0		
Abdominal pain	7 (23)	0		
AST increased	4 (13)	0		
Dysgeusia	4 (13)	0		
Headache	4 (13)	0		
Upper abdominal pain	4 (13)	0		

PFS according to liver metastasis

0

3

PFS according to TP53

12

15

6

Time on study (months)

Other Investigational Endocrine Agents

- SARM: selective androgen receptor modulator
 - Enobosarm: ORR 48%, CBR 80%, and median PFS 5.5
 months in AR+++ (n=24) (Palmieri et al, ASCO 2021)
 - Phase III ARTEST trial ongoing in 2-3rd line metastatic setting
 - Fast track designation by FDA
- SERM: Lasofoxifene

- Phase III Elaine III: Fulv/abema vs Laso/abema, N=400

- Aurora Kinase A: alisertib (Haddad, JAMA 2023)
 - ORR alisertib alone (n=46): 19.6%; med DoR 15.1 mo; CBR 41.3%; mPFS 5.6 mo
 - Primary toxicity neutropenia

Elaine 1: Goetz et al, ESMO 2022; SABCS 2022

Phase 1 TROPION-PanTumor01: **Datopotomab deruxtecan in HR+/HER2neg MBC**

Neoadjuvant in I-SPY2

Meric-Bernstam et al, SABCS 2022

• N=41

- Median of 2 prior chemo for MBC
 - (Range: 1-6)
- 95% prior CDKi
- Efficacy:
 - ORR (all PR): 27%;
 - CBR: 44%
 - Med PFS 8.3 mo
 - 59% alive for >1 year
- Safety (all Gr/>Gr 3):
 - Stomatitis: 83/10%
 - Nausea: 56/0%
 - Alopecia: 37%
 - Pneumonitis: Gr 2 and 3 (2 pts)

Second/Third-Line Therapy for HR+/HER2- MBC

TROPION-Breast01 (NCT05104866)^{1,a}

Geographic location (US, Canada, EU vs rest of world)

Novel TROP2 ADC

Previous CDK4/6i use

TBCRC 064: TReatment of ADC-Refractory Breast CancEr with Dato-DXd or T-DXd (TRADE DXd). PI: Ana Garrido-Castro Primary endpoint (ADC₁, ADC₂): ORR **Eligibility:** Secondary endpoints: PFS, OS, CBR, TTOR, DOR Confirmed unresectable locally ADC₂ ADC₁ advanced or metastatic disease History of HER2-low BC: IHC 1+ Treat until HR+ (n=66) HR+ (n=66) Crossover T-DXd Dato-DXd or 2+/ISH- (any sample: primary progression or to ADC₂ at or met) unacceptable 0-1 prior lines 1-2 prior lines progression **HR-** (n=50) HR- (n=50) Measurable disease . toxicity Prior endocrine therapy and . CDK4/6 inhibitor for HR+ MBC HR+ (n=66) HR+ (n=66) Treat until • Prior topo-I inhibitor allowed Crossover Dato-DXd T-DXd progression or only in neo-/adjuvant setting(s) to ADC₂ at 0-1 prior lines unacceptable 1-2 prior lines and if ≥12m elapsed since last **HR-** (n=50) progression **HR-** (n=50) toxicity dose to metastatic recurrence *Randomization 1:1 to T-DXd or Dato-DXd as ADC₁ for allocation Baseline Post-C2 Baseline Optional purposes. Pre-ADC₁ On-ADC₁ Pre-ADC₂ Post-ADC₂ Biopsy Biopsy Biopsy Biopsy Fumor assessments + Blood collection g9w *Patients who received T-DXd/Dato-DXd as ADC1 off-study allowed to enroll on ADC2 cohorts. Cohorts 1 & 2: Enrollment Prior to ADC #1 Cohort 1: HR+/HER2-Objectives/considerations: HER2 low Allows for prospective Patient 1 T-DXd SG assessment of ADC #1 and ~35 patients ADC #2 efficacy, including PRO data and collection of Patient 2 SG T-DXd Cohort 2: TNBC, HER2 blood for translational endpoints low Potential barrier: Patient not

Registry Sequencing Study: Laura Huppert UCSF

Patritumab deruxtecan: Activity in HER3-expressing MBC

- Patritumab deruxtecan: Anti HER3 Ab (Patritumab) connected to a Topo I payload (DXd) via a cleavable linker
- Data from expansion of a phase 1/2 trial in HER3 expressing MBC
 - Heavily pretreated patient population with median priors ranging from 2-6 depending on subtype

✓	Durable antitumor activity in all BC subtypes across the range of HER3 expression	Subtype	ORR	Median DoR	
✓ ✓	Manageable safety profile with low rates of treatment discontinuation Most common toxicities: GI and heme	HR+/HER2-	30%	7.2 mo	
	 10% discontinuation due to AEs 	HER2+	23%	5.9 mo	
	 27% grade 3 thrombocytopenia 	ТЛВС	43%	8.3 mo	
	• 6.6% ILD; 1 death	_			

btype FDA Fast track designation for metastatic EGFR mutated NSCLC

Data from Part A: HER3-DXd

• 60 pts:

- HR+: Prior CDKi, 0-2 chemo
- TN: 1-3 chemo
- 27HR+/19TN (n=48)
- Med 3 prior regimens
- 64% HER3 <a>25%; 8% <25% (n=47)
- ORR 35%, CBR 43%, DOR <u>></u> 6mo
 - No relationship to HER3 expression
- Med DOR: 10 mo
- Most common AE:
 - Nausea/diarrhea/fatigue
 - TEAE: 2 ILD, 1 low plt

	Any grade (N=60) n (%)	Grade 3/4 (N=60) n (%)
Any Adverse Event (AE)	56 (93.3)	19 (31.7)
Nausea	30 (50.0)	2 (3.3)
Fatigue	27 (45.0)	4 (6.7)
Diarrhea	22 (36.7)	3 (5.0)
Vomiting	19 (31.7)	1 (1.7)
Anemia	18 (30.0)	0
Alopecia	17 (28.3)	N/A
Hypokalemia	9 (15.0)	1 (1.7)
Decreased Appetite	8 (13.3)	0
Neutrophil Count Decreased**	7 (11.7)	3 (5.0)
White Blood Cell Count Decreased**	7 (11.7)	1 (1.7)

	(N=60) n (%)
Number of Prior Systemic Regimens ir Metastatic Setting	1
1-2 prior regimens	24 (40.0)
3 or more prior regimens	36 (60.0)
Median (range)	3 (1, 9)
Type of Prior Regimens in the Metastat	ic
Setting*	
Chemotherapy	54 (90.0)
PARP inhibitors	3 (5.0)
Immunotherapy	12 (20.0)
	= (0,0)

	HR+	TNBC
	(N=29)	(N=19)
ORR, n (%)	12 (41.4)	4 (21.1)
95% CI	(23.5, 61.1)	(6.1, 45.6)

Agenda

Module 1: Long-Term Management of HER2-Positive Breast Cancer — Dr Krop

Module 2: Optimizing the Management of ER-Positive Localized Breast Cancer — Dr Kalinsky

Module 3: Considerations in the Care of Patients with ER-Positive mBC — Dr Jhaveri

Module 4: Novel and Emerging Strategies for ER-Positive mBC — Dr Rugo

Module 5: Evolving Clinical Decision-Making for Localized Triple-Negative Breast Cancer (TNBC) — Dr O'Shaughnessy

Module 6: Recent Advances in the Treatment of Metastatic TNBC (mTNBC) — Prof Schmid

Management of triple-negative localized breast cancer; selection of patients for adjuvant olaparib

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

In general, what would you recommend as adjuvant treatment for a patient with <u>BRCA wild-type</u> TNBC who has residual disease after neoadjuvant chemotherapy/pembrolizumab?

Dr Jhaveri	Pembrolizumab + capecitabine	Prof Schmid	Pembrolizumab + capecitabine
Dr Kalinsky	Pembrolizumab + capecitabine	Dr Hurvitz	Pembrolizumab + capecitabine
Dr Krop	Pembrolizumab + capecitabine	Dr Tolaney	Pembrolizumab + capecitabine
Dr O'Shaughnessy	Pembrolizumab + capecitabine	Dr Traina	Pembrolizumab + capecitabine
Dr Rugo	Pembrolizumab + capecitabine		

In general, what would you recommend as adjuvant treatment for a patient with TNBC and a germline BRCA mutation who has residual disease after neoadjuvant chemotherapy/pembrolizumab?

Dr Jhaveri	Pembrolizumab + olaparib	Prof Schmid	Pembrolizumab + olaparib
Dr Kalinsky	Pembrolizumab + olaparib	Dr Hurvitz	Pembrolizumab + olaparib
Dr Krop	Pembrolizumab + olaparib	Dr Tolaney	Pembrolizumab + olaparib
Dr O'Shaughnessy	Pembrolizumab + olaparib	Dr Traina	Pembrolizumab + olaparib
Dr Rugo	Pembrolizumab + olaparib		

PARP inhibitor tolerability

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

In your experience, what is the approximate likelihood that a patient will be able to complete the full 1-year course of adjuvant olaparib?

Dr Jhaveri	95%	Prof Schmid	100%
Dr Kalinsky	90%	Dr Hurvitz	60%
Dr Krop	15%	Dr Tolaney	95%
Dr O'Shaughnessy	90%	Dr Traina	>90%
Dr Rugo	100%		

In general, do you initiate preemptive medication for nausea and vomiting when administering PARP inhibitors?

In general, when administering adjuvant olaparib to a patient with BC, do you discuss the risk of developing AML/MDS, and if so, do you provide an estimate of risk?

Dr Jhaveri	Νο	Prof Schmid	Yes, but I do not provide a risk estimate
Dr Kalinsky	Νο	Dr Hurvitz	Yes, very small (<5%)
Dr Krop	Yes, but I do not provide a risk estimate	Dr Tolaney	Yes, <1%
Dr O'Shaughnessy	Yes, but I do not provide a risk estimate	Dr Traina	Yes, <0.5%
Dr Rugo	Yes, specifically that there does not appear to be an increased risk		

Evolving Clinical Decision-Making for Localized Triple Negative Breast Cancer (TNBC)

Joyce O'Shaughnessy, MD Celebrating Women Chair in Breast Cancer Research Baylor University Medical Center Texas Oncology US Oncology Dallas TX

KEYNOTE-522: Study Design

KEYNOTE-522: pCR at IA1

KEYNOTE-522: EFS at IA4

Schmid. NEJM. 2022;386:556.

KEYNOTE-522: EFS by pCR

KEYNOTE-522: Immune-Related Adverse Events

Schmid. ESMO 2021. Abstr VP7 2021.

Immune-Mediated AEs and Infusion Reactions With Incidence ≥10 Patients

Placebo + Chemo

(n = 389)

21.9

2.1

0

2.6

1.4

, tepatitis

0.8

0.8

Phase II NeoPACT: Neoadjuvant Pembrolizumab + Carboplatin/Doxorubicin in TNBC

Multicenter phase II trial evaluating de-intensified, anthracycline-free neoadjuvant tx for TNBC

Carboplatin AUC 6 + Docetaxel 75 mg/m ² + Pembrolizumab 200 mg Q21D x 6	→	Surgery	 	Follow-up; adjuvant therapy permitted (no pembrolizumab)
	Carboplatin AUC 6 +			
	Docetaxel 75 mg/m ² +			
	Pembrolizumab 200 mg	Pembrolizumab 200 mg	Pembrolizumab 200 mg	Pembrolizumab 200 mg
	Q21D x 6	Q21D x 6	Q21D x 6 ► Surgery	Q21D x 6 → Surgery

Primary Endpoint: pC	CR, %	Patients (N = 115)
All, % (95% Cl)		58 (48-67)
TNM	• • •	69 59 43
Nodal status	NegativePositive	65 46
PD-L1 status	NegativePositive	39 76

Secondary Efficacy Endpoints, %	Patients (N = 115)
RCB 0+1	69
2-yr EFS	89
With pCR	98
Without pCR	78
2-yr OS	90
With pCR	100
Without pCR	76

IMpassion031: Addition of Atezolizumab to Neoadjuvant Chemotherapy in Stage II-III TNBC

Randomized, double-blind, placebo-controlled phase III trial

- Primary endpoint: pCR using AJCC staging system in ITT population and PD-L1+ subpopulation
- Key secondary endpoints: EFS, DFS, OS in all patients and PD-L1+ subpopulation, safety

IMpassion031: pCR in ITT Population

IMpassion031: EFS (ITT POPULATION AND SUBGROUPS)

Atezolizumab provides significant pCR benefit and numerically improved EFS

HR = hazard ratio

Barrios. ESMO Breast 2023. Abstr LBA1.

April 26, 2023

ALEXANDRA/IMpassion030 Futile for iDFS per DMC

NSABP B59/GBG 96-GeparDouze

Figure 1. GeparDouze Study Design

Who Should Be Tested for BRCA1/2 Mutations?

Patients diagnosed at ANY AGE with breast cancer and any of the following:

- To aid adjuvant therapy decision-making using olaparib in high-risk EBC
- To aid systemic therapy decision-making using PARP inhibitors in the metastatic setting
- TNBC histology
- Lobular breast cancer and personal/family history of diffuse gastric cancer
- Male breast cancer
- ≥1 close male relative with breast cancer

NCCN. Clinical practice guidelines in oncology: genetic/familial high-risk assessment: breast, ovarian, and pancreatic. v.2.2022. nccn.org. Accessed March 9, 2022.

Patients with personal history of breast cancer and ≥1 of the following:

- Aged ≤45 yr at diagnosis
- Aged 46-50 yr at diagnosis, plus any:
 - Family history (unknown or limited)
 - Multiple primary breast cancers at any time interval
 - — ≥1 close blood relative diagnosed at any age with breast, ovarian, pancreatic, or prostate cancer
- Aged ≥51 yr at diagnosis plus any of the following:
 - — ≥1 close blood relative aged ≤50 yr with breast cancer
 - — ≥1 close blood relative diagnosed at any age with ovarian or pancreatic cancer
 - Close male relative with breast cancer or high-risk prostate cancer
 - — ≥3 total breast cancer diagnoses in patient/close
 blood relative
 - ≥2 blood relatives with breast or prostate cancer
- Ashkenazi Jewish ancestry

OlympiA: Study Design

Prespecified interim analysis of international, randomized, double-blind phase III trial (data cutoff: Mar 27, 2020)

Primary endpoint: iDFS

Tutt. NEJM. 2021:384:2394. NCT02032823.

Secondary endpoints: distant DFS, OS, safety

*Excluded n = 2 (both in olaparib arm) due to unconfirmed HER2- status. [†]Staging system for BC-specific survival after neoadjuvant tx incorporating pretreatment clinical stage, ER status, nuclear grade, pathologic stage (range: 0-6). Prespecified interim analysis of ITT population triggered when 165 invasive disease or death events occurred in first 900 patients enrolled (mature cohort); type I error rate controlled with superiority boundaries per hierarchical multiple-testing procedure

OlympiA: Baseline Patient Characteristics

Characteristic	Olaparib (n = 921)	Placebo (n = 915)
gBRCA mutation(s),* n (%) BRCA1 BRCA2 BRCA1 and BRCA2 	657 (71.3) 261 (28.3) 2 (0.2)	670 (73.2) 239 (26.1) 5 (0.5)
Menopausal status (women only [†]), n (%) Premenopausal Postmenopausal	n = 919 572 (62.2) 347 (37.8)	n = 911 553 (60.7) 358 (39.3)
HR+/HER2-, n (%)	168 (18.2)	157 (17.2)
TNBC, n (%)	751 (81.5)	758 (82.8)
Concurrent ET (HR+ only), n/N (%)	146/168 (86.9)	142/157 (90.4)

*Data missing for n = 1 in each arm. ⁺Trial enrolled 6 men (olaparib, n = 2; placebo, n = 4).

OlympiA: Invasive Disease-Free Survival (ITT)

OlympiA: Overall Survival (Second Interim Analysis; Updated in 2022)

OlympiA: AEs, Treatment Exposure, QoL

AE in ≥10% of	Olaparib (n = 911)	Placebo (n	Placebo (n = 904)	
Patients, n (%)	Any Gr	Gr ≥3	Any Gr	Gr ≥3	
Nausea	518 (56.9)	7 (0.8)	211 (23.3)	0	
Fatigue	365 (40.1)	16 (1.8)	245 (27.1)	4 (0.4)	
Anemia	214 (23.5)	79 (8.7)	35 (3.9)	3 (0.3)	
Vomiting	206 (22.6)	6 (0.7)	74 (8.2)	0	
Headache	180 (19.8)	2 (0.2)	152 (16.8)	1 (0.1)	
Diarrhea	160 (17.6)	3 (0.3)	124 (13.7)	3 (0.3)	
Decreased neutrophil count	146 (16.0)	44 (4.8)	59 (6.5)	7 (0.8)	
Decreased WBC count	143 (15.7)	27 (3.0)	52 (5.8)	3 (0.3)	
Decreased appetite	119 (13.1)	2 (0.2)	53 (5.9)	0	
Dysgeusia	107 (11.7)	0	38 (4.2)	0	
Dizziness	104 (11.4)	1 (0.1)	67 (7.4)	1 (0.1)	
Arthralgia	84 (9.2)	2 (0.2)	107 (11.8)	2 (0.2)	

- In the olaparib arm, anemia was the most frequent AE at grade ≥3 in >1% patients
 - Transfusions: olaparib, 5.8%; placebo, 0.9%
- Median percentage of intended dose received: olaparib, 94.8%; placebo, 98.9%
- For the olaparib vs placebo arms:
 - Dose reductions: 25.0% vs 5.2%
 - Discontinuations due to AEs: 9.9% vs 4.2% (with olaparib, most commonly due to nausea, 2.0%; anemia, 1.8%; fatigue, 1.3%; decreased neutrophil count, 1.0%)
- No declines or clinically significant differences observed between arms in global health quality during tx

OlympiA: Safety

Safety Outcome, n (%)	Olaparib (n = 911)	Placebo (n = 904)
Any AE	835 (91.7)	753 (83.3)
Serious AE	79 (8.7)	76 (8.4)
AE of special interest MDS/AML Pneumonitis New primary malignancy	30 (3.3) 2 (0.2) 9 (1.0) 19 (2.1)	46 (5.1) 3 (0.3) 11 (1.2) 32 (3.5)
Grade ≥3 AE	221 (24.3)	102 (11.3)
Grade 4 AE	17 (1.9)	4 (0.4)
AE leading to permanent discontinuation	90 (9.9)	38 (4.2)

• AEs leading to death: olaparib, n = 1 (cardiac arrest); placebo, n = 2 (AML, ovarian cancer)

Considerations in the Treatment of Early-Stage TNBC

Upcoming NCTN Trials of Immunotherapy in Early TNBC

SWOG S2212 (SCARLET)

 Neoadjuvant taxane/carboplatin → AC + pembrolizumab vs docetaxel/carboplatin x 6 + pembrolizumab

Alliance A012103 (OptimICE-PCR)

 A randomized trial of adjuvant pembrolizumab continuation vs discontinuation in patients with stage II-III TNBC who achieved a pCR to neoadjuvant CT + CPI

Phase III ASCENT-05: Sacituzumab Govitecan + Pembro in TNBC With Residual Disease After Surgery + Neoadj Tx

Adults with residual invasive TNBC in breast/LNs after neoadjuvant therapy + surgery; removal of all clinically evident disease in breast/LNs; treated with RT; recovered from surgery and RT; samples available of both pre-neoadjuvant therapy diagnostic biopsy and resected residual invasive disease tissue; no known gBRCAm; ECOG PS 0/1 (N = 1514)

- Primary endpoint: iDFS
- Secondary endpoints: OS, dDFS, time to worsening of QoL, safety

Phase III TROPION-Breast03: Postneoadjuvant Dato-DXd ± Durva vs Investigator's Choice for Stage I-III TNBC

Adults with stage I-III TNBC; residual disease in breast and/or axillary LNs at surgery after neoadjuvant therapy; surgical removal of all clinically evident disease in breast and LNs; no known gBRCAm; ECOG PS 0/1 (N = 1175) **Dato-DXd** 6 mg/kg IV Q3W x 8 cycles + **Durvalumab** 1120 mg IV Q3W x 9 cycles

Dato-DXd 6 mg/kg IV Q3W x 8 cycles

Investigator's choice of capecitabine, pembrolizumab,* or capecitabine + pembrolizumab*

*Adjuvant pembrolizumab only for those treated with neoadjuvant pembrolizumab.

- Primary endpoint: iDFS for dato-DXd + durva vs investigator's choice
- Secondary endpoints: dDFS; OS; time to deterioration in physical functioning, GHS/QoL; fatigue; pharmacokinetics; immunogenicity; safety

Summary Triple Negative Breast Cancer

- Preop chemotherapy + pembrolizumab SOC for stage 2/3 TNBC (?T1cN0)
- SWOG/NCTN: Preop KN-522 vs 6 DCb + pembrolizumab -- de-escalate chemotherapy for pts with cCR post-preop taxane/Cb/pembrolizumab?
- Improving outcome efficacy of stage II/III TNBC pts with residual disease s/p KN-522 with sacituzumab + pembrolizumab or dato-DXd +/- durvalumab
- Need better understanding and therapeutic strategies for RCB 2/3 early stage TNBC pts

Agenda

Module 1: Long-Term Management of HER2-Positive Breast Cancer — Dr Krop

Module 2: Optimizing the Management of ER-Positive Localized Breast Cancer — Dr Kalinsky

Module 3: Considerations in the Care of Patients with ER-Positive mBC — Dr Jhaveri

Module 4: Novel and Emerging Strategies for ER-Positive mBC — Dr Rugo

Module 5: Evolving Clinical Decision-Making for Localized Triple-Negative Breast Cancer (TNBC) — Dr O'Shaughnessy

Module 6: Recent Advances in the Treatment of Metastatic TNBC (mTNBC) — Prof Schmid

Selection of therapy for triple-negative metastatic breast cancer; sequencing of trastuzumab deruxtecan in ER-negative, HER2-low disease

Sara A Hurvitz, MD

Sara M Tolaney, MD, MPH

Tiffany A Traina, MD, FASCO

What would be your preferred treatment approach for a 60-yearold patient with <u>BRCA wild-type</u> de novo mTNBC with a <u>PD-L1 CPS >10</u>?

Dr Jhaveri	Pembrolizumab/ <i>nab</i> paclitaxel	Prof Schmid	Pembrolizumab/ paclitaxel
Dr Kalinsky	Pembrolizumab/ paclitaxel	Dr Hurvitz	Pembro/gem/carbo
Dr Krop	Pembrolizumab/ paclitaxel	Dr Tolaney	Pembrolizumab/ paclitaxel
Dr O'Shaughnessy	Pembro/gem/carbo	Dr Traina	Pembrolizumab/ paclitaxel
Dr Rugo	Pembrolizumab/ nab paclitaxel		

What would be your preferred treatment approach for a 60-yearold patient with a germline BRCA mutation and de novo mTNBC that is <u>PD-L1-negative</u>?

Dr Jhaveri	Olaparib	Prof Schmid	Olaparib or talazoparib
Dr Kalinsky	Olaparib or talazoparib	Dr Hurvitz	Nonplatinum chemotherapy
Dr Krop	Olaparib	Dr Tolaney	Olaparib
Dr O'Shaughnessy	Olaparib	Dr Traina	Olaparib
Dr Rugo	Olaparib or talazoparib		

What would be your preferred treatment approach for a 60-yearold patient with a germline BRCA mutation and de novo mTNBC with a PD-L1 CPS >10?

Dr Jhaveri	Pembrolizumab/ <i>nab</i> paclitaxel	Prof Schmid	Pembro/gem/carbo
Dr Kalinsky	Pembro/gem/carbo	Dr Hurvitz	Pembrolizumab/ <i>nab</i> paclitaxel
Dr Krop	Pembrolizumab/ paclitaxel	Dr Tolaney	Pembro/gem/carbo
Dr O'Shaughnessy	Pembro/gem/carbo*	Dr Traina	Pembro/paclitaxel OR Pembro/gem/carbo
Dr Rugo	Pembrolizumab/ <i>nab</i> paclitaxel*		

CPS = combined positive score; pembro = pembrolizumab; gem = gemcitabine; carbo = carboplatin * Followed by maintenance pembrolizumab + olaparib

What treatment would you recommend next for a 60-year-old woman with mTNBC (BRCA wild type, PD-L1-positive) who experiences disease progression after 7 months of first-line pembrolizumab/paclitaxel?

Dr Jhaveri	Sacituzumab govitecan	Prof Schmid	Sacituzumab govitecan
Dr Kalinsky	Sacituzumab govitecan	Dr Hurvitz	Sacituzumab govitecan
Dr Krop	Sacituzumab govitecan	Dr Tolaney	Sacituzumab govitecan
Dr O'Shaughnessy	Sacituzumab govitecan	Dr Traina	Sacituzumab govitecan
Dr Rugo	Sacituzumab govitecan		

A woman undergoes neoadjuvant chemotherapy and surgery for BRCA wild-type, ER-negative, HER2 IHC 2+, FISH-negative BC and develops <u>asymptomatic, low-volume,</u> <u>nonvisceral</u> metastases while receiving adjuvant capecitabine. Regulatory and reimbursement issues aside, when would you most likely offer trastuzumab deruxtecan?

Dr Jhaveri	As third-line therapy	Prof Schmid	As third-line therapy
Dr Kalinsky	As second-line therapy	Dr Hurvitz	As first-line therapy
Dr Krop	As third-line therapy	Dr Tolaney	As first-line therapy
Dr O'Shaughnessy	As third-line therapy	Dr Traina	As second-line therapy
Dr Rugo	As second-line therapy		

Regulatory and reimbursement issues aside, would you offer trastuzumab deruxtecan to a patient with HER2 IHC 0 mBC who has exhausted all approved treatment options?

Dr Jhaveri	Νο	Prof Schmid	No
Dr Kalinsky	Yes	Dr Hurvitz	Yes
Dr Krop	Yes	Dr Tolaney	Yes
Dr O'Shaughnessy	Yes	Dr Traina	Νο
Dr Rugo	Yes		

Reprogramming the options in metastatic TNBC

Professor Peter Schmid, MD PhD FRCP

Lead, Centre for Experimental Cancer Medicine Barts Cancer Institute, St Bartholomew's Hospital Queen Mary University of London

Triple Negative Breast Cancer – Management in 2018

Median OS for met. TNBC 12-15 months!

* All patients? High-risk patients? Suboptimal responders? BRCA1/2 carriers?

Schmid P, Personal Communication

Understanding the Biology of TNBC

Heterogeneity of TNBC and Treatment Strategies

Adapted from Burstein et al, CCR 2014

PAM50 TNBCType
Targeting PARP in breast cancer

Potential impact of platinum-based therapy on PARPi remains to be defined as trial excluded patients progressing on platinum-based therapy

Robson M, et al. NEJM 2017, Litton J, et al. NEJM 2018, Tutt A, et al Nature Med 2018

Immunotherapy in mTNBC provides OS benefit in PD-L1+

IMpassion130 study design

OS, SP142 ≥1%

*Nab-paclitaxel weekly or Paclitaxel weekly or Gemcitabine/Carboplatin

OS, CPS ≥10

KEYNOTE-355 study design

Immunotherapy plus Chemo in 1L TNBC: Progression-free Survival

No benefit in "PD-L1 negative" (SP142<1% or 22C3 CPS<10)

Who benefits from Immunotherapy in metastatic TNBC?

PD-L1 Subpopulations in TNBC

PD-L1 predicts outcome better than Immune/Molecular Subtypes

Defined by PD-L1 assays SP142 and 22C3

Schmid P, Personal Communication

Trop2-ADCs in TNBC: Sacituzumab in pretreated mTNBC

Bardia A, et al. NEJM 2021; Bardia A, et al Ann Oncol 2021.

ASCENT: Progression-Free Survival by Subgroup

PFS by Subgroups

	Median PFS, Months (95% CI)				
Subgroup	SG	TPC		HR (95% CI)	P value
Overall (n=468)	5.6 (4.3-6.3)	1.7 (1.5–2.6)	H - H	0.41 (0.33-0.52)	< 0.0001
Age Group					
<65 (n=378)	4.6 (3.7-5.7)	1.7 (1.5-2.5)	⊢ ●–∣	0.46 (0.35-0.59)	< 0.0001
≥65 (n=90)	7.1 (5.8-8.9)	2.4 (1.4-2.9)		0.22 (0.12-0.40)	< 0.0001
Race					
White (n=369)	5.7 (4.3-6.8)	1.7 (1.5-2.6)	H -	0.39 (0.30-0.51)	< 0.0001
Black (n=56)	5.4 (2.8-7.4)	2.2 (1.5-2.9)	⊢	0.45 (0.24-0.86)	0.0152
Asian (n=18)	NE (1.3-NE)	1.5 (1.2–NE) ⊢		0.40 (0.08-2.08)	0.2781
Prior Therapies					
2-3 (n=330)	5.8 (4.2-7.1)	1.6 (1.5-2.5)		0.39 (0.29-0.52)	< 0.0001
>3 (n=138)	5.6 (3.0-6.5)	2.5 (1.5-2.8)	⊢ •−1	0.48 (0.32-0.72)	0.0004
Region			8		
North America (n=298)	4.9 (4.0-6.3)	2.0 (1.5-2.6)	⊢ ●–1	0.44 (0.33-0.60)	< 0.0001
Rest of World (n=170)	5.9 (4.2-6.9)	1.6 (1.4-2.7)	⊢ ∎→	0.36 (0.24-0.53)	< 0.0001
Prior PD-L1/PD-1 use					
Yes (n=127)	4.2 (3.2-5.6)	1.6 (1.4-2.3)	⊢ ●−−1	0.37 (0.24-0.57)	< 0.0001
No (n=341)	6.2 (4.9-7.1)	2.1 (1.5-2.7)	⊢ ●-1	0.42 (0.32-0.56)	< 0.0001
iver Metastases					
Yes (n=199)	4.2 (2.8-5.8)	1.5 (1.4-2.4)	⊢ ●−1	0.48 (0.34-0.67)	< 0.0001
No (n=269)	68(46-80)	23(16-27)	<u>⊢</u> ∎→	0.36 (0.26-0.50)	<0 0001
nitial Diagnosis TNBC					
Yes (n=322)	5.7 (4.3-6.9)	1.6 (1.5-2.6)	⊢ ●	0.38 (0.29-0.51)	< 0.0001
and the second se	46(37-69)	23(15-28)	—	0.48 (0.32-0.72)	0.0004

TROP2 Expression and Response

TROP2 Expression and OS

Bardia A, et al. ESMO 2020; Abstract LBA17.; Bardia A, et al, NEJM 2021

Sacituzumab vs TPC (ASCENT Trial): Safety

~5% of patients in both arms discontinued for any adverse reaction¹

- Neutropenia or febrile neutropenia did not lead to any permanent discontinuation
- No patients discontinued treatment because of diarrhoea

The most frequently reported AEs leading to dose reduction were neutropenia (6.3%) and diarrhoea (3.3%)³

Bardia A, et al. ESMO 2020; Abstract LBA17.; Bardia A, et al, NEJM 2021

Trop2-ADC: Dato-DXd (Datopotamab) in pretreated mTNBC

Anti-tumour response

Safety

Trastuzumab Deruxtecan (T-DXd) in HER2-low MBC

HER3-ADC: Patritumab in pretreated MBC

Targets for Antibody-Drug Conjugates in TNBC

Triple Negative Breast Cancer – Management in 2022

* All patients? High-risk patients? Suboptimal responders? BRCA1/2 carriers? # limited to patients without progression on platinum, ## +/- Bevacizumab

Antibody-Drug Conjugates plus CPI/Chemotherapy

Trastuzumab-DXd (DS8201) plus Durvalumab in 1st line TNBC, HER2-low (IHC1+/2+)

PD-L1 (TAP 10% cutoff) 📕 Low 📙 High 📕 Missing

Dotted reference lines at -30% and 20% indicate thresholds for partial response and progressive disease, respectively. *If the best percentage change from baseline of target lesions cannot be calculated due to progression, withdrawal, or death, the value is imputed at +20%. "•" Patients with progressive disease as best overall response.

Antibody-Drug Conjugates plus CPI/Chemotherapy

Dato-DXd plus Durvalumab in 1st line TNBC

Dotted reference lines at -30% and 20% indicate thresholds for partial response and progressive disease, respectively

"If the best percentage change from baseline of target lesions cannot be calculated due to progression, withdrawal, or death, the value is imputed at +20%. "•" Patients with progressive disease as best overall response

Dotted reference lines at -30% and 20% indicate thresholds for partial response and progressive disease, respectivel

Schmid, et al. SABCS 2022

Antibody-Drug Conjugates plus CPI/Chemotherapy

Triple Negative Breast Cancer – Management in 2022

* All patients? High-risk patients? Suboptimal responders? BRCA1/2 carriers? # limited to patients without progression on platinum, ## +/- Bevacizumab

Video Consensus or Controversy? Clinical Investigators Provide Perspectives on the Current and Future Management of Breast Cancer

A CME Symposium Held in Conjunction with the 2023 ASCO[®] Annual Meeting

Monday, June 5, 2023 7:00 PM – 9:30 PM CT Faculty Komal Jhaveri, MD Joyce O'Shaughnessy, MD Kevin Kalinsky, MD, MS Hope S Rugo, MD Ian E Krop, MD, PhD Prof Peter Schmid, FRCP, MD, PhD

> Moderator Neil Love, MD

Contributing Investigators

Sara A Hurvitz, MD

Professor of Medicine Director, Breast Cancer Clinical Trials Program Division of Hematology-Oncology David Geffen School of Medicine at UCLA Los Angeles, California

Tiffany A Traina, MD, FASCO Vice Chair, Department of Medicine Section Head, Triple-Negative Breast Cancer Clinical Research Program Associate Attending Physician Breast Medicine Service Memorial Sloan Kettering Cancer Center Associate Professor Weill Cornell Medical College New York, New York

Sara M Tolaney, MD, MPH

Chief, Division of Breast Oncology Associate Director, Susan F Smith Center for Women's Cancers Senior Physician Dana-Farber Cancer Institute Associate Professor of Medicine Harvard Medical School Boston, Massachusetts

Investigator Perspectives on Available Research Findings and Challenging Questions in Renal Cell Carcinoma

A CME/MOC-Accredited Virtual Event Held in Conjunction with the 2023 ASCO Annual Meeting

> Tuesday, June 6, 2023 7:00 AM – 8:00 AM CT

Faculty David F McDermott, MD Sumanta Kumar Pal, MD

> Moderator Neil Love, MD

POSTMEETING SURVEY – Available Now

Clinicians in Attendance: The postmeeting survey is now available on the iPads for attendees in the room and on Zoom for those attending virtually. We appreciate your completing this survey before the end of the program.

Thank you for your input.

Thank you for joining us! Your feedback is very important to us.

Please complete the survey currently up on the iPads for attendees in the room and on Zoom for those attending virtually. The survey will remain open up to 5 minutes after the meeting ends.

How to Obtain CME Credit

In-person attendees: Please refer to the program syllabus for the CME credit link or QR code. You may also use the iPads available in the meeting room to complete the course evaluation. Online/Zoom attendees: The CME credit link is posted in the chat room.

