Emerging Role of Antibody-Drug Conjugates in the Management of Non-Small Cell Lung Cancer

A CME/MOC-Accredited Virtual Event

Thursday, December 1, 2022 5:00 PM – 6:00 PM ET

Faculty Alexander I Spira, MD, PhD Helena Yu, MD

Faculty

Alexander I Spira, MD, PhD CEO and Clinical Director, NEXT Virginia Director, Virginia Cancer Specialists Research Program Fairfax, Virginia

MODERATOR Neil Love, MD

Research To Practice

Helena Yu, MD Medical Oncologist Associate Attending Memorial Sloan Kettering Cancer Center New York, New York

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP and Daiichi Sankyo Inc.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Spira — **Disclosures**

Consulting/Advisory Role	Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, AstraZeneca Pharmaceuticals LP, Blueprint Medicines, Bristol-Myers Squibb Company, Daiichi Sankyo Inc, Gritstone bio, Incyte Corporation, Janssen Biotech Inc, Jazz Pharmaceuticals Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Novartis, Regeneron Pharmaceuticals Inc, Takeda Pharmaceuticals USA Inc
Contracted Research	AbbVie Inc, ADC Therapeutics, AI Therapeutics, Alkermes, Amgen Inc, Arch Therapeutics Inc, Astellas, Astex Pharmaceuticals, AstraZeneca Pharmaceuticals LP, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Cardiff Oncology, CytomX Therapeutics, Daiichi Sankyo Inc, Gritstone bio, Ignyta Inc, Incyte Corporation, Janssen Biotech Inc, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Lumos Pharma, MacroGenics Inc, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Novartis, Plexxikon Inc, Regeneron Pharmaceuticals Inc, Revolution Medicines, Roche Laboratories Inc, Rubius Therapeutics, Synthekine Inc, Takeda Pharmaceuticals USA Inc
Honoraria	Amgen Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol- Myers Squibb Company, CytomX Therapeutics, Janssen Biotech Inc, Merck, Novartis, Takeda Pharmaceuticals USA Inc
Stock Options/Ownership	Lilly

TO PRACTIC

Dr Yu — Disclosures

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Black Diamond Therapeutics Inc, Blueprint Medicines, C4 Therapeutics, Cullinan Oncology, Daiichi Sankyo Inc, Janssen Biotech Inc
Research Funding to My Institution	AstraZeneca Pharmaceuticals LP, Black Diamond Therapeutics Inc, Blueprint Medicines, Cullinan Oncology, Daiichi Sankyo Inc, Erasca, Janssen Biotech Inc, Novartis, Pfizer Inc

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY WITH DR NEIL LOVE

Management of MET-Altered Non-Small Cell Lung Cancer

DR REBECCA HEIST MASSACHUSETTS GENERAL HOSPITAL CANCER CENTER

Dr Rebecca Heist – Management of Oncology Today with Dr Neil Love —

(15) (30)

What Clinicians Want to Know: Addressing **Current Questions and Controversies in the Management of HER2-Positive Breast Cancer** Part 1 of a 2-Part CME Satellite Symposium Series Held in Conjunction with the 2022 San Antonio Breast Cancer Symposium® Wednesday, December 7, 2022 7:15 PM - 9:15 PM CT (8:15 PM - 10:15 PM ET) Faculty Erika Hamilton, MD Shanu Modi, MD Sara M Tolaney, MD, MPH Sara A Hurvitz, MD Ian E Krop, MD, PhD **Moderator** Neil Love, MD

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of ER-Positive Breast Cancer

Part 2 of a 2-Part CME Satellite Symposium Series Held in Conjunction with the 2022 San Antonio Breast Cancer Symposium[®]

Thursday, December 8, 2022 7:15 PM – 9:15 PM CT (8:15 PM – 10:15 PM ET)

Faculty

Aditya Bardia, MD, MPH Matthew P Goetz, MD Virginia Kaklamani, MD, DSc Kevin Kalinsky, MD, MS Hope S Rugo, MD

Addressing Current Questions and Controversies in the Management of Chronic Lymphocytic Leukemia — What Clinicians Want to Know

Part 1 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64th ASH Annual Meeting

Friday, December 9, 2022 11:30 AM – 1:30 PM CT (12:30 PM – 2:30 PM ET)

Faculty

Alexey V Danilov, MD, PhD Matthew S Davids, MD, MMSc Professor Dr Arnon P Kater, MD, PhD Lindsey Roeker, MD Philip A Thompson, MB, BS

Addressing Current Questions and Controversies in the Management of Hodgkin and Non-Hodgkin Lymphoma — What Clinicians Want to Know

Part 2 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64th ASH Annual Meeting

Friday, December 9, 2022 3:15 PM – 5:15 PM CT (4:15 PM – 6:15 PM ET)

Faculty

Jonathan W Friedberg, MD, MMSc Brad S Kahl, MD David G Maloney, MD, PhD Loretta J Nastoupil, MD Sonali M Smith, MD

Addressing Current Questions and Controversies in the Management of Multiple Myeloma — What Clinicians Want to Know

Part 3 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64th ASH Annual Meeting

Friday, December 9, 2022 7:00 PM – 9:00 PM CT (8:00 PM – 10:00 PM ET)

Faculty

Jesús G Berdeja, MD Rafael Fonseca, MD Sagar Lonial, MD Robert Z Orlowski, MD, PhD Noopur Raje, MD

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of Acute Myeloid Leukemia

A CME/MOC-Accredited Virtual Event

Wednesday, December 14, 2022 5:00 PM – 6:00 PM ET

Faculty Courtney D DiNardo, MD, MSCE Mark Levis, MD, PhD

Meet The Professor Optimizing the Management of Multiple Myeloma

> Thursday, December 15, 2022 5:00 PM – 6:00 PM ET

> > Faculty Shaji K Kumar, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Emerging Role of Antibody-Drug Conjugates in the Management of Non-Small Cell Lung Cancer

A CME/MOC-Accredited Virtual Event

Thursday, December 1, 2022 5:00 PM – 6:00 PM ET

Faculty Alexander I Spira, MD, PhD Helena Yu, MD

Faculty

Alexander I Spira, MD, PhD CEO and Clinical Director, NEXT Virginia Director, Virginia Cancer Specialists Research Program Fairfax, Virginia

MODERATOR Neil Love, MD

Research To Practice

Helena Yu, MD Medical Oncologist Associate Attending Memorial Sloan Kettering Cancer Center New York, New York

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY WITH DR NEIL LOVE

Management of MET-Altered Non-Small Cell Lung Cancer

DR REBECCA HEIST MASSACHUSETTS GENERAL HOSPITAL CANCER CENTER

Dr Rebecca Heist – Management of Oncology Today with Dr Neil Love —

(15) (30)

What Clinicians Want to Know: Addressing **Current Questions and Controversies in the Management of HER2-Positive Breast Cancer** Part 1 of a 2-Part CME Satellite Symposium Series Held in Conjunction with the 2022 San Antonio Breast Cancer Symposium® Wednesday, December 7, 2022 7:15 PM - 9:15 PM CT (8:15 PM - 10:15 PM ET) Faculty Erika Hamilton, MD Shanu Modi, MD Sara M Tolaney, MD, MPH Sara A Hurvitz, MD Ian E Krop, MD, PhD **Moderator** Neil Love, MD

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of ER-Positive Breast Cancer

Part 2 of a 2-Part CME Satellite Symposium Series Held in Conjunction with the 2022 San Antonio Breast Cancer Symposium[®]

Thursday, December 8, 2022 7:15 PM – 9:15 PM CT (8:15 PM – 10:15 PM ET)

Faculty

Aditya Bardia, MD, MPH Matthew P Goetz, MD Virginia Kaklamani, MD, DSc Kevin Kalinsky, MD, MS Hope S Rugo, MD

Addressing Current Questions and Controversies in the Management of Chronic Lymphocytic Leukemia — What Clinicians Want to Know

Part 1 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64th ASH Annual Meeting

Friday, December 9, 2022 11:30 AM – 1:30 PM CT (12:30 PM – 2:30 PM ET)

Faculty

Alexey V Danilov, MD, PhD Matthew S Davids, MD, MMSc Professor Dr Arnon P Kater, MD, PhD Lindsey Roeker, MD Philip A Thompson, MB, BS

Addressing Current Questions and Controversies in the Management of Hodgkin and Non-Hodgkin Lymphoma — What Clinicians Want to Know

Part 2 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64th ASH Annual Meeting

Friday, December 9, 2022 3:15 PM – 5:15 PM CT (4:15 PM – 6:15 PM ET)

Faculty

Jonathan W Friedberg, MD, MMSc Brad S Kahl, MD David G Maloney, MD, PhD Loretta J Nastoupil, MD Sonali M Smith, MD

Addressing Current Questions and Controversies in the Management of Multiple Myeloma — What Clinicians Want to Know

Part 3 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64th ASH Annual Meeting

Friday, December 9, 2022 7:00 PM – 9:00 PM CT (8:00 PM – 10:00 PM ET)

Faculty

Jesús G Berdeja, MD Rafael Fonseca, MD Sagar Lonial, MD Robert Z Orlowski, MD, PhD Noopur Raje, MD

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of Acute Myeloid Leukemia

A CME/MOC-Accredited Virtual Event

Wednesday, December 14, 2022 5:00 PM – 6:00 PM ET

Faculty Courtney D DiNardo, MD, MSCE Mark Levis, MD, PhD

Meet The Professor Optimizing the Management of Multiple Myeloma

> Thursday, December 15, 2022 5:00 PM – 6:00 PM ET

> > Faculty Shaji K Kumar, MD

Emerging Role of Antibody-Drug Conjugates in the Management of Non-Small Cell Lung Cancer

A CME/MOC-Accredited Virtual Event

Thursday, December 1, 2022 5:00 PM – 6:00 PM ET

Faculty Alexander I Spira, MD, PhD Helena Yu, MD

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP and Daiichi Sankyo Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Spira — **Disclosures**

Consulting/Advisory Role	Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, AstraZeneca Pharmaceuticals LP, Blueprint Medicines, Bristol-Myers Squibb Company, Daiichi Sankyo Inc, Gritstone bio, Incyte Corporation, Janssen Biotech Inc, Jazz Pharmaceuticals Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Novartis, Regeneron Pharmaceuticals Inc, Takeda Pharmaceuticals USA Inc
Contracted Research	AbbVie Inc, ADC Therapeutics, AI Therapeutics, Alkermes, Amgen Inc, Arch Therapeutics Inc, Astellas, Astex Pharmaceuticals, AstraZeneca Pharmaceuticals LP, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Cardiff Oncology, CytomX Therapeutics, Daiichi Sankyo Inc, Gritstone bio, Ignyta Inc, Incyte Corporation, Janssen Biotech Inc, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Lumos Pharma, MacroGenics Inc, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Novartis, Plexxikon Inc, Regeneron Pharmaceuticals Inc, Revolution Medicines, Roche Laboratories Inc, Rubius Therapeutics, Synthekine Inc, Takeda Pharmaceuticals USA Inc
Honoraria	Amgen Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol- Myers Squibb Company, CytomX Therapeutics, Janssen Biotech Inc, Merck, Novartis, Takeda Pharmaceuticals USA Inc
Stock Options/Ownership	Lilly

TO PRACTIC

Dr Yu — Disclosures

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Black Diamond Therapeutics Inc, Blueprint Medicines, C4 Therapeutics, Cullinan Oncology, Daiichi Sankyo Inc, Janssen Biotech Inc
Research Funding to My Institution	AstraZeneca Pharmaceuticals LP, Black Diamond Therapeutics Inc, Blueprint Medicines, Cullinan Oncology, Daiichi Sankyo Inc, Erasca, Janssen Biotech Inc, Novartis, Pfizer Inc

Targeting HER2 and HER3 with Antibody Drug Conjugates in non-small cell lung cancer

> Helena Yu Associate Attending Memorial Sloan Kettering Cancer Center

> > Antibody Drug Conjugates: TROP2 and Beyond

Alex Spira, MD PhD FACP Virginia Cancer Specialists Co Chair, US Oncology Thoracic Oncology Committee CEO and Director, NEXT Oncology Virginia

Agenda

INTRODUCTION: What is an antibody-drug conjugate (ADC)?

MODULE 1: "HER2-positive" NSCLC

- Clinical and pathological phenotypes; current and future role of trastuzumab deruxtecan
- Dr Yu: 55-year-old woman with HER2 insertion in exon 20

MODULE 2: Targeting HER3 in NSCLC

- Biologic rationale and clinical role of patritumab deruxtecan
- Dr Yu: 63-year-old man with EGFR-mutant lung cancer

MODULE 3: TROP2-directed treatment

- Biologic rationale and clinical role of datopotamab deruxtecan and sacituzumab govitecan
- Dr Spira: 52-year-old woman with KRAS G12V-mutant lung cancer
- Dr Spira: 65-year-old woman with metastatic NSCLC and an EGFR exon 19 deletion

MODULE 4: Novel agents

Mechanism of action of tusamitamab ravtansine and telisotuzumab vedotin

MODULE 5: Appendix

Agenda

INTRODUCTION: What is an antibody-drug conjugate (ADC)?

MODULE 1: "HER2-positive" NSCLC

- Clinical and pathological phenotypes; current and future role of trastuzumab deruxtecan
- Dr Yu: 55-year-old woman with HER2 insertion in exon 20

MODULE 2: Targeting HER3 in NSCLC

- Biologic rationale and clinical role of patritumab deruxtecan
- Dr Yu: 63-year-old man with EGFR-mutant lung cancer

MODULE 3: TROP2-directed treatment

- Biologic rationale and clinical role of datopotamab deruxtecan and sacituzumab govitecan
- Dr Spira: 52-year-old woman with KRAS G12V-mutant lung cancer
- Dr Spira: 65-year-old woman with metastatic NSCLC and an EGFR exon 19 deletion

MODULE 4: Novel agents

Mechanism of action of tusamitamab ravtansine and telisotuzumab vedotin

MODULE 5: Appendix

Antibody–Drug Conjugates

Monoclonal antibody linked to a cytotoxic drug designed to widen the therapeutic window by focusing delivery to specific cells

Other ADCs

• How many combinations can we make ?

Agenda

INTRODUCTION: What is an antibody-drug conjugate (ADC)?

MODULE 1: "HER2-positive" NSCLC

- Clinical and pathological phenotypes; current and future role of trastuzumab deruxtecan
- Dr Yu: 55-year-old woman with HER2 insertion in exon 20

MODULE 2: Targeting HER3 in NSCLC

- Biologic rationale and clinical role of patritumab deruxtecan
- Dr Yu: 63-year-old man with EGFR-mutant lung cancer

MODULE 3: TROP2-directed treatment

- Biologic rationale and clinical role of datopotamab deruxtecan and sacituzumab govitecan
- Dr Spira: 52-year-old woman with KRAS G12V-mutant lung cancer
- Dr Spira: 65-year-old woman with metastatic NSCLC and an EGFR exon 19 deletion

MODULE 4: Novel agents

Mechanism of action of tusamitamab ravtansine and telisotuzumab vedotin

MODULE 5: Appendix

Case Presentation – Dr Yu: 55-year-old woman with HER2 positive lung cancer

55 yo never-smoker who initially presented with oligometastatic disease with involvement of the R lung (3.5cm RUL mass), R mediastinal lymph node (2cm) and isolated R humeral osseous met (1.5cm lytic lesion).

She got 4 cycles of carboplatin/pemetrexed/pembrolizumab with minor shrinkage followed by definitive radiation therapy to remaining sites of disease.

On a follow up scan after 3 months, she had a new R lung mass and additional osseous metastases.

Case Presentation – Dr Yu: 55-year-old woman with HER2 positive lung cancer (continued)

She was started on trastuzumab deruxtecan which she tolerated well (grade 1 fatigue, grade 1 thrombocytopenia).

Repeat scans demonstrated improvement in her R hilar mass and sclerosis of osseous mets.

Case Presentation – Dr Yu: 55-year-old woman with HER2 positive lung cancer (continued)

Follow up 2 scan demonstrated incidental ground glass interstitial opacities bilaterally. She was asymptomatic.

T-DXd was held, she was started on prednisone 30mg and tapered over 3 weeks.

Repeat scan 4 weeks later showed resolution of infiltrates, she continued to be asymptomatic and T-DXd was restarted at the same dose with no recurrence of the radiographic findings. She has been on drug for 15 months with maintained partial response.

HER family

HER1 (EGFR) - Oncogene HER2 - Oncogene HER3 HER4

EGF EPR TGFa BTC NRG1 NRG3 AREG HB-EGF NRG2 NRG4 NEELEELEE HEE REELEELEE HEE REELEELEE HEE REELEELEE HE KEELEELEELE HE KEELEELEE 222222222 922 222222222 uEGFR ErbB2 ErbB3 ErbB4 30

HER Receptor Signaling

Spectrum of HER2 alterations in NSCLC

HER2 Mutant

- HER2 mutation in kinase domain (exon 20)
- 2-3% of all lung cancers
- Identified by NGS

HER amplified

- HER2 amp is increased gene copy number (>2) compared to control gene
- 3-5% of all lung cancers
- Identified by NGS or FISH

HER2 overexpression

- Protein expression identified by IHC (2+, 3+ by HER2 antibody)
- Up to 20% of all lung cancers, high expression rare (<5%)
- Identified by IHC

Courtesy of Helena Yu, MD

- HER2 amp is usually associated HER2 protein expression
- Not all tumors with HER2 expression have HER2 gene amplification
- HER2 amplification and mutation are distinct (only 10% overlap)

Spectrum of HER2 alterations in NSCLC

IHC 1+ IHC 2+ IHC 3+

HER2 insertion on NGS

POSITIVE FOR THE FOLLOWING SOMATIC ALTERATIONS: 1. ERBB2 (NM_004448) exon20 p.Y772_A775dup (c.2313_2324dup)

FISH pos for HER2 amplification

DESTINY-Lung01 – HER2 mutant

N=91 HER2 mutant

Li NEJM 2022

DESTINY-Lung01 – HER2 overexpressing

Nakagawa WCLC 2020

Adverse events with T-DXd

Drug-related adverse events with ≥20% incidence		Any TEAE	Any TEAE 49 (100.0%) TEAE grade ≥3 (>15%)		
		Drug related	44 (89.8%)	Decreased neutrophil count	10 (20.4%)
Nausea	66 (73)	TEAE grade ≥3	36 (73.5%)	TEAE associated with dose discontinuation	1 ^t
Fatigue†	48 (53)	Drug related	27 (55.1%)	Pneumonitis	5 (10.2%)
Alopecia	42 (46)	Serious TEAE	22 (44.9%)	TEAEs associated with dose reduction ^b	
Vomiting	36 (40)	Drug related	8 (16.3%)	Decreased neutrophil count	5 (10.2%)
Neutropenia‡	32 (35)	TEAE associated with dose discontinuation	11 (22.4%)	 Fatigue	4 (8.2%)
Anemia§	30 (33)	-		Neuroe	2 (C 19/)
Diarrhea	29 (32)	Drug related	6 (12.2%)	Nausea	3 (6.1%)
Decreased appetit	27 (30)	TEAE associated with dose reduction	17 (34.7%)	TEAEs associated with dose interruption ^b	
Decreased appent	e 27 (30)	Drug related	16 (32,7%)	Decreased neutrophil count	5 (10.2%)
Leukopenia¶	21 (23)				
Constination	20 (22)	TEAE associated with dose interruption	26 (53.1%)	Nausea	3 (6.1%)
Constipation		Drug related	17 (34.7%)	TEAE grade 5 ^c Drug related	7 (14.3%) 1 (2.0%)

On-target, but off-tumor: target protein expressed in normal tissue

• Skin toxicity, cardiac toxicity

Off-target and off-tumor: more diffuse payload release, inadvertent cellular uptake

• Anemia, neutropenia seen with many ADCs

<u>Unknown</u>

• Pulmonary toxicity with T-DXd

Li NEJM 2022, Nakagawa WCLC 2020

Adverse events – ILD/Pneumonitis

AEs of Special Interest: ILD

All Patients (N = 49)						
n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade/Total
Adjudicated drug- related ILD ^a	2 (4.1%)	3 (6.1%)	0	0	3 (6.1%)	8 (16.3%)

Adjudicated drug-related ILDs^b

- Median time to onset was 64.5 days (range, 2-126 days)
- All patients had drug withdrawn
- Steroid treatment was used in patients who had grade 2 (n = 3) and those who had grade 5 ILDs (n = 3)
- 3 patients recovered (grade 1 [n = 1] and grade 2 [n = 2]) and 2 patients had not recovered by data cutoff (grade 1 [n = 1] and grade 2 [n = 1])
- 4 of 8 patients had immune checkpoint inhibitors included in their prior lines of therapy

Grade 5 ILD^c events

- Medical history of the 3 patients included
- 1. Pulmonary embolism, productive cough, dyspnea, pleural effusion, and lobectomy; 4 prior lines of therapy
- 2. Cough, dyspnea, pleural effusion, and pulmonary embolism; 5 prior lines of therapy
- 3. Dyspnea, SLE without lung involvement, and TTP; 1 prior line of therapy
- Steroid treatment was initiated within 5 days after the event was reported by the investigator^d
- All had previously received immune checkpoint inhibitors
- Primary cause of death was PD in 2 patients and pneumonitis in 1 patient

Li NEJM 2022

Trastuzumab Deruxtecan

- Recent approval of trastuzumab deruxtecan after chemotherapy for HER2 mutant lung cancers
- Continued assessment of T-DXd in HER2 overexpressed lung cancers
- Assessment of T-DXd in first-line setting with chemo +/- IO

Phase	Indication/Setting	Treatment	Clinicaltrials.gov identifier
3	HER2-mutated NSCLC First-line	T-DXd vs platinum chemotherapy	DESTINY-Lung04 NCT05048797
1B	HER2-mutated NSCLC Later-line, First-line	T-DXd with durvalumab and chemotherapy	DESTINY-Lung02 NCT04686305

Biomarker selection

Urothelial Cancer

Why is response higher in HER2 mutant vs HER2 overexpressed NSCLC?

HER2 mutations may be a true driver, with HER2 expression more a passenger (cancer can adapt and use other signaling pathways)

Courtesy of Helena Yu, MD

Protein expression as biomarker

Measure presence of target antigen

Precedent exists: HER2 IHC in breast cancer, PDL1 in lung cancer

How much is enough?

Best method? IHC? H Score?

Challenge: Protein expression and driver mutations are not mutually exclusive – what is driving the cancer?

Select a patient population enriched for a certain target

Nectin 4, target of enfortumab vedotin, expressed in 83% of urothelial cancers

Rosenberg JCO 2019, Jordan Canc Disc 2017

Agenda

INTRODUCTION: What is an antibody-drug conjugate (ADC)?

MODULE 1: "HER2-positive" NSCLC

- Clinical and pathological phenotypes; current and future role of trastuzumab deruxtecan
- Dr Yu: 55-year-old woman with HER2 insertion in exon 20

MODULE 2: Targeting HER3 in NSCLC

- Biologic rationale and clinical role of patritumab deruxtecan
- Dr Yu: 63-year-old man with EGFR-mutant lung cancer

MODULE 3: TROP2-directed treatment

- Biologic rationale and clinical role of datopotamab deruxtecan and sacituzumab govitecan
- Dr Spira: 52-year-old woman with KRAS G12V-mutant lung cancer
- Dr Spira: 65-year-old woman with metastatic NSCLC and an EGFR exon 19 deletion

MODULE 4: Novel agents

Mechanism of action of tusamitamab ravtansine and telisotuzumab vedotin

MODULE 5: Appendix

Case Presentation – Dr Yu: 63-year-old male with EGFRmutant lung cancer

63 yo never-smoker who initially presented with metastatic EGFR-mutant lung cancer. He was on osimertinib for 15 months before he developed disease progression. Repeat biopsy showed an acquired BRAF fusion. He was symptomatic with pain from progressive liver metastases and he was started on carboplatin/pemetrexed/bevacizumab, followed by pemetrexed/bevacizumab maintenance for a total of 10 months before further disease progression.

MSK-IMPACT Solid Date Ordered: 1/13/2022 14:03 Status: Signed Out

Interpretation

Summary: 9 mutations, no copy number alterations, 2 structural variants detected.

MSI Status: MICROSATELLITE STABLE (MSS). The MSIsensor score is 0.78.

TUMOR MUTATION BURDEN: The estimated tumor mutation burden (TMB) for this sample is 7.4 mutations per megabase (mt/Mb).

POSITIVE FOR THE FOLLOWING SOMATIC ALTERATIONS: 1. EGFR (NM_005228) exon19 p.L747_P753delinsS (c.2240_2257del) 2. TP53 (NM_000546) exon5 p.P151S (c.451C>T) 3. CHEK1 (NM_001274) exon11 p.M409Yfs*10 (c.1224dupT) 4. DOT1L (NM_032482) exon27 p.S1264C (c.3790A>T) 5. FGFR2 (NM_000141) exon11 p.E499A (c.1496A>C) 6. FOXO1 (NM_002015) exon2 p.Q335E (c.1003C>G) 7. HLA-C (NM_002117) exon8 p.*367Wext*41 (c.1101A>G) 8. PIK3CG (NM_002649) exon2 p.P183L (c.548C>T) 9. PRKCI (NM_002740) exon15 p.R483H (c.1448G>A) 10. EPHA5 (NM_004439) rearrangement: c.182-5310_c.246+67dup (Note: 2) 11. WDR91 (NM_014149) - BRAF (NM_004333) fusion: c.891+1148:WDR91_c.1105:BRAFdup (Note: 3)

POSITIVE FOR THE FOLLOWING GENE FUSION IN THE CLINICALLY VALIDATED PANEL:

WDR91-BRAF fusion.

Note: The rearrangement is an in-frame fusion between genes WDR91 Exon6 (NM_014149) and BRAF Exon9 (NM_004333).

Case Presentation – Dr Yu: 63-year-old male with EGFRmutant lung cancer (continued)

He was started on patritumab deruxtecan on a clinical trial. He had grade 1 nausea, fatigue and alopecia.

He had a confirmed partial response to treatment with response in his liver metastases, lung nodules and stable CNS metastases. He remained on treatment for 8 months. HER3

- HER3 is a member of the ErbB protein kinase family
- HER3 overexpressed in cancer, and associated with poorer prognosis
- Binds to neuregulins
- HER3 itself is not an oncogene but heterodimerizes with other RTKs activating oncogenic signaling (through PI3K and MAPK)
- HER3 expression can mediate resistance to targeted therapy (such as resistance to EGFR therapies in lung cancer)

HER3 staining

- HER3 mutations or HER3 amplification not commonly seen
- HER3 expression by IHC seen in 83% of non-small cell lung cancers
- H-Score is a composite score that considers the predominant staining intensity seen in a given field
- Possible role in resistance to EGFR TKI therapy in NSCLC
 - In gefitinib-resistant cells, oncogenic MET phosphorylates HER3, leading to activation of the PI3K pathway
 - HER3 expression is strongly upregulated in osimertinib-resistant cancer cells

Janne PASCO 2019, Scharpenseel Sci Rep 2019 Engelman Science 2007, Romaniello Cancers 2020

Courtesy of Helena Yu, MD

Primary lung tumors n=51

Brain metastases n=68

DFCI 161

Erlotinib resistant

(L858R/MET polysomy)

2000-

1500-

1000-

H-Score: 202

Erlotinib resistant (L858R/T790M negative)

H-Score: 248

Osimertinib resistant (Exon 19 del/T790M)

Courtesy of Helena Yu, MD

Janne PASCO 2019

Patient Characteristics and Treatment History	5.6 mg/kg (N=57)		
Age, median (range), years	65 (40-80)		
Female, n (%)	36 (63)		
ECOG performance status 0/1, n (%)	23 (40) / 34 (60)		
Sum of diameters at baseline.ª median (range), mm	54 (13-195)		
History of CNS metastases, n (%)	27 (47)		
Prior lines of systemic therapy, median (range) ^b	4 (1-9)		
Prior cancer regimens			
Prior EGFR TKI therapy, n (%)	57 (100)		
Prior osimertinib, n (%)	49 (86)		
Prior platinum-based chemotherapy, n (%)	52 (91)		
Prior immunotherapy, n (%)	23 (40)		

Outcomes (BICR per RECIST 1.1) Median Follow Up: 10.2 (range, 5.2-19.9) mo ^a	Prior TKI ± PBC (N=57)
Confirmed ORR, % (95% CI)	39 (26-52)
Best overall response, n (%)	
CR	1 (2)
PR	21 (37)
SD, Non-CR/Non-PD	19 (33)
PD	9 (16)
Not evaluable	7 (12)
Disease control rate, % (95% CI)	72 (59-83)
Time to response, median (range), mo	2.6 (1.2-5.4)
Duration of response, median (95% CI), mo	6.9 (3.1-NE)
PFS, median (95% CI), mo	8.2 (4.4-8.3)

Courtesy of Helena Yu, MD

-Sequencing of therapy in flux in EGFR+ NSCLC

-Exploration in combination with osimertinib as well as first-line treatment

-Ideal targeted therapies postosimertinib transcend mechanisms of resistance

Phase	Indication/Setting	Treatment	Clinicaltrials.gov identifier
2	EGFR-mutated NSCLC Post-TKI and chemotherapy	HER3-DXd	HERTHENA-Lung01 NCT04619004
1	EGFR-mutated NSCLC Post-osimertinib	HER3-DXd + osimertinib	NCT04676477
3	EGFR-mutated NSCLC Post-osimertinib	HER3-DXd vs Platinum doublet chemo	HERTHENA-Lung02 NCT045338970

Courtesy of Helena Yu, MD

Agenda

INTRODUCTION: What is an antibody-drug conjugate (ADC)?

MODULE 1: "HER2-positive" NSCLC

- Clinical and pathological phenotypes; current and future role of trastuzumab deruxtecan
- Dr Yu: 55-year-old woman with HER2 insertion in exon 20

MODULE 2: Targeting HER3 in NSCLC

- Biologic rationale and clinical role of patritumab deruxtecan
- Dr Yu: 63-year-old man with EGFR-mutant lung cancer

MODULE 3: TROP2-directed treatment

- Biologic rationale and clinical role of datopotamab deruxtecan and sacituzumab govitecan
- Dr Spira: 52-year-old woman with KRAS G12V-mutant lung cancer
- Dr Spira: 65-year-old woman with metastatic NSCLC and an EGFR exon 19 deletion

MODULE 4: Novel agents

Mechanism of action of tusamitamab ravtansine and telisotuzumab vedotin

MODULE 5: Appendix

Case Presentation – Dr Spira

- 52-year-old woman with KRAS g12v m NSCLC
- Progressed on carbo/pem/pembro
- Options presented:
 - Docetaxel
 - IO combo trial
 - Dato-DXd trial

Case Presentation – Dr Spira (continued)

Case Presentation – Dr Spira

It's getting complicated.

- 65 yo woman with met NSCLC, EGFR Exon 19 del
- Progressed on Osimertinib after 9 mos with new liver mets
- Options:
 - Carboplatin/pemetrexed
 - Carboplatin/pemetrexed/osi
 - Carboplatin/pemetrexed +/- amivantamab/lazertinib on trial
 - Osimertinib/Patritumab on trial
 - Patritumab vs Carboplatin/pemetrexed on trial
 - Osi/Telo-V if secondary c-met on trial
 - Other trial of new targeted RX (C797s)

TROP2 ADCs

Trop2 p27 Ca2+ KI-67 MAPK Cyclin E) Cyclin D ERK2 PERK1 FOXO3a Cell cycle progression MDM2 Ubiquitination AP-Invasion Angiogenesis Proteasomal Metastasis via VEGF, etc degradation Via MMPs, EMT via Apoptosis Pdpn, Ezrin, Proliferation Pdpn, etc FOXO3a CD44, etc Via cyclins, FasL. etc CDKs Cell **B**-catenin survival β-catenir Cell growth

TROP2 is a transmembrane glycoprotein overexpressed in many solid tumors¹ TNBC and NSCLC are associated with TROP2 overexpression

TROP2 is an epithelial adhesion molecule and stem cell marker associated with cell regeneration

http://proteinatlas.org (11/2022) Courtesy of Alexander I Spira, MD, PhD

TROPION-PanTumor01: Updated Results From the NSCLC Cohort of the Phase 1 Study of Datopotamab Deruxtecan in Solid Tumors

Edward B. Garon,¹ Melissa Johnson,² Aaron E. Lisberg,¹ Alexander Spira,³ Noboru Yamamoto,⁴ Rebecca S. Heist,⁵ Jacob M. Sands,⁶ Kiyotaka Yoh,⁷ Funda Meric-Bernstam,⁸ Satoru Kitazono,⁹ Jonathan Greenberg,¹⁰ Fumiaki Kobayashi,¹¹ Ferdinand Guevara,¹⁰ Yui Kawasaki,¹¹ Toshio Shimizu⁴

¹David Geffen School of Medicine at UCLA, Los Angeles, CA, USA;
 ²Sarah Cannon Research Institute, Tennessee Oncology, PLLC, OneOncology, Nashville, TN, USA;
 ³Virginia Cancer Specialists and US Oncology Research, Fairfax, VA, USA;
 ⁴National Cancer Center Hospital, Tokyo, Japan;
 ⁵Massachusetts General Hospital, Boston, MA, USA;
 ⁶Dana-Farber Cancer Institute, Boston, MA, USA;
 ⁷National Cancer Center Hospital East, Chiba, Japan;
 ⁸The University of Texas MD Anderson Cancer Center, Houston, TX, USA;
 ⁹The Cancer Institute Hospital of JFCR, Tokyo, Japan;
 ¹⁰Daiichi Sankyo, Inc, Basking Ridge, NJ, USA;
 ¹¹Daiichi Sankyo Co, Ltd, Tokyo, Japan;

Courtesy of Alexander I Spira, MD, PhD

Safety

Overall Safety Summary

	Dato-DXd dose			
Patients, n (%)	4 mg/kg (n=50)	6 mg/kg (n=50)	8 mg/kg (n=80)	
TEAE Grade ≥3	49 (98) 15 (30)	49 (98) 27 (54)	80 (100) 46 (58)	
Drug-related TEAE Grade ≥3	47 (94) 7 (14)	41 (82) 13 (26)	78 (98) 28 (35)	
Serious TEAE Grade ≥3	10 (20) 10 (20)	24 (48) 18 (36)	40 (50) 37 (46)	
Dose adjustments TEAEs associated with discontinuation	8 (16)	7 (14)	19 (24)	
TEAEs associated with dose interruption	4 (8)	15 (30)	29 (36)	
TEAEs associated with dose reduction	1 (2)	5 (10)	23 (29)	
ILD adjudicated as drug related ^a	5 (10)	3 (6)	11 (14)	
Grade ≤2	4 (8)	2 (4)	7 (9)	
Grades 3-4	1 (2)	1 (2)	1 (1)	
Grade 5	0	0	3 (4)	

• The safety profile was manageable with mainly mild/moderate toxicity; TEAEs were primarily nonhematologic

Data cutoff: April 6, 2021.

ILD, interstitial lung disease; TEAE, treatment-emergent adverse event.

^a Cases of ILD adjudicated as drug related comprised 5 patients in the 4-mg/kg cohort (1 grade 1, 3 grade 2, 1 grade 3), 3 patients in the 6-mg/kg cohort (2 grade 2, 1 grade 4), and 11 patients in the 8-mg/kg cohort (2 grade 1, 5 grade 2, 1 grade 3, 3 grade 5). ^b Of 180 patients (4 mg/kg [n=50]; 6 mg/kg [n=50]; 8 mg/kg [n=50]).

Courtesy of Alexander I Spira, MD, PhD

Antitumor Activity of Dato-DXd

Dato-DXd dose 8 mg/kg 4 mg/kg 6 mg/kg change in SOD from (n=80) **Patients**^a (n=50) (n=50) 12 (24) 19 (24) ORR, n (%)^b 14 (28) 0 0 1(1) CR, n (%) 12 (24) 14 (28) 18 (23) PR, n (%)^b 25 (50) 20 (40) 42 (53) SD, n (%) Non-CR/PD, n (%) 1 (2) 2(4)2 (3) Best 7 (14) 10 (20) 8 (10) PD, n (%) 5 (10) 5 (10) 9 (11) NE, n (%) NE 10.5 9.4 DOR, median (95% CI), mo (2.8-NE) (5.6-NE) (5.8-NE) SOD

Best Overall Response (BICR)

- Antitumor activity was observed at 4-, 6-, and 8-mg/kg doses of Dato-DXd
- Most responses were durable over time, including a median duration of response of 10.5 months in the 6-mg/kg cohort

Best Change in Sum of Diameters (per BICR)

Data cutoff: April 6, 2021.

BICR, blinded independent central review; CR, complete response; DOR, duration of response; NE, not evaluable; ORR, objective response rate; PD, progressive disease; PR, partial response; SOD, sum of diameters; SD, stable disease. a Includes response-evaluable patients who had >1 postbaseline tumor assessment or discontinued treatment. b ORR and CR/PR include 1 response in the 6-mg/kg cohort that is pending confirmation.

Best change in

 IASLC
 2021 World Conference on Lung Cancer

 SEPTEMBER 8 - 14, 2021 I WORLDWIDE VIRTUAL EVENT

Courtesy of Alexander I Spira, MD, PhD
Tox Management of Dato DXd

TEAEs associated with dose reduction	1 (2)	5 (10)	23 (29)
ILD adjudicated as drug related ^a	5 (10)	3 (6)	11 (14)
Grade ≤2	4 (8)	2 (4)	7 (9)
Grades 3-4	1 (2)	1 (2)	1 (1)
Grade 5	0	0	3 (4)

Trastuzumab Deruxtecan-Induced Interstitial Lung Disease/Pneumonitis in ERBB2-		
Positive Advanced Solid Malignancies: A Systematic Review	ILD:	11.5 % all comers
Ziad Abuhelwa, ¹ Abdurahman Alloghbi, ^{2,3} Ali Alqahtani, ⁴ and Misako Nagasaka ^{II5,6}		25% NSCLC
Author information Article notes Copyright and License information Disclaimer		10/8 05 Nate

Challenges: Recognition, Lack of Treatment and Improvement

Phase 3 TROPION-Lung01 (NCT04656652) Study Design

This phase 3 study is open for enrollment

Screening biopsy^a

a **cutoff: 4 September 2020.** date, no correlation between TROP2 expression and Dato-DXd clinical activity in NSCLC has been observed.

- R, blinded independent central review; NSCLC, non-small cell lung cancer; OS, overall survival; PD-1, programmed cell death protein 1;
- L1, programmed death ligand 1; PFS, progression-free survival; Q3W, once every 3 weeks; RECIST: Response Evaluation Criteria in Solid Tumors;

P2, trophoblast cell surface antigen 2.

2020 World Conference on Lung Cancer Singapore

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

TROPION-Lung02: Initial Results for Datopotamab Deruxtecan Plus Pembrolizumab and Platinum Chemotherapy in Advanced NSCLC

Benjamin Levy,¹ Luis Paz-Ares,² Olivier Rixe,^{3,4} Wu-Chou Su,⁵ Tsung-Ying Yang,⁶ Anthony Tolcher,⁷ Yanyan Lou,⁸ Yoshitaka Zenke,⁹ Panayiotis Savvides,¹⁰ Enriqueta Felip,¹¹ Manuel Domine,¹² Konstantinos Leventakos,¹³ Mariano Provencio Pulla,¹⁴ Marianna Koczywas,¹⁵ Atsushi Horiike,¹⁶ Siddhartha Rawat,⁴ Xiangfeng Wu,⁴ Priyanka Basak,⁴ Michael Chisamore,¹⁷ Yasushi Goto¹⁸

¹The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Medicine, Baltimore, MD, USA; ²Hospital Universitario 12 de Octubre, CNIO-H12O Lung Cancer Unit, Universidad Complutense & CiberOnc, Madrid, Spain; ³Quantum Santa Fe, Santa Fe, NM, USA; ⁴Daiichi Sankyo, Inc, Basking Ridge, NJ, USA; ⁵Department of Oncology, National Cheng Kung University, Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan ⁶Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; ⁷NEXT Oncology, San Antonio, TX, USA; ⁸Mayo Clinic, Jacksonville, FL, USA; ⁹Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan; ¹⁰Mayo Clinic, Phoenix, AZ, USA; ¹¹Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain; ¹²Department of Oncology, Hospital Universitario Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain; ¹³Mayo Clinic, Rochester, MN, USA; ¹⁴Department of Medical Oncology, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain; ¹⁵Department of Medical Oncology & Therapeutic Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ¹⁶Department of Thoracic Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan; ¹⁷Merck & Co., Inc., Rahway, NJ, USA; ¹⁸National Cancer Center Hospital, Tokyo, Japan

TROPION-Lung07 Phase III Trial Design

R

Estimated enrollment (N = 975)

Estimated primary completion: August 2027

- Previously untreated metastatic NSCLC or
- Stage IIIB or IIIC disease and not candidates for surgical resection or definitive chemoradiation therapy
- PD-L1 <50%

Dato-DXd + pembrolizumab + platinum chemotherapy

Dato-DXd + pembrolizumab

Pembrolizumab + pemetrexed + platinum chemotherapy

Primary endpoints: Progression-free and overall survival

Sacituzumab

- TROP2 ADC conjugated to irinotecan metabolite SN38
- Approved in US in bladder, TNBC
- D1, D8 q21D dosing
- Approx 20% RR in pretreated NSCLC (Heist et al 2017)
- Ongoing Ph III study (EVOKE1)

2021;32(6):746-56.

ORIGINAL ARTICLE

Sacituzumab govitecan, a Trop-2-directed antibody-drug conjugate, for patients with epithelial cancer: final safety and efficacy results from the phase I/II IMMU-132-01 basket trial

A. Bardia¹, W. A. Messersmith², E. A. Kio³, J. D. Berlin⁴, L. Vahdat^{5†}, G. A. Masters⁶, R. Moroose⁷, A. D. Santin⁸,
 K. Kalinsky^{9‡}, V. Picozzi¹⁰, J. O'Shaughnessy¹¹, J. E. Gray¹², T. Komiya¹³, J. M. Lang¹⁴, J. C. Chang¹⁵, A. Starodub¹⁶,
 D. M. Goldenberg^{17§}, R. M. Sharkey¹⁷, P. Maliakal^{17||}, Q. Hong¹⁷, W. A. Wegener¹⁷, T. Goswami¹⁷ & A. J. Ocean^{5*}

Phase I/II IMMU-132-01 Trial of Sacituzumab Govitecan: Efficacy in the Metastatic NSCLC Population

ORR = objective response rate; DoR = duration of response; PFS = progression-free survival; OS = overall survival

Bardia A et al. Ann Oncol 2021;32(6):746-56.

Key Ongoing Clinical Trials of Sacituzumab Govitecan for Metastatic NSCLC

Study (N)	Phase	Setting	Treatment	Est completion date
EVOKE-01 (N = 520)	111	 Metastatic NSCLC Progression after platinum and CIP therapies ≥1 previous targeted treatment for actionable alterations 	Sacituzumab govitecanDocetaxel	May 2024
MK-3475-D46 (N = 614)	111	 Metastatic NSCLC Previously untreated PD-L1 ≥ 50% 	Sacituzumab govitecanPembrolizumab	January 2027
EVOKE-02 (N = 164)	11	 Metastatic NSCLC Previously untreated No actionable mutations 	 Sacituzumab govitecan + pembrolizumab Sacituzumab govitecan + pembrolizumab + carboplatin 	May 2023

Where are we going?

- 2nd line "approval" studies for Docetaxel (same old story)
- 1st line combos ?
 - Will this be better than Keynote 189 (carbo/pem/pembro)?
 - Will this be better tolerated than Keynote 189?
- NSCLC with actionable mutations (ph 2 studies completed)
- Concerns with ILD

Agenda

INTRODUCTION: What is an antibody-drug conjugate (ADC)?

MODULE 1: "HER2-positive" NSCLC

- Clinical and pathological phenotypes; current and future role of trastuzumab deruxtecan
- Dr Yu: 55-year-old woman with HER2 insertion in exon 20

MODULE 2: Targeting HER3 in NSCLC

- Biologic rationale and clinical role of patritumab deruxtecan
- Dr Yu: 63-year-old man with EGFR-mutant lung cancer

MODULE 3: TROP2-directed treatment

- Biologic rationale and clinical role of datopotamab deruxtecan and sacituzumab govitecan
- Dr Spira: 52-year-old woman with KRAS G12V-mutant lung cancer
- Dr Spira: 65-year-old woman with metastatic NSCLC and an EGFR exon 19 deletion

MODULE 4: Novel agents

• Mechanism of action of tusamitamab ravtansine and telisotuzumab vedotin

MODULE 5: Appendix

Other ADCs

• How many combinations can we make ?

Other ADCs

- Tusamitamab ravtansine
 - Anti CEACAM5 ADC
- Telisotuzumab vedotin (Telo V)
 - Anti c-met ADC
 - C met overexpressing cancers (NSCLC)
 - C met overexpressing EGFR-m NSCLC

Agenda

INTRODUCTION: What is an antibody-drug conjugate (ADC)?

MODULE 1: "HER2-positive" NSCLC

- Clinical and pathological phenotypes; current and future role of trastuzumab deruxtecan
- Dr Yu: 55-year-old woman with HER2 insertion in exon 20

MODULE 2: Targeting HER3 in NSCLC

- Biologic rationale and clinical role of patritumab deruxtecan
- Dr Yu: 63-year-old man with EGFR-mutant lung cancer

MODULE 3: TROP2-directed treatment

- Biologic rationale and clinical role of datopotamab deruxtecan and sacituzumab govitecan
- Dr Spira: 52-year-old woman with KRAS G12V-mutant lung cancer
- Dr Spira: 65-year-old woman with metastatic NSCLC and an EGFR exon 19 deletion

MODULE 4: Novel agents

Mechanism of action of tusamitamab ravtansine and telisotuzumab vedotin

MODULE 5: Appendix

HER2-directed treatments

DESTINY-Lung01 study

DESTINY-Lung02 – HER2 mutant

Goto ESMO 2022

Courtesy of Helena Yu, MD

Other HER2 targeting agents

T-DM1 (Trastuzumab emtansine)

– Median PFS: 5 mos

PERCIST ORR similar for HER2 amplified (55%), mutant (50%), both (50%)

Trastuzumab + docetaxel

Table 3 HER2 Overexpression by Immunohistochemistry		
mmunohistochemistry Score	Number of Patients	
0	30	
I+	13	
2+	9	
3+	4	
Not assessable/inadequate tissue	13	

HER 2 amplification by FISH 2/12 pos

N=13 with 2 or 3+ HER IHC ORR 8% mPFS 4.3mo, mOS 5.7mo

Why the differences in efficacy?

- Naked antibody limited efficacy
- T-DM1 and T-DXd different payloads
- Different therapeutic indexes? Bystander effect?

HER3-directed treatments

Patritumab Deruxtecan

D I IDDEEC

TEAEs	(n = 57), n (%)
Any TEAE	57 (100)
Grade ≥3 TEAEs	42 (74)
Serious TEAEs	25 (44)
TEAEs associated with treatment discontinuation	6 (11)°
TEAEs associated with dose reduction	12(21)
TEAEs associated with dose interruption	21 (37)
TEAEs associated with death	4 (7) ^c
Treatment-related TEAEs	55 (96)
Grade ≥3 treatment-related TEAEs	31 (54)
Treatment-related TEAEs associated with death	0
Serious treatment-related TEAEs	12 (21)
Grade ≥3 TEAEs occurring in ≥5% of patients	
Platelet count decrease/thrombocytopenia	17 (30)
Neutrophil count decrease/neutropenia	11 (19)
Fatigue	8(14)
Anemia/hemoglobin decrease	5 (9)
Dyspnea	5 (9)
Febrile neutropenia	5 (9)
Hypoxia	4 (7)
White blood cell count decrease/leukopenia	4 (7)
Hypokalemia	3 (5)
Lymphocyte count decrease/lymphopenia	3 (5)
Adjudicated ILD	5 (9)°
Adjudicated treatment-related ILD	4 (7) ^f

- 11% treatment related discontinuation, 21% dose reduction
- Thrombocytopenia/neutropenia relatively common
- 7% treatment related ILD

- HER3 was expressed in all evaluable patients (43/57 on study)
- HER3 expression was not correlated with time of last EGFR TKI dose
- Responses were observed in patients with a range of HER3 expression
- HER3 expression levels did not clearly distinguish responders vs non-responders
- Unclear what will be the appropriate biomarker for HER3-directed treatment

TROP2-directed treatments

Introduction and Methods

- Patients with advanced or metastatic NSCLC represent a high unmet need¹
- TROP2 is highly expressed in NSCLC and has been associated with poor prognosis²⁻⁴
- Datopotamab deruxtecan (Dato-DXd) is an antibody drug conjugate composed of a humanized anti-TROP2 monoclonal antibody conjugated to a
 potent topoisomerase I inhibitor payload via a stable tetrapeptide-based cleavable linker; this enables a bystander tumor effect resulting in
 elimination of both target tumor cells and surrounding cells^{5,6}
- Previous results from the TROPION-PanTumor01 first-in-human study of Dato-DXd (NCT03401385) demonstrated highly encouraging antitumor activity with a manageable safety profile in patients with NSCLC.^{6,7} Here we present updated results from the NSCLC cohort, with a data cutoff of April 6, 2021^a

Key Inclusion Criteria Dose Escalation Dose Expansion^b NSCLC cohort **Primary objectives** 50 patients at 4 mg/kg Relapsed/refractory advanced/metastatic NSCLC Establish MTD; safety, tolerability Dato-DXd 0.27 Unselected for TROP2 expression^c 50 patients at 6 mg/kg to 10 mg/kg Q3W^d Secondary objectives^e • Age \geq 18 (US) or \geq 20 (Japan) years 80 patients at 8 mg/kg • Efficacy,^f PK, ADAs • ECOG PS 0-1 MTD established: Measurable disease per RECIST version 1.1 TNBC, HR+/HER2-, 8 mg/kg Q3W 6-mg/kg dose chosen for Stable, treated brain metastases allowed and other tumor types further development^{6,7}

TROPION-PanTumor01 Study Design

ADA, antidrug antibody; ECOG PS, Eastern Cooperative Oncology Group performance status; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; MTD, maximum tolerated dose; NSCLC, non-small cell lung cancer; PK, pharmacokinetics; Q3W, every 3 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; TNBC, triple-negative breast cancer; TROP2, trophoblast cell-surface antigen 2.

^a This analysis in the NSCLC cohort was performed 6 months after the last patient received their first dose of study drug on October 6, 2020. ^b Includes patients treated in the dose-escalation and dose-expansion portions. ^c Pretreatment tumor tissue was required for retrospective analysis of TROP2 expression. ^d The 4-, 6-, and 8-mg/kg dose levels are being further evaluated for safety and efficacy. ^e Additional exploratory objectives include analyses of biomarkers associated with response. ^f Response assessments are based on RECIST v1.1.

Courtesy of Alexander I Spira, MD, PhD

1. Simeone JC, et al. *Future Oncol.* 2019;15(30):3491-3502. 2. Mito R, et al. *Pathol Int.* 2020;70(5):287-294. 3. Inamura K, et al. *Oncotarget.* 2017;8(17):28725-28735. 4. Jiang A, et al. *Oncol Lett.* 2013;6(2):375-380. 5. Okajima D, et al. AACR-NCI-EORTC 2019. Abstract C026. 6. Meric-Bernstam F, et al. ASCO 2021. Abstract 9058. 7. Spira A, et al. WCLC 2020. Abstract 3407.

Baseline Characteristics and Patient Disposition

	Dato-DXd dose			
Characteristic	4 mg/kg (n=50)	6 mg/kg (n=50)	8 mg/kg (n=80)	
Age, median (range), years Age ≥65 years, %	61 (35-82) 36	63 (38-76) 40	64 (31-84) 46	
Weight, median (range), kg	72 (38-156)	66 (39-104)	70 (38-115)	
Male, %	54	56	51	
Country, % United States Japan	58 42	76 24	79 21	
Histology, %				
Nonsquamous	82	90	88	
Squamous	18	10	13	
≥3 Prior lines of therapy, %	54	62	64	
Previous systemic treatment, %				
Immunotherapy	88	74	88	
Platinum-based chemotherapy	96	96	98	
Tyrosine kinase inhibitor	20	18	19	
EGFR mutations, %	14	16	19	
History of brain metastases, %	36	34	41	

	Dato-DXd dose		
Treatment status	4 mg/kg (n=50)	6 mg/kg (n=50)	8 mg/kg (n=80)
Ongoing study treatment, n (%) ^a	9 (18)	5 (10)	7 (9)
Discontinued from study treatment, n (%)	41 (82)	45 (90)	73 (91)
Progression ^b	31 (62)	34 (68)	43 (54)
Adverse events	8 (16)	6 (12)	20 (25)
Death	0	1 (2)	1 (1)
Other ^c	2 (4)	4 (8)	9 (11)
Duration on study, median (range), mo	12.1 (7-29)	9.5 (6-27)	16.8 (10-25)
Exposure, median (range), mo	4.1 (0.7-27.6)	3.5 (0.7-26.2)	3.3 (0.7-20.4)

 Patients were heavily pretreated, with 74%-88% having received prior immunotherapy and 96%-98% having received prior platinum-based chemotherapy across dose cohorts

Data cutoff: April 6, 2021

EGFR, epidermal growth factor receptor.

^a Due to a later time of enrollment, follow-up was shorter for patients treated with the 4- and 6-mg/kg doses than for those treated with the 8-mg/kg dose. ^b Includes progressive disease per RECIST v1.1 and clinical progression. ^c Includes physician decision, withdrawal by subject, and other.

 IASLC
 2021 World Conference on Lung Cancer

 SEPTEMBER 8 - 14, 2021 I WORLDWIDE VIRTUAL EVENT

Summary

- In the updated data cutoff for the NSCLC cohort, Dato-DXd continued to demonstrate highly
 encouraging antitumor activity and a manageable safety profile at the 4-, 6-, and 8-mg/kg doses in this
 heavily pretreated population
- The 6-mg/kg dose has been selected for further development
 - The 6-mg/kg dose was better tolerated than the 8-mg/kg dose, with low rates of discontinuation due to adverse events
 - 28% of patients achieved an ORR, and the median DOR was 10.5 months
- TROPION-PanTumor01 is also investigating Dato-DXd in other tumor types. Promising antitumor activity and a similar safety profile have been observed in the TNBC cohort¹
- Dato-DXd is currently being evaluated in the phase 3 TROPION-Lung01 trial (NCT04656652)² and additional phase 1 and 2 trials in NSCLC³⁻⁵

1. Bardia A, et al. ESMO Breast Cancer 2021. Abstract LBA4. 2. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04656652. 3. Levy B, et al. WCLC 2021. Abstract 564. 4. Borghaei H, et al. WCLC 2021. Abstract 588. 5. Johnson M, et al. WCLC 2021. Abstract 653.

Courtesy of Alexander I Spira, MD, PhD

Background

- Dato-DXd is an ADC composed of a humanized TROP2 IgG1 mAb covalently linked to a topoisomerase I inhibitor payload via a stable tetrapeptidebased cleavable linker
- TROPION-Lung02 is a phase 1b study evaluating Dato-DXd + pembrolizumab (pembro) ± platinum CT^a in advanced NSCLC without actionable genomic alterations (NCT04526691)
- Study approach: safety of Dato-DXd + pembro "doublets" was established prior to evaluation of platinum-containing "triplets"
 - Safety of Dato-DXd 4-mg/kg combinations was established prior to evaluation of 6-mg/kg combinations

Key eligibility		Dato-DXd IV Q3W	+	pembro IV Q3W	+ platinum CT IV Q3W		Primary objectives: safety and tolorability
Advanced/metastatic NSCLC	Cohort 1 (n=20) ^d :	4 mg/kg	+	200 mg			
 Dose confirmation^b: ≤2 lines of prior therapy^c 	Cohort 2 (n=20) ^d :	6 mg/kg	+	200 mg	"Doublet"		• Secondary objectives: efficacy, pharmacokinetics,
Dose expansion	Cohort 3 (n=17) ^d :	4 mg/kg	+	200 mg	+ carboplatin AUC 5	7	and anti-drug antibodies
 ≤1 line of platinum-based CT (asherts 1 and 2) 	Cohort 4 (n=20) ^d :	6 mg/kg	+	200 mg	+ carboplatin AUC 5		- "Triplet"
 No prior therapy (cohorts 3-6)^c 	Cohort 5 (n=7) ^d :	4 mg/kg	+	200 mg	+ cisplatin 75 mg/m ²		
	Cohort 6 (n=4) ^d :	6 mg/kg	+	200 mg	+ cisplatin 75 mg/m ²		

ADC, antibody-drug conjugate; AUC, area under the curve; CT, chemotherapy; Dato-DXd, datopotamab deruxtecan; DLT, dose-limiting toxicity; IgG1, immunoglobulin G1; IV, intravenous; mAb, monoclonal antibody; NSCLC, nonsmall cell lung cancer; pembro, pembrolizumab; Q3W, every 3 weeks; TROP2, trophoblast cell-surface antigen 2.

^a Administered sequentially at the same visit. ^b The first 3-6 patients in each cohort were enrolled to confirm acceptable safety/DLT rate; the remaining patients are considered part of "dose expansion" (for which enrollment was ongoing at time of data cutoff). ^c Prior therapy requirements are for treatment in the advanced/metastatic setting. ^d As of the May 2, 2022, data cutoff.

Baseline Characteristics and Patient Disposition

Characteristic		Doublet (n=40)	Triplet (n=48)
Age, median (range), years		68 (44-77)	64 (33-84)
Male, n (%)		28 (70%)	33 (69%)
	Non-squamous	28 (70%)	41 (85%)
Histology, n (%) ^ª	Squamous	11 (28%)	7 (15%)
History of brain metastases, n (%)		8 (20%)	10 (21%)
	<1%	13 (33%)	21 (44%)
PD-L1 expression, n (%) ^b	1-49%	13 (33%)	14 (29%)
	≥50%	12 (30%)	11 (23%)
Prior lines of therapy, median ^c		1	0
	Immunotherapy	12 (30%)	18 (38%)
Previous systemic treatment, n (%)	Platinum CT	24 (60%)	17 (35%)
Dato-DXd combination line of	1L	13 (33%) ^d	30 (63%) ^d
therapy, n (%)	2L+	27 (68%) ^d	18 (38%) ^d

At the time of data cutoff for doublet and triplet therapy, respectively:

- Study treatment was ongoing in 53% and 77% of patients
- Median treatment duration was 4.1 months and 3.0 months
- Median follow-up was 6.5 months and 4.4 months

Data cutoff: May 2, 2022. 1L, first line; 2L, second line; PD-L1, programmed cell death 1 ligand 1.

^a One patient (3%) received doublet therapy and had unknown histology. ^b PD-L1 expression was unknown in 2 patients (5%) receiving doublet therapy and 2 patients (4%) receiving triplet therapy. ^c Prior therapy for advanced/metastatic disease. ^d Percentages totaling >100% are due to rounding.

Safety

Events, n (%)	Doublet (n=40)	Triplet (n=48)
TEAEs	37 (93%)	47 (98%)
Study treatment-related ^a	33 (83%)	46 (96%)
Grade ≥3 TEAEs	16 (40%)	29 (60%)
Study treatment-related ^a	14 (35%)	26 (54%)
Serious TEAEs	9 (23%)	13 (27%)
Study treatment-related	4 (10%)	7 (15%)
TEAEs associated with		
Death⁵	2 (5%)	1 (2%)
Discontinuation due to any drug	9 (22%)	9 (19%)
Discontinuation due to Dato-DXd	6 (15%)	5 (10%)
ILD adjudicated as drug related ^c		
Grade 1/2	2 (5%)	0
Grade 3	1 (3%)	1 (2%)

Grade ≥3

Grade ≥3

Data cutoff: May 2, 2022.

ILD, interstitial lung disease. TEAE, treatment emergent adverse event.

^a Drug related TEAEs may be associated with any component of the study treatment: Dato-DXd, pembro, cisplatin, or carboplatin. ^b TEAEs associated with death (encephalopathy, respiratory failure, and death) were considered unrelated to study treatment. ^c Three ILD cases (1 grade 1, 1 grade 3, and 1 grade 5), are pending adjudication.

Antitumor Activity

In the overall population:

ORRs (confirmed + pending) of 37% and 41% were seen with doublet (n=38) and triplet (n=37) therapy, respectively; both groups had 84% DCR

BOR With 1L Therapy For Advanced NSCLC^{a,b}

Response, n (%)	Doublet (n=13)	Triplet (n=20)
ORR confirmed + pending	8 (62%)	10 (50%)
CR	0	0
PR confirmed	8 (62%)	7 (35%)
PR pending	0	3 (15%)
SD	5 (39%)	8 (40%)
DCR	13 (100%)	18 (90%)

- As 1L therapy, the doublet and triplet yielded ORRs (confirmed + pending) of 62% and 50%, respectively
- As 2L+ therapy, respective ORRs (confirmed + pending) were 24% and 29%

Data cutoff: May 2, 2022.

BOR, best overall response; CR, complete response; DCR, disease control rate; ORR, overall response rate; PR, partial response; SD, stable disease.

^a By investigator. ^b BOR is based on response evaluable patients who have ≥1 postbaseline tumor assessment or discontinued.

Courtesy of Alexander I Spira, MD, PhD

Percent Change in Sum of Diameters^a

Summary

- This first reported clinical experience of a TROP2 ADC + a checkpoint inhibitor ± platinum CT in metastatic NSCLC demonstrated a tolerable safety profile and supported further evaluation of the 6-mg/kg dose of Dato-DXd in immunotherapy combination regimens^a
- Stomatitis and nausea, mostly grade 1/2, were the most frequent TEAEs in patients receiving doublet and triplet therapy, respectively
- Interim efficacy results in the overall population and in patients receiving 1L therapy are encouraging
 - Responses were observed across all PD-L1 expression levels
 - The study is ongoing, and additional analyses with longer follow-up and more patients are pending
- The phase 3 TROPION-Lung08 trial (NCT05215340) is evaluating Dato-DXd + pembro vs pembro alone as 1L therapy in advanced/metastatic NSCLC with PD-L1 TPS >50%¹

TPS, tumor proportion score.

^a The Dato-DXd 6-mg/kg dose is also being evaluated as monotherapy in ongoing, global, phase 3 studies.

1. Levy B, et al. Poster presented at: American Society for Clinical Oncology; June 3-7, 2022. Abstract TPS3162.

Novel ADCs

Best Overall Response with Tusamitamab Ravtansine in a Phase I/II Study for Patients with Nonsquamous NSCLC Expressing CEACAM5

Best Relative Tumor Shrinkage – Moderate Expressor Cohort

Overall Population

Response, n (%)	High expressors (n = 64)	Moderate expressors (n = 28)
ORR [95% CI]	13 (20.3%) [12.27-31.71]	2 (7.1%) [1.98-22.65]
Confirmed PR	13 (20.3%)	2 (7.1%)
SD	28 (43.8%)	15 (53.6%)
DCR	41 (64.1%)	17 (60.7%)
PD	21 (32.8%)	10 (35.7%)
NE	2 (3.1%)	1 (3.6%)

Best relative tumor shrinkage: Patients who had unconfirmed PR (>30% decrease) were counted as SD for BOR

DCR, disease control rate; NE, not evaluable; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease.

Gazzah A et al. ASCO 2020; Abstract 9505.

LUMINOSITY: Phase II Study of Telisotuzumab Vedotin Monotherapy for Patients with Previously Treated c-MET– Overexpressing Advanced NSCLC

CI, confidence interval; EGFR, epidermal growth factor receptor; Int, intermediate; MU, mutant; NSQ, non-squamous; ORR, overall response rate; SQ, squamous; WT, wild-type.

- The NSQ EGFR WT NSCLC cohort met protocol-specified criteria for expansion in Stage 2 at interim analysis 3. Updated data at the time of interim analysis 4 are shown
- The NSQ EGFR MU NSCLC cohort met protocol-specified criteria for futility at interim analysis 4. The SQ cohort met criteria for futility at the previous interim analysis; final data shown

DOR per Central Review by Cohort/Group

Cohort/Group	mDOR by ICR, No. of Events/No. of Responders, Months [95% CI]		
NSQ EGFR WT	8/19, 6.9 [4.1, NR]		
c-Met high c-Met int	5/12, 6.9 [2.4, NR] 3/7, NR [4.1, NR]		
NSQ EGFR MU	2/5, NR [3.0, NR]		
c-Met high c-Met int	2/5, NR [3.0, NR] NA		
SQ	2/3, 4.4 [3.0, NR]		

CI, confidence interval; DOR, duration of response; EGFR, epidermal growth factor receptor; ICR, independent central review; int, intermediate; mDOR, median duration of response; MU, mutant; NA, not available; NR, not reached; NSQ, non-squamous; SQ, squamous; WT, wild-type.

Objective Response Rate per Central Review for Subgroups Defined by Prior Therapies: NSQ EGFR WT Cohort

Cohort/Group	Prior Platinum, n/N (%)	Prior Platinum and Immune Checkpoint Inhibitor, n/N (%)
NSQ EGFR WT	18/50 (36.0)	15/37 (40.5)
c-Met high c-Met int	11/21 (52.4) 7/29 (24.1)	9/16 (56.3) 6/21 (28.6)

EGFR, epidermal growth factor receptor; int, intermediate; NSQ, non-squamous; WT, wild-type.

Molecular oncogene analyses in tumors of patients with available tissue are underway.

What Clinicians Want to Know: Addressing **Current Questions and Controversies in the Management of HER2-Positive Breast Cancer** Part 1 of a 2-Part CME Satellite Symposium Series Held in Conjunction with the 2022 San Antonio Breast Cancer Symposium® Wednesday, December 7, 2022 7:15 PM - 9:15 PM CT (8:15 PM - 10:15 PM ET) Faculty Erika Hamilton, MD Shanu Modi, MD Sara M Tolaney, MD, MPH Sara A Hurvitz, MD Ian E Krop, MD, PhD **Moderator** Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

