Meet The Professor Optimizing the Management of Multiple Myeloma

Tuesday, November 15, 2022 5:00 PM - 6:00 PM ET

Faculty
Paul G Richardson, MD

Commercial Support

This activity is supported by educational grants from AbbVie Inc, GlaxoSmithKline, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, and Karyopharm Therapeutics.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

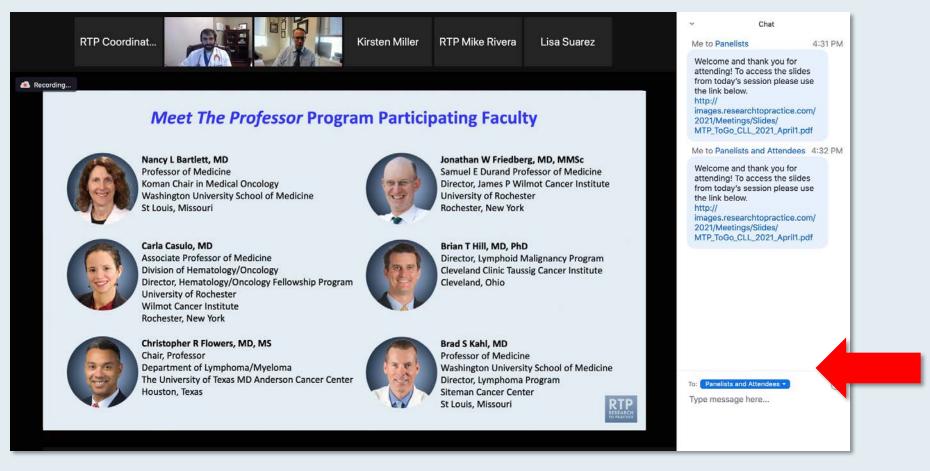
Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Richardson — Disclosures

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Celgene Corporation, GlaxoSmithKline, Janssen Biotech Inc, Karyopharm Therapeutics, Oncopeptides, Sanofi, Secura Bio, Takeda Pharmaceuticals USA Inc
Contracted Research	Bristol-Myers Squibb Company, Celgene Corporation, Karyopharm Therapeutics, Oncopeptides, Takeda Pharmaceuticals USA Inc

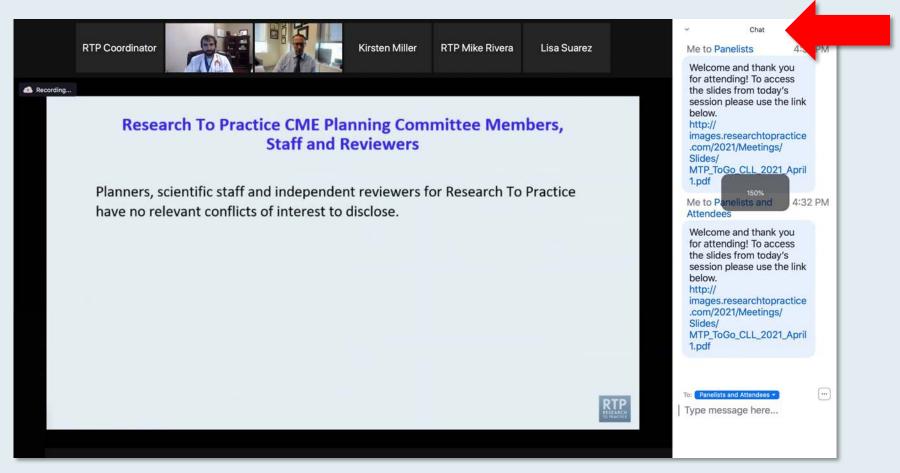
We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box



Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

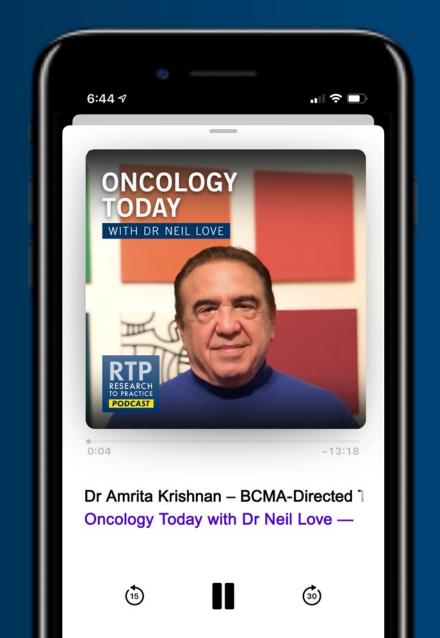
Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY

WITH DR NEIL LOVE

BCMA-Directed Therapies for Multiple Myeloma



DR AMRITA KRISHNAN
CITY OF HOPE CANCER CENTER

Oncology Today with Dr Neil Love — Novel Agents and Strategies in Acute Myeloid Leukemia

A CME/MOC-Accredited Virtual Event

Thursday, November 17, 2022 5:00 PM - 6:00 PM ET

Faculty
Daniel A Pollyea, MD, MS

BCMA-Directed Therapy in Multiple Myeloma — Expert Opinions and Patient Perspectives

Part 2 of a 2-Part CME/MOC-Accredited Virtual Series

Wednesday, November 30, 2022 5:00 PM - 6:00 PM ET

Faculty
S Vincent Rajkumar, MD

Emerging Role of Antibody-Drug Conjugates in the Management of Non-Small Cell Lung Cancer

A CME/MOC-Accredited Virtual Event

Thursday, December 1, 2022 5:00 PM – 6:00 PM ET

Faculty

Alexander I Spira, MD, PhD Helena Yu, MD

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of HER2-Positive Breast Cancer

Part 1 of a 2-Part CME Satellite Symposium Series Held in Conjunction with the 2022 San Antonio Breast Cancer Symposium®

Wednesday, December 7, 2022

7:15 PM - 9:15 PM CT (8:15 PM - 10:15 PM ET)

Faculty

Erika Hamilton, MD Sara A Hurvitz, MD Ian E Krop, MD, PhD Shanu Modi, MD Sara M Tolaney, MD, MPH

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of ER-Positive Breast Cancer

Part 2 of a 2-Part CME Satellite Symposium Series Held in Conjunction with the 2022 San Antonio Breast Cancer Symposium®

Thursday, December 8, 2022

7:15 PM - 9:15 PM CT (8:15 PM - 10:15 PM ET)

Faculty

Aditya Bardia, MD, MPH
Matthew P Goetz, MD
Virginia Kaklamani, MD, DSc

Kevin Kalinsky, MD, MS Hope S Rugo, MD

Addressing Current Questions and Controversies in the Management of Chronic Lymphocytic Leukemia — What Clinicians Want to Know

Part 1 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series

Preceding the 64th ASH Annual Meeting

Friday, December 9, 2022

11:30 AM - 1:30 PM CT (12:30 PM - 2:30 PM ET)

Faculty

Alexey V Danilov, MD, PhD
Matthew S Davids, MD, MMSc
Professor Dr Arnon P Kater, MD, PhD

Lindsey Roeker, MD Philip A Thompson, MB, BS

Addressing Current Questions and Controversies in the Management of Hodgkin and Non-Hodgkin Lymphoma — What Clinicians Want to Know

Part 2 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series

Preceding the 64th ASH Annual Meeting

Friday, December 9, 2022 3:15 PM – 5:15 PM CT (4:15 PM – 6:15 PM ET)

Faculty

Jonathan W Friedberg, MD, MMSc Brad S Kahl, MD David G Maloney, MD, PhD Loretta J Nastoupil, MD Sonali M Smith, MD

Addressing Current Questions and Controversies in the Management of Multiple Myeloma — What Clinicians Want to Know

Part 3 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series

Preceding the 64th ASH Annual Meeting

Friday, December 9, 2022 7:00 PM - 9:00 PM CT (8:00 PM - 10:00 PM ET)

Faculty

Jesús G Berdeja, MD Rafael Fonseca, MD Sagar Lonial, MD Robert Z Orlowski, MD, PhD Noopur Raje, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Optimizing the Management of Multiple Myeloma

Paul G Richardson, MD

Clinical Program Leader and Director of Clinical Research
Jerome Lipper Multiple Myeloma Center
Dana-Farber Cancer Institute
RJ Corman Professor of Medicine
Harvard Medical School
Boston, Massachusetts

Meet The Professor Program Participating Faculty

Rafael Fonseca, MD Chief Innovation Officer Getz Family Professor of Cancer Distinguished Mayo Investigator Mayo Clinic in Arizona Phoenix, Arizona

Sagar Lonial, MD Chair and Professor Department of Hematology and Medical Oncology Anne and Bernard Gray Family Chair in Cancer **Chief Medical Officer** Winship Cancer Institute **Emory University School of Medicine** Atlanta, Georgia

Joseph Mikhael, MD, MEd

Shaji K Kumar, MD Mark and Judy Mullins Professor of Hematological Malignancies Consultant, Division of Hematology Professor of Medicine Mayo Clinic Rochester, Minnesota

Ola Landgren, MD, PhD

Professor of Medicine Leader, Experimental Therapeutics Program Leader, Myeloma Division Co-Leader of Tumor Biology Program Sylvester Comprehensive Cancer Center University of Miami Miami, Florida

Professor, Applied Cancer Research and Drug Discovery Translational Genomics Research Institute (TGen) City of Hope Cancer Center Chief Medical Officer International Myeloma Foundation Consultant Hematologist and Director, Myeloma Research, Phase 1 Program HonorHealth Research Institute Adjunct Professor, College of Health Solutions **Arizona State University** Phoenix, Arizona

Meet The Professor Program Participating Faculty

Noopur Raje, MD
Director, Center for Multiple Myeloma
Massachusetts General Hospital Cancer Center
Professor of Medicine
Harvard Medical School
Boston, Massachusetts

MODERATOR
Neil Love, MD
Research To Practice

Paul G Richardson, MD
Clinical Program Leader and Director of Clinical
Research
Jerome Lipper Multiple Myeloma Center
Dana-Farber Cancer Institute
RJ Corman Professor of Medicine
Harvard Medical School
Boston, Massachusetts

We Encourage Clinicians in Practice to Submit Questions

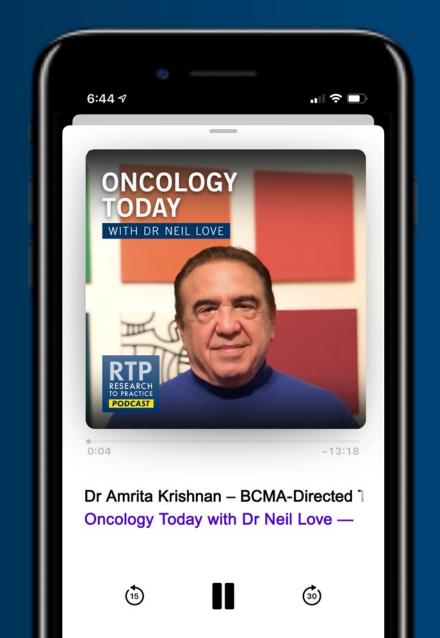
Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY

WITH DR NEIL LOVE

BCMA-Directed Therapies for Multiple Myeloma



DR AMRITA KRISHNAN
CITY OF HOPE CANCER CENTER

Oncology Today with Dr Neil Love — Novel Agents and Strategies in Acute Myeloid Leukemia

A CME/MOC-Accredited Virtual Event

Thursday, November 17, 2022 5:00 PM - 6:00 PM ET

Faculty
Daniel A Pollyea, MD, MS

BCMA-Directed Therapy in Multiple Myeloma — Expert Opinions and Patient Perspectives

Part 2 of a 2-Part CME/MOC-Accredited Virtual Series

Wednesday, November 30, 2022 5:00 PM - 6:00 PM ET

Faculty
S Vincent Rajkumar, MD

Emerging Role of Antibody-Drug Conjugates in the Management of Non-Small Cell Lung Cancer

A CME/MOC-Accredited Virtual Event

Thursday, December 1, 2022 5:00 PM – 6:00 PM ET

Faculty

Alexander I Spira, MD, PhD Helena Yu, MD

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of HER2-Positive Breast Cancer

Part 1 of a 2-Part CME Satellite Symposium Series Held in Conjunction with the 2022 San Antonio Breast Cancer Symposium®

Wednesday, December 7, 2022

7:15 PM - 9:15 PM CT (8:15 PM - 10:15 PM ET)

Faculty

Erika Hamilton, MD Sara A Hurvitz, MD Ian E Krop, MD, PhD Shanu Modi, MD Sara M Tolaney, MD, MPH

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of ER-Positive Breast Cancer

Part 2 of a 2-Part CME Satellite Symposium Series Held in Conjunction with the 2022 San Antonio Breast Cancer Symposium®

Thursday, December 8, 2022

7:15 PM - 9:15 PM CT (8:15 PM - 10:15 PM ET)

Faculty

Aditya Bardia, MD, MPH
Matthew P Goetz, MD
Virginia Kaklamani, MD, DSc

Kevin Kalinsky, MD, MS Hope S Rugo, MD

Addressing Current Questions and Controversies in the Management of Chronic Lymphocytic Leukemia — What Clinicians Want to Know

Part 1 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series

Preceding the 64th ASH Annual Meeting

Friday, December 9, 2022

11:30 AM - 1:30 PM CT (12:30 PM - 2:30 PM ET)

Faculty

Alexey V Danilov, MD, PhD
Matthew S Davids, MD, MMSc
Professor Dr Arnon P Kater, MD, PhD

Lindsey Roeker, MD Philip A Thompson, MB, BS

Addressing Current Questions and Controversies in the Management of Hodgkin and Non-Hodgkin Lymphoma — What Clinicians Want to Know

Part 2 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series

Preceding the 64th ASH Annual Meeting

Friday, December 9, 2022 3:15 PM – 5:15 PM CT (4:15 PM – 6:15 PM ET)

Faculty

Jonathan W Friedberg, MD, MMSc Brad S Kahl, MD David G Maloney, MD, PhD Loretta J Nastoupil, MD Sonali M Smith, MD

Addressing Current Questions and Controversies in the Management of Multiple Myeloma — What Clinicians Want to Know

Part 3 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series

Preceding the 64th ASH Annual Meeting

Friday, December 9, 2022 7:00 PM - 9:00 PM CT (8:00 PM - 10:00 PM ET)

Faculty

Jesús G Berdeja, MD Rafael Fonseca, MD Sagar Lonial, MD Robert Z Orlowski, MD, PhD Noopur Raje, MD

Meet The Professor Optimizing the Management of Multiple Myeloma

Paul G Richardson, MD

Clinical Program Leader and Director of Clinical Research
Jerome Lipper Multiple Myeloma Center
Dana-Farber Cancer Institute
RJ Corman Professor of Medicine
Harvard Medical School
Boston, Massachusetts

Commercial Support

This activity is supported by educational grants from AbbVie Inc, GlaxoSmithKline, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, and Karyopharm Therapeutics.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Richardson — Disclosures

Consulting Agreements	AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Celgene Corporation, GlaxoSmithKline, Janssen Biotech Inc, Karyopharm Therapeutics, Oncopeptides, Sanofi, Secura Bio, Takeda Pharmaceuticals USA Inc
Contracted Research	Bristol-Myers Squibb Company, Celgene Corporation, Karyopharm Therapeutics, Oncopeptides, Takeda Pharmaceuticals USA Inc

Ranju Gupta, MD Lehigh Valley Topper Cancer Institute Bethlehem, Pennsylvania

Hans Lee, MD
The University of Texas
MD Anderson Cancer Center
Houston, Texas

Kapisthalam (KS) Kumar, MD Florida Cancer Specialists Trinity, Florida

Muzaffar H Qazilbash, MD
The University of Texas
MD Anderson Cancer Center
Houston, Texas

Zanetta S Lamar, MDFlorida Cancer Specialists
Naples, Florida

Erik Rupard, MDThe Reading Hospital
West Reading, Pennsylvania

Meet The Professor with Dr Richardson

INTRODUCTION

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Richardson

MODULE 4: Appendix of Key Publications

Meet The Professor with Dr Richardson

INTRODUCTION

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Richardson

MODULE 4: Appendix of Key Publications

2022 September 13;6(17):4967-74. **REGULAR ARTICLE**

Quality of life, psychological distress, and prognostic perceptions in caregivers of patients with multiple myeloma

Elizabeth K. O'Donnell,^{1,2} Yael N. Shapiro,¹ Andrew J. Yee,¹⁻³ Omar Nadeem,^{2,4} Jacob P. Laubach,^{2,4} Andrew R. Branagan,^{1,2} Kenneth C. Anderson,^{2,4} Clifton C. Mo,^{2,4} Nikhil C. Munshi,^{2,4} Irene M. Ghobrial,^{2,4} Adam S. Sperling,^{2,4,5} Emerentia A. Agyemang,¹ Jill N. Burke,¹ Cynthia C. Harrington,¹ Bonnie Y. Hu,¹ Paul G. Richardson,^{2,4} Noopur S. Raje,^{1,2} and Areej El-Jawahri^{1,2}

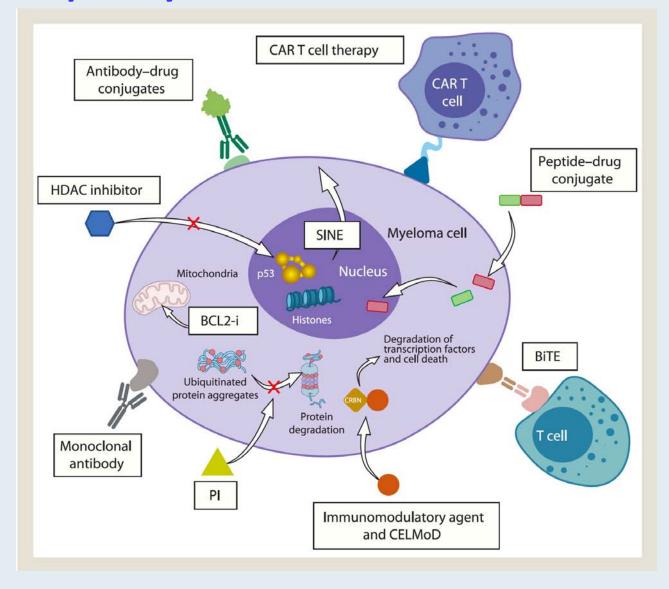
Cancer 2022 May 15;128(10):1996-2004.

Original Article

Quality of life, psychological distress, and prognostic perceptions in patients with multiple myeloma

Elizabeth K. O'Donnell, MD (1) 1,2; Yael N. Shapiro, BA¹; Andrew J. Yee, MD^{1,2,3}; Omar Nadeem, MD^{2,4}; Bonnie Y. Hu, BS¹; Jacob P. Laubach, MD^{2,4}; Andrew R. Branagan, MD, PhD^{1,2}; Kenneth C. Anderson, MD^{2,4}; Clifton C. Mo, MD^{2,4}; Nikhil C. Munshi, MD^{2,4}; Irene M. Ghobrial, MD^{2,4}; Adam S. Sperling, MD^{2,4,5}; Emerentia A. Agyemang, NP¹; Jill N. Burke, NP¹; Cynthia C. Harrington, NP¹; Paul G. Richardson, MD^{2,4}; Noopur S. Raje, MD^{1,2}; and Areej El-Jawahri, MD (1) 1,2

Clin Lymphoma Myeloma Leuk 2022 July;22(7):460-73.


Review Article

Treatment Options for Patients With Heavily Pretreated Relapsed and Refractory Multiple Myeloma

Meletios-Athanasios Dimopoulos, Paul Richardson, Sagar Lonial

Mechanisms of Action of Drug Classes for the Treatment of Refractory Multiple Myeloma

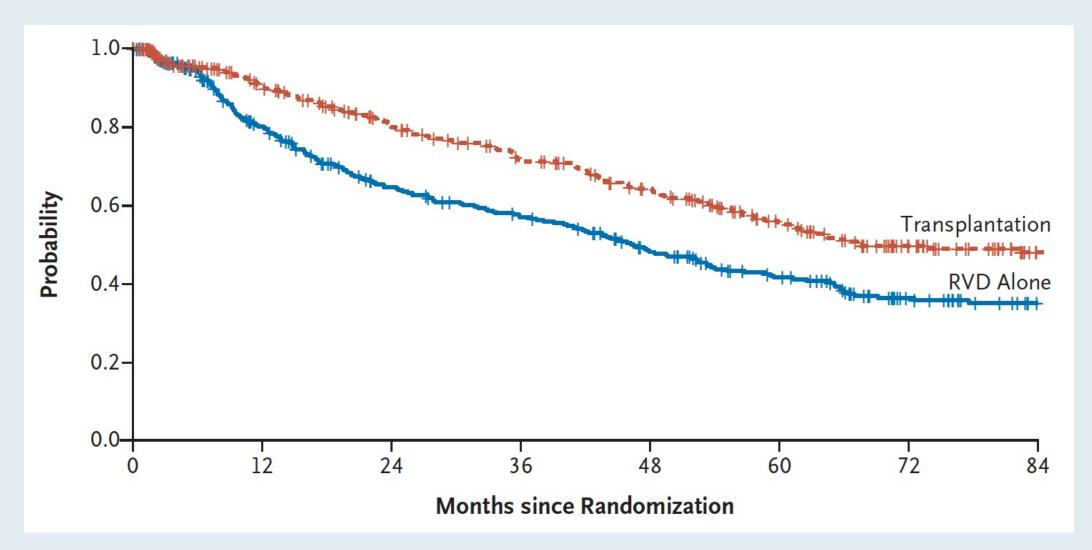
Leuk Lymphoma. 2022 October; 63(10): 2403–2412.

Risk factors for the development of orthostatic hypotension during autologous stem cell transplant in patients with multiple myeloma

Matthew Ho^a, Maria Moscvin^b, Soon Khai Low^c, Benjamin Evans^b, Sara Close^d, Robert Schlossman^{d,†}, Jacob Laubach^d, Claudia Paba Prada^{d,‡}, Brett Glotzbecker^{e,\$}, Paul G. Richardson^d, Giada Bianchi^b

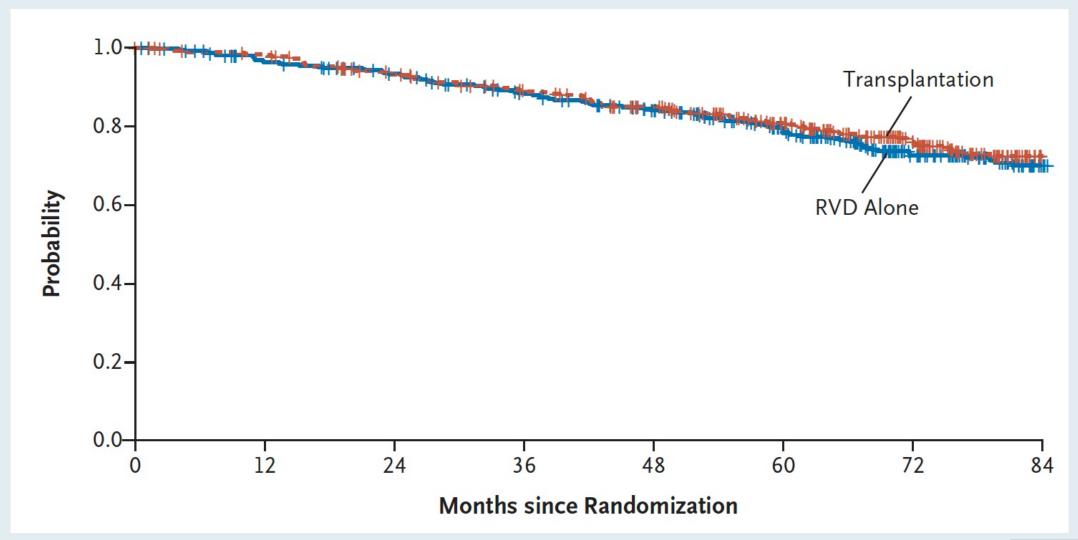
N Engl J Med 2022 July 14;387(2):132-47.

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Triplet Therapy, Transplantation, and Maintenance until Progression in Myeloma

P.G. Richardson, S.J. Jacobus, E.A. Weller, H. Hassoun, S. Lonial, N.S. Raje, E. Medvedova, P.L. McCarthy, E.N. Libby, P.M. Voorhees, R.Z. Orlowski, L.D. Anderson, Jr., J.A. Zonder, C.P. Milner, C. Gasparetto, M.E. Agha, A.M. Khan, D.D. Hurd, K. Gowin, R.T. Kamble, S. Jagannath, N. Nathwani, M. Alsina, R.F. Cornell, H. Hashmi, E.L. Campagnaro, A.C. Andreescu, T. Gentile, M. Liedtke, K.N. Godby, A.D. Cohen, T.H. Openshaw, M.C. Pasquini, S.A. Giralt, J.L. Kaufman, A.J. Yee, E. Scott, P. Torka, A. Foley, M. Fulciniti, K. Hebert, M.K. Samur, K. Masone, M.E. Maglio, A.A. Zeytoonjian, O. Nadeem, R.L. Schlossman, J.P. Laubach, C. Paba-Prada, I.M. Ghobrial, A. Perrot, P. Moreau, H. Avet-Loiseau, M. Attal, K.C. Anderson, and N.C. Munshi, for the DETERMINATION Investigators*

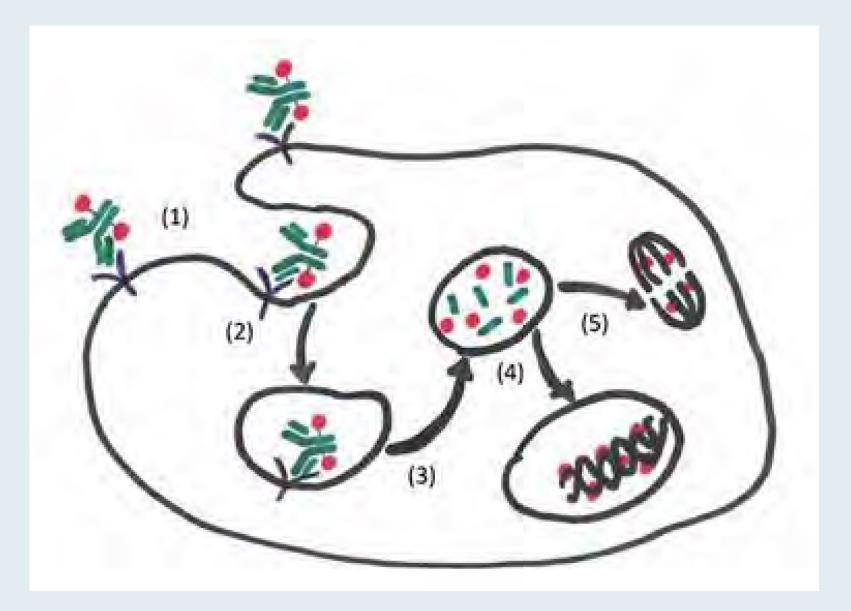


DETERMINATION: Progression-Free Survival (ITT)

DETERMINATION: Overall Survival (ITT)

2022;3(1):1-10

Exploration of Targeted Anti-tumor Therapy


Open Access Review

Antibody-drug conjugate therapies in multiple myeloma—what's next on the horizon?

Monique Hartley-Brown*, Paul Richardson

Mechanism of Action of Antibody-Drug Conjugates

2022 **ASCO**° ANNUAL MEETING Abstract 8019

Synergistic Effects of Low-dose Belantamab Mafodotin in Combination with a Gamma-Secretase Inhibitor (Nirogacestat) in Patients with Relapsed/Refractory Multiple Myeloma (RRMM): DREAMM-5 Study

Poster No. 443

Speaker: Sagar Lonial, MD, FACP

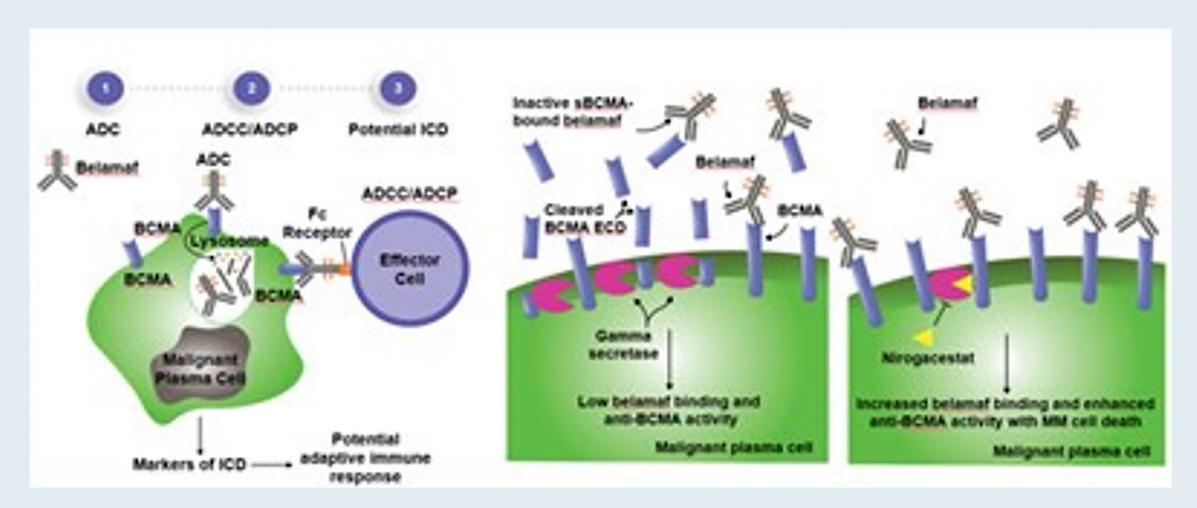
Acknowledgments

This study was funded by GlaxoSmithKline (GSK Study 208887). Drug linker technology licensed from Seagen, Inc.; monoclonal antibody produced using POTELLIGENT Technology licensed from BioWa; nirogacestat (gammasecretase inhibitor) is manufactured and provided by SpringWorks Therapeutics as part of a collaborative agreement with GSK. On behalf of all authors, and with their permission, an audio recording was prepared by Sagar Lonial who did not receive any payment for this recording. Writing assistance was provided by Elisabeth Walsby, PhD and Sharon Bryant, DPT of Fishawack Indicia, part of Fishawack Health and funded by GSK.

Authors and Affiliations

Sagar Lonial, MD, FACP1, Sebastian Grosicki, MD2, Marek Hus, MD3, Kevin Song, MD4, Thierry Facon, MD⁵, Natalie S, Callander, MD⁶, Vincent Ribrag, MD⁷, Katarina Uttervall, MD⁸, Hang Quach, MD⁹, Vladimir Vorobyev, MD¹⁰, Chang-Ki Min, MD¹¹, Shinta Cheng, MD, PhD¹², L. Mary Smith, PhD¹², Jing Yu, PhD¹³, Therese Collingwood, PhD¹³, Beata Holkova, MD¹³, Brandon E. Kremer, MD, PhD¹³, Ira Gupta, MD¹³, Paul G. Richardson, MD¹⁴, Monique C. Minnema, MD. PhD15

¹Emory University, Winship Cancer Institute, Atlanta, GA, USA; ²Department of Hematology and Cancer Prevention, Medical University of Silesia, Katowice, Poland; 3Katedra i Klinika Hematoonkologii i Transplantacji Szpiku, Lublin, Poland; 4Vancouver General Hospital, Vancouver, BC, Canada; Department of Haematology, Lille University Hospital, Lille, France; University of Wisconsin, Carbone Cancer Center, Madison, WI, USA; 7Institut Gustave Roussy, Villejuif, France; 8Karolinska University Hospital, Stockholm, Sweden; 9University of Melbourne, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia; 10S P Botkin City Clinical Hospital, Moscow, Russia; 11Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea; 12SpringWorks Therapeutics, Stamford, CT, USA; ¹³GlaxoSmithKline, Upper Providence, PA, USA; ¹⁴Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁵University Medical Center Utrecht, Utrecht, the Netherlands


Sagar Lonial, MD, FACP

Mechanisms of Action of Belantamab Mafodotin (Belamaf) and Belamaf Combined with Nirogacestat

Phase III DREAMM-3 Trial of Belantamab Mafodotin Monotherapy versus Pomalidomide in Combination with Low-Dose Dexamethasone Does Not Meet Its Primary Endpoint Press Release: November 7, 2022

The DREAMM-3 Phase III open-label, randomized, head-to-head superiority trial of belantamab mafodotin monotherapy versus pomalidomide in combination with low dose dexamethasone (PomDex) for patients with relapsed or refractory multiple myeloma did not meet its primary endpoint of progression-free survival (PFS).

"In the DREAMM-3 trial, the primary endpoint of PFS demonstrated a hazard ratio of 1.03 (95% CI: 0.72, 1.47). The observed median progression-free survival was longer for belantamab mafodotin vs PomDex (11.2 months vs 7 months)."

"Data from DREAMM-3 is in the process of being shared with health authorities. Discussions with health authorities are currently ongoing. Additional trials within the DREAMM (DRiving Excellence in Approaches to Multiple Myeloma) clinical trial programme will continue."

"Data from the DREAMM-7 and DREAMM-8 phase III trials are anticipated in the first half of 2023."

DREAMM-3 Phase III Trial Design

Estimated enrollment N = 338

- Multiple myeloma, s/p ASCT or ineligible for ASCT
- Two prior lines of antimyeloma treatment, including at least 2 consecutive cycles of lenalidomide and a PI (separately or in combination), and PD on or within 60 days of completion of the last treatment or nonresponsive on last treatment

Belantamab mafodotin

Pomalidomide/dexamethasone

Primary endpoint: Progression-free survival

Secondary endpoints: Overall survival, overall response rate, clinical benefit rate, duration of response, time to response, time to disease progression, others

PI = proteasome inhibitor; PD = disease progression

Safety and Efficacy of Belantamab Mafodotin in Combination with Rd in Newly Diagnosed, Transplant Ineligible Multiple Myeloma Patients: A Phase 1/2 Study by the Hellenic Society of Hematology

Terpos E et al.

EHA 2022; Abstract S178.

DREAMM-9: Phase I Study of Belantamab Mafodotin plus Standard of Care in Patients with Transplant-Ineligible Newly Diagnosed Multiple Myeloma

Usmani SZ et al.

EHA 2022; Abstract P942.

Ongoing Phase III Trials of Belantamab Mafodotin

Study	N	Setting	Treatment arms	Estimated primary completion
DREAMM-8 (NCT04484623)	450	 RRMM ≥1 prior line of treatment, including a lenalidomide- containing regimen 	 Belantamab mafodotin + Pomalidomide/dexamethasone Bortezomib + Pomalidomide/dexamethasone 	March 2023
DREAMM-7 (NCT04246047)	575	 RRMM ≥1 prior line of treatment 	 Belantamab mafodotin + Bortezomib/dexamethasone Daratumumab + Bortezomib/dexamethasone 	April 2023

Corneal Events: Mitigation Strategy

- Corticosteroid eye drops are not beneficial for prophylaxis or treatment
- Lubricating eye drops ≥4 times per day throughout duration of the treatment period
- No contact lens use during treatment period
- Eye examination with BCVA assessment and slit lamp examination with fluorescein staining prior to each planned dose
- Dose delays and dose reductions per recommendations

Belantamab Mafodotin Dose Modifications for Corneal Toxicity

	Exam findings per KVA scale	Recommended dose modifications	
Grade 1	Corneal exam: Mild superficial keratopathy	Continue treatment at the current dose	
	Change in BCVA: Decline from baseline of 1 line on the Snellen visual acuity chart		
Grade 2	Corneal exam: Moderate superficial keratopathy	Withhold treatment until improvement in both corneal examination findings and changes in BCVA to Grade 1 or better, and resume at same dose	
	Change in BCVA: Decline from baseline of 2 or 3 lines (and Snellen visual acuity not worse than 20/200)		
Grade 3	Corneal exam: Severe superficial keratopathy	Withhold treatment until improvement in both corneal examination findings and changes in BCVA to Grade 1 or better, and resume at a reduced dose	
	Change in BCVA: Decline from baseline by more than 3 lines (and Snellen visual acuity not worse than 20/200)		
Grade 4	Corneal exam: Corneal epithelial defect	Consider treatment discontinuation. Based on a benefit-risk ratio assessment, if continuing belantamab mafodotin is considered, treatment may be resumed at a reduced dose after the event has improved to Grade 1 or better	
	Change in BCVA: Snellen visual acuity worse than 20/200		

Meet The Professor with Dr Richardson

INTRODUCTION

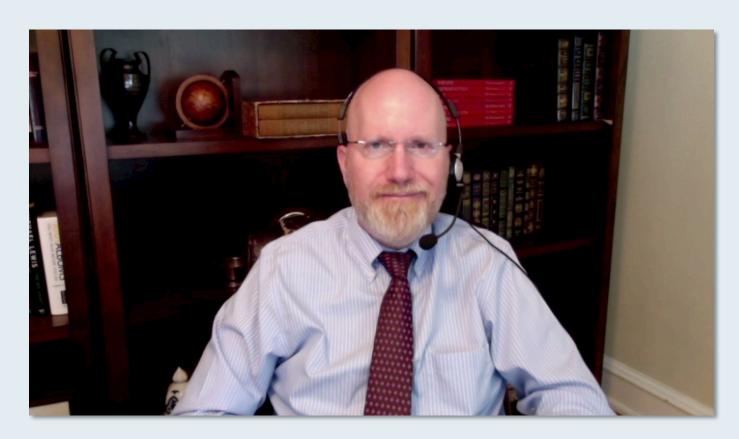
MODULE 1: Case Presentations

- Dr Gupta: 61-year-old man with newly diagnosed Stage II standard-risk multiple myeloma
- Dr Rupard: 72-year-old woman with Stage IIIA multiple myeloma who receives RVd → ASCT and discontinues maintenance lenalidomide after 3 years
- Dr Lamar: 73-year-old woman with relapsed myeloma s/p tandem ASCT who receives CyBorD, achieves MRD negativity and is now on maintenance ixazomib
- Dr Lee: 72-year-old woman with triple-class refractory t(11;14) multiple myeloma
- Dr Qazilbash: 65-year-old man with high-risk relapsed multiple myeloma s/p KRd induction, ASCT and maintenance
 KRd and 2 additional lines of therapy
- Dr Kumar: 71-year-old man with multiple myeloma who develops secondary ALL during maintenance lenalidomide

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Richardson

MODULE 4: Appendix of Key Publications


Case Presentation: 61-year-old man with newly diagnosed Stage II standard-risk multiple myeloma

Dr Ranju Gupta (Bethlehem, Pennsylvania)

Case Presentation: 72-year-old woman with Stage IIIA multiple myeloma who receives RVd → ASCT and discontinues maintenance lenalidomide after 3 years

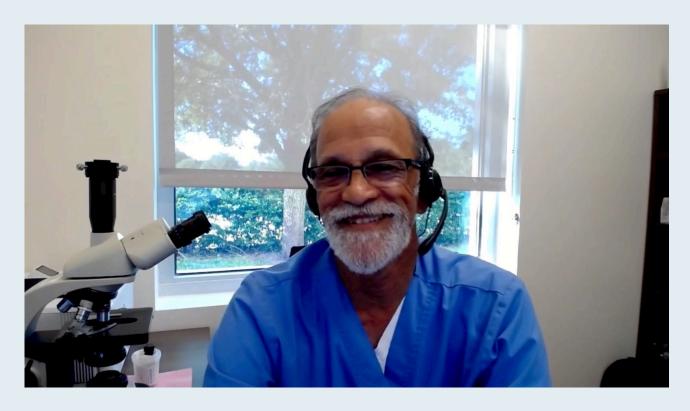
Dr Erik Rupard (West Reading, Pennsylvania)

Case Presentation: 73-year-old woman with relapsed myeloma s/p tandem ASCT who receives CyBorD, achieves MRD negativity and is now on maintenance ixazomib

Dr Zanetta Lamar (Naples, Florida)

Case Presentation: 72-year-old woman with triple-class refractory t(11;14) multiple myeloma

Dr Hans Lee (Houston, Texas)


Case Presentation: 65-year-old man with high-risk relapsed multiple myeloma s/p KRd induction, ASCT and maintenance KRd and 2 additional lines of therapy

Dr Muzaffar Qazilbash (Houston, Texas)

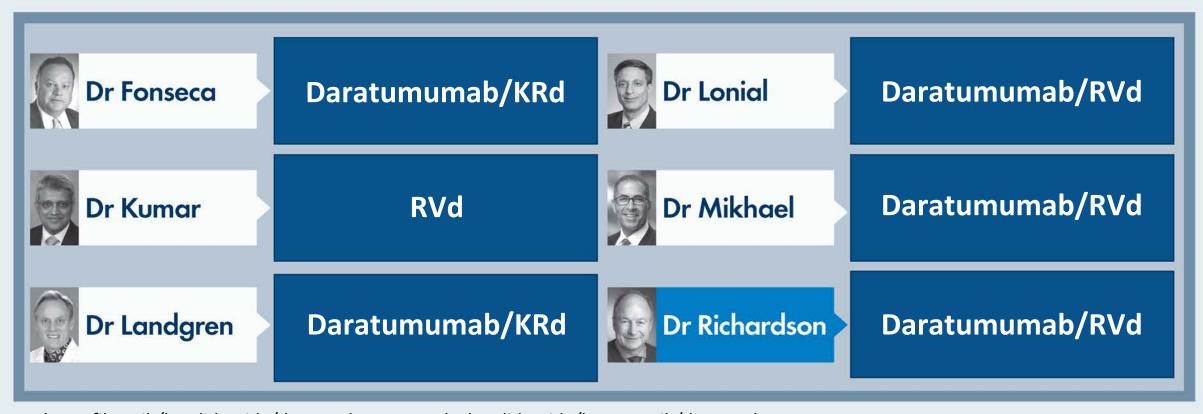
Case Presentation: 71-year-old man with multiple myeloma who develops secondary ALL during maintenance lenalidomide

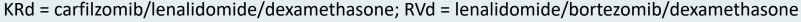
Dr KS Kumar (Trinity, Florida)

Meet The Professor with Dr Richardson

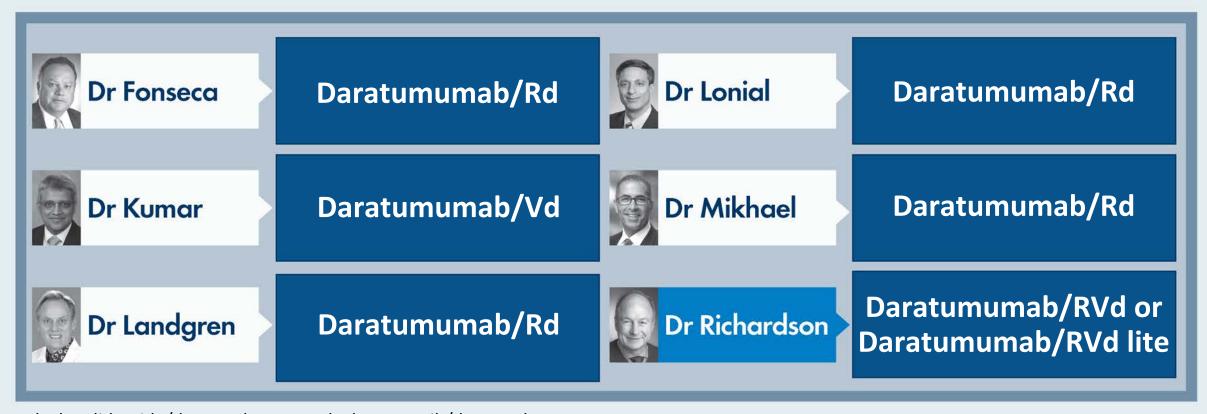
INTRODUCTION

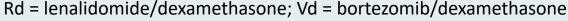
MODULE 1: Case Presentations

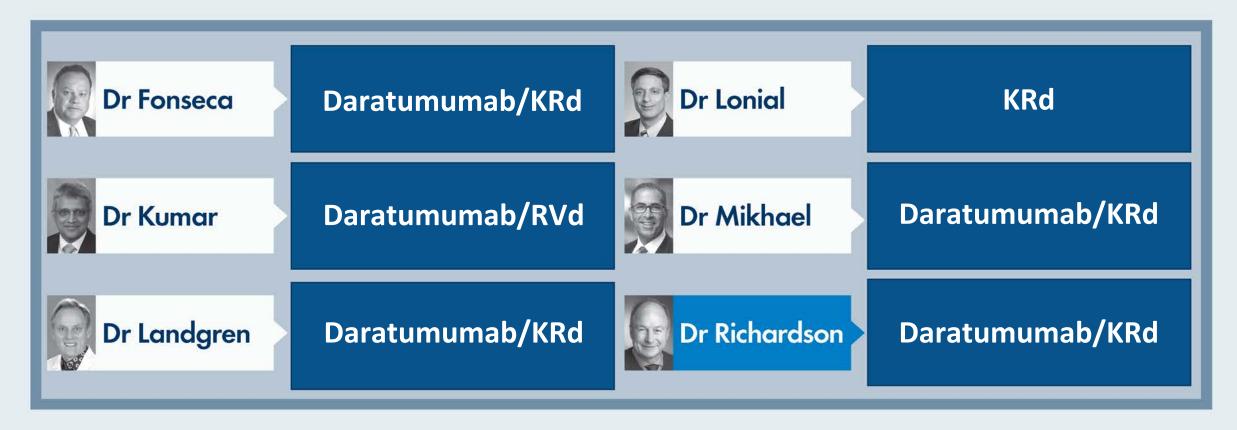

MODULE 2: Faculty Survey

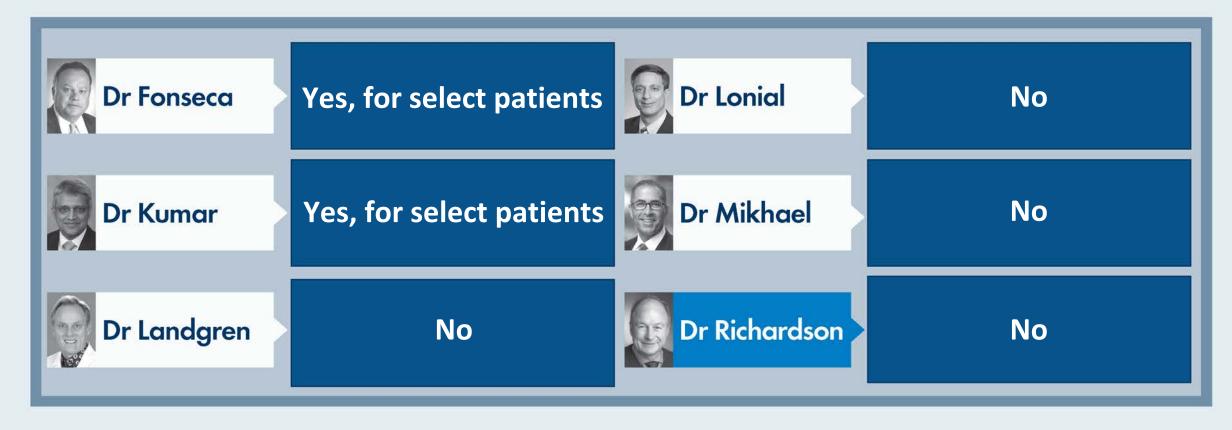

MODULE 3: Journal Club with Dr Richardson

MODULE 4: Appendix of Key Publications


Regulatory and reimbursement issues aside, what is your preferred pretransplant induction regimen for a younger patient with MM and no high-risk features?



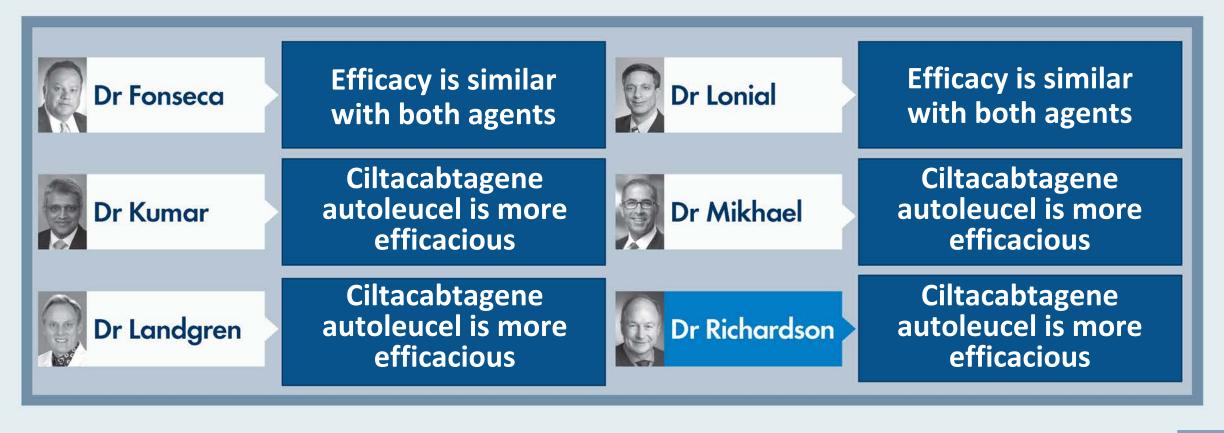

Regulatory and reimbursement issues aside, what is your preferred initial regimen for an <u>80-year-old</u> patient with MM who is transplant ineligible with normal renal function and no high-risk features?



Regulatory and reimbursement issues aside, what would be your preferred induction treatment for a <u>transplant-eligible</u> <u>patient</u> with high-risk (del[17p]) MM?



In general, for a patient with standard-risk MM who is receiving maintenance therapy with lenalidomide after autologous stem cell transplant (ASCT), would you offer to discontinue the lenalidomide if a minimal residual disease (MRD) assessment were negative?



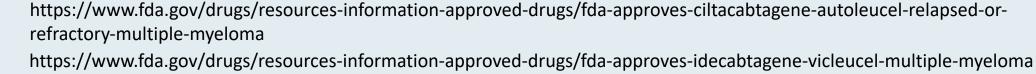
When you administer daratumumab to patients with MM, do you generally use the subcutaneous formulation?

Based on your personal clinical experience and knowledge of available data, how would you compare the efficacy of idecabtagene vicleucel to that of ciltacabtagene autoleucel for patients with R/R MM?

Based on your personal clinical experience and knowledge of available data, how would you compare the tolerability of ciltacabtagene autoleucel to that of idecabtagene vicleucel for patients with R/R MM?

Reimbursement issues aside, what do you currently believe is the optimal point at which CAR T-cell therapy should be administered for MM (ie, at what point would you like to see your patients enter a trial or receive it off protocol)?

Currently, how available is CAR T-cell therapy commercially for the treatment of R/R MM?



FDA Approved CAR T-Cell Therapies for Relapsed or Refractory Multiple Myeloma

February 28, 2022: Ciltacabtagene autoleucel approved for the treatment of relapsed or refractory multiple myeloma in adult patients after 4 or more prior lines of therapy, including a proteasome inhibitor, an immunomodulatory agent and an anti-CD38 monoclonal antibody, based on the CARTITUDE-1 study.

March 26, 2022: Idecabtagene vicleucel approved for the treatment of relapsed or refractory multiple myeloma in adult patients after 4 or more prior lines of therapy, including an immunomodulatory agent, a proteasome inhibitor and an anti-CD38 monoclonal antibody. This is the first FDA-approved cell-based gene therapy for multiple myeloma, based on the KarMMA study.

Key Select Ongoing Studies of BCMA-Directed CAR T-Cell Therapy with Ide-cel and Cilta-cel

Study	Phase	N	Setting	Treatments	
CARTITUDE-4	III	419	Relapsed and lenalidomide- refractory	 Pomalidomide/bortezomib/dexamethasone or daralutamide/pomalidomide/dexamethasone Cilta-cel 	
CARTITUDE-5	III	650	NDMM, with no ASCT planned	 VRd → cilta-cel VRd → lenalidomide/dexamethasone 	
CARTITUDE-6	III	750	NDMM, ASCT eligible	 DVRd → cilta-cel DVRd → k ASCT 	
KarMMa-4	I	13	NDMM, high risk	Ide-cel → lenalidomide maintenance	
KarMMa-2	II	235	RRMM, high risk NDMM	Ide-celIde-cel + lenalidomide	

NDMM = newly diagnosed multiple myeloma; ASCT = autologous stem cell transplant; VRd = bortezomib/lenalidomide/dexamethasone; RRMM = relapsed/refractory multiple myeloma; PI = proteasome inhibitor; IMiD = immunomodulatory drug

Regulatory and reimbursement issues aside and assuming you had access to CAR T-cell therapies and bispecific antibodies, how would you generally sequence these 2 treatments for a patient with multiregimen-relapsed MM who is eligible to receive CAR T-cell therapy?

BCMA x CD3 Bispecific Antibodies: Summary

Therapy	Characteristics	N	Population	Safety	Response
Teclistamab ¹	 ■ Bispecific IV/SC (RP2D: 1500 µg/kg SC) ■ Weekly and every other week in f/u 	157	 At SC cohorts: Median of 5PL 79% triple refractory 38% penta refractory 	 At RP2D: CRS 70% G1-2 Neurotox 1% (G1) Infections 50% 	At RP2D, ORR: 65% with 40% sCR/CR
AMG 701 ²	BiTE modifiedIVWeekly	82	Median of 6PL62% triple refractory	 CRS 55%, G3-4: 9% No ICANS 20% cytopenias 	83% ORR at the top dose level and 50% VGPR
REGN5458 ³	 ■ Bispecific ■ IV ■ Weekly and every other week C4→ 	49	 Median of 5PL 100% triple refractory 57% penta refractory 	 CRS 39%, no G3-4 ICANS 12% Cytopenias 47% and infections 18% 	62.5% at 96 mg and 95% of responders were VGPR. Some CR in lower dose levels
TNB-383B ⁴	 Triple chain anti-BCMA bispecific IV fixed doses Every 3 weeks 	58	Median of 6PL64% triple refractory34% penta refractory	 CRS 45% and no G3-4 No ICANS Cytopenias 21% and infections 14% 	80% (13% CR) at the dose levels 40-60 mg
Elranatamab (PF-3135 ⁵)	■ Bispecific■ SC and weekly■ RP2D: 1000 µg/kg	30	 Median of 8PL 87% triple refractory 23% prior BCMA-based therapy 	CRS 73% and no G3-4ICANS 20%ISR 50%	83% ORR at RP2D

^{1.} Usmani SZ et al. Lancet 2021. 2. Harrison SJ et al. ASH 2020; Abstract 181. 3. Madduri D et al. ASH 2020; Abstract 291.

^{4.} Rodriguez C et al. ASH 2020; Abstract 293.5. Bahlis NJ et al. ASCO 2021; Abstract 8006.

ASCO 2022; Abstract 8007.

Teclistamab, a B-Cell Maturation Antigen (BCMA) x CD3 Bispecific Antibody, in Patients With Relapsed/Refractory Multiple Myeloma (RRMM): Updated Efficacy and Safety Results From MajesTEC-1

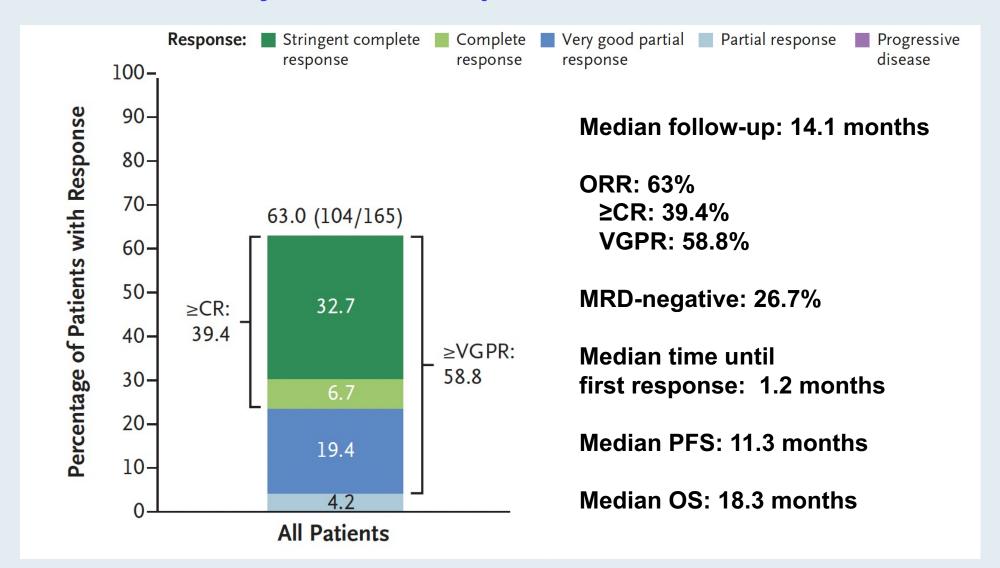
Ajay K Nooka (anooka@emory.edu)¹, Philippe Moreau², Saad Z Usmani³, Alfred L Garfall⁴, Niels WCJ van de Donk⁵, Jesús San-Miguel⁶, Albert Oriol⁷, Ajai Chari⁸, Lionel Karlin⁹, Maria-Victoria Mateos¹⁰, Rakesh Popat¹¹, Joaquín Martínez-López¹², Surbhi Sidana¹³, Danielle Trancucci¹⁴, Raluca Verona¹⁵, Suzette Girgis¹⁵, Clarissa Uhlar¹⁵, Tara Stephenson¹⁵, Arnob Banerjee¹⁵, Amrita Krishnan¹⁶

¹Winship Cancer Institute, Emory University, Atlanta, GA, USA: ³University Hospital Hôtel-Dieu, Nantes, France; ³Memorial Sloan Kettering Cancer Cent NY, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; ³Amsterdam University Medical-Universitie if Amsterdam, Cancer Center Amsterdam, Netherlands; ³University of Navarra, Pamplona, Spain; ³Hospital Germans Trias I Pu Spain; *Mount Sinal School of Medicine, New York, NY, USA; *Centre Hospitalier Lyon Sud. France; **University Hospital of Salamanca/BSA/CIC, Salar 'University College London Hospitals, NHS Foundation Trust, London, UK; **Plematologial Hospital Ca Octubre, Madrid, Spain; **YStanford Universit Medicine, Stanford, CA, USA; **Janssen Research & Development, Spring House, PA, USA; **Gity Comprehensive Cancer Center, Duarte, CA, USA

Presented at the 2022 American Society of Clinical Oncology (ASCO) Annual Meeting; June 3-7, 2022; Chicago, IL

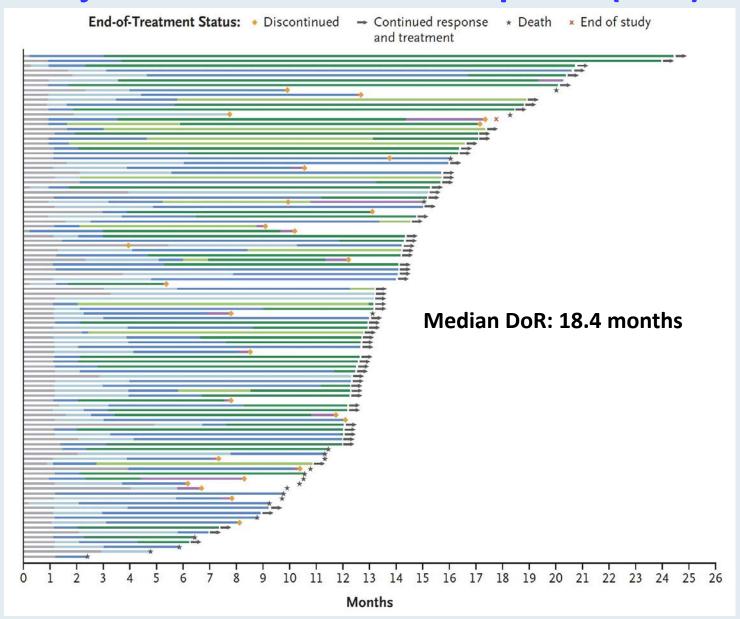
N Engl J Med 2022 June 5; [Online ahead of print].

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Teclistamab in Relapsed or Refractory Multiple Myeloma

P. Moreau, A.L. Garfall, N.W.C.J. van de Donk, H. Nahi, J.F. San-Miguel, A. Oriol, A.K. Nooka, T. Martin, L. Rosinol, A. Chari, L. Karlin, L. Benboubker, M.-V. Mateos, N. Bahlis, R. Popat, B. Besemer, J. Martínez-López, S. Sidana, M. Delforge, L. Pei, D. Trancucci, R. Verona, S. Girgis, S.X.W. Lin, Y. Olyslager, M. Jaffe, C. Uhlar, T. Stephenson, R. Van Rampelbergh, A. Banerjee, J.D. Goldberg, R. Kobos, A. Krishnan, and S.Z. Usmani



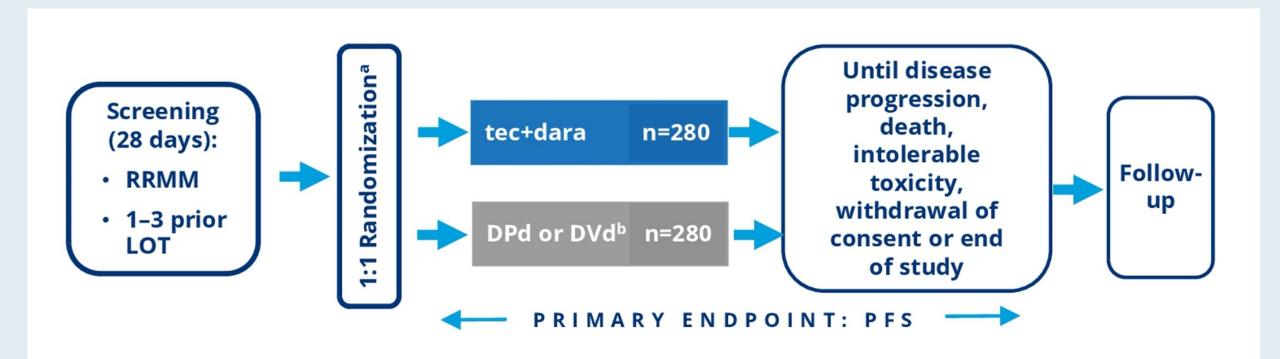
MajesTEC-1: Response and Survival

MajesTEC-1: Duration of Response (DoR)

MajesTEC-1: Adverse Events

Event	Any Grade	Grade 3 or 4		
	no. of patients (%)			
Any adverse event	165 (100)	156 (94.5)		
Hematologic				
Neutropenia	117 (70.9)	106 (64.2)		
Anemia	86 (52.1)	61 (37.0)		
Thrombocytopenia	66 (40.0)	35 (21.2)		
Lymphopenia	57 (34.5)	54 (32.7)		
Leukopenia	29 (17.6)	12 (7.3)		
Nonhematologic				
Diarrhea	47 (28.5)	6 (3.6)		
Fatigue	46 (27.9)	4 (2.4)		
Nausea	45 (27.3)	1 (0.6)		
Injection-site erythema	43 (26.1)	0		

Event	Any Grade	Grade 3 or 4	
	no. of par	tients (%)	
Nonhematologic			
Pyrexia	45 (27.3)	1 (0.6)	
Headache	39 (23.6)	1 (0.6)	
Arthralgia	36 (21.8)	1 (0.6)	
Constipation	34 (20.6)	0	
Cough	33 (20.0)	0	
Pneumonia	30 (18.2)	21 (12.7)	
Covid-19	29 (17.6)	20 (12.1)	
Bone pain	29 (17.6)	6 (3.6)	
Back pain	27 (16.4)	4 (2.4)	
Cytokine release syndrome†	119 (72.1)	1 (0.6)	
Neurotoxic event	24 (14.5)	1 (0.6)	


MajesTEC-1: Neurotoxic Events

Parameter	N=165
Neurotoxic event ^a , n (%)	24 (14.5)
Headache	14 (8.5)
ICANS ^b	5 (3.0)
Dysgeusia	2 (1.2)
Lethargy	2 (1.2)
Tremor	2 (1.2)
Grade ≥3 events, n (%)	1 (0.6)
Time to onset, median (range) days	3.0 (1-13)
Duration, median (range) days	7.0 (1-291)
Received supportive measures for neurotoxic events ^c , n (%) Tocilizumab Dexamethasone Levetiracetam	14 (8.5) 3 (1.8) 3 (1.8) 2 (1.2)
Gabapentin	1 (0.6)

- The overall incidence of neurotoxic events was low
- All neurotoxic events were grade 1/2, except for 1 grade 4 seizure (in the context of bacterial meningitis during cycle 7)
- 5 patients (3.0%) had a total of 9 ICANS events
 - 7 events were concurrent with CRS
 - All ICANS events were grade 1/2 and fully resolved
- There were no treatment discontinuations or dose reductions due to neurotoxic events, including ICANS

MajesTEC-3 Ongoing Phase III Study Design

Key Eligibility Criteria:

- Received 1-3 prior lines of therapy, including PI and lenalidomide
 - Patients with only 1 prior line of therpay must be lenalidomide-refractory
- No prior BCMA-directed therapy and/or not refractory to anti-CD38 mAb

Initial Safety Results for MagnetisMM-3: A Phase 2
Trial of Elranatamab, a B-Cell Maturation Antigen
(BCMA)-CD3 Bispecific Antibody, in Patients (pts) with
Relapsed/Refractory (R/R) Multiple Myeloma (MM)

Lesokhin AM et al.

ASCO 2022; Abstract 8006.

Novel Non-BCMA Bispecific Antibodies: Summary

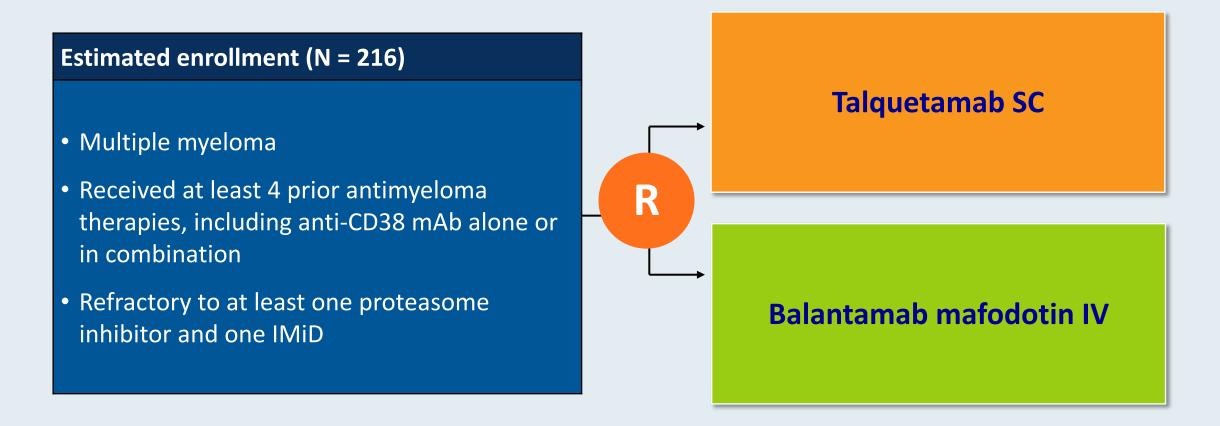
Therapy	Characteristics	N	Population	Safety	Response
Talquetamab ¹	 G protein-coupled receptor family C group 5 member D (GPRC5D) x CD3 bispecific antibody IV or SC admin 	184, 30 at RP2D (405 μg/kg)	 Median of 6PL (6PL at RP2D) 76% triple refractory 28% penta refractory 	 Infections in 37% of SC and RP2D patients; G3-4 3% at RP2D Neurotoxicity in 4 SC patients; 2 (7%) at RP2D CRS 73%, G3-4 2% at RP2D 	At RP2D: 70% ORR with ≥ VGPR 60%
Cevostamab (BFCR4350A) ²	FcRH5/CD3 bispecificT-cell engagerQ3W IV infusions	53	 Median of 6PL 72% triple refractory 45% penta refractory 	 Thrombocytopenia 32%, G3-4 25% CRS 76%, G3-4 2% Neurotoxicity 28%, no G3-4 	ORR in ≥3.6/20-mg cohorts: 53% (18/34) in all pts 63% (5/8) in pts with prior anti-BCMA

FDA Grants Breakthrough Therapy Designation to Talquetamab for Relapsed/Refractory Multiple Myeloma Press Release: June 29, 2022

"Talquetamab was granted breakthrough therapy designation by the FDA for the treatment of patients with relapsed/refractory multiple myeloma who were treated with a minimum of 4 previous lines of therapy, including a proteasome inhibitor, an immunomodulatory drug, and an anti-CD38 antibody.

The designation is supported by findings from the phase 1/2 MonumenTAL-1 trial (NCT03399799; NCT04634552), which assessed the agent in patients with relapsed/refractory disease. Data from the study, which were presented at the 2022 American Society of Clinical Oncology Annual Meeting, indicated that patients who were treated with 405 μ g/kg of talquetamab (n = 30) experienced an overall response rate (ORR) of 70.0%, including a very good partial response (VGPR) rate or better of 56.7%. Additionally, the ORR among patients treated at the 800 μ g/kg dose was 63.6%, including a VGPR or better of 56.8%. Moreover, the stringent complete response (CR) rates were 23.3% and 9.1%, CR rates were 6.7% and 11.4%, the VGPR rates were 26.7% and 36.4%, and PR rates were 13.3% and 6.8% in each respective arm.

Talquetamab is an off-the-shelf T-cell—redirecting bispecific antibody that targets GPRC5D on myeloma cells and CD3 on T cells."

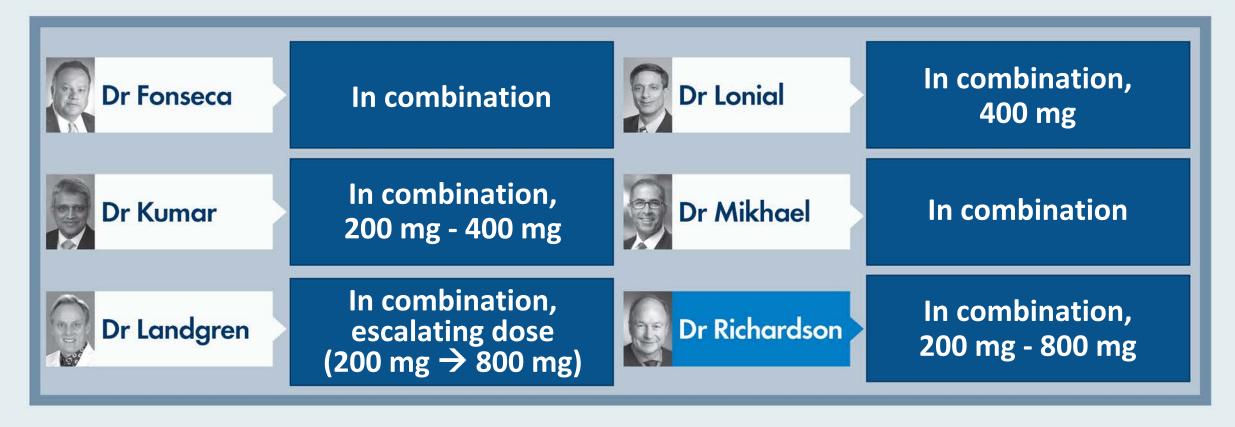

Efficacy and Safety of Talquetamab, a G Protein-Coupled Receptor Family C Group 5 Member D x CD3 Bispecific Antibody, in Patients With Relapsed/ Refractory Multiple Myeloma: Updated Results From MonumenTAL-1

Monique C Minnema¹, Amrita Krishnan², Jesus G. Berdeja³, Albert Oriol⁴, Niels WCJ van de Donk⁵, Paula Rodríguez-Otero⁶, Daniel Morillo⁷, María-Victoria Mateos⁸, Luciano J. Costa⁹, Jo Caers¹⁰, Deeksha Vishwamitra¹¹, Joanne Ma¹¹, Shiyi Yang¹¹, Brandi W Hilder¹¹, Jaszianne Tolbert¹¹, Jenna D Goldberg¹², Ajai Chari¹³

ASCO 2022; Abstract 8015.

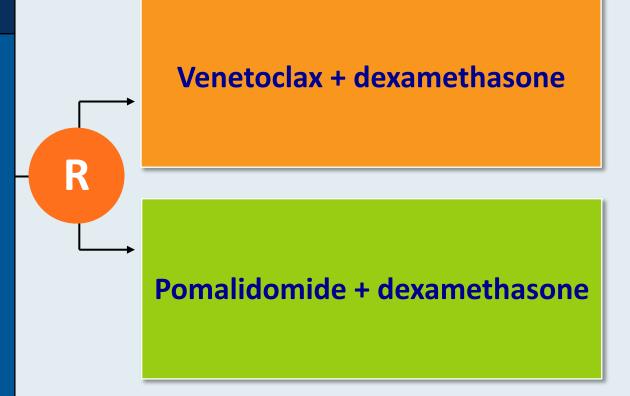

MonumenTAL-5 Phase III Study Design

Primary endpoint: Overall response rate, progression-free survival



Regulatory and reimbursement issues aside, at what point, if any, would you attempt to access venetoclax for a patient with t(11;14) MM?

Regulatory and reimbursement issues aside, which method do you consider optimal for administering venetoclax to a patient with MM?

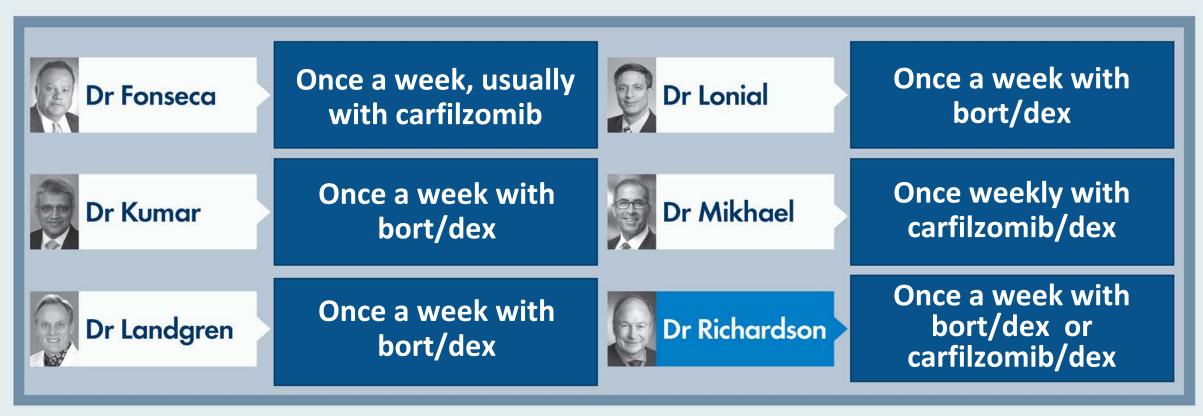


Ongoing Phase III M13-494 Study Design

Estimated enrollment (N = 254)

- Multiple myeloma
- Positive for t(11;14)
- Received at least 2 prior lines of antimyeloma therapy, including anti-CD38 mAb alone or in combination
- Received at least 2 consecutive cycles of lenalidomide and have relapsed/refractory disease
- Received at least 2 consecutive cycles of a proteasome inhibitor

Primary endpoint: Progression-free survival



For a patient with R/R MM who is ineligible for CAR T-cell therapy because of age or performance status and whose disease is refractory to anti-CD38 antibodies, proteasome inhibitors and immunomodulatory drugs (IMiDs), how do you generally sequence belantamab mafodotin and selinexor?

In general, how would you prefer to administer selinexor in the treatment of R/R MM?

Am J Hematol 2022 March 1;97(3):E83-6.

Efficacy and tolerability of once-weekly selinexor, bortezomib, and dexamethasone in comparison with standard twice-weekly bortezomib and dexamethasone in previously treated multiple myeloma with renal impairment: Subgroup analysis from the **BOSTON** study

Sosana Delimpasi¹, Maria Victoria Mateos², Holger W. Auner³, Maria Gavriatopoulou⁴, Meletios A. Dimopoulos⁵, Hang Quach⁶, Halyna Pylypenko⁷, Roman Hájek⁸, Xavier Leleu⁹, Tuphan Kanti Dolai¹⁰, Dinesh Kumar Sinha¹¹, Christopher P. Venner¹², Reuben Benjamin¹³, Mamta Krishnan Garg¹⁴, Vadim Doronin¹⁵, Yair Levy¹⁶, Philippe Moreau¹⁷, Yi Chai¹⁸, Melina Arazy¹⁸, Jatin Shah¹⁸, Sharon Shacham¹⁸, Michael G. Kauffman¹⁸, Paul G. Richardson¹⁹, Sebastian Grosicki²⁰

Expert Review of Hematology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ierr20

Selinexor for the treatment of patients with previously treated multiple myeloma

Clifton C. Mo, Sundar Jagannath, Ajai Chari, Ajay K. Nooka, Sagar Lonial, David Siegel, Noa Biran, Cristina Gasparetto, Nizar J. Bahlis & Paul Richardson

RESEARCH ARTICLE

Open Access

Quality of life analyses in patients with multiple myeloma: results from the Selinexor (KPT-330) Treatment of Refractory Myeloma (STORM) phase 2b study

Gabriel Tremblay^{1*}, Patrick Daniele¹, Janis Breeze¹, Lingling Li², Jatin Shah², Sharon Shacham², Michael Kauffman², Monika Engelhardt³, Ajaj Chari⁴, Ajay Nooka⁵, Dan Vogl⁶, Maria Gavriatopoulou⁷, Meletios-Athanasios Dimopoulos⁸, Paul Richardson⁹, Noa Biran¹⁰, David Siegel¹⁰, Philip Vlummens¹¹, Chantal Doyen¹², Thierry Facon¹³, Mohamad Mohty¹⁴, Nathalie Meuleman¹⁵, Moshe Levy¹⁶, Luciano Costa¹⁷, James E. Hoffman¹⁸, Michel Delforge¹⁹, David Kaminetzky²⁰, Katja Weisel²¹, Marc Raab²², David Dingli²³, Sascha Tuchman²⁴, Frenzel Laurent²⁵, Ravi Vij²⁶, Gary Schiller²⁷, Philippe Moreau²⁸, Joshua Richter²⁹, Martin Schreder³⁰, Klaus Podar³¹, Terri Parker³², Robert Frank Cornell³³, Karlin Lionel³⁴, Sylvain Choquet³⁵ and Jagannath Sundar²⁹

Meet The Professor with Dr Richardson

INTRODUCTION

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Richardson

MODULE 4: Appendix of Key Publications

ASH 2022 Abstracts

Multivariable Analyses of Prognostic Factors for Progression-Free Survival (PFS) and Complete Response (CR) with Lenalidomide, Bortezomib, and Dexamethasone (RVd) Alone versus RVd plus Autologous Stem Cell Transplantation (ASCT) in Patients (Pts) with Newly Diagnosed Multiple Myeloma (NDMM) in the DETERMINATION Phase 3 Trial

Hani Hassoun, MD et al.

ASH 2022; Abstract 2110.

A Phase II Study of Once Weekly Carfilzomib, Lenalidomide, Dexamethasone, and Isatuximab in Newly Diagnosed, Transplant-Eligible Multiple Myeloma (the SKylaRk Trial)

Elizabeth K O'Donnell, MD et al. ASH 2022; Abstract 3239.

Daratumumab plus Lenalidomide, Bortezomib, and Dexamethasone (D-RVd) in Transplant-Eligible Newly Diagnosed Multiple Myeloma (NDMM) Patients (Pts): Final Analysis of GRIFFIN Among Clinically Relevant Subgroups

Ajai Chari, MD et al. ASH 2022; Abstract 3238.

Analysis of Transplant-Eligible Patients (Pts) Who Received Frontline Daratumumab (DARA)-Based Quadruplet Therapy for the Treatment of Newly Diagnosed Multiple Myeloma (NDMM) with High-Risk Cytogenetic Abnormalities (HRCA) in the GRIFFIN and MASTER Studies

Natalie Callander, MD et al. ASH 2022; Abstract 4557.

Health-Related Quality of Life in Transplant-Eligible Patients with Newly Diagnosed Multiple Myeloma Treated with Daratumumab, Lenalidomide, Bortezomib, and Dexamethasone: Patient Reported Outcomes from GRIFFIN

Rebecca Silbermann, MD et al. ASH 2022; Abstract 473.

An End-of-Study Subgroup Analysis of Black Patients from the Phase 2 GRIFFIN Study of Daratumumab (DARA) plus Lenalidomide, Bortezomib, and Dexamethasone (RVd) in Patients with Transplant-Eligible Newly Diagnosed Multiple Myeloma (NDMM)

Ajay K Nooka, MD et al. ASH 2022; Abstract 4560.

Isatuximab plus Pomalidomide/Low-Dose Dexamethasone versus Pomalidomide/Low-Dose Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma (ICARIA-MM): Characterization of Subsequent Antimyeloma Therapies

Paul G Richardson, MD et al.

ASH 2022; Abstract 247.

A Phase I/II Study of Twice Weekly Ixazomib plus Pomalidomide and Dexamethasone in Relapsed and Refractory Multiple Myeloma

Omar Nadeem, MD et al.

ASH 2022; Abstract 4570.

Mezigdomide (CC-92480), a Potent, Novel Cereblon E3 Ligase Modulator (CELMoD), Combined with Dexamethasone (DEX) in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Preliminary Results from the Dose-Expansion Phase of the CC-92480-MM-001 Trial

Paul G Richardson, MD et al. ASH 2022; Abstract 568.

Single-Agent Belantamab Mafodotin in Patients with Relapsed or Refractory Multiple Myeloma: Final Analysis of the DREAMM-2 Trial

Ajay K Nooka, MD et al. ASH 2022; Abstract 3246.

Targeting Autophagy to Overcome Resistance to Immunogenic Chemotherapy in High-Risk Multiple Myeloma

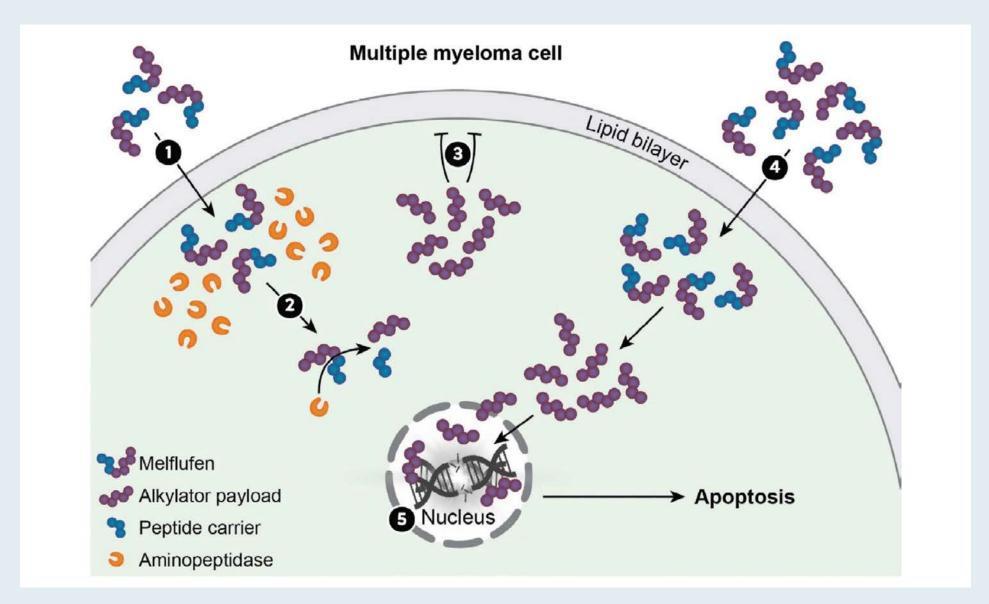
Annamaria Gulla, MD et al.

ASH 2022; Abstract 3165.

Clinical Effectiveness and Long-Term Serologic Responses of COVID-19 Vaccination in Patients with Multiple Myeloma and Waldenström Macroglobulinemia

Andrew R Branagan, MD et al.

ASH 2022; Abstract 4535.


Monograph

Melphalan flufenamide for relapsed/ refractory multiple myeloma

Omar Nadeem¹, Maria-Victoria Mateos², Yvonne A. Efebera³, Agne Paner⁴, Alessandra Larocca⁵, Paula Rodríguez-Otero⁶, Xavier Leleu⁻ and Paul G. Richardson¹

Mechanism of Action of Melflufen

2022 April;15(4):371-82.

Expert Review of Clinical Pharmacology

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ierj20

Melflufen for the treatment of multiple myeloma

Enrique M. Ocio, Omar Nadeem, Fredrik Schjesvold, Francesca Gay, Cyrille Touzeau, Meletios A. Dimopoulos, Paul G. Richardson & Maria-Victoria Mateos

Blood Cancer Journal 2022 March 21;12(3):45.

www.nature.com/bcj

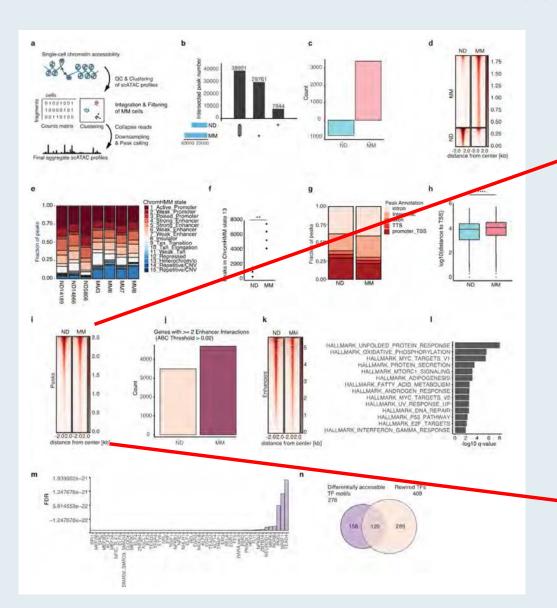
REVIEW ARTICLE OPEN

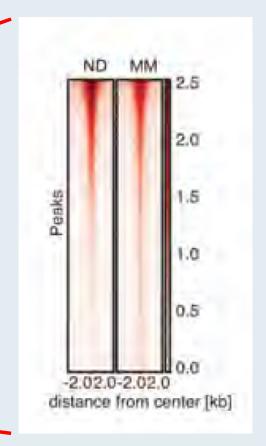
Extramedullary disease in multiple myeloma: a systematic literature review

Joan Bladé (1) Meral Beksac², Jo Caers (1) Artur Jurczyszyn (1) Marie von Lilienfeld-Toal (1) Philippe Moreau⁶, Leo Rasche (1) Laura Rosiñol (1) Saad Z. Usmani⁸, Elena Zamagni⁹ and Paul Richardson (1) 10

Definitions of Plasma Cell Neoplasms

Plasma cell neoplasm	Definition
Extramedullary disease	An aggressive form of multiple myeloma characterized by the presence of soft-tissue plasmacytomas that result from hematogenous spread
Paraskeletal plasmacytoma	A form of multiple myeloma characterized by the presence of soft-tissue plasmacytomas that occur due to direct growth from skeletal tumors following cortical bone disruption
Solitary plasmacytoma	A single mass of clonal plasma cells (bone or extramedullary) with no or minimal BM plasmacytosis and with no other symptoms than those derived from the primary lesion
Plasma cell leukemia	A rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells; diagnosis is based upon the percentage (\geq 20%) and absolute number (\geq 2 × 10 ⁹ /L) of plasma cells in peripheral blood


Nat Cell Biol. 2021 November; 23(11): 1199-1211.


Dynamic transcriptional reprogramming leads to immunotherapeutic vulnerabilities in myeloma

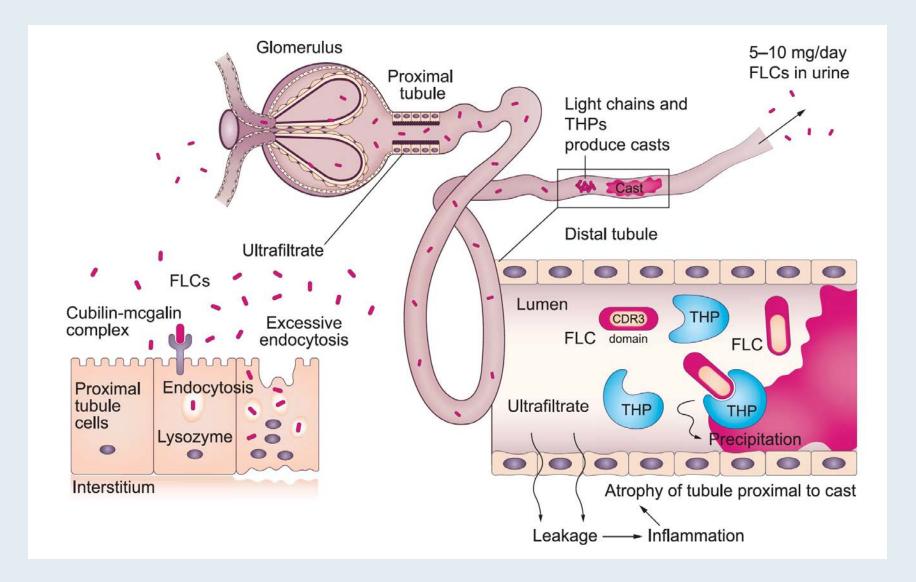
Julia Frede^{1,2,3}, Praveen Anand^{1,2,3}, Noori Sotudeh^{1,2,3}, Ricardo A. Pinto^{3,4,5}, Monica S. Nair¹, Hannah Stuart¹, Andrew J. Yee^{2,6}, Tushara Vijaykumar¹, Johannes M. Waldschmidt^{1,2,3}, Sayalee Potdar⁷, Jake A. Kloeber¹, Antonis Kokkalis^{1,2,3}, Valeriya Dimitrova^{2,3,7}, Mason Mann⁶, Jacob P. Laubach^{1,2}, Paul G. Richardson^{1,2}, Kenneth C. Anderson^{1,2}, Noopur S. Raje^{2,6}, Birgit Knoechel^{2,3,7,8,*}, Jens G. Lohr^{1,2,3,8,*}

Annotation of Peaks from Aggregated Single-Cell ATAC Data

Heatmap showing accessibility of enhancers (n = 15,748) associated with the top multi-enhancer genes, sorted by the normal donor (ND) sample

Frede J et al. Nat Cell Biol 2021;23(11):1199-211.

Therapeutic Advances in Hematology


An overview of treatment options for patients with relapsed/refractory multiple myeloma and renal impairment

Meletios A. Dimopoulos, Joseph Mikhael, Evangelos Terpos, Xavier Leleu, Philippe Moreau, Joan Bladé, Jin Seok Kim, Keith Stockerl-Goldstein and Paul G. Richardson

Ther Adv Hematol 2022. Vol. 13: 1–18

Pathology of Monoclonal Free Light Chain-Mediated Proximal Tubule Damage and Cast Nephropathy

Tuazon et al. Blood Cancer Journal (2021)11:23

Blood Cancer Journal

CURRENT TREATMENT ALGORITHM

Open Access

A clinical perspective on plasma cell leukemia; current status and future directions

Sherilyn A. Tuazon (1)^{1,2}, Leona A. Holmberg 1,2, Omar Nadeem 3,4 and Paul G. Richardson (1)^{3,4}

Seminars in Oncology 49 (2022) 19-26

Contents lists available at ScienceDirect

Seminars in Oncology

journal homepage: www.elsevier.com/locate/seminoncol

The emerging importance and evolving understanding of clonal hematopoiesis in multiple myeloma

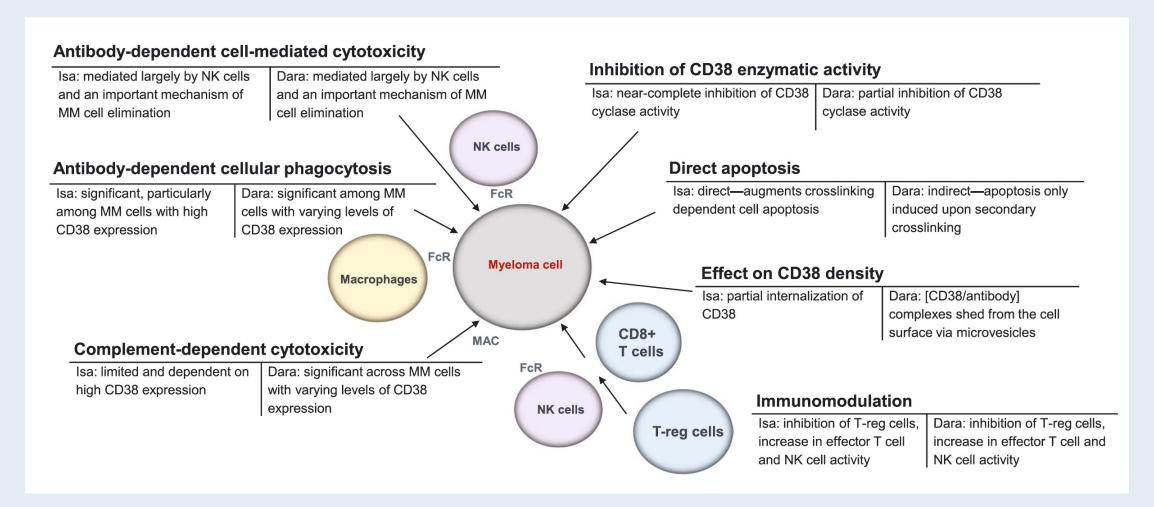
Christin B. DeStefano a,b,*, Steven J. Gibson C, Adam S. Sperling D, Paul G. Richardson C, Irene Ghobrial C, Clifton C. Mo d,*

Clonal Hematopoiesis

- Over time normal cells accumulate somatic mutations
- Most of these mutations do not confer an advantage and consequently confer no selection advantage
- Rarely an acquired mutation confers an inherent growth advantage and if acquired in a stem cell, the stem cell with the mutation and its progeny expands over time
- That this can occur in diverse tissues has become apparent
- If this acquired mutation with its growth advantage occurs in a hematopoietic stem cell, "clonal hematopoiesis" may occur, and one may find that a substantial fraction of mature blood cells harbors this mutation
- Genes involved in epigenetic regulation (DNMT3A, TET2, ASXL1) are found in most cases of mutation-driven clonal hematopoiesis
- That they represent mutations acquired over time is supported by the fact that these mutations are rare in younger individuals but can be found in as many as 10-20% of individuals >70 years old
- Unlike established cancers where many mutations can be found in one cell, the cells harboring the mutations "driving" clonal hematopoiesis have only a single driver gene mutated
- The term clonal hematopoiesis of indeterminate potential (CHIP) has been coined to describe a clinical entity characterized by the presence of cancer-associated clonal muta-

- tion in at least 4% of nucleated blood cells of individuals without an obvious cancer
- Risk factors for CHIP in healthy adults and patients with non-hematologic cancers include age, smoking, and receipt of chemotherapy, radiotherapy, or radioactive iodine
- Studies have shown that CHIP is associated with an increased risk of developing blood cancer confirming CHIP as a pre-malignant state
- The rate of progression to malignancy for individuals with CHIP is 0.5 to 1% per year with size of clone, number of mutations and number of genes mutated having an impact
- CHIP has also been associated with an increase in the risk of all-cause mortality, with amplification of innate immunity implicated as a possible factor
- Progression to cancer also likely occurs in other mitotically active tissues if their stem cells acquire such mutations
- In analyzing a blood sample, the cells harboring the mutation are mixed in with other cells that do not have the abnormal sequence ("variant allele"). By dividing the fraction of sequences with the variant (abnormal) sequence by the total number of variant and wild type sequences one can generate a value referred to as the variant allele frequency (VAF) that gives a crude estimate of the percent of cells in circulation that have arisen from the single clone that acquired the mutation.
- CHIP is characterized by somatic mutations with a VAF ≥0.02 in genes related to hematologic malignancies in patients with absence of cytopenia. The limit of 0.02 has been arbitratily selected

Annals of Hematology (2022) 101:2123-2137


REVIEW ARTICLE

Anti-CD38 antibody therapy for patients with relapsed/refractory multiple myeloma: differential mechanisms of action and recent clinical trial outcomes

Xavier Leleu¹·Thomas Martin²·Katja Weisel³·Fredrik Schjesvold⁴·Shinsuke Iida⁵·Fabio Malavasi⁶·Salomon Manier⁷·Chang-Ki Min⁸·Enrique M. Ocio⁹·Charlotte Pawlyn¹⁰·Aurore Perrot¹¹·Hang Quach¹²·Joshua Richter¹³·Ivan Spicka¹⁴·Kwee Yong¹⁵·Paul G. Richardson¹⁶

Mechanisms of Action of the Anti-CD38 Monoclonal Antibodies Isatuximab and Daratumumab

ASCO 2022; Abstract 8011.

Daratumumab (DARA) +
Lenalidomide, Bortezomib, and Dexamethasone
(RVd) in Transplant-eligible Newly Diagnosed
Multiple Myeloma (NDMM): A Post Hoc Analysis
of Sustained Minimal Residual Disease (MRD)
Negativity From GRIFFIN

Cesar Rodriguez,¹ Jonathan L. Kaufman,² Jacob Laubach,³ Douglas W. Sborov,⁴ Brandi Reeves,⁵ Ajai Chari,¹ Rebecca Silbermann,⁶ Luciano J. Costa,⁷ Larry D. Anderson Jr,⁸ Nitya Nathwani,⁹ Nina Shah,¹⁰ Naresh Bumma,¹¹ Andrzej Jakubowiak,¹² Robert Z. Orlowski,¹³ Huiling Pei,¹⁴ Annelore Cortoos,¹⁵ Sharmila Patel,¹⁵ Thomas S. Lin,¹⁵ Paul G. Richardson,³ Peter M. Voorhees¹⁶

¹Icahn School of Medicine at Mount Sinai, New York, NY, USA; ²Winship Cancer Institute, Emory University, Atlanta, GA, USA; ³Dana-Farber Cancer Institute, Boston, MA, USA; ⁴Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; ⁵University of North Carolina – Chapel Hill, Chapel Hill, NC, USA; ⁶Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; ¬University of Alabama at Birmingham, Birmingham, AL, USA; ¬Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; ¬Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ¬Department of Medicine, University of California San Francisco, San Francisco, CA, USA; ¬Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¬Janssen Research & Development, LLC, Titusville, NJ, USA; ¬Sianssen Scientific Affairs, LLC, Horsham, PA, USA; ¬Glevine Cancer Institute, Atrium Health, Charlotte, NC, USA.

https://www.congresshub.com/Oncology/AM20 22/Daratumumab/Rodriguez

Copies of this presentation obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® or the author of this presentation.

Lenalidomide, bortezomib and dexamethasone induction therapy for the treatment of newly diagnosed multiple myeloma: a practical review

Georgia J. McCaughan^{1,2} | Sara Gandolfi^{3,4} | John J. Moore^{1,2} | Paul G. Richardson⁵

Modified Bortezomib, Lenalidomide, Dexamethasone (RVD) Protocols

Protocol name	Cycle length, days	Bortezomib	Lenalidomide	Dexamethasone
RVD classic	21	SC 1.3 mg/m ² Day 1, 4, 8, 11	25 mg Day 1–14	Day 1, 2, 4, 5, 8, 9, 11, 12
RVD lite	35	SC 1.3 mg/m ² Day 1, 8, 15, 22	15 mg Day 1–21	Day 1, 2, 8, 9, 15, 16, 22, 23
RVD premium lite	28	SC 1.3 mg/m ² Day 1, 8, 15, 22 ^a	15–25 mg Day 1–21 ^b	Day 1, 2, 8, 9, 15, 16, 22, 23
RVD ultra lite	28–35	SC 1.3 mg/m ² Day 1, 8, 15	15 mg Day 1–21 ^b	Day 1, 2, 8, 8, 15 and 16

Elotuzumab Plus Pomalidomide and Dexamethasone for Relapsed/Refractory Multiple Myeloma: Final Overall Survival Analysis From the Randomized Phase II ELOQUENT-3 Trial

Meletios A. Dimopoulos, MD¹; Dominik Dytfeld, MD, PhD²; Sebastian Grosicki, MD, PhD³; Philippe Moreau, MD⁴; Naoki Takezako, MD, PhD⁵; Mitsuo Hori, MD, PhD⁶; Xavier Leleu, MD, PhD⁷; Richard LeBlanc, MD⁸; Kenshi Suzuki, MD⁹; Marc S. Raab, MD, PhD¹⁰; Paul G. Richardson, MD¹¹; Mihaela Popa McKiver, MD, PhD¹²; Ying-Ming Jou, PhD¹²; David Yao, MD, PhD¹²; Prianka Das, PharmD¹²; and Jesús San-Miguel, MD, PhD¹³

J Clin Oncol 2022 August 12;[Online ahead of print].

Meet The Professor with Dr Richardson

INTRODUCTION

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Richardson

MODULE 4: Appendix of Key Publications

Selection of Front-Line Therapy for Multiple Myeloma (MM)

IMS 2022; Abstract OAB-057.

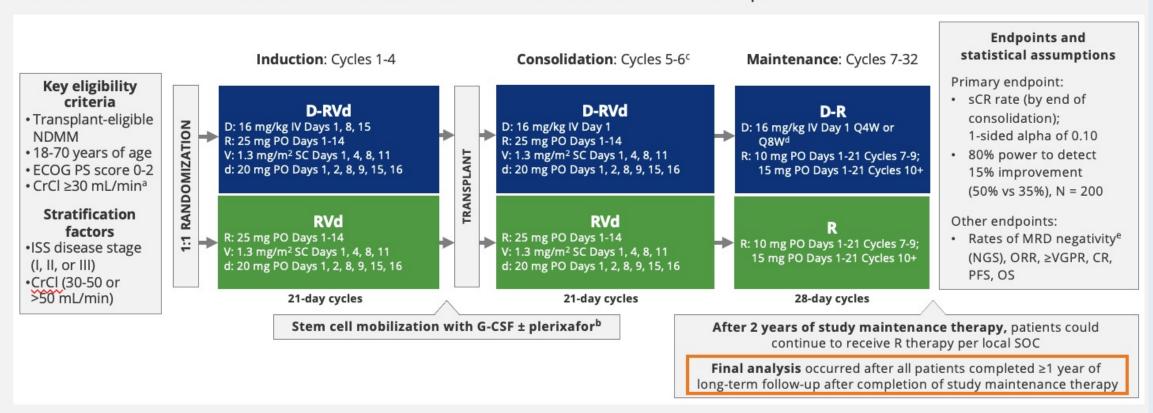
Daratumumab (DARA) + Lenalidomide, Bortezomib, and Dexamethasone (RVd) in Patients With Transplant-eligible Newly Diagnosed Multiple Myeloma (NDMM): Final Analysis of GRIFFIN

Douglas W. Sborov,¹ Jacob Laubach,² Jonathan L. Kaufman,³ Brandi Reeves,⁴ Cesar Rodriguez,⁵ Ajai Chari,⁵ Rebecca Silbermann,⁶ Luciano J. Costa,⁷ Larry D. Anderson Jr.,⁸ Nitya Nathwani,⁹ Nina Shah,¹⁰ Naresh Bumma,¹¹ Sarah A. Holstein,¹² Caitlin Costello,¹³ Andrzej Jakubowiak,¹⁴ Robert Z. Orlowski,¹⁵ Kenneth H. Shain,¹⁶ Andrew J. Cowan,¹⁷ Huiling Pei,¹⁸ Annelore Cortoos,¹⁹ Sharmila Patel,¹⁹ Thomas S. Lin,¹⁹ Paul Richardson,² Saad Z. Usmani,²⁰ Peter M. Voorhees²¹

¹Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA; ²Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ³Winship Cancer Institute, Emory University, Atlanta, GA, USA; ⁴University of North Carolina – Chapel Hill, Chapel Hill, NC, USA; ⁵Icahn School of Medicine at Mount Sinai, New York, NY, USA; ⁶Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA; ⁷University of Alabama at Birmingham, Birmingham, AL, USA; ⁸Department of Internal Medicine, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX, USA; ⁹Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ¹⁰Department of Medicine, University of California San Francisco, San Francisco, CA, USA; ¹¹Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; ¹²University of Nebraska Medical Center, Division of Oncology and Hematology Department of Internal Medicine, Omaha, NE, USA; ¹³Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; ¹⁴University of Chicago Medical Center, Chicago, IL, USA; ¹⁵Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¹⁶Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA; ¹⁷Division of Medical Oncology, University of Washington, Seattle, WA, USA; ¹⁸Janssen Research & Development, LLC, Titusville, NJ, USA; ¹⁹Janssen Scientific Affairs, LLC, Horsham, PA, USA; ²⁰Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²¹Levine Cancer Institute, Atrium Health, Charlotte, NC, USA

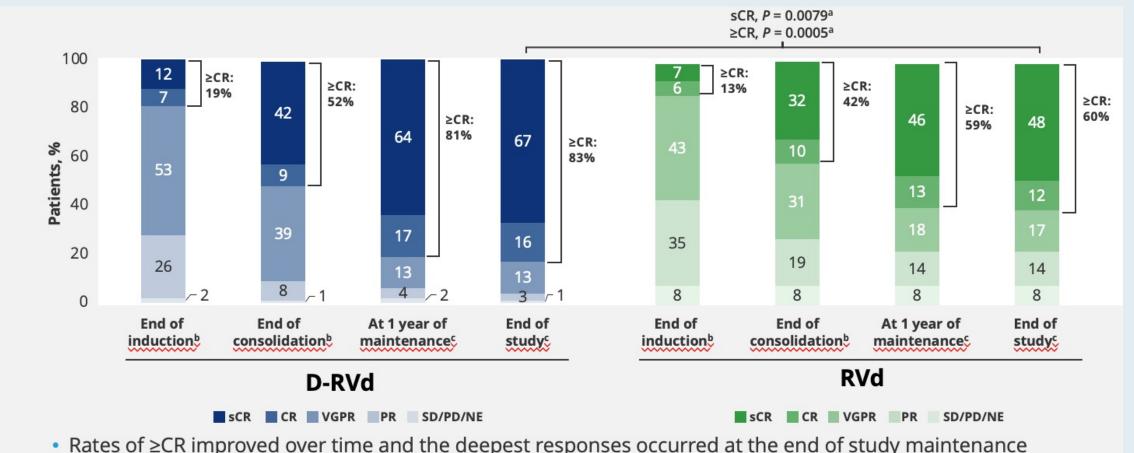
Scan the QR code

https://www.congresshub.com/Oncology/IMS20 22/Daratumumab/Sborov


The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

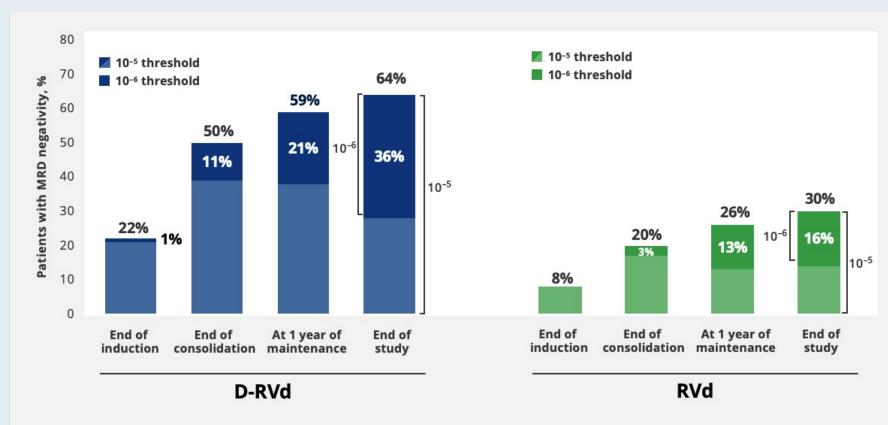
Presented at the 19th International Myeloma Society (IMS) Annual Meeting; August 25-27, 2022; Los Angeles, CA, USA.

GRIFFIN Phase II Study Design


35 sites in the United States with enrollment between December 2016 and April 2018

ECOG PS, Eastern Cooperative Oncology Group performance status; CrCl, creatinine clearance; IV, intravenous; PO, oral; SC, subcutaneous; G-CSF, granulocyte colony-stimulating factor; D-R, daratumumab plus lenalidomide; Q4W, every 4 weeks; Q8W, every 8 weeks; NGS, next-generation sequencing; ORR, overall response rate; VGPR, very good partial response; CR, complete response; PFS, progression-free survival; PFS2, PFS on next subsequent line of therapy; OS, overall survival. ^aLenalidomide doseadjustments were made for patients with CrCl ≤50 mL/min. ^bCyclophosphamide-based mobilization was permitted if unsuccessful. ^cConsolidation was initiated 60 to 100 days post-transplant. ^bCrotocol amendment 2 allowed for the option to dose DARA Q4W based on pharmacokinetic results from study SMM2001 (ClinicalTrials.gov Identifier: NCT02316106). ^cTo measure MRD negativity at a minimum threshold of 10-5, bone marrow aspirates were collected at first evidence of suspected CR or sCR (including patients with ≥VGPR and suspected DARA interference), after induction but before stem cell collection, at the post-transplant consolidation disease evaluation, and at 12 months and 24 months (±3 weeks) of maintenance therapy.

GRIFFIN Final Analysis: Response Rates over Time



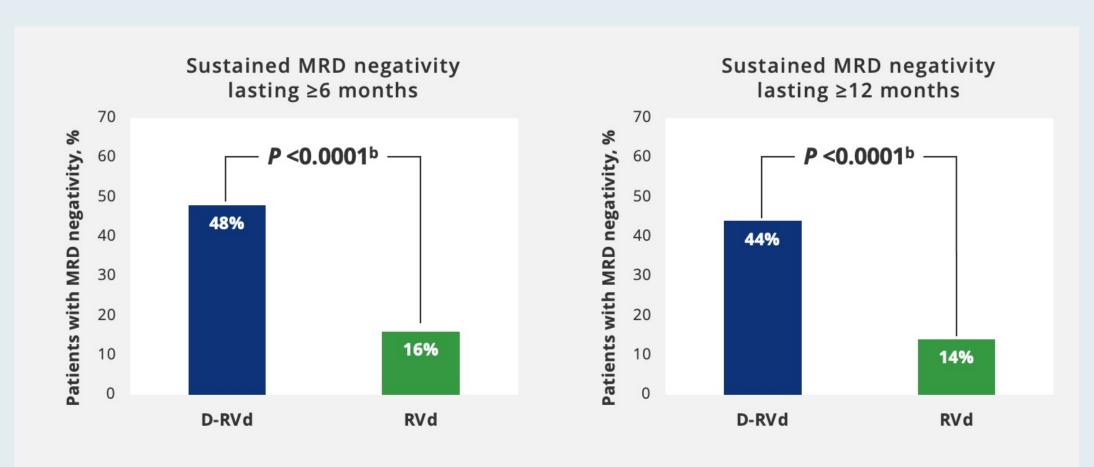
- Rates of ≥CR improved over time and the deepest responses occurred at the end of study maintenance
- At all timepoints, response rates for D-RVd were consistently higher versus RVd

PR, partial response; SD/PD/NE, stable disease/progressive disease/not evaluable. a P value was calculated using the Cochran-Mantel-Haenszel chi-squre test. Response rates are from the primary analysis cutoff (median follow-up: 13.5 months), and the response-evaluable population included 196 patients (D-RVd, n = 97). Response rates for the maintenance phase were evaluated at the time of final analysis (median follow-up: 49.6 months), and the response-evaluable population included 198 patients (D-RVd, n = 100; RVd, n = 98).

GRIFFIN Final Analysis: Minimum Residual Disease (MRD)Negativity Rates over Time

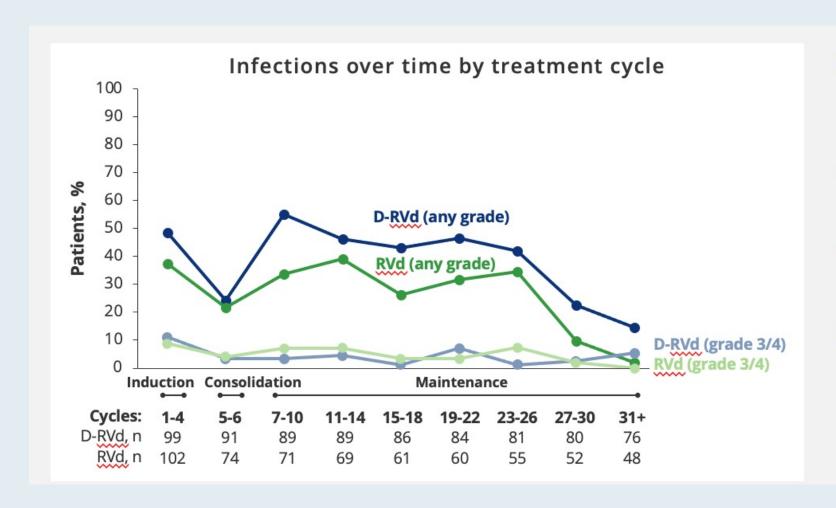
MRD-negative (10⁻⁵) conversion rate

 14% (15/104) of D-RVd and 10% (10/103) of RVd patients converted from MRD positive at the end of consolidation to MRD negative by the end of 2 years of study maintenance therapy


- MRD-negativity rates improved over time and were consistently higher for D-RVd versus RVd
- Rates of MRD negativity continued to deepen throughout the study maintenance period

MRD status is based on the assessment of bone marrow aspirates by NGS in accordance with International Myeloma Working Group criteria. Bone marrow aspirates were assessed at baseline, at first evidence of suspected CR or sCR (including patients with VGPR or better and suspected DARA interference), at the end of induction and consolidation, and after 1 and 2 years of maintenance, regardless of response.

MRD-negativity rates for all time points were evaluated at the time of final analysis (median follow-up: 49.6 months), and MRD-negativity rates were among the ITT population (D-RVd, n = 104; RVd, n = 103).


GRIFFIN Final Analysis: Rates of Sustained MRD Negativity (10⁻⁵)

^aThe threshold of MRD negativity was defined as 1 tumor cell per 10⁵ white cells. MRD status is based on the assessment of bone marrow aspirates by NGS in accordance with International Myeloma Working Group criteria. Median follow-up was 49.6 months, and MRD-negativity rates are among the ITT population (D-RVd, n = 104; RVd, n = 103). Bone marrow aspirates were assessed at baseline, at first evidence of suspected CR or sCR (including patients with VGPR or better and suspected DARA interference), at the end of induction and consolidation, and after 1 and 2 years of maintenance, regardless of response. ^bP values were calculated using the Fisher's exact test.

GRIFFIN Final Analysis: Summary of Infections

- The highest incidence of infections occurred in earlier cycles of treatment and maintenance therapy
- The most common infection was upper respiratory tract infection in both groups
- COVID-19 infections occurred in 5 and 2 patients in the D-RVd and RVd groups, respectively
- Rate of infections leading to treatment discontinuation were similar between groups (D-RVd, 2%; RVd, 3%)

Daratumumab plus lenalidomide, bortezomib and dexamethasone in newly diagnosed multiple myeloma: Analysis of vascular thrombotic events in the GRIFFIN study

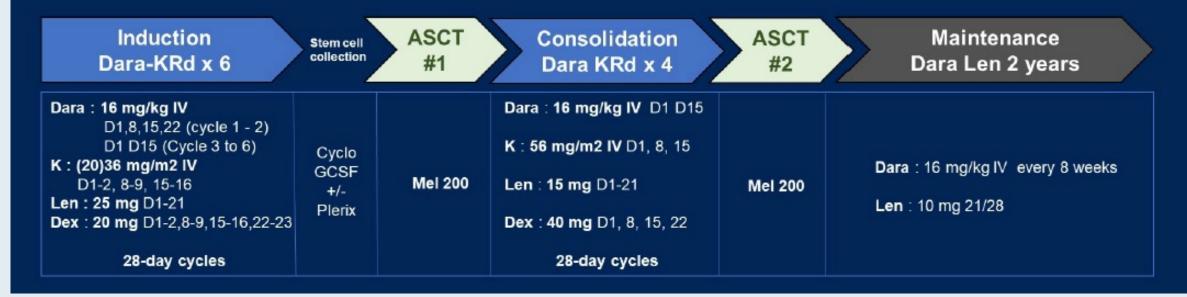
Abstract 8002

Daratumumab Carfilzomib Lenalidomide and Dexamethasone as induction therapy in high-risk transplant eligible newly diagnosed myeloma patients: results of the phase 2 study IFM 2018-04

Cyrille Touzeau¹, Aurore Perrot², Cyrille Hulin³, Salomon Manier⁴, Margaret Macro⁵, Marie-Lorraine Chretien⁶,

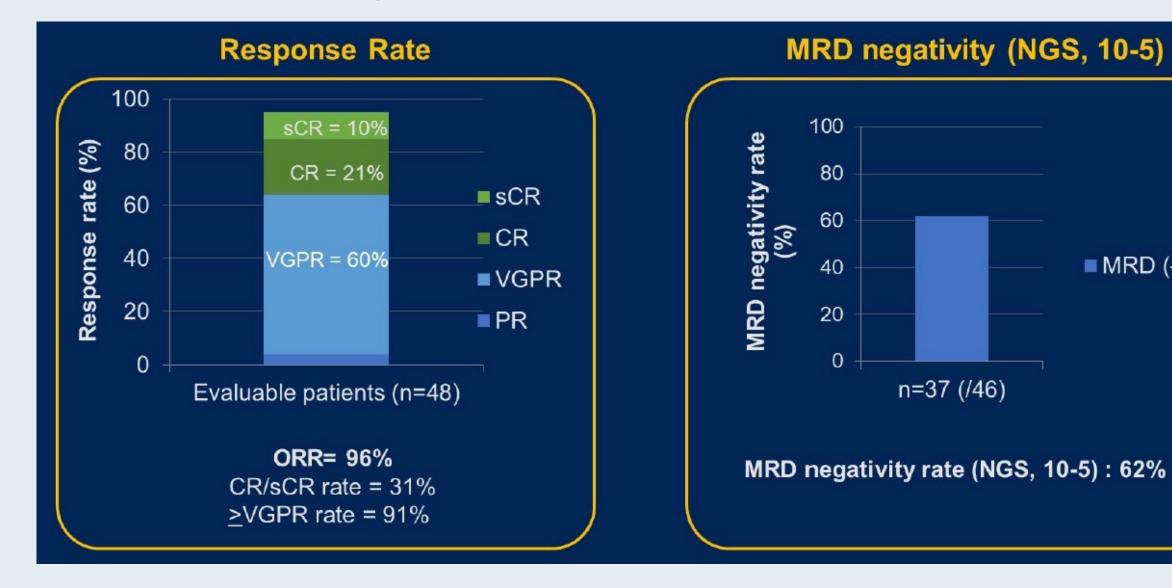
Lionel Karlin⁷, Martine Escoffre⁸, Caroline Jacquet⁹, Mourad Tiab¹⁰, Xavier Leleu¹¹, Lucie Planche¹²,

Hervé Avet-Loiseau², Philippe Moreau¹


IFM 2018-04: Phase II Study Design

Key inclusion criteria:

- Age < 66
- Newly diagnosed multiple myeloma
- Transplant-eligible
- **High-risk FISH**: t(4;14), 17p del, t(14;16)
- ECOG 0-2


Objectives:

- Primary Objective :
- Feasibility (endpoint : >70% patients completed 2nd transplant)
- Secondary Objectives:
- Safety, ORR, PFS, OS, stem-cell collection

IFM 2018-04: Response Rates and MRD with Dara-KRd Induction

■ MRD (-)

IFM 2018-04: Safety of Dara-KRd Induction

Hematologic treatment related AE:

	Any grade N (%)	Grade 3/4 N (%)
Neutropenia	22 (44%)	20 (40%)
Anemia	14 (28%)	7 (14%)
Thrombocytopenia	13 (26%)	4 (8%)

AE leading to treatment discontinuation (n=2)

- COVID-19 infection (n=1)
- tumor lysis syndrome (n=1)

Grade 3/4 infection (n=3)

- COVID 19 infection (n=1)
- CMV infection (n=1)
- Pseudomonas aeruginosa bacteriemia (n=1)

Most common non hematologic treatment related AE:

	Any grade N (%)	Grade 3/4 N (%)
GI disorders	23 (46%)	2(4%)
Infection	20 (40%)	3 (6%)
Skin rash	8 (16%)	0
Deep-vein thrombosis	7 (14%)	3 (6%)
Peripheral neuropathy	6 (12%)	0
Hepatic cytolysis	4 (8%)	2 (4%)
Renal failure	3 (6%)	3 (6%)
Cardiac event	1 (2%)	0

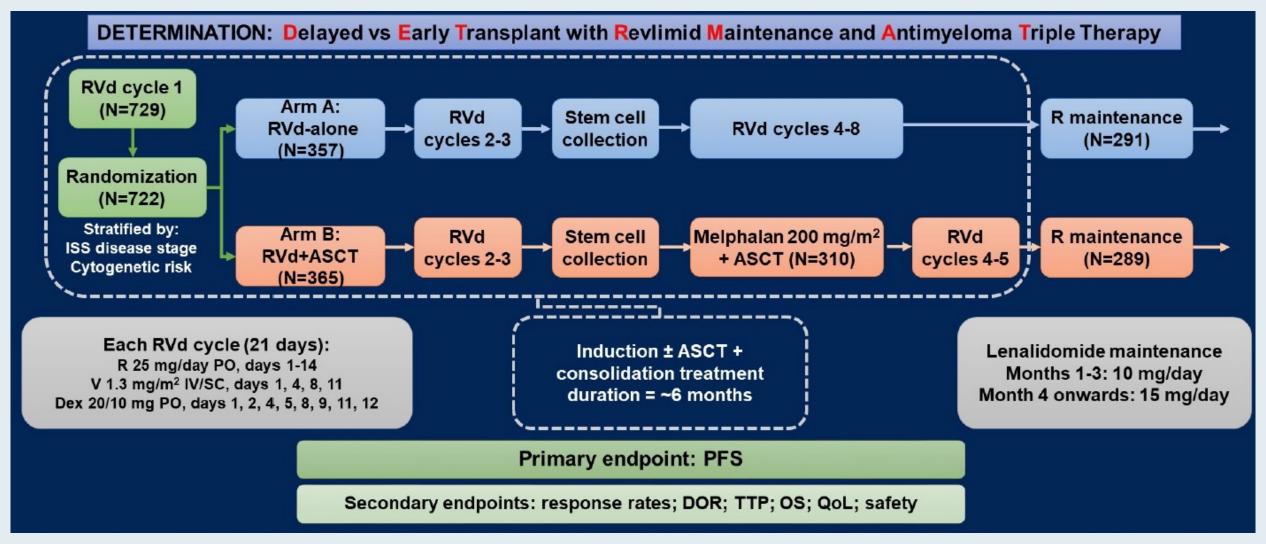
AE = adverse event

RVd ± ASCT and Lenalidomide Maintenance to Progression for NDMM

The Phase 3 DETERMINATION Trial

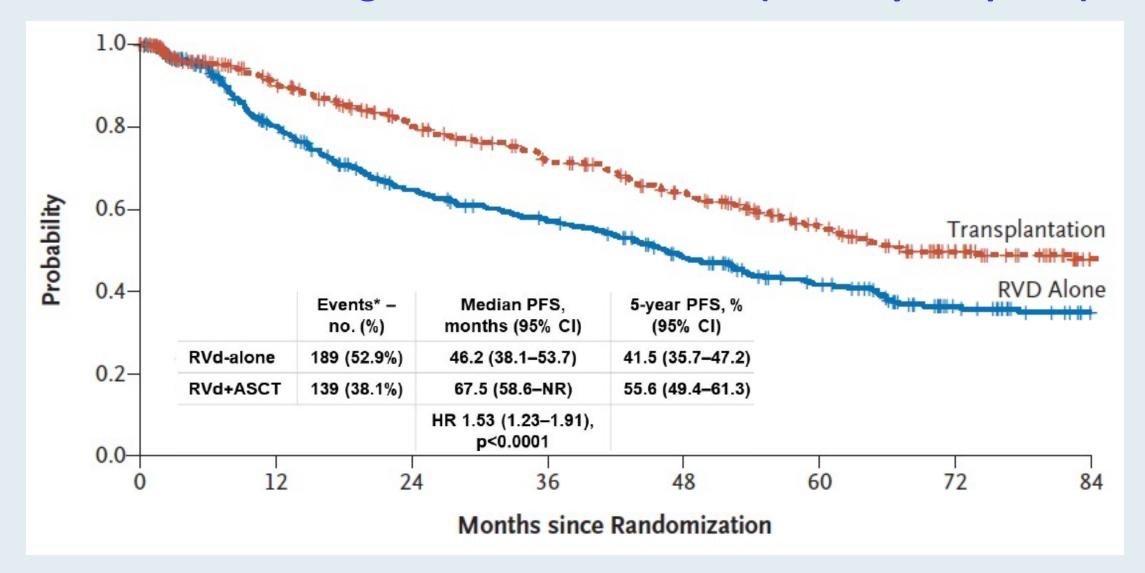
Paul G. Richardson, MD, RJ Corman Professor of Medicine, Harvard Medical School Clinical Program Leader, Director of Clinical Research, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA The NEW ENGLAND JOURNAL of MEDICINE

N Engl J Med 2022 July 14;387(2):132-47.

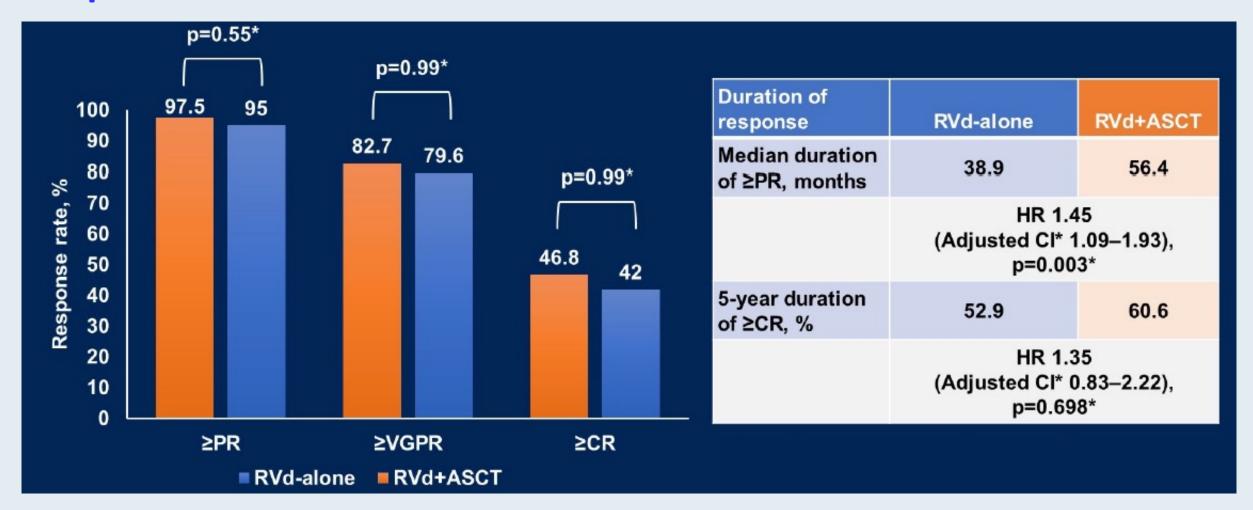

ORIGINAL ARTICLE

Triplet Therapy, Transplantation, and Maintenance until Progression in Myeloma

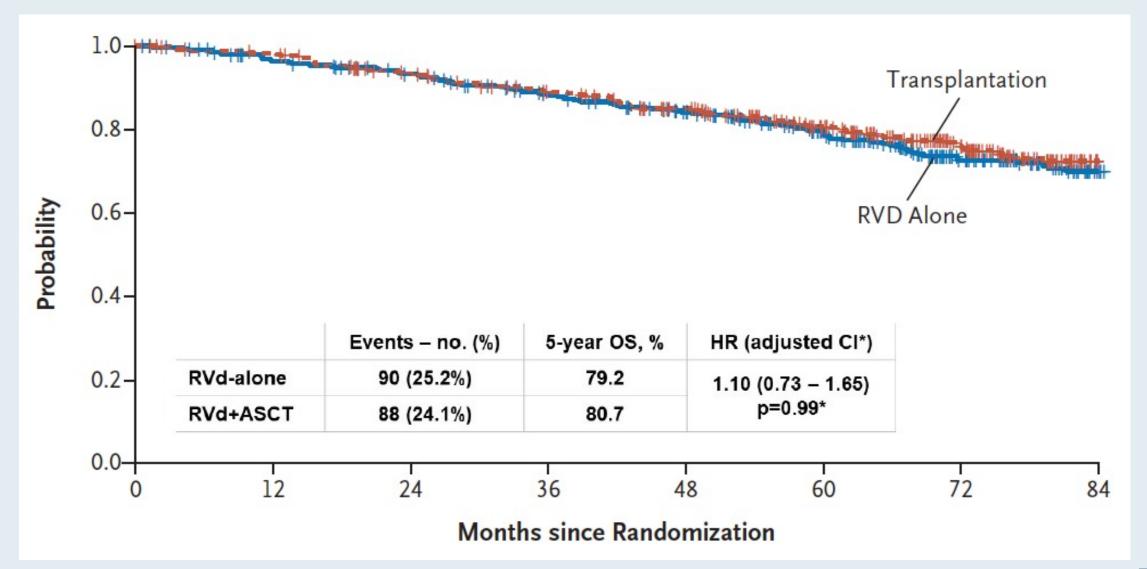
P.G. Richardson, S.J. Jacobus, E.A. Weller, H. Hassoun, S. Lonial, N.S. Raje, E. Medvedova, P.L. McCarthy, E.N. Libby, P.M. Voorhees, R.Z. Orlowski,
L.D. Anderson, Jr., J.A. Zonder, C.P. Milner, C. Gasparetto, M.E. Agha, A.M. Khan, D.D. Hurd, K. Gowin, R.T. Kamble, S. Jagannath, N. Nathwani, M. Alsina, R.F. Cornell, H. Hashmi, E.L. Campagnaro, A.C. Andreescu, T. Gentile,
M. Liedtke, K.N. Godby, A.D. Cohen, T.H. Openshaw, M.C. Pasquini, S.A. Giralt, J.L. Kaufman, A.J. Yee, E. Scott, P. Torka, A. Foley, M. Fulciniti, K. Hebert, M.K. Samur, K. Masone, M.E. Maglio, A.A. Zeytoonjian, O. Nadeem, R.L. Schlossman, J.P. Laubach, C. Paba-Prada, I.M. Ghobrial, A. Perrot, P. Moreau, H. Avet-Loiseau, M. Attal, K.C. Anderson, and N.C. Munshi, for the DETERMINATION Investigators*


DETERMINATION: Phase III Study Design and Patient Disposition

PFS = progression-free survival; DOR = duration of response; TTP = time to progression; OS = overall survival; QoL = quality of life



DETERMINATION: Progression-Free Survival (Primary Endpoint)



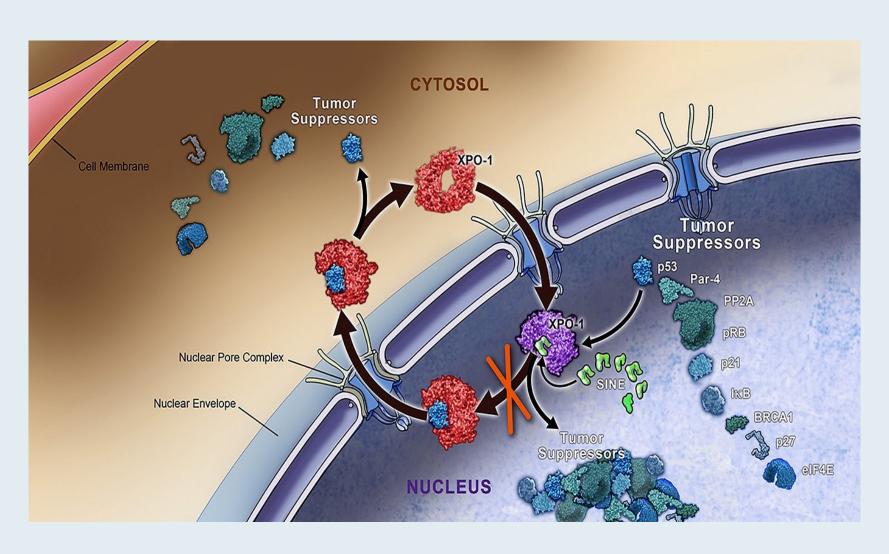
DETERMINATION: Best Response to Treatment and Duration of Response

DETERMINATION: Overall Survival (Key Secondary Endpoint)

DETERMINATION: Grade ≥3 Treatment-Related Adverse Events (AEs)

AE, %	RVd-alone (N=357)	RVd+ASCT (N=365)
Any	78.2	94.2
Any hematologic	60.5	89.9
Any grade 5 (fatal) AE	0.3	1.6 *
Neutropenia	42.6	86.3
Thrombocytopenia	19.9	82.7
Leukopenia	19.6	39.7
Anemia	18.2	29.6
Lymphopenia	9.0	10.1
Febrile neutropenia	4.2	9.0
Diarrhea	3.9	4.9
Nausea	0.6	6.6
Mucositis oral	0	5.2
Fatigue	2.8	6.0
Fever	2.0	5.2
Pneumonia	5.0	9.0
Hypophosphatemia	9.5	8.2
Neuropathy	5.6	7.1

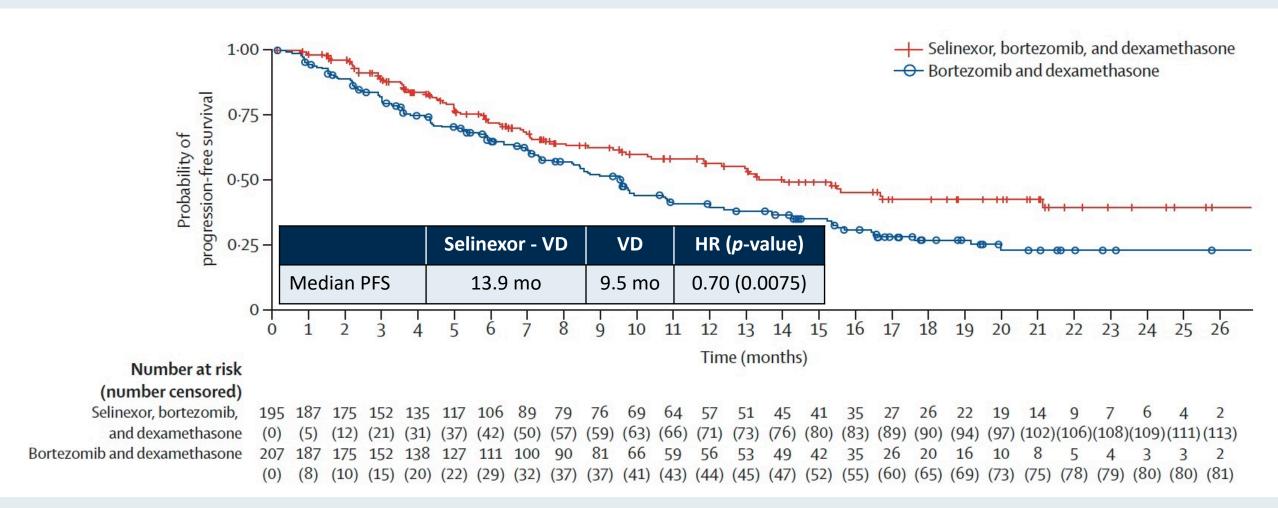
- Rates of all grade ≥3 and of hematologic grade ≥3 treatmentrelated AEs during all treatment significantly higher with RVd + ASCT (both p<0.001)
 - Rates hematologic grade ≥3 treatment-related AEs during maintenance: 26.1% vs 41.9%
- Related SAEs:
 - Prior to maintenance: 40.3% vs 47.1%
 - During maintenance:11.3% vs 16.6%


SAE = serious AE

Integration of Novel Therapies into the Management of Relapsed/Refractory (R/R) MM

Selinexor Mechanism of Action

- Exportin 1 (XPO1) is the major nuclear export protein for tumor suppressor proteins (TSPs), the glucocorticoid receptor (GR) and eIF4E-bound oncoprotein mRNAs (c-myc, Bcl-2, Bcl-xL and cyclins)
- XPO1 is overexpressed in MM and its levels often correlate with poor prognosis
- Selinexor is a first-in-class XPO1 inhibitor that induces nuclear retention and activation of TSPs and the GR in the presence of steroids and suppresses oncoprotein expression


Articles

Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): a randomised, open-label, phase 3 trial

Sebastian Grosicki, Maryana Simonova, Ivan Spicka, Ludek Pour, Iryrna Kriachok, Maria Gavriatopoulou, Halyna Pylypenko, Holger W Auner, Xavier Leleu, Vadim Doronin, Ganna Usenko, Nizar J Bahlis, Roman Hajek, Reuben Benjamin, Tuphan K Dolai, Dinesh K Sinha, Christopher P Venner, Mamta Garg, Mercedes Gironella, Artur Jurczyszyn, Pawel Robak, Monica Galli, Craig Wallington-Beddoe, Atanas Radinoff, Galina Salogub, Don A Stevens, Supratik Basu, Anna M Liberati, Hang Quach, Vesselina S Goranova-Marinova, Jelena Bila, Eirini Katodritou, Hanna Oliynyk, Sybiryna Korenkova, Jeevan Kumar, Sundar Jagannath, Phillipe Moreau, Moshe Levy, Darrell White, Moshe E Gatt, Thierry Facon, Maria V Mateos, Michele Cavo, Donna Reece, Larry D Anderson Jr, Jean-Richard Saint-Martin, Jacqueline Jeha, Anita A Joshi, Yi Chai, Lingling Li, Vishnuvardhan Peddagali, Melina Arazy, Jatin Shah, Sharon Shacham, Michael G Kauffman, Meletios A Dimopoulos, Paul G Richardson*, Sosana Delimpasi*

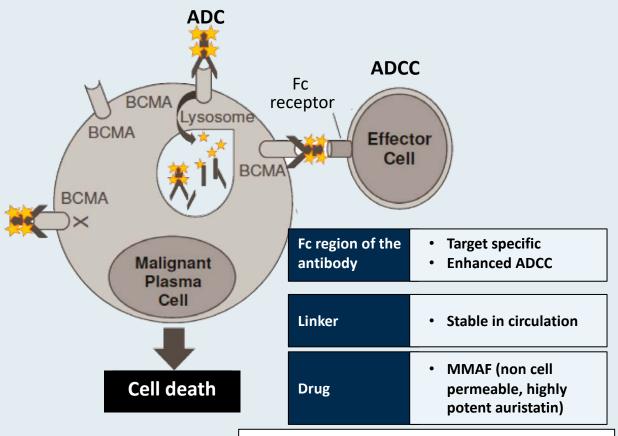
BOSTON: Progression-Free Survival (ITT)

VD = bortezomib and low-dose dexamethasone

BOSTON: Response

Response	Selinexor + VD (n = 195)	VD (n = 207)
Overall response rate	76.4%	62.3%
Best overall response		•
Stringent complete response	10%	6%
Complete response	7%	4%
Very good partial response	28%	22%
Partial response	32%	30%
Minimal response	8%	10%
Stable disease	13%	19%
Progressive disease	1%	5%
Nonevaluable	2%	4%
Minimal residual disease-negative	5%	4%

BOSTON: Select Adverse Events


	Selinexor + bort/dex (n = 195)		Bort/dex (n = 204)	
Adverse event	Any grade	Grade 3/4	Any grade	Grade 3/4
Thrombocytopenia	60%	39%	27%	17%
Fatigue	42%	13%	18%	1%
Anemia	36%	16%	23%	10%
Peripheral neuropathy	32%	5%	47%	9%
Neutropenia	15%	9%	6%	3%
Treatment discontinuation due to TEAEs	21	L%	16	5%

TEAEs = treatment emergent adverse events

Belantamab Mafodotin: Anti-BCMA Antibody-Drug Conjugate

- B-cell maturation factor (BCMA)
 expression is restricted to B cells at later
 stages of differentiation and is required
 for survival of plasma cells
- BCMA is broadly expressed at variable levels on malignant plasma cells
- Belantamab mafodotin is a humanized, afucosylated IgG1 anti-BCMA antibody conjugated to microtubule disrupting agent MMAF via a stable, proteaseresistant maleimidocaproyl linker

Mechanisms of action:

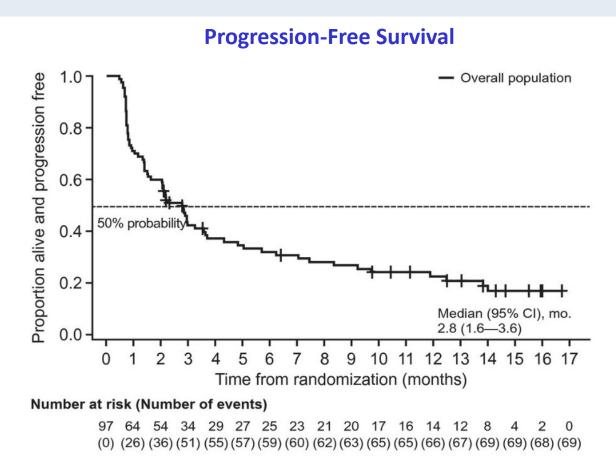
- ADC mechanism
- ADCC mechanism
- Immunogenic cell death
- BCMA receptor signaling inhibition

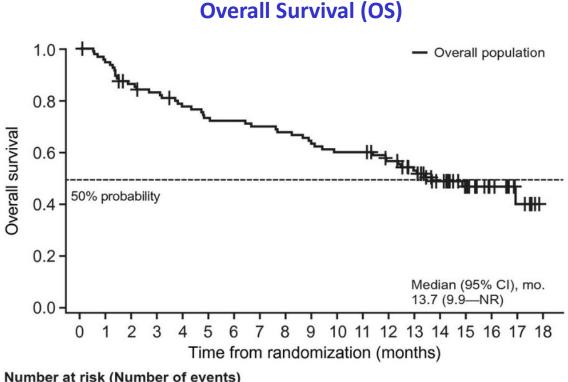
ADC = antibody-drug conjugate; ADCC = antibody-dependent cell-mediated cytotoxicity

Longer Term Outcomes With Single-Agent Belantamab Mafodotin in Patients With Relapsed or Refractory Multiple Myeloma: 13-Month Follow-Up From the Pivotal DREAMM-2 Study

Sagar Lonial, MD ¹; Hans C. Lee, MD²; Ashraf Badros, MD ⁰ ³; Suzanne Trudel, MD⁴; Ajay K. Nooka, MD ¹; Ajai Chari, MD ⁵; Al-Ola Abdallah, MD⁶; Natalie Callander, MD⁷; Douglas Sborov, MD⁸; Attaya Suvannasankha, MD⁹; Katja Weisel, MD¹⁰; Peter M. Voorhees, MD¹¹; Lynsey Womersley, MSc¹²; January Baron, MS¹³; Trisha Piontek, BSN¹³; Eric Lewis, MD¹⁴; Joanna Opalinska, MD¹³; Ira Gupta, MD¹³; and Adam D. Cohen, MD¹⁵

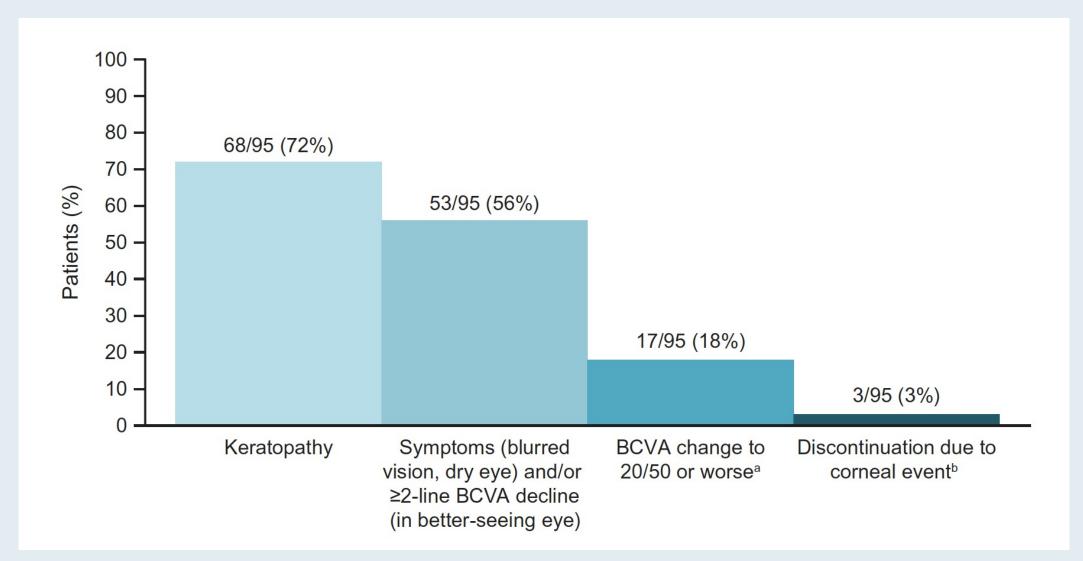
Cancer 2021;127(22):4198-212.

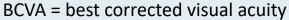

DREAMM-2: Single-Agent Belantamab Mafodotin Efficacy Outcomes


	Patients with 3-6 prior therapies (n = 47)	Patients with ≥7 prior therapies (n = 50)
ORR, % (97.5% CI)	32 (21.7-43.6)	30 (16.5-46.6)
Median DoR (95% CI estimates), months	11.0 (4.2-NR)	13.1 (4.0-NR)
Probability of DoR ≥6 months, % (95% CI estimates)	63 (31-83)	73 (44-89)
Median PFS (95% CI estimates), months	2.8 (1.6-3.6)	2.2 (1.2-3.6)
Probability of PFS at 6 months, % (95% CI estimates)	35 (20-50)	30 (17-43)

ORR = overall response rate; CI = confidence interval; DoR = duration of response; NR = not reached; PFS = progression-free survival

DREAMM-2: Longitudinal Outcomes


Number at risk (Number of events)


97 91 81 77 71 67 66 64 62 59 55 55 49 43 31 22 13 6 0 (0) (5) (13) (16) (21) (25) (26) (28) (30) (33) (37) (37) (39) (42) (45) (46) (46) (47) (47)

Expected median OS in triple-class refractory myeloma: 8.6 months

DREAMM-2: Frequency of Corneal and Vision-Related Events

Summary of Select Clinical Trials of Belantamab Mafodotin (Belamaf) Combination Approaches for R/R Multiple Myeloma

Trial	Characteristics	ORR	Safety
DREAMM-6 (NCT03544281)	 Phase I/II Arm A: belamaf + len/dex (n = 45) Arm B: belamaf +bor/dex (n = 18) 	 Arm A: highest ORR of 75% in the 1.9 mg/kg Q4W dose Arm B: 78% 	 Arm A Grade ≥3 AEs: Thrombocytopenia – 3 (7%) Keratopathy – 15 (33%) Arm B Grade ≥3 AEs: Thrombocytopenia – 12 (67%) Keratopathy – 11 (61%)
DREAMM-4 (NCT03848845)	 Phase I/II (N = 34) Belamaf + pembrolizumab Dose escalation belamaf 2.5 mg/kg and 3.4 mg/kg 	 47% at RP2D of 2.5 mg/kg 	All grades: • Thrombocytopenia – 12 (35%) • Keratopathy – 26 (76%)
ALGONQUIN (NCT03715478)	Phase I/II (N = 56)Belamaf + pom/dex	• ≥PR/VGPR 89%/72% across all dosing cohorts	Grade ≥3 TEAEs: • Thrombocytopenia – 19 (34%) • Keratopathy – 39 (70%)

ORR = overall response rate; AEs = adverse events; PR = partial response; VGPR = very good partial response; TEAEs = treatment-emergent AEs

Phase III DREAMM-3 Trial of Belantamab Mafodotin Monotherapy versus Pomalidomide in Combination with Low-Dose Dexamethasone Does Not Meet Its Primary Endpoint Press Release: November 7, 2022

The DREAMM-3 Phase III open-label, randomized, head-to-head superiority trial of belantamab mafodotin monotherapy versus pomalidomide in combination with low dose dexamethasone (PomDex) for patients with relapsed or refractory multiple myeloma did not meet its primary endpoint of progression-free survival (PFS).

"In the DREAMM-3 trial, the primary endpoint of PFS demonstrated a hazard ratio of 1.03 (95% CI: 0.72, 1.47). The observed median progression-free survival was longer for belantamab mafodotin vs PomDex (11.2 months vs 7 months)."

"Data from DREAMM-3 is in the process of being shared with health authorities. Discussions with health authorities are currently ongoing. Additional trials within the DREAMM (DRiving Excellence in Approaches to Multiple Myeloma) clinical trial programme will continue."

"Data from the DREAMM-7 and DREAMM-8 phase III trials are anticipated in the first half of 2023."

BelaRd: Results Summary from a Phase I/II Study of Belantamab Mafodotin with Lenalidomide/Dexamethasone for Newly Diagnosed, Transplant-Ineligible MM

Clinical response, n (%)	All patients	Cohort 1 Belamaf 2.5 mg/kg	Cohort 2 Belamaf 1.9 mg/kg	Cohort 3 Belamaf 1.4 mg/kg
Evaluable patients	28	9	9	10
Overall response rate	27 (96.4%)	9 (100.0%)	9 (100.0%)	9 (90%)
CR	4 (14.3%)	2 (22.2%)	2 (22.2%)	_
VGPR	10 (35.7%)	4 (44.4%)	2 (22.2%)	4 (40%)
Select Grade 3/4 AEs	N = 36	n = 12	n = 12	n = 12
Leukopenia	2 (5.6%)	2 (16.7%)	_	_
Neutropenia	2 (5.6%)	1 (8.3%)	_	1 (8.3%)
Keratopathy	_	_	_	_
Ocular symptoms		_	_	_
Visual acuity reduced	5 (13.9%)	3 (25%)	1 (8.3%)	_

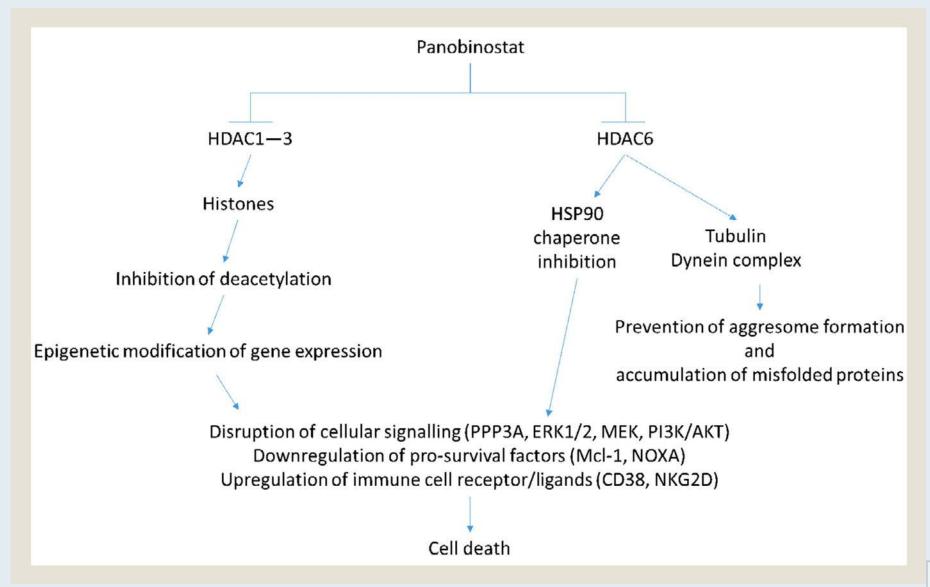
CR = complete response; VGPR = very good partial response

DREAMM-9: Efficacy and Safety Summary with Belantamab Mafodotin and Standard Therapy (VRd) for Newly Diagnosed MM

Clinical response, n (%)	Cohort 1 Belamaf 1.9 mg/kg q3 or 4wk, every cycle of VRd n = 12	Cohort 2 Belamaf 1.4 mg/kg q6 or 8wk, every other cycle of VRd n = 12	Cohort 3 Belamaf 1.9 mg/kg q6 or 8wk, every other cycle of VRd n = 12	Cohort 4 Belamaf 1.0 mg/kg q3 or 4wk, every cycle of VRd n = 15	Cohort 5 Belamaf 1.4 mg/kg q3 or 4wk, every cycle of VRd n = 13
ORR	12 (100%)	11 (92%)	12 (100%)	12 (80%)	12 (92%)
sCR	6 (50%)	1 (8%)	0	3 (20%)	2 (15%)
CR	3 (25%)	0	2 (17%)	2 (13%)	1 (8%)
VGPR	3 (25%)	9 (75%)	7 (58%)	5 (33%)	8 (62%)
Adverse events	n = 12	n = 12	n = 12	n = 14	n = 13
Grade 3/4 corneal exam findings	9 (75%)	4 (33%)	3 (25%)	7 (50%)	5 (39%)
Grade 3/4 visual acuity changes	10 (83%)	7 (58%)	4 (33%)	3 (21%)	6 (46%)

VRd = bortezomib/lenalidomide/dexamethasone; ORR = overall response rate; CR = complete response; sCR = stringent CR; VGPR = very good partial response

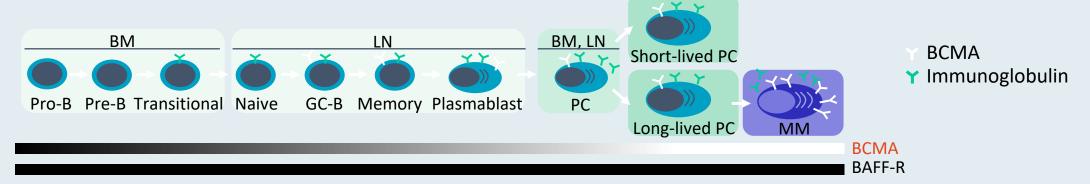
Clin Lymphoma Myeloma Leuk 2021 November;21(11):752-65.

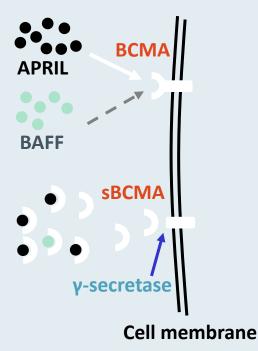

Review Article

Panobinostat From Bench to Bedside: Rethinking the Treatment Paradigm for Multiple Myeloma

Jesus G. Berdeja, MD,^{1,2} Jacob P. Laubach, MD, MPP,³ Joshua Richter, MD,⁴ Steve Stricker, PharmD, MS,⁵ Andrew Spencer, MBBS,⁶ Paul G. Richardson, MD,³ Ajai Chari, MD⁴

Examples of the Antimyeloma Effects of Panobinostat Treatment





Incorporation of Chimeric Antigen Receptor (CAR) T-Cell Therapy into the Care of Patients with MM

BCMA as a Target in Myeloma Treatment

- BCMA: antigen expressed specifically on PCs and myeloma cells
- Higher expression on myeloma cells than normal PCs
- Not expressed in other tissues
- Cell-surface receptor in TNF superfamily
- Receptor for APRIL and BAFF
- Key role in B-cell maturation and differentiation
- Promotes myeloma cell growth, chemotherapy resistance, immunosuppression in bone marrow microenvironment

Select Clinical Trials of BCMA-Directed CAR T-Cell Therapy for Multi-Agent Refractory Multiple Myeloma: Efficacy Summary

	KarMMa (N = 128)	CARTITUDE-1 (N = 97)	CRB-402 (N = 72)
Phase	II	lb/II	1/11
Product	Ide-cel	Cilta-cel	BB21217
Median prior lines of therapy	6	6	6
Overall response rate	73%	98%	69%
Complete response	33%	sCR: 83%	sCR/CR: 36%
MRD-negative	26%	92%	67%
Median PFS	8.6 months	Not reached	Not applicable
Median OS	24.8 months	Not reached	Not applicable

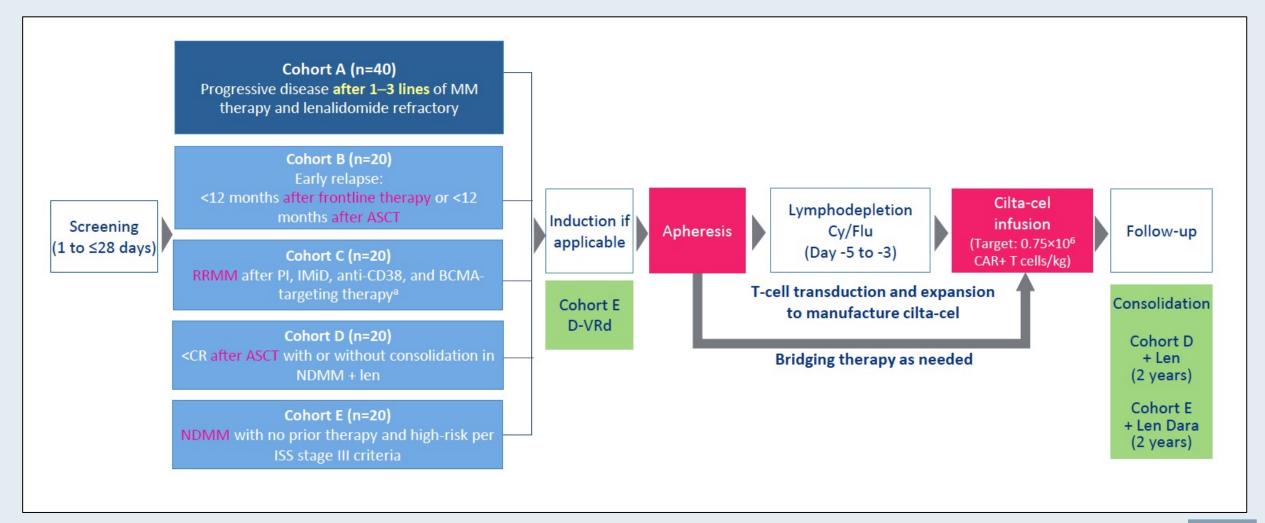
Select Clinical Trials of BCMA-Directed CAR T-Cell Therapy for Multi-Agent Refractory Multiple Myeloma: CRS and Neurotoxicity

	KarMMa (N = 128)	CARTITUDE-1 (N = 97)	CRB-402 (N = 72)
Product	Ide-cel	Cilta-cel	BB21217
Median prior lines of therapy	6	6	6
CRS	Grade 3: 4%	Grade 3/4: 4%	Grade 3/4: 1%
Neurotoxicity	Grade 3: 3%	Grade 3/4: 11%	Grade 3/4: 4%

CRS = cytokine release syndrome

Topline Results from the KarMMa-3 Trial Showing Ide-cel Significantly Improves Progression-Free Survival versus Standard Regimens for Relapsed and Refractory Multiple Myeloma Press Release: August 10, 2022

Positive topline results were announced from KarMMa-3, a Phase III, global, randomized, multicenter, open-label study evaluating idecabtagene vicleucel compared to standard combination regimens for adults with multiple myeloma that is relapsed and refractory after 2 to 4 prior lines of therapy and refractory to the last regimen.


"KarMMa-3 is the first randomized clinical trial to evaluate a CAR T cell therapy in multiple myeloma. Results of a pre-specified interim analysis conducted through an independent review committee showed that KarMMa-3 met its primary endpoint of demonstrating a statistically significant improvement in progression-free survival. Treatment with idecabtagene vicleucel also showed an improvement in the key secondary endpoint of overall response rate compared to standard regimens. Follow-up for overall survival, a key secondary endpoint, remains ongoing.

Safety results in the trial were consistent with the well-established and predictable safety profile of idecabtagene vicleucel previously demonstrated in the pivotal KarMMa trial. No new safety signals were reported in this study."

https://news.bms.com/news/corporate-financial/2022/Bristol-Myers-Squibb-and-2seventy-bio-Announce-Topline-Results-from-KarMMa-3-Trial-Showing-Abecma-idecabtagene-vicleucel-Significantly-Improves-Progression-Free-Survival-Versus-Standard-Regimens-in-Relapsed-and-Refractory-Multiple-Myeloma/default.aspx

CARTITUDE-2 Multicohort Overall Trial Design

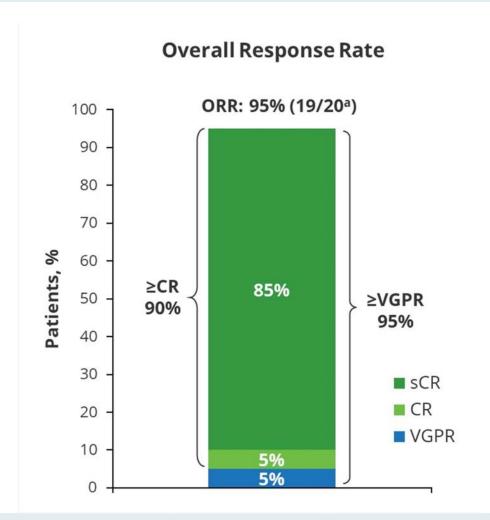
ASCO 2022; Abstract 8020.

Biological Correlative Analyses and Updated Clinical Data of Ciltacabtagene Autoleucel, a BCMA-Directed CAR-T Cell Therapy, in Lenalidomide-Refractory Patients With Progressive Multiple Myeloma After 1–3 Prior Lines of Therapy: CARTITUDE-2, Cohort A

Hermann Einsele¹, Adam Cohen², Michel Delforge³, Jens Hillengass⁴, Hartmut Goldschmidt⁵, Katja Weisel⁶, Marc-Steffen Raab⁷, Christoph Scheid⁸, Jordan M Schecter⁹, Kevin De Braganca⁹, Helen Varsos⁹, Tzu-Min Yeh⁹, Pankaj Mistry¹⁰, Tito Roccia⁹, Christina Corsale⁹, Muhammad Akram¹¹, Lida Pacaud¹¹, Tonia Nesheiwat¹¹, Mounzer Agha¹², Yael Cohen¹³

¹Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik II, Würzburg, Germany; ²Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; ³University Hospitals (UZ) Leuven, Leuven, Belgium; ⁴Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA; ⁵University Hospital Heidelberg and National Center of Tumor Diseases, Heidelberg, Germany; ⁶University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ⁷University Hospital Heidelberg and Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany; ⁸University of Cologne, Cologne, Germany; ⁹Janssen Research & Development, High Wycombe, UK; ¹¹Legend Biotech USA, Piscataway, NJ, USA; ¹²UPMC Hillman Cancer Center, Pittsburgh, PA, USA; ¹³Tel-Aviv Sourasky (Ichilov) Medical Center, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

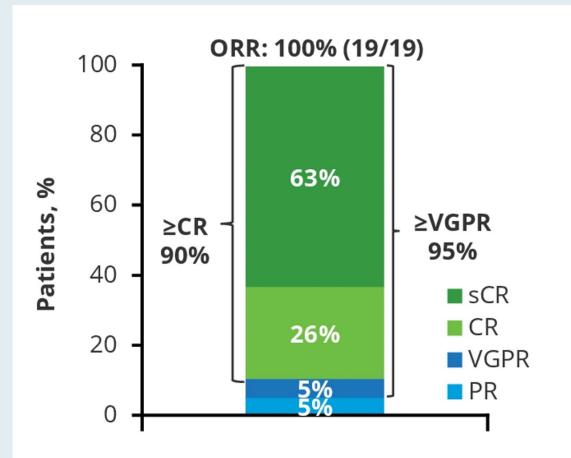
https://www.congresshub.com/Oncology/ AM2022/Cilta-Cel/Einsele-Biological


Copies of this presentation obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® or the author of this presentation.

Presented at the 2022 American Society of Clinical Oncology (ASCO) Annual Meeting; June 3-7, 2022; Chicago, IL, USA & Virtual.

CARTITUDE-2 Cohort A: Ciltacabtagene Autoleucel for Lenalidomide-Refractory MM After 1 to 3 Prior Lines of Therapy

AEs ≥20%, n (%)	N=20		
	Any Grade	Grade 3/4	
Hematologic			
Neutropenia	19 (95)	19 (95)	
Thrombocytopenia	16 (80)	7 (35)	
Anaemia	15 (75)	9 (45)	
Lymphopenia	14 (70)	14 (70)	
Leukopenia	11 (55)	11 (55)	
CAR-T-related AEs			
CRS	19 (95)	2 (10)	
Neurotoxicity	6 (30)	1 (5)	
ICANS	3 (15)	0	
Other	3 (15) ^a	1 (5)	


ASCO 2022 | Abstract 8029

Biological Correlative Analyses an Updated Clinical Data of Ciltacabtagene Autoleucel, A BCMA-Directed CAR-T Cell Therapy, in Patients with Multiple Myeloma and Early Relapse After Initial Therapy: CARTITUDE-2, Cohort B

Niels WCJ van de Donk¹ (n.vandedonk@amsterdamumc.nl), Mounzer Agha², Adam Cohen³, Yael Cohen⁴, Sébastien Anguille⁵, Tessa Kerre⁶, Wilfried Roeloffzen⁷, Jordan M Schecter⁸, Kevin De Braganca⁸, Helen Varsos⁸, Pankaj Mistry⁹, Tito Roccia⁸, Enrique Zudaire¹⁰, Christina Corsale⁸, Muhammad Akram¹¹, Dong Geng¹¹, Tonia Nesheiwat¹¹, Lida Pacaud¹¹, Pieter Sonneveld¹², Sonja Zweegman¹

CARTITUDE-2 (Cohort B): Ciltacabtagene Autoleucel for Patients with Multiple Myeloma and Early Relapse After Initial Therapy

AEc >2006 p (06)	N=	19
AEs ≥20%, n (%)	Any Grade	Grade 3/4
Hematologic		
Neutropenia	18 (95)	17 (90)
Anemia	11 (58)	9 (47)
Thrombocytopenia	11 (58)	5 (26)
Lymphopenia	6 (32)	6 (32)
Leukopenia	5 (26)	5 (26)
CAR-T–related AEs		
CRS	16 (84)	1 (5)
Neurotoxicity	5 (26)	1 (5)
ICANS	1 (5)	0
Other	4 (21)	1 (5)
Parkinsonism	1 (5)	1 (5)

CAR T-Cell-Associated Toxicities: Acute and Late Phase

Acute Phase (Days 0-30)

- Cytokine release syndrome (CRS)
- Immune effector cell-associated neurotoxicity syndrome (ICANS)
- Cytopenias
- B-cell aplasia and hypogammaglobulinemia
- Tumor lysis syndrome (rare and likely varies by disease burden)

Late Phase (Days 30+)

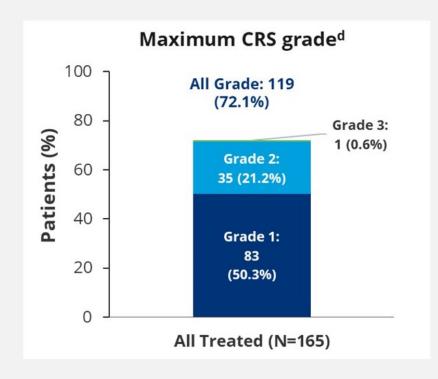
- Persistent cytopenias
- B-cell aplasia and hypogammaglobulinemia
- T-cell deficiency
- Residual effects of acute toxicity
- Delayed CRS and ICANS is rare but can occur
- Impairment to QoL fatigue, memory issues not yet well described

Cytokine Release Syndrome Associated with CAR T-Cell Therapy for Multiple Myeloma

- Potentially severe or life-threatening reactions, with the most common manifestations being pyrexia, hypotension, tachycardia, chills, hypoxia, fatigue and headache
- Grade 3 or higher events may include hypotension, hypoxia, hyperbilirubinemia, hypofibrinogenemia, acute respiratory distress syndrome, atrial fibrillation, hepatocellular injury, metabolic acidosis, pulmonary edema, multiple organ dysfunction syndrome and hemophagocytic lymphohistiocytosis/macrophage activation syndrome
- Occurs in about 85%-95% of patients (Grade ≥3: 5%-9%)
- Time to onset: 1-7 days (range 1-23 days)
- Duration: 4-7 days (range 1-63 days)
- Manage with tocilizumab or tocilizumab and corticosteroids

ICANS (Immune Effector Cell-Associated Neurotoxicity Syndrome) Associated with CAR T-Cell Therapy for MM

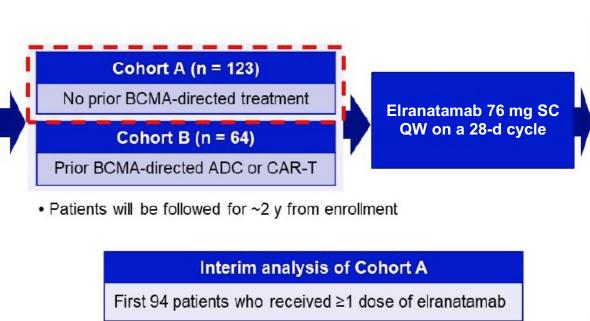
- Potentially severe or life-threatening neurotoxicity, including encephalopathy, tremor, aphasia and delirium.
- Occurs in about 25% of patients (Grade ≥3: 4%-5%)
- Time to onset: 2 to 8 days (range 1-42 days)
- Duration: 6 to 8 days (range 1-578 days)
- Resolved in 77% to 92% of patients
- Manage with supportive care and corticosteroids as needed



Novel Investigational Agents for MM

MajesTEC-1: Cytokine Release Syndrome

Parameter	N=165
Patients with CRS, n (%)	119 (72.1)
Patients with ≥2 CRS events	55 (33.3)
Time to onset ^a (days), median (range)	2 (1-6)
Duration (days), median (range)	2 (1-9)
Received supportive measures ^a for CRS, n (%)	110 (66.7)
Tocilizumab ^b	60 (36.4)
Low-flow oxygen by nasal cannula ^c	21 (12.7)
Corticosteroids	14 (8.5)
Single vasopressor	1 (0.6)



- Most CRS events were confined to step-up and first full treatment doses
- All CRS events were grade 1/2, except for 1 transient-grade 3 CRS event that occurred in the context of concurrent pneumonia (resolved in 2 days)
- All CRS events fully resolved without treatment discontinuation or dose reduction

MagnetisMM-3: Phase II Trial Design

Patients with RRMM Key inclusion criteria: • Refractory to at least 1 each of the following: proteasome inhibitor, immunomodulatory drug, and anti-CD38 antibody* • ECOG performance status ≤2 • Creatinine clearance ≥30 mL/min • Platelets ≥25 x 10⁹/L • ANC ≥1.0 x 10⁹/L • Hemoglobin ≥8 g/dL

Primary endpoint

· ORR by BICR†

Secondary endpoints

- Duration of response †,‡
- CR rate †, ‡
- · ORR‡
- ORR by baseline extramedullary disease status§
- Duration of CR†,‡
- Time-to-response^{†,‡}
- PFSt.‡
- MRD-negativity rate
- · OS
- Safety
- Pharmacokinetics

MagnetisMM-3: Overall Response Rate (All and Subgroups)

Subgroup	Patients (N)	ORR (95% CI)
All Patients	94	ORR: 60.6%
Baseline Cytogenetics High Risk Not High-Risk	26 57	
Number of Prior Lines ≤5 >5	61 33	<u> </u>
Age (Years) <65 ≥65 <75 ≥75	32 62 74 20	
Penta Refractory Yes No	37 57	——
		0 25 50 75 100 Percent

MagnetisMM-3 AEs of Special Interest: Infections

	Cohort A n = 94	
n (%)	Any grade	Grade 3/4
Infection TEAEs in ≥5% of patients		
COVID-related AE	14 (14.9)	8 (8.5)
Upper respiratory tract infection	10 (10.6)	0
Pneumonia	8 (8.5)	4 (4.3)
Urinary tract infection	5 (5.3)	2 (2.1)
TEAEs of interest		
Pneumocystis jirovecii pneumonia	4 (4.3)	3 (3.2)
CMV infection	4 (4.3)	0
CMV infection reactivation	1 (1.1)	0

• Infections reported in 52.1%

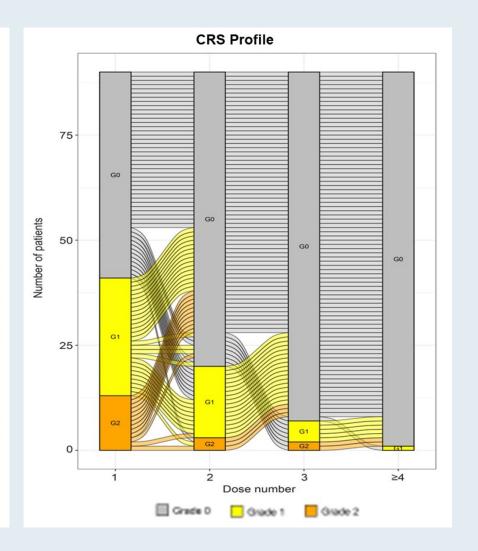
• Grade 3/4: 22.3%

Treatment-related: 24.5%

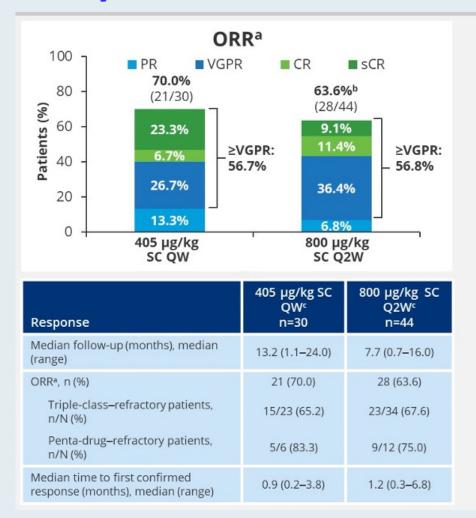
 1 patient had an infection leading to permanent discontinuation of elranatamab

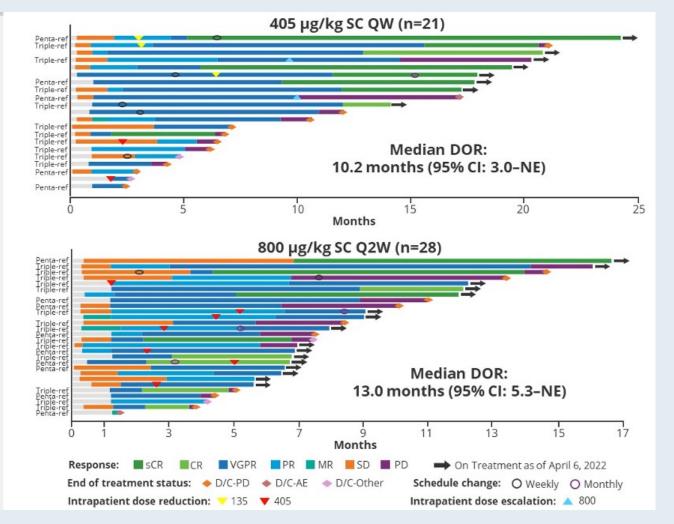
MagnetisMM-3 AEs of Special Interest: Peripheral Neuropathy

		Cohort A n = 94	
Peripheral neuropathy, n (%)	Any grade	Grade 3/4	
All causality	15 (16.0)	1 (1.1)	
Treatment-related	5 (6.4)	1 (1.1)	


- Most common events (≥2% of patients) were peripheral sensory neuropathy (5.3%) and paresthesia (3.2%). All were grade 1/2, except for 1 patient with grade 3 motor neuropathy
- Two (2.1%) patients had peripheral neuropathy events that led to permanent discontinuation of elranatamab
- A medical history of peripheral neuropathy was reported by 7/15 (46.7%) patients with peripheral neuropathy events

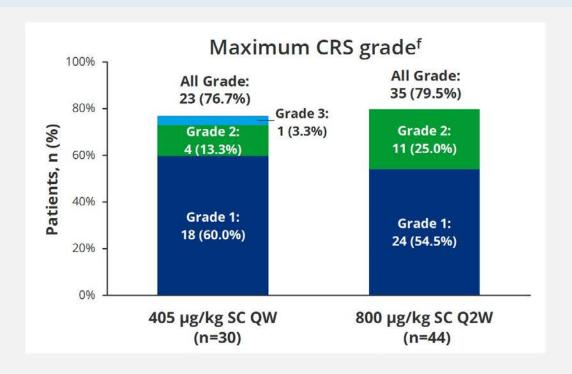
MagnetisMM-3 AEs of Special Interest: CRS and ICANS


 The 2-step-up priming regimen successfully mitigated the rate and severity of CRS, and the CRS profile was predictable with 88.4% of events after the first 2 doses and 98.6% after the first 3 doses


	12/32 mg 2-step-up regimen n = 90*	
TEAE of special interest	CRS	ICANS
Patients with TEAE, n (%)	53 (58.9)	2 (2.2)
Maximum grade 1	36 (40.0)	0
Maximum grade 2	17 (18.9)	2 (2.2)
Patients with >1 TEAE, n (%)	16 (17.8)	1 (1.1)
Median time to onset of TEAE, days (range)	2.0 (1.0-9.0)	2.5 (1.0-4.0)
Median time to resolution of TEAE, days (range)	2.0 (1.0-19.0)	3.0 (2.0-6.0)
Patients with TEAE who received tocilizumab [†] or steroids, n (%)	26 (49.1)	2 (100)
Tocilizumab	24 (45.3)	2 (100)
Steroids	7 (13.2)	2 (100)
Permanent discontinuation due to AE, n (%)	0	0

MonumenTAL-1: Duration of Response with Talquetamab for R/R MM

MonumenTAL-1: Adverse Events with Talquetamab


AEs (≥20% of total SC population), n (%)	405 μg/kg SC QWa n=30 Any Grade Grade 3/4		800 μg/kg SC Q2Wa n=44				
population), ii (%)			Any Grade	Grade 3/4			
Hematologic	Hematologic						
Neutropenia	20 (66.7)	18 (60.0)	18 (40.9)	15 (34.1)			
Anemia	17 (56.7)	9 (30.0)	21 (47.7)	12 (27.3)			
Lymphopenia	12 (40.0)	12 (40.0)	18 (40.9)	18 (40.9)			
Leukopenia	12 (40.0)	9 (30.0)	10 (22.7)	8 (18.2)			
Thrombocytopenia	11 (36.7)	7 (23.3)	10 (22.7)	5 (11.4)			
Nonhematologic							
CRS	23 (76.7)	1 (3.3)	35 (79.5)	0			
Skin-related AEsb	20 (66.7)	0	32 (72.7)	1 (2.3)			
Dysgeusia	19 (63.3)	N/A	25 (56.8)	N/A			
Nail-related AEsc	18 (60.0)	0	15 (34.1)	0			
Rash-related AEsd	14 (46.7)	1 (3.3)	13 (29.5)	7 (15.9)			
Dysphagia	12 (40.0)	0	12 (27.3)	0			
Pyrexia	11 (36.7)	0	10 (22.7)	0			
Fatigue	10 (33.3)	1 (3.3)	12 (27.3)	0			
Dry mouth	9 (30.0)	0	25 (56.8)	0			
Weight decreased	9 (30.0)	0	19 (43.2)	1 (2.3)			
Nausea	9 (30.0)	0	9 (20.5)	0			
Diarrhea	9 (30.0)	0	8 (18.2)	0			
ALT increased	6 (20.0)	1 (3.3)	14 (31.8)	3 (6.8)			
Decreased appetite	7 (23.3)	1 (3.3)	11 (25.0)	1 (2.3)			
Headache	7 (23.3)	0	11 (25.0)	0			
AST increased	3 (10.0)	0	14 (31.8)	3 (6.8)			

- Overall, the most common adverse events (AEs) were CRS, skin-related events, and dysgeusia
- Cytopenias were mostly confined to step-up and cycle
 1–2 doses and generally resolved within 1 week
- Infections occurred in 46.7% of patients at 405 μg/kg QW and 38.6% at 800 μg/kg Q2W (grade 3/4: 6.7%/9.1%)
- CRS events were mostly grade 1/2 and were largely confined to the step-up doses and first full dose
- Dysgeusia was managed with supportive care, and at times with dose adjustments
- No patients died due to drug-related AEs

MonumenTAL-1: Cytokine Release Syndrome

Parameter	405 µg/kg SC QW ^a n=30	800 μg/kg SC Q2W ^a n=44
Patients with CRS, n (%)	23 (76.7)	35 (79.5)
Time to onset (days), ^b median (range)	2 (1–22)	2 (1–5)
Duration (days), median (range)	2 (1–3)	2 (1–5)
Patients who received supportive measures, ^c n (%)	23 (76.7)	35 (79.5)
Tocilizumab ^d	19 (63.3)	24 (54.5)
Steroids	1 (3.3)	3 (6.8)
Oxygen	1 (3.3) ^e	2 (4.5)
Single vasopressor	1 (3.3) ^e	0

- All CRS events were grade 1/2, except for one grade 3 event
- CRS was largely confined to the step-up doses and first full dose

EHA 2022; Abstract S183.

Novel Combination Immunotherapy for the Treatment of Relapsed/Refractory Multiple Myeloma: Updated Phase 1b Results for Talquetamab (a GPRC5D x CD3 Bispecific Antibody) in Combination With Daratumumab

Niels WCJ van de Donk¹, Nizar Bahlis², Maria-Victoria Mateos³, Katja Weisel⁴, Bhagirathbhai Dholaria⁵, Alfred L Garfall⁶, Hartmut Goldschmidt⁷, Thomas G Martin⁸, Daniel Morillo⁹, Donna Reece¹⁰, David Hurd¹¹, Paula Rodríguez-Otero¹², Manisha Bhutani¹³, Anita D'Souza¹⁴, Albert Oriol¹⁵, Elham Askari⁹, Jesús F San-Miguel¹², K Martin Kortüm¹⁶, Deeksha Vishwamitra¹⁷, Shun Xin Wang Lin¹⁷, Thomas J Prior¹⁷, Lien Vandenberk¹⁸, Marie-Anne Damiette Smit¹⁹, Jenna D Goldberg²⁰, Ralph Wäsch²¹, Ajai Chari²²

¹Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands; ²Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada; ³University Hospital of Salamanca/IBSAL/CIC, Salamanca, Spain; ⁴University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ⁵Vanderbilt University Medical Center, Nashville, TN, USA; ⁵Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 7University Hospital Heidelberg and National Center of Tumor Diseases, Heidelberg, Germany; ³UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; 9Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; ¹0Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹¹Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC, USA; ¹²University of Navarra, Pamplona, Spain; ¹³Levine Cancer Institute/Atrium Health, Charlotte, NC, USA; ¹⁴Medical College of Wisconsin, Milwaukee, WI, USA; ¹⁵Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain; ¹¹Guniversity Hospital of Würzburg, Würzburg, Germany, Würzburg, Germany; ¹³Janssen Research & Development, Spring House, PA, USA; ¹³Isanssen Research & Development, Antwerp, Belgium; ¹³Janssen Research & Development, Los Angeles, CA, USA; ²⁰Janssen Research & Development, Raritan, NJ, USA; ²¹Freiburg University Medical Center, Freiburg, Germany; ²²Mount Sinai School of Medicine, New York, NY, USA

https://www.congresshub.com/Oncology/ EHA2022/Talquetamab/Donk

The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.



Presented at the European Hematology Association (EHA) 2022 Hybrid Congress; June 9–12, 2022; Vienna, Austria.

TRIMM-2: Cytokine Release Syndrome

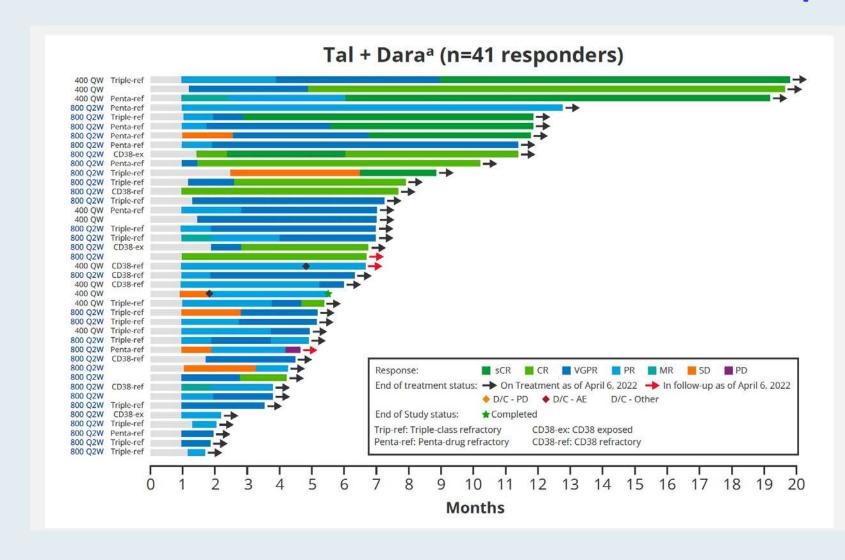
Parameter	Tal 400 µg/kg QW + dara (n=14)	Tal 800 μg/kg Q2W + dara (n=44)
Patients with CRS, n (%)	10 (71.4)	34 (77.3)
Time to onset (days) ^a , median (range)	3 (2-4)	2 (1-4)
Duration (days), median (range)	2 (1–10)	2 (1–28)
Received supportive measures ^b , n (%)	9 (64.3)	30 (68.2)
Tocilizumab ^c	6 (42.9)	14 (31.8)
Corticosteroids	0	2 (4.5)
Oxygen	0	3 (6.8)
Vasopressor	0	0
Other ^d	7 (50.0)	30 (68.2)

- No grade 3/4 CRS events were observed
- CRS events were mostly confined to step-up doses and the first full treatment dose
- No discontinuations due to CRS
- Two patients had ICANS; both ICANS events were grade 1 and resolved within 1 day

TRIMM-2: Overall Response Rate

	Evaluable patients ^a		
Parameter	Tal 400 µg/kg QW + dara (n=14)	Tal 800 µg/kg Q2W + dara (n=37)	
Follow-up, median (range)	6.7 months (1.9–19.6)	4.2 months (0.2–12.3)	
ORR ^b , n (%)	10 (71.4)	31 (83.8)	
CR/sCR	4 (28.6)	11 (29.7)	
VGPR	4 (28.6)	13 (35.1)	
PR	2 (14.3)	7 (18.9)	
SD	4 (28.6)	4 (10.8)	
PD	0	2 (5.4)	
Time to first confirmed response, median (range)	1.0 month (0.9–2.4)	1.0 month (0.9–6.5)	

With overall median follow-up of
 5.1 months, the ORR was 80.4% (41/51) among all response-evaluable patients


- VGPR or better: 62.7% (32/51)

- CR or better: 29.4% (15/51)

• ORR in patients with prior anti-CD38 exposure: 77.3% (34/44)

TRIMM-2: Duration of Response

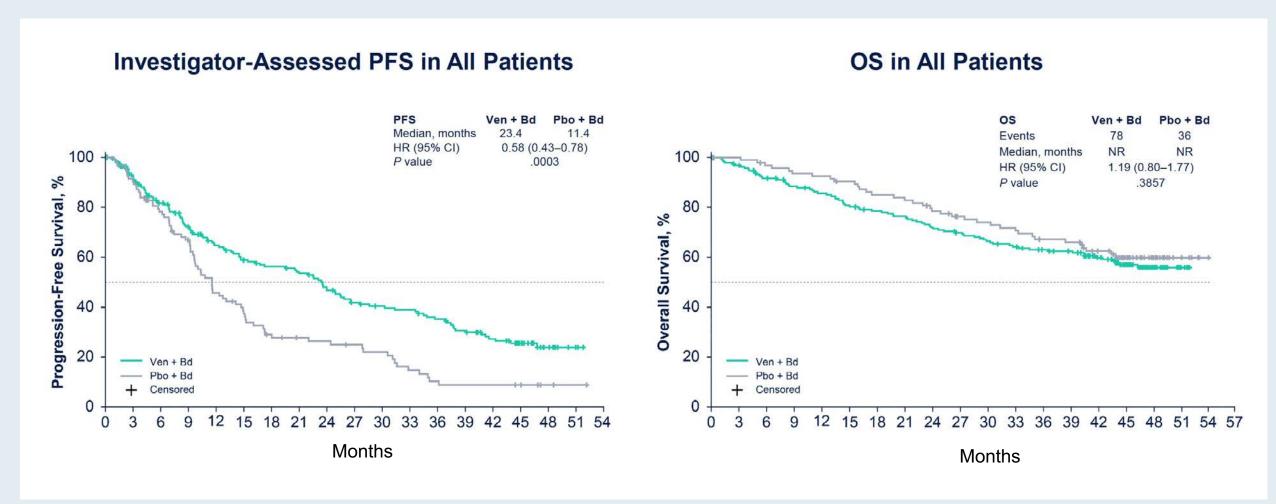
- Responses were observed in heavily pretreated patients, the majority of whom were anti-CD38 refractory
- Responses were durable and deepened over time
- Median duration of response was not reached
- With a median follow-up in responders of 6.5 months (range: 1.6–19.6), 90.2% of responders (37/41) remained on treatment

MonumenTAL-3 Phase III Study Design

Talquetamab SC + **Estimated enrollment (N = 810)** daratumumab, pomalidomide, Multiple myeloma dexamethasone Relapsed or refractory disease Received at least 1 prior line of Daratumumab, pomalidomide, R antimyeloma therapy, including a dexamethasone proteasome inhibitor and lenalidomide Patients who received only 1 line of therapy must be considered lenalidomide refractory Talquetamab SC + Patients who received ≥2 lines of therapy daratumumab SC must be considered lenalidomide exposed

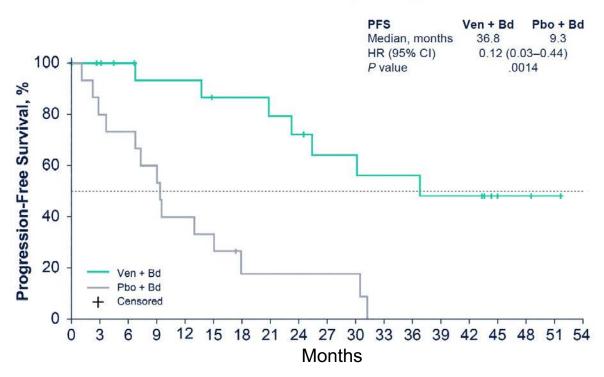
Primary endpoint: Progression-free survival

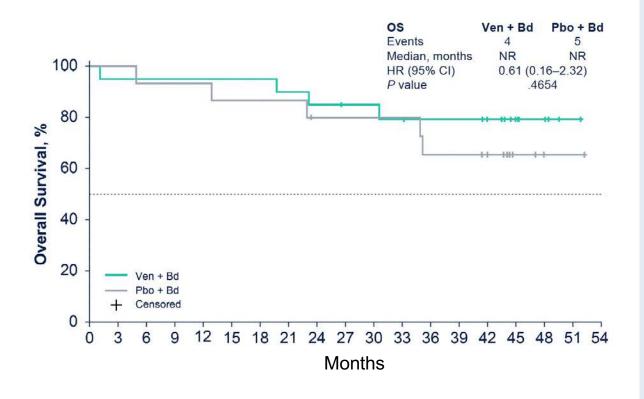
Final Overall Survival Results from BELLINI, a Phase 3 Study of Venetoclax or Placebo in Combination With Bortezomib and Dexamethasone in Relapsed/Refractory Multiple Myeloma


ASH 2021; Abstract 84.

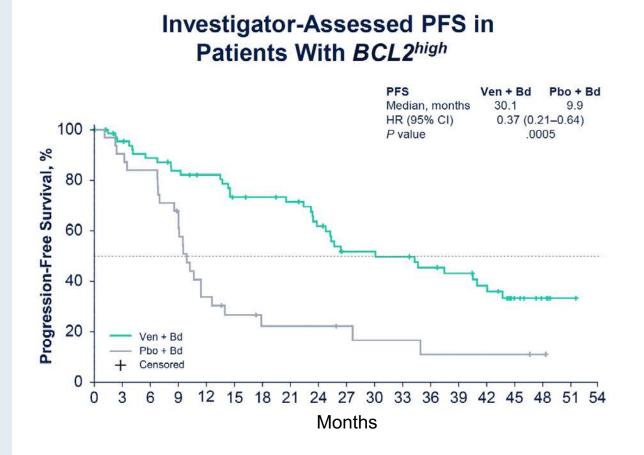
Shaji K. Kumar,¹ Simon J. Harrison,² Michele Cavo,³ Javier de la Rubia,⁴ Rakesh Popat,⁵ Cristina Gasparetto,⁶ Vania Hungria,⁷ Hans Salwender,⁸ Kenshi Suzuki,⁹ Inho Kim,¹⁰ Maika Onishi,¹¹ Grace Ku,¹¹ Rajvineeth Pothacamury,¹² Vasudha Sehgal,¹² Abdullah Masud,¹² Jeremy A. Ross,¹² Edyta Dobkowska,¹³ and Philippe Moreau¹⁴

¹Mayo Clinic, Rochester, MN, USA; ²Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia; ³IRCCS Azienda Ospedaliero-Universitaria di Bologna, Seragnoli Institute of Hematology, Bologna University School of Medicine, Bologna, Italy; ⁴Hematology Service Hospital La Fe and School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain; ⁵University College Hospitals, London, United Kingdom; ⁶Duke University Medical Center, Durham, NC, USA; ⁷Clinica São Germano, São Paulo, Brazil; ⁸Asklepios Tumorzentrum Hamburg, AK Altona and AK St Georg, Hamburg, Germany; ⁹Japanese Red Cross Medical Center, Tokyo, Japan; ¹⁰Seoul National University, Seoul, South Korea; ¹¹Genentech, Inc, South San Francisco, CA, USA; ¹²AbbVie, Inc, North Chicago, IL, USA; ¹³Pharmacyclics Switzerland GmbH, An AbbVie Company, Schaffhausen, Switzerland; ¹⁴University Hospital, Nantes, France

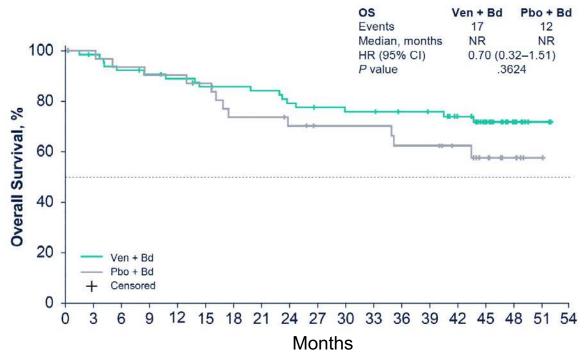

BELLINI: Investigator-Assessed PFS and OS in All Patients (Median Follow-Up: 45.6 Months)



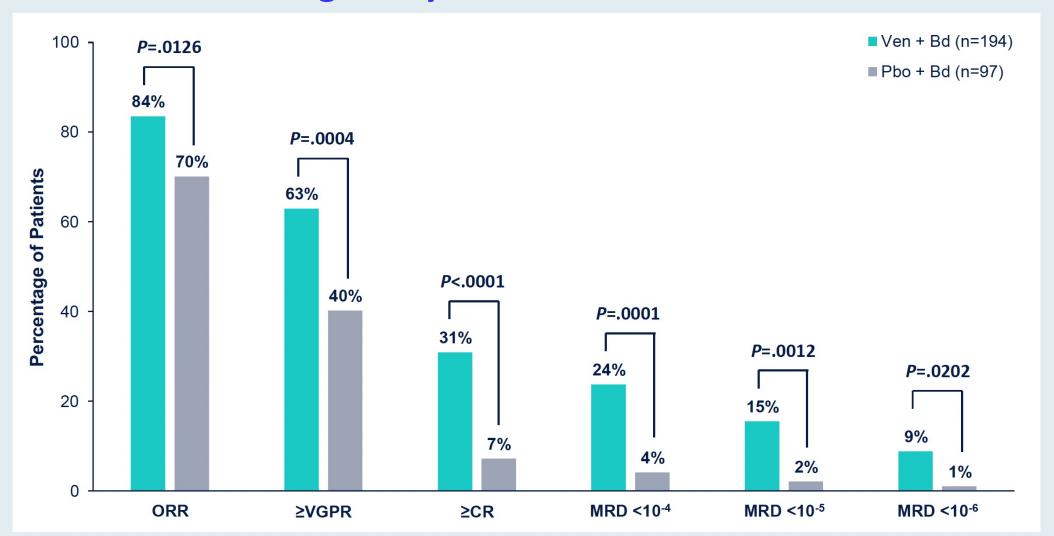
BELLINI: Updated PFS and OS in Patients with t(11;14)



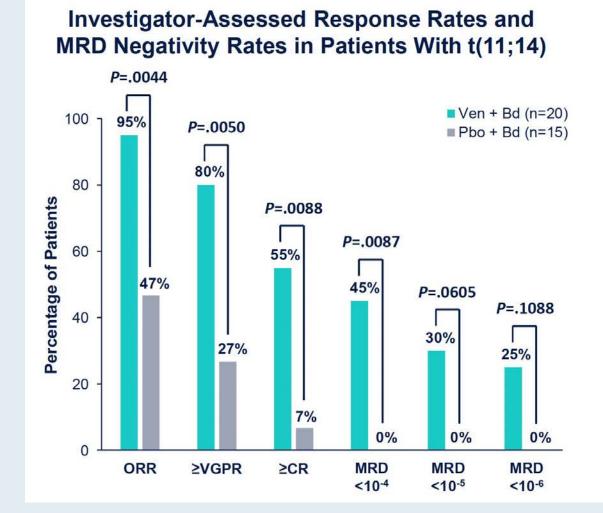
OS in Patients With t(11;14)

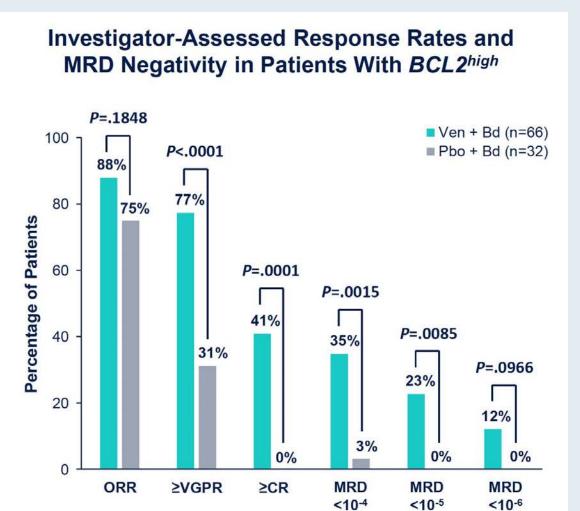


BELLINI: Updated PFS and OS in Patients with High BCL2 Expression

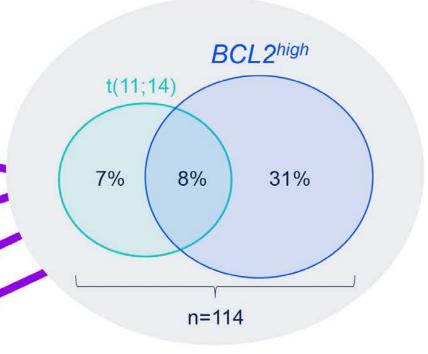


OS in Patients With BCL2high




BELLINI: Investigator-Assessed Response Rates and MRD Negativity Rates in All Patients

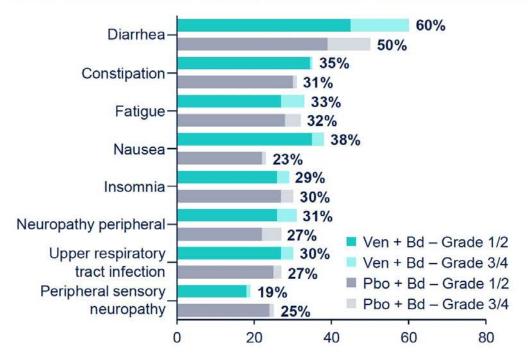
BELLINI: Response and MRD Negativity Rates in Patients with t(11;14) or High BCL2 Expression

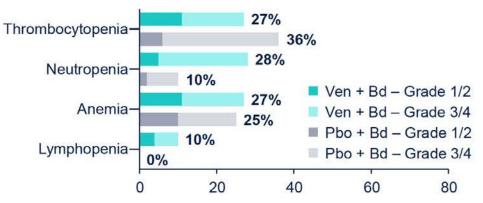


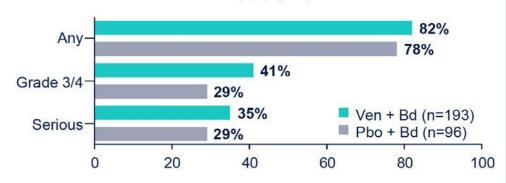
BELLINI: PFS Improvements in Patients with t(11;14) or High BCL2 Expression

Hazard Ratios for PFS and OS by BCL2 Expression and t(11;14)

	Pati	ents	PFS	6	os	
	Ven + Bd (n)	Pbo + Bd (n)	HR (95% CI)	P value	HR (95% CI)	P value
t(11;14) or <i>BCL2</i> ^{high}	74	40	0.32 (0.20–0.53)	<.0001	0.82 (0.40–1.70)	NS
t(11;14)	20	15	0.12 (0.03–0.44)	.0014	0.61 (0.16–2.32)	NS
BCL2 ^{high}	66	32	0.37 (0.21–0.64)	.0005	0.70 (0.32–1.51)	NS
Non-t(11;14) and BCL2 ^{high}	51	24	0.48 (0.26–0.90)	.0215	0.86 (0.35–2.12)	NS


BELLINI Biomarker Subgroups^a (n=240)


BELLINI: Adverse Event Rates



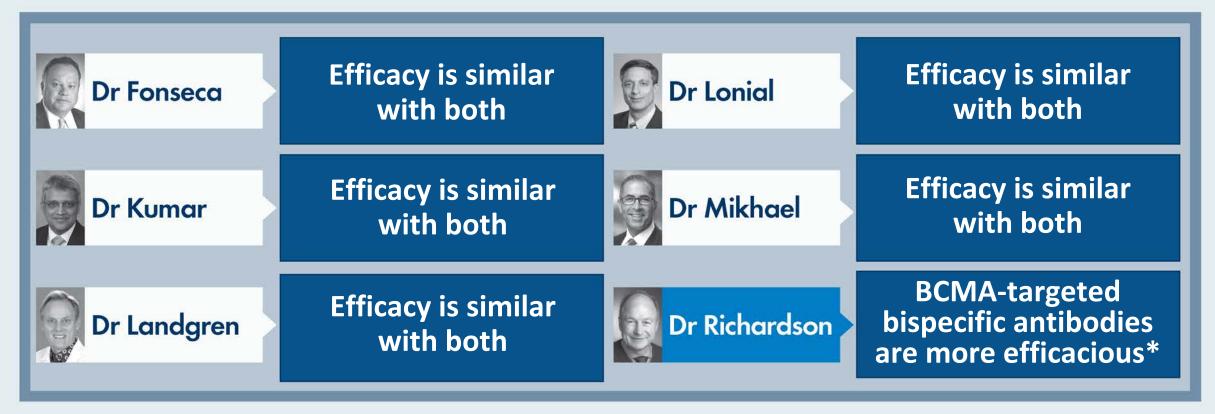
 Overall, 51 patients (26%) in the Ven + Bd arm and 11 patients (11%) in the Pbo + Bd arm discontinued Ven or Pbo due to AEs

Most Common Hematologic AEs

Infections

BELLINI: Treatment-Emergent Deaths

Deaths


n (%)	Ven + Bd (n=193)	Pbo + Bd (n=96)
All deaths	77 (40)	36 (38)
Treatment-emergent deaths ^a	14 (7) ^b	2 (2)
Any AE	12 (6)	1 (1)
Deaths occurring while still receiving study drug	0	0
Infection	9 (5)	0
Progressive disease	2 (1)	1 (1)
Non-treatment-emergent deaths	63 (33)	34 (35)

Faculty Survey

Based on your personal clinical experience and knowledge of available data, how would you compare the <u>efficacy</u> of BCMA-targeted bispecific antibodies (eg, teclistamab) to that of non-BCMA-targeted bispecific antibodies (eg, talquetamab) for patients with R/R MM?

^{*}More experience with BCMA-targeted bispecific antibodies, and non-BCMA approaches may be as efficacious, but my impression is BCMA-targeted is more active.

Based on your personal clinical experience and knowledge of available data, how would you compare the <u>tolerability</u> of BCMA-targeted bispecific antibodies (eg, teclistamab) to that of non-BCMA-targeted bispecific antibodies (eg, talquetamab) for patients with R/R MM?

Oncology Today with Dr Neil Love — Novel Agents and Strategies in Acute Myeloid Leukemia

A CME/MOC-Accredited Virtual Event

Thursday, November 17, 2022 5:00 PM - 6:00 PM ET

Faculty
Daniel A Pollyea, MD, MS

Moderator Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

