The Clinical Implications of Key Recent Data Sets in Oncology: A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists

A CME/MOC- and NCPD-Accredited Event

Saturday, October 22, 2022 7:30 AM - 5:30 PM ET

Agenda

- **Module 1** Lung Cancer: Drs Langer and Lovly
- Module 2 Chronic Lymphocytic Leukemia and Lymphomas:

 Drs LaCasce and Smith
- **Module 3 Prostate and Bladder Cancers:** *Drs Morgans and Yu*
- **Module 4 Renal Cell Carcinoma:** *Prof Powles*
- **Module 5 Multiple Myeloma:** *Dr Usmani*
- **Module 6 Hepatobiliary Cancers:** *Dr Abou-Alfa*

Agenda

Module 7 — **Breast Cancer:** *Drs Goetz and Krop*

Module 8 — Endometrial Cancer: Dr Westin

Module 9 — Ovarian Cancer and PARP Inhibitors: *Dr O'Malley*

Module 10 — Gastrointestinal Cancers: Drs Messersmith and Strickler

Module 11 — **Melanoma:** *Prof Long*

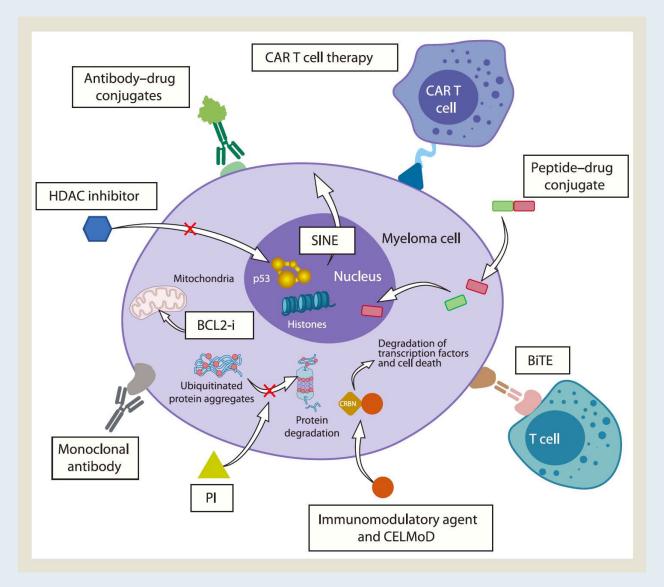
Multiple Myeloma Faculty

Saad Zafar Usmani, MD, MBA Chief of Myeloma Service Memorial Sloan Kettering Cancer Center New York, New York

Multiple Myeloma Agenda

MODULE 1: BCMA-Directed Therapies in MM

MODULE 2: Up-Front Treatment of Newly Diagnosed MM


Multiple Myeloma Agenda

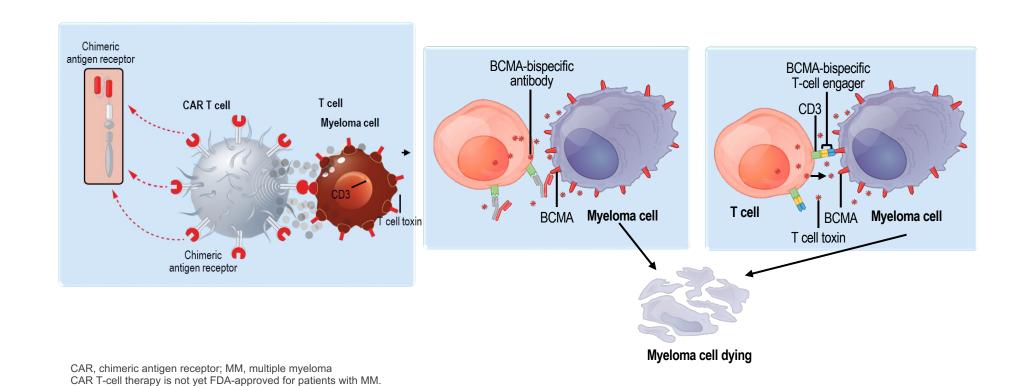
MODULE 1: BCMA-Directed Therapies in MM

MODULE 2: Up-Front Treatment of Newly Diagnosed MM

Mechanisms of Action of Drug Classes for the Treatment of Refractory Multiple Myeloma

Discussion Questions

What are the current targets of treatment for MM?



Bispecific Antibodies and CAR T-Cell Therapies in MM.

Saad Z. Usmani, MD MBA FACP Chief of Myeloma Service

The Promise of T-cell redirection

Adapted from Cho S-F et al. Front Immunol. 2018;9:1821.

BCMA Bispecific Antibodies (ASH 2021 Updates)

	Teclistamab ¹	Elranatamab ²	TNB-383B ³	REGN5458 ⁴	
Schedule	Weekly SC	Weekly SC or Q2W SC	IV q3W	Weekly IV	
Patients	165	55	118	73	
Median prior lines	5	6	5	5	
Triple Class and Penta Refractory	78% and 30%	91% and NA	61% and NA	89% and 38%	
Prior BCMA	No	22%	No	No	
CRS, All (Gr 3/4)	72% (0.6%)	87% (0%)	54% (3%)	38% (0%)	
ICANS, All (Gr 3/4)	3% (0%)	NA	2% (NA)	4% (0%)	
ORR at higher doses	62%	69% 70% in prior BCMA	60%	75%	
CR at higher doses	29%	Not reported	20%	16%	

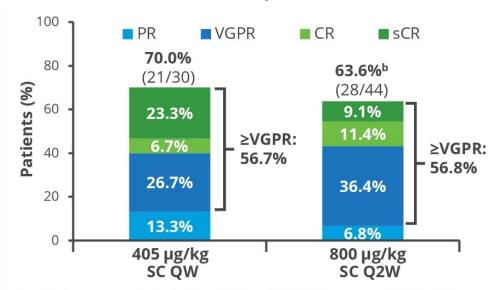
^{1.} Moreau et al. Abstract #896; 2.Sebag et al. Abstract #895; 3. Kumar et al. Abstract #900; 4. Zonder et al. Abstract #160 (ASH 2021)

Teclistamab-Daratumumab Combination

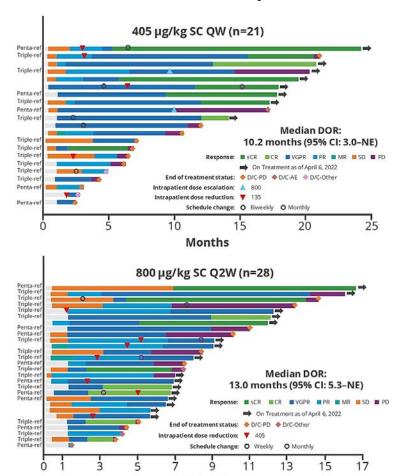
	Teclistamab + Daratumumab
Schedule	Weekly & Q2W SC
Patients	37
Median prior lines	5
Prior BCMA	19%
CD38 refractory	60%
Triple Class and Penta Refractory	54% and 19%
CRS, All (Gr 3/4)	65% (0%)
ICANS, All (Gr 3/4)	3% (0%)
ORR at higher doses	82%
CR at higher doses	27%

Rodriguez-Otero et al. ASH 2021 Annual Meeting.

MajesTEC Trials


- Majest-TEC-2: A Multi-arm Phase 1b Study of Teclistamab With Other Anticancer Therapies in Participants With Multiple Myeloma
- Majest-TEC-3: Phase III Study of Teclistamab in Combination With Daratumumab Subcutaneously (SC) (Tec-Dara) Versus Daratumumab SC, Pomalidomide, and Dexamethasone (DPd) or Daratumumab SC, Bortezomib, and Dexamethasone (DVd) in Participants With Relapsed or Refractory Multiple Myeloma
- MajesTEC-4: Phase III Study of Teclistamab in Combination With Lenalidomide Versus Lenalidomide Alone in Participants With Newly Diagnosed Multiple Myeloma as Maintenance Therapy Following Autologous Stem Cell Transplantation
- MajesTEC-7: Phase III Study to Compare Teclistamab in Combination With Daratumumab and Lenalidomide (Tec-DR) in Participants With Newly Diagnosed Multiple Myeloma

Talquetamab: A GPRC₅D × CD₃ bispecific antibody


- Median age, years: 405 μ g/Kg 61.5 (46-80); 800 μ g/Kg 64 (47-84)
- Median PL: 6; 5
- High-risk cytogenetics: 3 (11.1%); 9 (22.5%)
- Triple-class refractory: 23 (76.7%); 34 (77.3%)
- CRS: all grade 23 (76.7%), grade 3 1 (3.3%); 35 (79.5%), grade 3 0

Overall response ratea

^aInvestigator assessment of evaluable patients per 2011 IMWG response criteria; includes unconfirmed responses. ^bDue to rounding, individual response rates do not sum to the ORR. CR, complete response; IMWG, International Myeloma Working Group; PR, partial response; sCR, stringent complete response; VGPR, very good partial response

Duration of response

D/C, discontinued; DOR, duration of response; NE, not estimable; MR, minimal response; PD, progressive disease; Penta-ref, penta-drug refractory; SD, stable disease; Triple-ref, triple-class refractory

Months

Minnema M et al. EHA 2022; abstract S182 (oral presentation)

TRIMM-2: Talquetamab and daratumumab

Tal	Dara SC	Patients enrolled to date (n)
800 μg/kg SC Q2W	1800 mg SC Cycles 1–2: QW	44
400 μg/kg SC QW	Cycles 3–6: Q2W Cycles 7+: monthly	14

Analysis cutoff date: 06 April 2022

- Median age, years: $400 \mu g/Kg 68 (50-77); 800 \mu g/Kg 62 (44-81)$
- Median PL: 6: 5
- High-risk cytogenetics: 1 (10.0%); 5 (19.2%)
- Triple-class refractory: 8 (57.1%); 28 (63.6%)
- Anti-CD38 mAb refractory: 11 (78.6%); 33 (75.0%)

	Evaluable patients ^a			
Parameter	Tal 400 μg/kg QW + dara (n=14)	Tal 800 μg/kg Q2W + dara (n=37)		
Follow-up, median (range)	6.7 months (1.9–19.6)	4.2 months (0.2–12.3)		
ORRb, n (%)	10 (71.4)	31 (83.8)		
CR/sCR	4 (28.6)	11 (29.7)		
VGPR	4 (28.6)	13 (35.1)		
PR	2 (14.3)	7 (18.9)		
SD	4 (28.6)	4 (10.8)		
PD	0	2 (5.4)		
Time to first confirmed response, median (range)	1.0 month (0.9–2.4)	1.0 month (0.9–6.5)		

^aResponse-evaluable patients had received ≥1 study treatment and had ≥1 postbaseline response evaluation by the investigator. ^bPR or better in response-evaluable patients; includes unconfirmed responses.

- Median follow-up 5.1 months
- CRS all grades: 10 (71.4%); 34 (77.3%); Grade 3/4 0; 0
- ICANS: 2 patients, both grade 1 and resolved within 1 day
- Dysgeusia, all grades: 10 (71.4%), grade 3/4 NA; 26 (59.1%), grade 3/4 NA. Dry mouth, all grades: 10 (71.4%), grade 3/4 0; 18 (40.9%), grade 3/4 0
- 31 patients (53.4%) had infections (grade ≥3: 17.2%)
- Skin- and/or nail-related AEs: 81.0 % (47/58) patients

CR, complete response; CRS, cytokine release syndrome; dara, daratumumab; ICANS, immune effector cell-associated neurotoxicity syndrome; mAb, monoclonal antibody; ORR, overall response rate; PL, prior lines of treatment; PR, partial response; QW/Q2W, weekly/every 2 weeks; SC, subcutaneous; sCR, stringent CR; SD, stable disease; Tal, talguetamab; VGPR, very good partial response

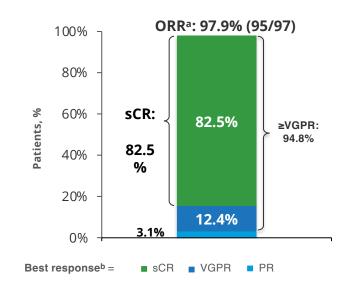
alnoluding a PI and an IMiD. b1-3 step-up doses given within 1 week before a full dose. cGlucocorticoid, antihistamine, and antipyretic.

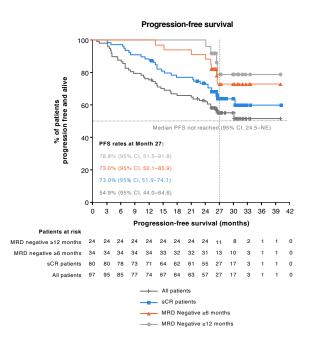
BCMA CARTs: Summary

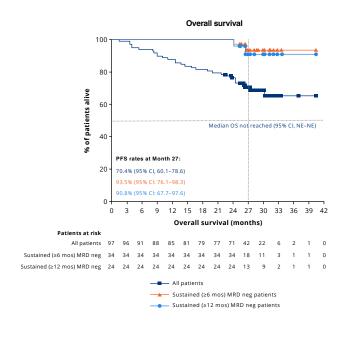
	CARTITUDE-1 ¹ Cilta-cel Phase 1/2	CRB-401 ² Ide-cel Phase 1	KarMMa ³ Ide-cel Phase 2	LUMMICAR-2 ⁴ Zivo-Cel Phase 1b	PRIME ⁵ P-BCMA-101 Phase 1/2	GC012F ⁶ Dual CAR-T BCMA+CD19
Patients	97	62	128	20	55	19
Median prior regimens	6	6	6	5	8	5
Triple refractory, %	87.6%	69.4%	84.0%	85%	60%	95%
CAR-T dose	0.71×10 ⁶ (range 0.5– 0.95×10 ⁶)	50, 150, 450 and 800 x 10 ⁶	150, 300, 450 x10 ⁶	1.5-1.8/2.5-3.0 x10 ⁸	0.75-15 x10 ⁶	1.0-3.0 x10 ⁵
ORR	97.9%	75.8%	50%/69%/82.0%	94.0%	67 % b	94.7%
CR/sCR	80.4%	38.7%	25%/29%/39%	28%	NR	84.2%
PFS	66%@ 18m	8.8m	12m @450mil			
CRS, all grades	94.8%	75.8%	50%/76%/96%	77%/83% ^a	17%	95%
CRS, grade 3/4	4%	6.5%	0/7%/6%	0%	0%	11%
Neurotoxicity, all grades	20.6%	35.5%	0/17%/20%	15%/17%ª	3.8%	0%
Neurotoxicity, grade 3/4	10.3%	1.6%	0/1%/6%	8%/0ª	3.8%	0%

^a1.5-1.8/2.5-3.0 x10⁸ dose, ^b0.75x10⁶ dose

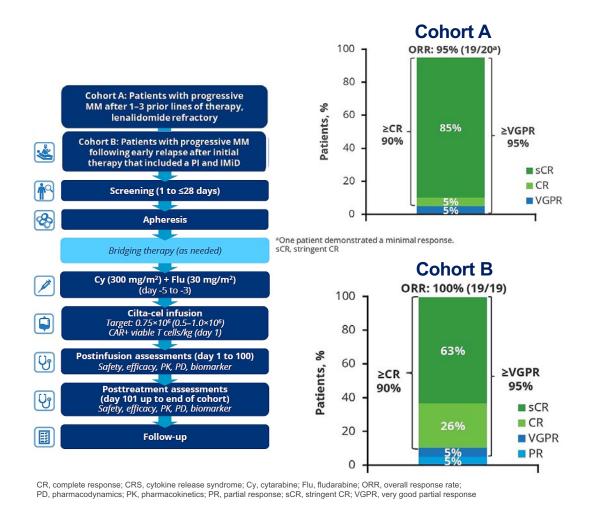
BCMA, B-cell maturation antigen; CAR-T, chimeric antigen receptor T-cell therapy; CRS, cytokine release syndrome; NR, not reported


^{1.} Usmani et al., ASCO 2021: Abstract 8005; 2. Lin et al., ASH 2020: Abstract 131;


^{3.} Anderson et al., ASCO 2021: Abstract 130; 4. Kumar et al., ASH 2020: Abstract 133;


^{5.} Costello et al., ASH 2020: Abstract 134; 6. Jiang et al., ASCO 2021: Abstract 8014

CARTITUDE-1: Efficacy


- Median PFS and OS were not reached
- Patients who achieved sCR had improved PFS compared with the overall population
- Of 61 patients evaluable for MRD, 91.8% were MRD-negative at (10⁻⁵)
- Patients with sustained MRD negativity (10⁻⁵) for ≥6 and ≥12 months had improved PFS and OS compared with the overall population

^aORR assessed by independent review committee. ^bNo patient had CR or stable disease. CAR, chimeric antigen receptor; DOR, duration of response; ISS, International Staging System; MRD, minimal residual disease;

NE, not estimable; ORR, overall response rate; OS, overall survival; PR, partial response; PFS, progression-free survival; sCR, stringent CR; VGPR, very good partial response

Using CAR T-cell therapy at earlier lines of therapy: CARTITUDE-2

AEs ≥20%, n (%)	N=20		
AES 220%, II (%)	Any Grade	Grade 3/4	
Hematologic			
Neutropenia	19 (95)	19 (95)	
Thrombocytopenia	16 (80)	7 (35)	
Anemia	15 (75)	9 (45)	
Lymphopenia	14 (70)	14 (70)	
Leukopenia	11 (55)	11 (55)	
CAR-T–related AEs			
CRS	19 (95)	2 (10)	
Neurotoxicity	6 (30)	1 (5)	
ICANS	3 (15)	0	
Other	3 (15) ^a	1 (5)	

^aOne patient had peripheral sensorimotor neuropathy, one had anosmia and dysgeusia, and one had facial paralysis.

AEs ≥20%, n (%)	N=	N=19		
AES 220%, II (%)	Any Grade	Grade 3/4		
Hematologic				
Neutropenia	18 (95)	17 (90)		
Anemia	11 (58)	9 (47)		
Thrombocytopenia	11 (58)	5 (26)		
Lymphopenia	6 (32)	6 (32)		
Leukopenia	5 (26)	5 (26)		
CAR-T–related AEs	5-5 S			
CRS	16 (84)	1 (5)		
Neurotoxicity	5 (26)	1 (5)		
ICANS	1 (5)	0		
Other	4 (21)	1 (5)		
Parkinsonism	1 (5)	1 (5)		

Ongoing CAR T Trials

KarMMa-2

Phase 2 study NCT03601078 Ide-cel in early relapse + highrisk or late relapsed MM

KarMMa-3

Phase 3 study NCT03651128 Ide-cel vs standard regimens in RRMM after 2 – 4 prior lines

KarMMa-4

Phase 1 study NCT04196491 Ide-cel in high-risk NDMM

KarMMa-7

Phase 1/2 study NCT04855136 Ide-cel in combination with various agents in RRMM

CARTITUDE-4

Phase 3 study NCT04181827 Cilta-cel vs DPd or PVd in RRMM after 1 – 3 prior lines

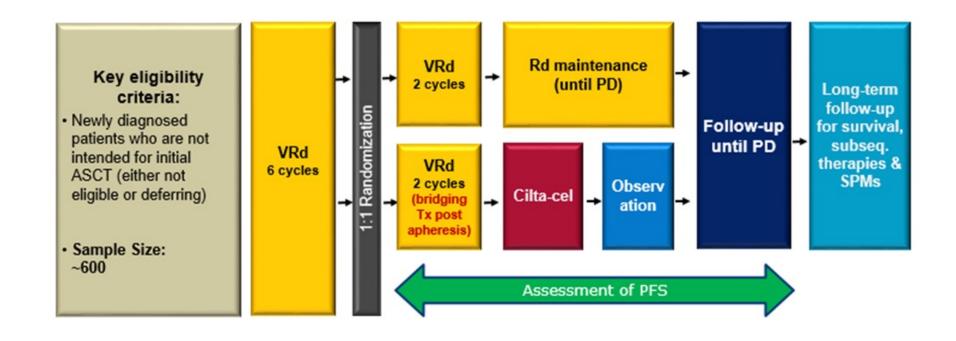
CARTITUDE-5

Phase 3 study NCT04923893

VRd + Cilta-cel vs VRd + Rd maintenance in transplant-ineligible NDMM

CARTITUDE-6

Phase 3 study NCT04923893


DVRd + Cilta-cel vs DVRd + AutoSCT in transplant-eligible NDMM

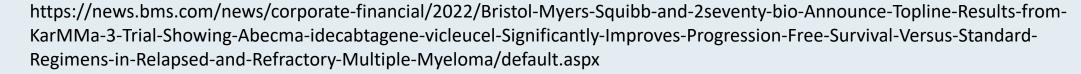
Phase 1 development

Many agents in early development with various constructs.

CARTITUDE-5: Randomized, phase 3 in NDMM, not intended for transplant

Discussion Questions

- Regulatory and reimbursement issues aside, what do you believe is the ideal time to integrate bispecifics into the MM treatment algorithm?
- What are the key tolerability issues with bispecifics, and which patients have adequate fitness to be treated?
- In the (near) future, do believe bispecifics will be given in the community setting?
- What is the optimal sequence of bispecifics and CAR T-cell therapy now and in the future?
- At the present time, how do you compare the efficacy and tolerability of the two approved CAR T-cell platforms? Does your approach change in patients with prior CNS disease (eg, Parkinson's)?

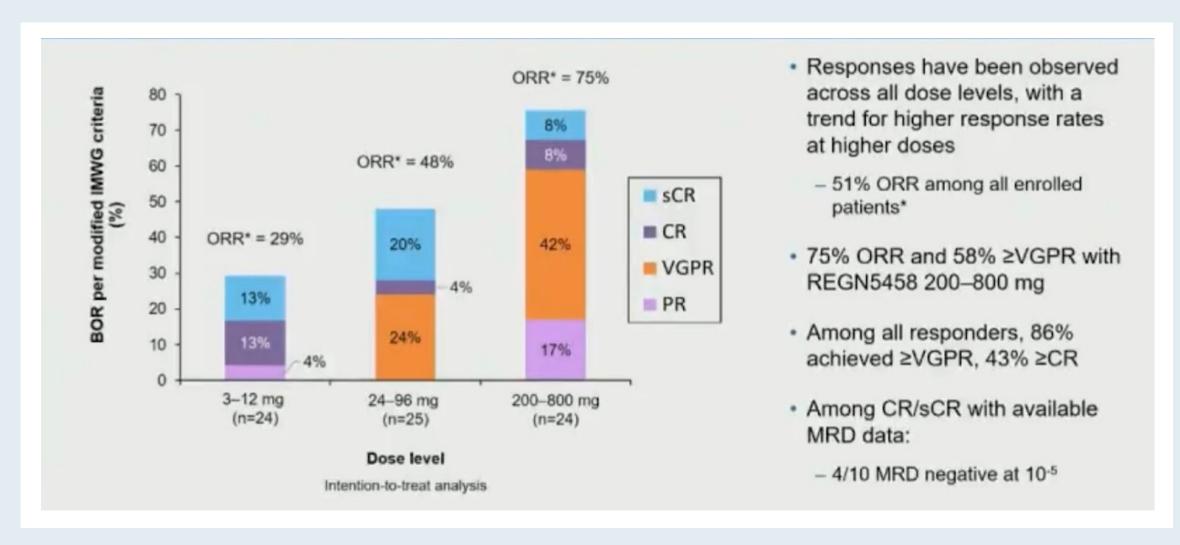


Topline Results from KarMMa-3: Idecabtagene Vicleucel Significantly Improves PFS for Relapsed and Refractory Multiple Myeloma Press Release: August 10, 2022

Positive topline results were announced from KarMMa-3, a Phase III, global, randomized, multicenter, open-label study evaluating idecabtagene vicleucel compared to standard combination regimens for adults with multiple myeloma that is relapsed and refractory after 2 to 4 prior lines of therapy and refractory to the last regimen.

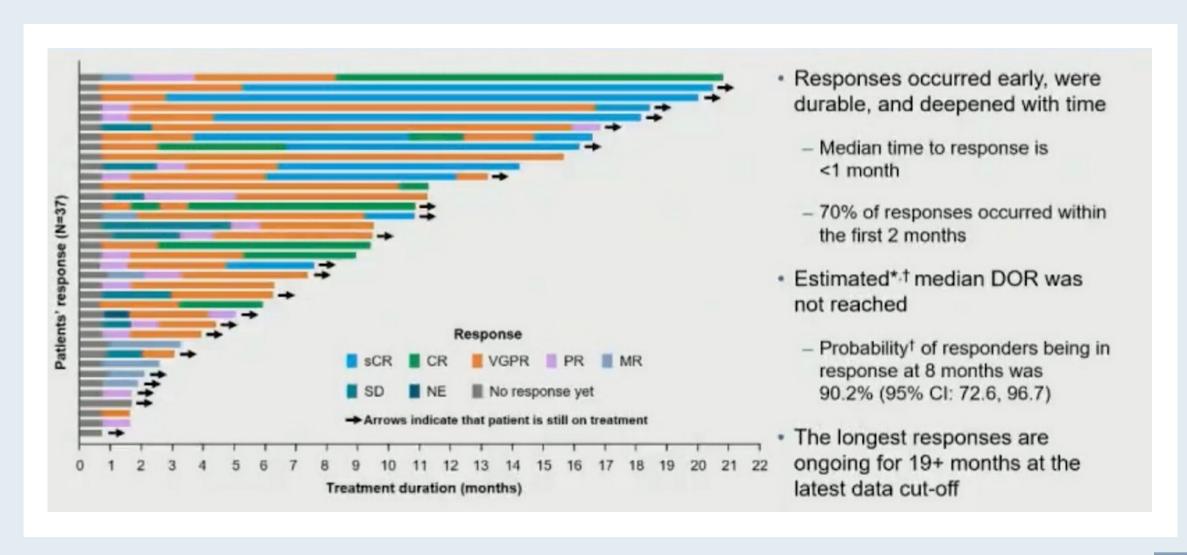
"KarMMa-3 is the first randomized clinical trial to evaluate a CAR T cell therapy in multiple myeloma. Results of a pre-specified interim analysis conducted through an independent review committee showed that KarMMa-3 met its primary endpoint of demonstrating a statistically significant improvement in progression-free survival. Treatment with idecabtagene vicleucel also showed an improvement in the key secondary endpoint of overall response rate compared to standard regimens. Follow-up for overall survival, a key secondary endpoint, remains ongoing.

Safety results in the trial were consistent with the well-established and predictable safety profile of idecabtagene vicleucel previously demonstrated in the pivotal KarMMa trial. No new safety signals were reported in this study."


LINKER-MM1 — Early, Deep, and Durable Responses, and Low Rates of Cytokine Release Syndrome with REGN5458, a BCMA x CD3 Bispecific Antibody, in a Phase 1/2 Study in Patients with Relapsed/Refractory Multiple Myeloma

Zonder JA et al.

International Myeloma Society Meeting 2022; Abstract OAB-056.


LINKER-MM1: Phase I Efficacy with REGN5458

ORR = overall response rate

LINKER-MM1: Duration of Response with REGN5458

LINKER-MM1: Safety with REGN5458

	Total (N=73)		
	Any grade	Grade 3	Grade 4
All treatment-emergent adverse events (TEAEs) n (%)			
Any	73 (100)	31 (42)	24 (33)
Hematologic TEAEs, in ≥20% of patients (any grade) n (%)			
Anemia	23 (32)	17 (23)	0
Lymphopenia	17 (23)	7 (10)	7 (10)
Neutropenia	17 (23)	5 (7)	11 (15)
Thrombocytopenia	15 (21)	6 (8)	4 (5)
Non-hematologic TEAEs, in ≥20% of patients (any grade) n (%)			
Fatigue	33 (45)	2 (3)	0
CRS	28 (38)	0	0
Pyrexia	26 (36)	3 (4)	0
Nausea	24 (33)	0	0
Dyspnea	19 (26)	0	0
Diarrhea	18 (25)	2 (3)	0
Back pain	18 (25)	4 (5)	0
Vomiting	18 (25)	0	0
Pneumonia	17 (23)	8 (11)	0
Chills	16 (22)	1 (1)	0
Cough	16 (22)	0	0
Headache	15 (21)	2 (3)	0

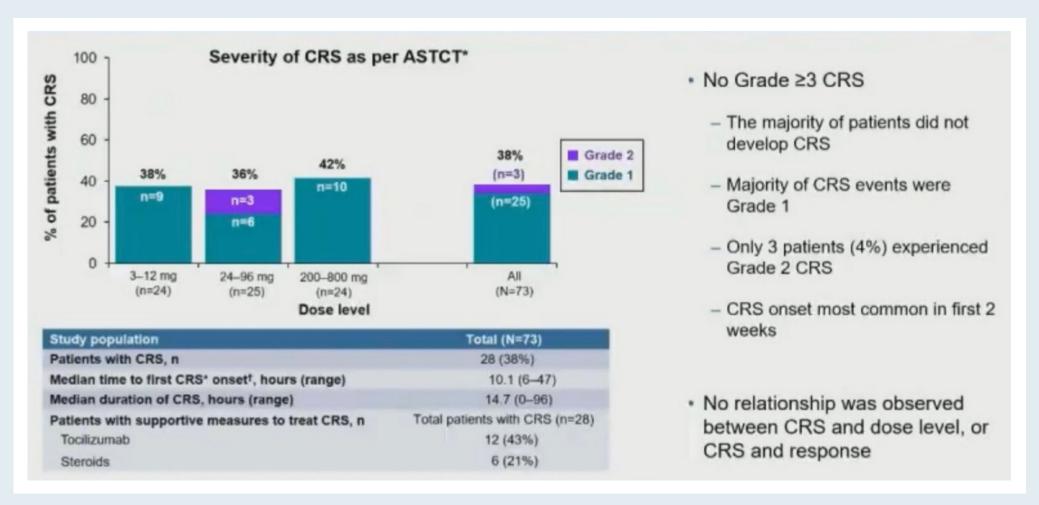
Dose-limiting toxicity (DLT)

- DLTs were reported in 2 patients
 - DL4 (24 mg) and DL6 (96 mg)
- Maximum-tolerated dose not reached

Potential ICANS events

- No Grade 3 ICANS events reported
- Grade 2 events occurred in 3 patients (4%)

Deaths


- 5 (7%) Grade 5 AEs were reported [sepsis (n=3); COVID (n=1); pneumonia (n=1)]
- All Grade 5 events were not related to study treatment

Pharmacokinetics

 REGN5458 serum concentration increased with dose, approximately dose proportionally

LINKER-MM1: Cytokine Release Syndrome with REGN5458

ASTCT = American Society for Transplantation and Cellular Therapy

2022 ASCO® Abstract 8019 ANNUAL MEETING

Synergistic Effects of Low-dose Belantamab Mafodotin in Combination with a Gamma-Secretase Inhibitor (Nirogacestat) in Patients with Relapsed/Refractory Multiple Myeloma (RRMM): DREAMM-5 Study

Poster No. 443

Speaker: Sagar Lonial, MD, FACP

Acknowledgments

This study was funded by GlaxoSmithKline (GSK Study 208887). Drug linker technology licensed from Seagen, Inc.; monoclonal antibody produced using POTELLIGENT Technology licensed from BioWa; nirogacestat (gammasecretase inhibitor) is manufactured and provided by SpringWorks Therapeutics as part of a collaborative agreement with GSK. On behalf of all authors, and with their permission, an audio recording was prepared by Sagar Lonial who did not receive any payment for this recording. Writing assistance was provided by Elisabeth Walsby, PhD and Sharon Bryant, DPT of Fishawack Indicia, part of Fishawack Health and funded by GSK.

Authors and Affiliations

Sagar Lonial, MD, FACP¹, Sebastian Grosicki, MD², Marek Hus, MD³, Kevin Song, MD⁴, Thierry Facon, MD⁵, Natalie S. Callander, MD⁶, Vincent Ribrag, MD⁷, Katarina Uttervall, MD⁸, Hang Quach, MD⁹, Vladimir Vorobyev, MD¹⁰, Chang-Ki Min, MD¹¹, Shinta Cheng, MD, PhD¹², L. Mary Smith, PhD¹², Jing Yu, PhD¹³, Therese Collingwood, PhD¹³, Beata Holkova, MD¹³, Brandon E. Kremer, MD, PhD¹³, Ira Gupta, MD¹³, Paul G. Richardson, MD¹⁴, Monique C. Minnema, MD, PhD¹⁵

¹Emory University, Winship Cancer Institute, Atlanta, GA, USA; ²Department of Hematology and Cancer Prevention, Medical University of Silesia, Katowice, Poland; ³Katedra i Klinika Hematoonkologii i Transplantacji Szpiku, Lublin, Poland; ⁴Vancouver General Hospital, Vancouver, BC, Canada; ⁵Department of Haematology, Lille University Hospital, Lille, France; ⁶University of Wisconsin, Carbone Cancer Center, Madison, WI, USA; ⁷Institut Gustave Roussy, Villejuif, France; ⁸Karolinska University Hospital, Stockholm, Sweden; ⁹University of Melbourne, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia; ¹⁰S P Botkin City Clinical Hospital, Moscow, Russia; ¹¹Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea; ¹²SpringWorks Therapeutics, Stamford, CT, USA; ¹³GlaxoSmithKline, Upper Providence, PA, USA; ¹⁴Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁵University Medical Center Utrecht, Utrecht, the Netherlands

Multiple Myeloma Agenda

MODULE 1: BCMA-Directed Therapies in MM

MODULE 2: Up-Front Treatment of Newly Diagnosed MM

Discussion Questions

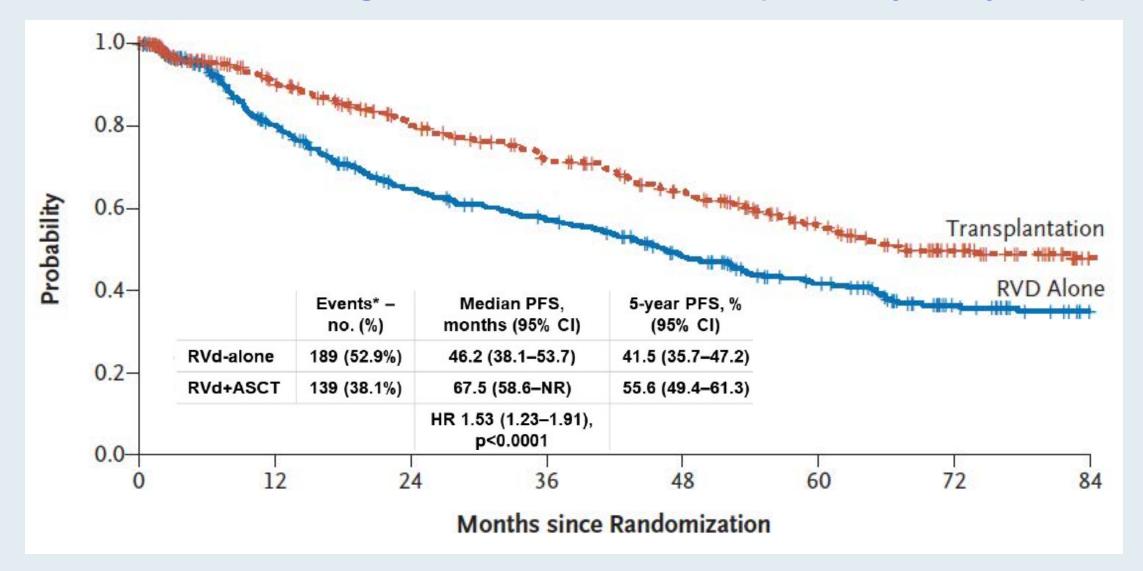
- Regulatory and reimbursement issues aside, in which situations do you favor the use of daratumumab as part of up-front treatment?
- For patients treated in the community setting, what, if any, is the role of MRD assays, and which assay?

RVd ± ASCT and Lenalidomide Maintenance to Progression for NDMM

The Phase 3 DETERMINATION Trial

Paul G. Richardson, MD, RJ Corman Professor of Medicine, Harvard Medical School Clinical Program Leader, Director of Clinical Research, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA The NEW ENGLAND JOURNAL of MEDICINE

N Engl J Med 2022 July 14;387(2):132-47.


ORIGINAL ARTICLE

Triplet Therapy, Transplantation, and Maintenance until Progression in Myeloma

P.G. Richardson, S.J. Jacobus, E.A. Weller, H. Hassoun, S. Lonial, N.S. Raje, E. Medvedova, P.L. McCarthy, E.N. Libby, P.M. Voorhees, R.Z. Orlowski,
L.D. Anderson, Jr., J.A. Zonder, C.P. Milner, C. Gasparetto, M.E. Agha, A.M. Khan, D.D. Hurd, K. Gowin, R.T. Kamble, S. Jagannath, N. Nathwani, M. Alsina, R.F. Cornell, H. Hashmi, E.L. Campagnaro, A.C. Andreescu, T. Gentile,
M. Liedtke, K.N. Godby, A.D. Cohen, T.H. Openshaw, M.C. Pasquini, S.A. Giralt, J.L. Kaufman, A.J. Yee, E. Scott, P. Torka, A. Foley, M. Fulciniti, K. Hebert, M.K. Samur, K. Masone, M.E. Maglio, A.A. Zeytoonjian, O. Nadeem, R.L. Schlossman, J.P. Laubach, C. Paba-Prada, I.M. Ghobrial, A. Perrot, P. Moreau, H. Avet-Loiseau, M. Attal, K.C. Anderson, and N.C. Munshi, for the DETERMINATION Investigators*



DETERMINATION: Progression-Free Survival (Primary Endpoint)

DETERMINATION: Overall Survival (Key Secondary Endpoint)

Thank you for joining us!

CME/MOC and NCPD credit information will be emailed to each participant within 5 business days.

