The Clinical Implications of Key Recent Data Sets in Oncology: A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists

A CME/MOC- and NCPD-Accredited Event

Saturday, October 22, 2022 7:30 AM - 5:30 PM ET

Agenda

- **Module 1 Lung Cancer**: *Drs Langer and Lovly*
- Module 2 Chronic Lymphocytic Leukemia and Lymphomas:

 Drs LaCasce and Smith
- **Module 3 Prostate and Bladder Cancers:** *Drs Morgans and Yu*
- **Module 4 Renal Cell Carcinoma:** *Prof Powles*
- Module 5 Multiple Myeloma: Dr Usmani
- **Module 6 Hepatobiliary Cancers:** *Dr Abou-Alfa*

Agenda

Module 7 — **Breast Cancer:** *Drs Goetz and Krop*

Module 8 — Endometrial Cancer: Dr Westin

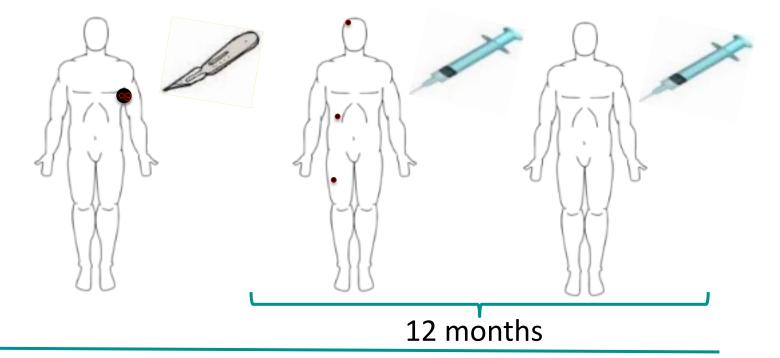
Module 9 — Ovarian Cancer and PARP Inhibitors: *Dr O'Malley*

Module 10 — Gastrointestinal Cancers: Drs Messersmith and Strickler

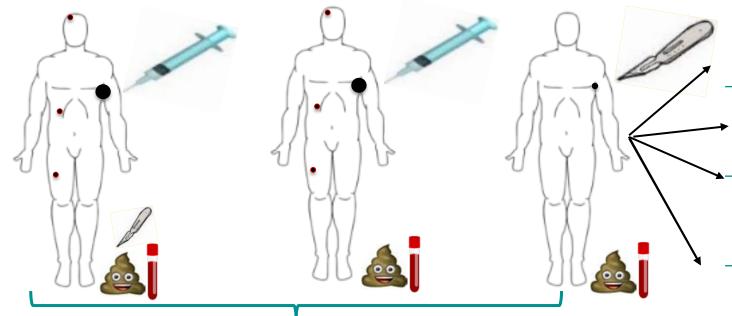
Module 11 — Melanoma: *Prof Long*

Melanoma Faculty

Prof Georgina Long, AO, BSc, PhD, MBBS
Co-Medical Director
Professor of Medical Oncology and Translational Research
Melanoma Institute Australia
Wollstonecraft, New South Wales, Australia


Neoadjuvant and Adjuvant Therapy Where are we now?

Georgina V Long Melanoma Institute Australia, The University of Sydney Royal North Shore and Mater Hospitals


Adjuvant

Neoadjuvant

6 weeks

Pathological Complete 0% TC

Pathological Near Complete ≤ 10% TC

Pathological Partial Respo >10%, ≤ 50% TC

No Pathological Response >50% TC

Outline

1. Adjuvant Therapy

- Efficacy Update
- BRAF targeted therapy vs Anti-PD1

2. Neoadjuvant Therapy

- The Neoadjuvant Platform Efficacy and Advantages
- Next Steps

Outline

1. Adjuvant Therapy

- Efficacy Update
- BRAF targeted therapy vs Anti-PD1

2. Neoadjuvant Therapy

- The Neoadjuvant Platform Efficacy and Advantages
- Next Steps

ORIGINAL ARTICLE

Adjuvant Dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma

G.V. Long, A. Hauschild, V. Chiarion-Sileni, J. Larkin, M L. Mortier, J. Schachter, D. Schad B. Mookerjee, J. Legos, R. The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma

J. Weber, M. Mandala, M. Del Vecchio, H.J. Gogas, A.M. Arance, C.L. Cowey, S. Dalle, M. Schenker, V. Chiarion-Sileni, I. Marquez-Rodas, J.-J. Grob, M.O. Butler,

12 Months of Treatment after Surgery RFS HR 0.47-0.57 ~50% reduction in risk of recurrence

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

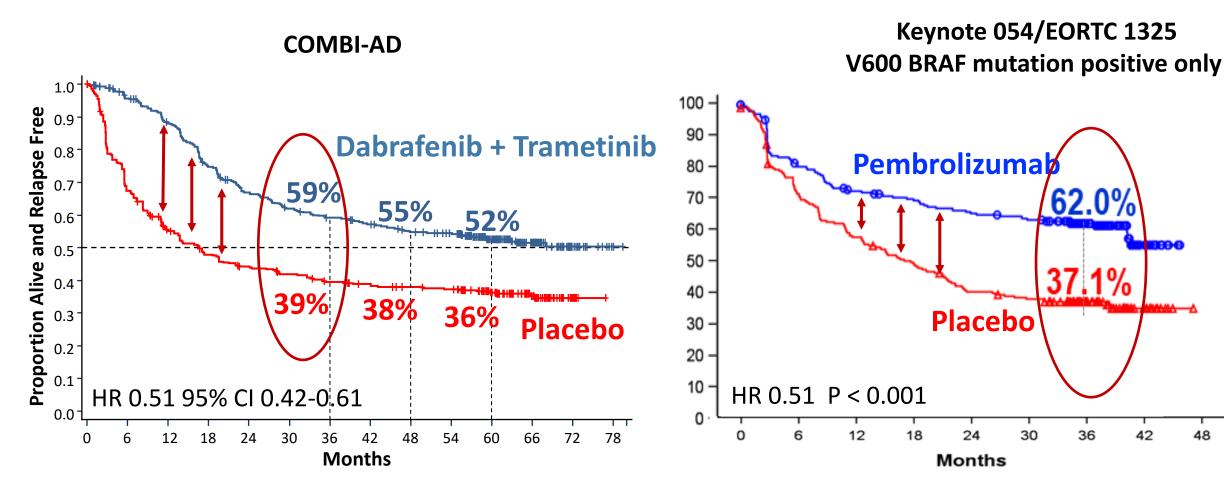
Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma

M.M. Eggermont, M.D., Ph.D., Christian U. Blank, M.D., Ph.D.,
ala, M.D., Georgina V. Long, M.D., P.D., Victoria Atkinson, M.D.,
Dalle, M.D., Andrew Haydon, M.D., Mikhail Lichinitser, M.D.,
k, M.D., Matteo S. Carlino, M.D., Ph.D., Shahneen Sandhu, M.D.,
kin, M.D., Susana Puig, M.D., Ph.D., Paolo A. Ascierto, M.D.,
iki, M.D., Dirk Schadendorf, M.D., Ph.D., Rutger Koornstra, M.D.,
nel Hernandez-Aya, M.D., Michele Maio, M.D., Ph.D.,
van den Eertwegh, M.D., Ph.D., Jean-Jacques Grob, M.D., Ph.D.,
1.D., Rahima Jamal, M.D., Paul Lorigan, M.D., Nageatte Ibrahim, M.D.,
aud, M.D., Alexander C.J. van Akkooi, M.D., Ph.D., Stefan Suciu, Ph.D.,
and Caroline Robert, M.D., Ph.D.

Adjuvant Phase 3 Clinical Trials for Resected Melanoma

Primary Analyses of Efficacy Endpoints

AJCC Stage	Trial	Therapy	RFS HR (≥95% CI)	DMFS HR	OS HR
Stage IIB,C	Keynote 716	Pembro vs Pbo	0.65 (0.46-0.92) P=0.00658	0.64 (0.47-0.88) P=0.0029	-
	Checkmate 76K	Nivo vs Pbo	0.42 (0.30-0.59) P<0.0001	0.47 (0.30-0.72)	-


Adjuvant Anti-PD1 or BRAF+MEK inhibition for Adjuvant Therapy in V600 BRAF Mutant Melanoma?

Relapse Free Survival in BRAF Mutant Melanoma

BRAF Targeted Therapy vs Anti-PD1

Dummer et al NEJM 2020; Eggermont et al JCO 2020

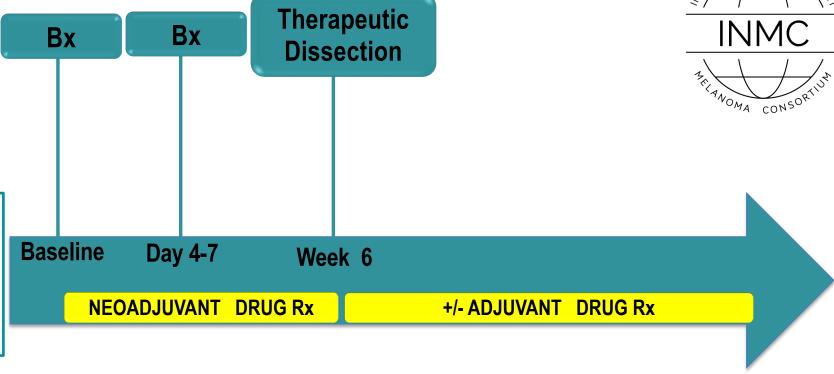
Outline

1. Adjuvant Therapy

- Efficacy Update
- BRAF targeted therapy vs Anti-PD1

2. Neoadjuvant Therapy

- The Neoadjuvant Platform Efficacy and Advantages
- Next Steps



Neoadjuvant Platform

Stage III Resectable **RECIST Measurable** Able to have two Biopsies

Primary Endpoint: Pathological Response

Secondary Endpoint: Relapse-Free Survival

https://melanoma-inc.org/

- >400 International members
- >Pharma engagement
- **≻**Consultation FDA
- ➤ White papers/guidelines for:
 - Trial design
 - Pathological assessment
 - Surgical endpoints
 - Biospecimens
 - Translational Research
- ➤ Pooled data

Annals of Oncology 0: 1–8, 2018 doi:10.1093/an nonc/mdy226 Published online 25 June 2018

ORIGINAL ARTICLE

Annals Onc 2018

Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma

M. T. Tetzlaff^{1,2*}, J. L. Messina³, J. E. Stein⁴, X. Xu⁵, R. N. Amaria⁶, C. U. Blank⁷, B. A. van de Wiel⁷, P. M. Ferguson⁸, R. V. Rawson⁸, M. I. Ross⁹, A. J. Spillane¹⁰, J. E. Gershenwald^{9,11}, R. P. M. Saw⁸, A. C. J. van Akkooi⁷, W. J. van Houdt⁷, T. C. Mitchell¹², A. M. Menzies¹⁰, G. V. Long¹³, J. A. Wargo^{9,14}, M. A. Davies^{2,6,15}, V. G. Prieto^{1,16}, J. M. Taube^{4†} & R. A. Scolyer^{8†}

Neoadjuvant systemic therapy in melanoma: recommendations of the International Neoadjuvant Melanoma Consortium

Lancet Onc 2019

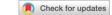
Rodabe N Amaria*, Alexander M Menzies*, Elizabeth M Burton*, Richard A Scolyer*, Michael T Tetzlaff*, Robert Antdbacka, Charlotte Ariyar Roland Bassett, Brett Carter, Adil Daud, Mark Faries, Leslie A Fecher, Keith Flaherty, Jeffrey E Gershenwald, Omid Hamid, Angela Hong, John Kirkwood, Serigne Lo, Kim Margolin, Jane Messina, Michael Postow, Helen Rizos, Merrick I Ross, Elisa A Rozeman, Robyn P M Saw, Vernon Sondak, Ryan J Sullivan, Janis M Taube, John F Thompson, Bart A van de Wiel, Alexander M Eggermont, Michael A Davies, The International Neoadjuvant Melanoma Consortium members†, Paolo A Ascierto‡, Andrew J Spillane‡, Alexander CJ van Akkooi†, Jennifer A Warqo‡, Christian U Blank‡, Hussein A Tawbi‡, Georgina V Long‡

Ann Surg Oncol https://doi.org/10.1245/s10434-021-11236-y

Annals Surg Onc 2022

Neoadjuvant Systemic Therapy (NAST) in Patients with Melanoma: Surgical Considerations by the International Neoadjuvant Melanoma Consortium (INMC)

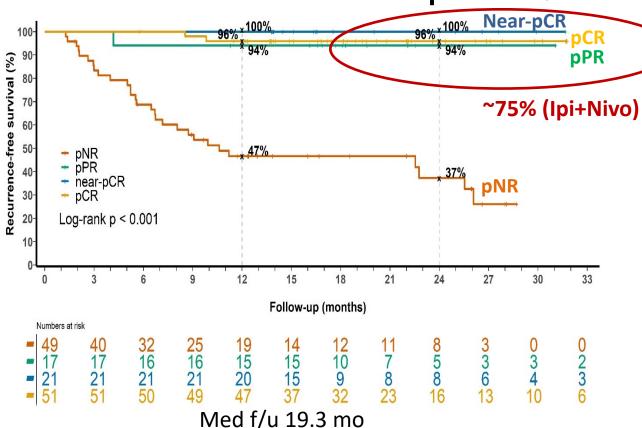
Alexander C. J. van Akkooi, MD, PhD1, Tina J. Hieken, MD2, Elizabeth M. Burton, MBA3, Charlotte Ariyan, MD, PhD4, Paolo A. Ascierto, MD, BC5, Salvatore V. M. A. Asero, MD, PhD6, Christian U. Blank, MD, PhD¹, Matthew S. Block, MD, PhD², Genevieve M. Boland, MD, PhD⁷, Corrado Caraco, MD, PhD5, Sydney Chng, MBBS, PhD, FRACS8,9,10, B. Scott Davidson, MD11, Joao Pedreira Duprat Neto, MD, PhD12, Mark B. Faries, MD13, Jeffrey E. Gershenwald, MD, FACS, FAAAS3, Dirk J. Grunhagen, MD, PhD14, David E. Gvorki, MBBS, MD, FRACS15, Dale Han, MD16, Andrew J. Hayes, MBBS, PhD17, Winan J. van Houdt, MD, PhD1, Giorgos C. Karakousis, MD, MS18, Willem M. C. Klop, MD, PhD1, Georgina V. Long, BSc, PhD, MBBS, FRACP, FAHMS^{8,10,19,20} Michael C. Lowe, MD, MA, FACS, FSSO²¹, Alexander M. Menzies, MBBS, PhD^{8,10,19,20}, Roger Olofsson Bagge, MD, PhD²², Thomas E. Pennington, BSc, MBBS, MS, FRACS^{8,10}, Piotr Rutkowski, MD, PhD²³, Robyn P. M. Saw, MBBS, MS, FRACS^{8,9,10}, Richard A. Scolyer, MBBS, MD, FRCPA, FRCPath, FAHMS^{8,9,10}, Kerwin F. Shannon, MBBS, FRACS^{8,10}, Vernon K. Sondak, MD²⁴, Hussein Tawbi, MD, PhD3, Alessandro A. E. Testori, MD25, Mike T. Tetzlaff, MD, PhD26, John F. Thompson, MD, FRACS, FACS^{8,9,10,20}, Jonathan S. Zager, MD, FACS²⁴, Charlotte L. Zuur, MD, PhD^{1,27}, Jennifer A. Wargo, MD³, Andrew J. Spillane, MD^{8,10,19,20}, Merrick I. Ross, MD³ on behalf of International Neoadjuvant Melanoma Consortium (INMC)



Nat Med 2021

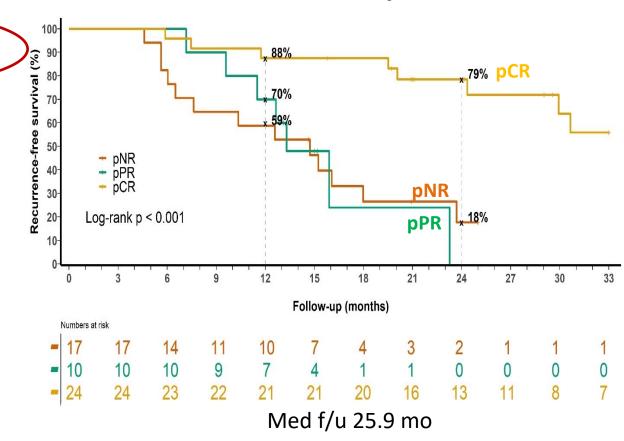
ARTICLES

https://doi.org/10.1038/s41591-020-01188-3


Pathological response and survival with neoadjuvant therapy in melanoma: a pooled analysis from the International Neoadjuvant Melanoma Consortium (INMC)

Alexander M. Menzies^{1,2,3,12}, Rodabe N. Amaria ^{1,12}, Elisa A. Rozeman^{5,12}, Alexander C. Huang ^{6,7,12}, Michael T. Tetzlaff^{4,12}, Bart A. van de Wiel^{5,12}, Serigne Lo ^{1,2,12}, Ahmad A. Tarhini⁸, Elizabeth M. Burton⁴, Thomas E. Pennington^{1,2,9}, Robyn P. M. Saw ^{1,2,9}, Xiaowei Xu⁶, Giorgos C. Karakousis⁶, Paolo A. Ascierto ^{1,0}, Andrew J. Spillane ^{1,2,3}, Alexander C. J. van Akkooi⁵, Michael A. Davies ^{1,4,13}, Tara C. Mitchell ^{6,13}, Hussein A. Tawbi ^{4,13}, Richard A. Scolyer ^{1,2,11,13}, Jennifer A. Wargo ^{4,13}, Christian U. Blank ^{5,13} and Georgina V. Long ^{1,2,3,13}

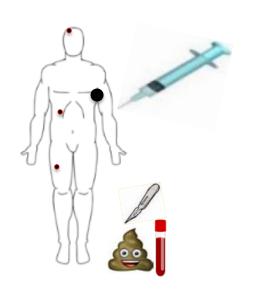
Pooled Analysis: Neoadjuvant Therapy in Stage III Melanoma RFS by Pathological Response

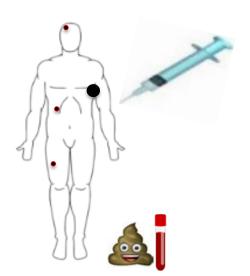


Immunotherapy Anti-PD1 pCR = 20% Anti-PD1 + Anti-CTLA4 pCR = 43%

Targeted Therapy

Dabrafenib + Trametinib pCR = 47%

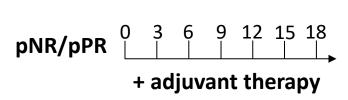


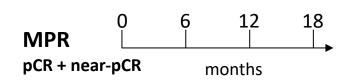

Presented by Georgina V Long


@ProfGLongMIA

The 5 Advantages of Neoadjuvant Therapy

Pathological
Complete 0% TC


Pathological Near Complete ≤ 10% TC

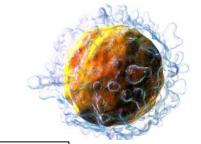

Pathological Partial Response >10%, ≤ 50% TC

No Pathological
Response >50% TC

Patient feedback.
Refined prognosis

Tailor surveillance & adjuvant therapy

Less Surgery
No adjuvant therapy

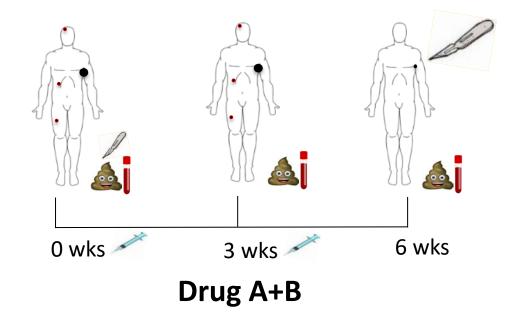

Translational platform.

1) Biomarkers

2) Biology of Resistance



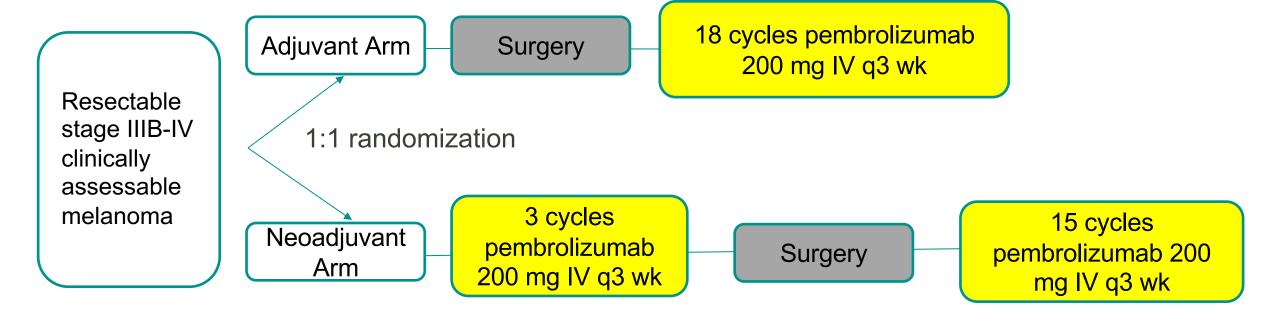
OpACIN Pilot SWOG 18091


PRADO Trial

5. Rapid Drug Development

Melanoma	
Institute Austra	lia

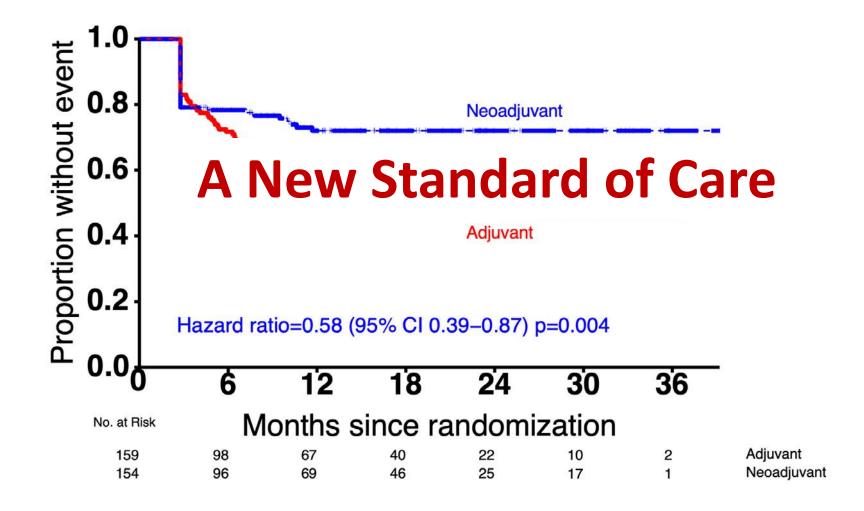
	pCR	Any path response
Nivo + Ipi	~45%	~75%
Dabraf + Tram	~50%	-
Pembro	30%	55%
Intralesional TVEC*	17%*	-
Nivo+anti-LAG3	~59%	~73%
Nivo+intralesion TLR9*	47%*	67%*
Pem+D+T	50%	80%
Nivo+HDACi	30%	55%
Nivo+lpi+HDACi	~40%	~60%
Pem+Lenva	40%	75%



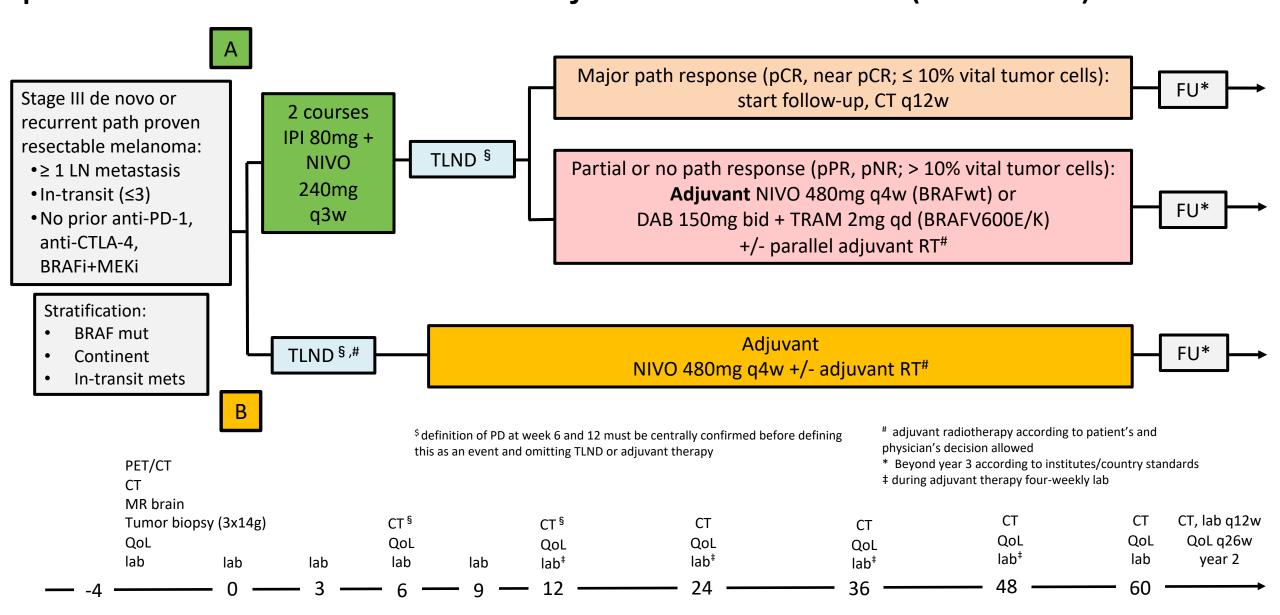
Path response rate?

'Go' vs 'No Go' Decision

S1801 Study Design



S1801 Primary Endpoint: Event-free Survival (n=313)



Phase 3 trial comparing response driven neo-adjuvant ipilimumab + nivolumab vs adjuvant nivolumab (NADINA)

Additional Next Steps

- Neoadjuvant Pathological Assessment International Implementation
- Commence Biomarker Selected Patient Trials
 - De-escalate therapy to anti-PD1 alone
 - Escalate therapy to those predicted to be non-responders
- Neoadjuvant therapy in stage 2 melanoma

Outline

Adjuvant Therapy

Efficacy Update

Sustained benefit in RFS and DMFS across all therapies

BRAF targeted therapy vs Anti-PD1 Similar HR 0.51 → long term data needed

2. Neoadjuvant Therapy

The Neoadjuvant Platform - Efficacy and Advantages

- No downsides!
- 5 Major Advantages
- Next Steps Biomarker drive trials → enrich with predicted non-responders Neoadjuvant therapy in Stage 2 melanoma

Acknowledgements

- Patients and Families
- National and International Colleagues and Scientists working in Melanoma
- Melanoma Institute Australia and Trials Team

Adjuvant Dabrafenib + Trametinib (D + T) vs Placebo in Patients with Resected Stage III BRAF^{V600}-Mutant Melanoma: Updated 5-Year Distant-Metastases-Free Survival (DMFS) Analysis of COMBI-AD

Schadendorf D et al.

ASCO 2022; Abstract 9563.

COMBI-AD: Distant Metastasis-Free Survival (DMFS) in AJCC-8 Stage IIIA to IIID Subgroups

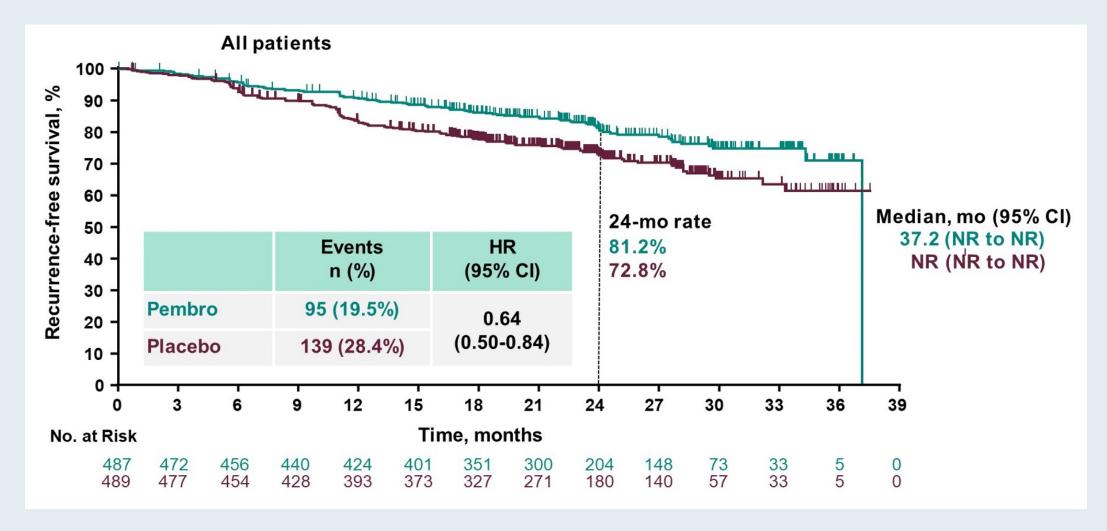
	Stage IIIA S		Stag	e IIIB Stage IIIC		Stage IIID		
DMFS rates	D + T (n = 50)	PBO (n = 39)	D + T (n = 145)	PBO (n = 154)	D + T (n = 217)	PBO (n = 214)	D + T (n = 22)	PBO (n = 17)
3 years	89%	85%	71%	55%	68%	54%	65%	26%
4 years	84%	85%	68%	54%	64%	53%	65%	26%
5 years	75%	85%	67%	53%	63%	51%	65%	26%
Hazard ratio	1.2	1.24 0.5		56	6 0.54		0.20	
<i>p</i> -value	0.69	0.695 0.004 0.0001		001	0.001			

AJCC-8 = American Joint Committee on Cancer melanoma staging system, eighth edition; D = dabrafenib; T = trametinib; PBO = placebo

FDA-Approved Adjuvant Immunotherapy Options for Melanoma

	FDA			HR (RFS)			Treatment
Monotherapy	approval	Pivotal study	BRAF status	ITT	BRAF wt	BRAF mutant	discontinuation
Pembrolizumab	2/14/19	KEYNOTE-054	All comers	0.59	0.61	0.59	14%
Nivolumab	12/20/17	CheckMate 238	All comers	0.71	0.69	0.79	10%
Ipilimumab	10/28/15	EORTC-18071	All comers	0.75	NR	NR	53%

RFS = relapse-free survival; wt = wild type; NR = not reported


Distant Metastasis-free Survival With Pembrolizumab Versus Placebo as Adjuvant Therapy in Stage IIB or IIC Melanoma: The Phase 3 KEYNOTE-716 Study

Georgina V. Long,^{1,2} Jason Luke,³ Muhammad A. Khattak,^{4,5} Luis de la Cruz Merino,⁶ Michele Del Vecchio,⁷ Piotr Rutkowski,⁸ Francesco Spagnolo,⁹ Jacek Mackiewicz,^{10,11} Vanna Chiarion-Sileni,¹² John M. Kirkwood,³ Caroline Robert,¹³ Jean-Jacques Grob,¹⁴ Federica de Galitiis,¹⁵ Dirk Schadendorf,¹⁶ Matteo S. Carlino,^{1,17} Xi Lawrence Wu,¹⁸ Mizuho Fukunaga-Kalabis,¹⁸ Clemens Krepler,¹⁸ Alexander M. M. Eggermont,¹⁹ Paolo A. Ascierto²⁰

¹Melanoma Institute Australia, The University of Sydney, Sydney, Australia; ²Royal North Shore & Mater Hospitals, Sydney, Australia; ³UPMC Hillman Cancer Center, Pittsburgh, PA, USA; ⁴Fiona Stanley Hospital, Perth, Australia; ⁵Edith Cowan University, Perth, Australia; ⁵Hospital Universitario Virgen Macarena, Seville, Spain; ¹Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy; ⁵Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; ¹IRCCS San Martino Polyclinic Hospital, Genoa, Italy; ¹¹Poznan University of Medical Sciences, Poznan, Poland; ¹¹IGreater Poland Cancer Center, Poznan, Poland; ¹¹Istituto Oncologico Veneto, IOV-IRCCS, Padova, Italy; ¹³Institut Gustave Roussy, Villejuif, France and Paris-Saclay University, Villejuif, France; ¹⁴AP-HM Hospital, Aix-Marseille University, Marseille, France; ¹⁵Dermopathic Institute of the Immaculate IDI-IRCCS, Rome, Italy; ¹⁵University Hospital Essen & German Cancer Consortium Partner Site, Essen, Germany; ¹¹Westmead and Blacktown Hospitals, Sydney, Australia; ¹³Merck & Co., Inc., Rahway, NJ, USA; ¹¹9UMCUtrecht & Princess Máxima Center, Utrecht, NL; CCC Munich, Munich, Germany; ²⁰Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy

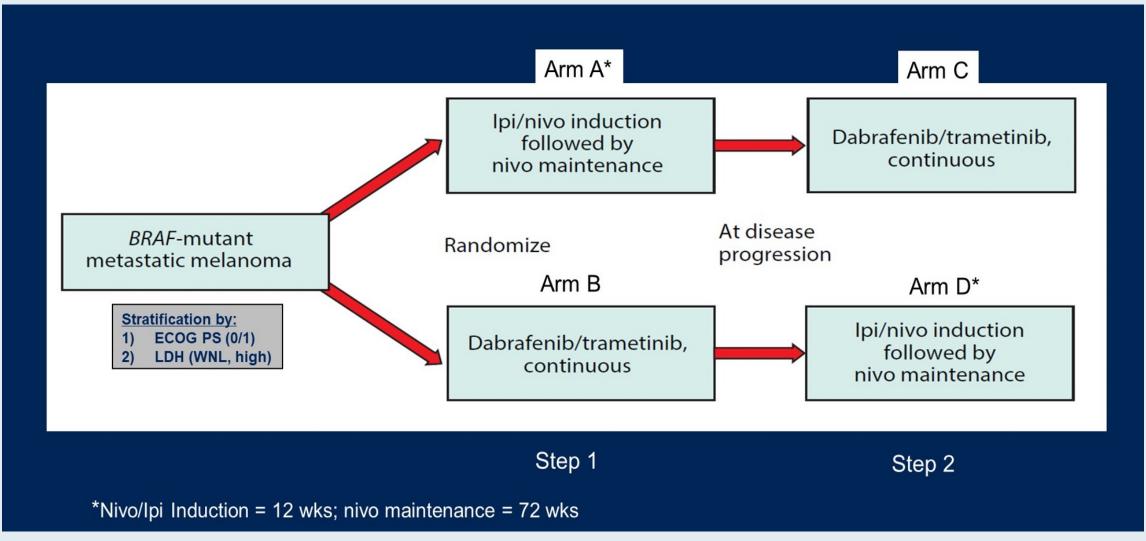
KEYNOTE-716: Relapse-Free Survival with Longer Follow-Up at Third Interim Analysis

2022 ASCO° ANNUAL MEETING Abstract 356154

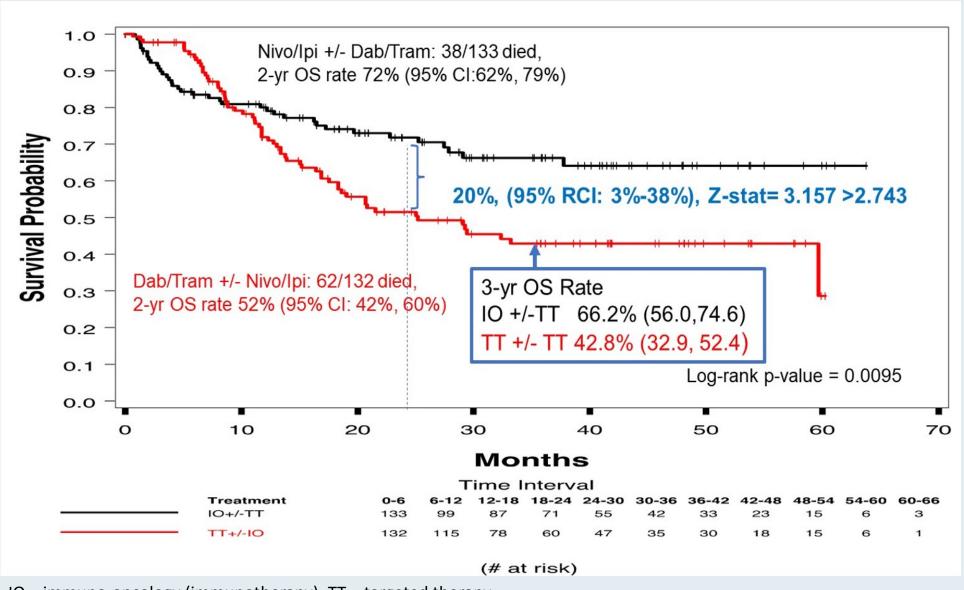
DREAMseq (Doublet, Randomized Evaluation in Advanced Melanoma Sequencing) a Phase III Trial: ECOG-ACRIN EA6134

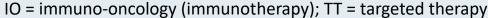
Michael B. Atkins¹, Sandra Lee², Bartosz Chmielowski³, Antoni Ribas³, Ahmad A. Tarhini⁴, Thach-Giao Truong⁵, Diwakar Davar⁶, Mark O'Rourke⁷, Brendan D. Curti⁸, Joanna M. Brell⁹, Kari L. Kendra¹⁰, Alexandra P. Ikeguchi¹¹, Jedd D. Wolchok¹², John M. Kirkwood⁶

¹Georgetown Lombardi Comprehensive Cancer Center, Washington DC; ²Dana-Farber Cancer Institute, Boston MA; ³Jonsson Comprehensive Cancer Center University of California Los Angeles, Los Angeles CA; ⁴H. Lee Moffitt Cancer Center and Research Institute, Tampa FL; ⁵Kaiser Permanente Northern California, Vallejo CA; ⁶Pittsburgh Cancer Institute, Pittsburgh PA; ⁷Greenville Health System Cancer Institute, Greenville SC; ⁸Providence Cancer Institute, Portland OR; ⁹MetroHealth Medical Center, Cleveland OH; ¹⁰Ohio State University Comprehensive Cancer Center, Columbus OH; ¹¹University of Oklahoma Medical Center, Oklahoma City OK; ¹²Memorial Sloan Kettering Cancer Center, New York NY



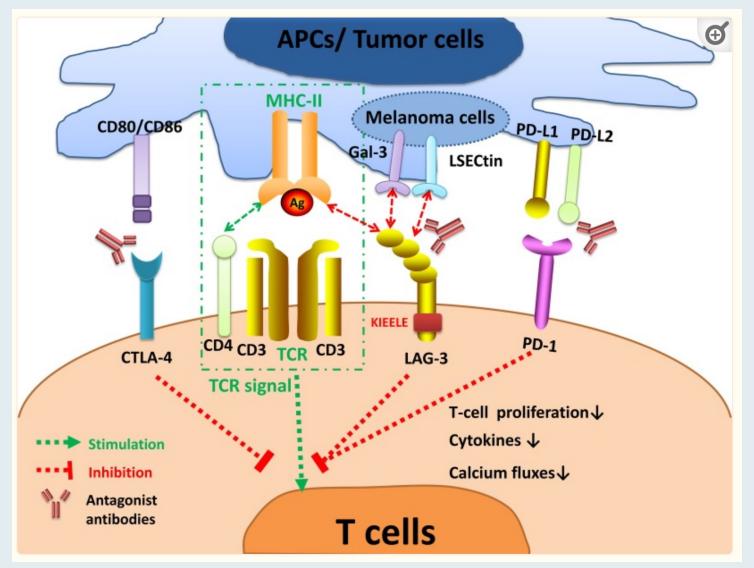
PRESENTED BY:


DREAMseq Study Schema



Ipi = ipilimumab; nivo = nivolumab

DREAMseq: Overall Survival (OS)


DREAMseq: Conclusions

- Nivo/ipi followed by dab/tram is associated with greater OS at 2 and 3 yrs than the converse sequence
 - Nivo/ipi results in more durable and ongoing responses in the frontline and is less effective in the second line
 - OS benefit for nivo/ipi initial sequence was seen in all subgroups
 - 2nd line dab/tram is a <u>critical</u> contributor to overall efficacy
- Crossover was frequently not feasible in many cases due to CNS progression making pts ineligible
 - Pts dying early had worse prognosis and rarely crossed over
- QOL was initially worse with IO, but converged by 24 weeks

Nivo/ipi followed by BRAF/MEKi (if necessary) should be the preferred treatment sequence for the majority of pts with BRAF mutant melanoma

LAG-3 Signaling and Interplay with Other Immune Checkpoints

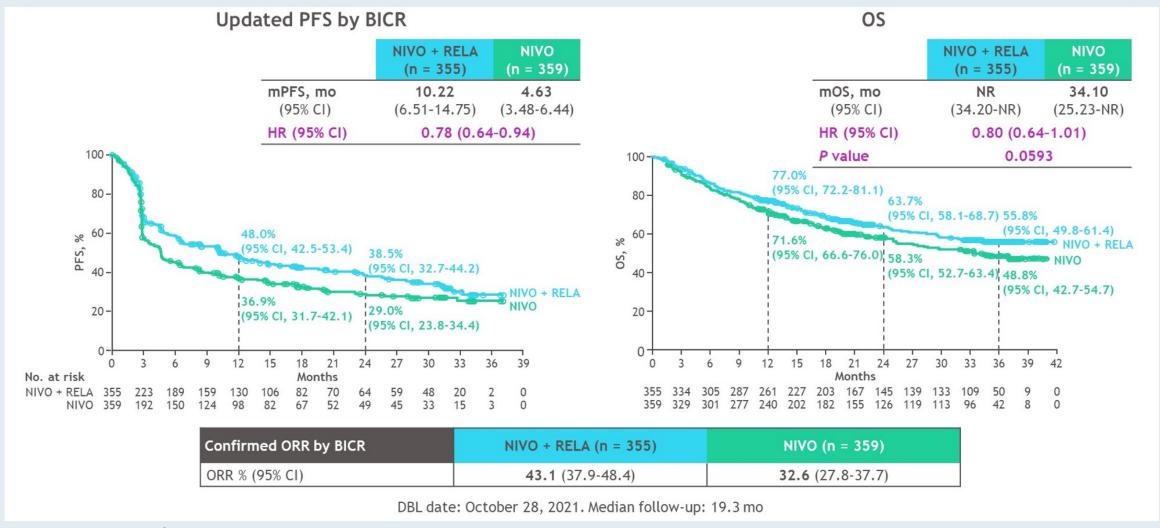
FDA Approves Nivolumab/Relatlimab-rmbw for Unresectable or Metastatic Melanoma

Press Release: March 18, 2022

"The Food and Drug Administration approved nivolumab and relatlimab-rmbw for adult and pediatric patients 12 years of age or older with unresectable or metastatic melanoma. [This therapy] is a fixed-dose combination of the LAG-3-blocking antibody relatlimab and the programmed death receptor-1 blocking antibody nivolumab.

Efficacy was evaluated in RELATIVITY-047 (NCT03470922), a randomized (1:1), double-blinded trial in 714 patients with previously untreated metastatic or unresectable Stage III or IV melanoma. The trial excluded patients with active autoimmune disease, medical conditions requiring systemic treatment with moderate or high dose corticosteroids or immunosuppressive medications, uveal melanoma, and active or untreated brain or leptomeningeal metastases. Patients were randomized to receive nivolumab 480 mg and relatlimab 160 mg by intravenous infusion every 4 weeks or nivolumab 480 mg by intravenous infusion every 4 weeks until disease progression or unacceptable toxicity."

Nivolumab (NIVO) + relatlimab (RELA) vs NIVO in previously untreated metastatic or unresectable melanoma: OS and ORR by key subgroups from RELATIVITY-047


Hussein A. Tawbi¹, F. Stephen Hodi², Evan J. Lipson³, Dirk Schadendorf⁴, Paolo A. Ascierto⁵, Luis Matamala⁶, Pamela Salman^{6*}, Erika Castillo Gutiérrez⁷, Piotr Rutkowski⁸, Helen J. Gogas⁹, Christopher D. Lao¹⁰, Juliana Janoski De Menezes¹¹, Stéphane Dalle¹², Ana Arance¹³, Jean-Jacques Grob¹⁴, Sarah Keidel¹⁵, Karin Jonczak¹⁵, Anne Marie Sobiesk¹⁵, Sonia Dolfi¹⁵, Georgina V. Long¹⁶

¹Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Dana-Farber Cancer Institute, Boston, MA, USA; ³Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; ⁴Department of Dermatology, University Hospital Essen, Essen, Germany & German Cancer Consortium, Partner Site, Essen, Germany; ⁵Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale," Naples, Italy; ⁶Department of Oncology, Instituto Oncológico Fundación Arturo López Pérez, Santiago, Chile; ⁷FAICIC Clinical Research, Veracruz, Mexico; ⁸Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland; ⁹Department of Medicine, National and Kapodistrian University of Athens, Athens, Greece; ¹⁰Michigan Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; ¹¹Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil; ¹²Unit of Dermatology, Hospices Civils de Lyon, Cancer Research Center of Lyon, Pierre-Bénite, France; ¹³Department of Medical Oncology, Hospital Clinic Barcelona and IDIBAPS, Barcelona, Spain; ¹⁴Aix-Marseille University, CHU Timone, Marseille, France; ¹⁵Bristol Myers Squibb, Princeton, NJ, USA; ¹⁶Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, Australia

*Affiliation during the time of the trial

RELATIVITY-047: PFS, OS and ORR for All Randomized Patients

PFS = progression-free survival; OS = overall survival; ORR = objective response rate; BICR = blinded independent central review; DBL = database lock

Abstract 790MO

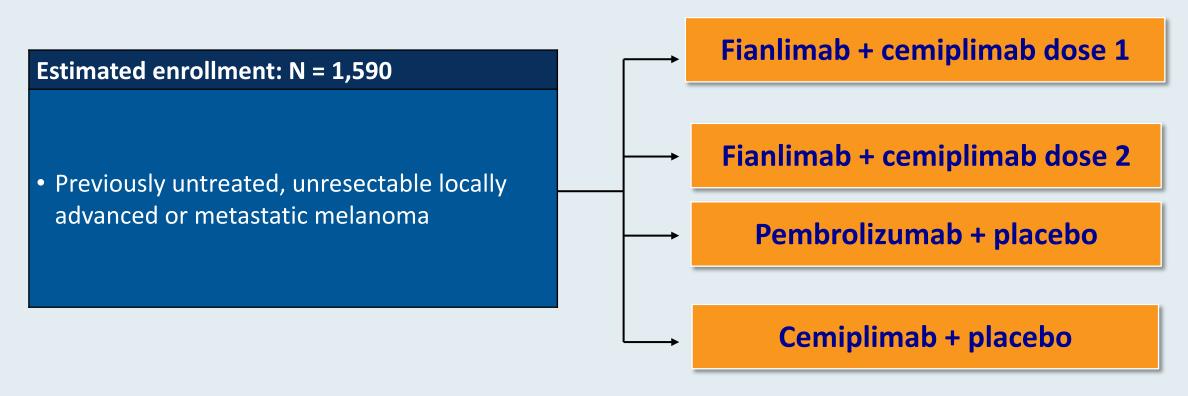
Phase 1 study of fianlimab, a human lymphocyte activation gene-3 (LAG-3) monoclonal antibody, in combination with cemiplimab in advanced melanoma

Omid Hamid,¹ Karl Lewis,² Amy Weise,³ Meredith McKean,⁴ Kyriakos P Papadopoulos,⁵ John Crown,⁶ Tae Min Kim,⁷ Nehal J Lakhani,⁸ John Kaczmar,⁹ Ragini Kudchadkar,¹⁰ Alexander Spira,¹¹ Guilherme Rabinowits,¹² Kevin Kim,¹³ Richard Carvajal,¹⁴ Stephen Williamson,¹⁵ Ella loffe,¹⁶ Shuquan Chen,¹⁶ Jayakumar Mani,¹⁶ Vladimir Jankovic,¹⁶ Laura Brennan,¹⁶ Glenn Kroog,¹⁶ Tasha Sims,^{16*} Israel Lowy,¹⁶ Giuseppe Gullo¹⁶

¹The Angeles Clinical and Research Institute, a Cedars-Sinai Affiliate, Los Angeles, CA, USA; ²University of Colorado Hospital, CO, USA; ³Henry Ford Hospital, Detroit, MI, USA; ⁴Sarah Cannon Research Institute/Tennessee Oncology PLLC, Nashville, TN, USA; ⁵START San Antonio, San Antonio, TX, USA; ⁶St Vincent's University Hospital, Dublin, Ireland; ⁷Seoul National University Hospital, Seoul, South Korea; ⁸START Midwest, Grand Rapids, MI, USA; ⁹MUSC Hollings Cancer Center, North Charleston, SC, USA; ¹⁰Emory University School of Medicine, Atlanta GA, USA; ¹¹Virginia Cancer Specialists, Fairfax, VA, USA; ¹²Miami Cancer Institute, Miami, FL, USA; ¹³Sutter Health Research Enterprise, San Francisco, CA, USA; ¹⁴Columbia University Medical Center, New York, NY, USA; ¹⁵University of Kansas Medical Center, Fairway, KS, USA; ¹⁶Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA

*Formerly with Regeneron Pharmaceuticals, Inc.

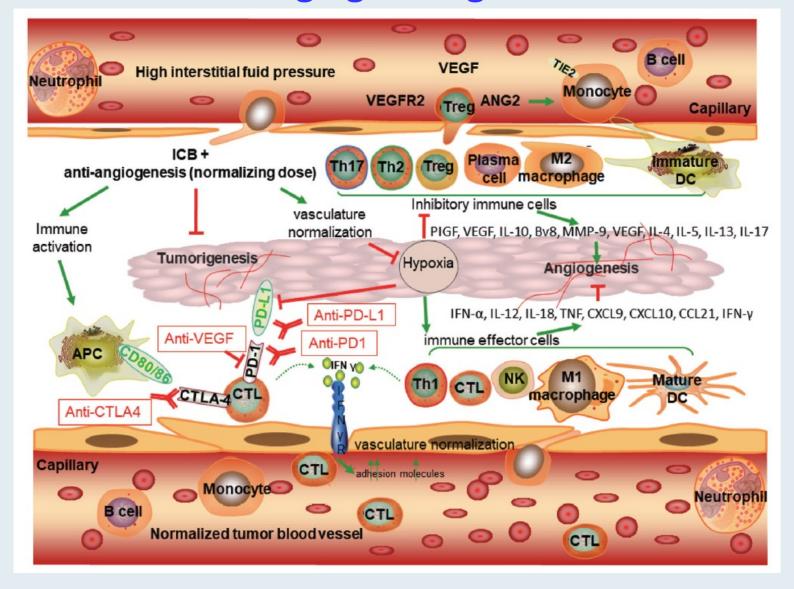
Fianlimab and Cemiplimab for Advanced Melanoma


% (n), unless otherwise	Anti-PD-(L)1-naive		Cohorts 6 + 15
stated	Cohort 6 (N=40)	Cohort 15 (N=40)	(N=80)
ORR, % (95% CI)	62.5 (45.8, 77.3)	65 (48.3, 79.4)	63.8 (52.2, 74.2)
Complete response	15.0 (6)	2.5 (1)	8.8 (7)
Partial response	47.5 (19)	62.5 (25)	55.0 (44)
Stable disease	17.5 (7)	15.0 (6)	16.3 (13)
Progressive disease	15.0 (6)	15.0 (6)	15.0 (12)
NE	5.0 (2)	5.0 (2)	5.0 (4)
DCR	80.0 (32)	80.0 (32)	80.0 (64)
KM-estimated PFS, median (95% CI), months	24 (4.2, NE)	NR (7.5, NE)	24 (9.9, NE)
DOR, median (95% CI), months	NR (11.9, NE)	NR (6.3, NE)	NR (22.6, NE)
ORR: baseline LDH, n/N1 (%) LDH > ULN LDH normal	10/17 (58.8) 15/23 (65.2)	6/11 (54.5) 18/24 (75.0)	16/28 (57.1) 33/47 (70.2)
ORR: liver metastasis, n/N2 (%) Yes No	6/14 (42.9) 19/26 (73.1)	3/5 (60.0) 23/35 (65.7)	9/19 (47.4) 42/61 (68.9)

Anti-PD-(L)1-experienced (cohort 7)			
% (n), unless otherwise stated	Total (N=15)		
ORR, % (95% CI)	13.3 (1.7–40.5)		
Complete response	0		
Partial response	13.3 (2)		
Stable disease	26.7 (4)		
Progressive disease	53.3 (8)		
NE	6.7 (1)		
DCR	40.0 (6)		
KM-estimated PFS, median (95% CI), months	1.5 (1.3–7.7)		
DOR, median (95% CI), months	NR (3.4–NE)		
ORR by LAG-3 expression, %			
<1%	NA		
≥1%	18.2		
ORR by PD-L1 expression, %			
<1%	18.2		
≥1%	0		

ORR = objective response rate; NE = not estimated; DCR = disease control rate; KM = Kaplan-Meier; DOR = duration of response

R3767-ONC-2011 Phase III Trial Design



Primary endpoints: Progression-free survival (BICR)

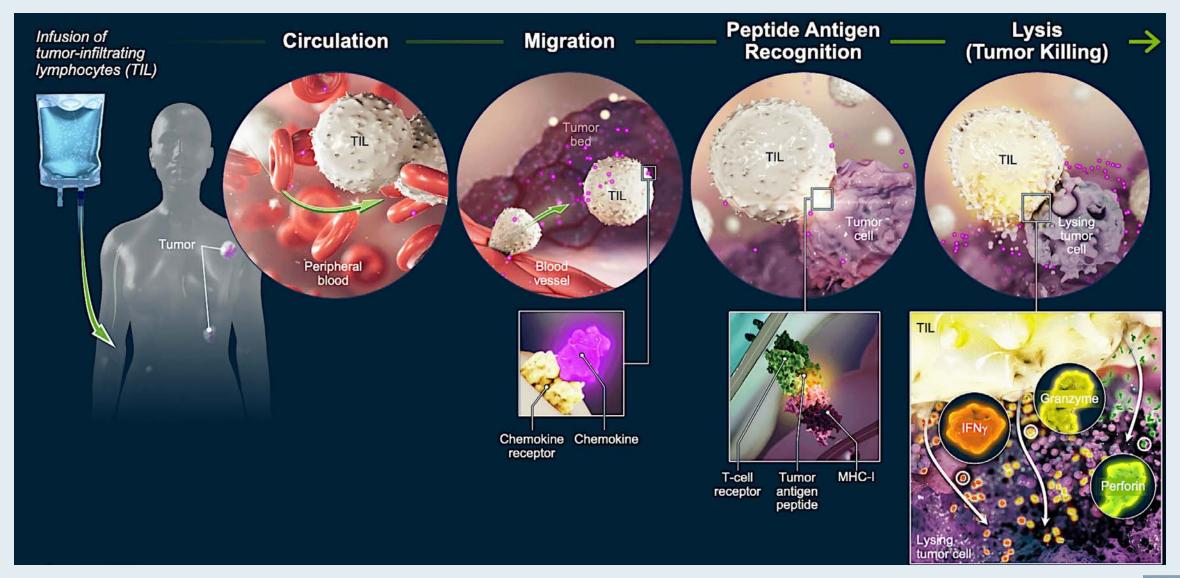
Secondary endpoints: Overall survival, objective response rate, disease-control rate, duration of response, incidence of adverse events

Mechanistic Rationale for Immune Checkpoint Blockade (ICB) in Combination with Anti-Angiogenic Agents

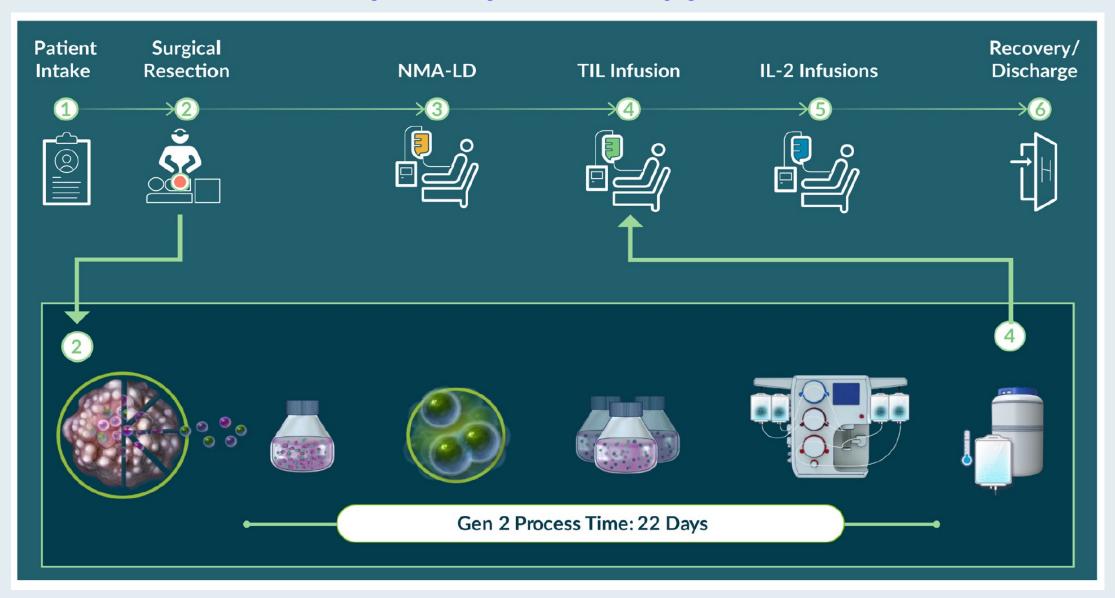

Phase II LEAP-004 Study of Lenvatinib Plus Pembrolizumab for Melanoma With Confirmed Progression on a Programmed Cell Death Protein-1 or Programmed Death Ligand 1 Inhibitor Given as Monotherapy or in Combination

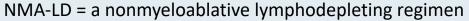
Ana Arance, MD, PhD¹; Luis de la Cruz-Merino, MD, PhD²; Teresa M. Petrella, MD³; Rahima Jamal, MD⁴; Lars Ny, MD, PhD⁵; Ana Carneiro, MD, PhD⁶; Alfonso Berrocal, MD⁻; Ivan Márquez-Rodas, MD, PhD⁰; Anna Spreafico, MD, PhD⁰; Victoria Atkinson, MD¹⁰; Fernanda Costa Svedman, MD, PhD¹¹; Andrew Mant, MBBS¹²; Muhammad A. Khattak, MBBS, FRACP¹³; Catalin Mihalcioiu, MD¹⁴; Sekwon Jang, MD¹⁵; C. Lance Cowey, MD¹⁶; Alan D. Smith, MD¹⁷; Natalyn Hawk, MD, PhD¹⁰; Ke Chen, MS¹⁰; Scott J. Diede, MD, PhD¹⁰; Clemens Krepler, MD¹⁰; and Georgina V. Long, MBBS, PhD²⁰,21,22,23

J Clin Oncol 2022 June 2;[Online ahead of print].

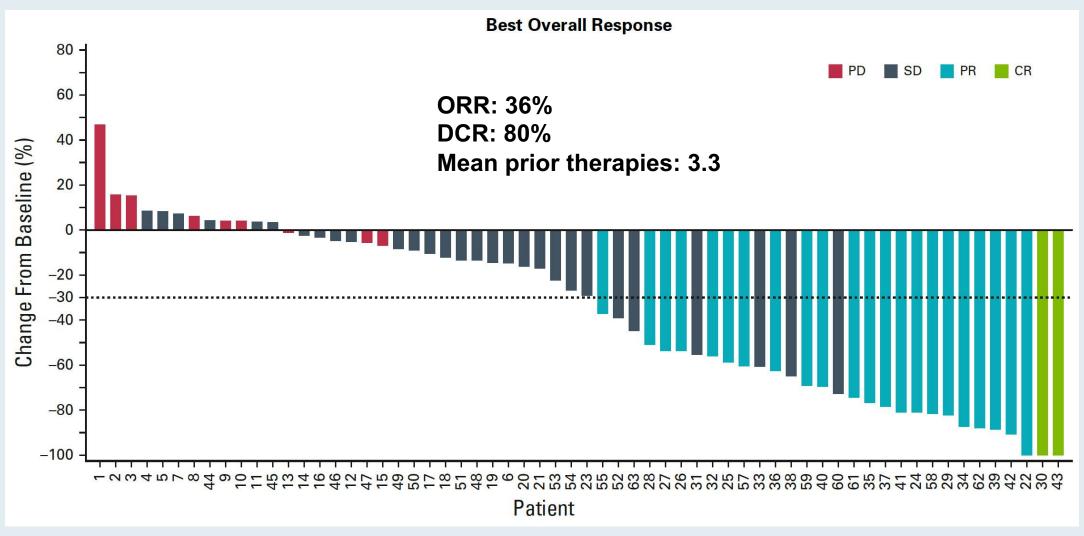


LEAP-004 Primary Endpoint: Objective Response Rate (ORR) by Independent Review Committee




Tumor-Infiltrating Lymphocytes (TIL) Mechanism of Action

Proprietary TIL Therapy Process


Lifileucel, a Tumor-Infiltrating Lymphocyte Therapy, in Metastatic Melanoma

Amod A. Sarnaik, MD¹; Omid Hamid, MD²; Nikhil I. Khushalani, MD¹; Karl D. Lewis, MD³; Theresa Medina, MD³; Harriet M. Kluger, MD⁴; Sajeve S. Thomas, MD⁵; Evidio Domingo-Musibay, MD⁶; Anna C. Pavlick, DO, MBA⁷; Eric D. Whitman, MD⁸; Salvador Martin-Algarra, MD, PhD⁹; Pippa Corrie, PhD, FRCP¹⁰; Brendan D. Curti, MD¹¹; Judit Oláh, MD, DSc¹²; Jose Lutzky, MD¹³; Jeffrey S. Weber, MD, PhD⁷; James M. G. Larkin, MD, PhD¹⁴; Wen Shi, MD, PhD¹⁵; Toshimi Takamura, BA, BS¹⁵; Madan Jagasia, MD¹⁵; Harry Qin, PhD¹⁵; Xiao Wu, PhD¹⁵; Cecile Chartier, PhD¹⁵; Friedrich Graf Finckenstein, MD¹⁵; Maria Fardis, PhD, MBA¹⁵; John M. Kirkwood, MD¹⁶; and Jason A. Chesney, MD, PhD¹⁷

J Clin Oncol 2021;39:2656-66.

Lifileucel: Investigator-Assessed ORR in Metastatic Melanoma

ORR = objective response rate

Regenerative Medicine Advanced Therapy Designation

"As described in Section 3033 of the 21st Century Cures Act, a drug is eligible for regenerative medicine advanced therapy (RMAT) designation if:

- a. The drug is a regenerative medicine therapy, which is defined as a cell therapy, therapeutic tissue engineering product, human cell and tissue product, or any combination product using such therapies or products, except for those regulated solely under Section 361 of the Public Health Service Act and part 1271 of Title 21, Code of Federal Regulations;
- b. The drug is intended to treat, modify, reverse, or cure a serious or life-threatening disease or condition; and
- c. Preliminary clinical evidence indicates that the drug has the potential to address unmet medical needs for such disease or condition

Based on FDA's interpretation of Section 506(g) of the Federal Food, Drug, and Cosmetic Act (as added by Section 3033 of the 21st Century Cures Act), certain human gene therapies and xenogeneic cell products may also meet the definition of a regenerative medicine therapy."

Thank you for joining us!

CME, MOC and NCPD credit information will be emailed to each participant within 5 business days.

