The Clinical Implications of Key Recent Data Sets in Oncology: A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists A CME/MOC- and NCPD-Accredited Event

> Saturday, October 22, 2022 7:30 AM – 5:30 PM ET

Welcome FCS Members!

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the premeeting survey before the meeting.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

Complete Your Evaluation: Tap the CME Evaluation button to complete your evaluation electronically to receive credit for your participation.

For assistance, please raise your hand. Devices will be collected at the conclusion of the activity.

Clinicians Attending via Zoom

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the premeeting survey before the meeting.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

Get CME Credit: A CME credit link will be provided in the chat room at the conclusion of the program.

Clinicians in Attendance...

- Please complete the premeeting survey at the beginning of each module.
- A link to the postmeeting survey will be emailed to each participant within 24 hours.

What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of Breast Cancer

A 2-Part CME Satellite Symposium Series Held in Conjunction with the 2022 San Antonio Breast Cancer Symposium[®]

HER2-Positive Breast Cancer Wednesday, December 7, 2022 7:15 PM – 9:15 PM CT

ER-Positive Breast Cancer Thursday, December 8, 2022 7:15 PM – 9:15 PM CT

Moderator Neil Love, MD

Addressing Current Questions and Controversies in the Management of Hematologic Cancers — What Clinicians Want to Know

A 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64th ASH Annual Meeting

Chronic Lymphocytic Leukemia Friday, December 9, 2022 11:30 AM – 1:30 PM CT Hodgkin and Non-Hodgkin Lymphoma Friday, December 9, 2022 3:15 PM – 5:15 PM CT

Multiple Myeloma Friday, December 9, 2022 7:00 PM – 9:00 PM CT

Moderator: Neil Love, MD

Agenda

Module 1 — Lung Cancer: Drs Langer and Lovly

- Module 2 Chronic Lymphocytic Leukemia and Lymphomas: Drs LaCasce and Smith
- **Module 3 Prostate and Bladder Cancers:** *Drs Morgans and Yu*
- Module 4 Renal Cell Carcinoma: Prof Powles
- Module 5 Multiple Myeloma: Dr Usmani
- **Module 6 Hepatobiliary Cancers:** *Dr Abou-Alfa*

Agenda

Module 7 — Breast Cancer: Drs Goetz and Krop

Module 8 — Endometrial Cancer: Dr Westin

Module 9 — **Ovarian Cancer and PARP Inhibitors:** *Dr O'Malley*

Module 10 — Gastrointestinal Cancers: Drs Messersmith and Strickler

Module 11 — Melanoma: Prof Long

Lung Cancer Faculty

Corey J Langer, MD Director of Thoracic Oncology Abramson Cancer Center Professor of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania

Christine M Lovly, MD, PhD Associate Professor of Medicine Division of Hematology and Oncology Ingram Associate Professor of Cancer Research Co-Leader, Translational Research and Interventional Oncology Program Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center Nashville, Tennessee

MODULE 1: First line treatment of metastatic NSCLC in patients without targetable mutations

MODULE 2: Neoadjuvant and Adjuvant Treatment of Localized NSCLC

MODULE 3: Targeted Treatment of Metastatic NSCLC

Lung Cancer Agenda

MODULE 1: First line treatment of metastatic NSCLC in patients without targetable mutations

MODULE 2: Neoadjuvant and Adjuvant Treatment of Localized NSCLC

MODULE 3: Targeted Treatment of Metastatic NSCLC

Case Presentation: Dr John Heymach

- 55-year-old Asian woman with 10 pack year history of smoking (quit 20y ago), presented with malignant pleural effusion and persistent pulmonary infections.
- Evaluation revealed lung adenocarcinoma, with multiple bone metastases and two small brain metastases
- Profiling revealed KRAS G12D as well as STK11 and KEAP1 mutations

Making Cancer History

Case Presentation: Dr John Heymach (cont)

- She was initially treated at an outside institution with chemo+pembrolizumab and had disease progression at cycle 3.
- She was enrolled in the Hudson study and received the ATR inhibitor ceralasertib plus durvalumab.
- Minor response lasting more than 6 months.
- Eventually developed PD and was treated with subsequent lines of chemo+bev+atezo (Impower150) and docetaxel
- Died approximately 14 months after diagnosis.

Making Cancer History

Discussion Questions

First-Line Treatment for Metastatic NSCLC in Patients without Targetable Mutations

Common queries...

- Is anti-PD-1/PD-L1 monotherapy a reasonable consideration for patients with a PD-L1 TPS between 1% and 49%, particularly those who are less fit or have nonvisceral disease?
- Regulatory and reimbursement issues aside, in which situations, if any, do you believe anti-PD-1/anti-CTLA-4 combinations are currently a consideration, and which doublets?
- What is your usual approach to patients with PD-L1-negative tumors?
- Do you believe there is any difference in clinical outcomes with the approved anti-PD-1/PD-L1 antibodies?

Discussion Questions

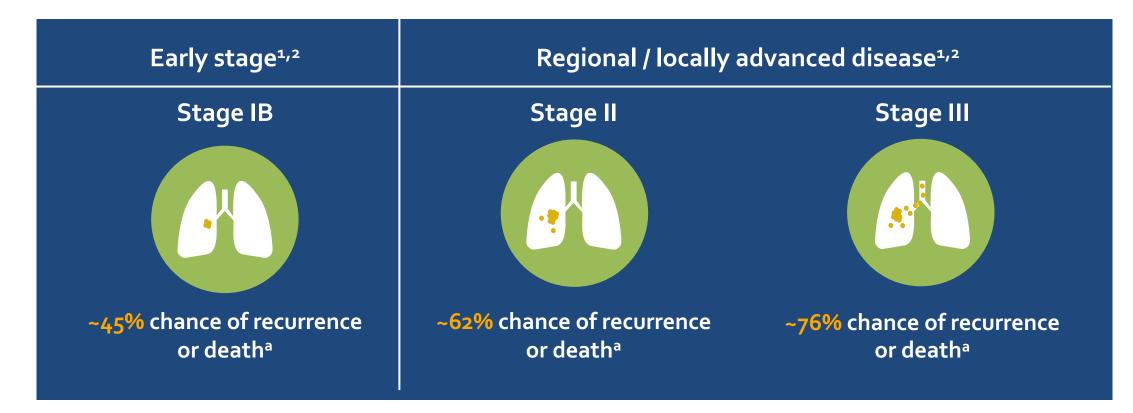
First-Line Treatment for Metastatic NSCLC in Patients without Targetable Mutations (cont)

- Do you believe patients who have autoimmune complications with immunotherapy are more likely to benefit?
- Do you believe there are currently any clinically meaningful predictors of immunotherapy benefit beyond PD-L1 and TMB?
- In patients with high PD-L1 levels, when do you add chemotherapy to anti-PD-1/PD-L1 antibodies, and how much do you consider the magnitude of the assay result?
- Do you believe the results of the PACIFIC trial warrant consideration of this approach in some patients with classic indications for surgery?
- Can you describe an ideal patient for neoadjuvant chemoimmunotherapy?

MODULE 1: First line treatment of metastatic NSCLC in patients without targetable mutations

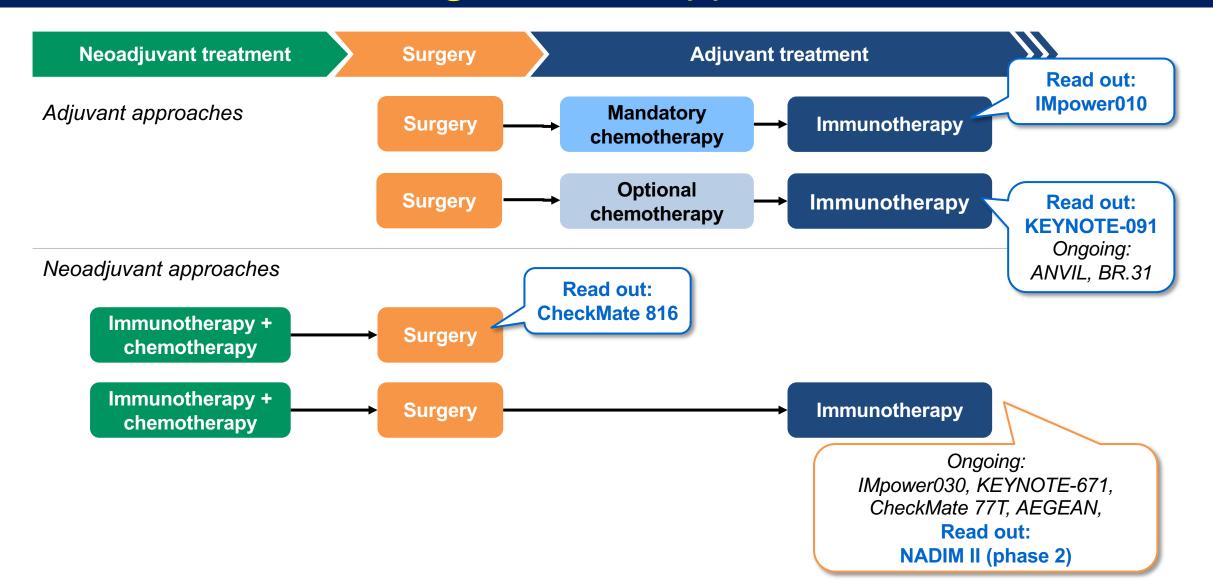
MODULE 2: Neoadjuvant and Adjuvant Treatment of Localized NSCLC

MODULE 3: Targeted Treatment of Metastatic NSCLC



Systemic Management of Resectable and LA- NSCLC: 2022 Update

> Corey J. Langer MD, FACP Director of Thoracic Oncology Abramson Cancer Center Professor of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia, PA 19104 Corey.langer@uphs.upenn.edu


The unmet need in resectable NSCLC persists

Most patients who receive adjuvant chemotherapy will experience disease recurrence within 5 years

^aMedian follow-up: 5.2 years, data based on AJCC Staging Manual 6th edition AJCC, American Joint Committee on Cancer; NSCLC, non-small cell lung cancer 1. Pignon JP, et al. J Clin Oncol 2008;26:3552–59; 2. Edge SB, et al. AJCC Cancer Staging Manual. 7th ed. New York, NY: Springer; 2010

Phase III studies with immunotherapy in resectable NSCLC are taking different approaches

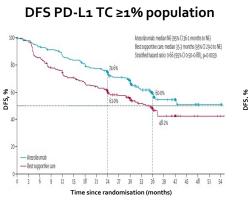
Adjuvant IO Phase III randomized trials DFS and PD-L1 TPS data - consistent data?

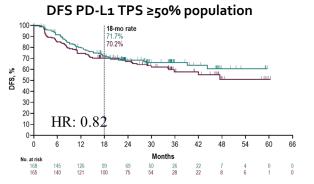
Effect of PD-L1 expression

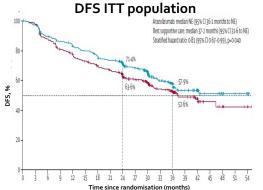
A DFS benefit with atezolizumab vs. BSC was observed in the PD-L1 \geq 1% population but not in the ITT population HR (95% CI) 0.66 (0.50, 0.88); p=0.0039 PD-L1 TPS ≥1%

0.81 (0.67, 0.99); p=0.040

IMpowero10 Stage II/IIIA¹


KEYNOTE og1 Stage IB–IIIA²


PEARLS/


ITT population

DFS was significantly improved with pembrolizumab in the all-comers population but not in the PD-L1TPS ≥50% population HR (95% CI)

All comers	0.76 (0.63, 0.91); p=0.0014
PD-L1 TPS ≥50%	0.82 (0.57, 1.18); p=0.14

DFS ITT population 18-mo rate 73.4% 64.3% % DFS, 50-20-HR: 0.76 12 18 24 358 326 185 82 160 72 **434** 409 264 241 590 587

Approvals PD-L1 ≥1% PD-L1 ≥50%

and other

countries

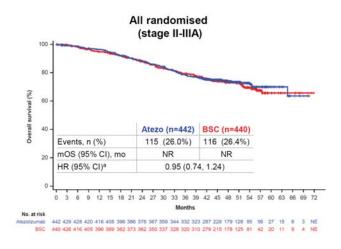
IMpowero10: the primary endpoint of improved DFS in patients with PD-L1TC ≥1%, stage II–IIIA* NSCLC was met

completely resected NSCLC 100 Disease-free survival (%) 80 0.0% 60 61.0% 40 48.2% Atezo BSC (n=248) (n=228) 20 Median DFS (95% CI), mo NE (36.1, NE) 35.3 (29.0, NE) Median follow-up (range), mo 32.8 (0.1-57.5) 0 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 6 0 2 Months No. at risk Atezolizumab 248 235 225 217 206 198 190 181 159 134 111 76 54 31 22 12 8 BSC 228 212 186 169 160 151 142 135 117 97 80 59 38 21 14 7 6 4 3

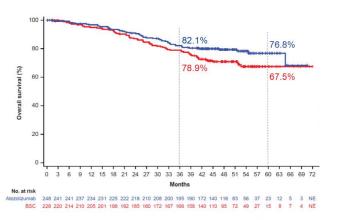
DFS in PD-L1 TC ≥1%, stage II–IIIA,

Primary analysis populations

Population analysed for DFS	n	HR (95% CI)§	
PD-L1 TC ≥1%, stage II–IIIA	476	0.66 (0.50, 0.88)	
All-randomised, stage II–IIIA	882	0.79 (0.64, 0.96)	
ITT (all randomised, stage IB–IIIA)	1005	0.81 (0.67, 0.99)	

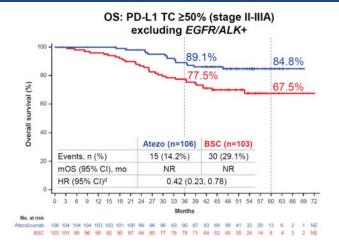

Endpoint was met at DFS IA

Endpoint was not met at DFS IA, and follow-up is ongoing


*Per TNM 7th edition (select stage II–IIIB per TNM 8th edition)

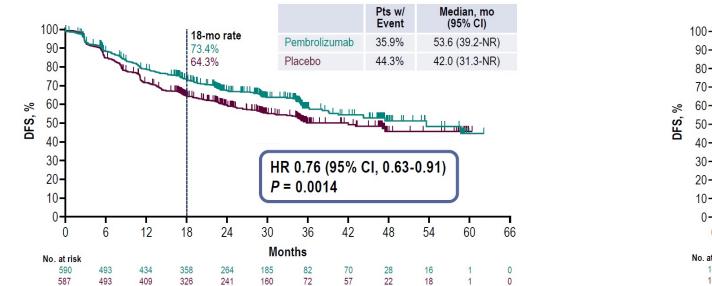
IMpowero1o: OS trend of atezolizumab in PD-L1 ≥1% Stage II– IIIA (interim OS analysis)

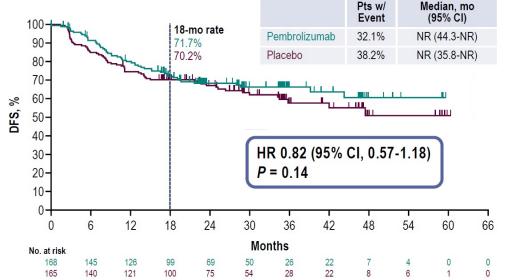
No OS benefit in the all-randomised Stage II–IIIA


OS interim analysis in PD-L1 TC ≥1% (Stage II–IIIA)

mOS, median overall survival; NR, not reached. *By SP263 assay. *Stratified

	Atezo (n=248)	BSC (n=228)	
Events, n (%)	52 (21.0%)	64 (28.1%)	
mOS (95% CI), mo	NR	NR	
HR (95% CI)-	0.71 (0.49, 1.03)		

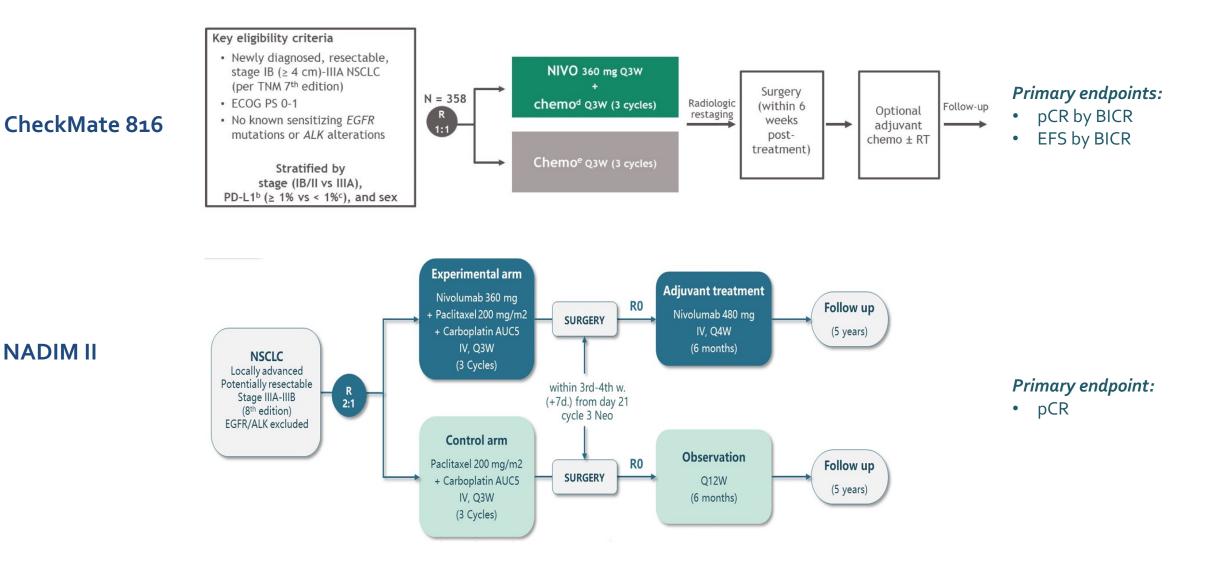

Clinically meaningful OS trend in PD-L1 ≥50%



KEYNOTE-091: one dual primary endpoint of a DFS benefit in the overall population was met

DFS in the overall population (PD-L1 unselected, stage IB–III, completely resected NSCLC

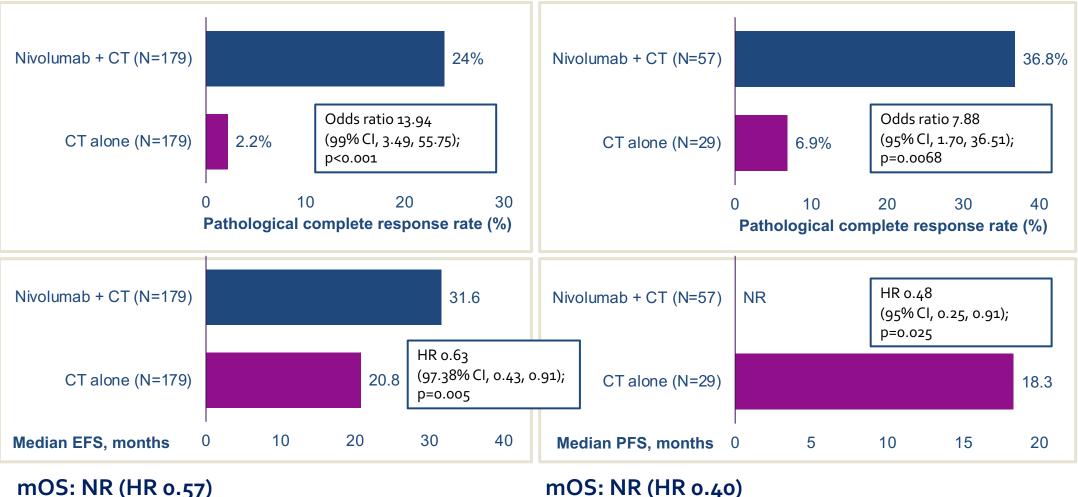
DFS in PD-L1 TPS ≥50%, stage IB–III, completely resected NSCLC*


OS data are not yet mature

Data cut-off: 20 September, 2021; response assessed per RECIST v1.1 by investigator review

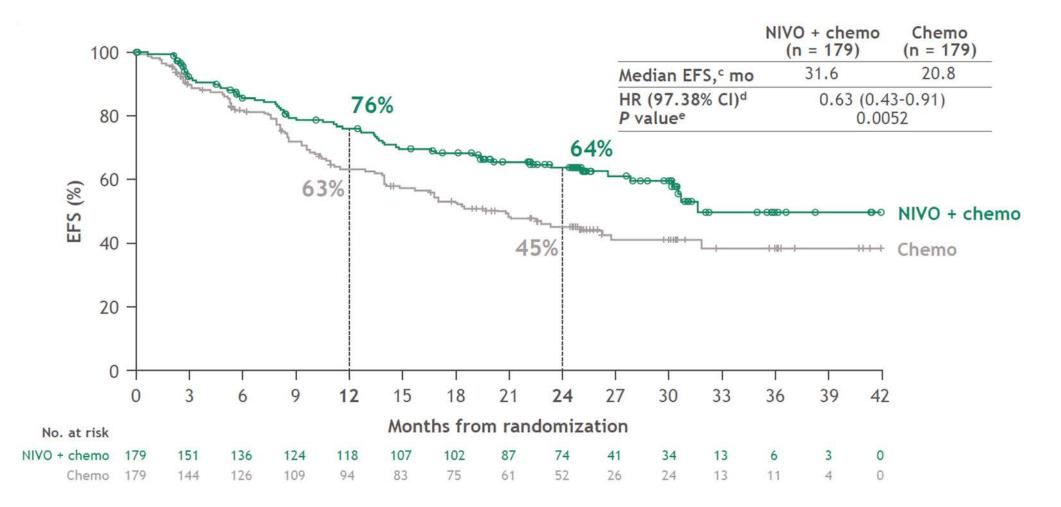
*At the interim analysis, this dual primary endpoint did not meet statistical significance

Paz-Ares, et al. ESMO Plenary 2022 (Abs VP3-2022)


Neoadjuvant nivolumab: CheckMate 816 and NADIM II

Neoadjuvant nivolumab: Odds ratio and EFS

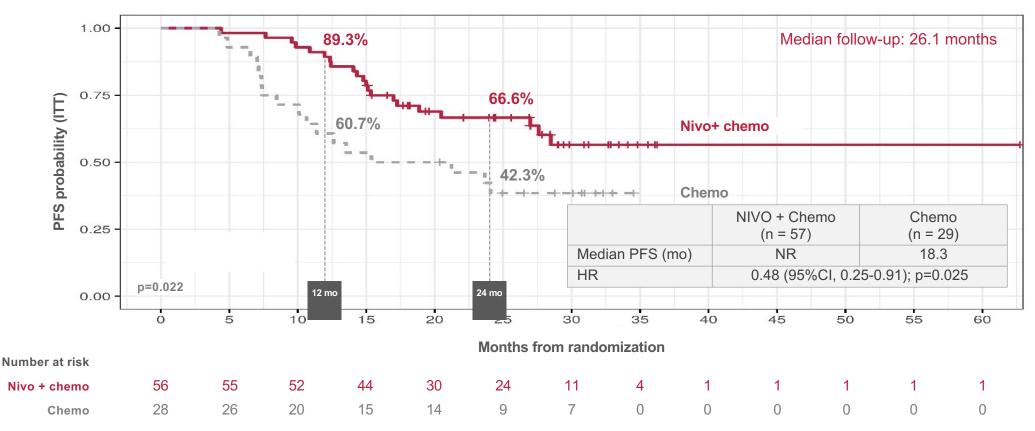
CheckMate 816¹


NADIM II²

mOS: NR (HR 0.40)

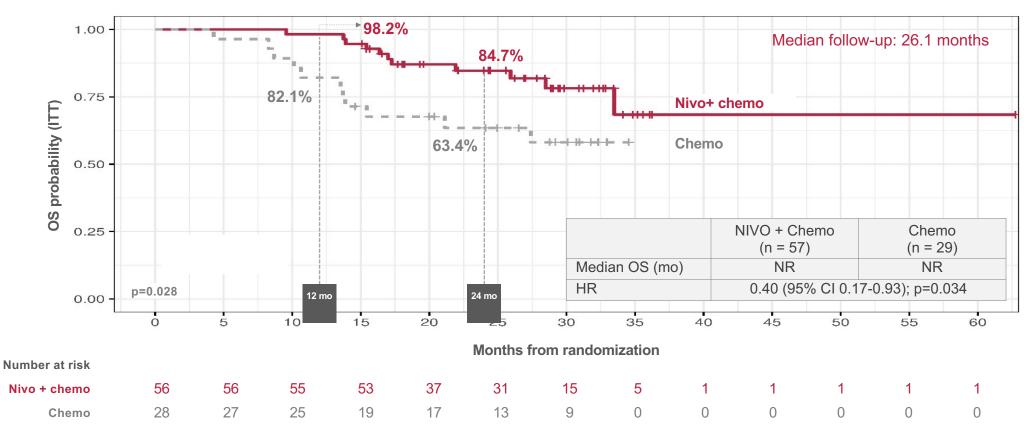
CI, confidence interval; CT, chemotherapy; EFS, event-free survival; HR, hazard ratio; NR, not reached 1. Forde PM, et al. N Engl J Med 2018;378:1976-86; 2. Provencio M, et al. Presented at ASCO 2022 (Abstract 8501)

CheckMate 816: neoadjuvant nivolumab + chemotherapy improved EFS compared with chemotherapy alone



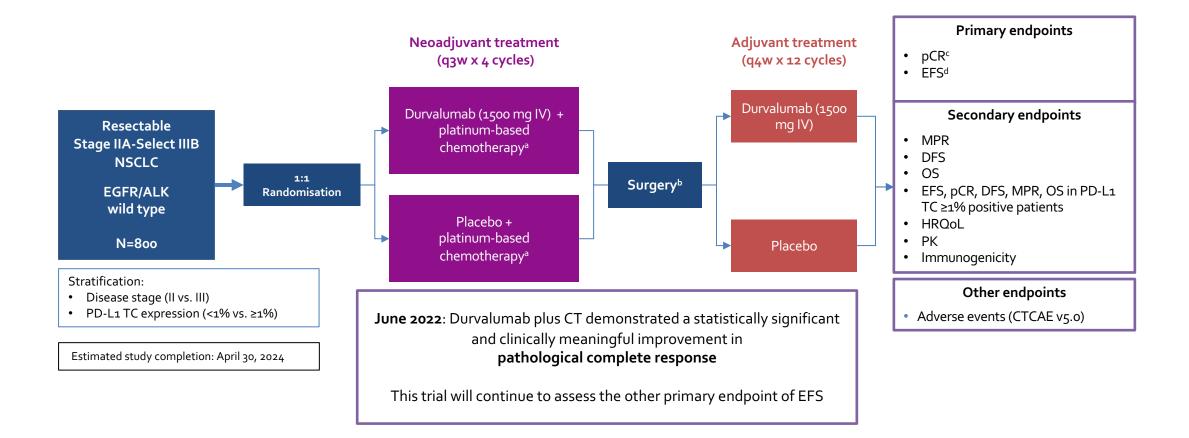
Girard, et al. AACR 2022 (Abs CT012) Forde, et al. N Engl J Med 2022

NADIM II: SECONDARY ENDPOINTS – Progression-free survival

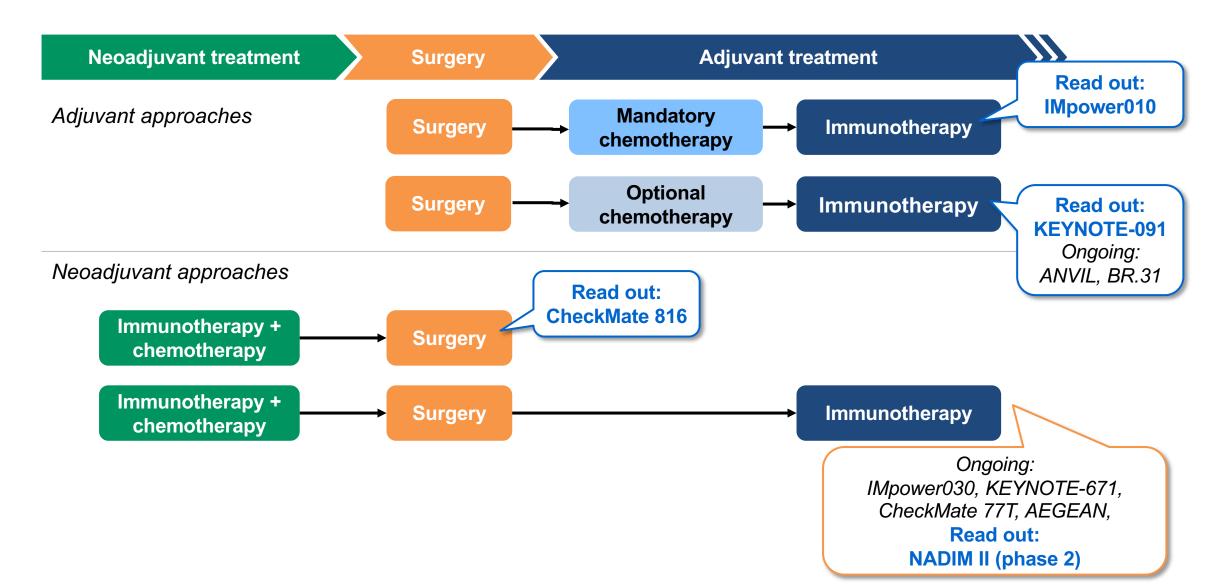


Progression-free survival was defined as the time from randomization to any of the following events: progression of disease, recurrence disease, or death due to any cause. Progression/recurrence will have determined by RECIST 1.1

NADIM II: SECONDARY ENDPOINTS – Overall survival



Overall survival was defined as the time from randomization to death. OS was censored on the last date a participant was known to be alive

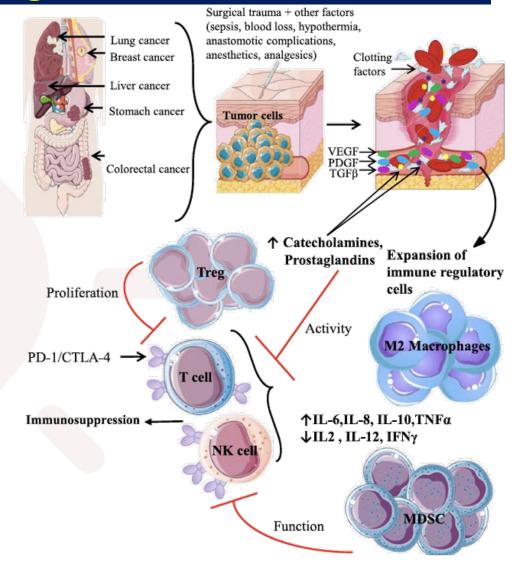

Dr. Mariano Provencio, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain

AEGEAN: further positive results with a perioperative regimen

Phase III, placebo-controlled, double-blind, randomised, multicenter study^{1,2}

Several phase III studies with immunotherapy in resectable NSCLC will read soon...

Arguments for Neoadjuvant Immune Checkpoint Inhibition Followed by Surgical Resection


Higher antigen load and release from dying cells in untreated tumors

- ✓ Better priming of immune system
- Fit host immune system, intact nodal stations No significant clonal evolution
 - ✓ Tumor less heterogeneous

Opportunity to accurately study the effects of IO

- ✓ Access to pre and post tissue
- Ability to access efficacy of the therapy

Shorten timeframe to completion of trials (early surrogate for survival?)

Immunotherapy in NSCLC

ESMO VIRTUAL PLENARY

Pembrolizumab Versus Placebo For Early-Stage NSCLC Following Complete Resection and Adjuvant Chemotherapy When Indicated: Randomized, Triple-Blind, Phase 3 EORTC-1416-LCG/ETOP 8-15 – PEARLS/KEYNOTE-091 Study

Information | Research

L. Paz-Ares,^{1*} M. O'Brien,^{2*} M. Mauer,³ U. Dafni,⁴ K. Oselin,⁵ L. Havel,⁶ E. Esteban,⁷ D. Isla,⁸ A. Martinez-Marti,⁹ M. Faehling,¹⁰ M. Tsuboi,¹¹ J.S. Lee,¹² K. Nakagawa,¹³ J. Yang,¹⁴ S.M. Keller,¹⁴ N. Jha,³ S. Marreaud,³ R. Stahel,¹⁵ S. Peters,^{16**} B. Besse^{17**} on behalf of the PEARLS/KEYNOTE-091 Investigators

¹Hospital Universitario 12 de Octubre, CNIO, Ciberono & Universidad Complutense, Madrid, Spain; ²Royal Marsden Hospital, London, UK; ³European Organisatic Research and Treatment of Cancer, Headquarters Brussels, Belgium; ⁴National and Kapodistrian University of Athens and Frontier Science Foundation Hellas; ⁵Nat Estonia Medical Centre, Tallinn, Estonia; ⁶Charles University and Thomayer Hospital, Prague, Czech Republic; ⁷Hospital Universitario Central de Asturias, Oviedo, Spain; ⁸University Hospital Lozano Blesa, IIS Aragon, Zaragoza, Spain; ⁹Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain; ¹⁰Klinikum Esslingen, Esslingen, Germany; ¹¹National Cancer Center Hospital East, Kashiwa, Japan; ¹²Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea; ¹³Kindai University Hospital, Lausanne, Switzerland; ¹⁷Institut Gustave Roussy, Villejuit, France *Drs. Paz-Ares and O'Brien contributed equally to this presentation. **Drs. Peters and Besse contributed equally to this presentation.

Abstract VP3-2022

PEARLS/KEYNOTE-091: Author Summary and Conclusions

- Pembrolizumab provided statistically significant, clinically meaningful DFS improvement versus placebo in the overall population
 - Median DFS of 53.6 months with pembrolizumab vs 42.0 months with placebo (HR, 0.76)
 - Generally consistent DFS benefit in participants with PD-L1 TPS <1%, 1-49%, and ≥50%
 - OS data are immature
 - DFS in the PD-L1-defined populations and OS will be tested at future analyses according to the analysis plan
- · Pembrolizumab safety profile as expected
- Data suggest pembrolizumab has the potential to be a new adjuvant treatment option for patients with stage IB (T ≥4 cm) to IIIA NSCLC following complete resection and adjuvant chemotherapy when recommended, regardless of PD-L1 expression

TPS = tumor proportion score

Paz-Ares L et al. ESMO Virtual Plenary Sessions 2022; Abstract VP3-2022.

FDA-Approved Immunotherapy Combination Options for First-Line Therapy

Combination regimen	FDA approval	Pivotal study	Histologic type	HR (OS)
Pembrolizumab (q3wk or q6wk) + platinum and pemetrexed ¹	8/20/18	KEYNOTE-189	Nonsquamous	0.56
Pembrolizumab (q3wk or q6wk) + carboplatin, paclitaxel or <i>nab</i> paclitaxel ²	10/30/18	KEYNOTE-407	Squamous	0.71
Atezolizumab (q3wk) + carboplatin and paclitaxel and bevacizumab ³	12/6/18	IMpower150	Nonsquamous	0.80
Atezolizumab (q3wk) + carboplatin and <i>nab</i> paclitaxel ⁴	12/3/19	IMpower130	Nonsquamous	0.79
Nivolumab (q2wk) + ipilimumab⁵	5/15/20	CheckMate 227	PD-L1 TPS ≥1, EGFR and/or ALK wt	0.76
Nivolumab (q3wk) + ipilimumab and chemotherapy ⁶	5/26/20	CheckMate 9LA	EGFR and/or ALK wt	0.72

¹ Rodriguez-Abreu. *Ann Oncol* 2021. ² Paz-Ares. *J Thorac Oncol* 2020. ³ Socinski *J Thorac Oncol* 2021. ⁴ West. *Lancet Oncol* 2019. ⁵ Paz-Ares. ASCO 2021; Abstract 9016. ⁶ Reck. ASCO 2021; Abstract 9000.

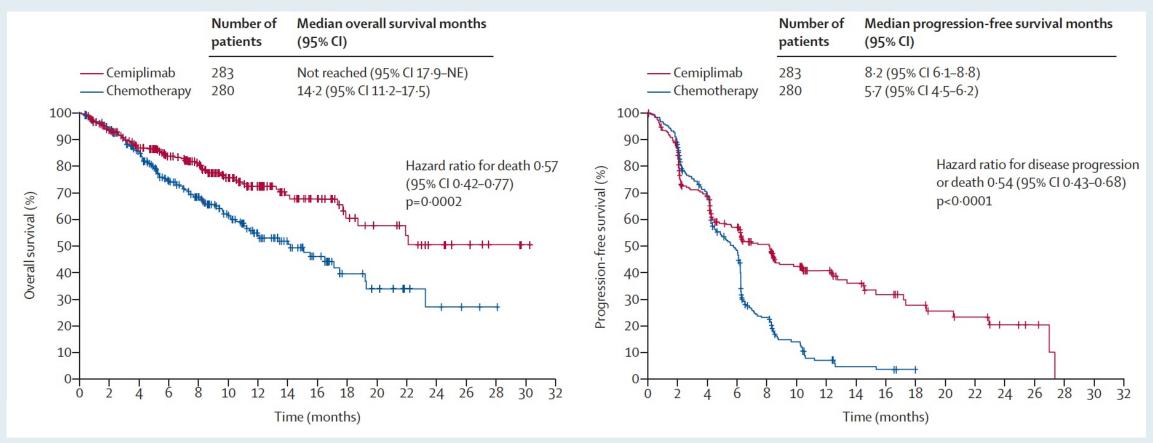
FDA-Approved Single-Agent Immunotherapy Options for First-Line Therapy

Monotherapy	FDA approval	Pivotal study	Histologic type	HR (OS)
Pembrolizumab ^{1,2} (q3wk or q6wk)	4/11/19 10/24/16	KEYNOTE-042 KEYNOTE-024	PD-L1 TPS ≥1%	0.63
Atezolizumab ³ (q2wk, q3wk or q4wk)	5/18/20	IMpower110	PD-L1 TPS ≥50, EGFR and/or ALK wt	0.59
Cemiplimab ⁴ (q3wk)	2/22/21	EMPOWER-Lung 1 (Study 1624)	PD-L1 TPS ≥50, EGFR and/or ALK and/or ROS1 wt	0.57

¹ Mok. *Lancet* 2019. ² Reck. *J Clin Oncol* 2019. ³ Herbst. *N Engl J Med* 2020. ⁴ Sezer. *Lancet* 2021.

Lancet 2021;397(10274):592-604.

Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: a multicentre, open-label, global, phase 3, randomised, controlled trial

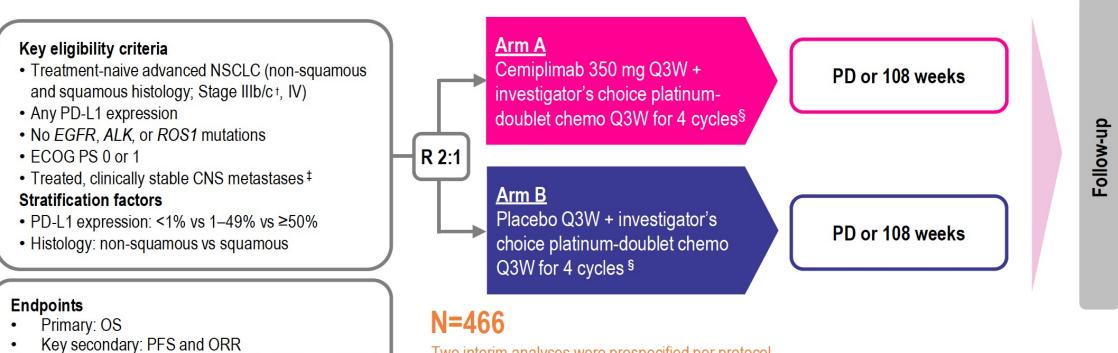

Ahmet Sezer, Saadettin Kilickap, Mahmut Gümüş, Igor Bondarenko, Mustafa Özgüroğlu, Miranda Gogishvili, Haci M Turk, Irfan Cicin, Dmitry Bentsion, Oleg Gladkov, Philip Clingan, Virote Sriuranpong, Naiyer Rizvi, Bo Gao, Siyu Li, Sue Lee, Kristina McGuire, Chieh-I Chen, Tamta Makharadze, Semra Paydas, Marina Nechaeva, Frank Seebach, David M Weinreich, George D Yancopoulos, Giuseppe Gullo, Israel Lowy, Petra Rietschel

EMPOWER-Lung 1: A Phase III Trial of Cemiplimab Monotherapy for First-Line Treatment of NSCLC with PD-L1 ≥50%

Overall Survival

Progression-Free Survival

Sezer A et al. Lancet 2021;397(10274):592-604.

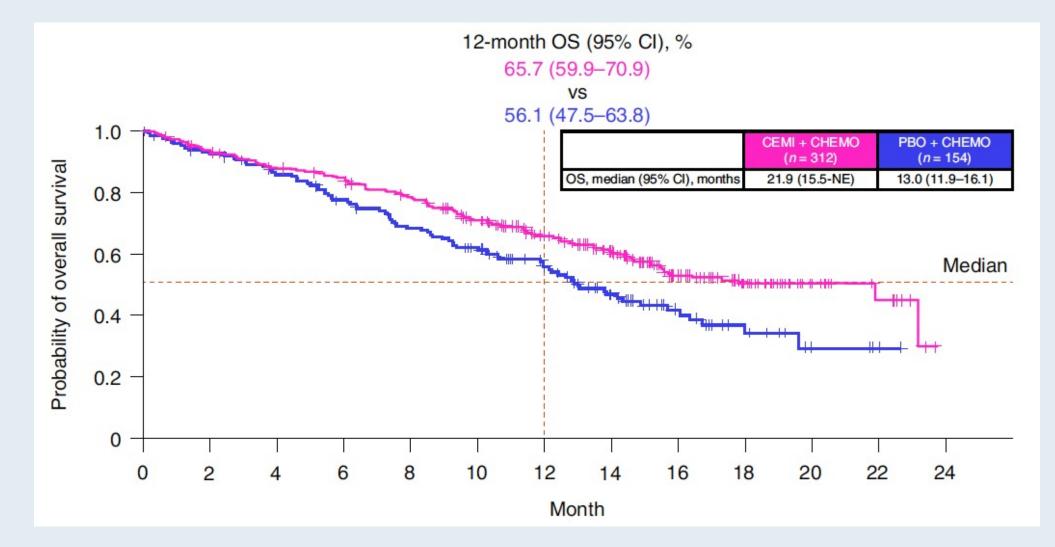

Cemiplimab plus chemotherapy versus chemotherapy alone in non-small cell lung cancer: a randomized, controlled, double-blind phase 3 trial

Miranda Gogishvili¹¹², Tamar Melkadze², Tamta Makharadze³, Davit Giorgadze⁴, Mikhail Dvorkin⁵, Konstantin Penkov⁶, Konstantin Laktionov⁷, Gia Nemsadze⁸, Marina Nechaeva⁹, Irina Rozhkova¹⁰, Ewa Kalinka¹¹, Christian Gessner^{12,13}, Brizio Moreno-Jaime¹⁴, Rodolfo Passalacqua¹⁵, Siyu Li¹⁶, Kristina McGuire¹⁶, Manika Kaul¹⁶, Anne Paccaly¹⁶, Ruben G. W. Quek¹⁶, Bo Gao¹⁶, Frank Seebach¹⁶, David M. Weinreich¹⁶, George D. Yancopoulos¹⁶, Israel Lowy¹⁶, Giuseppe Gullo¹⁶ and Petra Rietschel¹⁶

Nat Med 2022 Aug 25;[Online ahead of print].

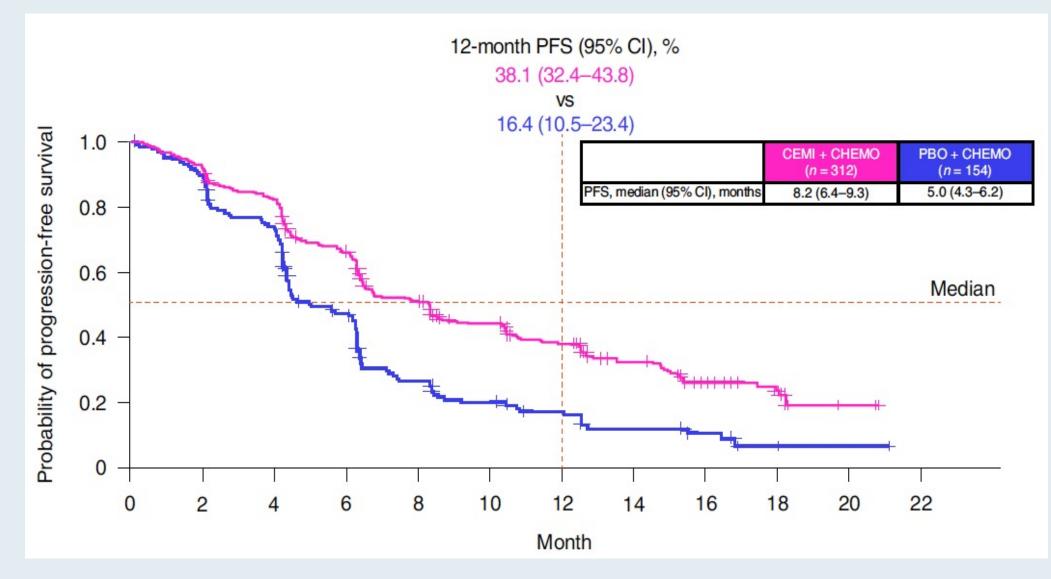
EMPOWER-Lung 3: First-Line Cemiplimab with Platinum-Doublet Chemotherapy for Advanced NSCLC

Additional secondary: DOR, BOR, safety, and PRO


Two interim analyses were prespecified per protocol Second interim analysis (14 June 2021) presented here

BOR = best overall response; PRO = patient-reported outcome

Gogishvili M et al. ESMO 2021; Abstract LBA51.


EMPOWER-Lung 3: Overall Survival with First-Line Cemiplimab and Platinum-Doublet Chemotherapy for Advanced NSCLC

Gogishvili M et al. Nat Med 2022 Aug 25;[Online ahead of print].

EMPOWER-Lung 3: Progression-Free Survival with First-Line Cemiplimab and Platinum-Doublet Chemotherapy for Advanced NSCLC

Gogishvili M et al. Nat Med 2022 Aug 25;[Online ahead of print].

Discussion Questions

First-Line Treatment for Metastatic NSCLC in Patients without Targetable Mutations

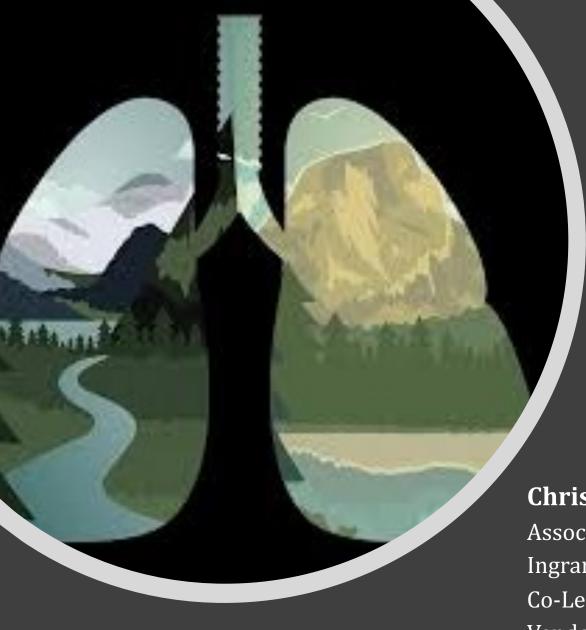
Common queries...

- Is anti-PD-1/PD-L1 monotherapy a reasonable consideration for patients with a PD-L1 TPS between 1% and 49%, particularly those who are less fit or have nonvisceral disease?
- Regulatory and reimbursement issues aside, in which situations, if any, do you believe anti-PD-1/anti-CTLA-4 combinations are currently a consideration, and which doublets?
- What is your usual approach to patients with PD-L1-negative tumors?
- Do you believe there is any difference in clinical outcomes with the approved anti-PD-1/PD-L1 antibodies?

Discussion Questions

First-Line Treatment for Metastatic NSCLC in Patients without Targetable Mutations (cont)

- Do you believe patients who have autoimmune complications with immunotherapy are more likely to benefit?
- Do you believe there are currently any clinically meaningful predictors of immunotherapy benefit beyond PD-L1 and TMB?
- In patients with high PD-L1 levels, when do you add chemotherapy to anti-PD-1/PD-L1 antibodies, and how much do you consider the magnitude of the assay result?
- Do you believe the results of the PACIFIC trial warrant consideration of this approach in some patients with classic indications for surgery?
- Can you describe an ideal patient for neoadjuvant chemoimmunotherapy?



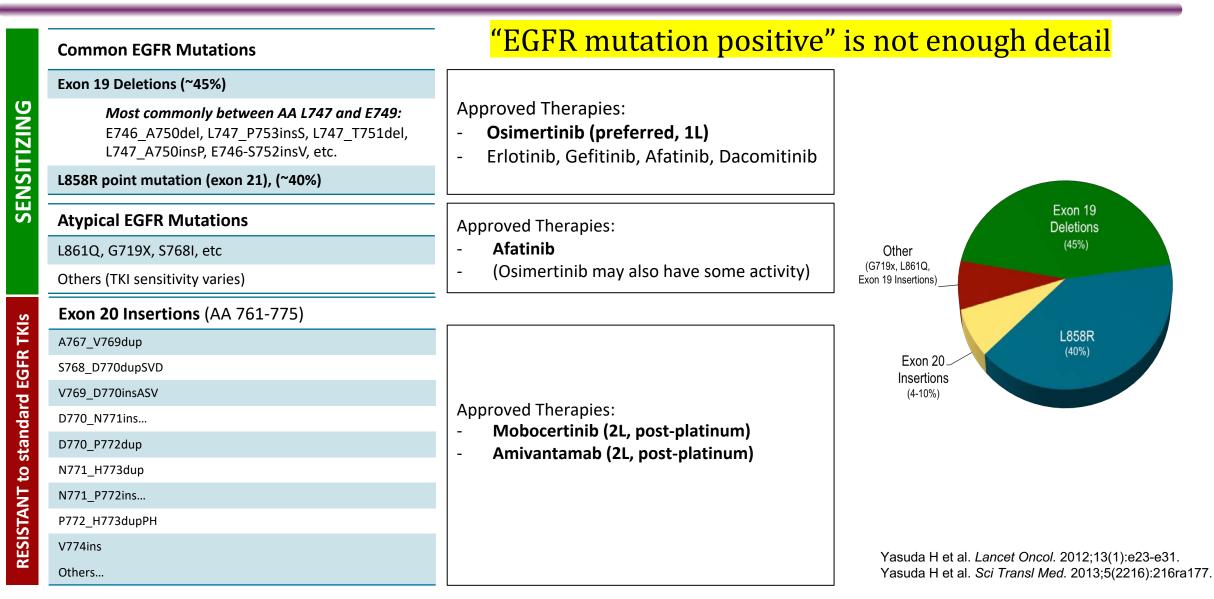
MODULE 1: First line treatment of metastatic NSCLC in patients without targetable mutations

MODULE 2: Neoadjuvant and Adjuvant Treatment of Localized NSCLC

MODULE 3: Targeted Treatment of Metastatic NSCLC

@Christine_Lovly

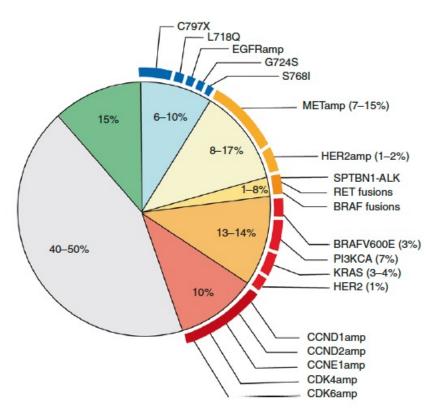
Updates on management of EGFR-mutant and HER2-mutant lung cancer


Christine M. Lovly, MD, PhD

Associate Professor of Medicine, Division of Hematology and Oncology Ingram Associate Professor of Cancer Research Co-Leader, Translational Research and Interventional Oncology Program Vanderbilt University and Vanderbilt Ingram Cancer Center Nashville, TN

OBJECTIVES

- Discuss therapeutic strategies for patients with metastatic **EGFR-mutant lung cancer** that experience disease progression on 1st line osimertinib
- Review options for management of metastatic NSCLC harboring EGFR exon 20 insertion mutations
- Outline emerging strategies for management of **HER2-mutant** NSCLC


Distinguishing between *EGFR* **mutations in NSCLC**

For EGFR-mutant NSCLC patients, disease progression on osimertinib is now a major challenge

1st **line Osimertinib** mPFS 18.9 mos

2nd line therapies after 1st line osimertinib? Selecting optimal post-Osimertinib therapies requires an understanding of resistance mechanisms and effective strategies to target these mechanisms

On-target resistance

- EGFR C797S, G724S, etc.
- 5-10%
- Histologic Transformation
 - SCLC, squamous, and other histologies
 - Tissue biopsy is critical in the evaluation of osimertinib resistance
 - Up to 15%
- Bypass pathway activation
 - most notably *MET* amplification
 - up to 15% pts
- 50-60% of patients don't have a targetable resistance mechanism

Treatment Options after First-Line Osimertinib

General Principles

- Platinum-pemetrexed remains the standard of care after 1st line Osimertinib.
- Consider treatment options directed at resistance mechanisms when available
 - Histology-specific chemotherapy
- Enroll patients on clinical trials

<u>To continue Osimertinib or not with chemotherapy?</u>

- Role of continued Osimertinib with carboplatin/pemetrexed is unknown.
 - Carbo/Pem/Osi vs. Carbo/Pem/Placebo being evaluated (COMPEL; NCT04765059)
- Chemo + Osi is generally well tolerated, with more myelosuppression
 - White M, Piotrowska Z, *Clinical Lung Cancer* 2021.
- Consider continuing Osimertinib with carboplatin/pemetrexed for patients with CNS disease which remains controlled on osimertinib.

Role of Immunotherapy After Osimertinib?

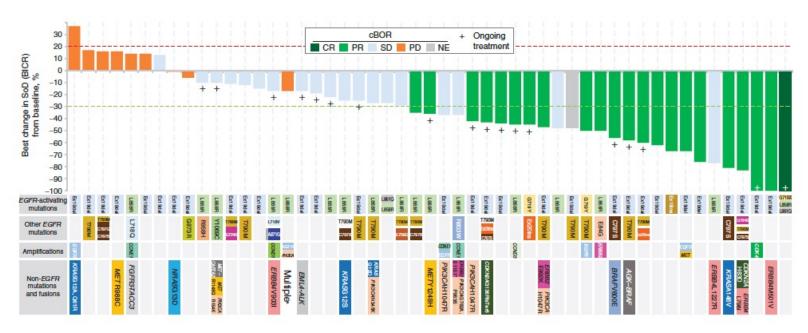
- The efficacy of single-agent anti-PD1/PD-L1 inhibitors among EGFR+ NSCLC is low (ORR ~3-12%)¹
- KEYNOTE-189 *excluded* pts with sensitizing EGFR mutations.
- ImPower150 (Carbo/Pac/Bev/Atezo) is an option. Patients with EGFR-mutant tumors had improvement in PFS/OS with ABCP vs. BCP (small numbers).
- Osi *should not* be given concurrently with IO (↑ pneumonitis risk).

Median PFS, mo n (%) Subgroup HR (95% CI) ABCP BCP EGFR Mutation 79 (100%) 0.61 (0.36-1.03) 10.2 6.9 Sensitising EGFR Mutation^a 0.41 (0.23-0.75) 58 (73%) 10.3 6.1 0.42 (0.22-0.80) Received Prior TKI Therapy 50 (63%) 9.7 6.1 1.0 2.0 0.0 0.2 Hazard Ratio^b

The addition of atezolizumab to bevacizumab and chemotherapy increased PFS benefit across all *EGFR*-mut patient subgroups, especially those who have received prior TKI

In favour of ABCP In favour of BCP

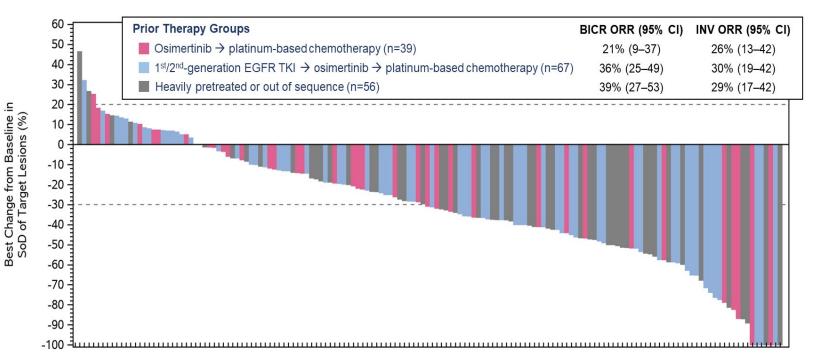
^a Defined as exon 19 deletions or L858R mutations. ^b Unstratified HR. Data cutoff 22 Jan 2018. EUROPEAN LUNG CANCER CONFERENCE 2019 Reck et al. IMpower150 in EGFR-mt pts

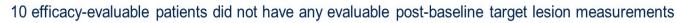

elcc

PFS in *EGFR*-mt patients (Arm B vs Arm C)

Patritumab Deruxtecan (HER3-DXd; HER3 Antibody-Drug Conjugate)

- HER3 is expressed in most NSCLC tumors.
- Patritumab Deruxtecan (HER3-DXd) is an antibody drug conjugate with a topoisomerase I inhibitor payload.
- HER3 mutation is not a known mechanism of resistance to EGFR TKI in *EGFR*m NSCLC[.]
- Reference: Janne et al. ASCO 2021


	All (n=57)	Prior PBC + Osi (n=44)
Confirmed ORR (BICR)	39%	39%
mDOR, mo (range)	6.9 (3.1-NE)	7.0 (3.1-NE)
mPFS, mo (range	8.2 (4.4-8.3)	8.2 (4.0-NE)



Responses observed regardless of osimertinib resistance mechanism.

Amivantamab + Lazertinib

Amivantamab (bispecific MET/EGFR antibody) + Lazertinib (3rd gen EGFR TKI)

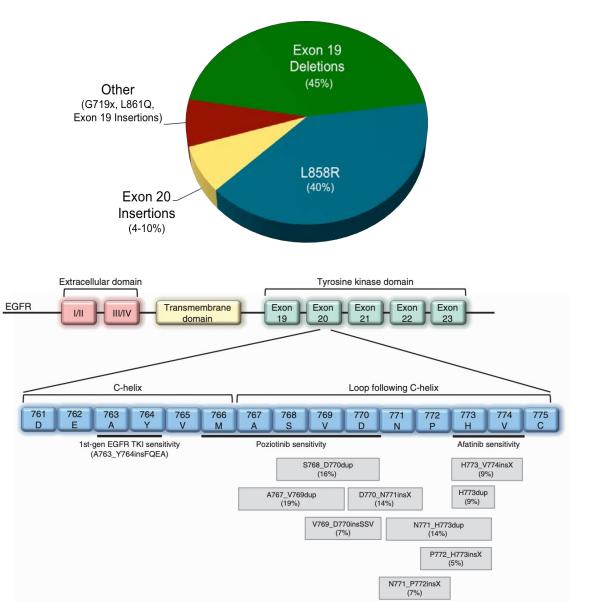
BICR-assessed Response	n=162
ORR	33% (95% Cl, 26–41)
Median DOR	9.6 mo (95% CI, 7.0–NE)
Best response, n (%)	
Complete response	2 (1)
Partial response	52 (32)
Unconfirmed partial response	1 (0.6)
Stable disease	69 (43)
Progressive disease	28 (17)
NE	10 (6)
Clinical benefit rate ^a	57% (95% Cl, 49–65)

Investigator-assessed ORR=28% (95% CI, 22–36) Investigator-assessed median DOR=8.4 mo (95% CI, 5.6–NE)

Median follow-up=10.0 mo (range, 0.3–20.2) Median progression free survival=5.1 mo (95% Cl, 4.2–6.9) Median overall survival=14.8 mo (95% Cl, 12.1–NE)

<u> Amivantamab + Lazertinib – Biomarker Selection?</u>

- ORR 47% (8/17) in patients with identified EGFR/MET mechanism of resistance
- ORR 29% (8/28) in patients without an identified EGFR/MET mechanism of resistance


Shu C, ASCO 2022 Chul B et al. ASCO 2021

Summary: therapeutic strategies after progression on 1st line osimertinib

- The therapeutic approach to patients who progress on osimertinib should be guided by 1) sites of progression (consider local therapy for oligoprogressive disease) and 2) resistance mechanisms, if possible.
- Tissue biopsy should be considered, particularly for patients with baseline EGFR/TP53/Rb1 mutations who are at increased risk of SCLC transformation.
- Outside of clinical trials, I use **platinum doublet chemotherapy +/- osimertinib.**
 - In particular, consider continuing osimertinib with chemotherapy (e.g., carbo/pem/osi) for patients with CNS disease controlled with Osimertinib.
- Numerous agents in development: HER3-DxD, Amivantamab + Lazertinib, "4th generation" EGFR TKIs.
- Also look for "risk adapted" clinical trials based on ctDNA clearance.

EGFR Exon 20 Insertion Mutations

- Like other mutations, can be detected with NGS
- More commonly seen in specific populations
 - Female sex
 - Never smokers
 - Adenocarcinoma histology
- Like EGFR del19/L858R, poor responses to immunotherapy
- Unlike EGFR del19/L858R, poor responses to standard TKIs
- Standard treatment is currently 1st line platinum doublet chemotherapy

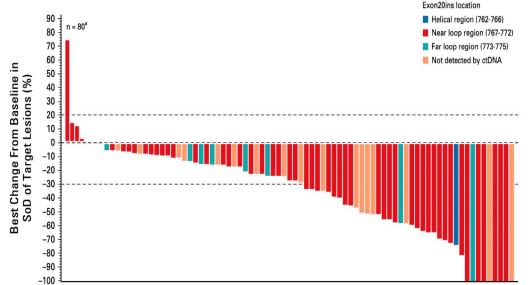
Vyse et al. Signal Transduction and Targeted Therapy. 2019 Yasuda, et al. Lancet Oncol, 2011; Yasuda, et al. Science Trans Med, 2014 Heymach J, WCLC 2018, Meador CB, Sequist LV, Piotrowska Z, Cancer Discov 2021.

Amivantamab for patients with metastatic lung cancer harboring EGFR exon 20 insertions

Study Population:

- 81 patients
- All with prior platinum-based chemotherapy

Efficacy:


- Confirmed ORR 40%
- mPFS: 8.3 mos; mDOR: 11.1 mos

<u>Toxicity</u>:

- Infusion related reactions (66% Any Grade, 3% Grade > 3) most commonly on C1D1
- Derm: Rash (86% Any Grade, 4% Grade > 3), Paronychia (45%)
- MET-related: Hypoalbuminemia (27%), Edema (18%)
- Dose Reduction: 13% | Dose discontinuation: 10%

→ FDA accelerated approval May 21, 2021

Park K et al. *J Clin Oncol.* 2021;39:3391-3402. Sabari, WCLC 2020

AE (>4E%) of Treatment	Safety Population (N=114)					
AE (≥15% of Treatment- emergent AEs), n (%)	Treatment-e	emergent AE	Treatment-related AE			
chiergent AE3), h (70)	Total	Grade ≥3	Total	Grade ≥3		
EGFR-related						
Rash ^a	98 (86)	4 (4)	98 (86)	4 (4)		
Paronychia	51 (45)	1 (1)	48 (42)	1 (1)		
Stomatitis	24 (21)	0	21 (18)	0		
Pruritus	19 (17)	0	19 (17)	0		
MET-related						
Hypoalbuminemia	31 (27)	3 (3)	17 (15)	2 (2)		
Peripheral edema	21 (18)	0	11 (10)	0		
Other						
Infusion related reaction	75 (66)	3 (3)	75 (66)	3 (3)		
Constipation	27 (24)	0	7 (6)	0		
Nausea	22 (19)	0	13 (11)	0		
Dyspnea	22 (19)	2 (2)	6 (5)	0		
Fatigue	21 (18)	2 (2)	14 (12)	1 (1)		
Increased ALT	17 (15)	1 (1)	14 (12)	1 (1)		

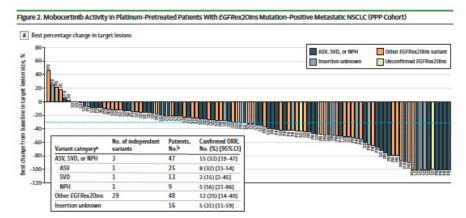
Mobocertinib for patients with metastatic lung cancer harboring EGFR exon 20 insertions

Mobocertinib- Oral, irreversible EGFR TKI (160mg daily)

<u>Study Population</u>:

- 114 patients
- All with prior platinum-based chemotherapy

Efficacy:


- ORR 28% (BIRC)
- mPFS: 7.3 mos; mDOR: 17.5 mos

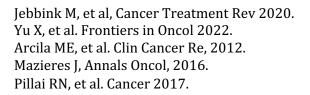
<u>Toxicity</u>:

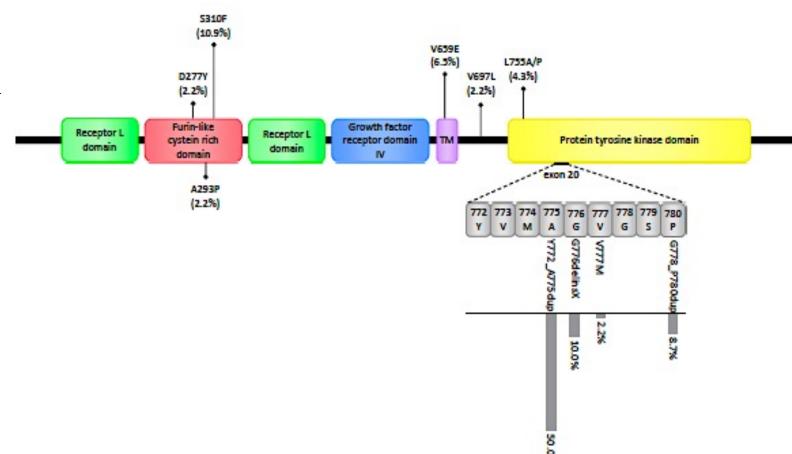
- GI: Diarrhea (91% Any Grade, 21% Grade > 3), Decreased Appetite (35%), Nausea (34%)
- Derm: Rash (45% Any Grade, 0% Grade > 3), Paronychia (38%)
- Cardiac: QTc prolongation (11% Any Grade, 3% Grade > 3), one treatment-related death due to cardiac failure
- Dose reduction: 25% | Treatment Discontinuation: 17%

\rightarrow FDA accelerated approval Sept 15, 2021

Zhou C et al. JAMA Oncol. 2021.

	Any Grade	Grade <u>></u> 3
Diarrhea	91%	21%
Rash	45%	0%
Paronychia	38%	<1
Anorexia	35%	<1%
Nausea	34%	4%
Dry Skin	31%	0
Vomiting	30%	3%
Cr Increase	25%	2%
Stomatitis	24%	4%

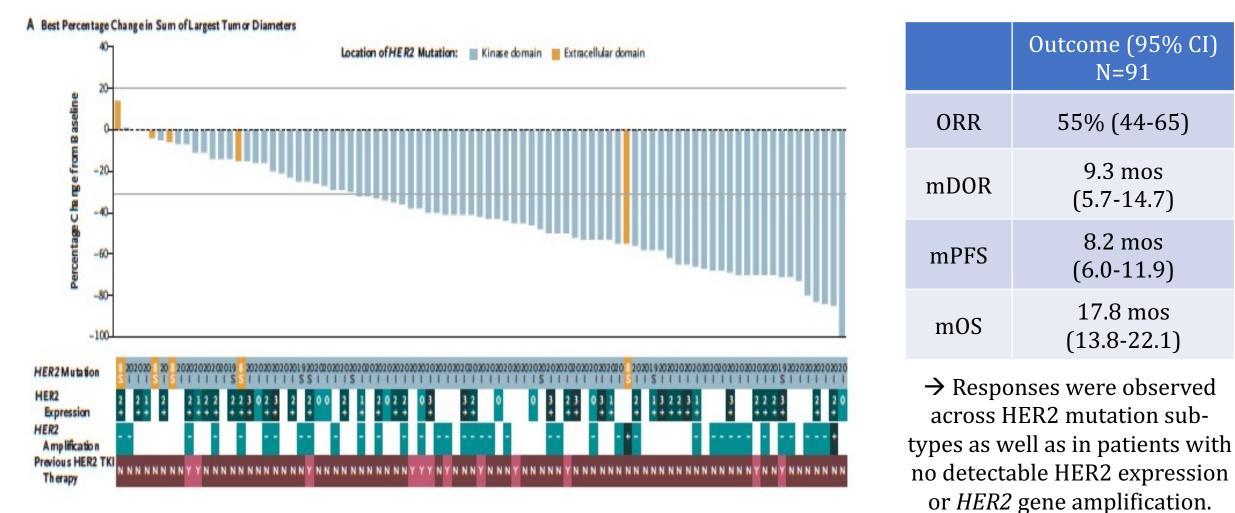

Emerging Drugs for EGFR Exon 20 insertion mutations


Drug	NCT	Most Recent REF	Notes
Sunvozertinib (DZD9008)	NCT03974022	Janne P, ASCO 2022	Confirmed ORR 37.5 % in overall population presented to date
CLN-081	NCT04036682	Yu HA, ASCO 2022	Confirmed PR 38.4% in overall population presented to date
BDTX-189	NCT04209465	Schram AM, ASCO 2020	Clinical Development Halted
BLU-451	NCT05241873	Spira AI, ASCO 2022	CNS Activity Predicted
ORIC-114	NCT05315700	Juntilla MR, AACR 2021	CNS Activity Predicted
HS-10376	NCT05435274		

REF: Clinicaltrials.gov search for "EGFR exon 20" (accessed July 1, 2022) – not an exhaustive list

HER2 mutations in NSCLC

- HER2 mutations occur in 1-3% of NSCLC
 - Exon 20 insertions most common
 - YVMA variant: most common HER2 ex20 insertion variant
 - Point mutations in the tyrosine kinase, transmembrane and extracellular domains also present at lower frequencies.
- HER2 mutations have little to no overlap with gene amplification or protein expression


EGFR/HER2 TKIs for HER2-mutant NSCLC

Drug	Target Pop	N	ORR	mPFS	Toxicities
Afatinib ¹	HER2 ^{mt}	13	8%	16 weeks	Diarrhea, vomiting, rash, paronychia, fatigue, mucositis
Afatinib ²	HER2 ^{mt}	27	13%	3 mo	Diarrhea/GI toxicity, skin rash.
Neratinib ³	HER2 ^{mt}	26	4%	5.5 mo	Diarrhea (74%), Nausea (43%), Vomiting (41%)
Dacomitinib ⁴	HER2 ^{mt}	26	12%	3 mo	Diarrhea (90%), rash (73%)
Mobocertinib ⁵	HER2 ^{mt}	5	1/5 (20%)		83% Diarrhea, 50% Anorexia
Pyrotinib ⁶	HER2 ^{mt}	60	30%	6.9 mo	92% Diarrhea; 30% Creatinine increase
Poziotinib ⁷	HER2 ^{mt} , Pretreated	90	28%	5.5 mo	49% Gr 3 Rash; 25.6 % Gr 3 Diarrhea
Poziotinib ⁸	HER2 ^{mt} , First-line	48	44%	5.6 mo	49% Gr 3 Rash; 25.6 % Gr 3 Diarrhea

1. Dziadziuszko R, JTO 2019; 2. Lai WCV et al, European Journal of Cancer 2018; 3. Hyman DM, Nature 2018; 4. Kris MG et al. Ann Onc. 2015; 5. Zhou C et al. J Clin Oncol. 2020; 6. Neal JW et al. WCLC 2018. Abstract P1.13-44, 7. Zhou C, JCO 2020, 7. Le X, JCO 2022; 8. Cornelisson R, ESMO 2021

Trastuzumab Deruxtecan (T-DXd) in HER2-mutant NSCLC

DESTINY-Lung01: Single arm, phase 2 study of T-DXd 6.4mg/kg IV q21 days in patients who were "refractory to standard treatment"

Trastuzumab Deruxtecan (T-DXd) in HER2-mutant NSCLC

Event	Grade 1-2	Grade 3	Grade 4	Grade 5	Overall
		number	of patients (perce	ent)	
Drug-related adverse event	46 (51)	37 (41)	4 (4)	1 (1)*	88 (97)
Drug-related adverse events with ≥20% incidence					
Nausea	58 (64)	8 (9)	0	0	66 (73)
Fatigue†	42 (46)	6 (7)	0	0	48 (53)
Alopecia	42 (46)	0	0	0	42 (46)
Vomiting	33 (36)	3 (3)	0	0	36 (40)
Neutropenia:	15 (16)	14 (15)	3 (3)	0	32 (35)
Anemia§	21 (23)	9 (10)	0	0	30 (33)
Diarrhea	26 (29)	2 (2)	1 (1)	0	29 (32)
Decreased appetite	27 (30)	0	0	0	27 (30)
Leukopenia¶	17 (19)	4 (4)	0	0	21 (23)
Constipation	20 (22)	0	0	0	20 (22)

• Pneumonitis (ILD)

- Adjudicated drug-related ILD occurred in 24/91 patients (26%)
- Grade 1: 3 patients
- Grade 2: 15 patients
- Grade 3: 4 patients
- Grade 5: 2 patients
- Median duration of onset of ILD 141 days (range, 14-462)
- 21 patients required corticosteroids

August 11, 2022: US FDA approved T-DXd (5.4mg/kg) for HER-mutant NSCLC after one prior line of therapy.

- Based on phase DESTINY-Lung02 trial (NCT04644237)
- Interim reports shown at ESMO 2022 meeting, reference: Goto K et. al. Ann Oncol. 2022;33(suppl_7):S808-S869.
- RR similar between 6.4mg and 5.4mg doses, but higher rates of ILD at the 6.4mg dose.

Unanswered Questions for HER2-mutant NSCLC

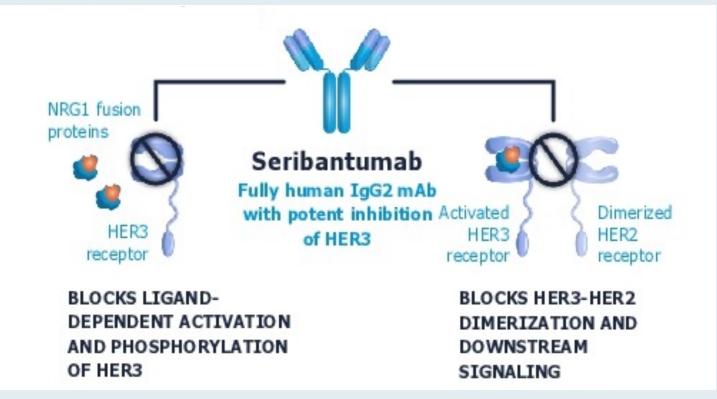
- What is the optimal first-line therapy for HER2-mutant NSCLC?
 - Should we use chemo alone, or chemo + IO?
 - Is the efficacy of T-DXd sufficient for first-line use?
- How can we minimize (and manage) ADC-related toxicities, particularly ILD with T-DXd?
- Is there a role for HER2—targeting TKIs (poziotinib, pyrotinib), or are their toxicity profiles prohibitive?
- How should currently available therapies be sequenced? Is there a role for combinations?
- Management of CNS Metastases in HER2mutant tumors?

Expanding Precision Medicine in NSCLC

NCCN guidelines for NSCLC, 05/2022

TESTING RESULTS^{II,mm}

EGFR exon 19 deletion or L858R mutation positive	NSCL-20
EGFR S768I, L861Q, and/or G719X mutation positive	NSCL-23
EGFR exon 20 insertion mutation positive	NSCL-24
KRAS G12C mutation positive	NSCL-25
ALK rearrangement positive	NSCL-26
ROS1 rearrangement positive	NSCL-29
BRAF V600E mutation positive	<u>NSCL-31</u>
NTRK1/2/3 gene fusion positive	NSCL-32
METex14 skipping mutation positive	NSCL-33
RET rearrangement positive	NSCL-34
ERBB2 (HER2) mutation positive	NSCL-35
PD-L1 ≥50% and negative for actionable molecular biomarkers above	NSCL-36
PD-L1 ≥1%–49% and negative for actionable molecular biomarkers above	NSCL-37
PD-L1 <1% and negative for actionable molecular biomarkers above	NSCL-38
PD-L1 <1% and negative for actionable molecular biomarkers above	NSCL-38


Broad molecular testing of all patients is key for identifying the best treatment strategies for patients with NSCLC.

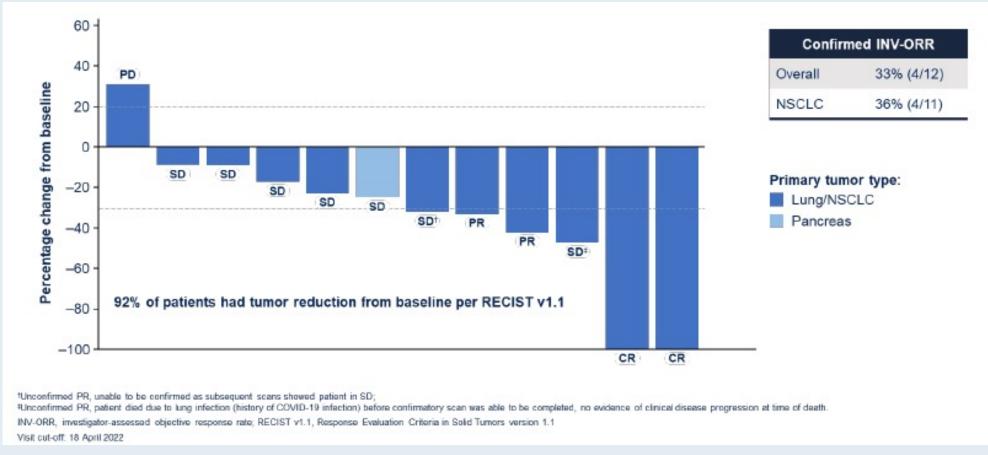
Other Potential Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung

Neuregulin-1 (NRG1) Gene Fusions and Seribantumab Mechanism of Action

- NRG1 gene fusions are rare oncogenic drivers found in 0.2% of solid tumors including lung, colorectal, breast and ovarian
- NRG1 fusion proteins predominantly retain an active EGF-like domain, which drives tumorigenesis and proliferation through aberrant HER3 activation
- Seribantumab is a fully human monoclonal antibody against HER3

Bendell JC et al. Gastrointestinal Cancers Symposium 2021; Abstract TPS449.

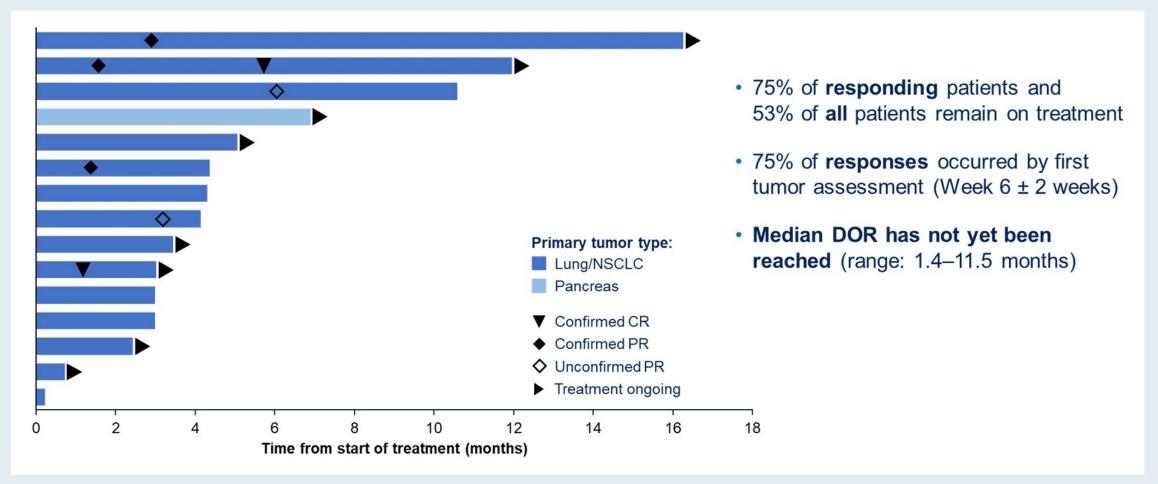
2022 ASCO[®] ANNUAL MEETING Abstract 3006


CRESTONE: Initial Efficacy and Safety of Seribantumab in Solid Tumors Harboring NRG1 Fusions

Daniel R. Carrizosa,¹ Mark E. Burkard,² Yasir Y. Elamin,³ Jayesh Desai,⁴ Shirish M. Gadgeel,⁵ Jessica J. Lin,⁶ Saiama N. Waqar,⁷ David R. Spigel,⁸ Young Kwang Chae,⁹ Parneet K. Cheema,¹⁰ Eric B. Haura,¹¹ Stephen V. Liu,¹² Danny Nguyen,¹³ Karen L. Reckamp,¹⁴ Frank Yung-Chin Tsai,¹⁵ Valerie M. Jansen,¹⁶ Alexander Drilon,¹⁷ Sai-Hong Ignatius Ou,¹⁸ D Ross Camidge,¹⁹ Tejas Patil¹⁹

¹Levine Cancer Institute/Atrium Health, Charlotte, NC; ²University of Wisconsin Carbone Cancer Center, Madison, WI; ³The University of Texas MD Anderson Cancer Center, Houston, TX; ⁴Peter MacCallum Cancer Centre, Melbourne, Australia; ⁵Henry Ford Cancer Institute/Henry Ford Health System, Detroit, MI; ⁶Massachusetts General Hospital, Boston, MA; ⁷Washington University School of Medicine, St. Louis, MO; ⁸Sarah Cannon Research Institute, Nashville, TN; ⁹Northwestern University, Chicago, IL; ¹⁰William Osler Health System, Calgary, Canada; ¹¹H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; ¹²Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC; ¹³City of Hope, Huntington Beach and Irvine, CA; ¹⁴Cedars-Sinai Medical Center, Los Angeles, CA; ¹⁵HonorHealth, Scottsdale, AZ; ¹⁶Elevation Oncology, Inc. New York, NY; ¹⁷Memorial Sloan Kettering Cancer Center, New York, NY; ¹⁸Chao Family Comprehensive Cancer Center, University of CA-Irvine, Orange, CA; ¹⁹University of Colorado Cancer Center, Aurora, CO

CRESTONE: Efficacy of Seribantumab for Patients with Advanced Solid Tumors Harboring NRG1 Fusions


PD = progressive disease; SD = stable disease; PR = partial response; CR = complete response

• Median DoR has not been reached

Carrizosa DR et al. ASCO 2022; Abstract 3006.

CRESTONE: Duration of Seribantumab Therapy for Patients with NRG1 Fusions

DoR = duration of response; CR = complete response; PR = partial response

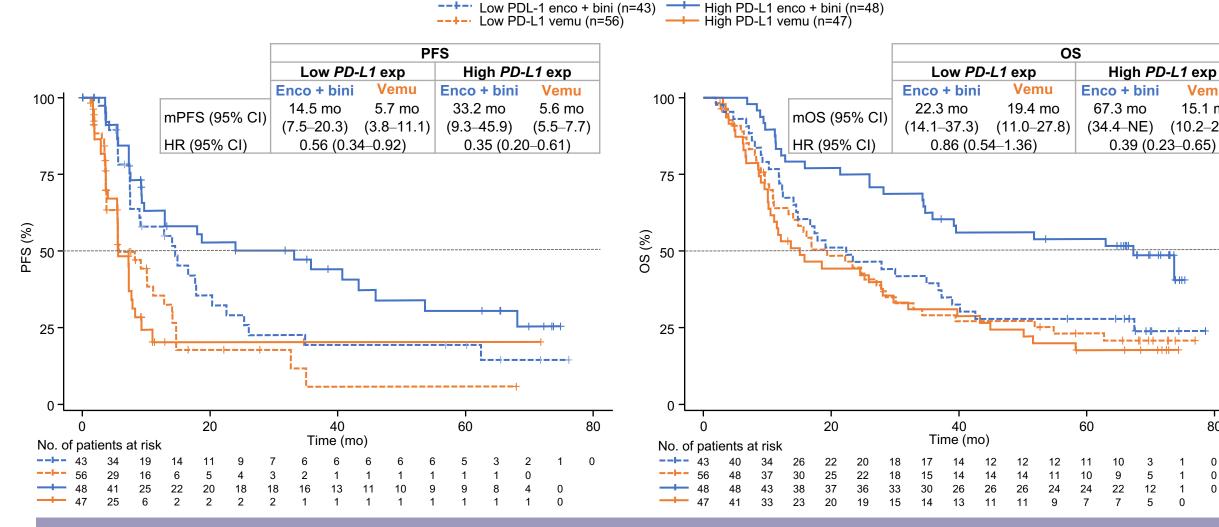
Carrizosa DR et al. ASCO 2022; Abstract 3006.

Tumor Biomarker Analysis From COLUMBUS Part 1: Encorafenib + Binimetinib for *BRAF* V600E/K-Mutant Advanced or Metastatic Melanoma

Reinhard Dummer,¹ Nuzhat Pathan,² Shibing Deng,³ Caroline Robert,⁴ Ana Arance,⁵ Jan Willem B. de Groot,⁶ Claus Garbe,⁷ Helen J. Gogas,⁸ Ralf Gutzmer,⁹ Ivana Krajsová,¹⁰ Gabriella Liszkay,¹¹ Carmen Loquai,¹² Mario Mandala,¹³ Dirk Schadendorf,¹⁴ Naoya Yamazaki,¹⁵ Alessandra di Pietro,¹⁶ Tao Xie,³ Paolo A. Ascierto,¹⁷ Keith Flaherty¹⁸

¹University Hospital Zurich, Zurich, Switzerland; ²Pfizer, Inc, La Jolla, CA, USA; ³Pfizer, Inc, San Diego, CA, USA; ⁴Gustave Roussy and Paris-Saclay University, Villejuif, France; ⁵Hospital Clinic of Barcelona, Barcelona, Spain; ⁶Isala Oncology Center, Zwolle, Netherlands; ⁷University Hospital Tubingen, Tubingen, Germany; ⁸National and Kapodistrian University of Athens, Athens, Greece; ⁹Johannes Wesling Medical Center, Ruhr University Bochum Campus Minden, Minden, Germany; ¹⁰University Hospital Prague, Prague, Czech Republic; ¹¹National Institute of Oncology, Budapest, Hungary; ¹²University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; ¹³University of Perugia, Perugia, Italy; ¹⁴University Hospital Essen, West German Cancer Center and German Cancer Consortium, Partner Site Essen, Essen, Germany; ¹⁵National Cancer Center Hospital, Tokyo, Japan; ¹⁶Pfizer, Inc, Milan, Italy; ¹⁷Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy; ¹⁸Massachusetts General Hospital, Boston, MA, USA

PFS and OS by PD-L1 Gene Expression



Vemu

15.1 mo

(10.2 - 28.1)

80

There was a larger treatment effect of encorafenib + binimetinib vs vemurafenib on PFS and OS in the high *PD-L1* expression^a group compared with the low *PD-L1* expression group

COLUMBUS part 1 tumor biomarker analysis (data cutoff: Sep 15, 2020). ^aHigh *PD-L1* expression was defined as above median expression. bini, binimetinib; enco, encorafenib; exp, expression; vemu, vemurafenib.

Discussion Questions

Themes in Targeted Treatment

- Predictors of benefit
- Criteria for use of first-line targeted treatment in metastatic disease
- Durvalumab versus targeted treatment for locally advanced disease
- Brain metastases
- Benefit of immunotherapy
- Toxicity with recent immunotherapy; treatment of the acutely ill patient

Thank you for joining us!

CME/MOC and NCPD credit information will be emailed to each participant within 5 business days.

