The Clinical Implications of Key Recent Data Sets in Oncology: A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists A CME/MOC- and NCPD-Accredited Event

> Saturday, October 22, 2022 7:30 AM – 5:30 PM ET

Agenda

Module 1 — Lung Cancer: Drs Langer and Lovly

- Module 2 Chronic Lymphocytic Leukemia and Lymphomas: Drs LaCasce and Smith
- **Module 3 Prostate and Bladder Cancers:** *Drs Morgans and Yu*
- Module 4 Renal Cell Carcinoma: Prof Powles
- Module 5 Multiple Myeloma: Dr Usmani
- **Module 6 Hepatobiliary Cancers:** *Prof Abou-Alfa*

Agenda

Module 7 — Breast Cancer: Drs Goetz and Krop

Module 8 — Endometrial Cancer: Dr Westin

Module 9 — **Ovarian Cancer and PARP Inhibitors:** *Dr O'Malley*

Module 10 — Gastrointestinal Cancers: Drs Messersmith and Strickler

Module 11 — Melanoma: Prof Long

Lung Cancer Faculty

Corey J Langer, MD Director of Thoracic Oncology Abramson Cancer Center Professor of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania

Christine M Lovly, MD, PhD Associate Professor of Medicine Division of Hematology and Oncology Ingram Associate Professor of Cancer Research Co-Leader, Translational Research and Interventional Oncology Program Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center Nashville, Tennessee

Lung Cancer Agenda

Module 1: Targeted Therapy

Module 2: Immunotherapeutic and Other Novel Strategies

Lung Cancer Agenda

Module 1: Targeted Therapy

Module 2: Immunotherapeutic and Other Novel Strategies

@Christine_Lovly

Updates on management of EGFR-mutant and HER2-mutant lung cancer

Christine M. Lovly, MD, PhD

Associate Professor of Medicine, Division of Hematology and Oncology Ingram Associate Professor of Cancer Research Co-Leader, Translational Research and Interventional Oncology Program Vanderbilt University and Vanderbilt Ingram Cancer Center Nashville, TN

OBJECTIVES

- Discuss therapeutic strategies for patients with metastatic **EGFR-mutant lung cancer** that experience disease progression on 1st line osimertinib
- Review options for management of metastatic NSCLC harboring EGFR exon 20 insertion mutations
- Outline emerging strategies for management of **HER2-mutant** NSCLC

Distinguishing between *EGFR* **mutations in NSCLC**

For EGFR-mutant NSCLC patients, disease progression on osimertinib is now a major challenge

1st **line Osimertinib** mPFS 18.9 mos

2nd line therapies after 1st line osimertinib? Selecting optimal post-Osimertinib therapies requires an understanding of resistance mechanisms and effective strategies to target these mechanisms

On-target resistance

- EGFR C797S, G724S, etc.
- 5-10%
- Histologic Transformation
 - SCLC, squamous, and other histologies
 - Tissue biopsy is critical in the evaluation of osimertinib resistance
 - Up to 15%
- Bypass pathway activation
 - most notably *MET* amplification
 - up to 15% pts
- 50-60% of patients don't have a targetable resistance mechanism

Treatment Options after First-Line Osimertinib

General Principles

- Platinum-pemetrexed remains the standard of care after 1st line Osimertinib.
- Consider treatment options directed at resistance mechanisms when available
 - Histology-specific chemotherapy
- Enroll patients on clinical trials

<u>To continue Osimertinib or not with chemotherapy?</u>

- Role of continued Osimertinib with carboplatin/pemetrexed is unknown.
 - Carbo/Pem/Osi vs. Carbo/Pem/Placebo being evaluated (COMPEL; NCT04765059)
- Chemo + Osi is generally well tolerated, with more myelosuppression
 - White M, Piotrowska Z, *Clinical Lung Cancer* 2021.
- Consider continuing Osimertinib with carboplatin/pemetrexed for patients with CNS disease which remains controlled on osimertinib.

Role of Immunotherapy After Osimertinib?

- The efficacy of single-agent anti-PD1/PD-L1 inhibitors among EGFR+ NSCLC is low (ORR ~3-12%)¹
- KEYNOTE-189 *excluded* pts with sensitizing EGFR mutations.
- ImPower150 (Carbo/Pac/Bev/Atezo) is an option. Patients with EGFR-mutant tumors had improvement in PFS/OS with ABCP vs. BCP (small numbers).
- Osi *should not* be given concurrently with IO (↑ pneumonitis risk).

PFS in *EGFR*-mt patients (Arm B vs Arm C)

The addition of atezolizumab to bevacizumab and chemotherapy increased PFS benefit across all *EGFR*-mut patient subgroups, especially those who have received prior TKI

^a Defined as exon 19 deletions or L858R mutations. ^b Unstratified HR. Data cutoff 22 Jan 2018. EUROPEAN LUNG CANCER CONFERENCE 2019 Reck et al. IMpower150 in EGFR-mt pts

elcc

Patritumab Deruxtecan (HER3-DXd; HER3 Antibody-Drug Conjugate)

- HER3 is expressed in most NSCLC tumors.
- Patritumab Deruxtecan (HER3-DXd) is an antibody drug conjugate with a topoisomerase I inhibitor payload.
- HER3 mutation is not a known mechanism of resistance to EGFR TKI in *EGFR*m NSCLC[.]
- Reference: Janne et al. ASCO 2021

	All (n=57)	Prior PBC + Osi (n=44)
Confirmed ORR (BICR)	39%	39%
mDOR, mo (range)	6.9 (3.1-NE)	7.0 (3.1-NE)
mPFS, mo (range	8.2 (4.4-8.3)	8.2 (4.0-NE)

Responses observed regardless of osimertinib resistance mechanism.

Amivantamab + Lazertinib

Amivantamab (bispecific MET/EGFR antibody) + Lazertinib (3rd gen EGFR TKI)

BICK-assessed Response	n=162
ORR	33% (95% Cl, 26–41)
Median DOR	9.6 mo (95% CI, 7.0–NE)
Best response, n (%)	
Complete response	2 (1)
Partial response	52 (32)
Unconfirmed partial response	1 (0.6)
Stable disease	69 (43)
Progressive disease	28 (17)
NE	10 (6)
Clinical benefit rate ^a	57% (95% CI, 49–65)

Investigator-assessed ORR=28% (95% CI, 22–36) Investigator-assessed median DOR=8.4 mo (95% CI, 5.6–NE)

Median follow-up=10.0 mo (range, 0.3–20.2) Median progression free survival=5.1 mo (95% Cl, 4.2–6.9) Median overall survival=14.8 mo (95% Cl, 12.1–NE)

<u> Amivantamab + Lazertinib – Biomarker Selection?</u>

- ORR 47% (8/17) in patients with identified EGFR/MET mechanism of resistance
- ORR 29% (8/28) in patients without an identified EGFR/MET mechanism of resistance

Shu C, ASCO 2022 Chul B et al. ASCO 2021

Summary: therapeutic strategies after progression on 1st line osimertinib

- The therapeutic approach to patients who progress on osimertinib should be guided by 1) sites of progression (consider local therapy for oligoprogressive disease) and 2) resistance mechanisms, if possible.
- Tissue biopsy should be considered, particularly for patients with baseline EGFR/TP53/Rb1 mutations who are at increased risk of SCLC transformation.
- Outside of clinical trials, I use **platinum doublet chemotherapy +/- osimertinib.**
 - In particular, consider continuing osimertinib with chemotherapy (e.g., carbo/pem/osi) for patients with CNS disease controlled with Osimertinib.
- Numerous agents in development: HER3-DxD, Amivantamab + Lazertinib, "4th generation" EGFR TKIs.
- Also look for "risk adapted" clinical trials based on ctDNA clearance.

EGFR Exon 20 Insertion Mutations

- Like other mutations, can be detected with NGS
- More commonly seen in specific populations
 - Female sex
 - Never smokers
 - Adenocarcinoma histology
- Like EGFR del19/L858R, poor responses to immunotherapy
- Unlike EGFR del19/L858R, poor responses to standard TKIs
- Standard treatment is currently 1st line platinum doublet chemotherapy

Vyse et al. Signal Transduction and Targeted Therapy. 2019 Yasuda, et al. Lancet Oncol, 2011; Yasuda, et al. Science Trans Med, 2014 Heymach J, WCLC 2018, Meador CB, Sequist LV, Piotrowska Z, Cancer Discov 2021.

Amivantamab for patients with metastatic lung cancer harboring EGFR exon 20 insertions

Study Population:

- 81 patients
- All with prior platinum-based chemotherapy

Efficacy:

- Confirmed ORR 40%
- mPFS: 8.3 mos; mDOR: 11.1 mos

<u>Toxicity</u>:

- Infusion related reactions (66% Any Grade, 3% Grade > 3) most commonly on C1D1
- Derm: Rash (86% Any Grade, 4% Grade > 3), Paronychia (45%)
- MET-related: Hypoalbuminemia (27%), Edema (18%)
- Dose Reduction: 13% | Dose discontinuation: 10%

\rightarrow FDA accelerated approval May 21, 2021

Park K et al. *J Clin Oncol.* 2021;39:3391-3402. Sabari, WCLC 2020

	Safety Population (N=114)					
AE (215% OF Treatment-	Treatment-	emergent AE	Treatment-related AE			
	Total	Grade ≥3	Total	Grade ≥3		
EGFR-related						
Rash ^a	98 (86)	4 (4)	98 (86)	4 (4)		
Paronychia	51 (45)	1 (1)	48 (42)	1 (1)		
Stomatitis	24 (21)	0	21 (18)	0		
Pruritus	19 (17)	0	19 (17)	0		
MET-related						
Hypoalbuminemia	31 (27)	3 (3)	17 (15)	2 (2)		
Peripheral edema	21 (18)	0	11 (10)	0		
Other						
Infusion related reaction	75 (66)	3 (3)	75 (66)	3 (3)		
Constipation	27 (24)	0	7 (6)	0		
Nausea	22 (19)	0	13 (11)	0		
Dyspnea	22 (19)	2 (2)	6 (5)	0		
Fatigue	21 (18)	2 (2)	14 (12)	1 (1)		
Increased ALT	17 (15)	1 (1)	14 (12)	1 (1)		

Mobocertinib for patients with metastatic lung cancer harboring EGFR exon 20 insertions

Mobocertinib- Oral, irreversible EGFR TKI (160mg daily)

<u>Study Population</u>:

- 114 patients
- All with prior platinum-based chemotherapy

Efficacy:

- ORR 28% (BIRC)
- mPFS: 7.3 mos; mDOR: 17.5 mos

<u>Toxicity</u>:

- GI: Diarrhea (91% Any Grade, 21% Grade > 3), Decreased Appetite (35%), Nausea (34%)
- Derm: Rash (45% Any Grade, 0% Grade > 3), Paronychia (38%)
- Cardiac: QTc prolongation (11% Any Grade, 3% Grade > 3), one treatment-related death due to cardiac failure
- Dose reduction: 25% | Treatment Discontinuation: 17%

\rightarrow FDA accelerated approval Sept 15, 2021

Zhou C et al. JAMA Oncol. 2021.

	Any Grade	Grade <u>></u> 3
Diarrhea	91%	21%
Rash	45%	0%
Paronychia	38%	<1
Anorexia	35%	<1%
Nausea	34%	4%
Dry Skin	31%	0
Vomiting	30%	3%
Cr Increase	25%	2%
Stomatitis	24%	4%

Emerging Drugs for EGFR Exon 20 insertion mutations

Drug	NCT	Most Recent REF	Notes
Sunvozertinib (DZD9008)	NCT03974022	Janne P, ASCO 2022	Confirmed ORR 37.5 % in overall population presented to date
CLN-081	NCT04036682	Yu HA, ASCO 2022	Confirmed PR 38.4% in overall population presented to date
BDTX-189	NCT04209465	Schram AM, ASCO 2020	Clinical Development Halted
BLU-451	NCT05241873	Spira AI, ASCO 2022	CNS Activity Predicted
ORIC-114	NCT05315700	Juntilla MR, AACR 2021	CNS Activity Predicted
HS-10376	NCT05435274		

REF: Clinicaltrials.gov search for "EGFR exon 20" (accessed July 1, 2022) – not an exhaustive list

HER2 mutations in NSCLC

- HER2 mutations occur in 1-3% of NSCLC
 - Exon 20 insertions most common
 - YVMA variant: most common HER2 ex20 insertion variant
 - Point mutations in the tyrosine kinase, transmembrane and extracellular domains also present at lower frequencies.
- HER2 mutations have little to no overlap with gene amplification or protein expression

EGFR/HER2 TKIs for HER2-mutant NSCLC

Drug	Target Pop	N	ORR	mPFS	Toxicities
Afatinib ¹	HER2 ^{mt}	13	8%	16 weeks	Diarrhea, vomiting, rash, paronychia, fatigue, mucositis
Afatinib ²	HER2 ^{mt}	27	13%	3 mo	Diarrhea/GI toxicity, skin rash.
Neratinib ³	HER2 ^{mt}	26	4%	5.5 mo	Diarrhea (74%), Nausea (43%), Vomiting (41%)
Dacomitinib ⁴	HER2 ^{mt}	26	12%	3 mo	Diarrhea (90%), rash (73%)
Mobocertinib ⁵	HER2 ^{mt}	5	1/5 (20%)		83% Diarrhea, 50% Anorexia
Pyrotinib ⁶	HER2 ^{mt}	60	30%	6.9 mo	92% Diarrhea; 30% Creatinine increase
Poziotinib ⁷	HER2 ^{mt} , Pretreated	90	28%	5.5 mo	49% Gr 3 Rash; 25.6 % Gr 3 Diarrhea
Poziotinib ⁸	HER2 ^{mt} , First-line	48	44%	5.6 mo	49% Gr 3 Rash; 25.6 % Gr 3 Diarrhea

1. Dziadziuszko R, JTO 2019; 2. Lai WCV et al, European Journal of Cancer 2018; 3. Hyman DM, Nature 2018; 4. Kris MG et al. Ann Onc. 2015; 5. Zhou C et al. J Clin Oncol. 2020; 6. Neal JW et al. WCLC 2018. Abstract P1.13-44, 7. Zhou C, JCO 2020, 7. Le X, JCO 2022; 8. Cornelisson R, ESMO 2021

Trastuzumab Deruxtecan (T-DXd) in HER2-mutant NSCLC

DESTINY-Lung01: Single arm, phase 2 study of T-DXd 6.4mg/kg IV q21 days in patients who were "refractory to standard treatment"

Trastuzumab Deruxtecan (T-DXd) in HER2-mutant NSCLC

Table 3. Most Common Investigator-	Reported Drug-Rela	ited Adverse Ever	its in the Study F	Population (91 P	atients).
Event	Grade 1-2	Grade 3	Grade 4	Grade 5	Overall
		number	of patients (perce	ent)	
Drug-related adverse event	46 (51)	37 (41)	4 (4)	1 (1)*	88 (97)
Drug-related adverse events with ≥20% incidence					
Nausea	58 (64)	8 (9)	0	0	66 (73)
Fatiguet	42 (46)	6 (7)	0	0	48 (53)
Alopecia	42 (46)	0	0	0	42 (46)
Vomiting	33 (36)	3 (3)	0	0	36 (40)
Neutropenia	15 (16)	14 (15)	3 (3)	0	32 (35)
Anemia§	21 (23)	9 (10)	0	0	30 (33)
Diarrhea	26 (29)	2 (2)	1 (1)	0	29 (32)
Decreased appetite	27 (30)	0	0	0	27 (30)
Leukopenia¶	17 (19)	4 (4)	0	0	21 (23)
Constipation	20 (22)	0	0	0	20 (22)

• Pneumonitis (ILD)

- Adjudicated drug-related ILD occurred in 24/91 patients (26%)
- Grade 1: 3 patients
- Grade 2: 15 patients
- Grade 3: 4 patients
- Grade 5: 2 patients
- Median duration of onset of ILD 141 days (range, 14-462)
- 21 patients required corticosteroids

August 11, 2022: US FDA approved T-DXd (5.4mg/kg) for HER-mutant NSCLC after one prior line of therapy.

- Based on phase DESTINY-Lung02 trial (NCT04644237)
- Interim reports shown at ESMO 2022 meeting, reference: Goto K et. al. Ann Oncol. 2022;33(suppl_7):S808-S869.
- RR similar between 6.4mg and 5.4mg doses, but higher rates of ILD at the 6.4mg dose.

Unanswered Questions for HER2-mutant NSCLC

- What is the optimal first-line therapy for HER2-mutant NSCLC?
 - Should we use chemo alone, or chemo + IO?
 - Is the efficacy of T-DXd sufficient for first-line use?
- How can we minimize (and manage) ADC-related toxicities, particularly ILD with T-DXd?
- Is there a role for HER2—targeting TKIs (poziotinib, pyrotinib), or are their toxicity profiles prohibitive?
- How should currently available therapies be sequenced? Is there a role for combinations?
- Management of CNS Metastases in HER2mutant tumors?

Expanding Precision Medicine in NSCLC

NCCN guidelines for NSCLC, 05/2022

TESTIN	G RESU	LTS ^{II,mm}
--------	--------	----------------------

EGFR exon 19 deletion or L858R mutation positive	NSCL-20
EGFR S768I, L861Q, and/or G719X mutation positive	NSCL-23
EGFR exon 20 insertion mutation positive	NSCL-24
KRAS G12C mutation positive	NSCL-25
ALK rearrangement positive	NSCL-26
ROS1 rearrangement positive	NSCL-29
BRAF V600E mutation positive	NSCL-31
NTRK1/2/3 gene fusion positive	NSCL-32
METex14 skipping mutation positive	NSCL-33
RET rearrangement positive	NSCL-34
ERBB2 (HER2) mutation positive	NSCL-35
PD-L1 ≥50% and negative for actionable molecular biomarkers above	NSCL-36
PD-L1 ≥1%–49% and negative for actionable molecular biomarkers above	NSCL-37
PD-L1 <1% and negative for actionable molecular biomarkers above	NSCL-38

Broad molecular testing of all patients is key for identifying the best treatment strategies for patients with NSCLC.

THANK YOU! Happy to discuss anytime!

Christine.lovly@vumc.org

Abstract LBA47

Osimertinib as adjuvant therapy in patients with resected EGFRm stage IB–IIIA NSCLC: updated results from ADAURA

<u>Masahiro Tsuboi</u>¹, Yi-Long Wu², Christian Grohe³, Thomas John⁴, Margarita Majem⁵, Jie Wang⁶, Terufumi Kato⁷, Jonathan W. Goldman⁸, Sang-We Kim⁹, Chong-Jen Yu¹⁰, Huu Vinh Vu¹¹, Guzel Mukhametshina¹², Charuwan Akewanlop¹³, Filippo de Marinis¹⁴, Frances A. Shepherd¹⁵, Damien Urban¹⁶, Marta Stachowiak¹⁷, Ana Bolanos¹⁸, Xiangning Huang¹⁹, Roy S. Herbst²⁰

Department of Thoracic Surgery and Oncology, National Cancer Center Hospital East, Kashiwa, Japan; 2Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China; ³Klinik für Pneumologie - Evangelische Lungenklinik Berlin Buch, Berlin, Germany; ⁴Department of Medical Oncology, Austin Health, Melbourne, Australia; 5Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; 6Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China; 7Department of Thoracic Oncology, Kanagawa Cancer Center, Asahi Ward, Yokohama, Japan: ⁸David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA; ⁹Department of Oncology, Asan Medical Center, Seoul, South Korea; ¹⁶Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taiwan: ¹¹Department Thoracic Surgery, Choray Hospital, Ho Chi Minh City, Vietnam; ¹²Republican Clinical Oncology Center, Kazan, Republic of Tatarstan, Russia; 13 Division of Medical Oncology, Faculty of Medicine, Siriraj Hospital, Bangkok, Thailand; ¹⁴Thoracic Oncology Division, European Institute of Oncology (IEO), IRCCS, Milan, Italy; ¹⁵Department of Medical Oncology and Hematology, University Health Network, Princess Margaret Cancer Centre, Canada; ¹⁶Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; 17Late Oncology Research & Development, AstraZeneca, Warsaw, Poland; 10Oncology Research & Development, AstraZeneca, Mississauga, Canada; 19 Oncology Biometrics, AstraZeneca, Cambridge, United Kingdom; 20 Medical Oncology, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA

ADAURA Updated Disease-Free Survival (DFS) by Stage (AJCC/UICC 8th Edition*)

* Staging based on the American Joint Committee on Cancer/Union for International Cancer Control manual, The Eighth Edition AJCC Cancer Staging Manual.

Stage IIIA

66 (55, 75)

16 (10, 24)

0.22

(0.15, 0.31)

60

20

15

12

66

72

0

Stage II

75 (65, 83)

43 (34, 52)

0.33

(0.21, 0.50)

Tsuboi M et al. ESMO 2022; Abstract LBA47.

Mechanisms of Acquired Resistance to Osimertinib

Cooper AJ et al. Nat Rev Clin Oncol 2022;[Online ahead of print].

Broad Range of Resistance Mechanisms in NSCLC with EGFR Mutation After Failure of EGFR Tyrosine Kinase Inhibitor (TKI) Therapy

1. Engelman JA, et al. Science. 2007;316:1039-1043. 2. Schoenfeld AJ, Yu HA. J Thorac Oncol 2020;15:18-21. 3. Han B, et al. Onco Targets Ther. 2018;11:21:21-9. 4. Yang CJ, et al. BMC Pharmacol Toxicol 2017;18(1).

Jänne PA et al. ASCO 2021;Abstract 9007.

RESEARCH ARTICLE

Cancer Discov 2022;12(1):74-89.

Efficacy and Safety of Patritumab Deruxtecan (HER3-DXd) in EGFR Inhibitor-Resistant, EGFR-Mutated Non-Small Cell Lung Cancer

Pasi A. Jänne¹, Christina Baik², Wu-Chou Su³, Melissa L. Johnson⁴, Hidetoshi Hayashi⁵, Makoto Nishio⁶, Dong-Wan Kim⁷, Marianna Koczywas⁸, Kathryn A. Gold⁹, Conor E. Steuer¹⁰, Haruyasu Murakami¹¹, James Chih-Hsin Yang¹², Sang-We Kim¹³, Michele Vigliotti¹⁴, Rong Shi¹⁴, Zhenhao Qi¹⁴, Yang Qiu¹⁴, Lihui Zhao¹⁴, David Sternberg¹⁴, Channing Yu¹⁴, and Helena A. Yu¹⁵

Patritumab Deruxtecan (HER3-DXd) Targeting HER3 May Address Multiple EGFR TKI Resistance Mechanisms

HER3-DXd is an antibody-drug conjugate with 3 components

- A fully human anti-HER3 IgG1 mAb (patritumab), covalently linked to
- A topoisomerase I inhibitor payload, an exatecan derivative, via
- A tetrapeptide-based cleaver linker

Jänne PA et al. ASCO 2021; Abstract 9007.

Patritumab Deruxtecan: Responses by Blinded Independent Central Review

	Pooled RDE (5.6 mg/kg)		
Characteristics	All pooled (n = 57)	Prior PBC and osimertinib (n = 44)	
Confirmed ORR, % (<i>n</i>) [95% CI]	39 (22) [26.0-52.4]	39 (17) [24.4–54.5]	
BOR, n (%)			
CR	1 (2)	1 (2)	
PR	21 (37)	16 (36)	
SD	19 (33)	13 (30)	
PD	9 (16)	8 (18)	
NE	7 (12)	6 (14)	
DCR,ª % (n) [95% CI]	72(41)	68 (30)	
	[58.5-83.0]	[52.4-81.4]	
TTR, median (range), months	2.6 (1.2-5.4)	2.7 (1.2-5.4)	
Duration of response, median (95% CI), months	6.9 (3.1-NE)	7.0 (3.1-NE)	
Progression-free survival, median (95% CI), months	8.2 (4.4-8.3)	8.2 (4.0-NE)	
Overall survival, median (95% CI), months	NE (9.4-NE)	NE (8.2-NE)	

RDE = recommended dose for expansion; PBC = platinum-based chemotherapy; ORR = objective response rate; BOR = best overall response; CR = complete response; PR = partial response; SD = stable disease; PD = progressive disease; NE = not evaluated; DCR = disease control rate; TTR = time to response

^aDCR = rate of confirmed BOR of CR, PR or SD.

Select Grade ≥3 Treatment-Emergent Adverse Events (TEAEs) with Patritumab Deruxtecan

TEAEs	Pooled RDE 5.6 mg/kg (n = 57), n (%)	All patients 3.2/4.8/5.6/6.4 mg/kg (n = 81), n (%)
Grade ≥3 TEAEs occurring in ≥5% of patients		
Platelet count decrease/thrombocytopenia	17 (30)	21 (26)
Neutrophil count decrease/neutropenia	11 (19)	12 (15)
Fatigue	8 (14)	8 (10)
Anemia/hemoglobin decrease	5 (9)	6 (7)
Dyspnea	5 (9)	5 (6)
Febrile neutropenia	5 (9)	5 (6)
Adjudicated ILD	5 (9) ^e	5 (6) ^e
Adjudicated treatment-related ILD	4 (7) ^f	4 (5) ^f

RDE = recommended dose for expansion; ILD = interstitial lung disease

HERTHENA-Lung02: An Ongoing Phase III Trial of Patritumab Deruxtecan for NSCLC with EGFR Mutation After Failure of an EGFR TKI

Trial identifier: NCT05338970 (Open) Estimated enrollment: 560

Eligibility

- Locally advanced or metastatic nonsquamous NSCLC with EGFR activating mutation
- 1 or 2 prior lines of an approved EGFR TKI in the metastatic or locally advanced setting, which must include a third-generation EGFR TKI
- Radiographic disease progression while receiving or after receiving a third-generation EGFR TKI

Primary endpoint: Progression-free survival by blinded independent central review

2022 ASCO®

Abstract 9006

Amivantamab and lazertinib in patients with EGFR-mutant non-small cell lung cancer (NSCLC) after progression on osimertinib and platinum-based chemotherapy: Updated results from CHRYSALIS-2

<u>Catherine A. Shu,</u>¹ Koichi Goto,² Yuichiro Ohe,³ Benjamin Besse,⁴ Se-Hoon Lee,⁵ Yongsheng Wang,⁶ Frank Griesinger,⁷ James Chih-Hsin Yang,⁸ Enriqueta Felip,⁹ Rachel E. Sanborn,¹⁰ Reyes Bernabe Caro,¹¹ Joshua C. Curtin,¹² Jun Chen,¹² Janine Mahoney,¹² Leonardo Trani,¹² Joshua M. Bauml,¹² Meena Thayu,¹² Roland E. Knoblauch,¹² Byoung Chul Cho¹³

CHRYSALIS-2: Best Antitumor Response and Overall Response Rate (ORR) by Prior Therapy

TKI = tyrosine kinase inhibitor; BICR = blinded independent central review; INV = investigator; ITT = intent-to-treat; CBR = clinical benefit rate

Shu CA et al. ASCO 2022; Abstract 9006.

CHRYSALIS-2: Safety Profile

	n=162		
TEAEs (≥15%) by Preferred Term, n (%)	All grade	Grade ≥3	
EGFR-related			
Rash	71 (44)	4 (2)	
Dermatitis acneiform	55 (34)	8 (5)	
Paronychia	84 (52)	6 (4)	
Stomatitis	63 (39)	2 (1)	
Diarrhea	36 (22)	1 (1)	
Pruritus	30 (19)	1 (1)	
MET-related			
Hypoalbuminemia	70 (43)	11 (7)	
Peripheral edema	43 (27)	2 (1)	
Other			
Infusion related reaction	108 (67)	13 (8)	
Increased ALT	46 (28)	5 (3)	
Nausea	40 (25)	3 (2)	
Decreased appetite	39 (24)	1 (1)	
Constipation	38 (23)	0	
Asthenia	37 (23)	7 (4)	
Dry skin	37 (23)	0	
Vomiting	36 (22)	1 (1)	
Increased AST	35 (22)	3 (2)	
Dyspnea	33 (20)	13 (8)	
Thrombocytopenia	33 (20)	2 (1)	
Fatigue	32 (20)	4 (2)	
Headache	29 (18)	2 (1)	
Anemia	27 (17)	4 (2)	
Hypocalcemia	26 (16)	1 (1)	

- Individual AEs were mostly grade 1-2
- Dose interruptions, reductions, and discontinuations of both amivantamab and lazertinib due to toxicity were seen in 57 (35%), 15 (9%), and 12 (7%) patients, respectively
- Pneumonitis/ILD was seen in 11 (7%) patients, of which 6 (4%) were grade ≥3 (no grade 5)
- Cumulative grouped rash-related AEs occurred in 129 (80%) patients, with 17 grade ≥3 (10%)
- Safety profile consistent with what was previously reported; no new safety signals identified

Pivotal Studies of Amivantamab and Mobocertinib for Advanced NSCLC with EGFR Exon 20 Insertion Mutations

	Amivantamab ¹	Mobocertinib ²	
Pivotal study	CHRYSALIS (N = 81)	Study 101 (N = 114)	
FDA approval	May 21, 2021	September 15, 2021	
ORR	40%	28%	
Median duration of response	11.1 months	17.5 months	
Common Grade ≥3 adverse events	Rash (4%) Infusion-related reactions (3%) Paronychia (1%)	Diarrhea (21%) Rash (0) Paronychia (<1%)	

¹ Park K et al. J Clin Oncol 2021;39(30):3391-402. ² Zhou C et al. JAMA Oncol 2021;7(12):e214761.

Key Randomized Trials in Treatment-Naïve Advanced ALK-Rearranged NSCLC

Study	Intervention	Comparator	ORR	CNS ORR
PROFILE 1014	Crizotinib	Platinum/pemetrexed	74% vs 45%	—
PROFILE 1029	Crizotinib	Platinum/pemetrexed	88% vs 46%	—
ASCEND-4	Ceritinib	Platinum/pemetrexed	73% vs 27%	73% vs 27%
ALEX	Alectinib	Crizotinib	83% vs 76%	79% vs 40%
J-ALEX	Alectinib	Crizotinib	92% vs 79%	—
ALESIA	Alectinib	Crizotinib	91% vs 77%	—
ALTA-1L	Brigatinib	Crizotinib	71% vs 60%	78% vs 29%
CROWN	Lorlatinib	Crizotinib	76% vs 58%	82% vs 23%
eXalt3	Ensartinib	Crizotinib	75% vs 67%	64% vs 21%

Tan AC et al. *J Clin Oncol* 2022;40(6):611-25; Soria JC et al. *Lancet* 2017;389(10072):917-29; Peters S et al. *N Engl J Med* 2017;377(9):829-38; Camidge DR et al. *J Thorac Oncol* 2021;16(12):2091-108; Shaw AT et al. *N Engl J Med* 2020;383(21):2018-29; Horn L et al. *JAMA Oncol* 2021;7(11):1617-25; Popat S et al. ESMO 2021;Abstract 1195P.

Common and Unique Adverse Effects of ALK TKIs

ALK TKI	Most common adverse effects
Crizotinib	Vision disorders, nausea, diarrhea, vomiting, edema, constipation, elevated transaminases, fatigue, decreased appetite, upper respiratory infection, dizziness and neuropathy
Ceritinib	Diarrhea, nausea, vomiting, fatigue, abdominal pain, decreased appetite and weight loss
Alectinib	Constipation, fatigue, edema, myalgia and anemia
Brigatinib	Diarrhea, fatigue, nausea, rash, cough, myalgia, headache, hypertension, vomiting and dyspnea
Lorlatinib	Hypercholesterolemia, hypertriglyceridemia, edema, peripheral neuropathy, weight gain, cognitive effects, fatigue, dyspnea, arthralgia and diarrhea
Ensartinib	Rash, nausea, pruritus and vomiting

JTO Clin Res Rep 2022;3(6):100332.

ORIGINAL ARTICLE

Long-Term Efficacy and Safety of Entrectinib in ROS1 Fusion-Positive NSCLC

Alexander Drilon, MD,^a Chao-Hua Chiu, MD,^b Yun Fan, MD,^c Byoung Chul Cho, MD, PhD,^d Shun Lu, MD, PhD,^e Myung-Ju Ahn, MD, PhD,^f Matthew G. Krebs, MD, PhD,^g Stephen V. Liu, MD,^h Thomas John, MD,ⁱ Gregory A. Otterson, MD,^j Daniel S. W. Tan, MD,^k Tejas Patil, MD,^l Rafal Dziadziuszko, MD, PhD,^m Erminia Massarelli, MD, PhD,ⁿ Takashi Seto, MD,^o Robert C. Doebele, MD, PhD,^l Bethany Pitcher, MSc,^p Nino Kurtsikidze, MD,^q Sebastian Heinzmann, PhD,^r Salvatore Siena, MD^{r,s,*}

Best Overall Response with Entrectinib

SLD = sum of longest diameters; CR/PR = complete response/partial response; SD = stable disease; PD = progressive disease; NE/ND = not estimable/not determined

Drilon A et al. JTO Clin Res Rep 2022;3(6):100332.

Best Intracranial Responses with Entrectinib in Patients with BICR-Assessed Measurable CNS Metastases at Baseline

Drilon A et al. JTO Clin Res Rep 2022;3(6):100332.

Key Trials of ROS1 TKIs for TKI-Pretreated NSCLC with ROS1 Fusions

ROS1 TKI	Study	Phase	ORR
Entrectinib (after crizotinib)	Drilon et al	1/11	0/6 (0%)
Ceritinib (after crizotinib)	Lim et al	II	0/2 (0%)
Brigatinib (after crizotinib)	Gettinger et al I 0/2 (0		0/2 (0%)
Lorlatinib	Shaw et al	1/11	After crizotinib: 14/40 (35%) After ≥2 prior TKIs: 0/6 (0%)
Repotrectinib	Drilon et al	1/11	After 1 prior TKI: 7/18 (39%) After ≥2 prior TKIs: 2/7 (29%)
Taletrectinib (after crizotinib)	Fujiwara et al	I	1/3 (33%)

<section-header><section-header><section-header><complex-block><text>

Poster #: P224

Update from the Phase 2 registrational trial of repotrectinib in TKI-pretreated patients with *ROS1+* advanced non-small cell lung cancer and with *NTRK+* advanced solid tumors (TRIDENT-1)

<u>Jessica J. Lin</u>,¹ Byoung Chul Cho,² Christoph Springfeld,³ D. Ross Camidge,⁴ Benjamin Solomon,⁵ Christina Baik,⁶ Vamsidhar Velcheti,⁷ Young-Chul Kim,⁸ Victor Moreno,⁹ Anthonie J. van der Wekken,¹⁰ Enriqueta Felip,¹¹ Dipesh Uprety,¹² Denise Trone,¹³ Shanna Stopatschinskaja,¹³ Alexander Drilon¹⁴

¹Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; ²Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ³Heidelberg University Hospital, National Center for Tumor Diseases, Department of Medical Oncology, Heidelberg, Germany; ⁴University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; ⁵Peter MacCallum Cancer Center, Melbourne, Australia; ⁶University of Washington School of Medicine, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ⁷NYU Perlmutter Cancer Center, New York, NY, USA; ⁸Chonnam National University Medical School, and CNU Hwasun Hospital, Hwasun-gun, Republic of Korea; ⁹Fundación Jiménez Díaz - START Madrid, Madrid, Spain; ¹⁰University of Groningen, University Medical Centre Groningen, Groningen, Netherlands; ¹¹Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ¹²Karmanos Cancer Institute, Detroit, MI, USA; ¹³Turning Point Therapeutics Inc, San Diego, CA, USA; ¹⁴Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA.

TRIDENT-1: Preliminary Efficacy in Patients with TKI-Pretreated Advanced NSCLC with ROS1 Fusions

³ patients not displayed due to discontinuing treatment prior to first post-baseline scans

	EXP-2		EXP-3		EXP-4	
	Phase 2	Phase 1 + 2	Phase 2	Phase 1 + 2	Phase 2	Phase 1 + 2
	(N=16)	(N=23)	(N=9)	(N=10)	(N=36)	(N=39)
Confirmed ORR (cORR)	31%	39%	33%	30%	31%*	33%*
(95% CI)	(11 – 59)	(20 - 61)	(7 - 70)	(7 - 65)	(16 – 48)	(19 - 50)
Duration of Response	1.8+ - 9.2	1.8+ - 11.1	1.9+ - 12.9+	1.9+ - 12.9+	1.7+ - 15.0+	0.8+ - 15.0+
(range in months)	n=5	n=9	n=3	n=3	n=11	n=13

FDA Grants Accelerated Approval to Trastuzumab Deruxtecan for NSCLC with HER2 Mutation Press Release – August 11, 2022

"On August 11, 2022, the Food and Drug Administration granted accelerated approval to fam-trastuzumab deruxtecan-nxki for adult patients with unresectable or metastatic non-small cell lung cancer (NSCLC) whose tumors have activating human epidermal growth factor receptor 2 HER2 (ERBB2) mutations, as detected by an FDA-approved test, and who have received a prior systemic therapy. This is the first drug approved for HER2-mutant NSCLC.

FDA also approved the Life Technologies Corporation's Oncomine[™] Dx Target Test (tissue) and the Guardant Health, Inc.'s Guardant360[®] CDx (plasma) as companion diagnostics for trastuzumab deruxtecan. If no mutation is detected in a plasma specimen, the tumor tissue should be tested."

"The accelerated approval by the FDA was based on the results from the DESTINY-Lung02 Phase II trial. An interim efficacy analysis in a pre-specified patient cohort showed trastuzumab deruxtecan (5.4mg/kg) demonstrated a confirmed ORR of 57.7% (n=52), as assessed by blinded independent central review (BICR), in patients with previously treated unresectable or metastatic non-squamous HER2-mutant NSCLC. Complete responses (CR) were seen in 1.9% of patients and partial responses (PR) in 55.8% of patients with a median DoR of 8.7 months. Results from the DESTINY-Lung02 trial will be presented at an upcoming medical meeting."

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-fam-trastuzumab-deruxtecan-nxkiher2-mutant-non-small-cell-lung https://www.astrazeneca.com/media-centre/press-releases/2022/enhertu-approved-in-us-for-her2-mutant-nsclc.html

N Engl J Med 2022;386:241-51.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Trastuzumab Deruxtecan in HER2-Mutant Non–Small-Cell Lung Cancer

Bob T. Li, M.D., Ph.D., M.P.H., Egbert F. Smit, M.D., Ph.D., Yasushi Goto, M.D., Ph.D., Kazuhiko Nakagawa, M.D., Hibiki Udagawa, M.D., Julien Mazières, M.D., Misako Nagasaka, M.D., Ph.D., Lyudmila Bazhenova, M.D., Andreas N. Saltos, M.D., Enriqueta Felip, M.D., Ph.D., Jose M. Pacheco, M.D., Maurice Pérol, M.D., Luis Paz-Ares, M.D., Kapil Saxena, M.D., Ryota Shiga, B.Sc., Yingkai Cheng, M.D., Ph.D., Suddhasatta Acharyya, Ph.D., Patrik Vitazka, M.D., Ph.D., Javad Shahidi, M.D., David Planchard, M.D., Ph.D., and Pasi A. Jänne, M.D., Ph.D., for the DESTINY-Lung01 Trial Investigators*

DESTINY-Lung01 Study

Trastuzumab deruxtecan showed durable anticancer activity.

DESTINY-Lung04 Phase III Study Design

Patient population (N≈264)

- Unresectable, locally advanced (not amenable to curative therapy), or metastatic nonsquamous NSCLC with HER2 exon 19 or 20 mutations^a
- Naive to systemic therapy in the locally advanced or metastatic setting
- No known other targetable oncogenic mutations/alterations
- * HER2 mutations may be detected in tissue or ctDNA.
- ^b Crossover is not permitted.
- ^c Investigator's choice of cisplatin or carboplatin.

Primary Endpoint: PFS by BICR

Neuregulin-1 (NRG1) Gene Fusions and Seribantumab Mechanism of Action

- NRG1 gene fusions are rare oncogenic drivers found in 0.2% of solid tumors including lung, colorectal, breast and ovarian
- NRG1 fusion proteins predominantly retain an active EGF-like domain, which drives tumorigenesis and proliferation through aberrant HER3 activation
- Seribantumab is a fully human monoclonal antibody against HER3

Bendell JC et al. Gastrointestinal Cancers Symposium 2021; Abstract TPS449.

2022 ASCO ANNUAL MEETING Abstract 3006

CRESTONE: Initial Efficacy and Safety of Seribantumab in Solid Tumors Harboring NRG1 Fusions

Daniel R. Carrizosa,¹ Mark E. Burkard,² Yasir Y. Elamin,³ Jayesh Desai,⁴ Shirish M. Gadgeel,⁵ Jessica J. Lin,⁶ Saiama N. Waqar,⁷ David R. Spigel,⁸ Young Kwang Chae,⁹ Parneet K. Cheema,¹⁰ Eric B. Haura,¹¹ Stephen V. Liu,¹² Danny Nguyen,¹³ Karen L. Reckamp,¹⁴ Frank Yung-Chin Tsai,¹⁵ Valerie M. Jansen,¹⁶ Alexander Drilon,¹⁷ Sai-Hong Ignatius Ou,¹⁸ D Ross Camidge,¹⁹ Tejas Patil¹⁹

¹Levine Cancer Institute/Atrium Health, Charlotte, NC; ²University of Wisconsin Carbone Cancer Center, Madison, WI; ³The University of Texas MD Anderson Cancer Center, Houston, TX; ⁴Peter MacCallum Cancer Centre, Melbourne, Australia; ⁵Henry Ford Cancer Institute/Henry Ford Health System, Detroit, MI; ⁶Massachusetts General Hospital, Boston, MA; ⁷Washington University School of Medicine, St. Louis, MO; ⁸Sarah Cannon Research Institute, Nashville, TN; ⁹Northwestern University, Chicago, IL; ¹⁰William Osler Health System, Calgary, Canada; ¹¹H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; ¹²Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC; ¹³City of Hope, Huntington Beach and Irvine, CA; ¹⁴Cedars-Sinai Medical Center, Los Angeles, CA; ¹⁶HonorHealth, Scottsdale, AZ; ¹⁶Elevation Oncology, Inc. New York, NY; ¹⁷Memorial Sloan Kettering Cancer Center, New York, NY; ¹⁸Chao Family Comprehensive Cancer Center, University of CA-Irvine, Orange, CA; ¹⁹University of Colorado Cancer Center, Aurora, CO

CRESTONE: Efficacy of Seribantumab for Patients with Advanced Solid Tumors Harboring NRG1 Fusions

PD = progressive disease; SD = stable disease; PR = partial response; CR = complete response

• Median DoR has not been reached

Carrizosa DR et al. ASCO 2022; Abstract 3006.

CRESTONE: Duration of Seribantumab Therapy for Patients with NRG1 Fusions

DoR = duration of response; CR = complete response; PR = partial response

Carrizosa DR et al. ASCO 2022; Abstract 3006.

CRESTONE: Select Treatment-Related Adverse Events with Seribantumab in Patients with Advanced Solid Tumors Harboring NRG1 Fusions

Treatment-related adverse event (N = 35)	Any grade	Grade ≥3
Patients with ≥1 AE	30 (86%)	2 (6%)
Diarrhea	14 (40%)	1 (3%)
Fatigue	10 (29%)	0
Rash	9 (26%)	0
Hypokalemia	3 (9%)	0

Lung Cancer Agenda

Module 1: Targeted Therapy

Module 2: Immunotherapeutic and Other Novel Strategies

Systemic Management of Resectable and LA- NSCLC: 2022 Update

> Corey J. Langer MD, FACP Director of Thoracic Oncology Abramson Cancer Center Professor of Medicine Perelman School of Medicine University of Pennsylvania Philadelphia, PA 19104 Corey.langer@uphs.upenn.edu

The unmet need in resectable NSCLC persists

Most patients who receive adjuvant chemotherapy will experience disease recurrence within 5 years

^aMedian follow-up: 5.2 years, data based on AJCC Staging Manual 6th edition AJCC, American Joint Committee on Cancer; NSCLC, non-small cell lung cancer 1. Pignon JP, et al. J Clin Oncol 2008;26:3552–59; 2. Edge SB, et al. AJCC Cancer Staging Manual. 7th ed. New York, NY: Springer; 2010

Phase III studies with immunotherapy in resectable NSCLC are taking different approaches

Adjuvant IO Phase III randomised trials

IMpowero10¹

Stratification factors

- Male/female
- Stage (IB vs II vs IIIA)
- Histology
- PD-L1 tumor expression status^a: TC2/3 and any IC vs TC0/1 and IC2/3 vs TC0/1 and IC0/1

Primary endpoints

- Investigator-assessed DFS tested hierarchically:
 - PD-L1 TC ≥1% (per SP263) stage II-IIIA population
 - All-randomized stage II-IIIA population
 - ITT population (stage IB-IIIA)

Key secondary endpoints

- OS in ITT population
- DFS in PD-L1 TC ≥50% (per SP263) stage II-IIIA population
- · 3-y and 5-y DFS in all 3 populations

PEARLS/KEYNOTE 091²

Stage IB to IIIA

1. Felip E, et al. Lancet 2021;398:1344-57; 2. Paz-Ares L, et al. Presented at ESMO Congress 2022 (Abstract VP3-2022)

Adjuvant IO Phase III randomised trials DFS and PD-L1 TPS data - consistent data?

Effect of PD-L1 expression

A DFS benefit with atezolizumab vs. BSC was observed in the PD-L1 ≥1% population but not in the ITT population HR (95% Cl) PD-L1 TPS ≥1% 0.66 (0.50, 0.88); p=0.0039

0.81 (0.67, 0.99); p=0.040

DFS was significantly improved with pembrolizumab in the all-comers population but not in the PD-L1TPS ≥50% population HR (95% CI)

All comers	0.76 (0.63, 0.91); p=0.0014
PD-L1 TPS ≥50%	0.82 (0.57, 1.18); p=0.14

Approvals PD-L1≥1% PD-L1≥50%

and other

countries

IMpowero10 Stage II/IIIA¹

> KEYNOTE og1 Stage IB–IIIA²

PEARLS/

ITT population

IMpowero10: the primary endpoint of improved DFS in patients with PD-L1TC ≥1%, stage II–IIIA* NSCLC was met

completely resected NSCLC 100 Disease-free survival (%) 80 0.0% 60 61.0% 40 48.2% Atezo BSC (n=248) (n=228) 20 Median DFS (95% CI), mo NE (36.1, NE) 35.3 (29.0, NE) Median follow-up (range), mo 32.8 (0.1-57.5) 0 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 6 0 2 Months No. at risk Atezolizumab 248 235 225 217 206 198 190 181 159 134 111 76 54 31 22 12 8 BSC 228 212 186 169 160 151 142 135 117 97 80 59 38 21 14 7 6 4 3

DFS in PD-L1 TC ≥1%, stage II–IIIA,

Primary analysis populations

Population analysed for DFS	n	HR (95% CI)§
PD-L1 TC ≥1%, stage II–IIIA	476	0.66 (0.50, 0.88)
All-randomised, stage II–IIIA	882	0.79 (0.64, 0.96)
ITT (all randomised, stage IB–IIIA)	1005	0.81 (0.67, 0.99)

Endpoint was met at DFS IA

Endpoint was not met at DFS IA, and follow-up is ongoing

*Per TNM 7th edition (select stage II–IIIB per TNM 8th edition)

Greatest magnitude of DFS benefit with adjuvant atezolizumab over BSC was in PD-L1TC ≥50%, stage II–III NSCLC

DFS in PD-L1 TC ≥50%, stage II–IIIA population (excluding *EGFR*+/*ALK*+ NSCLC)¹

DFS by PD-L1 status in the all-randomised, stage II–IIIA population (excluding *EGFR*+/*ALK*+ NSCLC)²

OS data are not yet mature

Clinical cut-off: 21 January 2021

*Unstratified HR; [‡]Stratified for all patients and PD-L1 TC ≥1%; unstratified for all other subgroups; [§]DFS analyses in the PD-L1 TC <1% and TC 1−49% subgroups were exploratory; [¶]23 patients had unknown PD-L1 status as assessed by SP263

1. Felip, et al. ELCC 2022 (Abs 80O) 2. Felip, et al. ESMO 2021 (Abs LBA9)

IMpowero10: OS trend of atezolizumab in PD-L1 ≥1% Stage II– IIIA (interim OS analysis)

No OS benefit in the all-randomised Stage II–IIIA

OS interim analysis in PD-L1 TC ≥1% (Stage II–IIIA)

mOS, median overall survival; NR, not reached. *By SP263 assay. *Stratified

	Atezo (n=248)	BSC (n=228) 64 (28.1%) NR	
Events, n (%)	52 (21.0%)		
mOS (95% CI), mo	NR		
HR (95% CI)-	0.71 (0.4	49, 1.03)	

Clinically meaningful OS trend in PD-L1 ≥50%

IMpower-o10: ctDNA is prognostic but neither predictive nor sufficiently sensitive for de-escalation decisions

KEYNOTE-091: one dual primary endpoint of a DFS benefit in the overall population was met

DFS in the overall population (PD-L1 unselected, stage **IB–III**, completely resected NSCLC

DFS in PD-L1 TPS ≥50%, stage IB–III, completely resected NSCLC*

OS data are not yet mature

Data cut-off: 20 September, 2021; response assessed per RECIST v1.1 by investigator review

*At the interim analysis, this dual primary endpoint did not meet statistical significance

Paz-Ares, et al. ESMO Plenary 2022 (Abs VP3-2022)

Median, mo

(95% CI)

NR (44.3-NR)

NR (35.8-NR)

60

66

0

0

54

DFS: Pembrolizumab vs Placebo by PD-L1 TPS

TPS 1-49%

HR 0.67 (95% Cl, 0.48-0.92) Median (95% CI), mo Pembrolizumab: 44.2 (34.9-NR) Placebo: 31.3 (22.5-NR) 100-80.5% 90. 80. 70-60. 50-40-30-20-10-0-12 18 24 30 36 42 48 54 60 66 0 6 Months No. at risk 189 158 137 113 61 22 20 0 15 12 190 159 128 97 75 45 5 3 0 0

TPS <1% HR 0.78 (95% Cl, 0.58-1.03)

DFS: Overperformance of high PD-L1 in placebo arm

(no imbalance in baseline characteristics or toxicity)

Neoadjuvant immunotherapy clinical trials

	Total n=	Stage I/II	Drug	# taken to surgery (%)	ORR		1455
Study	Squam, %		# of preoperative cycles	#Ro	DCR	PCR	MPR
			PD-L1 monothe	erapy			
Forde NEJM 2018	21	66%	Nivo 3 mg/kg	21 (100)	10%	10%	45%
	6 (29%)	33%	X 2	20 Ro	95%		
Gao JTO 2021	40	55%	Sintilimab 200 mg	37 (92.5)	20%	16.2%	40.5%
	33 (83%)	45%	X 2	36 Ro	90%		
LCMC3	181	51%	Atezo 1200 mg	159 (88)	7%	7%	21%
	69 (38%)	49%	X 2	145 Ro	95%		
NEOSTAR	23	78%	Nivo 3 mg/kg	22 (96)	22%	10%	19%
	10 (43%)	22%	x 3	22 Ro	87%		
MK3475-223	15	100%	Pembro 200 mg	13 (87)	13%	15%	31%
	NR	0%	X 1-2	NR	NR		40% (2 doses)
IFCT-1601	50	96%	Durva 750 mg	43 (93)	9%	7%	18.6%
IONESCO	21 (42%)	4%	x 3	41 Ro	87%		
PRINCEPS	30	70%	Atezo 1200mg	30 (100)	7%	0%	14%
	NR	30%	X1	29 Ro	100%		
			Dual checkpoint in	hibitors			
Reuss JITC 2020	9	33%	Nivo 3 mg/kg x 3,	6 (67%)	11%	33%	33%
	1 (11%)	66%	lpi 1 mg/kg x 1	Ro NR	55%		(all pCR)
NEOSTAR	21	81%	Nivo 3 mg/mg x 3,	17 (81)	19%	38%	44%
	7 (83%)	19%	lpi 1 mg/kg x 1	17 Ro	81%		
			IO + chemothe	rapy			
Shu Lancet	30	23%	Carbo AUC 5, Nab-pac 100 mg/m²,	29 (97%)	63%	33%	57%
Onc 2020	12 (40%)	77%	Atezo 1200 mg x 4	26 Ro	93%		
NADIM	46	о%	Carbo AUC 6, Taxol 200 mg/m²,	41 (89)	76%	63%	83%
	16 (35%)	100%	Nivo 360 mg x 3	41 Ro	100%		
SAKK 16/14	68	0%	Cis 100 mg/m ² , Doce 85 mg/m ² x 3,	55 (82%)	58%	18.2%	60%
	22 (33%)	100%	Durva 750 mg x 2	50 Ro	84%		

CT, chemotherapy; DCR, disease control rate; IO, immuno-oncology; NR, not reached; MPR, major pathological response; ORR, objective response rate; pCR, pathological complete response; PD-L1, programmed cell death-ligand 1

1. Forde PM, et al. N Engl J Med 2018;378:1976–86; 2. Gao S, et al. J Thorac Oncol 2020;15:816–26; 3. Lee J, et al. Presented at WCLC 2020 (Abstract PS01.05);

4. Cascone T, et al. Nat Med 2021;27:505-14; 5. Bar J, et al. Presented at ASCO 2019; 6. Wislez M, et al. Presented at ESMO 2020 (Abstract 1214,0);

7. Besse B, et al. Presented at ESMO 2020 (Abstract 12150); 8. Reuss JE, et al. J Immunother Cancer 2020;8:e001282; 9. Shu CA, et al. Lancet Oncol 2020;21:786–95;

10. Provencio M, et al. Lancet Oncol 2020;21:1413-22; 11. Rothschild SI, et al. J Clin Oncol 2021;39:2872-80

Neoadjuvant nivolumab: CheckMate 816 and NADIM II

Neoadjuvant nivolumab: Odds ratio and EFS

CheckMate 816¹

NADIM II²

mOS: NR (HR 0.40)

CI, confidence interval; CT, chemotherapy; EFS, event-free survival; HR, hazard ratio; NR, not reached 1. Forde PM, et al. N Engl J Med 2018;378:1976-86; 2. Provencio M, et al. Presented at ASCO 2022 (Abstract 8501)
CheckMate 816: neoadjuvant nivolumab + chemotherapy improved EFS compared with chemotherapy alone

Girard, et al. AACR 2022 (Abs CT012) Forde, et al. N Engl J Med 2022

CheckMate 816: an EFS by stage and PD-L1

SECONDARY ENDPOINTS – Progression-free survival

Progression-free survival was defined as the time from randomization to any of the following events: progression of disease, recurrence disease, or death due to any cause. Progression/recurrence will have determined by RECIST 1.1

SECONDARY ENDPOINTS – Overall survival

Overall survival was defined as the time from randomization to death. OS was censored on the last date a participant was known to be alive

Dr. Mariano Provencio, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain

The risk of toxicity and non-operability

7–18%

AE Grade 3/4: 13–33%

	Rate of unperformed surgery	30 days mortality	Treatment-related AE
NADIM I ¹	11%	Non	G3/4: 13.5% in adjuvant phase
SAKK 16/14 ²	18%	2% (fatal bronchopulmonary Bleeding)	G3/4: 29% in perioperative phase G3/4: 50% in adjuvant phase
NADIM II ³	7%	Non	Grade 3/4 AEs: 25%, nivolumab + CT; 10.3%, CT alone (OR: 2.82; 95% CI: 0.74-10.76; Chi-squared <i>P</i> = .201)
CheckMate 816 ⁴	17%	1.1% (pulmonary embolism, aortic rupture)	Surgery-related G3/4: 11.4% G3/4: 33.5%

Correlation between tumour response and PD-L1 expression

TMB < 12.3 mut/Mb (n = 102)

TMB \geq 12.3 mut/Mb (n = 76)

22

31

2

3

NADIM II (pCR)¹

Pathological response

PD-L1 Tumor Proportion Score

CheckMate 816 (EFS)²

21

28

1. Provencio M, et al. Presented at ASCO 2022 (Abstract 8501); 2. Girard N, et al. Presented at AACR 2022 (Abstract CT012)

Pathologic response correlates with EFS outcomes

CheckMate 816¹

	Nivo	+ CT	C	т
	pCR	No pCR	pCR	No pCR
mEFS, months	NR	26.6	NR	18.4
HR (95% CI)	0.13 (0.	05, 0.37)	Not co	mputed*

NADIM II² Nivo + CT (ITT) 1.00 Complete PFS Probability (ITT) 0.75 Incomplete 0.50 0.25 P = .00920.00 10 15 20 25 30 35 40 45 50 55 60 5 0 Months from randomisation Patients at Risk. n

Complete 21	21	21	21	15	10	5	1	0	0	0	0	0
Incomplete 35	35	34	32	22	21	10	4	1	1	1	1	1

NADIM II: pre-treatment ctDNA levels significantly associated with tumour size and can predict PFS and OS outcomes

PFS by ctDNA at baseline

OS by ctDNA at baseline

Median follow up time was 26.1 (IQR: 17.6-30.9) months

CM816: ctDNA clearance and association with pathological response

ARCHER private test - 1 ctDNA assessment before surgery after neo-adjuvant treatment

^aPerformed using tumor-guided personalized ctDNA panel (ArcherDX Personalized Cancer Monitoring); 90 patients were ctDNA evaluable and 87 had detectable ctDNA at C1D1; main reason for sample attrition were lack of tissue for WES and lack of quality control pass for tissue and plasma; ^bctDNA clearance 95% CI: NIVO + chemo, 40–71; chemo, 20–50; ^cpCR rates 95% CI: NIVO + chemo, 26–67; chemo, 0–18.

AEGEAN: further positive results with a perioperative regimen

Phase III, placebo-controlled, double-blind, randomised, multicenter study^{1,2}

Several phase III studies with immunotherapy in resectable NSCLC will read soon...

Arguments for Neoadjuvant Immune Checkpoint Inhibition Followed by Surgical Resection

Higher antigen load and release from dying cells in untreated tumors

- ✓ Better priming of immune system
- Fit host immune system, intact nodal stations No significant clonal evolution
 - ✓ Tumor less heterogeneous

Opportunity to accurately study the effects of IO

- ✓ Access to pre and post tissue
- Ability to access efficacy of the therapy

Shorten timeframe to completion of trials (early surrogate for survival?)

S1801 Study Schema

Primary endpoint: Event-free survival

I radiographic assessment
(scans)

Sapna P. Patel, MD SWOG SWOG Network NCI National Clinical NCI Community Oncology

Additional criteria: strata included AJCC 8th ed. stage and LDH, adjuvant radiation allowed, concomitant radiation & pembrolizumab was not allowed, brain metastasis excluded, uveal melanoma excluded Surgery type and extent was required to be pre-specified and carried out regardless of radiologic response to therapy

PARIS ESVO s

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

S1801 primary endpoint: Event-free survival

Sapna P. Patel, MD SWOG CANCER RESEARCH NCI NATIONAL CHINES NOTWORK

PARIS 2022

NCI

Overall survival

Sapna P. Patel, MD SWOG CANCER NCI PASIONAL CHINICAL SHORE

PARIS 2022

NCI

PHASE III ADAURA STUDY DESIGN

Endpoints

- Primary endpoint: DFS by investigator assessment in stage II / IIIA patients, designed for superiority under the assumed DFS HR of 0.70
- Key secondary endpoints: DFS in the overall population[¶], DFS at 2, 3, 4, and 5 years, OS, safety, health-related quality of life
- Pre-specified exploratory endpoints: Patterns of recurrence, time to CNS disease recurrence or death (CNS DFS)

Masahiro Tsuboi, MD

*At the time of recruitment, staging was determined by the AJCC / UICC 7th edition staging manual. ¹Prior, post, or planned radiotherapy was not allowed; ¹Centrally confirmed in tissue. ⁸Patients received a CT scan after resection and within 28 days prior to treatment. ¹Stage IB / II / IIIA. Content of this presentation is copyright and responsibility of the author. Permission is required for re-use. AJCC / UICC, American Joint Committee on Cancer / Union for International Cancer Control; CNS, central nervous system; CT, computerized tomography; DFS, disease-free survival; EGFRm, epidermal growth factor receptor-mutated; Ex19del, exon 19 deletion; HR, hazard ratio; NSCLC, non-small cell lung cancer; OS, overall survival; WHO, World Health Organization

Balanced Demographic and Clinical Characteristics at Baseline

Characteristic, %	Osimertinib (n = 339)	Placebo (n = 343)
Female	68	72
Median age, yrs (range)	64 (30-86)	62 (31-82)
Smoker/nonsmoker*	32/68	25/75
Asian/non-Asian	64/36	64/36
WHO PS 0/1	64/36	64/36
AJCC staging at diagnosis (7th edition) = IB = II = III = IIIA	31 35 34	31 34 35
Adenocarcinoma/other histology ⁺	95/5	96/4
EGFR ex19del/L858R	55/45	56/44
Prior adjuvant CT	55	56

DFS BENEFIT WITH ADJUVANT OSIMERTINIB: ADAURA PRIMARY ANALYSIS

 The ADAURA primary analysis* showed a highly statistically significant and clinically meaningful improvement in DFS with adjuvant osimertinib vs placebo^{1,2}

Here we will present an updated analysis of the final DFS data at the protocol-specified maturity of 50%, a pre-specified exploratory analysis of recurrence patterns and updated safety data, after 2 years of further follow up, in which all patients have had the opportunity to receive the full 3 years of adjuvant treatment

Masahiro Tsuboi, MD

Tick marks indicate censored data. "Reported ~2 years earlier than planned following IDMC recommendation. "AJCC / UICC 7th edition staging. 1. Wu et al. N Engl J Med 2020;383:1711–1723; 2. Herbst et al. J Clin Oncol 2020;38:18_suppl LBA5. Content of this presentation is copyright and responsibility of the author. Permission is required for re-use. AJCC / UICC, American Joint Committee on Cancer / Union for International Cancer Control; CI, confidence interval; DFS, disease-free survival; HR, hazard ratio; IDMC, Independent Data Monitoring Committee Data cut-off: January 17, 2020.

ADAURA: DFS is superior with Osimertinib across all stages IB-IIIA

Wu Y-L, et al. N Engl J Med 2020;383:1711-1723

Subgroup	No. of Patients	Hazard Ratio for Disease Recu	rrence or Death (95% CI)
Overall	682		
Stratified log-rank test	002		0.20 (0.15_0.27)
Unadjusted Cox proportional-hazards model			0.19 (0.13-0.27)
Sex			0.15 (0.15-0.27)
Male	204		0 19 (0 10_0 33)
Female	478		0.15 (0.10-0.55)
Δσε	170		0.10 (0.11-0.28)
<65 vr	380		0 16 (0 09-0 26)
>65 yr	302		0.22 (0.13-0.36)
Smoking history	502		0.22 (0.15-0.50)
Yes	194		0 10 (0 04–0 22)
No	488		0.23 (0.15-0.34)
Race	100		0.25 (0.15 0.51)
Asian	434		0 21 (0 13–0 31)
Non-Asian	248		0.15 (0.07–0.28)
Stage			0.15 (0.07 0.20)
IB	212		0 39 (0 18–0 76)
	236		0.17(0.08-0.31)
IIIA	234		0.12 (0.07–0.20)
EGFR mutation			
Ex19del	378		0.12 (0.07-0.20)
L858R	304	¦ <u>⊢</u> •	0.31 (0.18-0.49)
Adjuvant chemotherapy			()
Yes	410	⊢ i ⊕i ii	0.16 (0.10-0.26)
No	272	i i i i i i i i i i i i i i i i i i i	0.23 (0.13–0.40)
	0.01	0.1 1.0	
	•	Osimertinib Better	Placebo Better

Subgroup Analysis Disease Recurrence or Death

The benefit favoring osimertinib observed consistently across all predefined subgroups.

PRIMARY ENDPOINT: UPDATED DFS IN STAGE II / IIIA DISEASE

Median follow-up: osimertinib 44.2 months (range 0 to 67), placebo 19.6 months (range 0 to 70); DFS by investigator assessment; Tick marks indicate censored data. *Planned maturity for DFS analysis: 50%. Content of this presentation is copyright and responsibility of the author. Permission is required for re-use. CI, confidence interval; DFS, disease-free survival; HR, hazard ratio; NC, not calculable Data cut-off: April 11, 2022

UPDATED DFS IN THE OVERALL POPULATION (STAGE IB / II / IIIA DISEASE)

Masahiro Tsuboi, MD

Median follow-up: osimertinib 44.2 months (range 0 to 69), placebo 27.7 months (range 0 to 70); DFS by investigator assessment; Tick marks indicate censored data. Content of this presentation is copyright and responsibility of the author. Permission is required for re-use. CI, confidence interval; DFS, disease-free survival; HR, hazard ratio; NC, not calculable Data cut-off: April 11, 2022

UPDATED DFS ACROSS SUBGROUPS IN THE OVERALL POPULATION

A DFS benefit with osimertinib was observed across all predefined subgroups •

Subgroup			HR	95% CI
Overall (N=682)	Stratified log-rank Unadjusted Cox PH		0.27 0.32	0.21, 0.34 0.25, 0.40
Sex	Male (n=204) Female (n=478)		0.31 0.31	0.20, 0.48 0.23, 0.42
Age	<65 yr (n=380) ≥65 yr (n=302)		0.31 0.33	0.22, 0.42 0.23, 0.48
Smoking history	Yes (n=194) No (n=488)	⊢, ⊢,	0.26 0.34	0.16, 0.40 0.26, 0.45
Race	Asian (n=434) Non-Asian (n=248)		0.34 0.28	0.25, 0.45 0.18, 0.43
Stage*	IB (n=212) II (n=236) IIIA (n=234)		0.41 0.34 0.20	0.23, 0.69 0.23, 0.52 0.14, 0.29
EGFR mutation	Ex19Del (n=378) L858R (n=304)		0.24 0.45	0.17, 0.33 0.31, 0.64
Adjuvant chemotherapy	Yes (n=410) No (n=272)	⊢ ● i ⊢●	0.29 0.36	0.21, 0.39 0.24, 0.55
	0.1	HR for disease-free survival (95% CI)	1 Favours placebo	
RIS			Overall population: stage IB / II / IIIA; D	FS by investigator assessment. *AJCC / UICC 7th e

2022

Masahiro Tsuboi, MD

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use. AJCC / UICC, American Joint Committee on Cancer / Union for International Cancer Control; CI, confidence interval; DFS, disease-free survival; EGFR, epidermal growth factor receptor; HR, hazard ratio; yr, year Data cut-off: April 11, 2022

Table 2. Adverse Events.*								
Adverse Event		Osir (N	nertinib = 337)			Placeb (N=34	o 3)	
	Any Grade	Grade 1	Grade 2	Grade 3	Any Grade	Grade 1	Grade 2	Grade 3
				number of pati	ents (percent)			
Diarrhea	156 (46)	116 (34)	32 (9)	8 (2)	68 (20)	54 (16)	13 (4)	l (<l)< td=""></l)<>
Paronychia	85 (25)	31 (9)	50 (15)	3 (1)	5 (1)	3 (1)	2 (1)	0
Dry skin	79 (23)	75 (22)	3 (1)	l (<1)	22 (6)	18 (5)	4 (1)	0
Pruritus	65 (19)	49 (15)	16 (5)	0	30 (9)	28 (8)	2 (1)	0
Cough	62 (18)	43 (13)	19 (6)	0	57 (17)	42 (12)	15 (4)	0
Stomatitis	59 (18)	35 (10)	18 (5)	6 (2)	14 (4)	10 (3)	4 (1)	0
Nasopharyngitis	47 (14)	30 (9)	17 (5)	0	35 (10)	25 (7)	10 (3)	0
Upper respiratory tract infection	45 (13)	24 (7)	19 (6)	2 (1)	35 (10)	19 (6)	16 (5)	0
Decreased appetite	44 (13)	29 (9)	13 (4)	2 (1)	13 (4)	9 (3)	4 (1)	0
Mouth ulceration	39 (12)	32 (9)	7 (2)	0	8 (2)	6 (2)	2 (1)	0
Dermatitis acneiform	37 (11)	29 (9)	8 (2)	0	16 (5)	12 (3)	4 (1)	0

Adverse Events

	0	Ρ
Discontinue:	11% vs 3%	
Reduction:	9% vs 1%	
G3+:	20% vs 13%	
G5:	0 vs 1 (I	PE)
ILD:	3% vs ()%
QTc:	7% vs 1	.%

* Listed are adverse events that were reported in at least 10% of the patients in either trial group, according to the maximum Common Terminology Criteria for Adverse Events grade and preferred term. The safety analyses included all the patients who received at least one dose of osimertinib or placebo (safety analysis set). None of the adverse events reported in at least 10% of the patients in either trial group were determined to be grade 4 or higher.

WHERE ARE THE RECURRENCES?

ADAURA: Osimertinib associated with reduced distant metastasis upon relapse vs placebo

Updated Median DFS (95%Cl), months	Osimertinib	Placebo	HR
Stage II/IIIA	NR (38.8, NC)	19.6 (16.6, 24.5)	0.17 (99.06%Cl 0.11, 0.26); p<0.0001
Stage IB/II/IIIA	NR (NC, NC)	27.5 (22.0, 35.0)	0.20 (99.21%Cl 0.14, 0.30); p<0.0001

Disease recurrence

PATTERNS OF DISEASE RECURRENCE (OVERALL POPULATION)

 In the overall population, fewer patients treated with osimertinib had disease recurrence (93/339; 27%) compared with placebo (205/343; 60%)*

CNS, central nervous system Data cut-off: April 11, 2022

UPDATED CNS DFS IN PATIENTS WITH STAGE II / IIIA DISEASE

Overall, 63 patients (osimertinib n=22, placebo n=41) had CNS DFS events:*

Masahiro Tsuboi, MD

Median follow-up: osimertinib 44.2 months, placebo 20.4 months; DFS by investigator assessment; Tick marks indicate censored data "Defined as CNS as the first site of disease recurrence, or death without any disease recurrence.

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use. CI, confidence interval; CNS, central nervous system; DFS, disease-free survival; HR, hazard ratio; NC, not calculable; NR, not reached Data cut-off: April 11, 2022.

QUALITY OF LIFE?

Patient-Reported Outcomes from ADAURA: Osimertinib as Adjuvant Therapy in Patients with Resected EGFR Mutated (EGFRm) NSCLC

SF-36 component	Mixed adjusted n	model of repeated n nean change from ba	Definition of clinically meaningful change based on the 3 rd edition of the SF-36 scoring manual	
	Osimertinib	Placebo	Osimertinib - placebo	
PCS	1.13 (0.54, 1.72)	2.31 (1.70, 2.91)	-1.18 (-2.02, -0.34)	±2
MCS	1.34 (0.60, 2.08)	2.68 (1.92, 3.44)	-1.34 (-2.40, -0.28)	±3

Majem M, et al. J Thorac Oncol 2021;16(suppl):Abstr OA06.03

OVERALL SURVIVAL?

ADAURA: Early OS in stage II-IIIA NSCLC

PACIFIC TRIAL

#ASC022

2022 ASCC

ANNUAL MEETIN

Median 47.5 vs 29.1mn

Median 16.9 vs 5.6 mn

- No progression during the course of
- No unresolved > Grade 2 toxicities
- No Grade > 2 Pneumonitis

PRESENTED BY:

John Michael Varlotto - Chief Radiation Oncology, Marshall University

COAST - Ph II trial – 1^o Endpoint - ORR

Oleclumab – inhibits CD73 (adenosine pathway); Monalizumab – blocks NKG2A Herbst et al. J Clin Oncol 2022

COAST - Ph II trial – 1^o Endpoint - ORR

Oleclumab – inhibits CD73 (adenosine pathway); Monalizumab – blocks NKG2A Herbst et al. J Clin Oncol 2022

Consolidation Nivolumab Plus Ipilimumab or Nivolumab Alone Following Concurrent Chemoradiation for Patients with Unresectable Stage III Non-Small Cell Lung Cancer. Durm et al

enough?

Abstract 8509

#ASC022

ANNUAL MEETING

John Michael Varlotto - Chief Radiation Oncology, Marshall University

AUGUST 6-9, 2022 | VIENNA, AUSTRIA

Results

	Nivolumab Alone (N= 52)	Nivolumab/Ipilimumab (N= 47)
Median F/u, months (range)	28.5 (2-44.2)	29.4 (3.2-46.8)
Progression Free Survival*		
18- Month (95% CI)	64.0 (53.8-72.6)	67.7 (57.6-75.9)
P-value	<0.1	<0.1
Median, months (95% CI)	25.8 (23.0-NR)	25.4 (25.0-NR)
Overall Survival		
18- Month (95% CI)	82.8 (69.5-90.7)	85.7 (72.3-92.9)
24- Month (95% CI)	78.2 (63.9-87.3)	80.8 (66.1-89.6)
Median, months (95% CI)	NR (NR-NR)	NR (28.1-NR)

ASCO 2022 and WCLC 2022

AUGUST 6-9, 2022 | VIENNA, AUSTRIA

Author	Ν	Population	Regimen	ORR (%)	PFS, med (mos)	Pneumontis G3+ (%)	trAEs Gr <u>></u> 3 (%)
Durm	54	NSCLC	$Chemo-RT \rightarrow Nivo$	NR	25.8	9.3	38.5
	51	NSCLC	Chemo-RT \rightarrow Nivo/Ipi	NR	25.4	15.7	52.9
Conclusion: Ipi yields no further Tx benefit, just heightened toxicity							

ASCO 2022 and WCLC 2022

ECOG-ACRIN EA5181

but not later than 45 days post-CRT

Conclusions

- After an additional 2 years of follow-up, a significant improvement in DFS for adjuvant Osimertinib in stages IB/II/IIIA EGFR mut (+) NSCLC persisted
- An improvement was seen whether or not patients received adjuvant chemotherapy
- A clinically meaningful improvement in CNS DFS was observed
- Does the benefit of Osimertinib wane after 3 years????
- Will we observe an OS benefit?

General Conclusions: Peri-operative Therapy in Early Stage NSCLC

- Adjuvant atezolizumab confers a clear PFS advantage in stage II/IIIA PDL1 (+) NSCLC post resection and adjuvant chemoetherapy
 - PDL1 > 50% realize an OS advantage
 - Adjuvant Pembrolizumab yields similar benefits
- Neoadjuvant Chemo and IO (Nivolumab) has resulted in a pCR, MPR, and EFS advantage vs chemo alone in resectable stage I-IIIA NSCLC. Long term OS data are pending
- Osimertinib as consolidation for 3 yrs post resection of EGFR mt (+) NSCLC +/- advjuvant chemo yields significant PFS benefit compared to placebo with CNS "protection" and preservation of QoL, but benefits may wane once TKI is stopped

Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer

P.M. Forde, J. Spicer, S. Lu, M. Provencio, T. Mitsudomi, M.M. Awad, E. Felip, S.R. Broderick, J.R. Brahmer, S.J. Swanson, K. Kerr, C. Wang, T.-E. Ciuleanu, G.B. Saylors, F. Tanaka, H. Ito, K.-N. Chen, M. Liberman, E.E. Vokes, J.M. Taube, C. Dorange, J. Cai, J. Fiore, A. Jarkowski, D. Balli, M. Sausen, D. Pandya, C.Y. Calvet, and N. Girard, for the CheckMate 816 Investigators*

N Engl J Med 2022 May 26;386(21):1973-85.

CheckMate 816 Coprimary Endpoint: Event-Free Survival

Forde PM et al. N Engl J Med 2022 May 26;386(21):1973-85.

Design and Rationale for a Phase III, Double-Blind, Placebo-Controlled Study of Neoadjuvant Durvalumab + Chemotherapy Followed by Adjuvant Durvalumab for the Treatment of Patients With Resectable Stages II and III non-small-cell Lung Cancer: The AEGEAN Trial

John V. Heymach, MD, PhD,¹ Tetsuya Mitsudomi,² David Harpole,³ Mike Aperghis,⁴ Stephanie Jones,⁴ Helen Mann,⁴ Tamer M. Fouad,⁵ Martin Reck⁶

Clin Lung Cancer 2022 May;23(3):e247-51.

AEGEAN: Phase III Trial Design

Wt = wild-type; TC = tumor cells; pCR = pathologic complete response; EFS = event-free survival; mPR = major pathologic response; DFS = disease-free survival; HRQoL = health-related quality of life; PRO = patient-reported outcome

RTP RESEARCH TO PRACTICE

Heymach JV et al. Clin Lung Cancer 2022 May;23(3):e247-51.

Positive High-Level Results Announced from the Phase III AEGEAN Trial Evaluating Durvalumab with Chemotherapy for Resectable NSCLC Press Release – June 30, 2022

"Positive high-level results from a planned interim analysis of the AEGEAN Phase III trial showed treatment with durvalumab in combination with neoadjuvant chemotherapy before surgery demonstrated a statistically significant and meaningful improvement in pathologic complete response (pCR) compared to neoadjuvant chemotherapy alone for patients with resectable non-small cell lung cancer (NSCLC).

A statistically significant improvement in major pathologic response (MPR) was also observed. The trial will continue as planned to assess the additional primary endpoint of event-free survival (EFS) to which the Company, investigators and participants remain blinded.

The safety and tolerability of adding durvalumab to neoadjuvant chemotherapy was consistent with the known profile for this combination and did not decrease the number of patients able to undergo successful surgery versus chemotherapy alone."

https://finance.yahoo.com/news/imfinzi-durvalumab-plus-chemotherapy-significantly-110000161.html

Lancet 2021;398(10308):1344-57.

Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB–IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial

Enriqueta Felip, Nasser Altorki, Caicun Zhou, Tibor Csőszi, Ihor Vynnychenko, Oleksandr Goloborodko, Alexander Luft, Andrey Akopov, Alex Martinez-Marti, Hirotsugu Kenmotsu, Yuh-Min Chen, Antonio Chella, Shunichi Sugawara, David Voong, Fan Wu, Jing Yi, Yu Deng, Mark McCleland, Elizabeth Bennett, Barbara Gitlitz, Heather Wakelee, for the IMpower010 Investigators*

IMpower010 Primary Endpoint: Disease-Free Survival in the PD-L1 ≥1% Tumor Cells Stage II-IIIA Population

Abstract PL03.09

IMpower010: Overall survival interim analysis of a phase III study of atezolizumab vs best supportive care in resected NSCLC

Enriqueta Felip,¹ Nasser Altorki,² Eric Vallieres,³ Ihor O. Vynnychenko,⁴ Andrey Akopov,⁵ Alex Martinez-Marti,¹ Antonio Chella,⁶ Igor Bondarenko,⁷ Shunichi Sugawara,⁸ Yun Fan,⁹ Hirotsugu Kenmotsu,¹⁰ Yuh-Min Chen,¹¹ Yu Deng,¹² Meilin Huang,¹² Virginia McNally,¹³ Elizabeth Bennett,¹² Barbara J. Gitlitz,¹² Caicun Zhou,¹⁴ Heather A. Wakelee¹⁵

IMpower010: Overall Survival Interim Analysis in the PD-L1 ≥1% Tumor Cells, Stage II to IIIA Population

Atezo = atezolizumab; BSC = best supportive care

Data cutoff: Apr 18, 2022 Median follow-up: 46 months

RTP RESEARCH TO PRACTICE

Felip E et al. WCLC 2022; Abstract PL03.09.

ESMO VIRTUAL PLENARY

Pembrolizumab Versus Placebo For Early-Stage NSCLC Following Complete Resection and Adjuvant Chemotherapy When Indicated: Randomized, Triple-Blind, Phase 3 EORTC-1416-LCG/ETOP 8-15 – PEARLS/KEYNOTE-091 Study

Information | Research

L. Paz-Ares,^{1*} M. O'Brien,^{2*} M. Mauer,³ U. Dafni,⁴ K. Oselin,⁵ L. Havel,⁶ E. Esteban,⁷ D. Isla,⁸ A. Martinez-Marti,⁹ M. Faehling,¹⁰ M. Tsuboi,¹¹ J.S. Lee,¹² K. Nakagawa,¹³ J. Yang,¹⁴ S.M. Keller,¹⁴ N. Jha,³ S. Marreaud,³ R. Stahel,¹⁵ S. Peters,^{16**} B. Besse^{17**} on behalf of the PEARLS/KEYNOTE-091 Investigators

¹Hospital Universitario 12 de Octubre, CNIO, Ciberonc & Universidad Complutense, Madrid, Spain; ²Royal Marsden Hospital, London, UK; ³European Organisatic Research and Treatment of Cancer, Headquarters Brussels, Belgium; ⁴National and Kapodistrian University of Athens and Frontier Science Foundation Hellas; ⁵Na Estonia Medical Centre, Tallinn, Estonia; ⁶Charles University and Thomayer Hospital, Prague, Czech Republic; ⁷Hospital Universitario Central de Asturias, Oviedo, Spain; ⁸University Hospital Lozano Blesa, IIS Aragon, Zaragoza, Spain; ⁹Vall d'Hebron Institute of Oncology (VHO), Vall d'Hebron University Hospital, Barcelona, Spain; ¹⁰Klinikum Esslingen, Esslingen, Germany; ¹¹National Cancer Center Hospital East, Kashiwa, Japan; ¹²Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea; ¹³Kindai University Hospital, Lausanne, Switzerland; ¹⁷Institut Gustave Roussy, Villejuif, France *Drs. Paz-Ares and O'Brien contributed equally to this presentation. **Drs. Peters and Besse contributed equally to this presentation.

Abstract VP3-2022

PEARLS/KEYNOTE-091: Author Summary and Conclusions

- Pembrolizumab provided statistically significant, clinically meaningful DFS improvement versus placebo in the overall population
 - Median DFS of 53.6 months with pembrolizumab vs 42.0 months with placebo (HR, 0.76)
 - Generally consistent DFS benefit in participants with PD-L1 TPS <1%, 1-49%, and ≥50%
 - OS data are immature
 - DFS in the PD-L1-defined populations and OS will be tested at future analyses according to the analysis plan
- · Pembrolizumab safety profile as expected
- Data suggest pembrolizumab has the potential to be a new adjuvant treatment option for patients with stage IB (T ≥4 cm) to IIIA NSCLC following complete resection and adjuvant chemotherapy when recommended, regardless of PD-L1 expression

TPS = tumor proportion score

Paz-Ares L et al. ESMO Virtual Plenary Sessions 2022; Abstract VP3-2022.

Five-Year Survival Outcomes From the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer

David R. Spigel, MD¹; Corinne Faivre-Finn, MD, PhD²; Jhanelle E. Gray, MD³; David Vicente, MD⁴; David Planchard, MD, PhD⁵; Luis Paz-Ares, MD, PhD⁶; Johan F. Vansteenkiste, MD, PhD⁷; Marina C. Garassino, MD^{8,9}; Rina Hui, PhD¹⁰; Xavier Quantin, MD, PhD¹¹; Andreas Rimner, MD¹²; Yi-Long Wu, MD¹³; Mustafa Özgüroğlu, MD¹⁴; Ki H. Lee, MD¹⁵; Terufumi Kato, MD¹⁶; Maike de Wit, MD, PhD¹⁷; Takayasu Kurata, MD¹⁸; Martin Reck, MD, PhD¹⁹; Byoung C. Cho, MD, PhD²⁰; Suresh Senan, PhD²¹; Jarushka Naidoo, MBBCH, MHS²²; Helen Mann, MSc²³; Michael Newton, PharmD²⁴; Piruntha Thiyagarajah, MD²³; and Scott J. Antonia, MD, PhD³; on behalf of the PACIFIC Investigators

reports

J Clin Oncol 2022;40(12):1301-11.

PACIFIC: Five-Year Progression-Free Survival (PFS) with Durvalumab After Chemoradiation Therapy for Stage III NSCLC

PACIFIC: Five-Year Overall Survival (OS) with Durvalumab After Chemoradiation Therapy for Stage III NSCLC

© COAST: An Open-Label, Phase II, Multidrug Platform Study of Durvalumab Alone or in Combination With Oleclumab or Monalizumab in Patients With Unresectable, Stage III Non–Small-Cell Lung Cancer

Roy S. Herbst, MD, PhD¹; Margarita Majem, MD, PhD²; Fabrice Barlesi, MD, PhD³; Enric Carcereny, MD⁴; Quincy Chu, MD⁵; Isabelle Monnet, MD, PhD⁶; Alfredo Sanchez-Hernandez, MD⁷; Shaker Dakhil, MD⁸; D. Ross Camidge, MD, PhD⁹; Leanne Winzer, MSc¹⁰; Yee Soo-Hoo, MPH¹¹; Zachary A. Cooper, PhD¹¹; Rakesh Kumar, MD, PhD¹¹; John Bothos, PhD¹¹; Charu Aggarwal, MD, MPH¹²; and Alex Martinez-Marti, MD¹³

J Clin Oncol 2022;40(29):3383-93.

COAST: Progression-Free Survival

		Treatment Arm	No. of Events/ Total No. of Patients (%)	Median PFS, Months (95% CI) ^a	12-Month PFS Rate, % (95% CI)	HR, % (95% Cl) ^{b,c}
		Durvalumab + monalizumab	21/62 (33.9)	15.1 (13.6 to NE)	72.7 (58.8 to 82.6)	0.42 (0.24 to 0.72)
		Durvalumab + oleclumab	22/60 (36.7)	NR (10.4 to NE)	62.6 (48.1 to 74.2)	0.44 (0.26 to 0.75)
		Durvalumab	38/67 (56.7)	6.3 (3.7 to 11.2)	33.9 (21.2 to 47.1)	<u></u>
PFS (probability)	1.0 0.9 0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 - 0.1 -	Colors and the second s		<u>₩/</u> / ` / `	-₩- [₩] -₩ <u>₩</u> -++ -₩ ₩+1 %+1	
	0	2 4 6 T	8	10 12	14 (month c)	16 18 20
		1	ime Since Rando	om Assignment	(months)	

COAST: Antitumor Activity and Safety Summary

Antitumor Activity	Durvalumab $(n = 67)$	Durvalumab + Oleclumab $(n = 60)$	Durvalumab + Monalizumab (n = 62)
Confirmed ORR, % (95% CI) ^a (No.)	17.9 (9.6 to 29.2) (12)	30.0 (18.8 to 43.2) (18)	35.5 (23.7 to 48.7) (22)
Difference in confirmed ORR, % (95% CI) ^b		12.1 (-2.7 to 26.9)	16.7 (1.5 to 32.0)
Best overall response by RECIST, ^{c,d} No. (%)			
CR	2 (3.0)	1 (1.7)	3 (4.8)
PR	10 (14.9)	17 (28.3)	19 (30.6)
SD	37 (55.2)	32 (53.3)	31 (50.0)
PD	11 (16.4)	6 (10.0)	4 (6.5)
NE	7 (10.4)	4 (6.7)	4 (6.5)
DCR at 16 weeks, % (95% CI) ^{c,e} (No.)	55.2 (42.6 to 67.4) (37)	80.0 (67.7 to 89.2) (48)	77.4 (65.0 to 87.1) (48)
Median DoR, months (95% CI) ^c Range	NR (7.4 to NA) 1.9+ to 17.5+	NR (12.9 to NA) 1.8+ to 16.9+	NR (9.0 to NA) 1.9+ to 18.4+
ncidence	Durvalumab	Durvalumab + Oleclumab	Durvalumab + Monalizumal
Any TEAEs, No. (%)	65 (98.5)	57 (96.6)	61 (100)
Grade ≥ 3 TEAEs, No. (%)	26 (39.4)	24 (40.7)	17 (27.9)
Study drug-related AEs, No. (%)	49 (74.2)	46 (78.0)	50 (82.0)
Study drug-related SAEs, No. (%)	6 (9.1)	7 (11.9)	5 (8.2)
TEAEs leading to treatment discontinuation, No. (%)	11 (16.7)	9 (15.3)	9 (14.8)
Deaths ^{a,b} , No. (%)	7 (10.6)	4 (6.8)	3 (4.9)

Herbst RS et al. *J Clin Oncol* 2022;40(29):3383-93.

NE = not evaluable; NR = not reached; NA = not applicable

FDA-Approved Single-Agent Immunotherapy Options for First-Line Therapy

Monotherapy	FDA approval	Pivotal study	Histologic type	HR (OS)
Pembrolizumab ^{1,2} (q3wk or q6wk)	4/11/19 10/24/16	KEYNOTE-042 KEYNOTE-024	PD-L1 TPS ≥1%	0.63
Atezolizumab ³ (q2wk, q3wk or q4wk)	5/18/20	IMpower110	PD-L1 TPS ≥50, EGFR and/or ALK wt	0.59
Cemiplimab ⁴ (q3wk)	2/22/21	EMPOWER-Lung 1 (Study 1624)	PD-L1 TPS ≥50, EGFR and/or ALK and/or ROS1 wt	0.57

¹ Mok. *Lancet* 2019. ² Reck. *J Clin Oncol* 2019. ³ Herbst. *N Engl J Med* 2020. ⁴ Sezer. *Lancet* 2021.

FDA-Approved Immunotherapy Combination Options for First-Line Therapy

Combination regimen	FDA approval	Pivotal study	Histologic type	HR (OS)
Pembrolizumab (q3wk or q6wk) + platinum and pemetrexed ¹	8/20/18	KEYNOTE-189	Nonsquamous	0.56
Pembrolizumab (q3wk or q6wk) + carboplatin, paclitaxel or <i>nab</i> paclitaxel ²	10/30/18	KEYNOTE-407	Squamous	0.71
Atezolizumab (q3wk) + carboplatin and paclitaxel and bevacizumab ³	12/6/18	IMpower150	Nonsquamous	0.80
Atezolizumab (q3wk) + carboplatin and <i>nab</i> paclitaxel ⁴	12/3/19	IMpower130	Nonsquamous	0.79
Nivolumab (q2wk) + ipilimumab⁵	5/15/20	CheckMate 227	PD-L1 TPS ≥1, EGFR and/or ALK wt	0.76
Nivolumab (q3wk) + ipilimumab and chemotherapy ⁶	5/26/20	CheckMate 9LA	EGFR and/or ALK wt	0.72

¹ Rodriguez-Abreu. *Ann Oncol* 2021. ² Paz-Ares. *J Thorac Oncol* 2020. ³ Socinski *J Thorac Oncol* 2021. ⁴ West. *Lancet Oncol* 2019. ⁵ Paz-Ares. ASCO 2021; Abstract 9016. ⁶ Reck. ASCO 2021; Abstract 9000.

Lancet 2021;397(10274):592-604.

Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: a multicentre, open-label, global, phase 3, randomised, controlled trial

Ahmet Sezer, Saadettin Kilickap, Mahmut Gümüş, Igor Bondarenko, Mustafa Özgüroğlu, Miranda Gogishvili, Haci M Turk, Irfan Cicin, Dmitry Bentsion, Oleg Gladkov, Philip Clingan, Virote Sriuranpong, Naiyer Rizvi, Bo Gao, Siyu Li, Sue Lee, Kristina McGuire, Chieh-I Chen, Tamta Makharadze, Semra Paydas, Marina Nechaeva, Frank Seebach, David M Weinreich, George D Yancopoulos, Giuseppe Gullo, Israel Lowy, Petra Rietschel

EMPOWER-Lung 1: A Phase III Trial of Cemiplimab Monotherapy for First-Line Treatment of NSCLC with PD-L1 ≥50%

Overall Survival

Progression-Free Survival

Sezer A et al. Lancet 2021;397(10274):592-604.

Cemiplimab plus chemotherapy versus chemotherapy alone in non-small cell lung cancer: a randomized, controlled, double-blind phase 3 trial

Miranda Gogishvili¹¹², Tamar Melkadze², Tamta Makharadze³, Davit Giorgadze⁴, Mikhail Dvorkin⁵, Konstantin Penkov⁶, Konstantin Laktionov⁷, Gia Nemsadze⁸, Marina Nechaeva⁹, Irina Rozhkova¹⁰, Ewa Kalinka¹¹, Christian Gessner^{12,13}, Brizio Moreno-Jaime¹⁴, Rodolfo Passalacqua¹⁵, Siyu Li¹⁶, Kristina McGuire¹⁶, Manika Kaul¹⁶, Anne Paccaly¹⁶, Ruben G. W. Quek¹⁶, Bo Gao¹⁶, Frank Seebach¹⁶, David M. Weinreich¹⁶, George D. Yancopoulos¹⁶, Israel Lowy¹⁶, Giuseppe Gullo¹⁶ and Petra Rietschel¹⁶

Nat Med 2022 Aug 25;[Online ahead of print].

EMPOWER-Lung 3: First-Line Cemiplimab with Platinum-Doublet Chemotherapy for Advanced NSCLC

Additional secondary: DOR, BOR, safety, and PRO

Second interim analysis (14 June 2021) presented here

BOR = best overall response; PRO = patient-reported outcome

Gogishvili M et al. ESMO 2021; Abstract LBA51.

EMPOWER-Lung 3: Overall Survival with First-Line Cemiplimab and Platinum-Doublet Chemotherapy for Advanced NSCLC

EMPOWER-Lung 3: Progression-Free Survival with First-Line Cemiplimab and Platinum-Doublet Chemotherapy for Advanced NSCLC

Gogishvili M et al. Nat Med 2022 Aug 25;[Online ahead of print].

EMPOWER-Lung 3: Select Adverse Events

	Cemiplimab +	chemotherapy ($n = 312$)	Placebo + chemotherapy (n = 153)	
Event, n (%)	Any grade	Grade ≥ 3	Any grade	Grade≥3
Any	299 (95.8)	136 (43.6)	144 (94.1)	48 (31.4)
Led to discontinuation	16 (5.1)	13 (4.2)	4 (2.6)	4 (2.6)
Led to death	19 (6.1)	19 (6.1)	12 (7.8)	12 (7.8)
Events that occurred in $\geq 10\%$ of patients in e	either group			
Anemia	136 (43.6)	31 (9.9)	61 (39.9)	10 (6.5)
Alopecia	115 (36.9)	0	66 (43.1)	0
Nausea	78 (25.0)	0	25 (16.3)	0
Hyperglycemia	55 (17.6)	6 (1.9)	18 (11.8)	0
Decreased appetite	53 (17.0)	3 (1.0)	18 (11.8)	0
Alanine aminotransferase increased	51 (16.3)	7 (2.2)	22 (14.4)	3 (2.0)
Arthralgia	48 (15.4)	2 (0.6)	20 (13.1)	0
Neutropenia	48 (15.4)	<mark>18 (</mark> 5.8)	19 (12.4)	9 (5.9)
Aspartate aminotransferase increased	46 (14.7)	1 (0.3)	18 (11.8)	3 (2.0)
Constipation	43 (1 <mark>3.8</mark>)	1 (0.3)	17 (11.1)	0
Thrombocytopenia	41 (13.1)	8 (2.6)	19 (12.4)	2 (1.3)
Dyspnea	39 (12.5)	7 (2.2)	10 (6.5)	1(0.7)
Asthenia	38 (12.2)	6 (1.9)	18 (11.8)	2 (1.3)
Fatigue	38 (12.2)	7 (2.2)	11 (7.2)	1 (0.7)
Vomiting	38 (12.2)	0	15 (9.8)	0

Gogishvili M et al. Nat Med 2022 Aug 25;[Online ahead of print].

Durvalumab ± Tremelimumab + Chemotherapy as First-Line Treatment for mNSCLC: Results from the Phase 3 POSEIDON Study

Melissa L Johnson,¹ Byoung Chul Cho,² Alexander Luft,³ Jorge Alatorre-Alexander,⁴ Sarayut Lucien Geater,⁵ Konstantin Laktionov,⁶ Aleksandr Vasiliev,⁷ Dmytro Trukhin,⁸ Sang-We Kim,⁹ Grygorii Ursol,¹⁰ Maen Hussein,¹¹ Farah Louise Lim,¹² Cheng-Ta Yang,¹³ Luiz Henrique Araujo,¹⁴ Haruhiro Saito,¹⁵ Niels Reinmuth,¹⁶ Xiaojin Shi,¹⁷ Lynne Poole,¹⁸ Solange Peters,¹⁹ Edward B Garon,²⁰ Tony Mok²¹

¹Sarah Cannon Research Institute, Tennessee Oncology, PLLCC, Nashville, TN, USA; ²Yonsei Cancer Center, Seoul, Korea; ³Leningrad Regional Clinical Hospital, St Petersburg, Russia; ⁴Health Pharma Professional Research, Mexico City, Mexico; ⁵Prince of Songkla University, Songkhla, Thailand; ⁶Federal State Budgetary Institution "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation (N.N. Blokhin NMRCO), Moscow, Russia; ^{7#}Private Health Institution "Clinical Hospital" RZD-Medicine", St Petersburg, Russia; ⁸Odessa Regional Oncological Dispensary, Odessa, Ukraine; ⁹Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ¹⁰Acinus, Kropyvnytskyi, Ukraine; ¹¹Florida Cancer Specialists – Sarah Cannon Research Institute, Leesburg, FL, USA; ¹²Queen Mary University of London, London, United Kingdom; ¹³Chang Gung Memorial Hospital, Taoyuan City, Taiwan; ¹⁴Instituto Nacional de Cancer-INCA, Rio de Janeiro, Brazil; ¹⁵Kanagawa Cancer Center, Yokohama, Japan; ¹⁶Asklepios Lung Clinic, Munich-Gauting, Germany; ¹⁷AstraZeneca, Gaithersburg, MD, USA; ¹⁸AstraZeneca, Cambridge, UK; ¹⁹Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland; ²⁰David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ²¹Chinese University of Hong Kong, Hong Kong, China

IASLC2021 World Conference on Lung CancerSEPTEMBER 8 - 14, 2021 I WORLDWIDE VIRTUAL EVENT

Abstract PL02.01

POSEIDON: First-Line Durvalumab with Tremelimumab and Chemotherapy for Advanced NSCLC

PFS

Johnson ML et al. WCLC 2021; Abstract PL02.01.

Targeting TROP2 with Datopotamab Deruxtecan (Dato-DXd)

- TROP2 is highly expressed in NSCLC, regardless of genomic mutation status, and has been associated with poor prognosis
- Dato-DXd is an antibody-drug conjugate composed of a humanized anti-TROP2 monoclonal antibody conjugated to a potent topoisomerase I inhibitor payload via a stable tetrapeptide-based cleaver linker

Efficacy of Datopotamab Deruxtecan (Dato-DXd) in Patients With Advanced/Metastatic Non-Small Cell Lung Cancer (NSCLC) and Actionable Genomic Alterations (AGAs): Preliminary Results From the Phase 1 TROPION-PanTumor01 Study

<u>Edward B. Garon</u>,¹ Melissa L. Johnson,² Aaron E. Lisberg,¹ Alexander Spira,³ Noboru Yamamoto,⁴ Rebecca S. Heist,⁵ Jacob M. Sands,⁶ Kiyotaka Yoh,⁷ Funda Meric-Bernstam,⁸ Satoru Kitazono,⁹ Jonathan Greenberg,¹⁰ Fumiaki Kobayashi,¹¹ Yui Kawasaki,¹¹ Lori Jukofsky,¹⁰ Kota Nakamura,¹⁰ Toshio Shimizu⁴

¹David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ²Sarah Cannon Research Institute, Tennessee Oncology, PLLC/OneOncology, Nashville, TN, USA; ³Virginia Cancer Specialists, Fairfax, VA, USA; ⁴Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan; ⁵Massachusetts General Hospital, Boston, MA, USA; ⁶Dana-Farber Cancer Institute, Boston, MA, USA; ⁷National Cancer Center Hospital East, Chiba, Japan; ⁸The University of Texas, MD Anderson Cancer Center, Houston, TX, USA; ⁹The Cancer Institute Hospital of JFCR, Tokyo, Japan; ¹⁰Daiichi Sankyo, Inc, Basking Ridge, NJ, USA; ¹¹Daiichi Sankyo Co, Ltd, Tokyo, Japan

Phase I TROPION-PanTumor01 (NSCLC Cohort): Antitumor Activity of Dato-DXd for NSCLC with Actionable Genomic Alterations (AGAs)

Best Overall Response (BICR)

Patients ^a	Dato-DXd n=34
ORR, n (%)	12 (35)
CR	0
PR	12 (35)
SD, n (%)	14 (41)
Non-CR/PD, n (%)	2 (6)
PD, n (%)	2 (6)
NE, n (%)	4 (12)
DOR, median (95% CI), mo	9.5 (3.3-NE)

 Clinical activity was observed in EGFR (Ex19del, L858R) including after osimertinib and across other AGAs

Data cutoff: April 6, 2021.

SOD: sum of diameter

Thank you for joining us!

CME, MOC and NCPD credit information will be emailed to each participant within 5 business days.

