Meet The Professor Non-Small Cell Lung Cancer with an Actionable Target Beyond EGFR

> Stephen V Liu, MD Associate Professor of Medicine Georgetown University Hospital Washington, DC

Commercial Support

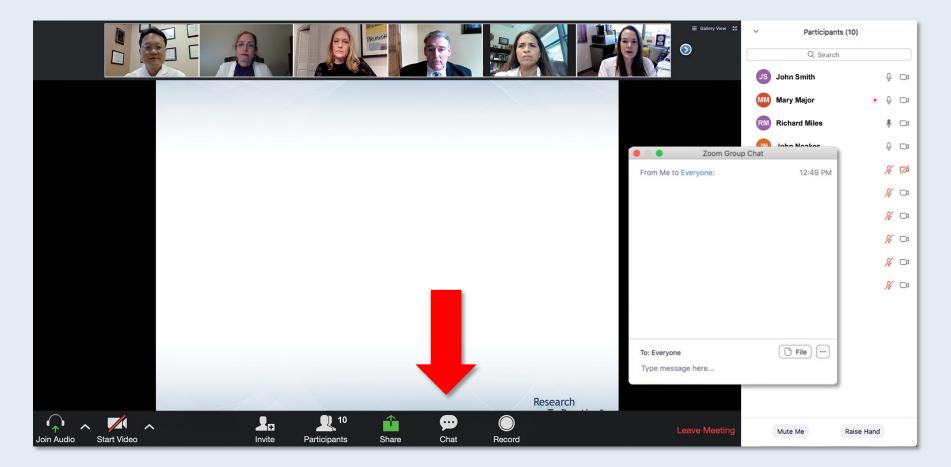
This activity is supported by educational grants from Amgen Inc, AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Elevation Oncology Inc, Genentech, a member of the Roche Group, Novartis, and Turning Point Therapeutics Inc.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, the parent company of GHI, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

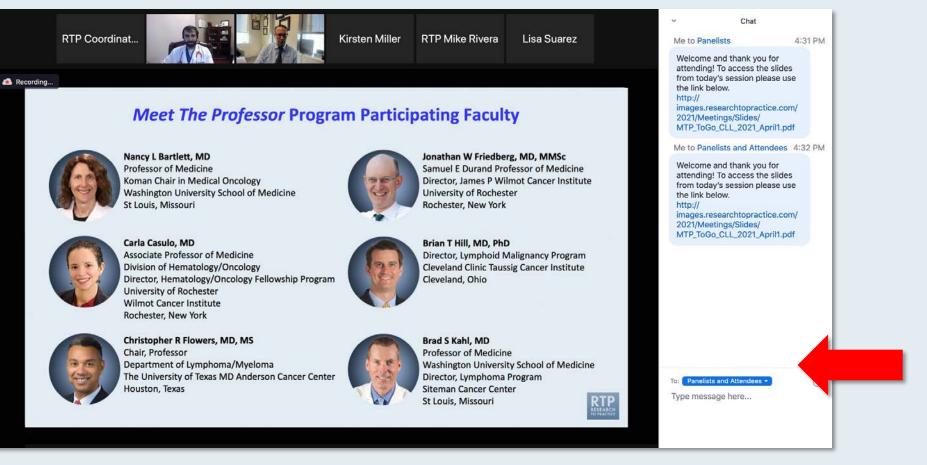
Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



Dr Liu — Disclosures

Advisory Committee	Amgen Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, Blueprint Medicines, Bristol-Myers Squibb Company, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology, Genentech, a member of the Roche Group, Guardant Health, Janssen Biotech Inc, Jazz Pharmaceuticals Inc, Lilly, Novartis, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Takeda Pharmaceuticals USA Inc, Turning Point Therapeutics Inc
Consulting Agreements	BeiGene Ltd, Blueprint Medicines, Daiichi Sankyo Inc, Elevation Oncology, Genentech, a member of the Roche Group, Janssen Biotech Inc, Lilly, Turning Point Therapeutics Inc
Contracted Research	Alkermes, Bayer HealthCare Pharmaceuticals, Blueprint Medicines, Bristol-Myers Squibb Company, Elevation Oncology, Genentech, a member of the Roche Group, Lilly, Merck, Merus BV, Pfizer Inc, Rain Therapeutics, RAPT Therapeutics, Turning Point Therapeutics Inc
Data and Safety Monitoring Board/Committee	Candel Therapeutics

We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

ONCOLOGY TODAY WITH DR NEIL LOVE

NSCLC with EGFR Exon 20 Insertion Mutations

DR GREGORY RIELY MEMORIAL SLOAN KETTERING CANCER CENTER

Dr Gregory Riely – NSCLC with EGFR Oncology Today with Dr Neil Love —

(15) (30)

Meet The Professor Optimizing the Management of Hepatobiliary Cancers

> Thursday, July 28, 2022 5:00 PM – 6:00 PM ET

> > Faculty Robin K Kelley, MD

WORLD PREMIERE OF AN ENDURING CME ACTIVITY

Oncology Today: Management of Unresectable Stage III Non-Small Cell Lung Cancer

Monday, August 1, 2022 5:00 PM - 6:00 PM ET

Faculty Jeffrey Bradley, MD David R Spigel, MD

WORLD PREMIERE OF AN ENDURING CME ACTIVITY

Oncology Today: The Use of T-DXd in HER2-Low Breast Cancer

Tuesday, August 2, 2022 5:00 PM – 6:00 PM ET

> Faculty Shanu Modi, MD

Meet The Professor Optimizing the Management of Ovarian Cancer

Wednesday, August 3, 2022 5:00 PM – 6:00 PM ET

Faculty Prof Jonathan A Ledermann

Recent Advances in Medical Oncology: A daylong CME hybrid (live/online) event Saturday, August 6, 2022 9:00 AM - 4:30 PM PT (12:00 PM - 7:30 PM ET) Bellagio Las Vegas | Las Vegas, Nevada Faculty Neeraj Agarwal, MD Craig Moskowitz, MD Harold J Burstein, MD, PhD Joyce O'Shaughnessy, MD Ibiayi Dagogo-Jack, MD Krina Patel, MD, MSc **Rafael Fonseca, MD** Philip A Philip, MD, PhD, FRCP Suresh S Ramalingam, MD **Brad S Kahl, MD** Rutika Mehta, MD, MPH Sandy Srinivas, MD **Moderator** Neil Love, MD In Partnership with the American Oncology Network

Meet The Professor Optimizing the Management of Small Cell Lung Cancer

> Thursday, August 11, 2022 5:00 PM – 6:00 PM ET

> > Faculty Jacob Sands, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Non-Small Cell Lung Cancer with an Actionable Target Beyond EGFR

> Stephen V Liu, MD Associate Professor of Medicine Georgetown University Hospital Washington, DC

Meet The Professor Program Participating Faculty

Christina Baik, MD, MPH

Associate Professor of Medicine Thoracic, Head and Neck Medical Oncology University of Washington School of Medicine Fred Hutchinson Cancer Center Seattle, Washington

Alexander E Drilon, MD

Chief, Early Drug Development Service Associate Attending Physician Thoracic Oncology Service Memorial Sloan Kettering Cancer Center New York, New York

D Ross Camidge, MD, PhD

Professor of Medicine/Oncology Joyce Zeff Chair in Lung Cancer Research University of Colorado, Anschutz Medical Campus Denver, Colorado

Justin F Gainor, MD

Director, Center for Thoracic Cancers at Massachusetts General Hospital Director of Targeted Immunotherapy in the Henri and Belinda Termeer Center for Targeted Therapies Associate Professor of Medicine Harvard Medical School Massachusetts General Hospital Boston, Massachusetts

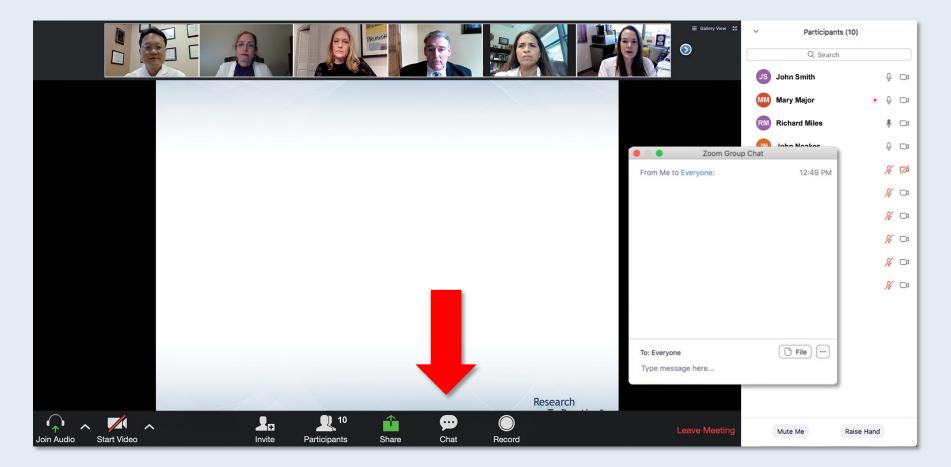
Meet The Professor Program Participating Faculty

Melissa Johnson, MD

Director, Lung Cancer Research Program Associate Director of Drug Development for the Drug Development Unit in Nashville Sarah Cannon Research Institute Nashville, Tennessee

Alexander I Spira, MD, PhD CEO and Clinical Director, NEXT Virginia Director, Virginia Cancer Specialists Research Program Fairfax, Virginia

Stephen V Liu, MD


Associate Professor of Medicine Georgetown University Hospital Washington, DC

MODERATOR Neil Love, MD Research To Practice

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

ONCOLOGY TODAY WITH DR NEIL LOVE

NSCLC with EGFR Exon 20 Insertion Mutations

DR GREGORY RIELY MEMORIAL SLOAN KETTERING CANCER CENTER

Dr Gregory Riely – NSCLC with EGFR Oncology Today with Dr Neil Love —

(15) (30)

Meet The Professor Optimizing the Management of Hepatobiliary Cancers

> Thursday, July 28, 2022 5:00 PM – 6:00 PM ET

> > Faculty Robin K Kelley, MD

WORLD PREMIERE OF AN ENDURING CME ACTIVITY

Oncology Today: Management of Unresectable Stage III Non-Small Cell Lung Cancer

Monday, August 1, 2022 5:00 PM - 6:00 PM ET

Faculty Jeffrey Bradley, MD David R Spigel, MD

WORLD PREMIERE OF AN ENDURING CME ACTIVITY

Oncology Today: The Use of T-DXd in HER2-Low Breast Cancer

Tuesday, August 2, 2022 5:00 PM – 6:00 PM ET

> Faculty Shanu Modi, MD

Meet The Professor Optimizing the Management of Ovarian Cancer

Wednesday, August 3, 2022 5:00 PM – 6:00 PM ET

Faculty Prof Jonathan A Ledermann

Recent Advances in Medical Oncology: A daylong CME hybrid (live/online) event Saturday, August 6, 2022 9:00 AM - 4:30 PM PT (12:00 PM - 7:30 PM ET) Bellagio Las Vegas | Las Vegas, Nevada Faculty Neeraj Agarwal, MD Craig Moskowitz, MD Harold J Burstein, MD, PhD Joyce O'Shaughnessy, MD Ibiayi Dagogo-Jack, MD Krina Patel, MD, MSc **Rafael Fonseca, MD** Philip A Philip, MD, PhD, FRCP Suresh S Ramalingam, MD **Brad S Kahl, MD** Rutika Mehta, MD, MPH Sandy Srinivas, MD **Moderator** Neil Love, MD In Partnership with the American Oncology Network

Recent Advances and Real-World Implications in Medical Oncology A Daylong Multitumor Educational Symposium in Partnership with the American Oncology Network Saturday, August 6, 2022

Breast Cancer 9:05 AM – 10:05 AM PT Faculty Harold J Burstein, MD, PhD Joyce O'Shaughnessy, MD Genitourinary Cancers 10:05 AM – 11:05 AM PT Faculty Neeraj Agarwal, MD Sandy Srinivas, MD

Recent Advances and Real-World Implications in Medical Oncology A Daylong Multitumor Educational Symposium in Partnership with the American Oncology Network Saturday, August 6, 2022

Multiple Myeloma 11:20 AM – 12:20 PM PT Faculty Rafael Fonseca, MD Krina Patel, MD, MSc **CLL and Lymphomas** 12:55 PM – 1:55 PM PT

Faculty Brad S Kahl, MD Craig Moskowitz, MD

Recent Advances and Real-World Implications in Medical Oncology A Daylong Multitumor Educational Symposium in Partnership with the American Oncology Network Saturday, August 6, 2022

Gastrointestinal Cancers 1:55 PM – 2:55 PM PT Faculty Rutika Mehta, MD, MPH Philip A Philip, MD, PhD, FRCP Lung Cancer 3:10 PM – 4:10 PM PT Faculty Ibiayi Dagogo-Jack, MD Suresh S Ramalingam, MD

Meet The Professor Optimizing the Management of Small Cell Lung Cancer

> Thursday, August 11, 2022 5:00 PM – 6:00 PM ET

> > Faculty Jacob Sands, MD

Meet The Professor Non-Small Cell Lung Cancer with an Actionable Target Beyond EGFR

> Stephen V Liu, MD Associate Professor of Medicine Georgetown University Hospital Washington, DC

Commercial Support

This activity is supported by educational grants from Amgen Inc, AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Elevation Oncology Inc, Genentech, a member of the Roche Group, Novartis, and Turning Point Therapeutics Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Liu — Disclosures

Advisory Committee	Amgen Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, Blueprint Medicines, Bristol-Myers Squibb Company, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology, Genentech, a member of the Roche Group, Guardant Health, Janssen Biotech Inc, Jazz Pharmaceuticals Inc, Lilly, Novartis, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Takeda Pharmaceuticals USA Inc, Turning Point Therapeutics Inc
Consulting Agreements	BeiGene Ltd, Blueprint Medicines, Daiichi Sankyo Inc, Elevation Oncology, Genentech, a member of the Roche Group, Janssen Biotech Inc, Lilly, Turning Point Therapeutics Inc
Contracted Research	Alkermes, Bayer HealthCare Pharmaceuticals, Blueprint Medicines, Bristol-Myers Squibb Company, Elevation Oncology, Genentech, a member of the Roche Group, Lilly, Merck, Merus BV, Pfizer Inc, Rain Therapeutics, RAPT Therapeutics, Turning Point Therapeutics Inc
Data and Safety Monitoring Board/Committee	Candel Therapeutics

Gigi Chen, MD John Muir Health Pleasant Hill, California

Minesh Dinubhai Patel, MD Piedmont Cancer Institute Peachtree City, Georgia

Kapisthalam (KS) Kumar, MD Florida Cancer Specialists Trinity, Florida

Priya Rudolph, MD, PhD Georgia Cancer Specialists Athens, Georgia

Adam R Miller, MD Mass General/North Shore Cancer Center Danvers, Massachusettes

Rajni Sinha, MD, MRCP Piedmont Cancer Institute Atlanta, Georgia

Jiaxin (Jason) Niu, MD, PhD The University of Texas MD Anderson Cancer Center Gilbert, Arizona

Meet The Professor with Dr Liu

Introduction: Journal Club with Dr Liu – Part 1

MODULE 1: Case Presentations

MODULE 2: Journal Club with Dr Liu – Part 2

MODULE 3: Appendix of Key Publications

Meet The Professor with Dr Liu

Introduction: Journal Club with Dr Liu – Part 1

MODULE 1: Case Presentations

MODULE 2: Journal Club with Dr Liu – Part 2

MODULE 3: Appendix of Key Publications

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 7, 2022

VOL. 387 NO. 1

Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer

S. Modi, W. Jacot, T. Yamashita, J. Sohn, M. Vidal, E. Tokunaga, J. Tsurutani, N.T. Ueno, A. Prat, Y.S. Chae, K.S. Lee, N. Niikura, Y.H. Park, B. Xu, X. Wang, M. Gil-Gil, W. Li, J.-Y. Pierga, S.-A. Im, H.C.F. Moore, H.S. Rugo, R. Yerushalmi, F. Zagouri, A. Gombos, S.-B. Kim, Q. Liu, T. Luo, C. Saura, P. Schmid, T. Sun, D. Gambhire, L. Yung, Y. Wang, J. Singh, P. Vitazka, G. Meinhardt, N. Harbeck, and D.A. Cameron, for the DESTINY-Breast04 Trial Investigators*

Clin Lung Cancer 2021;22(6):483-99.

Review Article

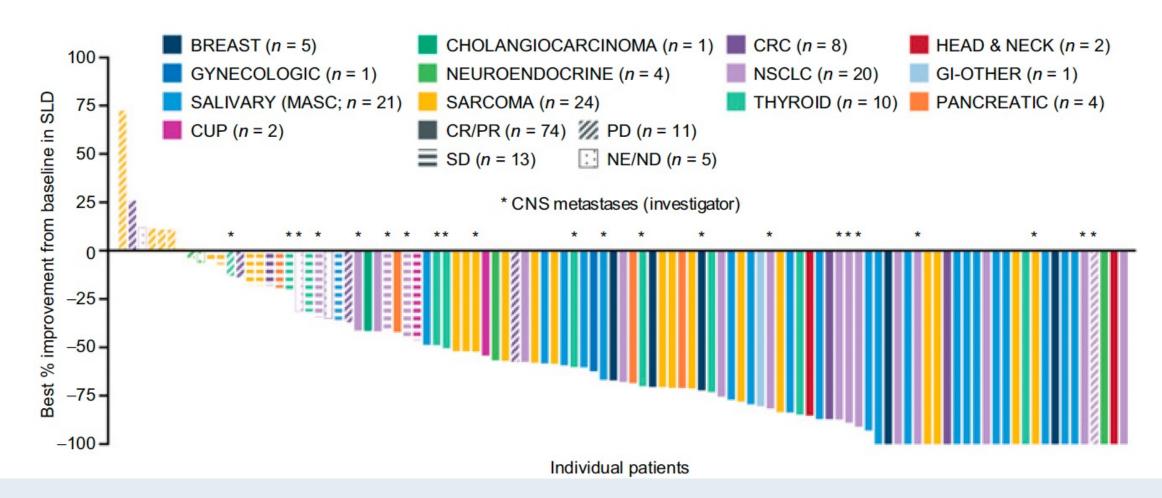
Antibody Drug Conjugates in Lung Cancer: State of the Current Therapeutic Landscape and Future Developments

Joshua E. Reuss,¹ Laura Gosa,² Stephen V. Liu¹

Antibody-Drug Conjugates in Oncology: Recent Research Development

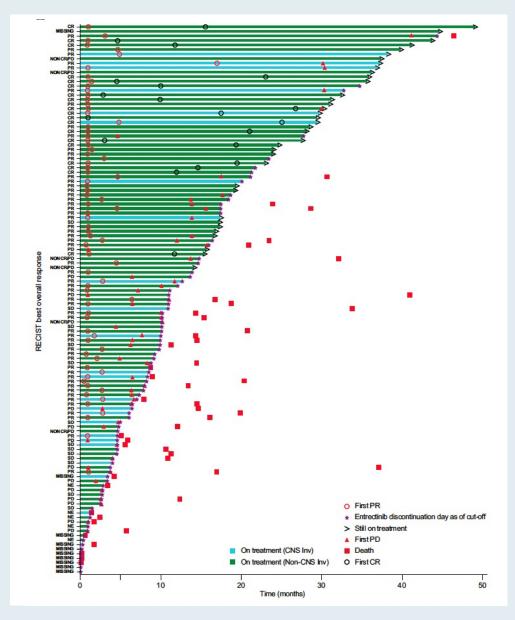
- Brentuximab vedotin (ECHELON-1): Hodgkin lymphoma
- Belantamab mafodotin: Multiple myeloma
- Polatuzumab vedotin: DLBCL
- Sacituzumab govitecan: Breast and bladder cancer
- Enfortumab vedotin: Bladder cancer
- Trastuzumab deruxtecan (T-DXd): Breast cancer (second line, HER2 low), upper GI, colorectal and lung cancer

Clin Cancer Res 2022;28(7):1302-12.

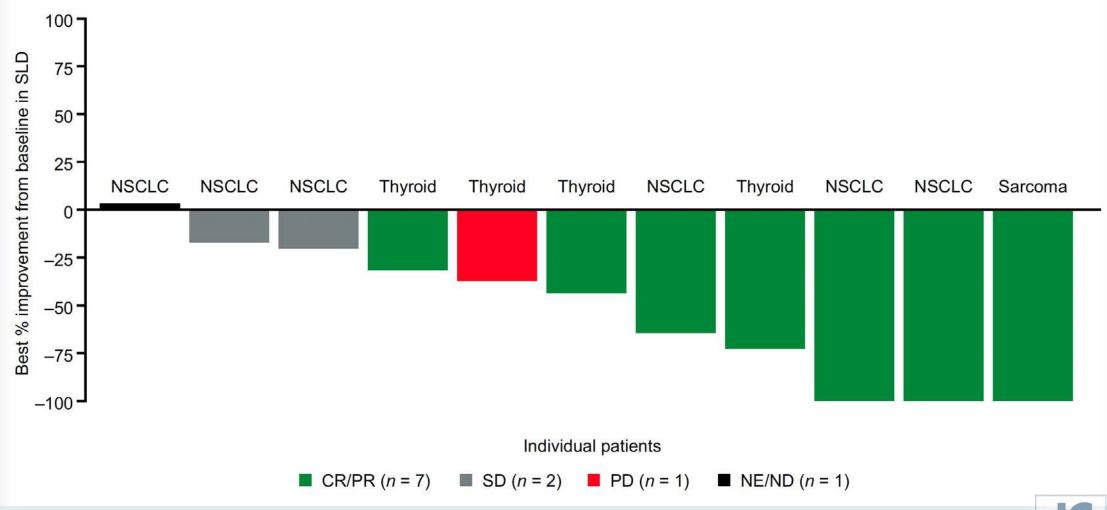

CLINICAL CANCER RESEARCH | CLINICAL TRIALS: TARGETED THERAPY

Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Patients With *NTRK* Fusion-Positive Solid Tumors

George D. Demetri¹, Filippo De Braud², Alexander Drilon⁴, Salvatore Siena^{3,5}, Manish R. Patel⁶, Byoung Chul Cho⁷, Stephen V. Liu⁸, Myung-Ju Ahn⁹, Chao-Hua Chiu¹⁰, Jessica J. Lin¹¹, Koichi Goto¹², Jeeyun Lee⁹, Lyudmila Bazhenova¹³, Thomas John¹⁴, Marwan Fakih¹⁵, Sant P. Chawla¹⁶, Rafal Dziadziuszko^{17,18}, Takashi Seto¹⁹, Sebastian Heinzmann²⁰, Bethany Pitcher²¹, David Chen²², Timothy R. Wilson²², and Christian Rolfo²³



Best Individual Patient Responses


Time on Entrectinib Treatment

Demetri GD et al. *Clin Cancer Res* 2022;28(7):1302-12.

Best Intracranial Responses to Entrectinib in Patients with Solid Tumors with NTRK Fusions and Measurable CNS Metastases

Demetri GD et al. Clin Cancer Res 2022;28(7):1302-12.

Meet The Professor with Dr Liu

Introduction: Journal Club with Dr Liu

MODULE 1: Case Presentations

- Dr Patel: A 45-year-old woman with metastatic lung adenocarcinoma with a <u>ROS1 fusion</u>
- Dr Miller: A 77-year-old woman with metastatic lung adenocarcinoma with a <u>HER2 mutation</u>
- Dr Kumar: A 62-year-old-woman with <u>RET fusion</u>-driven lung adenocarcinoma
- Dr Kumar: A 70-year-old woman with metastatic adenocarcinoma of the lung with a MET exon 14 mutation
- Dr Rudolph: A 70-year-old woman with recurrent lung adenocarcinoma with a <u>MET T263M mutation</u>
- Dr Chen: A 79-year-old woman with metastatic lung adenocarcinoma with a MET exon 14 mutation
- Dr Sinha: A 78-year-old woman with <u>ALK fusion</u>-driven lung adenocarcinoma
- Dr Miller: A 67-year-old woman with metastatic lung adenocarcinoma and a KRAS G12C mutation
- Dr Niu: A 61-year-old woman with metastatic lung adenocarcinoma and an NRG1 fusion
- Dr Niu: A 52-year-old man with lung adenocarcinoma with both BRAF V600E and IDH1 mutations

A patient with a long smoking history presents with highly symptomatic metastatic nonsquamous NSCLC requiring immediate treatment, and chemotherapy is started while awaiting next-generation sequencing. PD-L1 TPS (tumor proportion score) is 90%. Would you recommend adding an anti-PD-1/PD-L1 antibody as well?

Survey of lung cancer clinical investigators; RTP lung cancer satellite symposium at ASCO 2022.

Case Presentation: A 45-year-old woman with metastatic lung adenocarcinoma with a <u>ROS1 fusion</u> who has a CR with crizotinb – PD-L1 40%

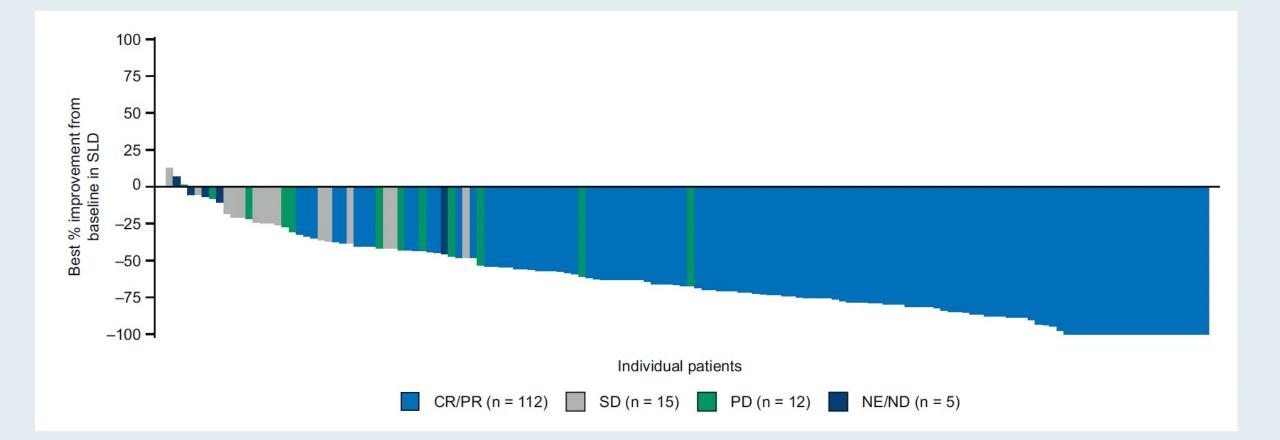
Dr Minesh Patel (Peachtree City, Georgia)

Regulatory and reimbursement issues aside, what would be your preferred first-line therapy for a 65-year-old asymptomatic patient with metastatic nonsquamous NSCLC (PD-L1 TPS 50%) and a <u>ROS1 rearrangement</u>?

Regulatory and reimbursement issues aside, would you generally offer targeted therapy as consolidation treatment to a patient with unresectable Stage IIIB NSCLC (PD-L1 TPS 50%) who has undergone definitive chemoradiation therapy and is found to have a <u>ROS1 rearrangement</u>?

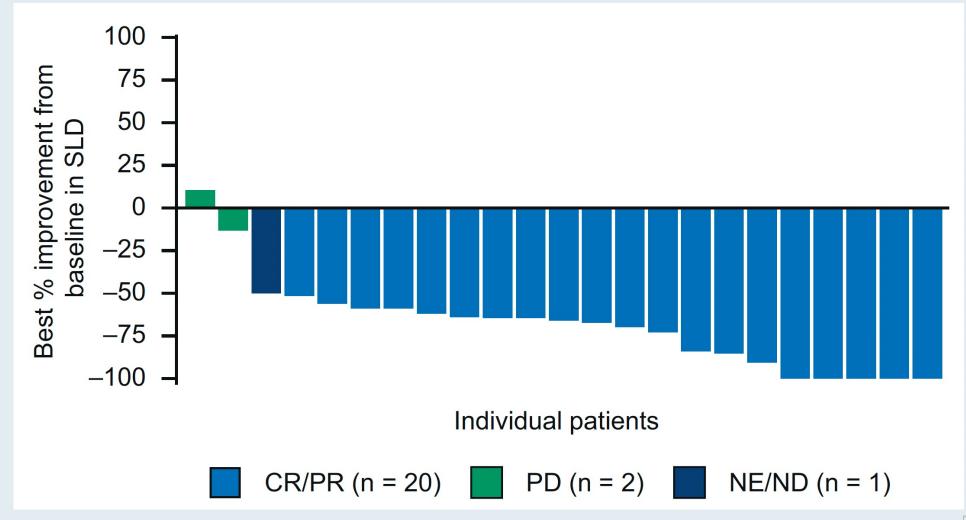
JTO Clin Res Rep 2022;3(6):100332.

ORIGINAL ARTICLE



Long-Term Efficacy and Safety of Entrectinib in ROS1 Fusion-Positive NSCLC

Alexander Drilon, MD,^a Chao-Hua Chiu, MD,^b Yun Fan, MD,^c Byoung Chul Cho, MD, PhD,^d Shun Lu, MD, PhD,^e Myung-Ju Ahn, MD, PhD,^f Matthew G. Krebs, MD, PhD,^g Stephen V. Liu, MD,^h Thomas John, MD,ⁱ Gregory A. Otterson, MD,^j Daniel S. W. Tan, MD,^k Tejas Patil, MD,^l Rafal Dziadziuszko, MD, PhD,^m Erminia Massarelli, MD, PhD,ⁿ Takashi Seto, MD,^o Robert C. Doebele, MD, PhD,^l Bethany Pitcher, MSc,^p Nino Kurtsikidze, MD,^q Sebastian Heinzmann, PhD,^r Salvatore Siena, MD^{r,s,*}


Best Overall Response with Entrectinib

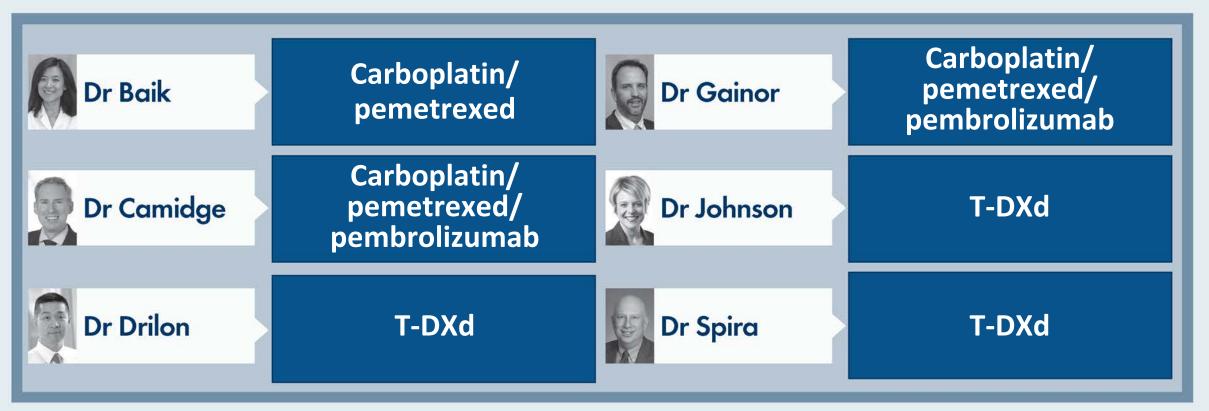
Drilon A et al. *JTO Clin Res Rep* 2022;3(6):100332.

Best Intracranial Responses with Entrectinib in Patients with BICR-Assessed Measurable CNS Metastases at Baseline

BICR = blinded independent central review

Drilon A et al. JTO Clin Res Rep 2022;3(6):100332.

Dr Adam Miller (Danvers, Massachusetts) Case Presentation: A 77-year-old woman with metastatic lung adenocarcinoma with a <u>HER2</u> <u>mutation</u> who has an excellent response to T-DXd but with toxicity (PD-L1 5%)

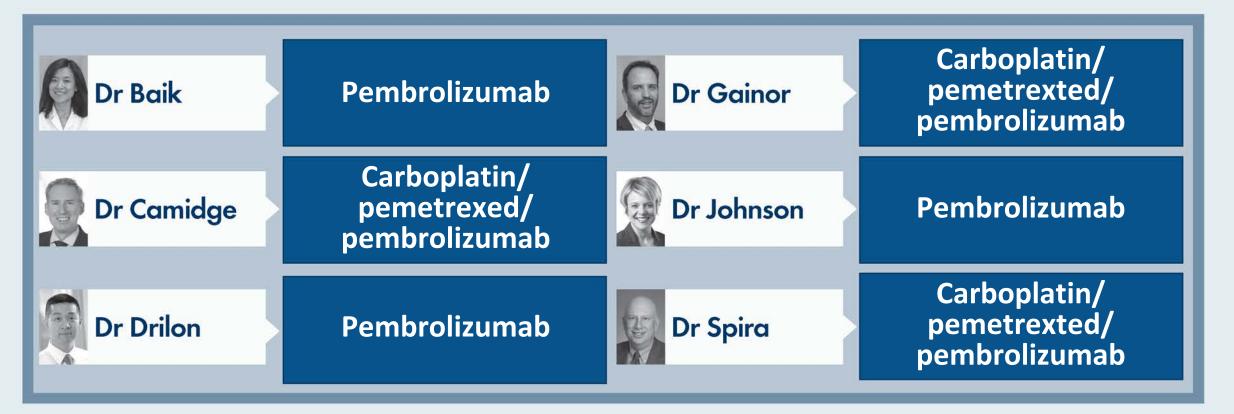


Perspectives on the use of T-DXd

Dr Minesh Patel (Peachtree City, Georgia)

Regulatory and reimbursement issues aside, what would be your preferred first-line therapy for a 65-year-old asymptomatic patient with metastatic nonsquamous NSCLC (PD-L1 TPS 50%) and a <u>HER2 mutation</u>?

T-DXd = trastuzumab deruxtecan



Regulatory and reimbursement issues aside, in which line of therapy would you generally offer <u>targeted treatment</u> to a patient with metastatic nonsquamous NSCLC (PD-L1 TPS 50%) and a <u>HER2 mutation</u>, and which targeted therapy would you generally offer?

Regulatory and reimbursement issues aside, what would be your preferred first-line therapy for a 65-year-old asymptomatic patient with metastatic nonsquamous NSCLC (PD-L1 TPS 50%) and <u>HER2 overexpression</u>?

Original Study

Clin Lung Cancer 2022;23(1):52-9.

The Effects of HER2 Alterations in EGFR Mutant Non-small Cell Lung Cancer

Misako Nagasaka, MD PhD,^{1,2} Vijendra Singh,¹ Yasmine Baca,³ Ammar Sukari,¹ Chul Kim,⁴ Hirva Mamdani,¹ Alexander I. Spira,⁵ Dipesh Uprety,¹ Gerold Bepler,¹ Edward S. Kim,⁶ Luis E. Raez,⁷ Sachin Gopalkrishna Pai,⁸ Chukwuemeka Ikpeazu,⁹ Matthew Oberley,³ Rebecca Feldman,³ Joanne Xiu,³ W. Michael Korn,³ Antoinette J. Wozniak,¹⁰ Hossein Borghaei,¹¹ Stephen V. Liu⁴

Incidence of ERBB Gene Fusions (EGFR, ERBB2, ERBB4) Across Tumor Types

Schubert L et al. ASCO 2021;Abstract 3091.

Case Presentation: A 62-year-old-woman with <u>RET fusion</u>driven lung adenocarcinoma who has a CR with selpercatinib after disease progression on local therapy

Dr KS Kumar (Trinity, Florida)

Regulatory and reimbursement issues aside, what would be your preferred first-line therapy for a 65-year-old asymptomatic patient with metastatic nonsquamous NSCLC (PD-L1 TPS 50%) and a <u>RET fusion</u>?

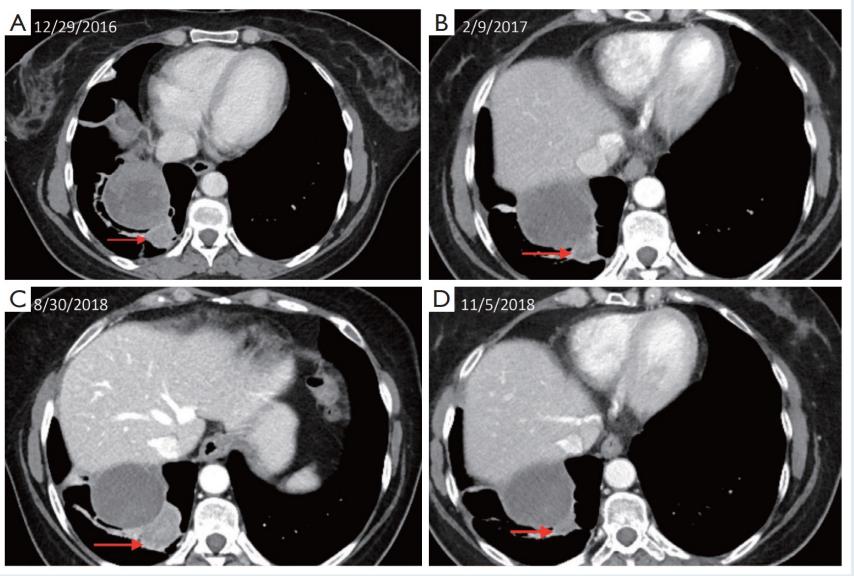
Regulatory and reimbursement issues aside, would you generally offer targeted therapy as consolidation treatment to a patient with unresectable Stage IIIB NSCLC (PD-L1 TPS 50%) who has undergone definitive chemoradiation therapy and is found to have a <u>RET fusion</u>?

Dr Baik	Yes, pralsetinib for 2 years	Dr Gainor	No
Dr Camidge	No	Dr Johnson	No
Dr Drilon	Yes, selpercatinib for 3 years	Dr Spira	No

Transl Lung Cancer Res 2022;11(1):111-6.

Case Report

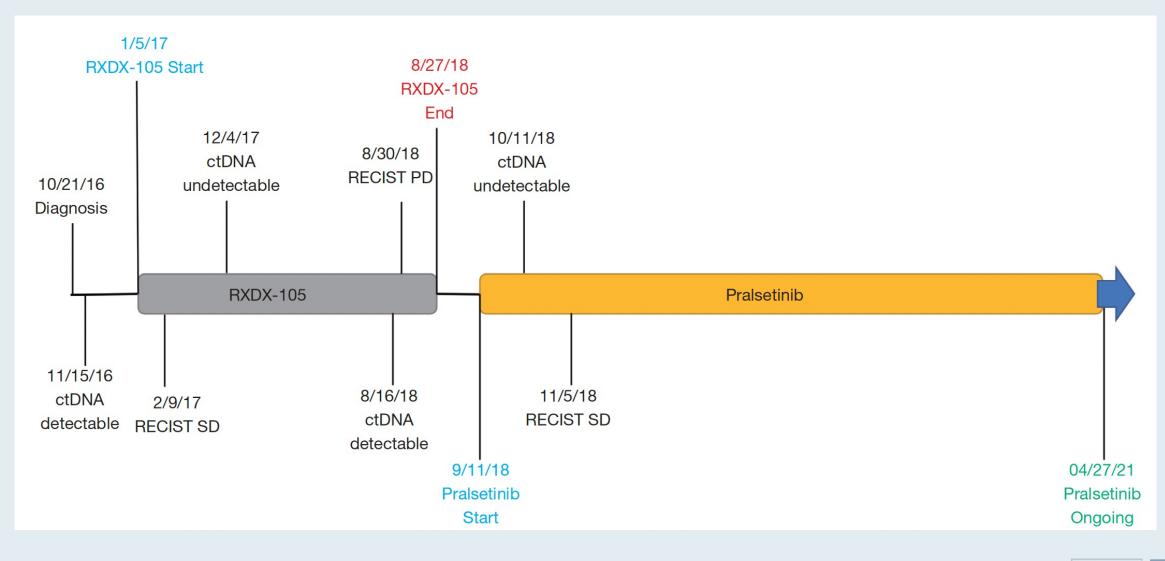
Use of on-therapy ctDNA monitoring in a patient with *KIF5B-RET* fusion positive advanced non-small cell lung cancer: a case report


Vincent Yeung¹, Chul Kim¹, Lesli A. Kiedrowski², Stephen V. Liu¹, Joshua E. Reuss¹^

CT Imaging Assessments During Treatment

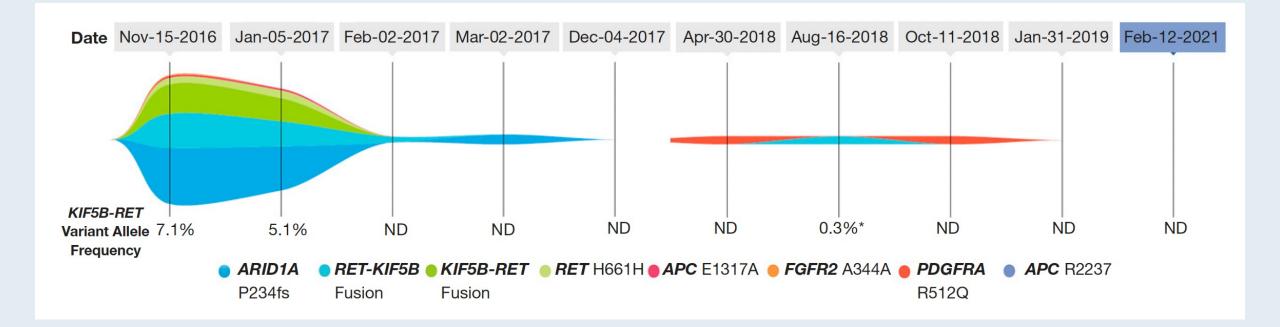
RLL RET-fusion+ lesion prior to treatment

At progression on RXDX-105



Follow-up: Stable disease with RXDX-105

Follow-up: Stable disease with pralsetinib


Timeline of Clinical Course

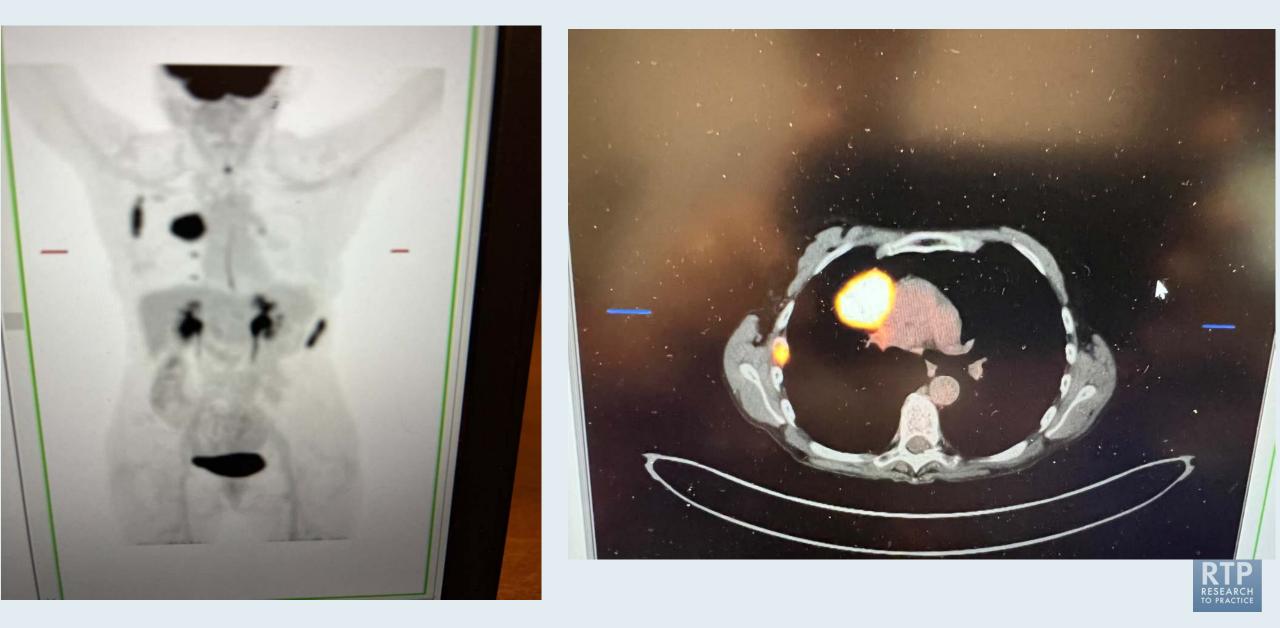
Yeung V et al. Transl Lung Cancer Res 2022;11(1):111-6.

ctDNA Surveillance

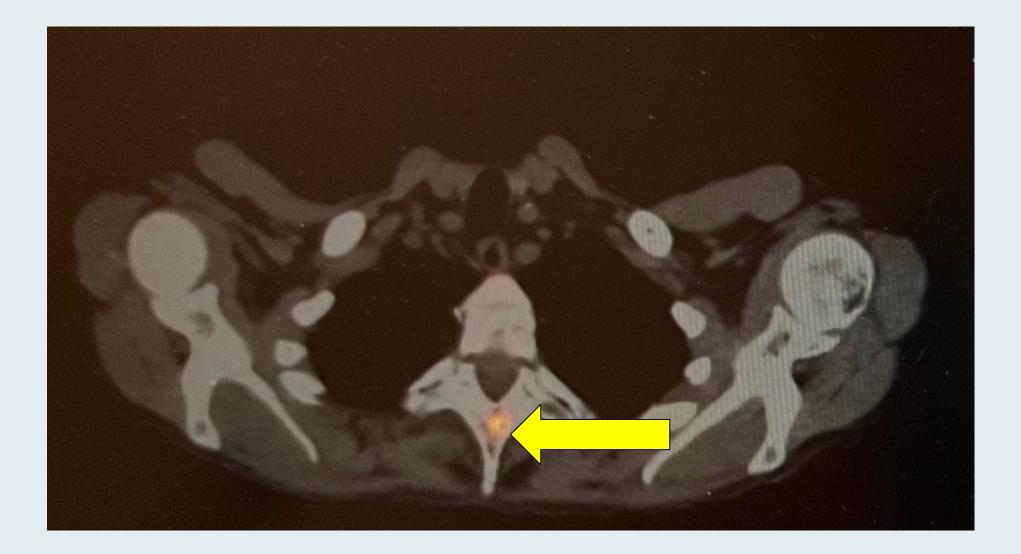
Yeung V et al. Transl Lung Cancer Res 2022;11(1):111-6.

Case Presentation: A 70-year-old woman with adenocarcinoma of the lung with brain, bone and lung metastases – PD-L1 30%, <u>MET exon 14 mutation</u>

Dr KS Kumar (Trinity, Florida)



Left Frontal Lobe Mass with Vasogenic Edema



Right Upper Lobe Mass with Bone Mets

Thoracic Vertebral Body Mets

Case Presentation: A 70-year-old woman with recurrent lung adenocarcinoma with a <u>MET T263M mutation</u> who is clinically stable on tepotinib

Dr Priya Rudolph (Athens, Georgia)

Case Presentation: A 79-year-old woman with metastatic lung adenocarcinoma with a <u>MET exon 14 mutation</u> who has toxicity with capmatinib

Dr Gigi Chen (Pleasant Hill, California)

Regulatory and reimbursement issues aside, what would be your preferred first-line therapy for a 65-year-old asymptomatic patient with metastatic nonsquamous NSCLC (PD-L1 TPS 50%) and a <u>MET exon 14 skipping mutation</u>?

* If the patient is a nonsmoker

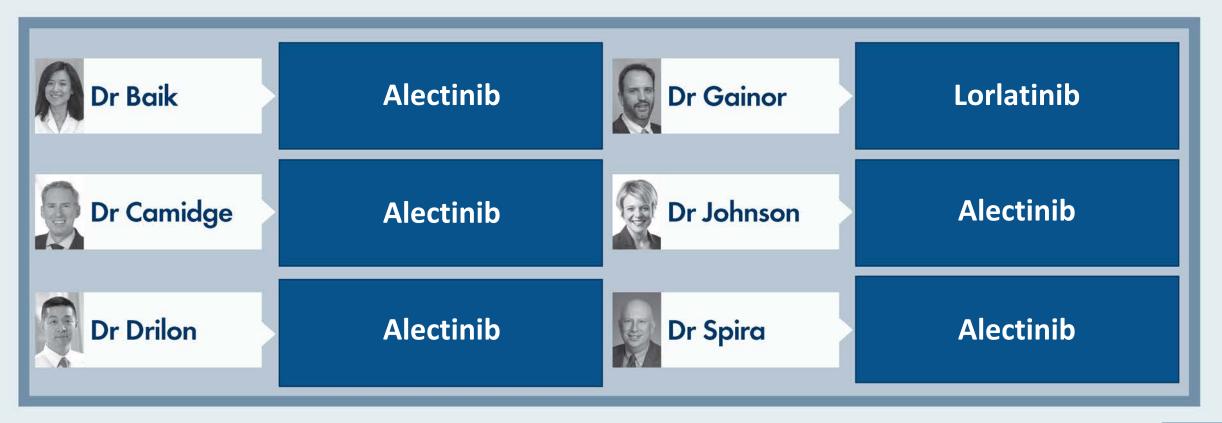
PRECISION MEDICINE

original reports

Landscape and Clonal Dominance of Co-occurring Genomic Alterations in Non–Small-Cell Lung Cancer Harboring *MET* Exon 14 Skipping

Xiuning Le, MD, PhD¹; Lingzhi Hong, MD, PhD^{1,2}; Chuck Hensel, PhD³; Rongrong Chen, PhD⁴; Haley Kemp, MPAS¹; Niamh Coleman, MBBCh, PhD⁵; Christine A. Ciunci, MD⁶; Stephen V. Liu, MD⁷; Marcelo V. Negrao, MD¹; Jennifer Yen, PhD³; Xuefeng Xia, MD, PhD⁴; Juergen Scheuenpflug, PhD⁸; Christopher Stroh, PhD⁸; Dilafruz Juraeva, PhD⁸; Anne Tsao, MD¹; David Hong, MD, PhD⁵; Victoria Raymond, MS³; Paul Paik, MD⁹; Jianjun Zhang, MD, PhD¹; and John V. Heymach, MD, PhD¹

JCO Precis Oncol 2021;5:PO.21.00135.


Case Presentation: A 78-year-old woman with inflammatory arthritis and <u>ALK fusion</u>-driven lung adenocarcinoma with slow progression on alectinib – PD-L1 15%

Dr Rajni Sinha (Atlanta, Georgia)

Regulatory and reimbursement issues aside, what would be your preferred first-line therapy for a 65-year-old asymptomatic patient with metastatic nonsquamous NSCLC (PD-L1 TPS 50%) and an <u>ALK rearrangement</u>?

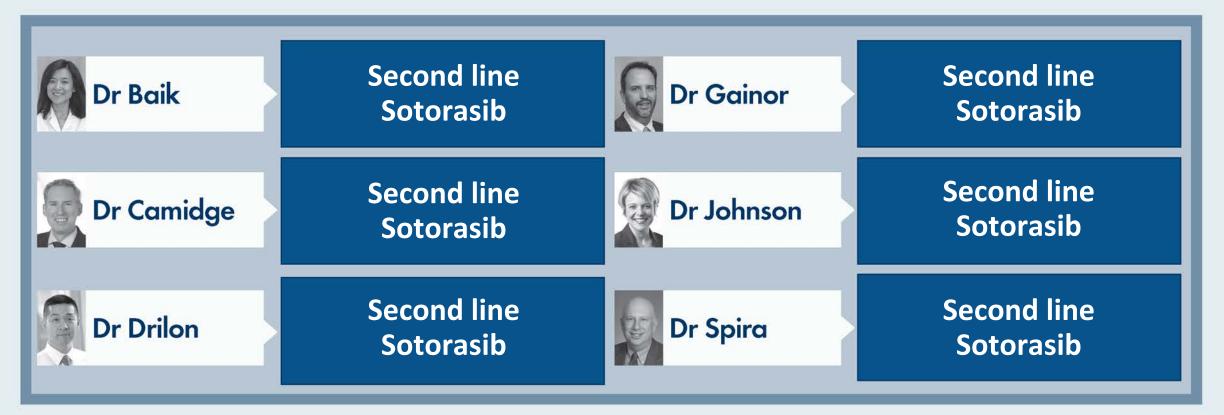
In general, what would be your preferred second-line therapy for a patient with metastatic nonsquamous NSCLC with an <u>ALK</u> <u>rearrangement</u> and a TPS of 50% who experiences disease progression on alectinib?

For a patient with metastatic nonsquamous NSCLC with an <u>ALK</u> <u>rearrangement</u> and a PD-L1 TPS of 50% who receives first-line alectinib with response followed by disease progression, would you recommend repeat mutation testing?

Dr Baik	Yes, tissue biopsy	Dr Gainor	Yes, liquid and tissue biopsy	
Dr Camidge	Yes, liquid and tissue biopsy	Dr Johnson	Yes, liquid biopsy	
Dr Drilon	Yes, liquid and tissue biopsy	Dr Spira	Yes, liquid and tissue biopsy	

Treatment Patterns and Outcomes in ALK or ROS1 Altered NSCLC: An ATOMIC Registry Study

Marmarelis ME et al. ASCO 2022;Abstract 9077.

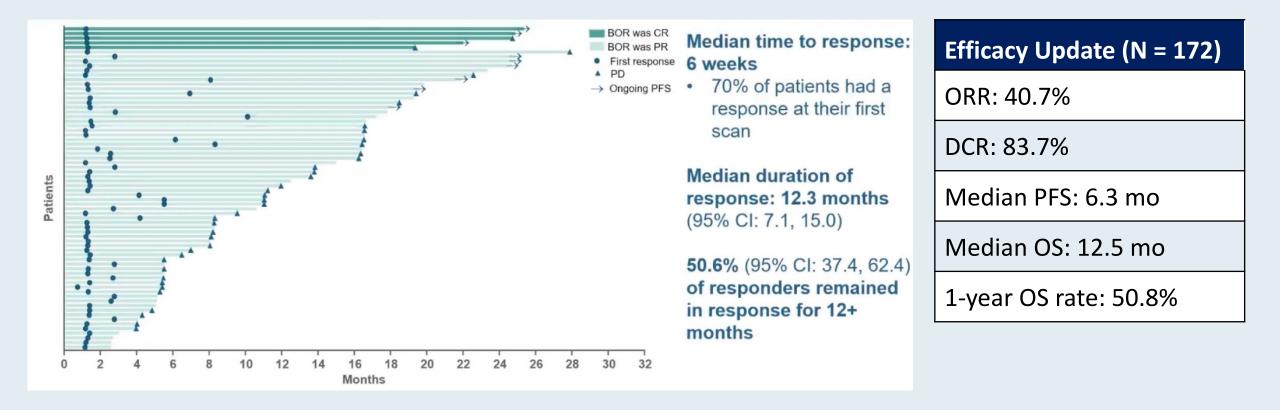

Case Presentation: A 67-year-old woman with metastatic lung adenocarcinoma and a <u>KRAS G12C mutation</u> – PD-L1 5% – who received sotorasib

Dr Adam Miller (Danvers, Massachusetts)

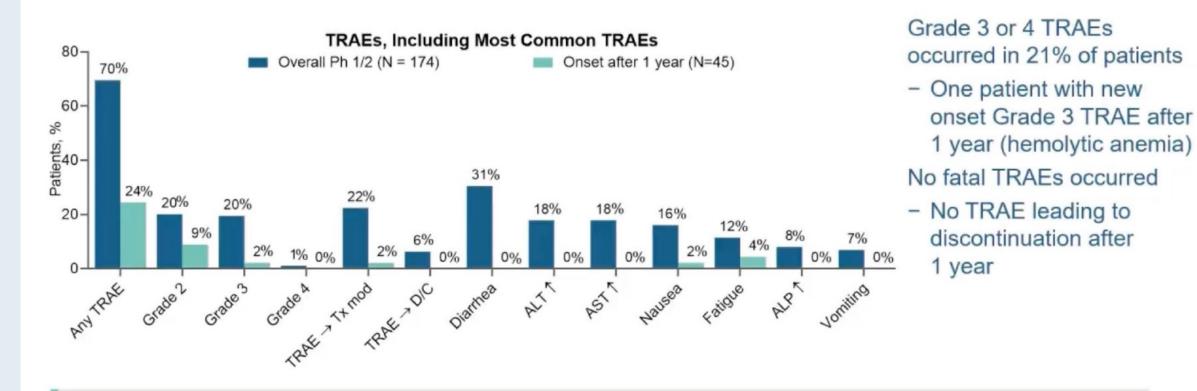
Regulatory and reimbursement issues aside, in which line of therapy would you generally offer <u>targeted treatment</u> to a patient with metastatic nonsquamous NSCLC (PD-L1 TPS 50%) and a <u>KRAS G12C mutation</u>, and which targeted therapy would you generally offer?

Long-term Outcomes With Sotorasib in Pre-treated KRAS p.G12C Mutated NSCLC: 2-year Analysis of CodeBreaK 100

Presenter: Grace K. Dy¹, MD ¹Roswell Park Comprehensive Cancer Center


On behalf of: Ramaswamy Govindan², Vamsidhar Velcheti³, Gerald S. Falchook⁴, Antoine Italiano⁵, Juergen Wolf⁶, Adrian G. Sacher⁷, Toshiaki Takahashi⁸, Suresh S. Ramalingam⁹, Christophe Dooms¹⁰, Dong-Wan Kim¹¹, Alfredo Addeo¹², Jayesh Desai¹³, Martin Schuler¹⁴, Pascale Tomasini¹⁵, Qui Tran¹⁶, Simon Jones¹⁶, Agnes Ang¹⁶, Abraham Anderson¹⁶, Antreas Hindoyan¹⁶, David S. Hong¹⁷, Bob T. Li¹⁸

²Washington University in St Louis, ³New York University Langone, ⁴Sarah Cannon Research Institute, ⁵Institut Bergonie, ⁶Universitatsklinikum Koln, ⁷Princess Margaret Cancer Centre, ⁸Shizuoka Cancer Center ⁹Winship Cancer Institute, ¹⁰Universitair Ziekenhuis Leuven ¹¹Seoul National University Hospital, ¹²Hopitaux Universitaires de Geneve, ¹³Peter MacCallum Cancer Centre, ¹⁴Universitätsklinikum Essen, ¹⁵Hopital de la Timone, ¹⁶Amgen Inc., ¹⁷MD Anderson Cancer Center, ¹⁸Memorial Sloan Kettering Cancer Center



CodeBreaK 100: 2-Year Update with Sotorasib for Previously Treated Metastatic NSCLC with KRAS p.G12C Mutation

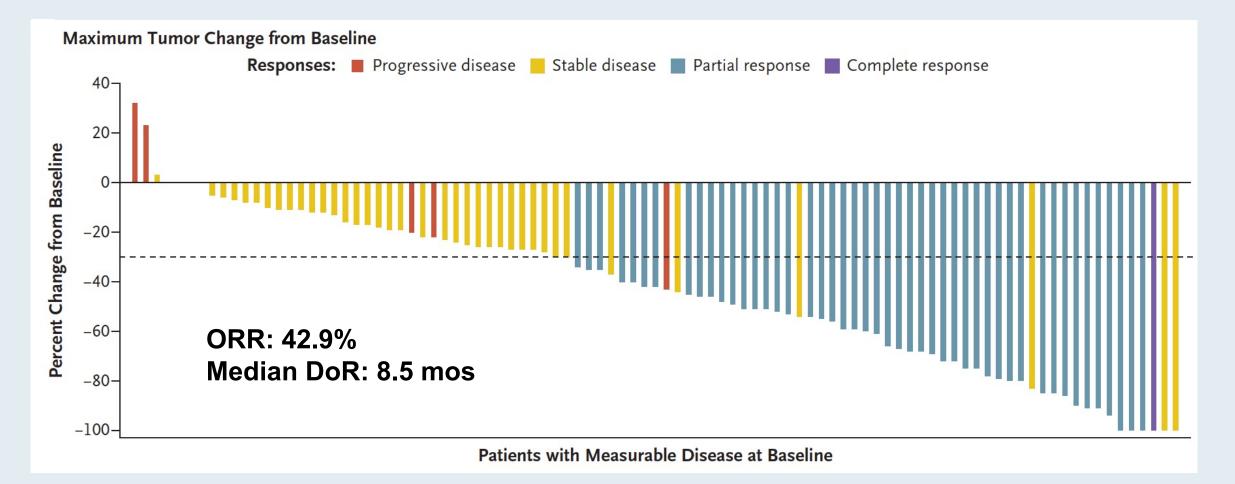
CodeBreaK 100: Treatment-Related Adverse Events

Well-tolerated in the long-term: late-onset TRAEs were mild and manageable

Dy GK et al. AACR 2022; Abstract CT008.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE


Adagrasib in Non–Small-Cell Lung Cancer Harboring a *KRAS*^{G12C} Mutation

Pasi A. Jänne, M.D., Ph.D., Gregory J. Riely, M.D., Ph.D., Shirish M. Gadgeel, M.D., Rebecca S. Heist, M.D., M.P.H.,
Sai-Hong I. Ou, M.D., Ph.D., Jose M. Pacheco, M.D., Melissa L. Johnson, M.D., Joshua K. Sabari, M.D., Konstantinos Leventakos, M.D., Ph.D.,
Edwin Yau, M.D., Ph.D., Lyudmila Bazhenova, M.D., Marcelo V. Negrao, M.D.,
Nathan A. Pennell, M.D., Ph.D., Jun Zhang, M.D., Ph.D., Kenna Anderes, Ph.D., Hirak Der-Torossian, M.D., Thian Kheoh, Ph.D., Karen Velastegui, B.Sc.,
Xiaohong Yan, Ph.D., James G. Christensen, Ph.D., Richard C. Chao, M.D., and Alexander I. Spira, M.D., Ph.D.

N Engl J Med 2022;387(2):120-31.

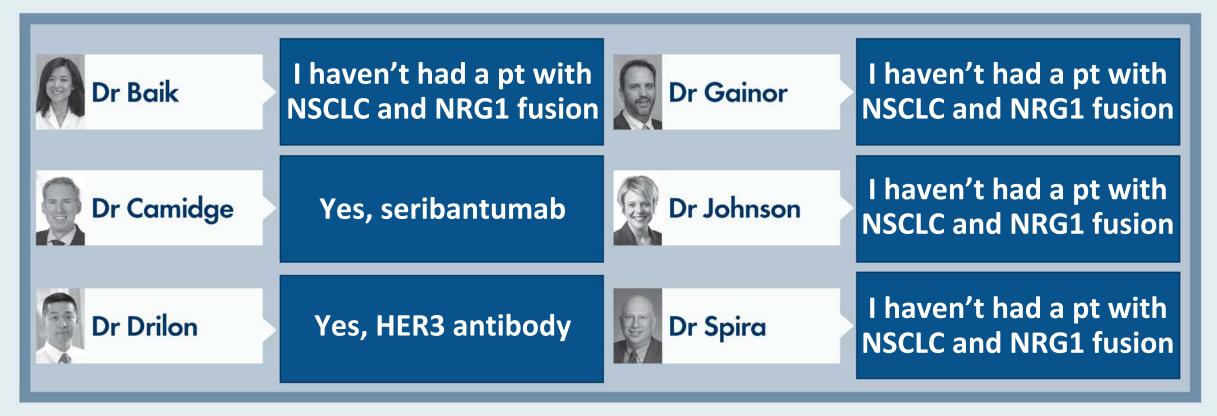
KRYSTAL-1: Response in a Phase II Study of Adagrasib for Advanced or Metastatic NSCLC Harboring a KRAS G12C Mutation

KRYSTAL-1: Select Treatment-Related Adverse Events with Adagrasib for Advanced or Metastatic NSCLC Harboring a KRAS G12C Mutation

Adverse event (N = 116)	Any grade	Grade ≥3	
Diarrhea	70.7%	0.9%	
Nausea	69.8%	4.3%	
Fatigue	59.5%	6.9%	
Vomiting	56.9%	0.9%	
Blood creatinine increased	34.5%	0.9%	
ALT increased	28.4%	5.2%	
AST increased	26.7%	5.2%	

Case Presentation: A 61-year-old woman with metastatic lung adenocarcinoma and an activating <u>NRG1 fusion</u> who is unable to tolerate afatinib

Dr Jason Niu (Gilbert, Arizona)


Regulatory and reimbursement issues aside, what would be your preferred first-line therapy for a 65-year-old asymptomatic patient with metastatic NSCLC (PD-L1 TPS 50%) and an NRG1 fusion?

Dr Baik	Carboplatin/ pemetrexed/ pembrolizumab*	Dr Gainor	Carboplatin/ pemetrexed/ pembrolizumab
Dr Camidge	Carboplatin/ pemetrexed/ pembrolizumab	Dr Johnson	Pembrolizumab
Dr Drilon	Carboplatin/ pemetrexed/ pembrolizumab	Dr Spira	Carboplatin/ pemetrexed/ pembrolizumab

* If patient does not have smoking history; pembrolizumab alone if patient has a smoking history

Have any of your patients with advanced NSCLC and an NRG1 fusion responded to targeted therapy?

Lung Cancer 158 (2021) 25-28

Contents lists available at ScienceDirect

Lung Cancer

journal homepage: www.elsevier.com/locate/lungcan

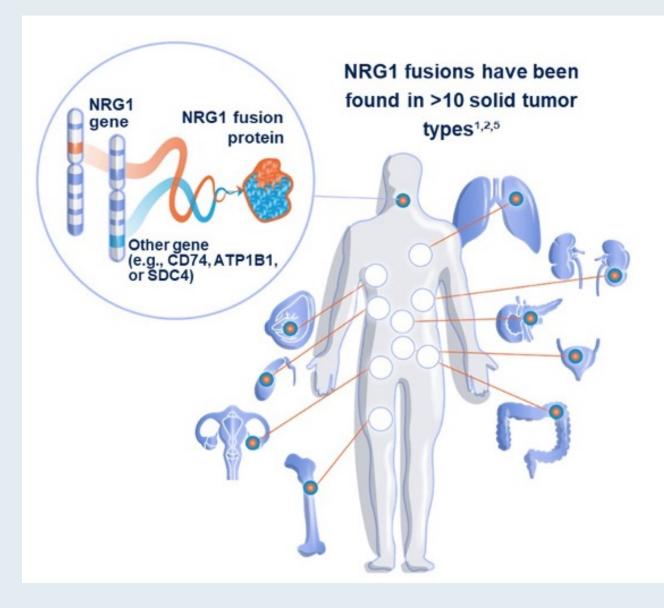
NRG1 fusions: Biology to therapy

Stephen V. Liu*

CRESTONE: Initial Efficacy and Safety of Seribantumab in Solid Tumors Harboring NRG1 Fusions

Daniel R. Carrizosa,¹ Mark E. Burkard,² Yasir Y. Elamin,³ Jayesh Desai,⁴ Shirish M. Gadgeel,⁵ Jessica J. Lin,⁶ Saiama N. Waqar,⁷ David R. Spigel,⁸ Young Kwang Chae,⁹ Parneet K. Cheema,¹⁰ Eric B. Haura,¹¹ Stephen V. Liu,¹² Danny Nguyen,¹³ Karen L. Reckamp,¹⁴ Frank Yung-Chin Tsai,¹⁵ Valerie M. Jansen,¹⁶ Alexander Drilon,¹⁷ Sai-Hong Ignatius Ou,¹⁸ D Ross Camidge,¹⁹ Tejas Patil¹⁹

¹Levine Cancer Institute/Atrium Health, Charlotte, NC; ²University of Wisconsin Carbone Cancer Center, Madison, WI; ³The University of Texas MD Anderson Cancer Center, Houston, TX; ⁴Peter MacCallum Cancer Centre, Melbourne, Australia; ⁶Henry Ford Cancer Institute/Henry Ford Health System, Detroit, MI; ⁶Massachusetts General Hospital, Boston, MA; ⁷Washington University School of Medicine, St. Louis, MO; ⁸Sarah Cannon Research Institute, Nashville, TN; ⁹Northwestern University, Chicago, IL; ¹⁰William Osler Health System, Calgary, Canada; ¹¹H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; ¹²Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC; ¹³City of Hope, Huntington Beach and Irvine, CA; ¹⁴Cedars-Sinai Medical Center, Los Angeles, CA; ¹⁵HonorHealth, Scottsdale, AZ; ¹⁶Elevation Oncology, Inc. New York, NY; ¹⁷Memorial Sloan Kettering Cancer Center, New York, NY; ¹⁹Chao Family Comprehensive Cancer Center, University of CA-Irvine, Orange, CA; ¹⁹University of Colorado Cancer Center, Aurora, CO


PRESENTED BY: Daniel R. Carrizosa, MD

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

NRG1 Gene Fusions in Solid Tumors

CRESTONE: Safety Summary of Seribantumab Monotherapy

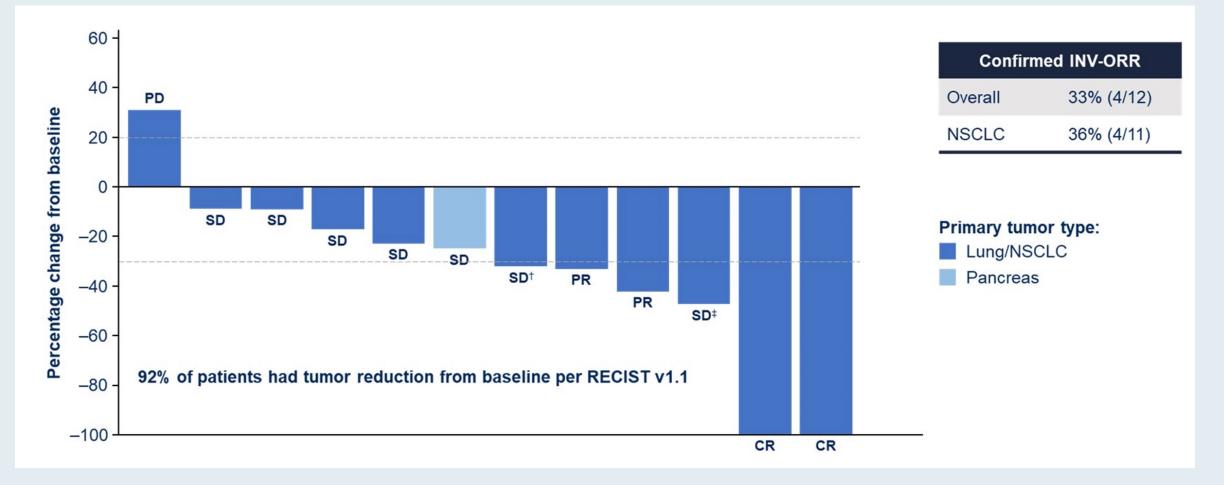
Adverse events reported in ≥15% of patients

	т		emergent A 5); n (%)	Es			-related AE 5); n (%)	s
Preferred Term	Any Grade	Grade 1	Grade 2	Grade≥ 3 [†]	Any Grade	Grade 1	Grade 2	Grade≥ 3 [‡]
Patients with ≥1 AE	35 (100)	8 (23)	10 (29)	17 (49)	30 (86)	17 (49)	11 (31)	2 (6)
Diarrhea	17 (49)	11 (31)	4 (11)	2 (6)	14 (40)	10 (29)	3 (9)	1 (3)
Fatigue	14 (40)	7 (20)	7 (20)	0	10 (29)	5 (14)	5 (14)	0
Rash§	11 (31)	9 (26)	2 (6)	0	9 (26)	7 (20)	2 (6)	0
Hypokalemia	10 (29)	6 (17)	3 (9)	1 (3)	3 (9)	3 (9)	0	0
Nausea	10 (29)	7 (20)	1 (3)	2 (6)	6 (17)	5 (14)	1 (3)	0
Abdominal pain [®]	8 (23)	4 (11)	2 (6)	2 (6)	3 (9)	1 (3)	2 (6)	0
Decreased appetite	8 (23)	4 (11)	3 (9)	0	3 (9)	1 (3)	2 (6)	0
Headache	8 (23)	7 (20)	1 (3)	0	1 (3)	1 (3)	0	0
Hypomagnesemia	8 (23)	6 (17)	1 (3)	0	2 (6)	2 (6)	0	0
Cough	7 (20)	5 (14)	2 (6)	0	1 (3)	1 (3)	0	0
Anemia ^A	6 (17)	4 (11)	1 (3)	1 (3)	1 (3)	1 (3)	0	0
Dysuria	6 (17)	6 (17)	0	0	0	0	0	0

- Safety profile of 35 patients with tumors harboring NRG1 fusions who received at least 1 dose of seribantumab in the CRESTONE study
 - One DLT (Grade 2 fatigue resulting in dose reduction by the Investigator in the safety run-in)
 - 27 (77%) patients received the optimized RP2D of seribantumab 3g QW
- Majority (80%) of TRAEs were Grade 1 or 2
- Two (6%) patients received dose reductions for AEs per the Investigator
 - One patient for Grade 1 ALT increase
 - One patient for Grade 2 fatigue
- No patients discontinued seribantumab for AEs

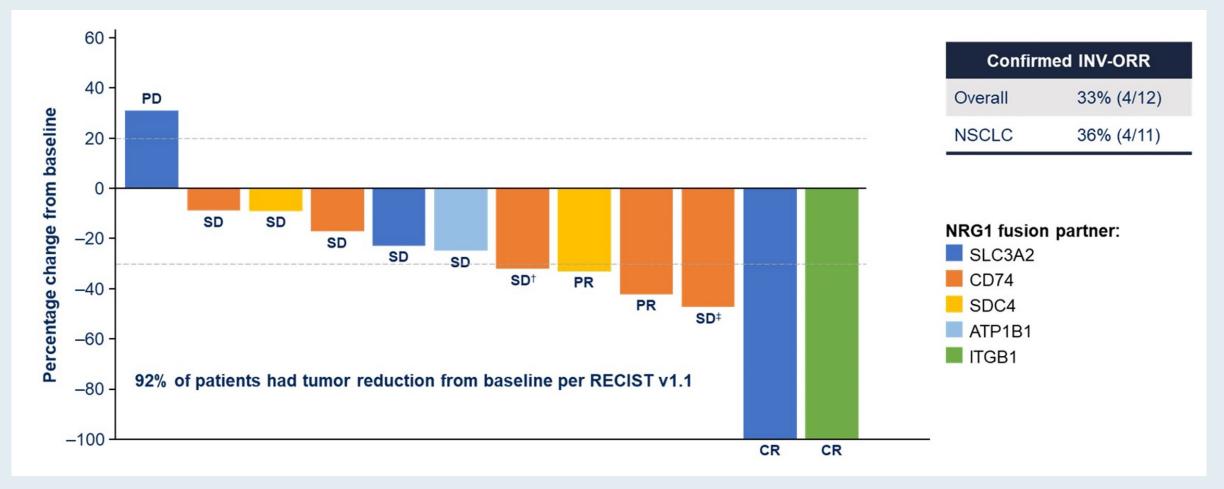
[†]2 Grade 5 TEAEs (unrelated to seribantumab) of lung infection (n=1 patient) and malignant neoplasm progression (n=1 patient); [‡]No Grade 4 or 5 TRAEs reported; 2 Grade 3 TRAEs of diarrhea (n=1 patient) and vomiting (n=1 patient); [§]Includes preferred term (PT) of rash and maculo-papular rash; ^{II}Includes PT of abdominal pain, abdominal pain upper, abdominal distention; ^AIncludes PT of anemia and iron deficiency anemia.

AE, adverse event; ALT, alanine transaminase; DLT, dose-limiting toxicity; TRAE, treatment-related adverse event Visit cut-off: 18 April 2022

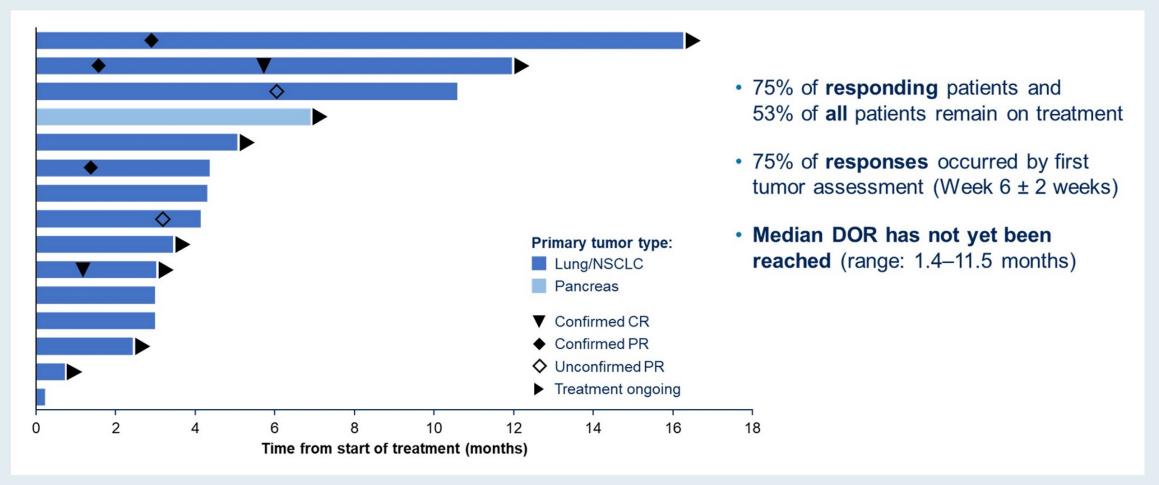


CRESTONE: Clinical Activity of Seribantumab in Tumors Harboring NRG1 Fusions

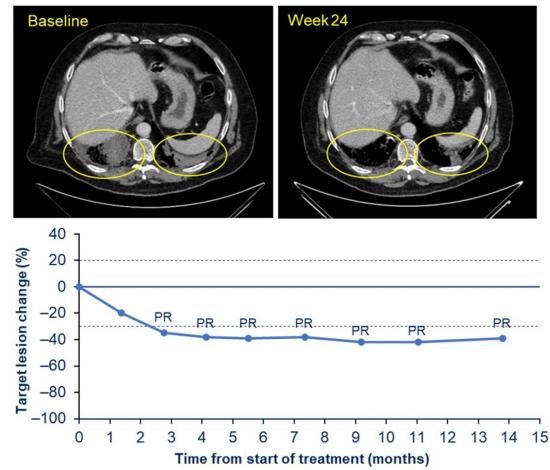
Investigator-assessed (INV) Response, %	Cohort 1 Primary Efficacy Population ⁺ (n=12 [‡])	Cohort 1 - NSCLC Primary Efficacy Population ⁺ (n=11 [‡])
Objective response rate; n (%)	4 (33)	4 (36)
Complete response; n (%)	2 (17)	2 (18)
Partial response; n (%)	2 (17)	2 (18)
Stable disease; n (%)	7 (58)	6 (55)
Progressive disease; n (%)	1 (8)	1 (9)
Disease control rate; n (%)	11 (92)	10 (91)



CRESTONE: Efficacy of Seribantumab for Tumors Harboring NRG1 Fusions



CRESTONE: Efficacy of Seribantumab for Tumors Harboring NRG1 Fusions Regardless of Fusion Partner


CRESTONE: Duration of Seribantumab Therapy for Patients with NRG1 Fusions

DoR = duration of response; CR = complete response; PR = partial response

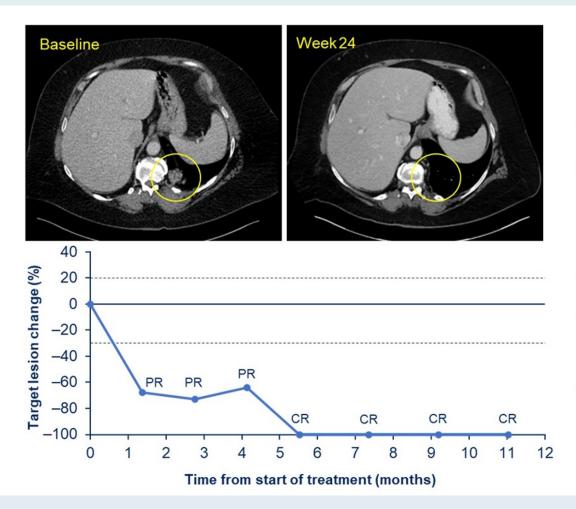
CRESTONE: A Durable Response in a Patient with CD74-NRG1 NSCLC

NSCLC = non-small cell lung cancer

- PR (35% tumor reduction) at Week
 - PR (35% tumor reduction) at Week 12; maximum tumor reduction of 42%

investigational therapy (IO and targeted agent)

70-year-old male with NSCLC adenocarcinoma


Three prior lines including platinum-based

chemotherapy, immunotherapy (IO), and

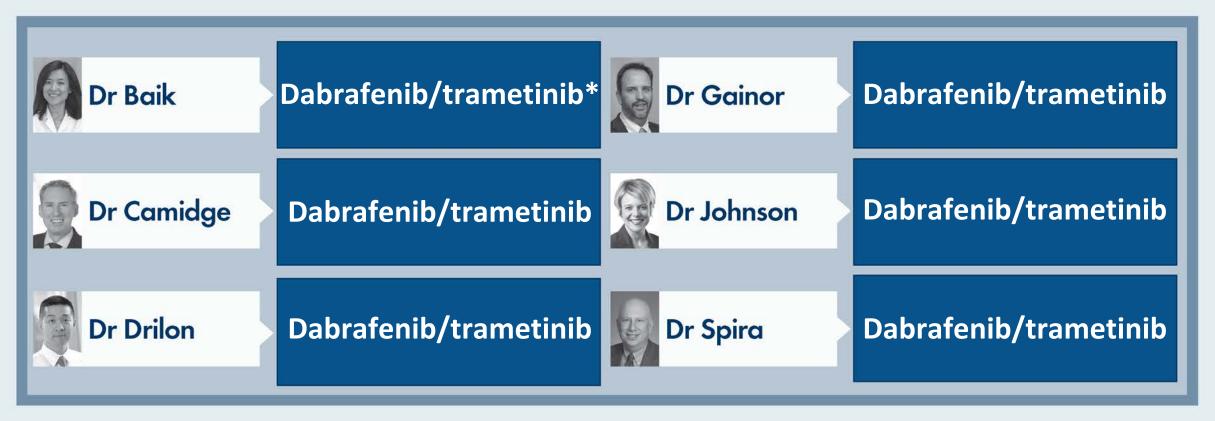
- Duration of response 11.5 months (ongoing)
- Seribantumab treatment ongoing for 16.0 months
 - Initiated seribantumab treatment under safety run-in
 - Transitioned to seribantumab 3g QW after induction/consolidation

CRESTONE: A Deep and Durable Response in a Patient with ITGB1-NRG1 NSCLC

- 60-year-old female with NSCLC adenocarcinoma
- Three prior lines including platinum-based chemotherapy and immunotherapy
- PR (68% tumor reduction) at Week 6
- Deepening of response to CR at Week 24
- Duration of response 9.7 months
 - CR ongoing for 5.6 months
- Treatment ongoing for 11.7 months

Efficacy of Afatinib in Patients with Advanced/Metastatic Solid Tumors Harboring NRG1 Gene Fusions: A Novel, Prospective Real-World Outcomes Study Based on Single-Patient Protocol Data

Liu SV et al. ASCO 2022;Abstract TPS3180.


Case Presentation: A 52-year-old man with lung adenocarcinoma with both <u>BRAF V600E and IDH1 mutations</u> and a mixed response to BRAFi/MEKi therapy – PD-L1 95%

Dr Jason Niu (Gilbert, Arizona)

Regulatory and reimbursement issues aside, what would be your preferred first-line therapy for a 65-year-old asymptomatic patient with metastatic nonsquamous NSCLC (PD-L1 TPS 50%) and a <u>BRAF V600E mutation</u>?

* If the patient is a nonsmoker or if the patient has a high disease burden and needs a fast tumor response

Regulatory and reimbursement issues aside, would you generally offer targeted therapy as consolidation treatment to a patient with unresectable Stage IIIB NSCLC (PD-L1 TPS 50%) who has undergone definitive chemoradiation therapy and is found to have a <u>BRAF V600E mutation</u>?

Meet The Professor with Dr Liu

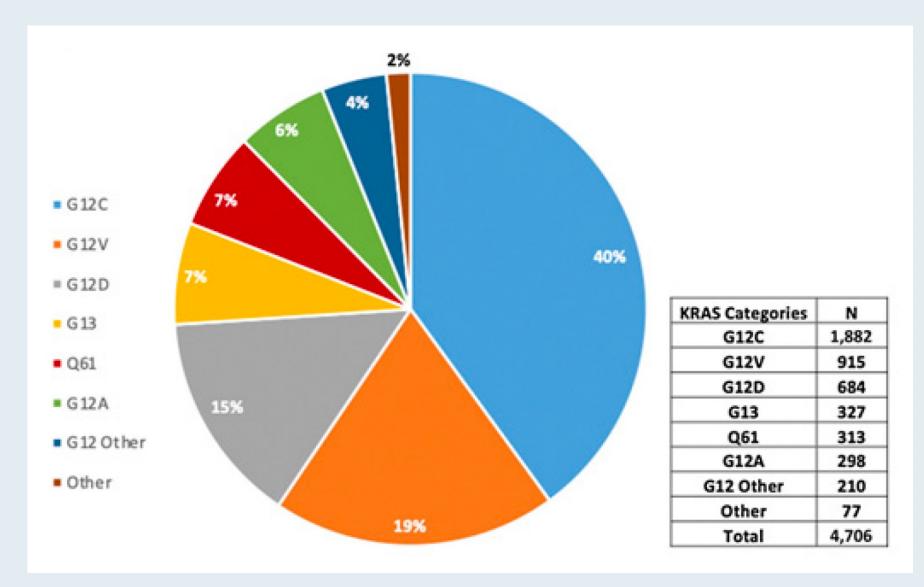
Introduction: Journal Club with Dr Liu – Part 1

MODULE 1: Case Presentations

MODULE 2: Journal Club with Dr Liu – Part 2

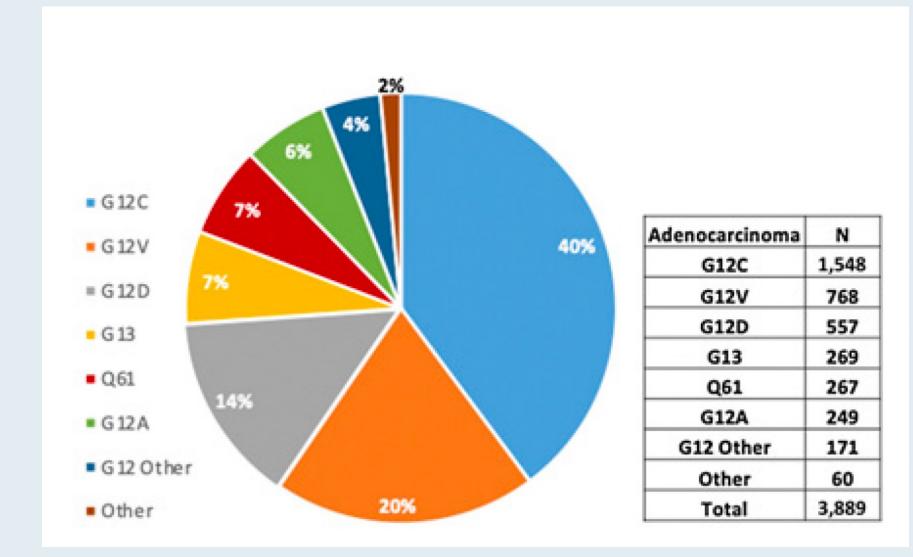
MODULE 3: Appendix of Key Publications

Mol Cancer Ther 2021;20(12):2577-84.

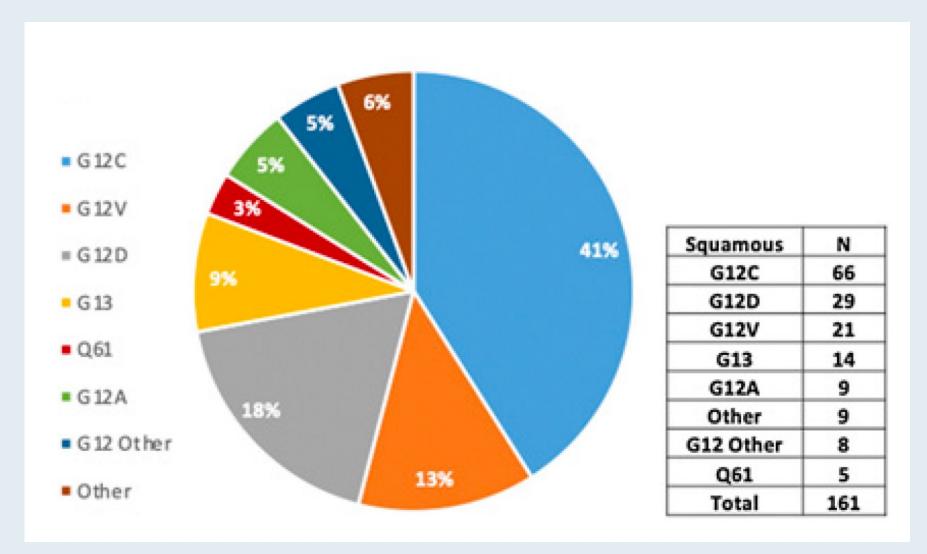

MOLECULAR CANCER THERAPEUTICS | COMPANION DIAGNOSTIC, PHARMACOGENOMIC, AND CANCER BIOMARKERS

Characterization of KRAS Mutation Subtypes in Non-small Cell Lung Cancer

Julia Judd¹, Nagla Abdel Karim², Hina Khan³, Abdul Rafeh Naqash^{4,5}, Yasmine Baca⁶, Joanne Xiu⁶, Ari M. VanderWalde⁷, Hirva Mamdani⁸, Luis E. Raez⁹, Misako Nagasaka⁸, Sachin Gopalkrishna Pai¹⁰, Mark A. Socinski¹¹, Jorge J. Nieva¹², Chul Kim¹³, Antoinette J. Wozniak¹⁴, Chukwuemeka Ikpeazu¹⁵, Gilberto de Lima Lopes Jr¹⁵, Alexander I. Spira¹⁶, W. Michael Korn⁶, Edward S. Kim¹⁷, Stephen V. Liu¹³, and Hossein Borghaei¹


KRAS Mutational Distribution in All NSCLC

Judd J et al. *Mol Cancer Ther* 2021;20(12):2577-84.


KRAS Mutational Distribution in Adenocarcinoma NSCLC

Judd J et al. *Mol Cancer Ther* 2021;20(12):2577-84.

KRAS Mutational Distribution in Squamous Cell NSCLC

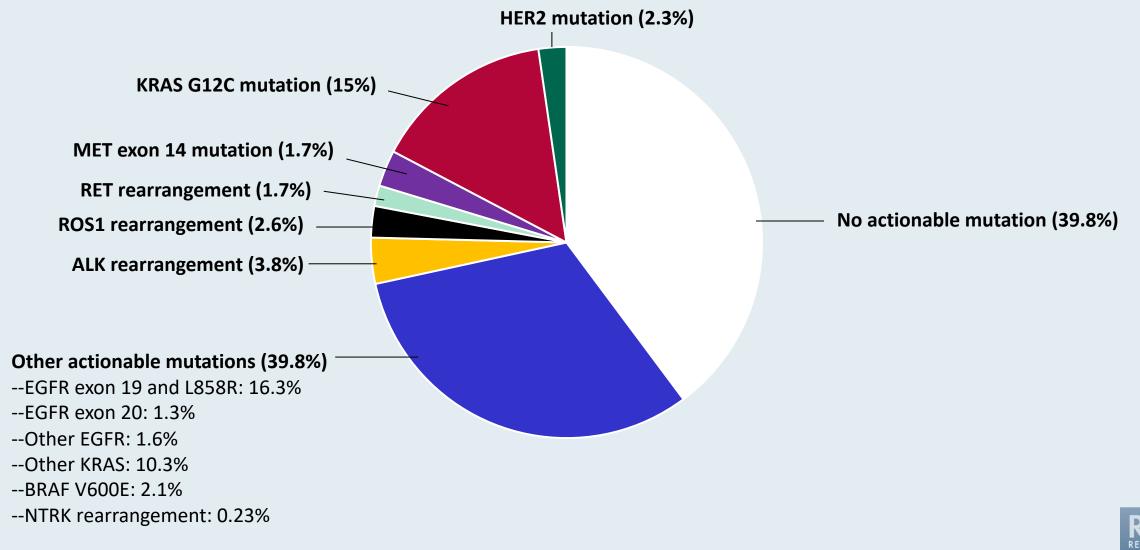
Judd J et al. *Mol Cancer Ther* 2021;20(12):2577-84.

A First-in-Human Study of AO-176, a Highly Differentiated Anti-CD47 Antibody, in Patients with Advanced Solid Tumors

Burris HA et al. ASCO 2021;Abstract 2516.

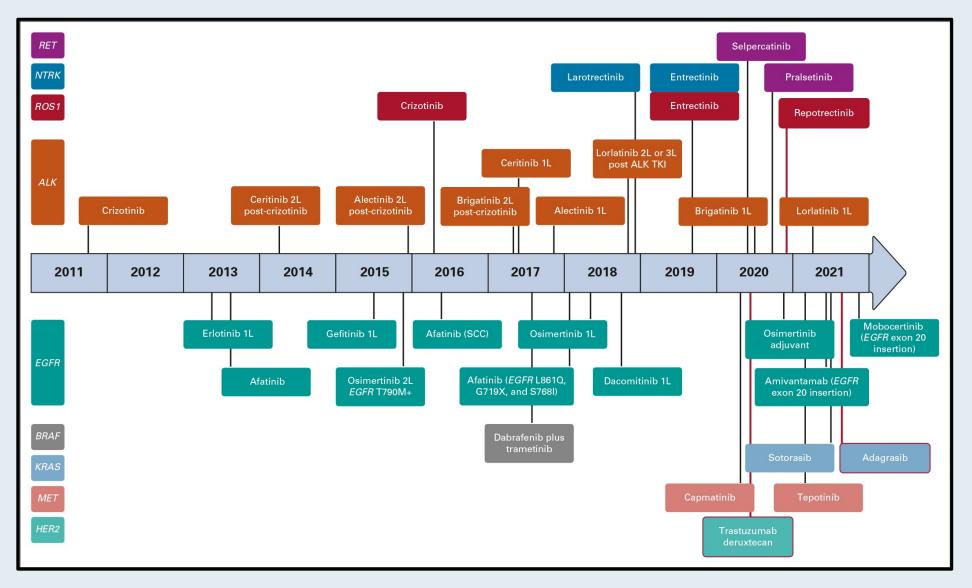
Meet The Professor with Dr Liu

Introduction: Journal Club with Dr Liu – Part 1


MODULE 1: Case Presentations

MODULE 2: Journal Club with Dr Liu – Part 2

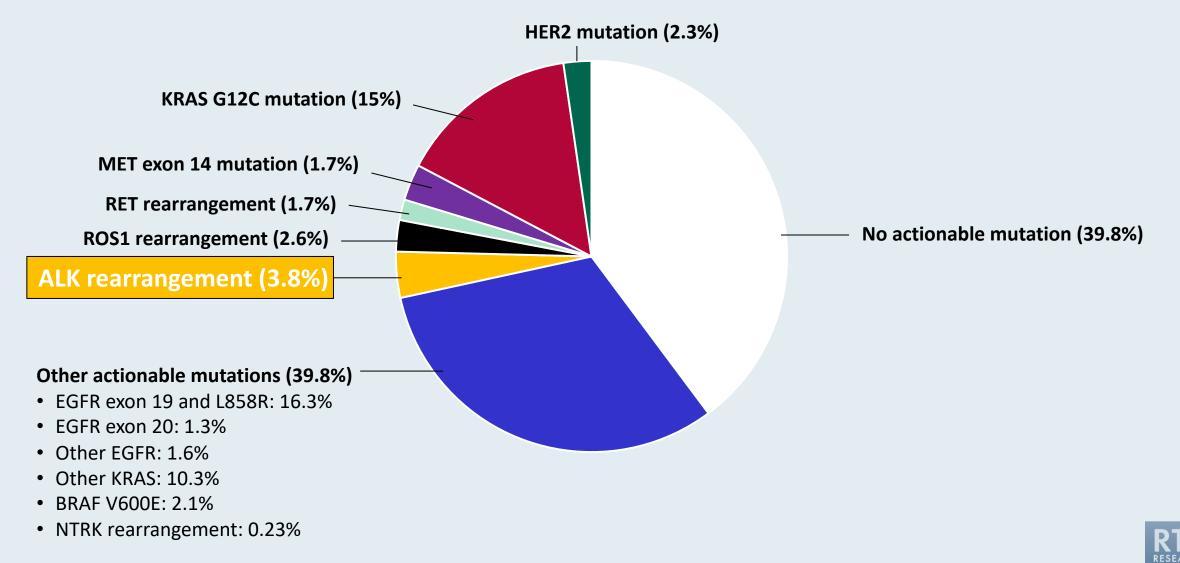
MODULE 3: Appendix of Key Publications



Frequency of Targetable Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung

Derived from Tan AC et al. J Clin Oncol 2022;40(6):611-25.

Timeline of Select FDA-Approved Targeted Therapies for Oncogene-Driven NSCLC



Tan AC et al. J Clin Oncol 2022;40(6):611-25.

Note: Red line indicates breakthrough therapy designation

Frequency of Targetable Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung

Derived from Tan AC et al. J Clin Oncol 2022;40(6):611-25.

Key Randomized Trials in Treatment-Naïve Advanced ALK-Rearranged NSCLC

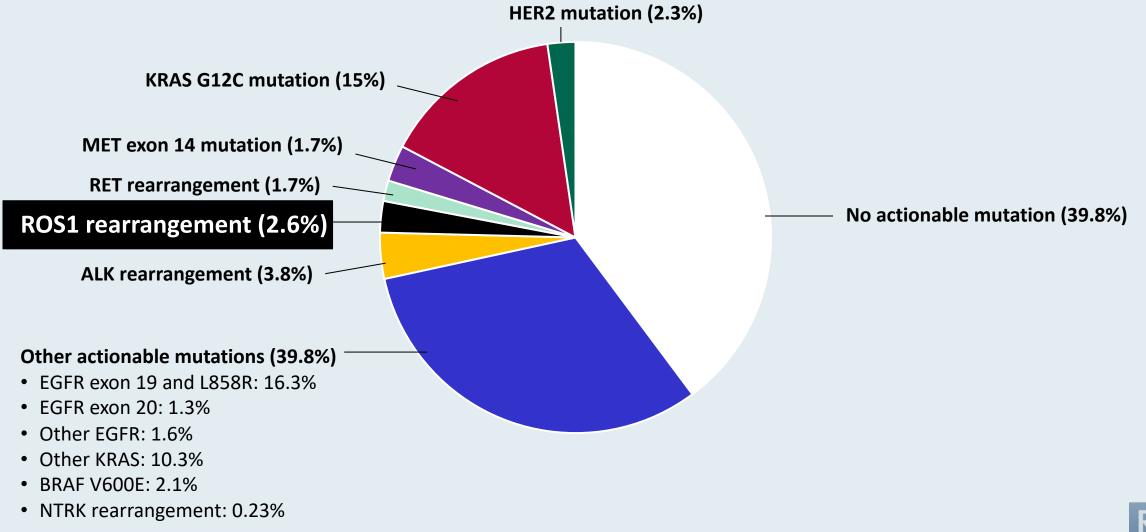
Study	Intervention	Comparator	ORR	CNS ORR
Study	milervention	Comparator	OKK	
PROFILE 1014	Crizotinib	Platinum/pemetrexed	74% vs 45%	—
PROFILE 1029	Crizotinib	Platinum/pemetrexed	88% vs 46%	—
ASCEND-4	Ceritinib	Platinum/pemetrexed 73% vs 27%		73% vs 27%
ALEX	Alectinib	Crizotinib	83% vs 76%	81% vs 50%
J-ALEX	Alectinib	Crizotinib	92% vs 79%	_
ALESIA	Alectinib	Crizotinib	91% vs 77%	—
ALTA-1L	Brigatinib	Crizotinib	71% vs 60%	78% vs 26%
CROWN	Lorlatinib	Crizotinib 76% vs 58%		82% vs 23%
eXalt3	Ensartinib	Crizotinib 75% vs 67%		64% vs 21%

Tan AC et al. *J Clin Oncol* 2022;40(6):611-25; Soria JC et al. *Lancet* 2017;389(10072):917-29; Peters S et al. *N Engl J Med* 2017;377(9):829-38; Camidge DR et al. *J Thorac Oncol* 2021;16(12):2091-108; Shaw AT et al. *N Engl J Med* 2020;383(21):2018-29; Horn L et al. *JAMA Oncol* 2021;7(11):1617-25; Popat S et al. ESMO 2021;Abstract 1195P.

Key Randomized Trials in Treatment-Naïve Advanced ALK-Rearranged NSCLC (Continued)

Study	Intervention	Comparator	Median PFS	PFS Hazard ratio	OS Hazard ratio
PROFILE 1014	Crizotinib	Platinum/pemetrexed	11 vs 7 mo	0.45	0.76
PROFILE 1029	Crizotinib	Platinum/pemetrexed	11 vs 7 mo	0.40	0.90
ASCEND-4	Ceritinib	Platinum/pemetrexed	17 vs 8 mo	0.55	0.73
ALEX	Alectinib	Crizotinib	35 vs 11 mo	0.50	0.67
J-ALEX	Alectinib	Crizotinib	34 vs 10 mo	0.37	0.80
ALESIA	Alectinib	Crizotinib	NR v 11 mo	0.37	0.28
ALTA-1L	Brigatinib	Crizotinib	24 vs 11 mo	0.49	0.92
CROWN	Lorlatinib	Crizotinib	NR vs 9 mo	0.28	0.72
eXalt3	Ensartinib	Crizotinib	26 vs 13 mo	0.52	0.88

Tan AC et al. *J Clin Oncol* 2022;40(6):611-25; Soria JC et al. *Lancet* 2017;389(10072):917-29; Peters S et al. *N Engl J Med* 2017;377(9):829-38; Camidge DR et al. *J Thorac Oncol* 2021;16(12):2091-108; Shaw AT et al. *N Engl J Med* 2020;383(21):2018-29; Horn L et al. *JAMA Oncol* 2021;7(11):1617-25; Popat S et al. ESMO 2021;Abstract 1195P.



Common and Unique Adverse Effects of ALK TKIs

ALK TKI	Most common adverse effects
Crizotinib	Vision disorders, nausea, diarrhea, vomiting, edema, constipation, elevated transaminases, fatigue, decreased appetite, upper respiratory infection, dizziness and neuropathy
Ceritinib	Diarrhea, nausea, vomiting, fatigue, abdominal pain, decreased appetite and weight loss
Alectinib	Constipation, fatigue, edema, myalgia and anemia
Brigatinib	Diarrhea, fatigue, nausea, rash, cough, myalgia, headache, hypertension, vomiting and dyspnea
Lorlatinib	Hypercholesterolemia, hypertriglyceridemia, edema, peripheral neuropathy, weight gain, cognitive effects, fatigue, dyspnea, arthralgia and diarrhea
Ensartinib	Rash, nausea, pruritus and vomiting

Frequency of Targetable Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung

Derived from Tan AC et al. J Clin Oncol 2022;40(6):611-25.

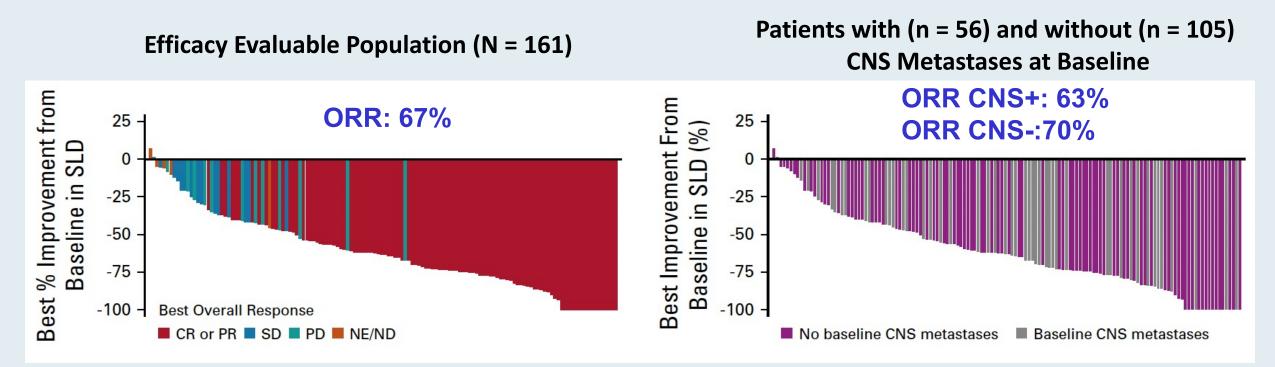
Key Trials of ROS1 TKIs for TKI-Naïve NSCLC with ROS1 Fusions

ROS1 TKI	Study	Phase	ORR	Median DoR	Median PFS	Intracranial ORR
Crizotinib	PROFILE 1001	Ib	38/53 (72%)	25 mo	19 mo	—
	OxOnc	II	91/127 (72%)	20 mo	16 mo	—
	EUCROSS	II	21/30 (70%)	19 mo	20 mo	—
	AcSe	II	35/36 (69%)	_	6 mo	—
	METROS	II	17/26 (65%)	21 mo	23 mo	33%
Entrectinib	Drilon et al	1/11	41/53 (77%)	25 mo	19 mo	55%
Ceritinib	Lim et al	II	20/30 (67%)	21 mo	19 mo	29%
Brigatinib	Gettinger et al	I	1/1 (100%)	_	_	_
Lorlatinib	Shaw et al	1/11	13/21 (62%)	25 mo	21 mo	64%
Repotrectinib	Cho et al	1/11	10/11 (91%)	—	_	100%
Taletrectinib	Fujiwara et al	I	6/9 (67%)	—	_	—

Drilon A et al. Nat Rev Clin Oncol 2021;18(1):35-55.

Key Trials of ROS1 TKIs for TKI-Pretreated NSCLC with ROS1 Fusions

ROS1 TKI	Study	Phase	ORR
Entrectinib (after crizotinib)	Drilon et al	I/II	0/6 (0%)
Ceritinib (after crizotinib)	Lim et al	II	0/2 (0%)
Brigatinib (after crizotinib)	Gettinger et al	I	0/2 (0%)
Lorlatinib	Shaw et al	1/11	After crizotinib: 14/40 (35%) After ≥2 prior TKIs: 0/6 (0%)
Repotrectinib	Drilon et al	1/11	After 1 prior TKI: 7/18 (39%) After ≥2 prior TKIs: 2/7 (29%)
Taletrectinib (after crizotinib)	Fujiwara et al	I	1/3 (33%)


Original Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Locally Advanced or Metastatic ROS1 Fusion–Positive Non–Small-Cell Lung Cancer Rafal Dziadziuszko, MD, PhD¹; Matthew G. Krebs, MD, PhD²; Filippo De Braud, MD^{3,4}; Salvatore Siena, MD^{3,5}; Alexander Drilon, MD⁶; Robert C. Doebele, MD, PhD⁷; Manish R. Patel, DO⁸; Byoung Chul Cho, MD, PhD⁹; Stephen V. Liu, MD¹⁰; Myung-Ju Ahn, MD, PhD¹¹;

Rafal Dziadziuszko, MD, PhD¹; Matthew G. Krebs, MD, PhD²; Filippo De Braud, MD^{3,4}; Salvatore Siena, MD^{3,5}; Alexander Drilon, MD⁶; Robert C. Doebele, MD, PhD⁷; Manish R. Patel, DO⁸; Byoung Chul Cho, MD, PhD⁹; Stephen V. Liu, MD¹⁰; Myung-Ju Ahn, MD, PhD¹¹; Chao-Hua Chiu, MD¹²; Anna F. Farago, MD, PhD¹³; Chia-Chi Lin, MD¹⁴; Christos S. Karapetis, MBBS, MMedSc¹⁵; Yu-Chung Li, MD¹⁶; Bann-mo Day, PhD¹⁷; David Chen, PharmD¹⁷; Timothy R. Wilson, PhD¹⁷; and Fabrice Barlesi, MD, PhD^{18,19}

J Clin Oncol 2021;39(11):1253-63.

Integrated Analysis of ALKA-372-001, STARTRK-1, STARTRK-2, and STARTRK-NG

ORR = objective response rate

Dziadziuszko R et al. J Clin Oncol 2021;39(11):1253-63.

Entrectinib Duration of Response and Survival Analyses

	NSCLC with ROS1 fusions					
Efficacy	Efficacy evaluable (N = 161)	Baseline CNS metastases (n = 56)	No baseline CNS metastases (n = 105)			
Median DoR	15.7 mo	14.9 mo	24.6 mo			
12-month DoR	63%	62%	63%			
Median PFS	15.7 mo	11.8 mo	19.0 mo			
12-month PFS	55%	47%	60%			
Median OS	NE	28.3 mo	NE			
12-month OS	81%	75%	84%			

Dziadziuszko R et al. *J Clin Oncol* 2021;39(11):1253-63.

Select Treatment-Related Adverse Events

	NSCLC with ROS1 fusions safety evaluable population (N = 2				
Adverse events	Any grade	Grade ≥3			
Dysgeusia	43%	<1%			
Dizziness	35%	<1%			
Constipation	31%	0			
Fatigue	30%	<1%			
Diarrhea	27%	3%			
Weight increase	29%	8%			
AST increase	12%	2%			
ALT increase	11%	3%			

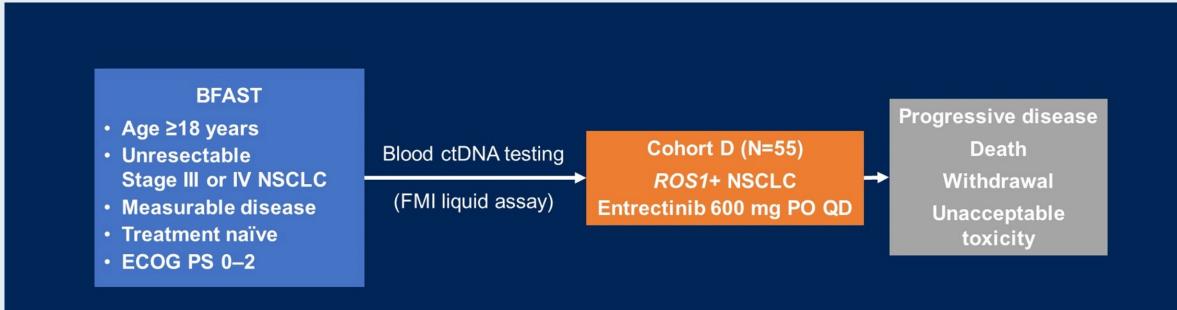
Dziadziuszko R et al. *J Clin Oncol* 2021;39(11):1253-63.

2022 ASCO[®] ANNUAL MEETING Abstract LBA9023

EFFICACY AND SAFETY OF ENTRECTINIB IN PATIENTS WITH *ROS1*-POSITIVE (*ROS1*+) ADVANCED/METASTATIC NSCLC FOR THE BLOOD FIRST ASSAY SCREENING TRIAL (BFAST)

Solange Peters,¹ Shirish M. Gadgeel,² Tony Mok,³ Ernest Nadal,⁴ Saadettin Kilickap,⁵ Maurice Pérol,⁶ Jacques Cadranel,⁷ Shunichi Sugawara,⁸ Chao-Hua Chiu,⁹ Mor Moskovitz,¹⁰ Chong-Jen Yu,¹¹ Tomohiro Tanaka,¹² Rhea Nersesian,¹³ Sarah M. Shagan,¹³ Margaret Maclennan,¹⁴ Michael Mathisen,¹³ Vijay Bhagawati-Prasad,¹⁵ Venice Archer,¹⁵ Rafal Dziadziuszko¹⁶

¹Lausanne University Hospital, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; ²Henry Ford Cancer Institute/Henry Ford Health System, Detroit, Michigan; ³State Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Hong Kong SAR; ⁴Thoracic Oncology Unit, Department of Medical Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain; ⁵Istinye University Faculty of Medicine, Department of Medical Oncology, Instanbul, Turkey; ⁶Department of Medical Oncology, Centre Léon Bérard, Lyon, France; ⁷Department of Pneumology and Thoracic Oncology, APHP, Hôpital Tenon and GRC04 Theranoscan Sorbonne Université, Paris, France; ⁸Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Japan; ⁹Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; ¹⁰Thoracic Cancer Service, Rambam Health Care Campus, Haifa, Israel; ¹¹Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; ¹²Chugai Pharmaceutical Co. Ltd, Tokyo, Japan; ¹³Genentech Inc., South San Francisco, California; ¹⁴Syneos Health, Edinburgh, UK; ¹⁵Roche Products Ltd, Welwyn Garden City, UK; ¹⁶Department of Oncology and Radiotherapy and Early Clinical Trials Unit, Medical University of Gdansk, Poland


PRESENTED BY: Solange Peters, MD, PhD

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

BFAST Study Design

- Primary endpoint: objective response rate (ORR) per investigator (INV; RECIST v1.1):
 - An observed ORR ≥70.4% (n=37/54 responders) is required to meet the primary endpoint
- Secondary endpoints: CBR, DoR, PFS per INV; ORR, CBR, DoR, PFS per IRF; OS; time to CNS progression; safety

BFAST: Entrectinib Efficacy Consistent with Tissue-Based Trials

• BFAST met its primary endpoint in the *ROS1*+ NSCLC arm

- Confirmed ORR: 81.5% per INV and IRF
- **Responses were durable** in this cohort:
 - Median PFS per INV: 12.9 months
 - Median DoR per INV: 13.0 months
 - Median time to CNS PD was not reached
- OS data were immature, with only 20
 events reported
- No new safety signals were identified

BFAST <i>ROS1</i> + NSCLC arm (N=54)						
	INV assessment	IRF assessment				
ORR , n (%) [95% Cl]	44 (81.5) [68.6–90.8]	44 (81.5) [68.6–90.8]				
Complete response (CR)	2 (3.7)	3 (5.6)				
Partial response (PR)	42 (77.8)	41 (75.9)				
CBR *, n (%) [95% Cl]	47 (87.0) [75.1–94.6]	44 (81.5) [68.6–90.8]				
Median PFS, months (95% CI)	12.9 (8.7–18.5)	14.8 (7.2–24.0)				
12-month event-free rate, %	50.7	52.4				
Median DoR, months (95% CI)	13.0 (6.3–18.4)	16.7 (5.6–24.0)				
12-month event-free rate, %	53.2	57.3				
Median time to CNS PD, months (95% CI)	NE (NE)	NE (NE)				
12-month event-free rate, %	83.5	86.4				
os	Immature					
Patients with event, n (%)	20 ((36)				

BFAST Summary

ORR (INV and IRF): 81.5%

Consistent results between blood-based and tissue-based trials

Median PFS: 14.8 months (IRF) Median DoR: 16.7 months (IRF)

Safety profile in line with previous reports

These data validate the clinical utility of blood-based NGS as a further method to inform clinical decision-making in ROS1+ NSCLC

Peters S et al. ASCO 2022; Abstract LBA9023.

Repotrectinib Granted FDA Breakthrough Therapy Designation for Metastatic NSCLC with ROS1 Fusions Press Release – December 8, 2020

"...repotrectinib has been granted breakthrough therapy designation by the Food and Drug Administration (FDA) for the treatment of patients with ROS1-positive metastatic non-small cell lung cancer (NSCLC) who have not been treated with a ROS1 tyrosine kinase inhibitor (TKI-naïve).

The breakthrough therapy designation for repotrectinib was supported by the initial data from TKI-naïve ROS1-positive NSCLC patients enrolled in the Phase 1 and Phase 2 portions of the TRIDENT-1 study, which is currently evaluating patients in multiple potentially registrational cohorts."

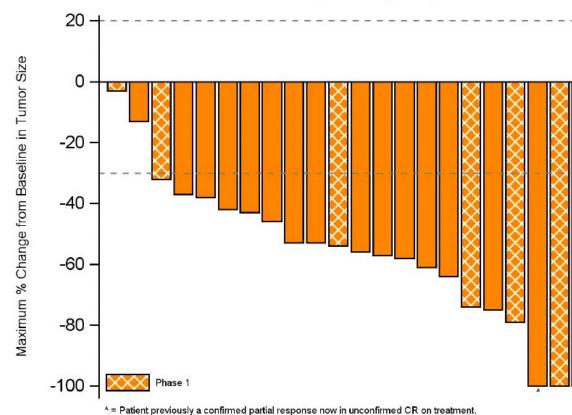
https://www.biospace.com/article/releases/turning-point-therapeutics-granted-fda-breakthrough-therapy-designation-for-repotrectinib-treatment-in-patients-with-ros1-positive-metastatic-non-small-cell-lung-cancer-/

Abstract 3255

Phase 1/2 TRIDENT-1 Study of Repotrectinib in Patients with ROS1+ or NTRK+ Advanced Solid Tumors

Byoung Chul Cho,¹ Robert C. Doebele,² Jessica J. Lin,³ Misako Nagasaka,⁴ Christina Baik,⁵ Anthonie J. van der Wekken,⁶ Vamsidhar Velcheti,⁷ Ki Hyeong Lee,⁸ Stephen V. Liu,⁹ Benjamin Solomon,¹⁰ Steven Kao,¹¹ Matthew G. Krebs,¹² Viola Zhu,¹³ Shanna Stopatschinskaja,¹⁴ D. Ross Camidge,¹⁵ Alexander Drilon¹⁶

 ¹Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; ²University of Colorado Anschutz Medical Campus, Aurora, CO, USA; ³Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; ⁴Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA; ⁵Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, WA, USA; ⁶University of Groningen and University Medical Centre Groningen, Groningen, Netherlands; ⁷Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA; ⁸Chungbuk National University Hospital, Cheongju, Republic of Korea; ⁹Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington D.C., USA; ¹⁰Peter MacCallum Cancer Center, Melbourne, Australia; ¹¹The Chris O'Brien Lifehouse, Camperdown, Australia; ¹²Division of Cancer Sciences, The University of Manchester and the Christie NHS Foundation Trust, Manchester, UK; ¹³Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA, USA; ¹⁴Turning Point Therapeutics Inc., San Diego, CA, USA; ¹⁵Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA


2020 World Conference on Lung Cancer Singapore

Byoung Chul Cho, Yonsei Cancer Center, Republic of Korea

JANUARY 28-31, 2021 | WORLDWIDE VIRTUAL EVENT

TRIDENT-1: Clinical Activity in TKI-Naïve Advanced NSCLC with ROS1 Fusions

Overal	Response	(N=22)
--------	----------	--------

	Phase 2 N=15	Phase 1+2 N=22
Confirmed ORR, %	93%	91%
(95% CI)	(68–100)	(71–99)

N=22 patients with baseline and at least two post baseline scans

- N=15 Phase 2 patients
- N=7 Phase 1 patients treated at or above the Phase 2 recommended dose

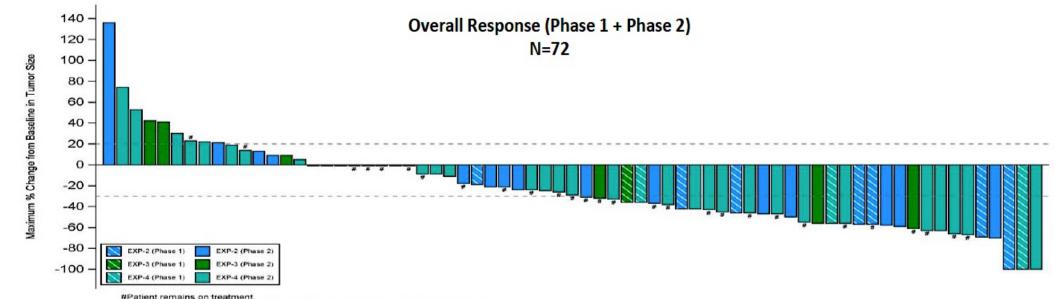
As of 31 December 2020, the 16th patient in Phase 2 has an unconfirmed PR and is on treatment awaiting a second post-baseline confirmatory scan.

Poster #: P224

Update from the Phase 2 registrational trial of repotrectinib in TKI-pretreated patients with *ROS1+* advanced non-small cell lung cancer and with *NTRK+* advanced solid tumors (TRIDENT-1)

<u>Jessica J. Lin</u>,¹ Byoung Chul Cho,² Christoph Springfeld,³ D. Ross Camidge,⁴ Benjamin Solomon,⁵ Christina Baik,⁶ Vamsidhar Velcheti,⁷ Young-Chul Kim,⁸ Victor Moreno,⁹ Anthonie J. van der Wekken,¹⁰ Enriqueta Felip,¹¹ Dipesh Uprety,¹² Denise Trone,¹³ Shanna Stopatschinskaja,¹³ Alexander Drilon¹⁴

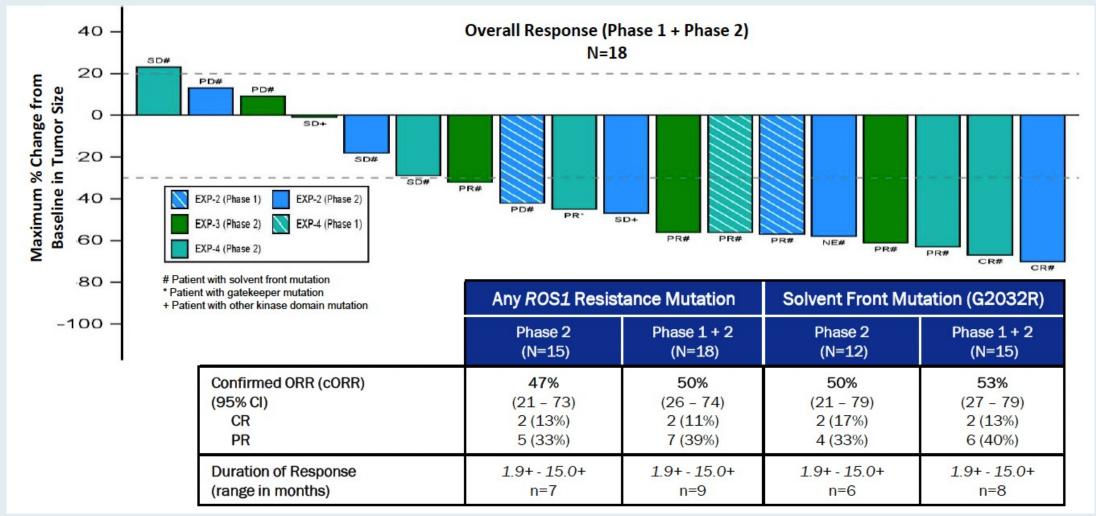
¹Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; ²Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ³Heidelberg University Hospital, National Center for Tumor Diseases, Department of Medical Oncology, Heidelberg, Germany; ⁴University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; ⁵Peter MacCallum Cancer Center, Melbourne, Australia; ⁶University of Washington School of Medicine, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ⁷NYU Perlmutter Cancer Center, New York, NY, USA; ⁸Chonnam National University Medical School, and CNU Hwasun Hospital, Hwasun-gun, Republic of Korea; ⁹Fundación Jiménez Díaz - START Madrid, Madrid, Spain; ¹⁰University of Groningen, University Medical Centre Groningen, Groningen, Netherlands; ¹¹Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ¹²Karmanos Cancer Institute, Detroit, MI, USA; ¹³Turning Point Therapeutics Inc, San Diego, CA, USA; ¹⁴Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA.



TRIDENT-1: A Phase II Study Design

	ROS1+ Advanced NSCLC				NTRK+ Advanced Solid Tumors	
EXP-1 ROS1 TKI naïve	EXP-2 1 prior ROS1 TKI AND 1 platinum-based chemotherapy	EXP-3 2 prior ROS1 TKIs AND No prior chemotherapy	EXP-4 1 prior ROS1 TKI AND No prior chemotherapy	EXP-5 TRK TKI naïve	EXP-6 TRK TKI pretreated	
(N=55)	(N=60)	(N=40) (N=60)		(N=55)	(N=40)	
	Treated (N=21)	Treated (N=11)	Treated (N=44)	Data from NTRK+ cohorts (EXP-5 and EXP-6) will be presented at LB# 6546 during Plenary Session 2: New Drugs on the Horizon I		
	Efficacy Evaluable (N=16)	Efficacy Evaluable (N=9)	Efficacy Evaluable (N=36)			

TRIDENT-1: Preliminary Efficacy in Patients with TKI-Pretreated Advanced NSCLC with ROS1 Fusions



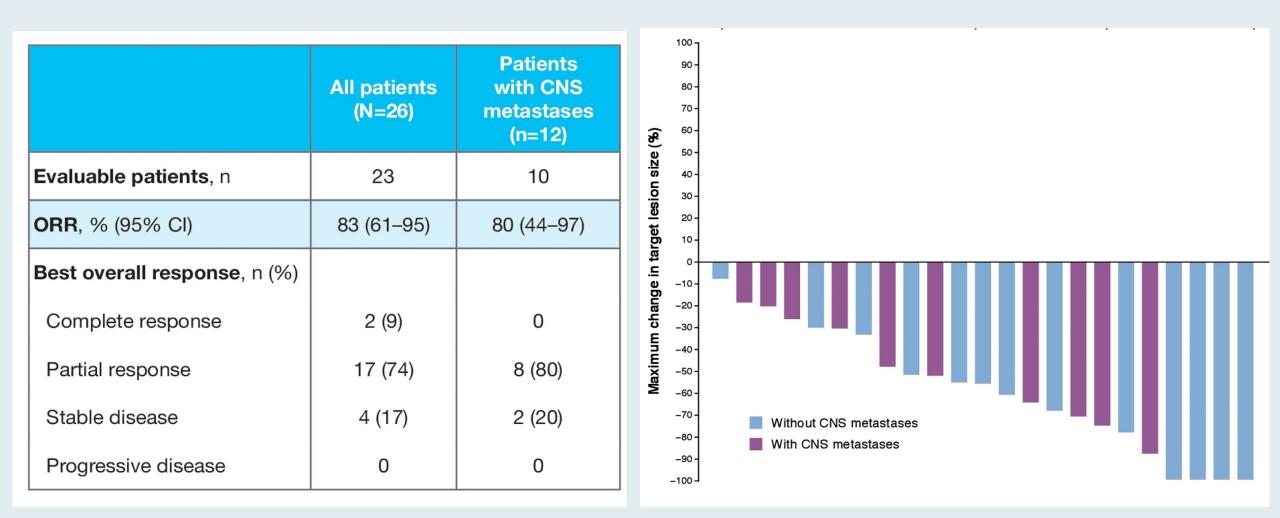
³ patients not displayed due to discontinuing treatment prior to first post-baseline scans

	EXP-2		EXP-3		EXP-4	
	Phase 2	Phase 1 + 2	Phase 2	Phase 1 + 2	Phase 2	Phase 1 + 2
	(N=16)	(N=23)	(N=9)	(N=10)	(N=36)	(N=39)
Confirmed ORR (cORR)	31%	39%	33%	30%	31%*	33%*
(95% Cl)	(11 – 59)	(20 - 61)	(7 - 70)	(7 - 65)	(16 - 48)	(19 - 50)
Duration of Response	1.8+ - 9.2	1.8+ - 11.1	1.9+ - 12.9+	1.9+ - 12.9+	1.7+ - 15.0+	0.8+ - 15.0+
(range in months)	n=5	n=9	n=3	n=3	n=11	n=13

TRIDENT-1: Preliminary Efficacy in Patients with TKI-Pretreated Advanced NSCLC with ROS1 Fusions and Baseline ROS1 Resistance Mutations

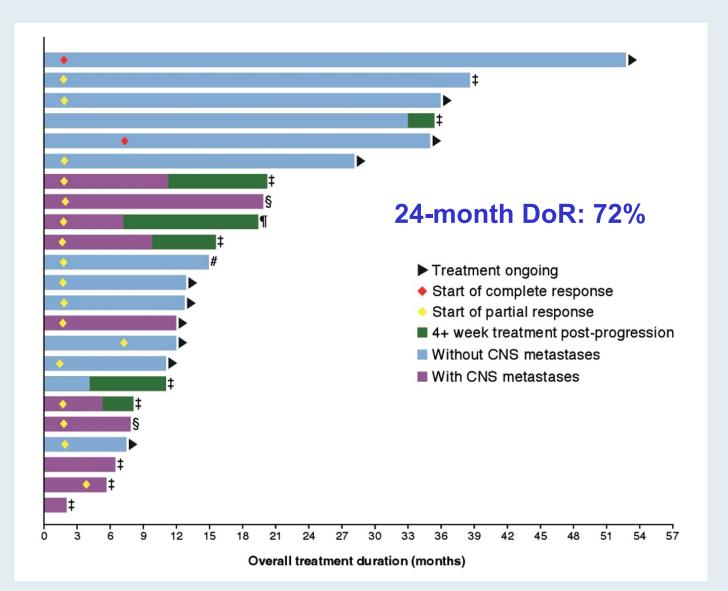
TRIDENT-1: Treatment-Emergent Adverse Events (N = 301)

Adverse event	Any grade	Grade 3/4
Dizziness	60%	2%
Dysgeusia	44%	<1%
Constipation	34%	<1%
Paraesthesia	29%	1%
Dyspnea	28%	6%
Anemia	27%	8%
Fatigue	24%	2%
Nausea	21%	1%
	Rate	
Drug discontinuation due to TEAEs	11%	
Drug dose reduction due to TEAEs	17%	

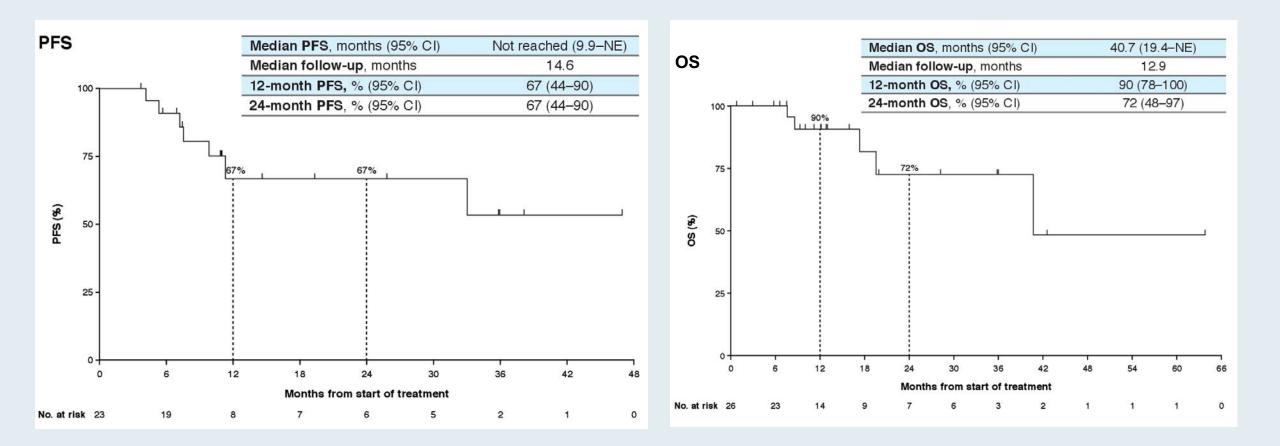

Lin JJ et al. AACR 2021; Abstract 224.

Updated Efficacy and Safety of Larotrectinib in Patients with Tropomyosin Receptor Kinase (TRK) Fusion Lung Cancer

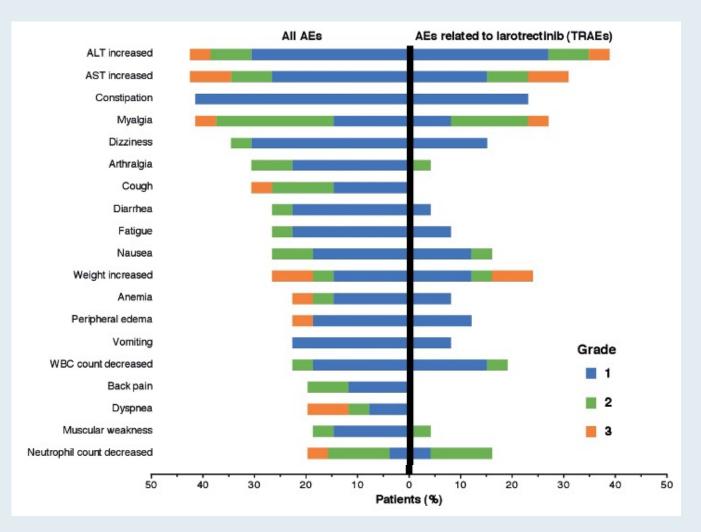
Peters S et al. ASCO 2022;Abstract LBA9024.



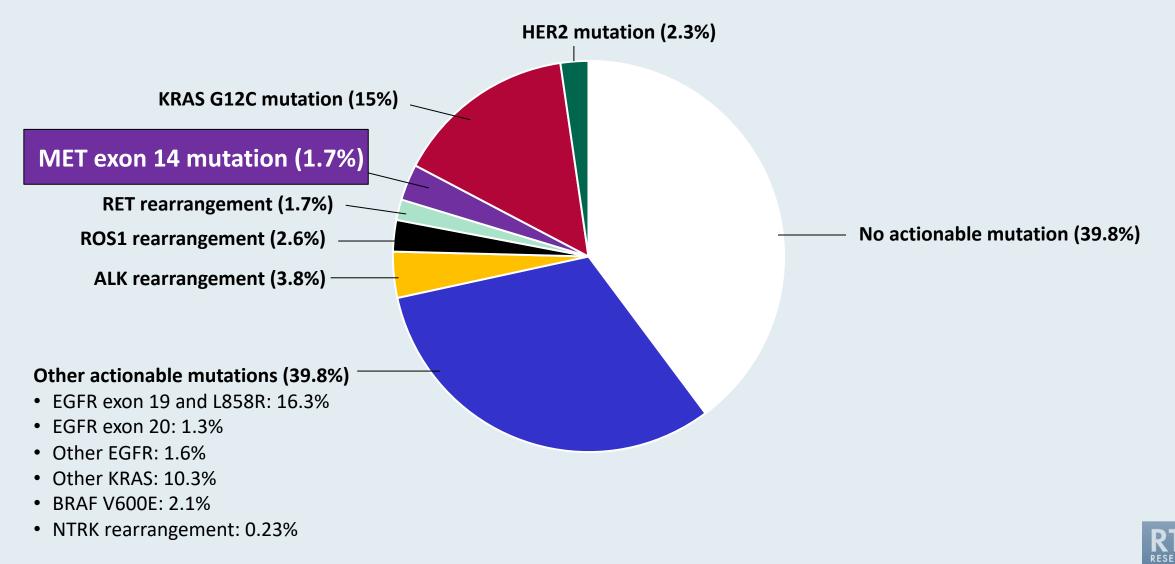
Response to Larotrectinib


Larotrectinib Duration of Response

Peters S et al. ASCO 2022; Abstract LBA9024.


Survival Analyses with Larotrectinib

Peters S et al. ASCO 2022; Abstract LBA9024.


Safety Profile with Larotrectinib

Peters S et al. ASCO 2022; Abstract LBA9024.

Frequency of Targetable Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung

Derived from Tan AC et al. J Clin Oncol 2022;40(6):611-25.

Amivantamab in NSCLC patients with MET exon 14 skipping mutation: Updated results from the CHRYSALIS study

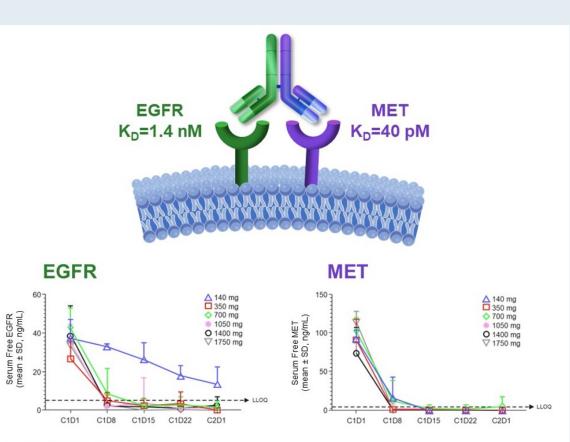
<u>Matthew G. Krebs,</u>¹Alexander I. Spira,² Byoung Chul Cho,³ Benjamin Besse,⁴ Jonathan W. Goldman,⁵ Pasi A. Jänne,⁶ Zhiyong Ma,⁷ Aaron S. Mansfield,⁸ Anna Minchom,⁹ Sai-Hong Ignatius Ou,¹⁰ Ravi Salgia,¹¹ Zhijie Wang,¹² Casilda Llacer Perez,¹³ Grace Gao,¹⁴ Joshua C. Curtin,¹⁴ Amy Roshak,¹⁴ Robert W. Schnepp,¹⁴ Meena Thayu,¹⁴ Roland E. Knoblauch,¹⁴ Chee Khoon Lee¹⁵

¹Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK; ²Virginia Cancer Specialists Research Institute, US Oncology Research, Fairfax VA; ³Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁴Institut Gustave Roussy, Villejuif, France; ⁵David Geffen School of Medicine at UCLA, Los Angeles, CA; ⁶Dana Farber Cancer Institute, Boston, MA; ⁷Henan Cancer Hospital, Zhengzhou, China; ⁸Mayo Clinic, Rochester, MN; ⁹Drug Development Unit, Royal Marsden/Institute of Cancer Research, Sutton, UK; ¹⁰University of California Irvine, Orange, CA; ¹¹City of Hope, Duarte, CA; ¹²Cancer Hospital Chinese Academy of Medical Sciences, Beijing, China; ¹³Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Málaga, Spain; ¹⁴Janssen R&D, Spring House, PA; ¹⁵St George Hospital, Kogarah, Australia

#ASC022

PRESENTED BY: Matthew G. Krebs

Copies of this slide deck obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® or the author of this slides.


Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Amivantamab: EGFR-MET Bispecific Antibody

- Demonstrated monotherapy activity in EGFR ex20ins NSCLC following progression on platinumbased chemotherapy (ORR, 40%; DOR, 11.1 months)¹
- Demonstrated activity in TKI-resistant EGFRm NSCLC with MET amplification^{2,3}
- Has higher affinity for MET (40 pM) than EGFR (1.4 nM)
- Depletion of free soluble target proteins, suggesting total body target engagement, occurs at ≥140 mg for sMET and ≥350 mg for sEGFR
- · Evaluation in primary MET-driven tumors is ongoing

C, cycle; D, day; DOR, duration of response; EGFR, epidermal growth factor receptor; EGFRm, EGFR-mutated; ex20ins, exon 20 insertion mutations; K_D, dissociation constant; LLOQ, lower limit of quantification; NSCLC, non-small cell lung cancer; ORR, overall response rate; SD, standard deviation; sEGFR, soluble EGFR; sMET, soluble MET; TKI, tyrosine kinase inhibitor.

1. Park K, et al. J Clin Oncol. 2021;39(30):3391-3402. 2. Haura EB, et al. Presented at: ASCO; May 31-June 4, 2019. 9009 (oral). 3. Bauml J, et al. Presented at: ASCO; June 4-8, 2021. 9006 (oral).

CHRYSALIS Phase I Study Design

Part 1: Dose Escalation

140–1750 mg Objective: Establish RP2D

<u>RP2D</u> Amivantamab 1050 mg (<80 kg) 1400 mg (≥80 kg) Intravenous dosing

C1 QW, C2+ Q2W

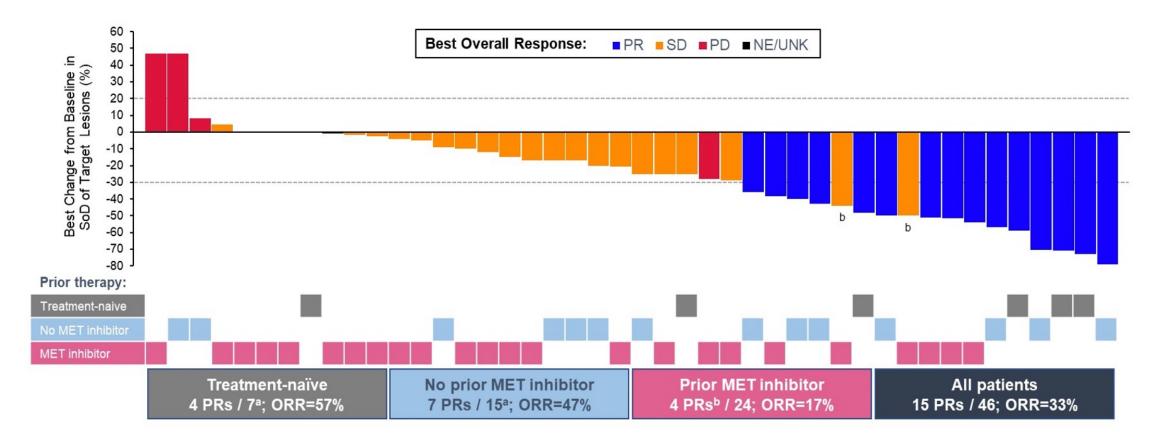
Eligibility

- Metastatic or unresectable/advanced NSCLC
- Failed or ineligible for standard of care therapy

Part 2: Dose Expansion

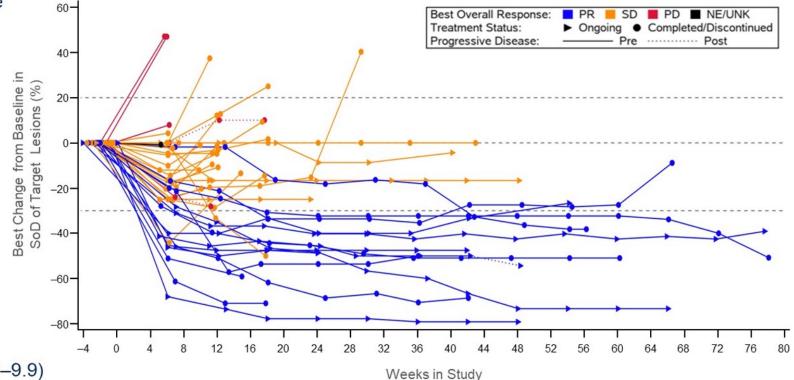
MET-2 Cohort: *METex14* n=55^a (up to 100 planned)

Objective: Safety and efficacy at the RP2D


Eligibility for METex14 Cohort

- Measurable disease
- Primary METex14 mutation by NGS of tumor or ctDNA

CHRYSALIS: Antitumor Activity of Amivantamab


• A total of 46 patients were efficacy evaluable

CHRYSALIS: Durability of Response to Amivantamab

- Median duration of response is not estimable
 - 11/15 patients who responded are ongoing
 - 10 patients (67% of responders) with response duration ≥6 months
- Clinical benefit rate=59%^a
 - Treatment-naïve: 71%
 - No prior MET: 53%
 - Prior MET: 58%
- Median PFS=6.7 mo (95% CI 2.9–15.3)
 - Treatment-naïve: NE (95% CI 2.6–NE)
 - No prior MET: 8.3 mo (95% CI 1.5–15.3)
 - Prior MET: 4.2 mo (95% CI 2.9-NE)
- Median time to response=1.6 mo (range, 1.2–9.9)

CHRYSALIS: Safety Profile

	RP2D (n=425)		METex14 Subset (n=55)		
TEAE (≥15%) by Preferred Term,	Median follow-	Median follow-up 11.8 months		Median follow up 5.1 months	
n (%)	All Grades	Grade ≥3	All Grades	Grade ≥3	
Infusion related reaction	283 (67)	11 (3)	38 (69)	3 (5)	
Rash	155 (36)	8 (2)	17 (31)	1 (2)	
Dermatitis acneiform	155 (36)	4 (1)	22 (40)	0	
Paronychia	193 (45)	7 (2)	21 (38)	0	
Fatigue	93 (22)	8 (2)	17 (31)	2 (4)	
Hypoalbuminemia	135 (32)	10 (2)	15 (27)	1 (2)	
Stomatitis	91 (21)	2 (0.5)	15 (27)	0	
Decreased appetite	76 (18)	2 (0.5)	12 (22)	0	
Dyspnea	96 (23)	21 (5)	12 (22)	4 (7)	
Peripheral edema	104 (24)	4 (1)	11 (20)	0	
Pruritus	79 (19)	0	12 (22)	0	
Nausea	104 (24)	2 (0.5)	11 (20)	0	
Constipation	105 (25)	0	10 (18)	0	
Hypomagnesemia	41 (10)	0	9 (16)	0	
Aspartate aminotransferase increased	64 (15)	5 (1)	9 (16)	1 (2)	
Alanine aminotransferase increased	72 (17)	10 (2)	8 (15)	1 (2)	
Cough	78 (18)	0	3 (5)	0	

- Treatment modifications due to toxicity (n=425): interruptions in 21%, reductions in 12%, and discontinuations in 5% of patients
 - Rates of pneumonitis/ILD was 4%
 - Cumulative grouped rash-related AEs^a occurred in 322 (76%) patients, with 16 grade ≥3 (4%)
- Safety profile for METex14 subset is consistent with the larger CHRYSALIS safety population, with majority of events grade 1-2
- No new safety signals found

Tepotinib and Capmatinib Receive FDA Approval for the Treatment of Advanced NSCLC with MET Exon 14 Skipping Mutations

Tepotinib Press Release – February 3, 2021

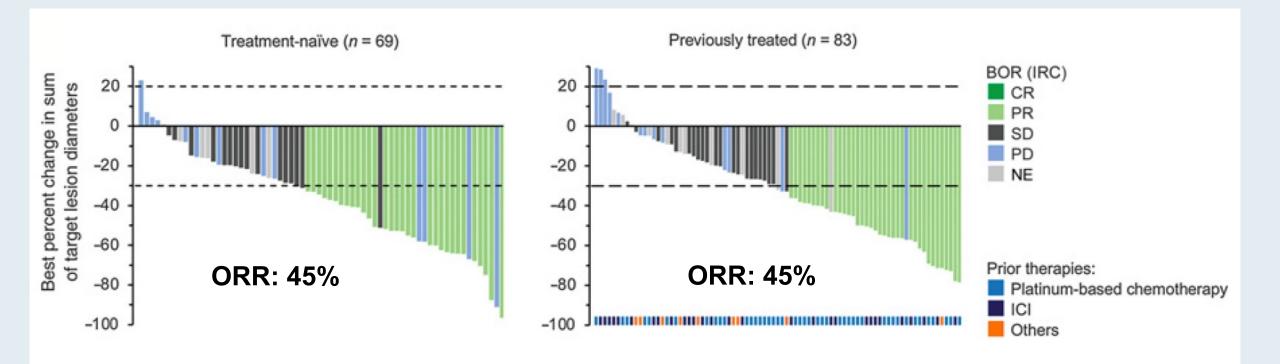
The FDA granted accelerated approval to tepotinib for adult patients with metastatic NSCLC harboring mesenchymal-epithelial transition (MET) exon 14 skipping alterations. Efficacy was demonstrated in the VISION trial (NCT02864992), a multicenter, non-randomized, open-label, multicohort study enrolling 152 patients with advanced or metastatic NSCLC with MET exon 14 skipping alterations. Patients received tepotinib 450 mg orally once daily until disease progression or unacceptable toxicity.

Capmatinib Press Release – May 6, 2020

The FDA granted accelerated approval to for adult patients with metastatic NSCLC whose tumors have a mutation that leads to mesenchymal-epithelial transition (MET) exon 14 skipping. Efficacy was demonstrated in the GEOMETRY mono-1 trial (NCT02414139), a multicenter, non-randomized, open-label, multicohort study enrolling 97 patients with metastatic NSCLC with confirmed MET exon 14 skipping. Patients received capmatinib 400 mg orally twice daily until disease progression or unacceptable toxicity.

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-tepotinib-metastatic-non-small-cell-lung-cancer. https://wayback.archive-it.org/7993/20201222063225/https://www.fda.gov/drugs/drug-approvals-and-databases/fda-grants-accelerated-approval-capmatinib-metastatic-non-small-cell-lung-cancer

CLINICAL CANCER RESEARCH | CLINICAL TRIALS: TARGETED THERAPY


Tepotinib Efficacy and Safety in Patients with *MET* Exon 14 Skipping NSCLC: Outcomes in Patient Subgroups from the VISION Study with Relevance for Clinical Practice

Xiuning Le¹, Hiroshi Sakai², Enriqueta Felip³, Remi Veillon⁴, Marina Chiara Garassino^{5,6}, Jo Raskin⁷, Alexis B. Cortot⁸, Santiago Viteri⁹, Julien Mazieres¹⁰, Egbert F. Smit¹¹, Michael Thomas¹², Wade T. Iams¹³, Byoung Chul Cho¹⁴, Hye Ryun Kim¹⁴, James Chih-Hsin Yang¹⁵, Yuh-Min Chen¹⁶, Jyoti D. Patel¹⁷, Christine M. Bestvina¹⁸, Keunchil Park¹⁹, Frank Griesinger²⁰, Melissa Johnson²¹, Maya Gottfried²², Christian Britschgi²³, John Heymach¹, Elif Sikoglu²⁴, Karin Berghoff²⁵, Karl-Maria Schumacher²⁶, Rolf Bruns²⁷, Gordon Otto²⁶, and Paul K. Paik^{28,29}

Clin Cancer Res 2022;28(6):1117-26.

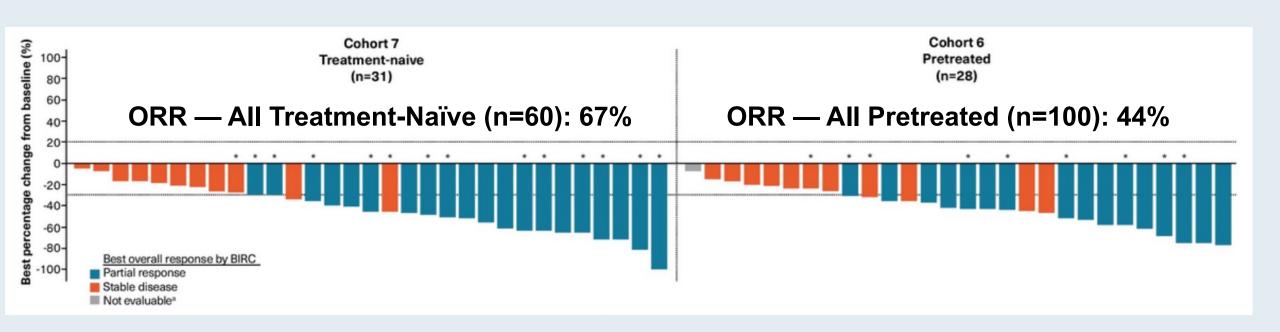
VISION: Tepotinib in Advanced NSCLC with MET Exon 14 Skipping Mutations

Le X et al. Clin Cancer Res 2022;28(6):1117-26.

VISION: Treatment-Related Adverse Events with Tepotinib

	Cohorts A + C (N = 255)		
Adverse events	Any grade	Grade 3/4	
Peripheral edema	54%	8%	
Nausea	20%	<1%	
Diarrhea	20%	<1%	
Blood creatinine increase	18%	<1%	
Hypoalbuminemia	15%	2%	
ALT increase	9%	2%	
Decreased appetite	8%	<1%	
Amylase increase	8%	2%	

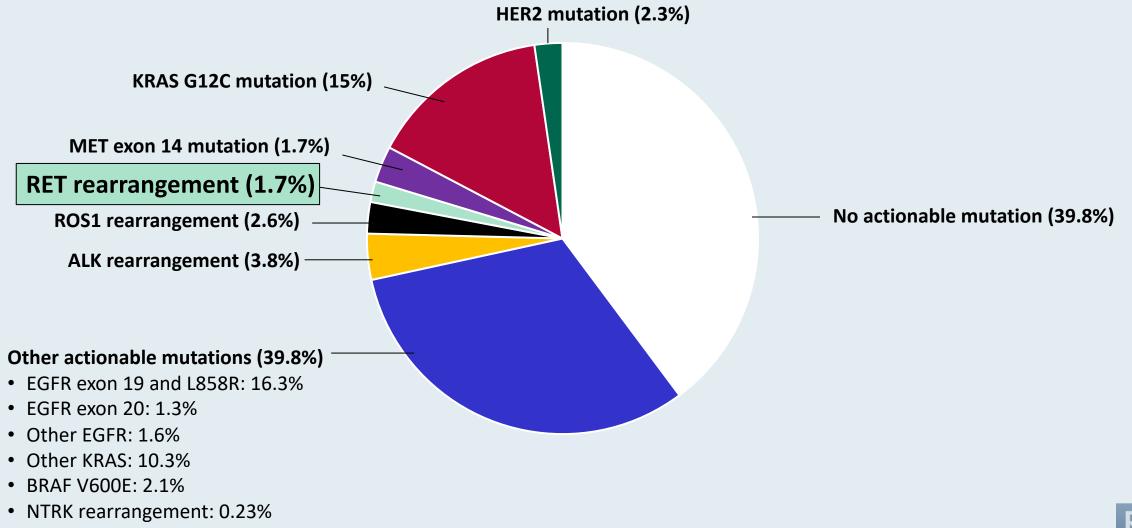
6 confirmed ILD-like events were reported



Capmatinib in *MET* Exon 14-Mutated, Advanced NSCLC: Updated Results from the GEOMETRY mono-1 Study

Wolf J et al. ASCO 2021;Abstract 9020.

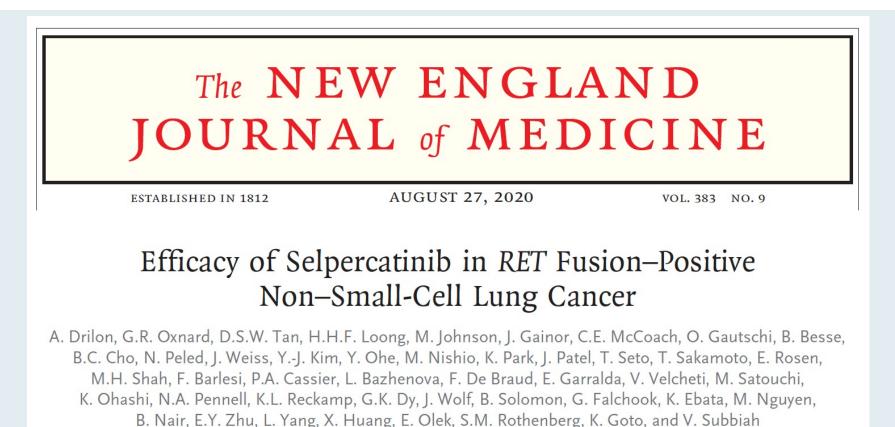
GEOMETRY mono-1: Overall Response Rates (Cohorts 7 and 6)


Wolf J et al. ASCO 2021; Abstract 9020.

GEOMETRY mono-1: Most Common Adverse Events (Cohorts 7 and 6)

	Cohort 7 — Treatment naïve N = 32		Cohort 6 — Second line N = 31	
Adverse event	Any grade	Grade 3/4	Any grade	Grade 3/4
Peripheral edema	72%	13%	71%	13%
Nausea	44%	0	32%	3%
Vomiting	15%	3%	26%	0
Increase blood creatinine	31%	0	29%	0
Dyspnea	6%	3%	10%	0
Fatigue	19%	0	29%	0
Decreased appetite	16%	3%	16%	0

Frequency of Targetable Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung


Derived from Tan AC et al. J Clin Oncol 2022;40:611-625.

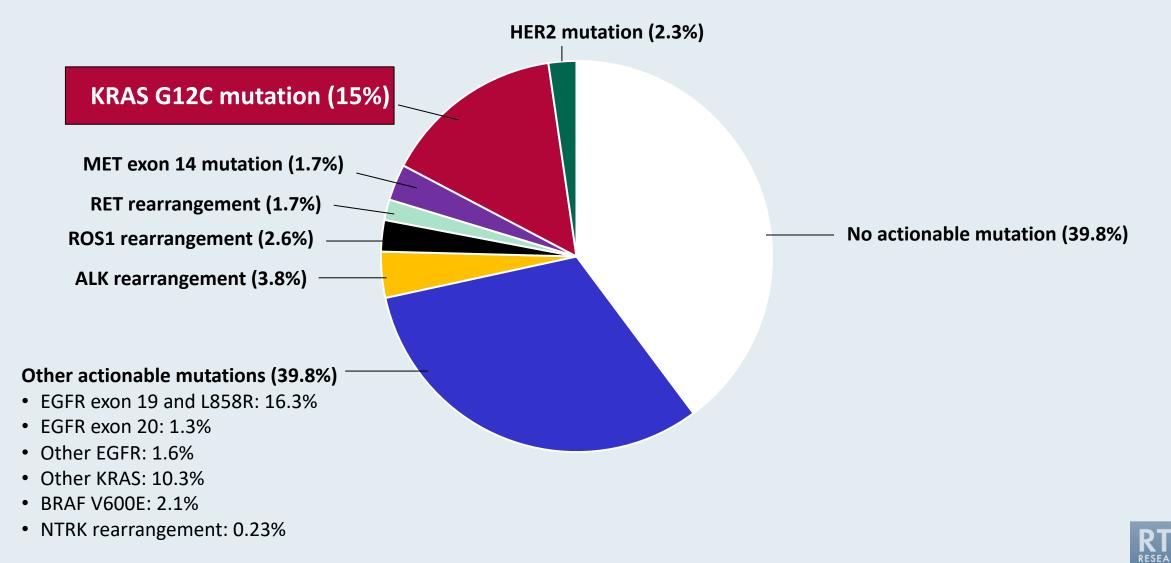
Lancet Oncol 2021;22(7):959-69.

Pralsetinib for RET fusion-positive non-small-cell lung cancer \rightarrow \uparrow ((ARROW): a multi-cohort, open-label, phase 1/2 study

Justin F Gainor, Giuseppe Curigliano, Dong-Wan Kim, Dae Ho Lee, Benjamin Besse, Christina S Baik, Robert C Doebele, Philippe A Cassier, Gilberto Lopes, Daniel S W Tan, Elena Garralda, Luis G Paz-Ares, Byoung Chul Cho, Shirish M Gadgeel, Michael Thomas, Stephen V Liu, Matthew H Taylor, Aaron S Mansfield, Viola W Zhu, Corinne Clifford, Hui Zhang, Michael Palmer, Jennifer Green, Christopher D Turner, Vivek Subbiah

Pivotal Studies of Selpercatinib and Pralsetinib for Advanced NSCLC with RET Fusion

	Selpercatinib ¹	Pralesetinib ²
Pivotal study	LIBRETTO-001 Phase I/II (N = 105)	ARROW Phase I/II (N = 233)
FDA approval	May 8, 2020	September 4, 2020
Setting	Previous platinum-based chemotherapy and previously untreated	Previous platinum-based chemotherapy and previously untreated
ORR	64%	Prior platinum-based chemo: 61% Treatment-naïve: 70%
Median duration of response	17.5 months	Not reached
Common Grade ≥3 adverse events	Hypertension (14%) Increased ALT (12%) and AST (10%) Hyponatremia (6%) Lymphopenia (6%)	Neutropenia (18%) Hypertension (11%) Anemia (10%) Decreased WBC (6%)


¹ Drilon A et al. *N Engl J Med* 2020;383(9):813-24. ² Gainor JF et al. *Lancet Oncol* 2021;22(7):959-69.

Ongoing Phase III Trials of Selpercatinib or Pralsetinib for NSCLC with RET Fusion

Trial identifier	Setting	Treatment arms
LIBRETTO-431 (NCT04194944)	Untreated Stage IIIB-IIIC or Stage IV non-squamous NSCLC that is not suitable for radical surgery or radiation therapy	 Selpercatinib Pemetrexed and platinum with or without pembrolizumab
LIBRETTO-432 (NCT04819100)	Stage IB, II or IIIA NSCLC after definitive locoregional therapy	SelpercatinibPlacebo
AcceleRET-Lung (NCT04222972)	Locally advanced or metastatic NSCLC that has not been treated with systemic anticancer therapy for metastatic disease	 Pralsetinib Platinum-based chemotherapy (with or without pembrolizumab)
NCT05170204	Unresectable Stage III NSCLC	<u>Cohort A3</u> • Pralsetinib • Durvalumab

Frequency of Targetable Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung

Derived from Tan AC et al. J Clin Oncol 2022;40(6):611-25.

FDA Grants Accelerated Approval to Sotorasib for NSCLC with KRAS G12C Mutation Press Release – May 28, 2021

"The Food and Drug Administration granted accelerated approval to sotorasib, a RAS GTPase family inhibitor, for adult patients with KRAS G12C-mutated locally advanced or metastatic nonsmall cell lung cancer (NSCLC), as determined by an FDA-approved test, who have received at least one prior systemic therapy.

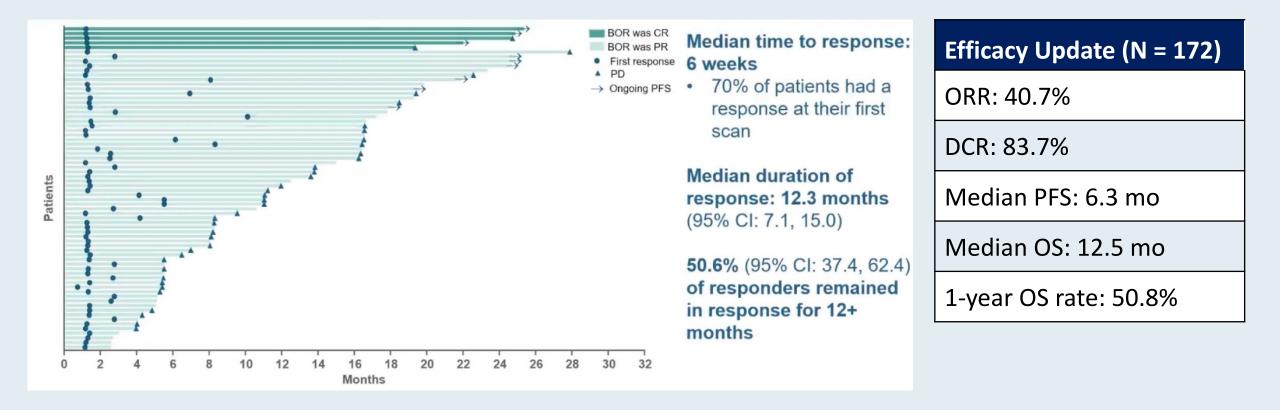
FDA also approved the QIAGEN therascreen[®] KRAS RGQ PCR kit (tissue) and the Guardant360[®] CDx (plasma) as companion diagnostics for sotorasib. If no mutation is detected in a plasma specimen, the tumor tissue should be tested.

Approval was based on CodeBreaK 100, a multicenter, single-arm, open label clinical trial (NCT03600883) which included patients with locally advanced or metastatic NSCLC with KRAS G12C mutations. Efficacy was evaluated in 124 patients whose disease had progressed on or after at least one prior systemic therapy. Patients received sotorasib 960 mg orally daily until disease progression or unacceptable toxicity."

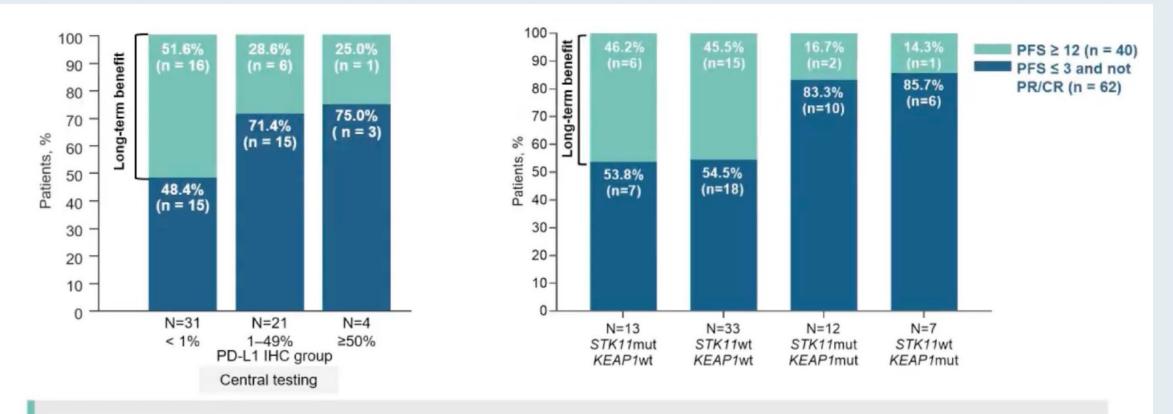
https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-sotorasib-kras-g12c-mutated-nsclc

Long-term Outcomes With Sotorasib in Pre-treated KRAS p.G12C Mutated NSCLC: 2-year Analysis of CodeBreaK 100

Presenter: Grace K. Dy¹, MD ¹Roswell Park Comprehensive Cancer Center

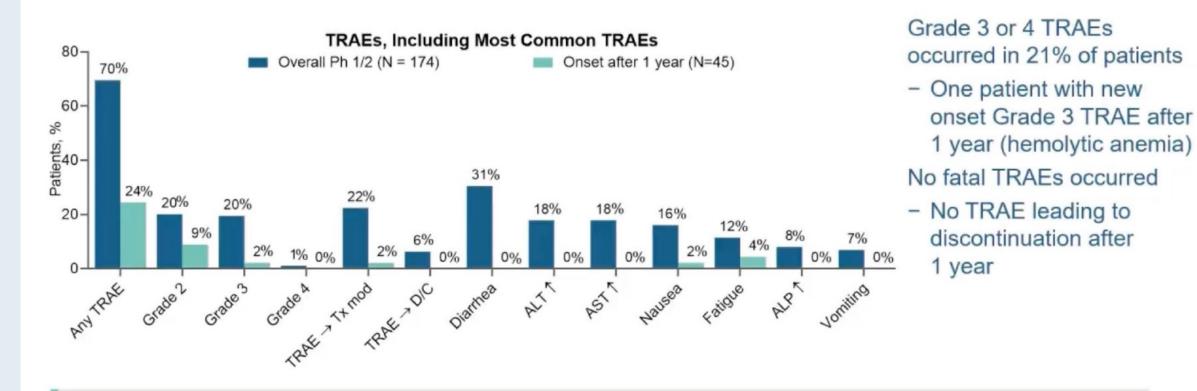

On behalf of: Ramaswamy Govindan², Vamsidhar Velcheti³, Gerald S. Falchook⁴, Antoine Italiano⁵, Juergen Wolf⁶, Adrian G. Sacher⁷, Toshiaki Takahashi⁸, Suresh S. Ramalingam⁹, Christophe Dooms¹⁰, Dong-Wan Kim¹¹, Alfredo Addeo¹², Jayesh Desai¹³, Martin Schuler¹⁴, Pascale Tomasini¹⁵, Qui Tran¹⁶, Simon Jones¹⁶, Agnes Ang¹⁶, Abraham Anderson¹⁶, Antreas Hindoyan¹⁶, David S. Hong¹⁷, Bob T. Li¹⁸

²Washington University in St Louis, ³New York University Langone, ⁴Sarah Cannon Research Institute, ⁵Institut Bergonie, ⁶Universitatsklinikum Koln, ⁷Princess Margaret Cancer Centre, ⁸Shizuoka Cancer Center ⁹Winship Cancer Institute, ¹⁰Universitair Ziekenhuis Leuven ¹¹Seoul National University Hospital, ¹²Hopitaux Universitaires de Geneve, ¹³Peter MacCallum Cancer Centre, ¹⁴Universitätsklinikum Essen, ¹⁵Hopital de la Timone, ¹⁶Amgen Inc., ¹⁷MD Anderson Cancer Center, ¹⁸Memorial Sloan Kettering Cancer Center



CodeBreaK 100: 2-Year Update with Sotorasib for Previously Treated Metastatic NSCLC with KRAS p.G12C Mutation

CodeBreaK 100: Exploratory Biomarker Analyses



Prolonged clinical benefit was observed across PD-L1 expression, including tumors with low PD-L1 expression and STK11 co-mutations

Dy GK et al. AACR 2022; Abstract CT008.

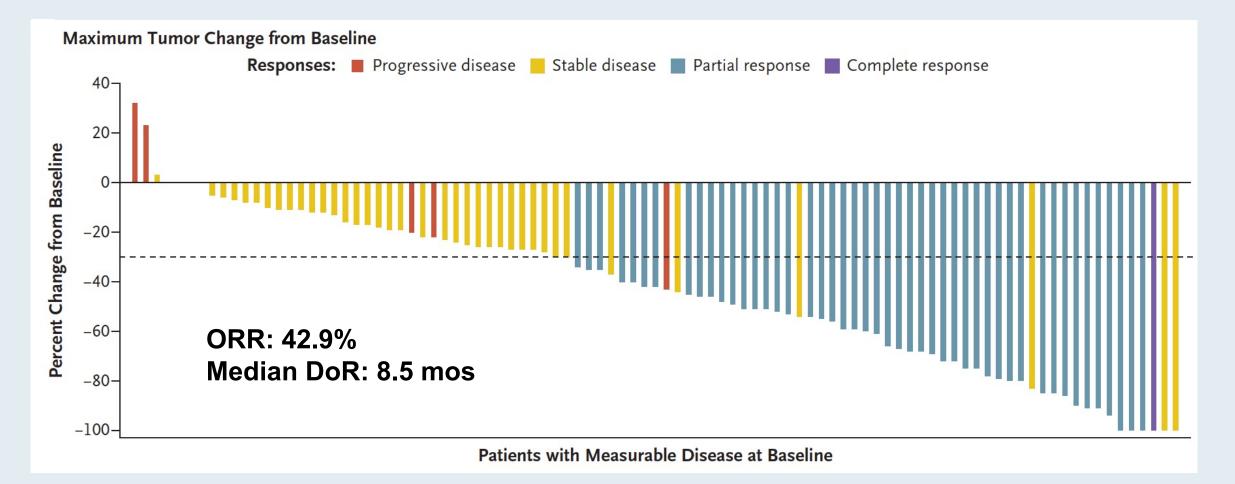
CodeBreaK 100: Treatment-Related Adverse Events

Well-tolerated in the long-term: late-onset TRAEs were mild and manageable

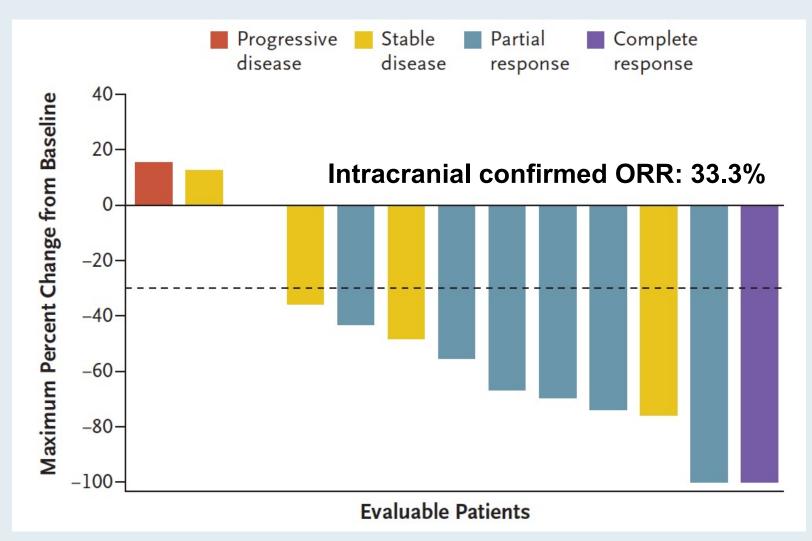
Dy GK et al. AACR 2022; Abstract CT008.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

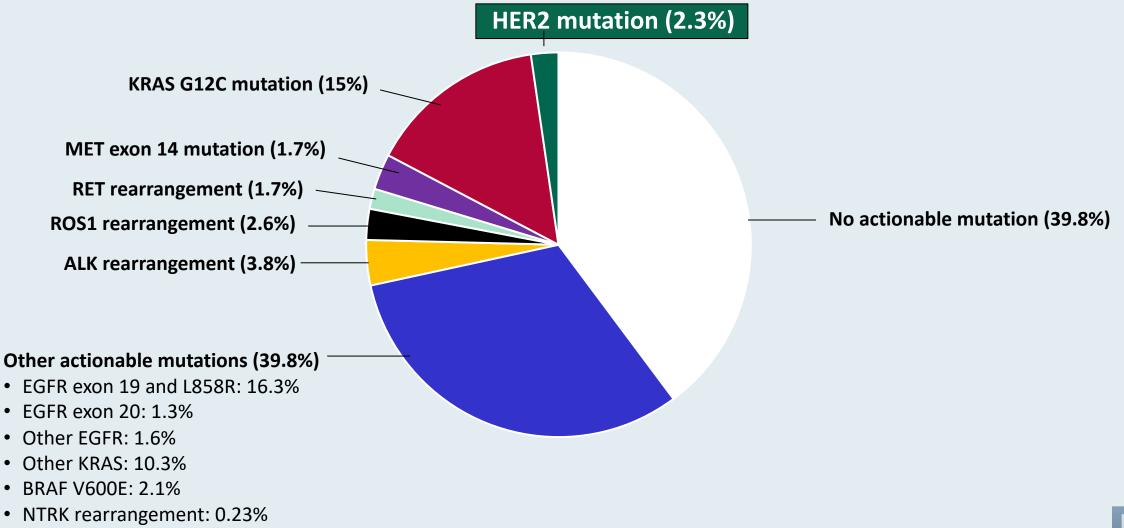

Adagrasib in Non–Small-Cell Lung Cancer Harboring a *KRAS*^{G12C} Mutation

Pasi A. Jänne, M.D., Ph.D., Gregory J. Riely, M.D., Ph.D., Shirish M. Gadgeel, M.D., Rebecca S. Heist, M.D., M.P.H.,
Sai-Hong I. Ou, M.D., Ph.D., Jose M. Pacheco, M.D., Melissa L. Johnson, M.D., Joshua K. Sabari, M.D., Konstantinos Leventakos, M.D., Ph.D.,
Edwin Yau, M.D., Ph.D., Lyudmila Bazhenova, M.D., Marcelo V. Negrao, M.D.,
Nathan A. Pennell, M.D., Ph.D., Jun Zhang, M.D., Ph.D., Kenna Anderes, Ph.D., Hirak Der-Torossian, M.D., Thian Kheoh, Ph.D., Karen Velastegui, B.Sc.,
Xiaohong Yan, Ph.D., James G. Christensen, Ph.D., Richard C. Chao, M.D., and Alexander I. Spira, M.D., Ph.D.


N Engl J Med 2022;387(2):120-31.

KRYSTAL-1: Response in a Phase II Study of Adagrasib for Advanced or Metastatic NSCLC Harboring a KRAS G12C Mutation

KRYSTAL-1: Intracranial Responses with Adagrasib for Advanced or Metastatic NSCLC Harboring a KRAS G12C Mutation


Jänne PA et al. N Engl J Med 2022;387(2):120-31.

KRYSTAL-1: Select Treatment-Related Adverse Events with Adagrasib for Advanced or Metastatic NSCLC Harboring a KRAS G12C Mutation

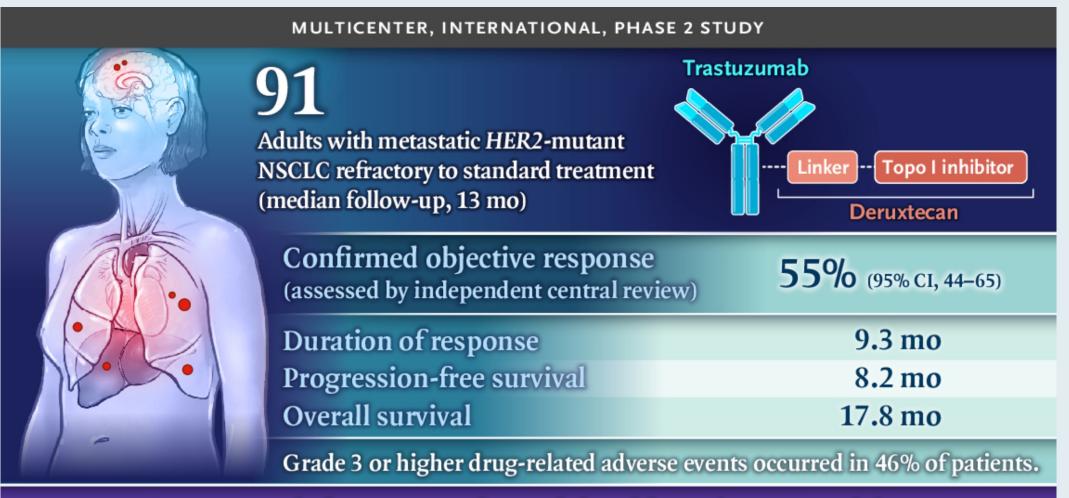
Adverse event (N = 116)	Any grade	Grade ≥3
Diarrhea	70.7%	0.9%
Nausea	69.8%	4.3%
Fatigue	59.5%	6.9%
Vomiting	56.9%	0.9%
Blood creatinine increased	34.5%	0.9%
ALT increased	28.4%	5.2%
AST increased	26.7%	5.2%

Frequency of Targetable Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung

Derived from Tan AC et al. J Clin Oncol 2022;40:611-25.

N Engl J Med 2022;386(3):241-51.

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Trastuzumab Deruxtecan in HER2-Mutant Non–Small-Cell Lung Cancer

Bob T. Li, M.D., Ph.D., M.P.H., Egbert F. Smit, M.D., Ph.D., Yasushi Goto, M.D., Ph.D., Kazuhiko Nakagawa, M.D., Hibiki Udagawa, M.D., Julien Mazières, M.D., Misako Nagasaka, M.D., Ph.D., Lyudmila Bazhenova, M.D., Andreas N. Saltos, M.D., Enriqueta Felip, M.D., Ph.D., Jose M. Pacheco, M.D., Maurice Pérol, M.D., Luis Paz-Ares, M.D., Kapil Saxena, M.D., Ryota Shiga, B.Sc., Yingkai Cheng, M.D., Ph.D., Suddhasatta Acharyya, Ph.D., Patrik Vitazka, M.D., Ph.D., Javad Shahidi, M.D., David Planchard, M.D., Ph.D., and Pasi A. Jänne, M.D., Ph.D., for the DESTINY-Lung01 Trial Investigators*

DESTINY-Lung01 Study

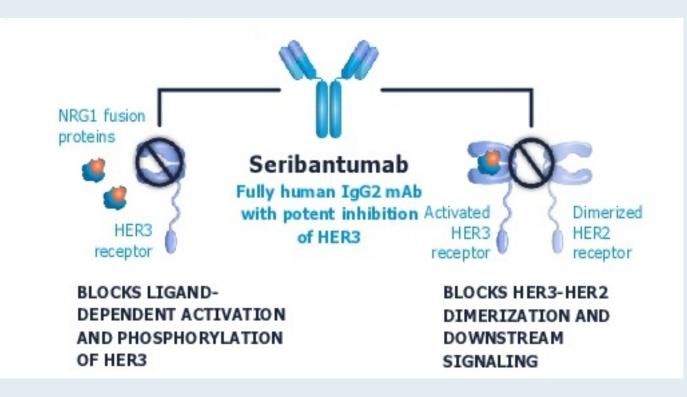
Trastuzumab deruxtecan showed durable anticancer activity.

DESTINY-Lung01: Summary of Adverse Events and AEs of Clinical Interest

Event	N = 91
Discontinued due to AEs	25%
Dose reduction due to AEs	34%
Dose interruption due to AEs	32%
Drug-related interstitial lung disease (ILD)	26% (N = 24)
Grade 1	3 pts
Grade 2	15 pts
Grade 3	4 pts
Grade 5	2 pts
Median time to onset of ILD	141 days
Median duration of ILD	43 days

DESTINY-Lung01: Common Adverse Events (N = 91)

Event	Any grade	Grade ≥3
Nausea	73%	9%
Fatigue	53%	7%
Alopecia	46%	0
Vomiting	40%	3%
Neutropenia	35%	18%
Anemia	33%	10%
Diarrhea	32%	3%
Decreased appetite	30%	0
Leukopenia	23%	4%
Constipation	22%	0



Other Potential Oncogenic Driver Molecular Alterations in Adenocarcinoma of the Lung

Neuregulin-1 (NRG1) Gene Fusions and Seribantumab Mechanism of Action

- NRG1 gene fusions are rare oncogenic drivers found in 0.2% of solid tumors, including lung, colorectal, breast and ovarian
- NRG1 fusion proteins predominantly retain an active EGF-like domain, which drives tumorigenesis and proliferation through aberrant HER3 activation
- Seribantumab is a fully human monoclonal antibody against HER3

Bendell JC et al. Gastrointestinal Cancers Symposium 2021; Abstract TPS449.

Investigational New Drugs (2021) 39:1604–1612 https://doi.org/10.1007/s10637-021-01145-y

PHASE I STUDIES

Phase 1 dose escalation study of seribantumab (MM-121), an anti-HER3 monoclonal antibody, in patients with advanced solid tumors

Crystal S. Denlinger¹ · Vicki L. Keedy² · Victor Moyo³ · Gavin MacBeath³ · Geoffrey I. Shapiro⁴

Best Overall Response with and Recommended Phase II Dose of Seribantumab for Advanced Solid Tumors

Best response	Dose escalation (n = 25)	Dose expansion (n = 18)
Overall response	0	0
Complete response	0	0
Partial response	0	0
Stable disease	6 (24%)	7 (39%)
Progressive disease	11 (44%)	8 (44%)

- Most adverse events were transient and mild to moderate (Grade 1 or 2) in severity
- The maximum tolerated dose was not reached in the dose escalation portion, and the 40 mg/kg loading dose followed by 20 mg/kg weekly maintenance dose was considered well tolerated and chosen for the dose expansion portion of the study

Denlinger CS et al. Invest New Drugs 2021;39(6):1604-12.

2022 ASCO[®] ANNUAL MEETING Abstract 3006

CRESTONE: Initial Efficacy and Safety of Seribantumab in Solid Tumors Harboring NRG1 Fusions

Daniel R. Carrizosa,¹ Mark E. Burkard,² Yasir Y. Elamin,³ Jayesh Desai,⁴ Shirish M. Gadgeel,⁵ Jessica J. Lin,⁶ Saiama N. Waqar,⁷ David R. Spigel,⁸ Young Kwang Chae,⁹ Parneet K. Cheema,¹⁰ Eric B. Haura,¹¹ Stephen V. Liu,¹² Danny Nguyen,¹³ Karen L. Reckamp,¹⁴ Frank Yung-Chin Tsai,¹⁵ Valerie M. Jansen,¹⁶ Alexander Drilon,¹⁷ Sai-Hong Ignatius Ou,¹⁸ D Ross Camidge,¹⁹ Tejas Patil¹⁹

¹Levine Cancer Institute/Atrium Health, Charlotte, NC; ²University of Wisconsin Carbone Cancer Center, Madison, WI; ³The University of Texas MD Anderson Cancer Center, Houston, TX; ⁴Peter MacCallum Cancer Centre, Melbourne, Australia; ⁵Henry Ford Cancer Institute/Henry Ford Health System, Detroit, MI; ⁶Massachusetts General Hospital, Boston, MA; ⁷Washington University School of Medicine, St. Louis, MO; ⁸Sarah Cannon Research Institute, Nashville, TN; ⁹Northwestern University, Chicago, IL; ¹⁰William Osler Health System, Calgary, Canada; ¹¹H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; ¹²Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC; ¹³City of Hope, Huntington Beach and Irvine, CA; ¹⁴Cedars-Sinai Medical Center, Los Angeles, CA; ¹⁶HonorHealth, Scottsdale, AZ; ¹⁶Elevation Oncology, Inc. New York, NY; ¹⁷Memorial Sloan Kettering Cancer Center, New York, NY; ¹⁸Chao Family Comprehensive Cancer Center, University of CA-Irvine, Orange, CA; ¹⁹University of Colorado Cancer Center, Aurora, CO

CRESTONE: An Ongoing Phase II Study of Seribantumab in Patients with Advanced Solid Tumors with NRG1 Fusions

Trial identifier: NCT04383210 (open)

Advanced solid tumor with an NRG1 gene fusion

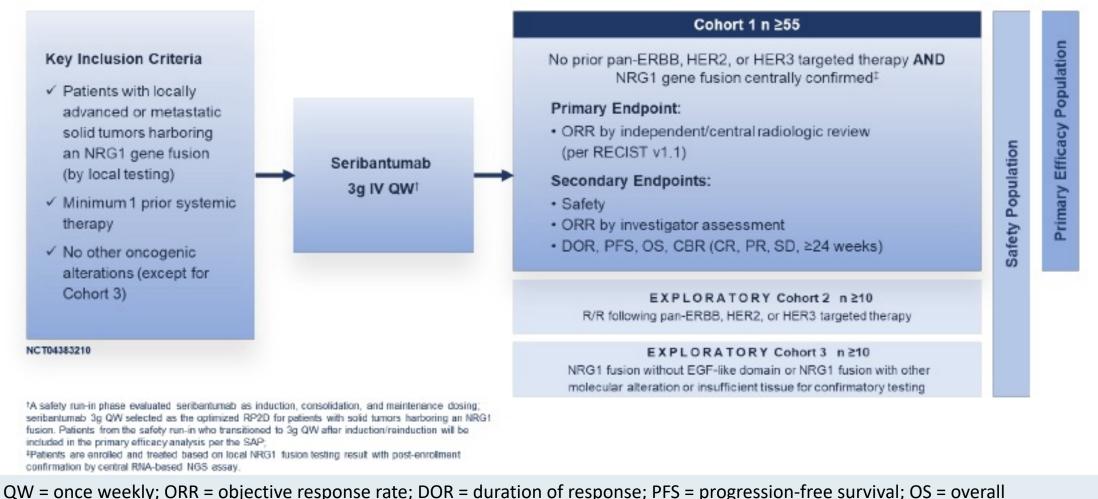
Disease progression on or unresponsive to at least 1 prior standard therapy appropriate for tumor type and stage of disease

No further available curative therapy options

No prior pan-ERBB or any ERBB/HER2/HER3directed therapy (Cohort 1 only)

Primary endpoint: Objective response rate

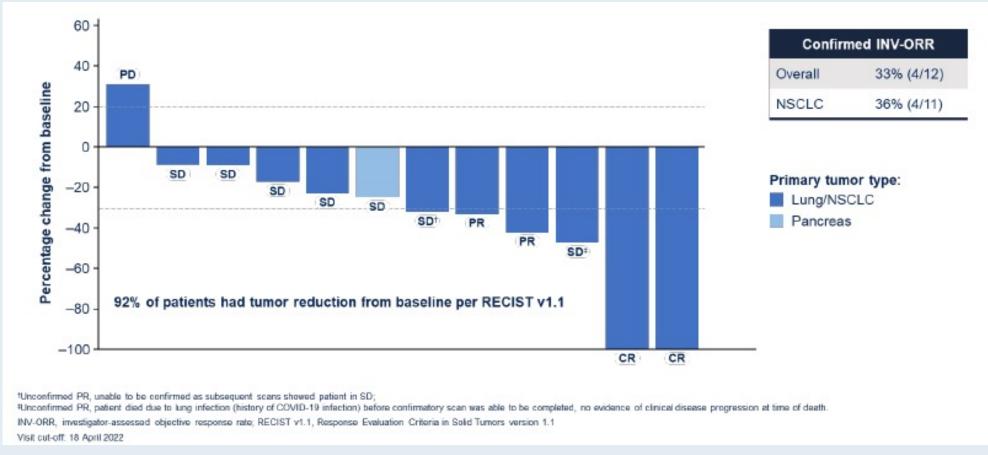
Seribantumab 1-h IV infusion at various doses once weekly, every 2 weeks and every 3 weeks, during the induction, consolidation and maintenance dosing phases, respectively


Patient Cohorts:

<u>Cohort 1</u>: A minimum of 55 adults with advanced solid tumors harboring NRG1 gene fusions who have received prior standard treatment, excluding prior ERBB-directed therapy <u>Cohort 2</u>: Up to 10 adults with advanced solid tumors harboring NRG1 gene fusions who have received prior standard treatment, including prior ERBB-directed therapy <u>Cohort 3</u>: Up to 10 adults with advanced solid tumors harboring NRG1 gene fusions lacking an EGF-like domain who have received

prior standard treatment, which may have included prior ERBBdirected therapy

CRESTONE: A Phase II Study of Seribantumab for Patients with Advanced Solid Tumors Harboring NRG1 Fusions



survival; CBR = clinical benefit rate; CR = complete response; PR = partial response; SD = stable disease

Carrizosa DR et al. ASCO 2022; Abstract 3006.

CRESTONE: Efficacy of Seribantumab for Patients with Advanced Solid Tumors Harboring NRG1 Fusions

PD = progressive disease; SD = stable disease; PR = partial response; CR = complete response

• Median DoR has not been reached

Carrizosa DR et al. ASCO 2022; Abstract 3006.

CRESTONE: Select Treatment-Related Adverse Events with Seribantumab in Patients with Advanced Solid Tumors Harboring NRG1 Fusions

Treatment-related adverse event (N = 35)	Any grade	Grade ≥3
Patients with ≥1 AE	30 (86%)	2 (6%)
Diarrhea	14 (40%)	1 (3%)
Fatigue	10 (29%)	0
Rash	9 (26%)	0
Hypokalemia	3 (9%)	0

Regulatory and reimbursement issues aside, what would be your preferred first-line therapy for a 65-year-old asymptomatic patient with metastatic nonsquamous NSCLC (PD-L1 TPS 50%) and a <u>KRAS G12C mutation</u>?

Dr Baik	Carboplatin/ pemetrexed/ pembrolizumab	Dr Gainor	Pembrolizumab
Dr Camidge	Carboplatin/ pemetrexed/ pembrolizumab	Dr Johnson	Pembrolizumab
Dr Drilon	Pembrolizumab	Dr Spira	Carboplatin/ pemetrexed/ pembrolizumab

Regulatory and reimbursement issues aside, what would be your preferred first-line therapy for a 65-year-old asymptomatic patient with metastatic nonsquamous NSCLC (PD-L1 TPS 50%) and an <u>NTRK fusion</u>?

Meet The Professor Optimizing the Management of Hepatobiliary Cancers

> Thursday, July 28, 2022 5:00 PM – 6:00 PM ET

> > Faculty Robin K Kelley, MD

Moderator Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

