Meet The Professor Optimizing the Management of Ovarian Cancer

Prof Jonathan A Ledermann

Professor of Medical Oncology UCL Cancer Institute London, United Kingdom

Commercial Support

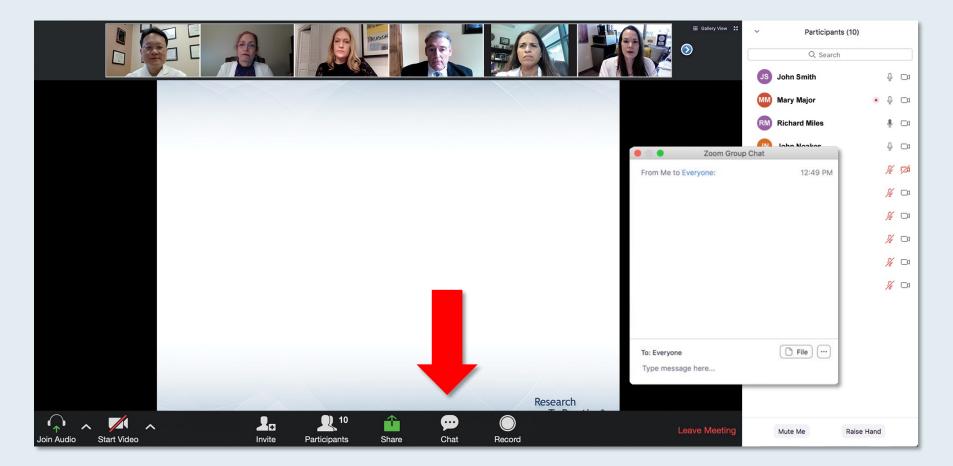
This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, GlaxoSmithKline, Merck, and Mersana Therapeutics Inc.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

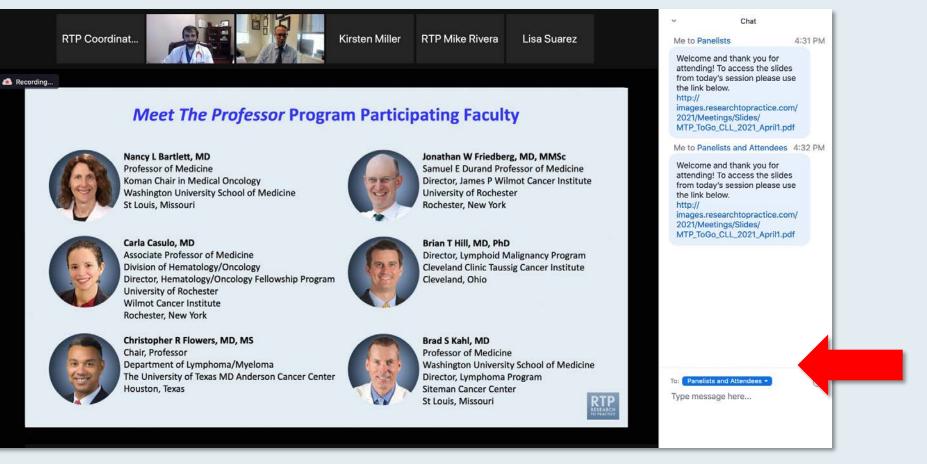
Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



Prof Ledermann — Disclosures

Advisory Committee	AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Clovis Oncology, Eisai Inc, Merck, Merck Sharp & Dohme LLC, Nuvation Bio, Tesaro, A GSK Company, VBL Therapeutics
Data and Safety Monitoring Board/Committee	Mersana Therapeutics Inc, Regeneron Pharmaceuticals Inc
Speakers Bureau	AstraZeneca Pharmaceuticals LP, Clovis Oncology, Merck, Merck Sharp & Dohme LLC, Neopharm, Tesaro, A GSK Company

We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

ONCOLOGY TODAY WITH DR NEIL LOVE

Updates on Ovarian Cancer from SGO 2022

DR DAVID O'MALLEY THE OHIO STATE UNIVERSITY AND THE JAMES CANCER CENTER

Dr David O'Malley – Updates on Ovaria Oncology Today with Dr Neil Love —

(15) (30)

Recent Advances in Medical Oncology: A daylong CME hybrid (live/online) event Saturday, August 6, 2022 9:00 AM - 4:30 PM PT (12:00 PM - 7:30 PM ET) Bellagio Las Vegas | Las Vegas, Nevada Faculty Neeraj Agarwal, MD Craig Moskowitz, MD Harold J Burstein, MD, PhD Joyce O'Shaughnessy, MD Krina Patel, MD, MSc Ibiayi Dagogo-Jack, MD **Rafael Fonseca, MD** Philip A Philip, MD, PhD, FRCP Suresh S Ramalingam, MD **Brad S Kahl, MD** Rutika Mehta, MD, MPH Sandy Srinivas, MD **Moderator** Neil Love, MD In Partnership with the American Oncology Network

Data + Perspectives — Investigators Discuss the Current and Future Roles of Chimeric Antigen Receptor T-Cell Therapy and Bispecific Antibodies in the Care of Patients with Hematologic Cancers

> Tuesday, August 9, 2022 5:00 PM – 6:30 PM ET

Faculty

Ajai Chari, MD Ian W Flinn, MD, PhD Nikhil C Munshi, MD Laurie H Sehn, MD, MPH

Meet The Professor Optimizing the Management of Small Cell Lung Cancer

> Thursday, August 11, 2022 5:00 PM – 6:00 PM ET

> > Faculty Jacob Sands, MD

Meet The Professor Optimizing the Management of Gastroesophageal Cancers

> Wednesday, August 17, 2022 5:00 PM – 6:00 PM ET

> > Faculty John Strickler, MD

Meet The Professor Optimizing the Management of Ovarian Cancer

Thursday, August 25, 2022 5:00 PM – 6:00 PM ET

Faculty Richard T Penson, MD, MRCP

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Optimizing the Management of Ovarian Cancer

Prof Jonathan A Ledermann

Professor of Medical Oncology UCL Cancer Institute London, United Kingdom

Meet The Professor Program Participating Faculty

Ramez N Eskander, MD

Associate Clinical Professor of Obstetrics, Gynecology and Reproductive Sciences UC San Diego Health La Jolla, California

Stephanie Lheureux, MD, PhD

Drug Development Program - Gynecology Division of Medical Oncology and Hematology Gynecology Site Lead Co-Director of the Beyond Chemotherapy Program Princess Margaret Cancer Centre Associate Professor University of Toronto Toronto, Ontario, Canada

Prof Jonathan A Ledermann Professor of Medical Oncology UCL Cancer Institute London, United Kingdom

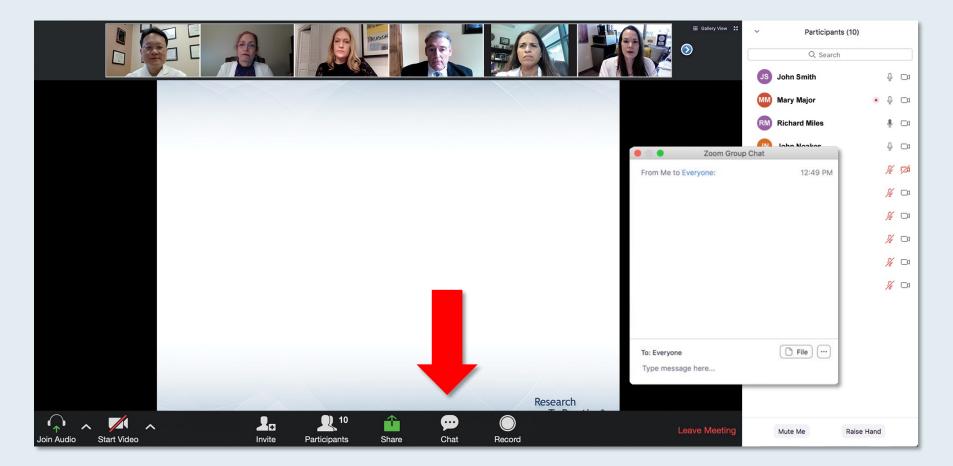
Ursula Matulonis, MD Chief, Division of Gynecologic Oncology Brock-Wilson Family Chair Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School Boston, Massachusetts

Meet The Professor Program Participating Faculty

Richard T Penson, MD, MRCP Associate Professor of Medicine Harvard Medical School Clinical Director, Medical Gynecologic Oncology Massachusetts General Hospital Boston, Massachusetts

MODERATOR

Neil Love, MD Research To Practice



Shannon N Westin, MD, MPH

Associate Professor Director, Early Drug Development Department of Gynecologic Oncology and Reproductive Medicine The University of Texas MD Anderson Cancer Center Houston, Texas

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

ONCOLOGY TODAY WITH DR NEIL LOVE

Updates on Ovarian Cancer from SGO 2022

DR DAVID O'MALLEY THE OHIO STATE UNIVERSITY AND THE JAMES CANCER CENTER

Dr David O'Malley – Updates on Ovaria Oncology Today with Dr Neil Love —

(15) (30)

Recent Advances in Medical Oncology: A daylong CME hybrid (live/online) event Saturday, August 6, 2022 9:00 AM - 4:30 PM PT (12:00 PM - 7:30 PM ET) Bellagio Las Vegas | Las Vegas, Nevada Faculty Neeraj Agarwal, MD Craig Moskowitz, MD Harold J Burstein, MD, PhD Joyce O'Shaughnessy, MD Krina Patel, MD, MSc Ibiayi Dagogo-Jack, MD **Rafael Fonseca, MD** Philip A Philip, MD, PhD, FRCP Suresh S Ramalingam, MD **Brad S Kahl, MD** Rutika Mehta, MD, MPH Sandy Srinivas, MD **Moderator** Neil Love, MD In Partnership with the American Oncology Network

Join Us Online

Recent Advances and Real-World Implications in Medical Oncology A Daylong Multitumor Educational Symposium in Partnership with the American Oncology Network Saturday, August 6, 2022

Breast Cancer 9:00 AM – 10:05 AM PT Faculty Harold J Burstein, MD, PhD Joyce O'Shaughnessy, MD **Genitourinary Cancers** 10:05 AM – 11:05 AM PT

Faculty

Neeraj Agarwal, MD Sandy Srinivas, MD

Moderator

Neil Love, MD

Join Us Online

Recent Advances and Real-World Implications in Medical Oncology A Daylong Multitumor Educational Symposium in Partnership with the American Oncology Network Saturday, August 6, 2022

Multiple Myeloma 11:25 AM – 12:25 PM PT

Faculty

Rafael Fonseca, MD Krina Patel, MD, MSc **CLL and Lymphomas** 1:05 PM – 2:05 PM PT

Faculty

Brad S Kahl, MD Craig Moskowitz, MD

Join Us Online

Recent Advances and Real-World Implications in Medical Oncology A Daylong Multitumor Educational Symposium in Partnership with the American Oncology Network Saturday, August 6, 2022

Gastrointestinal Cancers 2:05 PM – 3:05 PM PT

Faculty

Rutika Mehta, MD, MPH Philip A Philip, MD, PhD, FRCP Lung Cancer 3:25 PM – 4:25 PM PT Faculty

Ibiayi Dagogo-Jack, MD Suresh S Ramalingam, MD

Moderator

Neil Love, MD

Data + Perspectives — Investigators Discuss the Current and Future Roles of Chimeric Antigen Receptor T-Cell Therapy and Bispecific Antibodies in the Care of Patients with Hematologic Cancers

> Tuesday, August 9, 2022 5:00 PM – 6:30 PM ET

Faculty

Ajai Chari, MD Ian W Flinn, MD, PhD Nikhil C Munshi, MD Laurie H Sehn, MD, MPH

Meet The Professor Optimizing the Management of Small Cell Lung Cancer

> Thursday, August 11, 2022 5:00 PM – 6:00 PM ET

> > Faculty Jacob Sands, MD

Meet The Professor Optimizing the Management of Gastroesophageal Cancers

> Wednesday, August 17, 2022 5:00 PM – 6:00 PM ET

> > Faculty John Strickler, MD

Meet The Professor Optimizing the Management of Ovarian Cancer

Thursday, August 25, 2022 5:00 PM – 6:00 PM ET

Faculty Richard T Penson, MD, MRCP

Meet The Professor Optimizing the Management of Ovarian Cancer

Prof Jonathan A Ledermann

Professor of Medical Oncology UCL Cancer Institute London, United Kingdom

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, GlaxoSmithKline, Merck, and Mersana Therapeutics Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Prof Ledermann — Disclosures

Advisory Committee	AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Clovis Oncology, Eisai Inc, Merck, Merck Sharp & Dohme LLC, Nuvation Bio, Tesaro, A GSK Company, VBL Therapeutics
Data and Safety Monitoring Board/Committee	Mersana Therapeutics Inc, Regeneron Pharmaceuticals Inc
Speakers Bureau	AstraZeneca Pharmaceuticals LP, Clovis Oncology, Merck, Merck Sharp & Dohme LLC, Neopharm, Tesaro, A GSK Company

Dana M Chase, MD University of Arizona College of Medicine Phoenix, Arizona

Rajalaxmi McKenna, MD Southwest Medical Consultants SC Willowbrook, Illinois

Gigi Chen, MD John Muir Health Pleasant Hill, California

Rao Mushtaq, MD National Jewish Health Thornton, Colorado

Paul DiSilvestro, MD Women and Infants Hospital of Rhode Island/Alpert School of Medicine at Brown Providence, Rhode Island

Priya Rudolph, MD, PhD Georgia Cancer Specialists Northside Hospital Cancer Institute Athens, Georgia

Karim ElSahwi, MD Hackensack Meridian Health Neptune City, New Jersey

Syed F Zafar, MD Lee Health Fort Myers, Florida

Meet The Professor with Prof Ledermann

Introduction: Journal Club with Prof Ledermann – Part 1

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Prof Ledermann – Part 2

MODULE 4: Appendix of Key Publications

Meet The Professor with Prof Ledermann

Introduction: Journal Club with Prof Ledermann – Part 1

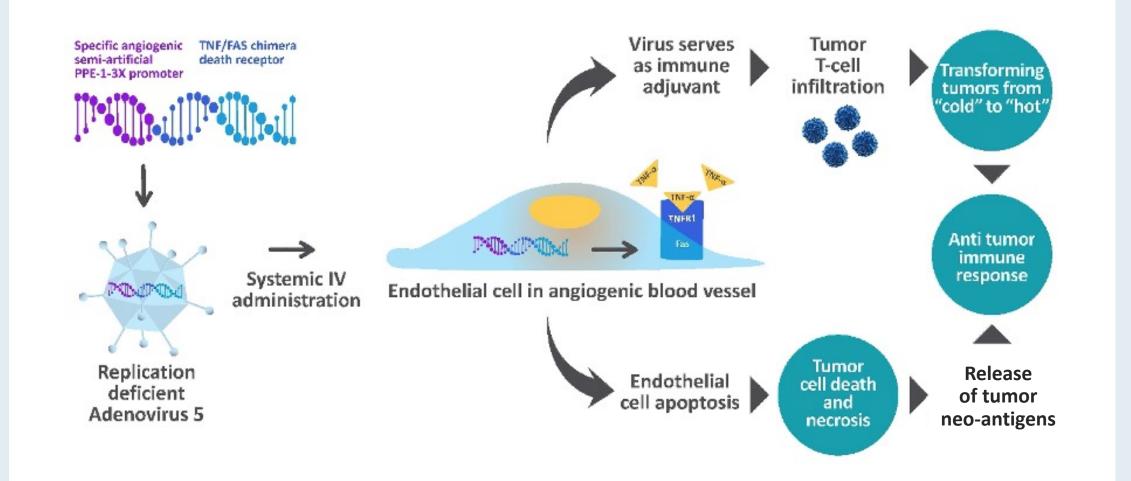
MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Prof Ledermann – Part 2

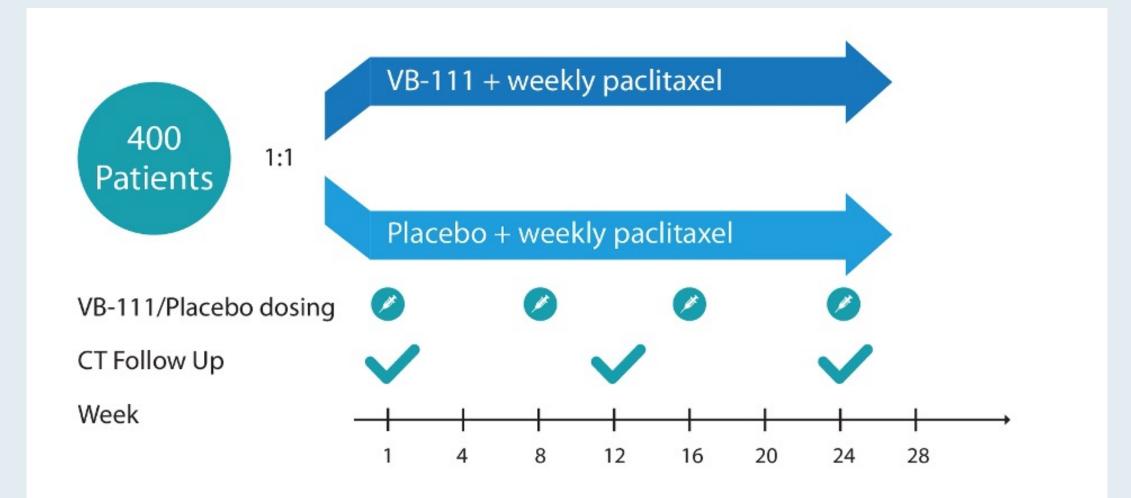
MODULE 4: Appendix of Key Publications

Clinical Trial in Progress: Pivotal Study of VB-111 Combined with Paclitaxel vs. Paclitaxel for Treatment of Platinum-Resistant Ovarian Cancer (OVAL, VB-111-701/GOG-3018)

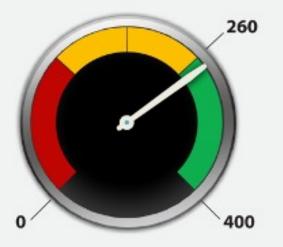

Primary Endpoint Changed to either PFS or OS, PFS Readout Expected in 2022

Authors: Arend RC¹, Monk BJ², Herzog TJ³, Ledermann JA⁴, Moore KN⁵, Alvarez Secord A⁶, Shapira-Frommer R⁷, Tewari KS⁸, Rachmilewitz Minei T⁹, Harats D⁹, Penson RT¹⁰.

ASCO 2021; Abstract TPS5599.


OVAL Background

Arend RC et al. ASCO 2021; Abstract TPS5599.


OVAL Study Design

Arend RC et al. ASCO 2021; Abstract TPS5599.

OVAL Current Status

Over 65% randomized to date

New Primary Efficacy Endpoints:

- Either Progression-free Survival (PFS) or Overall Survival (OS)
- A positive outcome in either PFS or OS will enable submission for registration
- > Protocol amended following agreement with FDA

Expected Event Timeline

- > Next DSMC Review in 3Q 2021
- PFS: Prespecified number of events to unblind study anticipated in 2022
- OS: Prespecified number of events to unblind study anticipated in 2023

Phase III OVAL Trial of Ofra-vec (Ofranergene Obadenovec; VB-111) for Platinum-Resistant Ovarian Cancer Fails to Meet Its Primary Endpoints Press Release: July 19, 2022

Top-line data from the Phase 3 OVAL clinical trial of ofra-vec (ofranergene obadenovec; VB-111) in platinum-resistant ovarian cancer demonstrated that the trial did not meet the primary endpoints of achieving a statistically significant improvement in progression-free survival (PFS) or overall survival (OS).

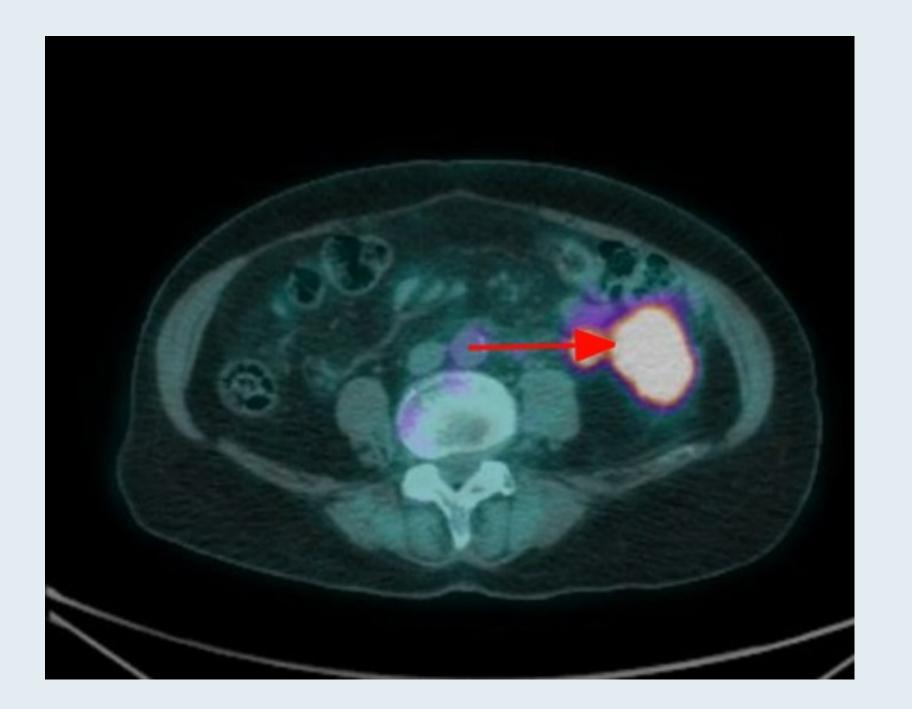
The OVAL trial demonstrated that patients randomized to the combination of ofra-vec and paclitaxel had a median PFS of 5.29 months, versus 5.36 months for the paclitaxel control arm (HR = 1.03). The interim overall survival analysis was also not significantly different between the two study arms (median OS 13.37 months in the treatment arm versus 13.14 months in the control arm; HR = 0.97) and did not support study continuation.

Meet The Professor with Prof Ledermann

MODULE 1: Case Presentations

- Dr Mushtaq: An 80-year-old Asian woman with ovarian cancer and a gBRCA mutation, s/p surgery and adjuvant chemotherapy, now on maintenance olaparib
- Dr Rudolph: An 86-year-old woman with gBRCA wild-type HGSOC who develops recurrent disease after declining maintenance niraparib
- Dr ElSahwi: A 73-year-old woman with HGSOC and gBRCA1 and 2 mutations who responds to olaparib for 5 years but then develops PD after stopping
- Dr Chen: A 69-year-old woman with gBRCA wild-type Stage IIIC ovarian cancer who receives IV/IP adjuvant chemotherapy
- Dr Zafar: A 46-year-old woman with MSI-high BRCA wild-type clear cell ovarian cancer with SD on pembrolizumab and niraparib
- Dr Chase: A 59-year-old woman with recurrent BRCA wild-type (HRp) low-grade ovarian cancer with rising CA-125, pleural effusion and a new lung nodule on salvage chemotherapy
- Dr DiSilvestro: A 57-year-old woman with Stage IIIA ovarian cancer and a gBRCA1 mutation, s/p neoadjuvant chemotherapy and surgery, doing well on maintenance olaparib
- Dr McKenna: A 92-year-old woman with PMH of untreated CLL, with Stage III/IV ovarian cancer
- Dr Chen: A 53-year-old woman with recurrent BRCA wild-type low-grade ovarian cancer who has a CR to niraparib/bevacizumab but develops lymphedema

Case Presentation: An 80-year-old Asian woman with ovarian cancer and a gBRCA mutation, s/p surgery and adjuvant chemotherapy, now on maintenance olaparib



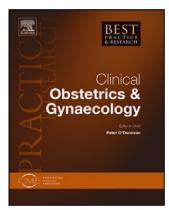
Dr Rao Mushtaq (Thornton, Colorado)

Current Oncology Reports (2021) 23: 97 https://doi.org/10.1007/s11912-021-01088-w

GYNECOLOGIC CANCERS (J BROWN AND RW NAUMANN, SECTION EDITORS)

Frontline Maintenance Treatment for Ovarian Cancer

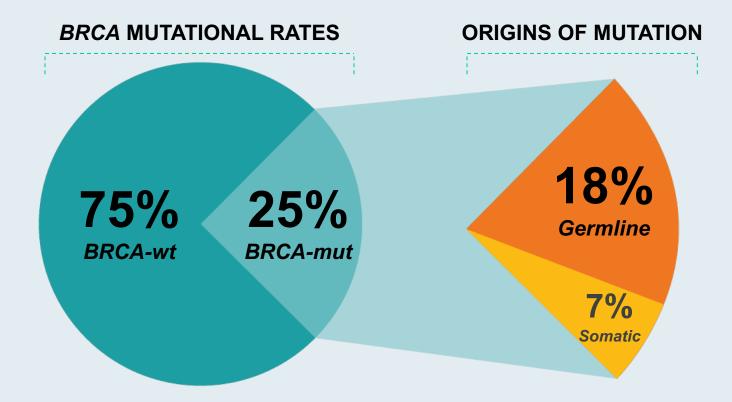
Osnat Elyashiv^{1,2} · Yien Ning Sophia Wong^{1,2} · Jonathan A. Ledermann^{1,2}


Best Practice & Research Clinical Obstetrics and Gynaecology 78 (2022) 64–73

Contents lists available at ScienceDirect

Best Practice & Research Clinical Obstetrics and Gynaecology

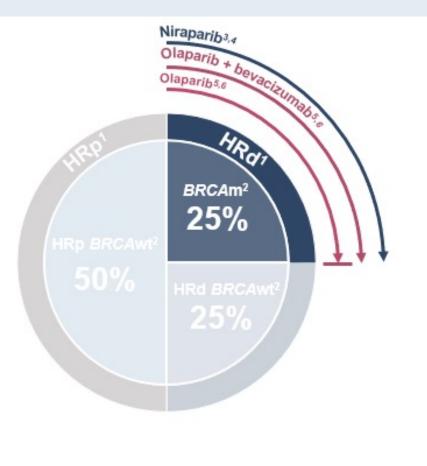
journal homepage: www.elsevier.com/locate/bpobgyn



Adjuvant and post-surgical treatment in high-grade epithelial ovarian cancer

Georgina E. Wood ^a, Jonathan A. Ledermann ^{a, b, *}

An Estimated 25% of Newly Diagnosed Ovarian Cancers Harbor BRCA1/2 Mutations



An estimated 1 in 4 women with EOC will have a *BRCA*-positive tumor result Tumor testing detects more patients with *BRCA* mutations than blood/saliva tests that do not look at tumor DNA

EOC = epithelial ovarian cancer; mut = mutation; wt = wild type

Pennington et al. Clin Cancer Res 2014;20(3):764-75.

PARP Inhibitors Are Available for First-Line Maintenance Therapy Across Biomarkers

BRCAm/HRd

Niraparib (PRIMA)^{3,4,7}

HR: 0.40 (95% CI, 0.27-0.62)

Niraparib (PRIME)^{3,4,7,10}

HR: 0.40 (95% CI, 0.23-0.68)

Olaparib + bevacizumab (PAOLA-1)^{5,6,8}

HR: 0.31 (95% CI, 0.20-0.47)

Olaparib (SOLO1)5,6,9

HR: 0.33 (95% CI, 0.25-0.43)

Percentages denote proportion of patients with genomic mutations in ovarian cancer.²

1L, first line; BRCAm, breast cancer gene mutant; BRCAwt, breast cancer gene wild type; HRd, homologous recombination deficient; HRp, homologous recombination proficient; PARP, poly (ADP-ribose) polymerase.

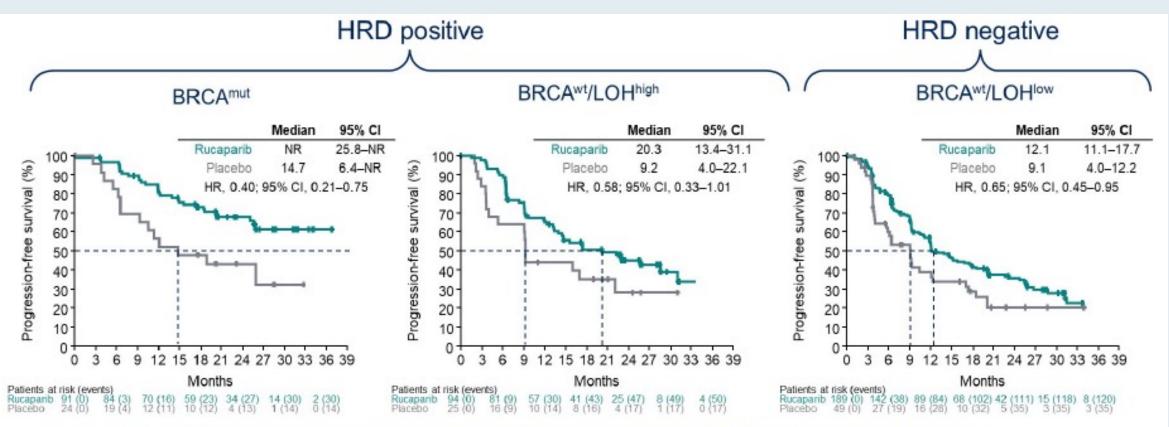
1. The Cancer Genome Atlas Research Network. Nature. 2011;474(7353):609-615. 2. Pennington KP et al. Clin Cancer Res. 2014;20(3):764-775. 3. ZEJULA. Summary of Product Characteristics. GlaxoSmithKline (Ireland) Ltd; 2021.

4. ZEJULA. Prescribing Information. GlaxoSmithKline; 2021. 5. Lynparza. Prescribing Information. AstraZeneca Pharmaceuticals LP; 2021. 6. Lynparza. Summary of Product Characteristics. AstraZeneca AB; 2021. 7. González-Martín A et al.

N Engl J Med. 2019;381(25):2391-2402. 8. Ray-Coquard I et al. N Engl J Med. 2019;381(5):2416-2428. 9. Banerjee S et al. Presented at: ESMO Virtual Congress; September 19-21, 2020. Presentation 811MO. 10. Li et al. PRIME SGO 2022 Phoenix

Courtesy of Brian M Slomovitz MD

Ovarian cancer 1L PARPi maintenance trials: design and populations


Trial	PARP inhibitor	Duration	BRCA status	R0 at PDS allowed	% PDS	CR/PR to platinum
SOLO1 ^{1,2}	Olaparib	2 years	BRCAmt only	Yes	62.9	Yes
PRIMA ³	Niraparib	3 years	All comers	No if Stage III	33	Yes
PRIME ⁴	Niraparib	3 years	All comers	Yes	53.1	Yes
PAOLA1⁵	Olaparib (w/bevacizumab)	2 years	All comers	Yes	50.7	Yes
	Veliparib (w/chemo)	36 total cycles	All comers	Yes	67.5	No (tx starts with chemo)
ATHENA-MONO ⁷	Rucaparib	2 years	All comers	Yes	48.9	Yes

¹Moore et al., *N Engl J Med* 2018; ²Banerjee et al., 2020 ESMO Congress; ³Gonzalez-Martin et al., *N Engl J Med* 2019; ⁴Li et al., 2022 SGO Annual Meeting; ⁵Ray-Coquard et al., *N Engl J Med* 2019; ⁶Coleman et al., *N Engl J Med* 2019; ⁷Monk et al., 2022 ASCO Annual Meeting

Liu N. ASCO 2022; Highlights of the Day: Gynecologic Cancers.

ATHENA-MONO: Investigator-Assessed PFS – Exploratory Subgroups

Rucaparib demonstrated treatment benefit vs placebo regardless of BRCA mutation and HRD status

Data cutoff date: March 23, 2022. BRCA, BRCA1 or BRCA2; HR, hazard ratio; HRD, homologous recombination deficiency; LOH, loss of heterozygosity; mut, mutant; NR, not reached; PFS, progression-free survival; wt, wild type.

Monk BJ et al. ASCO 2022; Abstract LBA5500; Liu N. ASCO 2022; Highlights of the Day: Gynecologic Cancers.

Trials of 1L PARPi maintenance in ovarian cancer

Trial	PARP inhibitor	Duration	All comers	BRCAmt	BRCAwt overall	BRCAwt – HRD	BRCAwt – HRP	HRD assay
ATHENA-MONO ¹	Rucaparib	2 years	HR 0.52 20.2 vs 9.2 mos	HR 0.40 NR vs 14.7 mos		HR 0.58 95%Cl 0.33-1.01 20.3 vs 9.2 mos	HR 0.65 95%Cl 0.45-0.95 12.1 vs 9.1 mos	Foundation One CDx
SOL01 ^{2,3}	Olaparib	2 years	-	HR 0.33 56.0 vs 13.8 mos	-		-	-
PRIMA ⁴	Niraparib	3 years	HR 0.62 13.8 vs 8.2 mos	HR 0.40 22.1 vs 10.9 mos		HR 0.50 19.6 vs 8.2 mos	HR 0.68 8.1 vs 5.4 mos	Myriad MyChoice
PRIME ⁵	Niraparib	3 years	HR 0.45 24.8 vs 8.3 mos	HR 0.40 NR vs 10.8 mos	HR 0.48* 19.3 vs 8.3 mos	HR 0.58 24.8 vs 11.1 mos	HR 0.41 14.0 vs 5.5 mos	Not published
PAOLA16	Olaparib (w/bevacizumab)	2 years	HR 0.59 22.1 vs 16.6 mos	HR 0.31 37.2 vs 21.7 mos	HR 0.71 18.9 vs 16.0 mos	HR 0.43 28.1 vs 16.6 mos	HR 0.92 (NS) 18.9 vs 16.0 mos	Myriad MyChoice
VELIA ⁷	Veliparib (w/chemo)	36 total cycles	HR 0.68 23.5 vs 17.3 mos	HR 0.44 34.7 vs 22.0 mos	HR 0.80 18.2 vs 15.1 mos	HR 0.74 (NS) 15.0 vs 11.5 mos	HR 0.81 (NS) 18.2 vs 15.1 mos	Myriad MyChoice

*does not exclude pts with sBRCAmt tumors

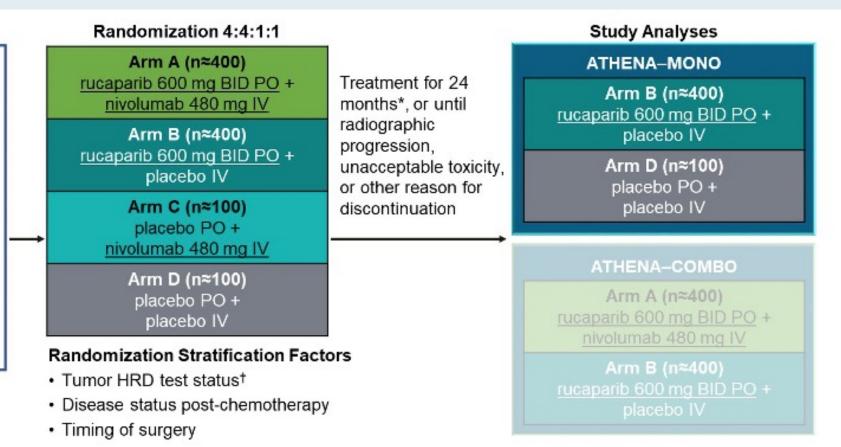
¹Monk et al., 2022 ASCO Annual Meeting; ²Moore et al., *N Engl J Med* 2018; ³Banerjee et al., 2020 ESMO Congress; ⁴Gonzalez-Martin et al., *N Engl J Med* 2019; ⁵Li et al., 2022 SGO Annual Meeting; ⁶Ray-Coquard et al., *N Engl J Med* 2019; ⁷Coleman et al., *N Engl J Med* 2019

Liu N. ASCO 2022; Highlights of the Day: Gynecologic Cancers.

A Randomized, Phase III Trial to Evaluate original **Rucaparib Monotherapy as Maintenance Treatment in Patients With Newly Diagnosed Ovarian Cancer (ATHENA-MONO/GOG-3020/** ENGOT-ov45)

reports

Bradley J. Monk, MD¹; Christine Parkinson, MD²; Myong Cheol Lim, MD, PhD³; David M. O'Malley, MD⁴; Ana Oaknin, MD, PhD⁵; Michelle K. Wilson, MD⁶; Robert L. Coleman, MD⁷; Domenica Lorusso, MD, PhD⁸; Paul Bessette, MD⁹; Sharad Ghamande, MD¹⁰; Athina Christopoulou, MD, PhD¹¹; Diane Provencher, MD¹²; Emily Prendergast, MD¹³; Fuat Demirkiran, MD¹⁴; Olga Mikheeva, MD¹⁵; Oladapo Yeku, MD, PhD¹⁶; Anita Chudecka-Glaz, MD, PhD¹⁷; Michael Schenker, MD, PhD¹⁸; Ramey D. Littell, MD¹⁹; Tamar Safra, MD²⁰; Hung-Hsueh Chou, MD^{21,22}; Mark A. Morgan, MD²³; Vít Drochýtek, MD²⁴; Joyce N. Barlin, MD²⁵; Toon Van Gorp, MD²⁶; Fred Ueland, MD²⁷; Gabriel Lindahl, MD^{28,29}; Charles Anderson, MD³⁰; Dearbhaile C. Collins, MBBCh, MA, PhD³¹; Kathleen Moore, MD³²; Frederik Marme, MD, PhD³³; Shannon N. Westin, MD, MPH³⁴; Iain A. McNeish, MD, PhD³⁵; Danny Shih, BA³⁶; Kevin K. Lin, PhD³⁷; Sandra Goble, MS³⁸; Stephanie Hume, PhD³⁹; Keiichi Fujiwara, MD, PhD⁴⁰; and Rebecca S. Kristeleit, MD, PhD⁴¹


J Clin Oncol 2022;[Online ahead of print].

ATHENA-MONO Study Schema

Key Patient Eligibility

- Newly diagnosed, stage III–IV, highgrade epithelial ovarian, fallopian tube, or primary peritoneal cancer
- Completed frontline platinum-doublet chemotherapy and surgery
 - Achieved investigator-assessed CR or PR
 - Received cytoreductive surgery (primary or interval; R0/complete resection permitted)
- · ECOG PS 0 or 1
- No prior treatment for ovarian cancer, including any maintenance treatment, other than frontline platinum regimen

Lancet Oncol 2022;23(4):465-78.

Rucaparib versus standard-of-care chemotherapy in patients 🐪 🖲 with relapsed ovarian cancer and a deleterious BRCA1 or BRCA2 mutation (ARIEL4): an international, open-label, randomised, phase 3 trial

Rebecca Kristeleit, Alla Lisyanskaya, Alexander Fedenko, Mikhail Dvorkin, Andreia Cristina de Melo, Yaroslav Shparyk, Irina Rakhmatullina, Igor Bondarenko, Nicoletta Colombo, Valentyn Svintsitskiy, Luciano Biela, Marina Nechaeva, Domenica Lorusso, Giovanni Scambia, David Cibula, Róbert Póka, Ana Oaknin, Tamar Safra, Beata Mackowiak-Matejczyk, Ling Ma, Daleen Thomas, Kevin K Lin, Karen McLachlan, Sandra Goble, Amit M Oza

FDA Advises Manufacturer Not to Submit First-Line Maintenance sNDA for Rucaparib Until OS Survival Data from the ATHENA-MONO Trial Are More Mature June 17, 2022

"In consultation with the FDA, [the manufacturer of rucaparib] recently was advised not to file a supplemental new drug application based on data from a cohort of the Phase III ATHENA study until the study's overall survival data mature.

In the 8-K, [the manufacturer] said the FDA has accepted a request for a pre-NDA meeting and noted that the ATHENA-MONO portion of the Phase III study has met its primary endpoint of progression-free survival compared to placebo. OS is a secondary endpoint for ATHENA-MONO and the data are approximately 25% mature at present. [The manufacturer] said the FDA urged it to hold off filing for supplemental approval until the OS data reach 50% maturity, and indicated an advisory committee review would likely be necessary if the data were filed earlier than that point.

In a statement to *Scrip*, the firm said that although it cannot anticipate the outcome of the pre-NDA meeting, 'we are encouraged that the FDA is willing to have a dialogue.' [They] estimate the ATHENA-MONO OS data will reach 50% maturity in approximately two years."

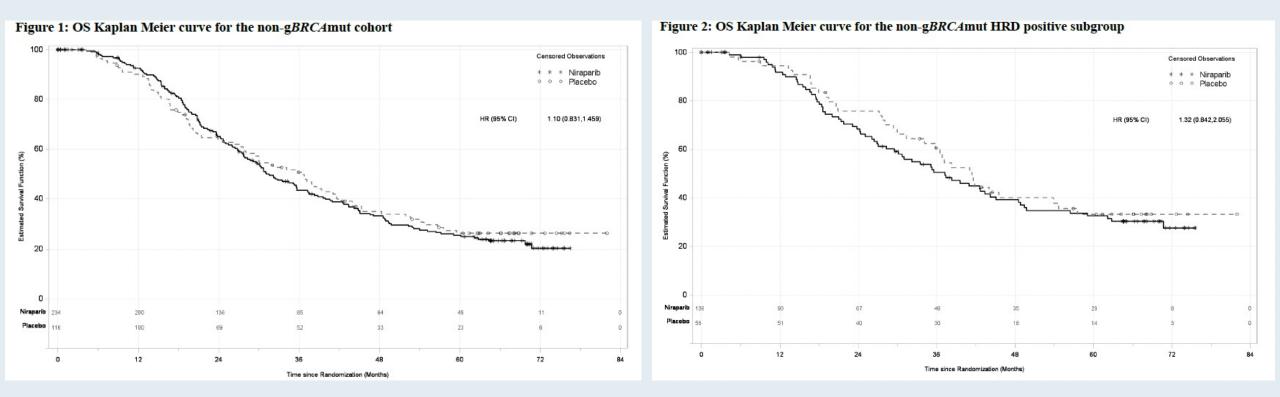
https://scrip.pharmaintelligence.informa.com/SC146575/Clovis-Withdraws-Rubraca-Ovarian-Cancer-Indication-Due-To-Survival-Imbalance?vid=Pharma

Dear Health Care Provider Letter (Niraparib)

May 2022

IMPORTANT DRUG WARNING

Subject: Zejula (Niraparib) Important Drug Warning For The Maintenance Treatment In Recurrent Ovarian Cancer (2L+)


Dear Health Care Provider:

The purpose of this letter is to inform you of important information for Zejula® (niraparib) a poly (ADPribose) polymerase (PARP) inhibitor indicated for the maintenance treatment of adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer who are in a complete or partial response to platinum-based chemotherapy received in the 2nd line or higher settings. GlaxoSmithKline (GSK) would like to inform you of updated overall survival (OS) data from the ENGOT- OV16/NOVA study.

<u>Updated OS Data from the ENGOT-OV16/NOVA study, a Phase III trial which evaluated the efficacy</u> <u>and safety of niraparib as maintenance treatment for patients with platinum-sensitive recurrent</u> <u>ovarian cancer</u>

Updated OS from ENGOT-OV16/NOVA Indicates Possible Detriment for Patients in the Overall Non-gBRCAmut and the Non-gBRCA-Mut/HRD Populations

Dear Health Care Provider Letter (Niraparib); May 2022.

Cancer 2021 July 15;127(14):2432-41.

Original Article

Molecular and Clinical Predictors of Improvement in Progression-Free Survival With Maintenance PARP Inhibitor Therapy in Women With Platinum-Sensitive, Recurrent Ovarian Cancer: A Meta-Analysis

Chee Khoon Lee, PhD D^{1,2}; Michael L. Friedlander, PhD^{2,3}; Angelina Tjokrowidjaja, MPH^{1,2}; Jonathan A. Ledermann, MD⁴; Robert L. Coleman, MD⁵; Mansoor R. Mirza, MD^{6,7}; Ursula A. Matulonis, MD⁸; Eric Pujade-Lauraine, PhD^{9,10}; Ralph Bloomfield, MSc¹¹; Sandra Goble, MS¹²; Ping Wang, PhD¹³; Rosalind M. Glasspool, PhD^{14,15}; Clare L. Scott, PhD^{2,16}; and the Gynecologic Cancer Intergroup Meta-Analysis Committee

Forest Plot of Hazard Ratios for Investigator-Assessed PFS

Subgroup	Weight	Hazard Ratio [95% CI]		PARP inhibitor (n/N)*	Placebo (n/N
Germline BRCA 1				20-2203	5-750 million
ARIEL3	4.8%	0.24 [0.13, 0.45]		34/52	24/29
NOVAT	8.3%	0.38 [0.23, 0.61]		52/84*	34/43
SOLO2	15.3%	0.30 [0.21, 0.43]		72/132	51/61
Study19	3.7%	0.19 [0.09, 0.39]		14/40	22/30
Subtotal (95% CI)	32.0%	0.29 [0.23, 0.37]	•	172/308	131/163
Heterogeneity: Chi ² =	2.89, df = 3	3 (P = 0.41); I ² = 0%			
Test for overall effect	: Z = 9.81 (I	P < 0.00001)			
Germline BRCA 2					
ARIEL3	2.4%	0.18 [0.07, 0.43]		13/30	18/19
NOVAT	2.0%	0.12 [0.04, 0.31]		22/50*	13/18
SOLO2	7.1%	0.36 [0.22, 0.62]		31/58	27/35
Study19		Not estimable [#]		3/13	11/13
Subtotal (95% CI)	11.5%	0.26 [0.17, 0.39]	•	69/151	69/85
Heterogeneity: Chi ² =	4.85, df = 2	$2 (P = 0.09); I^2 = 59\%$	10 M		
Test for overall effect					
Somatic BRCA					
ARIEL3	2.8%	0.23 [0.10, 0.54]	2	18/40	12/16
NOVAT	1.8%	0.21 [0.08, 0.59]		18/35	10/12
Study19	0.8%	0.23 [0.05, 1.12]		3/10	8/10
Subtotal (95% CI)	5.4%	0.22 [0.12, 0.41]	•	39/85	30/38
Heterogeneity: Chi ² =	0.03, df = 2	$2 (P = 0.99); I^2 = 0\%$	6238		
Test for overall effect					
Wild-type BRCA HR	D				
ARIEL3	12.1%	0.44 [0.29, 0.66]		67/106	45/52
NOVAT	7.7%	0.36 [0.22, 0.60]		48/71	41/44
Study19	2.1%	0.48 [0.18, 1.27]		8/16	11/20
Subtotal (95% CI)	21.8%	0.41 [0.31, 0.56]	•	123/193	97/116
Heterogeneity: Chi ² =	0.47, df = 2	$2 (P = 0.79); I^2 = 0\%$	19924		
Test for overall effect	: Z = 5.81 (F	P < 0.00001)			
Wild-type BRCA HRI	>				
ARIEL3	13.8%	0.58 [0.40, 0.85]		81/107	50/54
NOVAT	11.1%	0.73 [0.48, 1.11]		76/92	39/42
Study19	4.4%	0.60 [0.31, 1.17]		18/26	21/25
Subtotal (95% CI)	29.2%	0.64 [0.49, 0.83]	•	175/225	110/121
Heterogeneity: Chi ² =	0.65, df = 2		950 -		
Test for overall effect					
Total (95% CI)	100.0%	0.38 [0.33, 0.44]	•	578/962	437/523
		15 (P = 0.002); I ² = 58%			

Lee CK et al. *Cancer* 2021 July 15;127(14):2432-41.

_

Case Presentation: An 86-year-old woman with gBRCA wild-type HGSOC who develops recurrent disease after declining maintenance niraparib

Dr Priya Rudolph (Athens, Georgia)

Trastuzumab deruxtecan (T-DXd) vs treatment of physician's choice in patients with HER2-low unresectable and/or metastatic breast cancer: Results of DESTINY-Breast04, a randomized, phase 3 study

Shanu Modi Memorial Sloan Kettering Cancer Center, Memorial Hospital, New York, NY, USA June 5, 2022

Additional authors: William Jacot, Toshinari Yamashita, Joo Hyuk Sohn, Maria Vidal, Eriko Tokunaga, Junji Tsurutani, Naoto Ueno, Yee Soo Chae, Keun Seok Lee, Naoki Niikura, Yeon Hee Park, Xiaojia Wang, Binghe Xu, Dhiraj Gambhire, Lotus Yung, Gerold Meinhardt, Yibin Wang, Nadia Harbeck, David Cameron

On behalf of the DESTINY-Breast04 investigators

The NEW ENGLAND JOURNAL of MEDICINE N Engl J Med 2022;387(1):9-20.

ORIGINAL ARTICLE

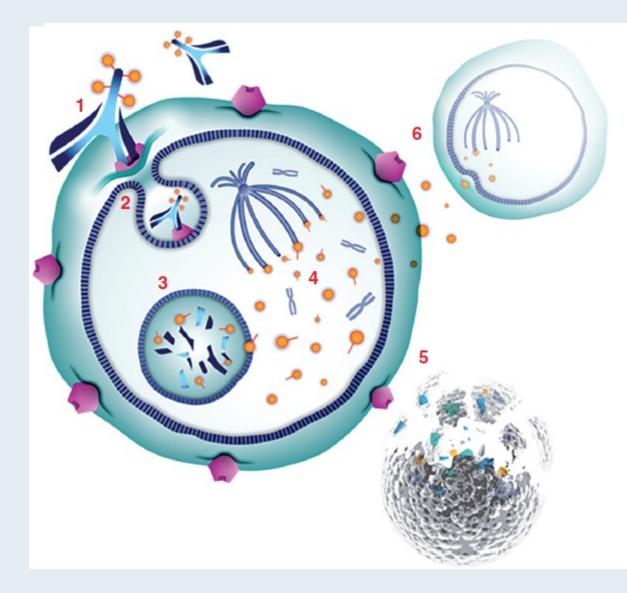
Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer

S. Modi, W. Jacot, T. Yamashita, J. Sohn, M. Vidal, E. Tokunaga, J. Tsurutani, N.T. Ueno, A. Prat, Y.S. Chae, K.S. Lee, N. Niikura, Y.H. Park, B. Xu, X. Wang, M. Gil-Gil, W. Li, J.-Y. Pierga, S.-A. Im, H.C.F. Moore, H.S. Rugo, R. Yerushalmi, F. Zagouri, A. Gombos, S.-B. Kim, Q. Liu, T. Luo, C. Saura, P. Schmid, T. Sun, D. Gambhire, L. Yung, Y. Wang, J. Singh, P. Vitazka, G. Meinhardt, N. Harbeck, and D.A. Cameron, for the DESTINY-Breast04 Trial Investigators*

The NEW ENGLAND JOURNAL of MEDICINE

N Engl J Med 2022;387(1):75-6.

EDITORIALS


DESTINY-Changing Results for Advanced Breast Cancer

RTP RESEARCH TO PRACTICE

Sara A. Hurvitz, M.D.

Mirvetuximab Soravtansine: Mechanism of Action

(1) Mirvetuximab soravtansine binds with high affinity to FRα expressed on the tumor cell surface

(2) The antibody-drug conjugate (ADC)/receptor complex becomes internalized via antigenmediated endocytosis

(3) Lysosomal processing releases active DM4 catabolites from the ADC molecule

(4) These maytansinoid derivatives inhibit tubulin polymerization and microtubule assembly

(5) The potent antimitotic effects result in cell-cycle arrest and apoptosis

(6) Active metabolites can also diffuse into neighboring cells and induce further cell death — in other words, bystander killing

Mirvetuximab Soravtansine (MIRV) in Patients with Platinum-Resistant Ovarian Cancer with High Folate Receptor Alpha (FRα) Expression: Characterization of Antitumor Activity in the SORAYA Study

Matulonis UA et al. ASCO 2022;Abstract 5512.

MIRASOL Phase III Study Schema

MIRAS[®]L

Enrollment and Key Eligibility

- Platinum-resistant disease (PFI ≤ 6 mo)
 - 1° platinum refractory disease excluded (primary PFI < 3 mo)
- Prior bevacizumab and PARPi allowed
- 1-3 prior lines of therapy
- Patients with BRCA mutations allowed
- FRα-high by PS2+ scoring (≥75% PS2+)

Statistical Assumptions

- 430 patients/ 330 events for PFS by INV
- α=0.05 (two-sided)
- Power=90%; HR=0.7; control arm mPFS 3.5 mo

Mirvetuximab Soravtansine 6 mg/kg AIBW (calculated using adjusted ideal body weight) intravenously once every 3 weeks

> 1:1 Randomization STRATIFICATION FACTORS Investigator's Choice (IC) Chemotherapy (Paclitaxel, PLD, Topotecan) Prior Therapies (1 vs 2 vs 3)

Investigator's Choice (IC) Chemotherapy Paclitaxel, PLD,⁺ or Topotecan Paclitaxel: 80 mg/m2 weekly; PLD: 40 mg/m² every 4 weeks; Topotecan: 4 mg/m² on days 1, 8, and 15 every four weeks; or 1.25 mg/m² on days 1-5 every 3 weeks

Moore KN et al. SGO 2022; Abstract 297.

PICCOLO Phase II Trial Schema

PICC¹

Enrollment and Key Eligibility

- Platinum-sensitive disease (PFI >6 mo)
- At least 2 prior lines of platinum-based therapy
 - Patients with documented platinum allergy require only 1 prior line of platinum
- FRα-high by IHC scoring (≥75% PS2+)
- Appropriate for single agent therapy as next line of therapy as determined by investigator

Statistical Assumptions

- N=75
- Null hypothesis: ORR is ≤ 28% tested using an optimal Simon's two-stage design w/o pause in enrollment

Mirvetuximab Soravtansine

6 mg/kg AIBW (calculated using adjusted ideal body weight) intravenously once every 3 weeks

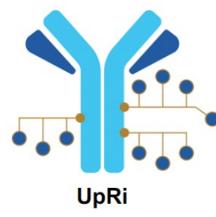
Alvarez Secord A et al. SGO 2022; Abstract 300.

Updated Results From the Phase 1b Expansion Study of Upifitamab Rilsodotin (UpRi; XMT-1536), a NaPi2bdirected Dolaflexin Antibody Drug Conjugate (ADC) in Ovarian Cancer

<u>Richardson, Debra L</u>¹; Hamilton, Erika P²; Barve, Minal³; Anderson, Charles K⁴; Taylor, Sara K⁵; Lakhani, Nehal⁶; Buscema, Joseph⁷; Tolcher, Anthony W⁸; Zarwan, Corrine⁹; Werner, Theresa L¹⁰; Hays, John L¹¹; Richards, Paul¹²; Arend, Rebecca¹³; Edenfield, Jeffery¹⁴; Putiri, Emily¹⁵; Bernardo, Patricia¹⁵; Burger, Robert A¹⁵; Matulonis, Ursula A¹⁶

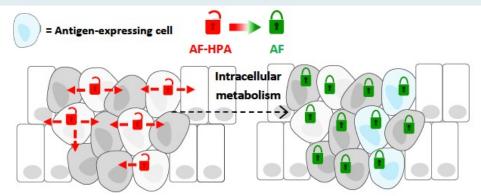
¹Stephenson Cancer Center, University of Oklahoma Health Sciences Center and the Sarah Cannon Research Institute, Oklahoma City, OK; ²Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ³Mary Crowley Cancer Research, Dallas, TX; ⁴Willamette Valley Cancer Institute and Research Center, Eugene, OR; ⁵BC Cancer - Kelowna BC, Canada; ⁶START Midwest, Grand Rapids, MI; ⁷Arizona Oncology, Tucson, AZ; ⁸NEXT Oncology, San Antonio, TX; ⁹Lahey Clinic, Burlington, MA; ¹⁰Huntsman Cancer Institute, University of Utah,

Salt Lake City, UT; ¹¹Arthur James Cancer Hospital, Ohio State University, Columbus, OH; ¹²US Oncology, Oncology and Hematology Assoc. of Southwest VA, Salem, VA; ¹³University of Alabama at Birmingham, Birmingham, AL; ¹⁴Prisma Health Cancer Institute, Greenville, SC; ¹⁵Mersana Therapeutics, Inc, Cambridge, MA; ¹⁶Dana-Farber Cancer Institute, Boston, MA



SGO 2022; Abstract 76.

Upifitamab Rilsodotin (UpRi): First-in-Class ADC Targeting NaPi2b

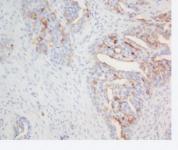


Antibody: Humanized monoclonal anti-NaPi2b¹

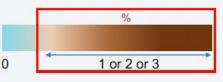
Linker: Polymer scaffold; cleavable ester linker²

Payload: AF-HPA (DolaLock-controlled bystander effect)¹

Drug-to-Antibody Ratio: ~10

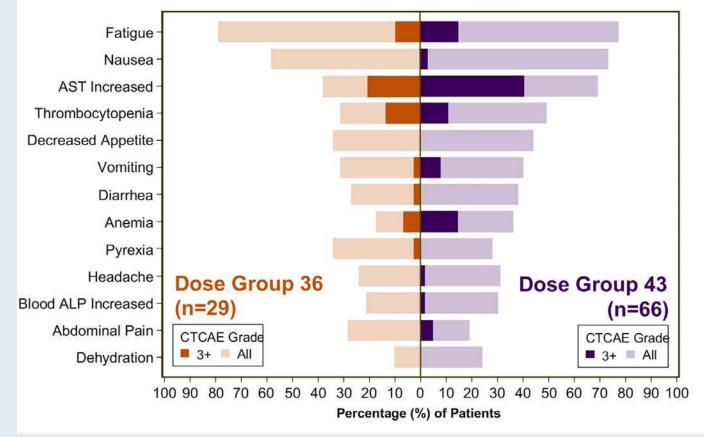

Upon ADC internalization into tumor cells and efficient release of payload, AF-HPA payload is metabolized to AF that remains highly potent but loses the ability to cross the cell membrane, locking it in the tumor, controlling the bystander effect, and consequently limiting impact on adjacent healthy cells^{2,3}

NaPi2b Is a Sodium-Dependent Phosphate Transporter Broadly Expressed in Ovarian Cancer With Limited Expression



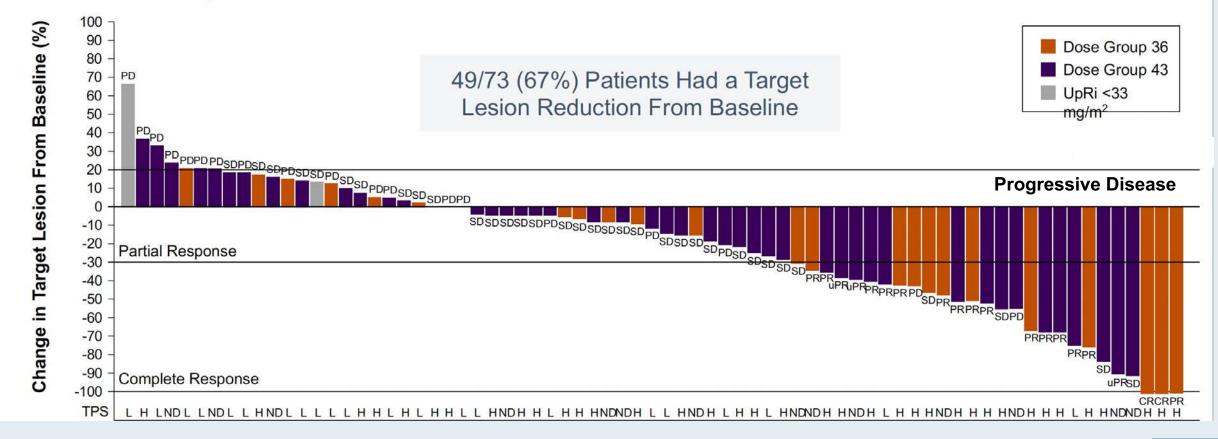
- NaPi2b expressed by tumor cells in two-thirds of patients with high-grade serous ovarian cancer²
- NaPi2b is a lineage antigen (not an oncogene)¹

in Healthy Tissues⁴


NaPi2b IHC assay in development – an optimal diagnostic assay would be robust, predictive, reproducible, easily able to distinguish a wide range of expression using TPS scoring method²

TRAEs by UpRi Dose Group

Dose Group 36 Had a More Favorable Safety Profile Compared to Dose Group 43

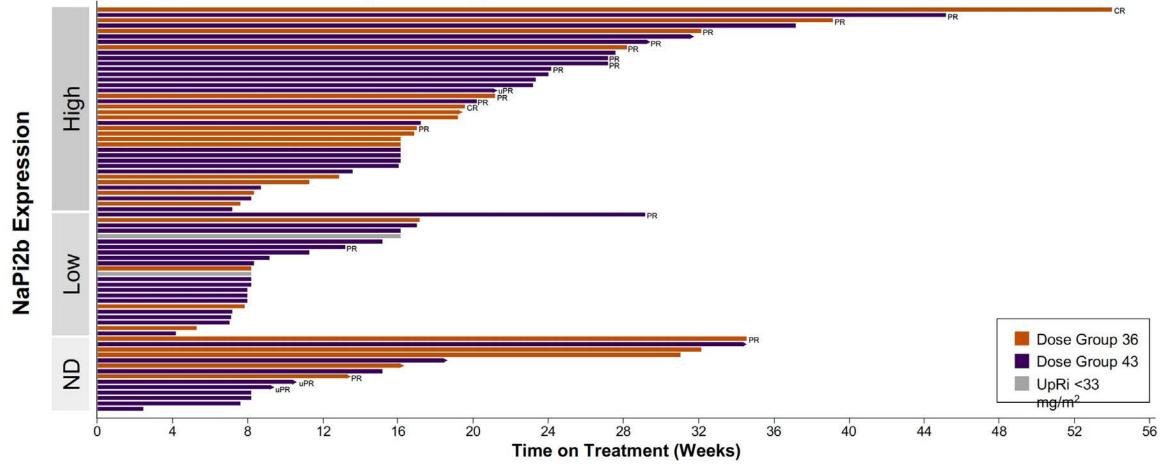

TRAEs ≥20%

- No severe ocular toxicity, neutropenia, or peripheral neuropathy in either dose group
- 4 (14%) patients had treatment-related SAEs in Dose Group 36 vs 18 (27%) in Dose Group 43
- Lower frequencies and lower grade pneumonitis occurred in Dose Group 36 (with no Grade 3+) vs Dose Group 43^a

Best Response by UpRi Dose Group

Similar Tumor Reduction in Both Dose Groups: Two-thirds of Patients Had Reductions in Target Tumor Lesions by RECIST 1.1

Confirmed ORR by UpRiDose Group and NaPi2b Level and Duration of Response (DoR)


		All Dose Levels	Dose Group 36	Dose Group 43
	Ν	38	16	22
	ORR, n (%)	13 (34)	7 (44)	6 (27)
NaPi2b-High (TPS ≥75)	CR, n (%)	2 (5)	2 (13)	0
(110 = 10)	PR, n (%)	11 (29)	5 (31)	6 (27)
	DCR, n (%)	33 (87)	12 (75)	21 (95)
	Ν	75	25	48
	ORR, n (%)	17 (23)	9 (36)	8 (17)
All NaPi2b Levels	CR, n (%)	2 (3)	2 (8)	0
Levels	PR, n (%)	15 (20)	7 (28)	8 (17)
	DCR, n (%)	54 (72)	18 (72)	35 (73)

- Median DoR in patients (all dose levels) with NaPi2b-high ovarian cancer (n=13): 5 months
- No obvious difference in median DoR observed between Dose Groups 36 and 43

Time on UpRi Study in Evaluable Patients

Trend to Longer Time on Study With High NaPi2b Expression

Ongoing UPLIFT (ENGOT-OV67/GOG-3048) Study Schema

Patient Population: HGSOC^a progressing after standard treatments; measurable disease per RECIST v1.1; ECOG PS 0 or 1; enrolling regardless of NaPi2b expression

Key Inclusion Criteria

- Platinum-resistant ovarian cancer (PROC)
- 1–4 prior lines of therapy
- Grade ≤2 peripheral neuropathy
- Archival or fresh tissue required for biomarker evaluation

Key Exclusion Criteria

- 1–2 prior lines bevacizumab-naive
- Primary platinum-refractory disease

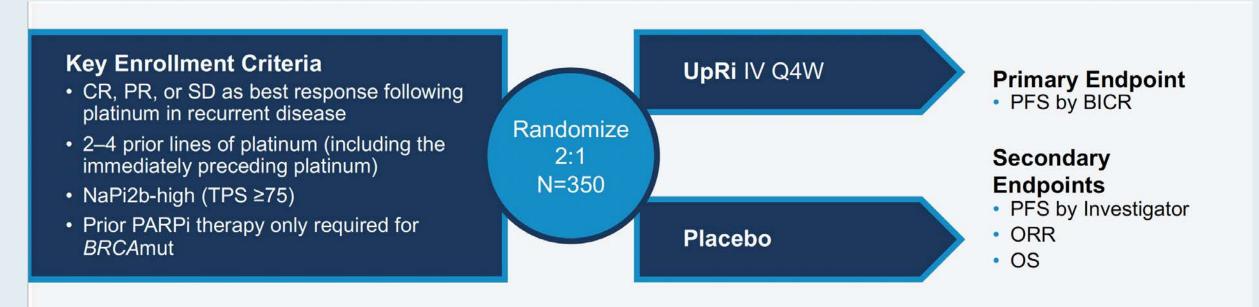
UpRi 36 mg/m² up to max 80 mg; IV Q4W

Primary Endpoint

Confirmed ORR in NaPi2b-high (N = ~100)

Secondary Endpoint

 Confirmed ORR in overall population (N = up to ~180 including 100 NaPi2b-high)

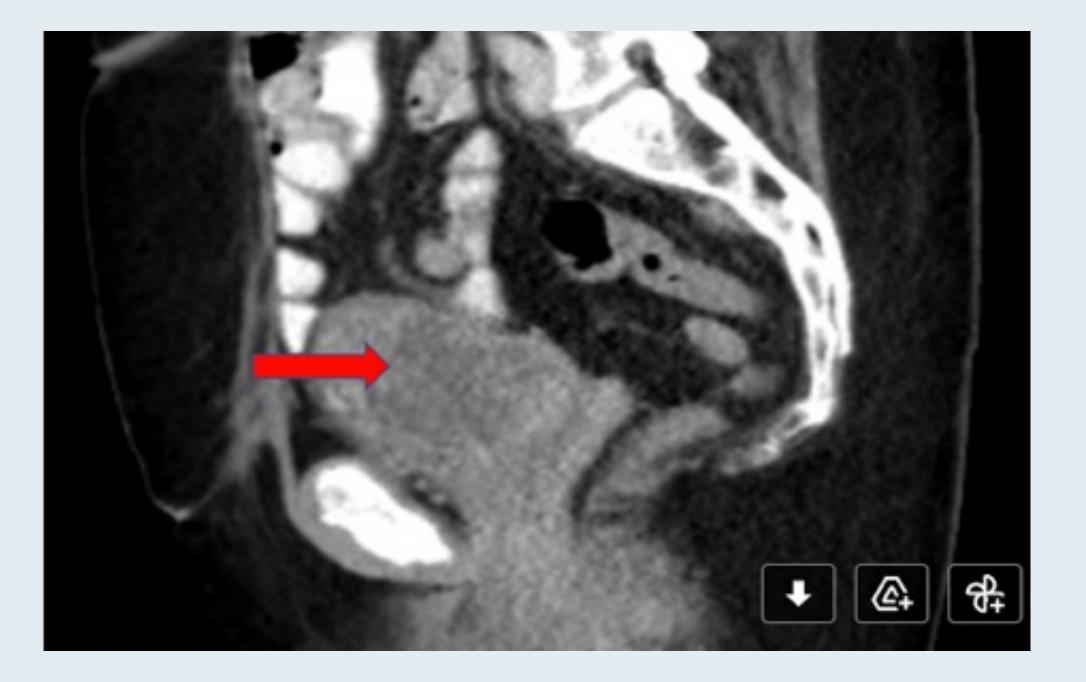

Other Secondary Endpoints

- DoR
- Safety

Prospectively-defined retrospective analysis to validate NaPi2b biomarker cutoff

Ongoing UP-NEXT Phase III (ENGOT-OV71-NSGO-CTU/GOG-3049) Study Schema

Informed by FDA Feedback and CHMP Scientific Advice; Plans to Initiate in 2022


Richardson DL et al. SGO 2022; Abstract 76.

Case Presentation: A 73-year-old woman with HGSOC and gBRCA1 and 2 mutations who responds to olaparib for 5 years but then develops PD after stopping

Dr Karim ElSahwi (Neptune City, New Jersey)

JAMA Oncol 2021 December 1;7(12):1772-81.

JAMA Oncology | Original Investigation

Preexisting *TP53*-Variant Clonal Hematopoiesis and Risk of Secondary Myeloid Neoplasms in Patients With High-grade Ovarian Cancer Treated With Rucaparib

Tanya T. Kwan, PhD; Amit M. Oza, MD; Anna V. Tinker, MD; Isabelle Ray-Coquard, MD, PhD; Ana Oaknin, MD, PhD; Carol Aghajanian, MD, PhD; Domenica Lorusso, MD, PhD; Nicoletta Colombo, MD, PhD; Andrew Dean, MD; Johanne Weberpals, MD; Eric Severson, MD, PhD; Lan-Thanh Vo, BS; Sandra Goble, MS; Lara Maloney, BA; Thomas Harding, PhD; Scott H. Kaufmann, MD, PhD; Jonathan A. Ledermann, MD; Robert L. Coleman, MD; Iain A. McNeish, MD, PhD; Kevin K. Lin, PhD; Elizabeth M. Swisher, MD

Case Presentation: A 69-year-old woman with gBRCA wild-type Stage IIIC ovarian cancer who receives IV/IP adjuvant chemotherapy

Dr Gigi Chen (Pleasant Hill, California)

Case Presentation: A 46-year-old woman with MSI-high BRCA wild-type clear cell ovarian cancer with SD on pembrolizumab and niraparib

Dr Syed Zafar (Fort Myers, Florida)

PATIENT RESULTS

15 genomic findings

14 therapies associated with potential clinical benefit

O therapies associated with lack of response

37 clinical trials

TUMOR TYPE: OVARY CLEAR CELL CARCINOMA

Genomic Alterations Identified[†] ERBB2 R678Q PIK3CA Y1021C PTEN N323fs*2, splice site 1027-1G>T ARID1A A1522fs*5, R2158* ERRFI1 R286fs*7 ARID1B Q1797* HNF1A P291fs*51 MSH6 T1219I, Y397C SMAD2 splice site 730+2T>C STAG2 splice site 3468-1G>A

Additional Findings⁺

Microsatellite status MSI-High

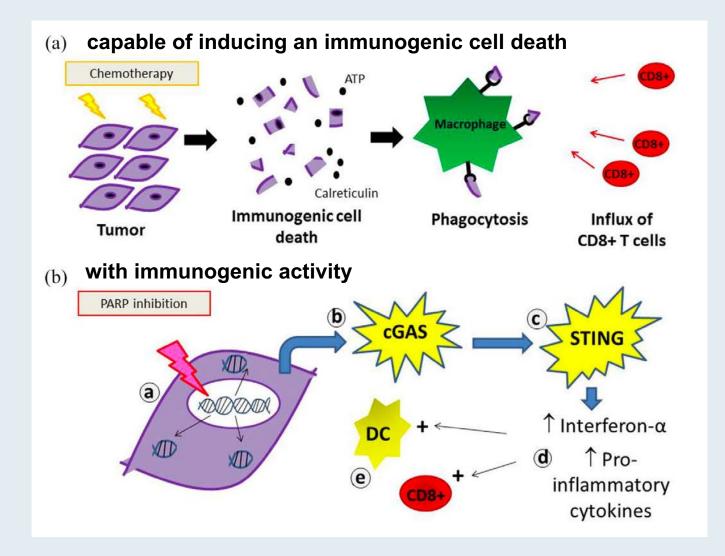
Tumor Mutational Burden TMB-High; 43 Muts/Mb

* For a complete list of the genes assayed and performance specifications, please refer to the Appendix

Immunotherapy in Gynecological Cancers

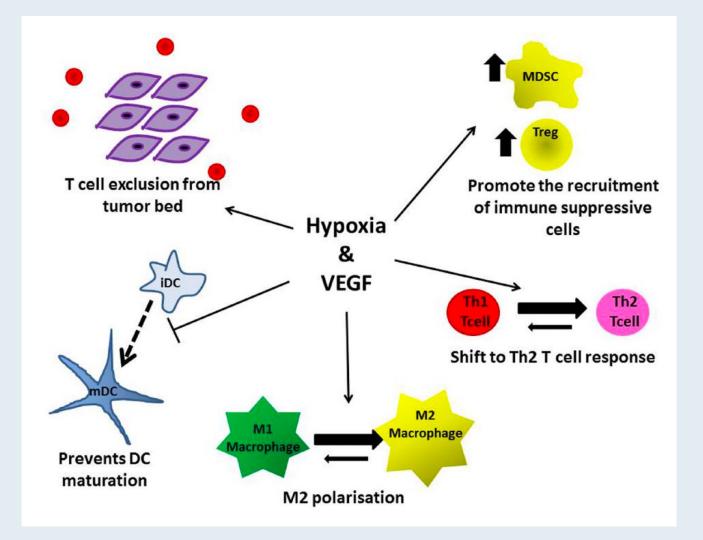
Immune checkpoint inhibitors in ovarian cancer: where do we stand?

Alexandra Leary, David Tan and Jonathan Ledermann


Ther Adv Med Oncol 2021, Vol. 13: 1–13

Special Collection

Review


Proposed Immune-Stimulatory Properties of Certain Cytotoxic Agents

Leary A et al. Ther Adv Mol Oncol 20021;13:1-13.

Both Hypoxia and Vascular Endothelial Growth Factor (VEGF) Promote Immune Tolerance via a Number of Mechanisms

Leary A et al. Ther Adv Mol Oncol 20021;13:1-13.

Case Presentation: A 59-year-old woman with recurrent BRCA wild-type (HRp) low-grade ovarian cancer with rising CA-125, pleural effusion and a new lung nodule on salvage chemotherapy

Dr Dana Chase (Phoenix, Arizona)

Case Presentation: A 57-year-old woman with Stage IIIA ovarian cancer and a gBRCA1 mutation, s/p neoadjuvant chemotherapy and surgery, doing well on maintenance olaparib

Dr Paul DiSilvestro (Providence, Rhode Island)

Case Presentation: A 92-year-old woman with PMH of untreated CLL, with Stage III/IV ovarian cancer

Dr Rajalaxmi McKenna (Willowbrook, Illinois)

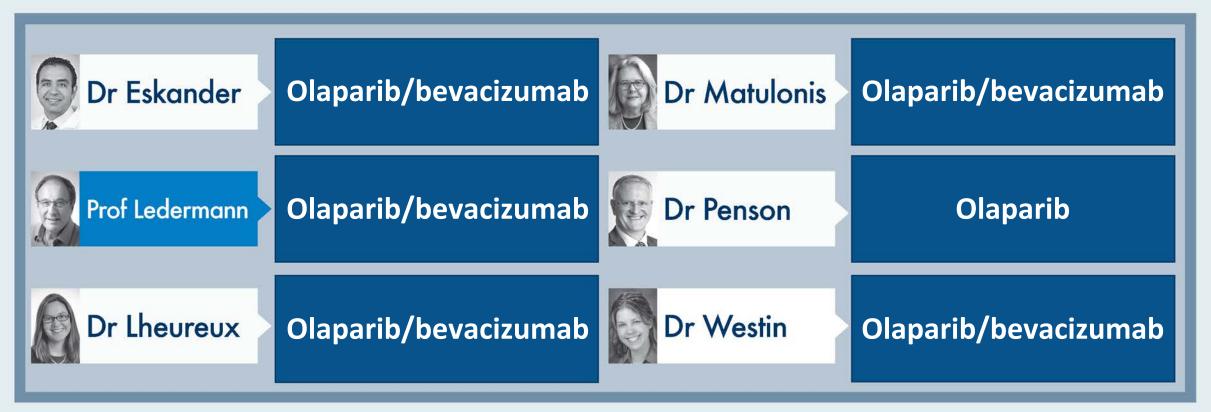
Case Presentation: A 53-year-old woman with recurrent BRCA wild-type low-grade ovarian cancer who has a CR to niraparib/bevacizumab but develops lymphedema

Dr Gigi Chen (Pleasant Hill, California)

Meet The Professor with Prof Ledermann

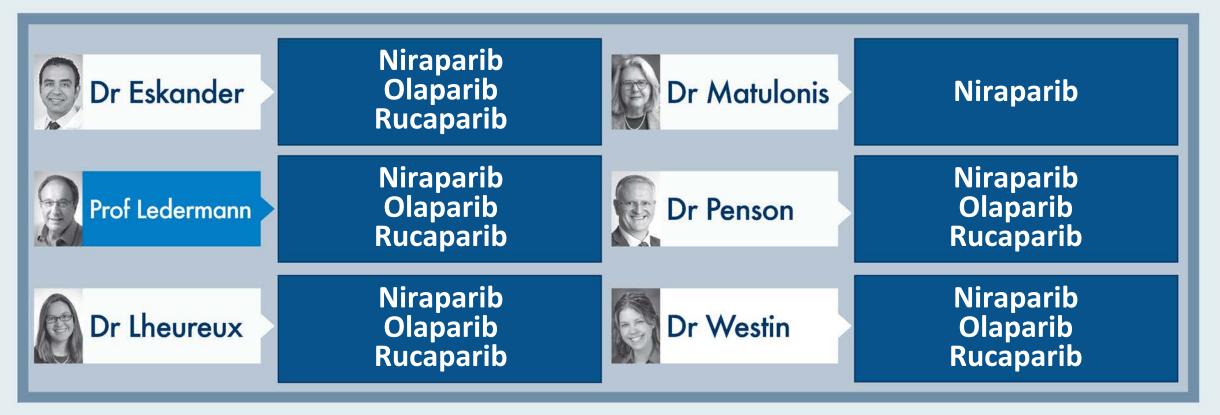
Introduction: Journal Club with Prof Ledermann – Part 1

MODULE 1: Case Presentations


MODULE 2: Faculty Survey

MODULE 3: Journal Club with Prof Ledermann – Part 2

MODULE 4: Appendix of Key Publications

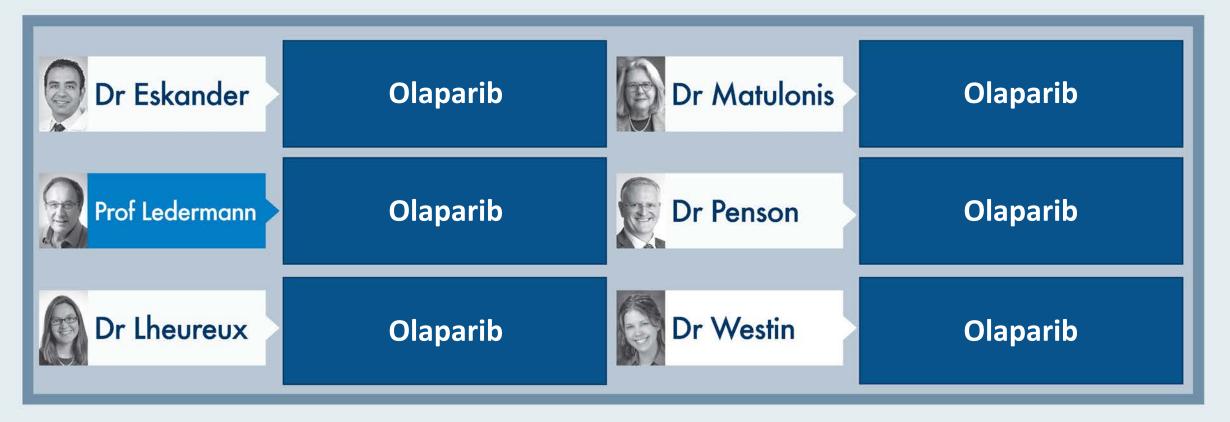


A patient presenting with ovarian cancer with extensive intra-abdominal disease (clinical Stage IIIC) receives neoadjuvant carboplatin/paclitaxel/ bevacizumab with good response and proceeds to surgery with R0 resection. Regulatory and reimbursement issues aside, what would be your preferred approach to maintenance therapy if genetic testing revealed a germline BRCA mutation?



A patient presenting with ovarian cancer with extensive intra-abdominal disease (clinical Stage IIIC) receives neoadjuvant carboplatin/paclitaxel/ bevacizumab with good response and proceeds to surgery with R0 resection. Genetic testing revealed a germline BRCA mutation. Beyond your preferred approach, which other approaches to maintenance therapy do you believe are acceptable in this situation?

A patient presenting with Stage IIIC ovarian cancer undergoes R0 resection and receives adjuvant carboplatin/paclitaxel with good response. Regulatory and reimbursement issues aside, what would you most likely recommend as maintenance therapy if genetic testing revealed <u>BRCA wild type, HR proficient (eg, LOH low)</u>?



A patient presenting with Stage IIIC ovarian cancer undergoes R0 resection and receives adjuvant carboplatin/paclitaxel with good response. Regulatory and reimbursement issues aside, what would you most likely recommend as maintenance therapy if genetic testing revealed a germline PALB2 mutation?

A patient presenting with Stage IIIC ovarian cancer undergoes R0 resection and receives adjuvant carboplatin/paclitaxel with good response. Regulatory and reimbursement issues aside, what would you most likely recommend as maintenance therapy if genetic testing revealed a <u>somatic BRCA mutation</u>?

A patient presenting with Stage IIIC ovarian cancer undergoes R0 resection and receives adjuvant carboplatin/paclitaxel with good response. Regulatory and reimbursement issues aside, what would you most likely recommend as maintenance therapy if genetic testing revealed <u>BRCA wild type, HR deficient (eg, LOH high)</u>?

Meet The Professor with Prof Ledermann

Introduction: Journal Club with Prof Ledermann – Part 1

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Prof Ledermann – Part 2

MODULE 4: Appendix of Key Publications

Lancet Oncol 2022;23:919-30.

Weekly dose-dense chemotherapy in first-line epithelial ovarian, fallopian tube, or primary peritoneal cancer treatment (ICON8): overall survival results from an open-label, randomised, controlled, phase 3 trial

Andrew R Clamp, Elizabeth C James, Iain A McNeish, Andrew Dean, Jae-Won Kim, Dearbhaile M O'Donnell, Dolores Gallardo-Rincon, Sarah Blagden, James Brenton, Tim J Perren, Sudha Sundar, Rosemary Lord, Graham Dark, Marcia Hall, Susana Banerjee, Rosalind M Glasspool, C Louise Hanna, Sarah Williams, Kate M Scatchard, Helena Nam, Sharadah Essapen, Christine Parkinson, Lucy McAvan, Ann Marie Swart, Babasola Popoola, Francesca Schiavone, Jonathan Badrock, Fuad Fananapazir, Adrian D Cook, Mahesh Parmar, Richard Kaplan, Jonathan A Ledermann

Gynecologic Oncology 166 (2022) 254–262

Contents lists available at ScienceDirect

Gynecologic Oncology

journal homepage: www.elsevier.com/locate/ygyno

Measure of Ovarian Symptoms and Treatment concerns (MOST) indexes and their associations with health-related quality of life in recurrent ovarian cancer

Rachel Campbell ^{a,*}, Daniel S.J. Costa ^a, Martin R. Stockler ^b, Yeh Chen Lee ^{b,c,d}, Jonathan A. Ledermann ^e, Dominique Berton ^{f,g}, Jalid Sehouli ^{h,i}, Felicia T. Roncolato ^{b,c,d,j}, Rachel O. Connell ^b, Aikou Okamoto ^{k,l}, Jane Bryce ^{m,n}, Amit M. Oza ^{o,p}, Elisabeth Avall-Lundqvist ^{q,r,s}, Jonathan S. Berek ^{t,u}, Anne Lanceley ^v, Florence Joly ^{f,w}, Felix Hilpert ^{h,x}, Amanda Feeney ^e, Marie C. Kaminsky ^{f,y}, Katrina Diamante ^b, Michael L. Friedlander ^{c,d,1}, Madeleine T. King ^{a,1}, GCIG Symptom Benefit Group

Flynn *et al. Cancer Drug Resist* 2022;5:424-35 **DOI:** 10.20517/cdr.2022.13

Cancer Drug Resistance

Review

Open Access

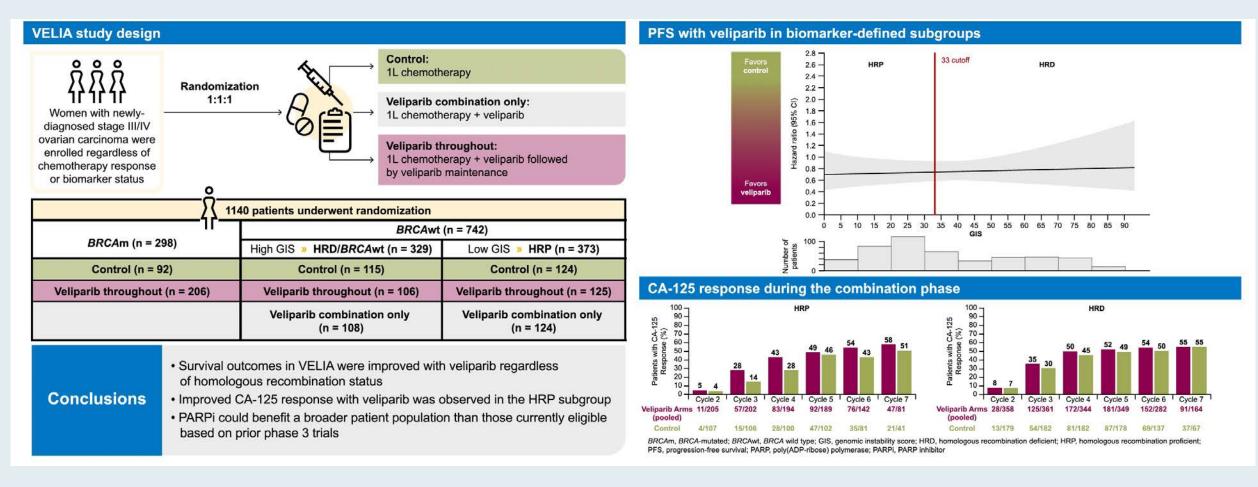
Ovarian cancer recurrence: is the definition of platinum resistance modified by PARPi and other intervening treatments? The evolving landscape in the management of platinum-resistant ovarian cancer

Michael J. Flynn¹, Jonathan A. Ledermann^{1,2}

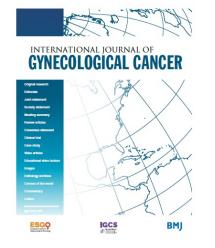
Testing for homologous recombination deficiency – does it provide new insights for the use of veliparib?

Ledermann JA

Gynecologic Oncology 164 (2022) 245-253



Impact of homologous recombination status and responses with veliparib combined with first-line chemotherapy in ovarian cancer in the Phase 3 VELIA/GOG-3005 study


Elizabeth M. Swisher^{a,*}, Carol Aghajanian^b, David M. O'Malley^c, Gini F. Fleming^d, Scott H. Kaufmann^e, Douglas A. Levine^f, Michael J. Birrer^g, Kathleen N. Moore^h, Nick M. Spirtosⁱ, Mark S. Shahin^j, Thomas J. Reid^k, Michael Friedlander¹, Karina Dahl Steffensen^m, Aikou Okamotoⁿ, Vasudha Sehgal^o, Peter J. Ansell^o, Minh H. Dinh^o, Michael A. Bookman^p, Robert L. Coleman^q

Homologous Recombination Status and Responses to Veliparib Combined with First-Line Chemotherapy in Ovarian Cancer for the Phase III VELIA/GOG-2005 Study

Symptom burden and quality of life with chemotherapy for recurrent ovarian cancer: the Gynecologic Cancer InterGroup-Symptom Benefit Study

OPEN ACCESS

Yeh Chen Lee D,^{1,2,3} Madeleine T King,⁴ Rachel L O'Connell,² Anne Lanceley,⁵ Florence Joly,^{6,7} Felix Hilpert,^{8,9} Alison Davis,^{1,10} Felicia T Roncolato,^{1,2} Aikou Okamoto,^{11,12} Jane Bryce,^{13,14,15} Paul Donnellan,¹⁶ Amit M Oza,^{17,18} Elisabeth Avall-Lundqvist,^{19,20,21} Jonathan S Berek,^{22,23} Jonathan A Ledermann D,²⁴ Dominique Berton,^{6,25} Jalid Sehouli,^{26,27} Amanda Feeney,²⁴ Marie-Christine Kaminsky,^{6,28} Katrina Diamante,² Martin R Stockler,² Michael L Friedlander D,^{1,3} for the GCIG Symptom Benefit Group

Int J Gynecol Cancer 2022 June 6;32(6):761-8.

2021 ASCO ANNUAL MEETING Abstract 5545

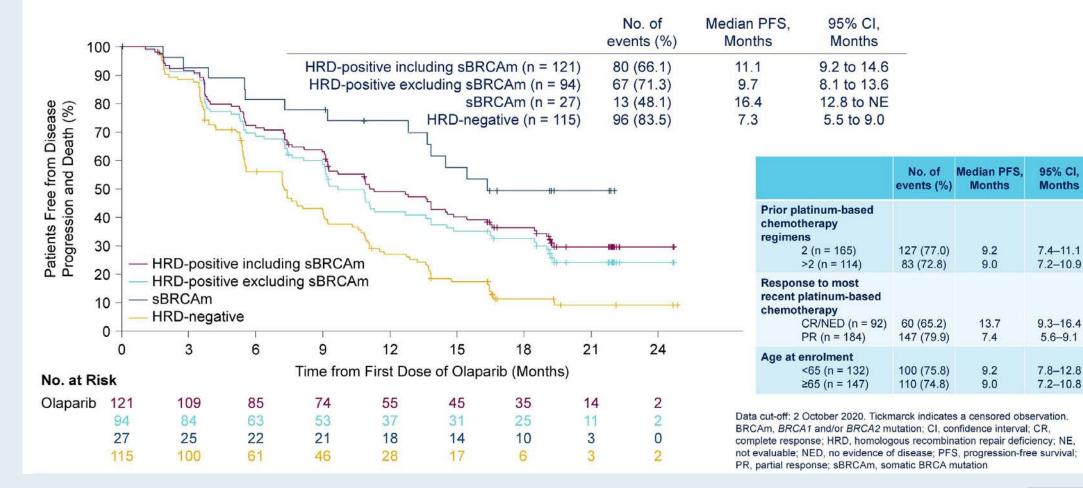
Olaparib maintenance monotherapy for non-germline BRCA1/2-mutated platinum-sensitive relapsed ovarian cancer patients: Phase IIIb OPINION primary analysis

Andrés Poveda, MD

Oncogynecologic Department, Initia Oncology, Hospital Quironsalud, Valencia, Spain

June 2021

ClinicalTrials.gov identifier NCT03402841. This study was sponsored by AstraZeneca and is part of an alliance between AstraZeneca and Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA



Download poster

Copies of this presentation obtained through QR (Quick Response) codes are for personal use only and may not be reproduced without permission of the authors

Median PFS Was Prolonged Across Many HRD/Somatic BRCA Mutation-Status and Other Demographic and Disease-Characteristic Subgroups

European Journal of Cancer 154 (2021) 190-200

Original Research

Prognostic nomogram for progression-free survival in patients with BRCA mutations and platinum-sensitive recurrent ovarian cancer on maintenance olaparib therapy following response to chemotherapy

Angelina Tjokrowidjaja ^{a,b,c,*}, Michael Friedlander ^{c,d}, Sarah J. Lord ^{a,e}, Rebecca Asher ^a, Manuel Rodrigues ^{f,g}, Jonathan A. Ledermann ^h, Ursula A. Matulonis ⁱ, Amit M. Oza ^j, Ilan Bruchim ^k, Tomasz Huzarski ¹, Charlie Gourley ^m, Philipp Harter ⁿ, Ignace Vergote ^{o,p}, Clare L. Scott ^q, Werner Meier ^{r,s}, Ronnie Shapira-Frommer ^t, Tsveta Milenkova ^u, Eric Pujade-Lauraine ^{v,w}, Val Gebski ^a, Chee K. Lee ^{a,b,c}

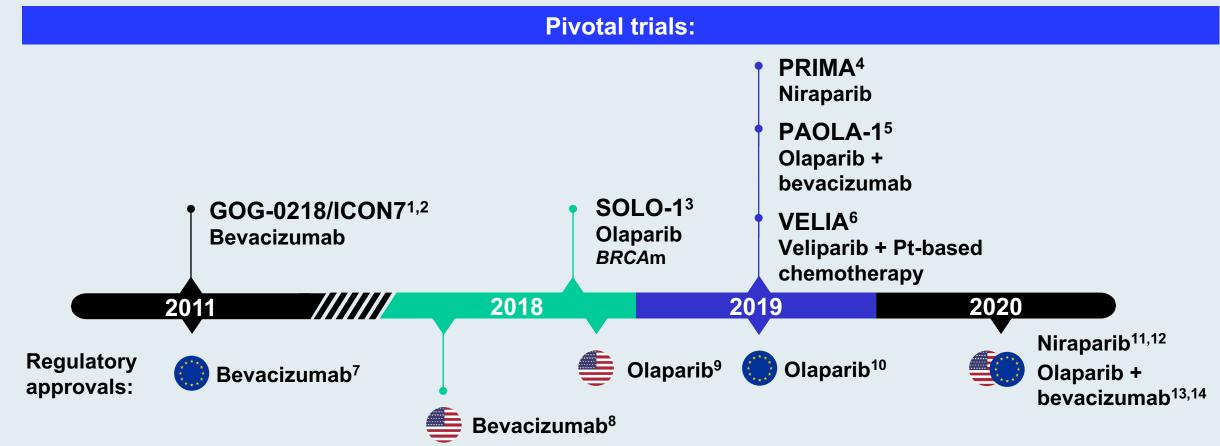
Meet The Professor with Prof Ledermann

Introduction: Journal Club with Prof Ledermann – Part 1

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Prof Ledermann – Part 2


MODULE 4: Appendix of Key Publications

Optimal Biomarker Evaluation and Front-Line Management

Pivotal Trials and Regulatory Milestones in First-Line Maintenance Therapy for Advanced Ovarian Cancer

Dates shown indicate the year of the publication of the pivotal studies and regulatory approvals for these compounds.

BRCAm, breast cancer gene mutant; GOG, Gynecologic Oncology Group; Pt, platinum.

1. Burger RA et al. *N Engl J Med.* 2011;365(26):2473-2483. 2. Perren TJ et al. *N Engl J Med.* 2011;365(26):2484-2496. 3. Moore K et al. *N Engl J Med.* 2018;379(26):2495-2505. 4. González-Martín A et al. *N Engl J Med.* 2019;381(25):2391-2402. . Ray-Coquard I et al. *N Engl J Med.* 2019;381(25):2416-2428. 6. Coleman RL et al. *N Engl J Med.* 2019;381(25):2403-2415. 7. European Medicines Agency. Published September 22, 2011. Accessed June 7, 2021. 8. F. Hoffmann-La Roche Ltd. Published June 13, 2018. Accessed June 7, 2021. 9. US Food and Drug Administration. Published December 26, 2018. Accessed June 7, 2021. 10. European Medicines Agency. Published April 26, 2019. Accessed June 7, 2021. 11. GlaxoSmithKline. Published April 29, 2020. Accessed June 7, 2021. 12. GlaxoSmithKline. Published October 29, 2020. Accessed June 7, 2021. 13. US Food and Drug Administration. Published May 11, 2020. Accessed June 7, 2021. 14. European Medicines Agency. Published September 17, 2020. Accessed June 7, 2021.

Courtesy of Kathleen Moore, MD

Phase III First-Line PARP Inhibitor Maintenance Trials

Study design	SOLO-1 ¹ (N = 391)	PAOLA-1 ² (N = 612)	PRIMA ³ (N = 620)	VELIA ⁴ (N = 1,140)
Treatment arms vs placebo	Olaparib (n=260)	Bevacizumab ± olaparib	Niraparib	Veliparib
Patient population	BRCA mutation	All comers	All comers	All comers
Treatment duration	24 mo	15 mo for bev 24 mo for olaparib	36 mo or until PD	24 mo
Median PFS	56 mo vs 14 mo HR: 0.33	22.1 mo vs 16.6 mo HR: 0.59	22.1 mo vs 10.9 mo HR 0.40	23.5 mo vs 17.3 mo HR: 0.68

bev = bevacizumab; PD = disease progression

¹ Banerjee et al. *Lancet Oncol* 2021;22(12):1721-31; ² Ray-Coquard et al. SGO 2020;Abstract 33; ³ González-Martín A et al. ASCO 2021;Abstract 5518; ⁴ Aghajanian C et al. *Gyn Oncol* 2021;162(2):375-81.

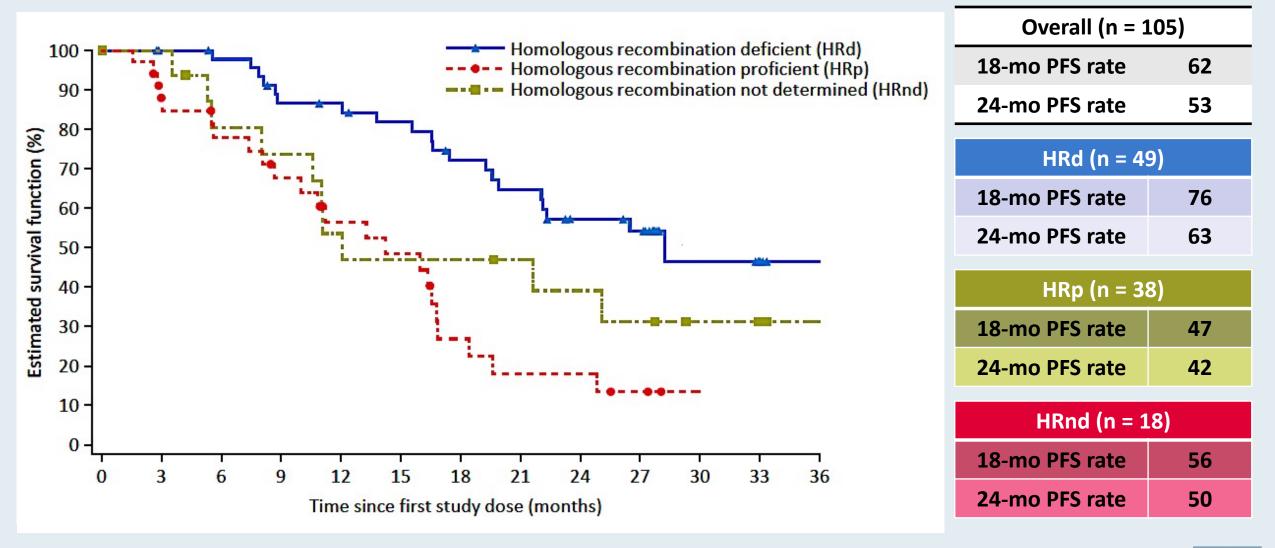
Phase 2 OVARIO Study of Niraparib + Bevacizumab Therapy in Advanced Ovarian Cancer Following Frontline Platinum-Based Chemotherapy with Bevacizumab

Melissa M. Hardesty,¹ Thomas Krivak,² Gail S. Wright,³ Erika Hamilton,⁴ Evelyn L. Fleming,⁵ Jimmy Belotte,⁶ Erika Keeton,⁶ Ping Wang,⁶ Aine Clements,⁷ Heidi J. Gray,⁸ Gottfried E. Konecny,⁹ Richard G. Moore,¹⁰ Debra L. Richardson¹¹

¹Alaska Women's Cancer Care, Anchorage, AK, USA; ²Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Western Pennsylvania Hospital, Pittsburgh, PA, USA; ³Florida Cancer Specialists and Research Institute, New Port Richey, FL, USA; ⁴Sarah Cannon Research Institute; Tennessee Oncology, Nashville, TN, USA; ⁵Division of Gynecologic Oncology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; ⁶GlaxoSmithKline, Waltham, MA, USA; ⁷Department of Gynecologic Oncology, Riverside Methodist Hospital, Columbus, OH, USA; ⁸Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; ⁹University of California Los Angeles, Los Angeles, CA, USA; ¹⁰Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA; ¹¹Division of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

Patients with newly diagnosed high-grade serous or endometrioid stage IIIB to IV epithelia ovarian, fallopian tube, or peritoneal cancer who achieved a CR, PR, or NED result after front-line platinum-based chemotherapy + bevacizumab

HRd at enrollment Starting niraparib dose, n (%) N=105 200 mg (<77 kg and/or platelet 82 (78) count <150,000/µL)


All patients underwent tissue testing for

300 mg (all others) 23 (22) Niraparib (200 or 300 mg QD) + bevacizumab (15 mg/kg Q3W)

	Endpoint assessment				
Primary endpoint	PFS rate at 18 months (PFS18)				
Secondary endpoints	 PFS Overall survival RECIST or CA-125 PFS Time to first subsequent therapy Time to second subsequent therapy Safety and tolerability Patient-reported outcome 				
Exploratory endpoints	PFS rate at 6 months (PFS6) and 12 months (PFS12)				
Statistical analysis plan	 Efficacy: PFS18 and PFS24 will be estimated by frequency analysis, with corresponding 95% exact CI will be reported The time to event endpoints (PFS, TFST, TSST) will be analyzed using Kaplan-Meier methodology Progression will be assessed by RECIST v1.1 per investigator 				

OVARIO: PFS by Homologous Recombination Deficiency Status

Hardesty et al. SGO 2022; Abstract 40.

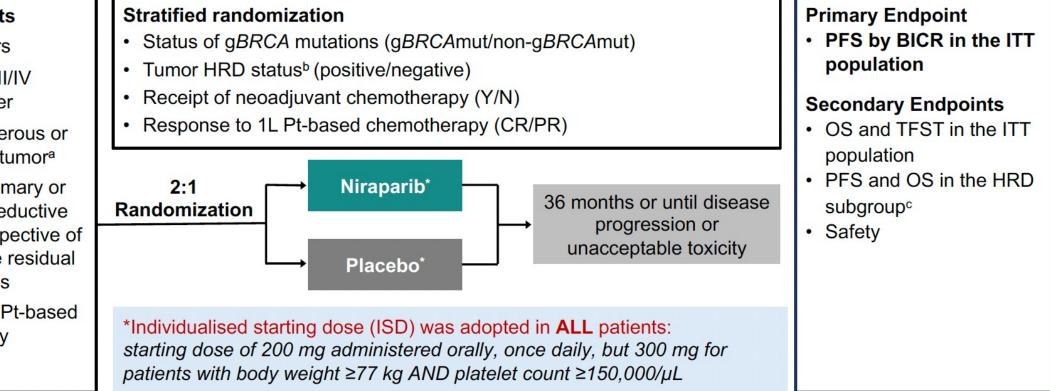
OVARIO: Treatment-Related Adverse Events (TRAEs)

	N=105			TRAEs in ≥20% of patients (N=105)			
Parameter, n (%)	Related Related	Related	Related to bev	Related to niraparib or bevacizumab			
	to nira or	to nira		Preferred term, n (%)	Any Grade	Grade ≥3	
	bev			Thrombocytopenia ^a	74 (70)	<mark>41 (</mark> 39)	
Any TRAE	105 (100)	104 <mark>(</mark> 99)	96 (91)	96 (91) Fatigue		9 (9)	
Any Grade ≥3 TRAE	84 <mark>(</mark> 80)	81 (77)	54 (51)	54 (51) Anemia ^b		<mark>36 (</mark> 34)	
Any serious TRAE	21 (20)	19 (18)	7 (7)	Nausea	55 (52)	1 (1)	
TRAE leading to	42 (40)	42 (40) 32 (30) 23 (22)		Hypertension ^c	53 (50)	28 (27)	
treatment discontinuation	42 (40)	52 (50)	25 (22)	Proteinuria	41 (39)	5 (5)	
TRAE leading to dose reduction	78 (74)	77 (73)	27 (26)	Headache	32 (30)	<mark>6 (6)</mark>	
TRAE leading to				Neutropenia ^d	28 (27)	13 (12)	
treatment interruption	93 (88)	90 (86)	58 (55)	Leukopenia ^e	24 (23)	0	

Efficacy and Safety of Niraparib as Maintenance Treatment in Patients with Newly Diagnosed Advanced Ovarian Cancer Using an Individualized Starting Dose (PRIME Study): A Randomized, Double-blind, Placebocontrolled, Phase 3 Trial

Ning Li^{*}, Jianqing Zhu, Rutie Yin, Jing Wang, Lingya Pan, Beihua Kong, Hong Zheng, Jihong Liu, Xiaohua Wu, Li Wang, Yi Huang, Ke Wang, Dongling Zou, Hongqin Zhao, Chunyan Wang, Weiguo Lu, An Lin, Ge Lou, Guiling Li, Pengpeng Qu, Hongying Yang, Xiaoa Zhen, Wenzhao Hang, Jianmei Hou, Lingying Wu^{*}

* National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China


PRIME: Study Design

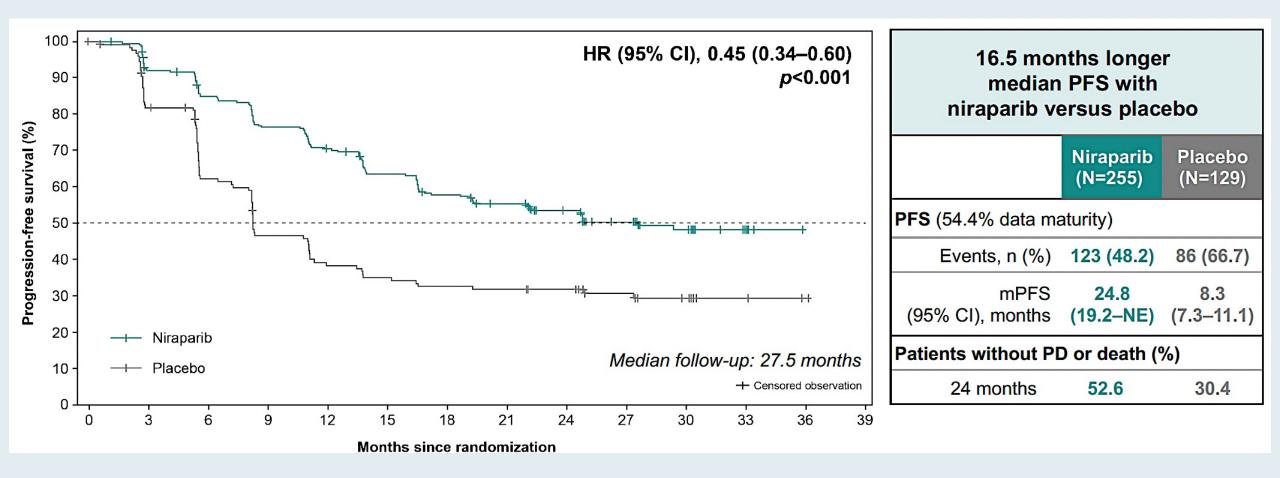
PRIME is a randomized, double-blind, placebo-controlled phase III trial (NCT03709316).

Schema

Eligible Patients

- Age ≥18 years
- FIGO stage III/IV
 ovarian cancer
- High-grade serous or endometroid tumor^a
- Receipt of primary or interval cytoreductive surgery, irrespective of postoperative residual disease status
- CR/PR to 1L Pt-based chemotherapy

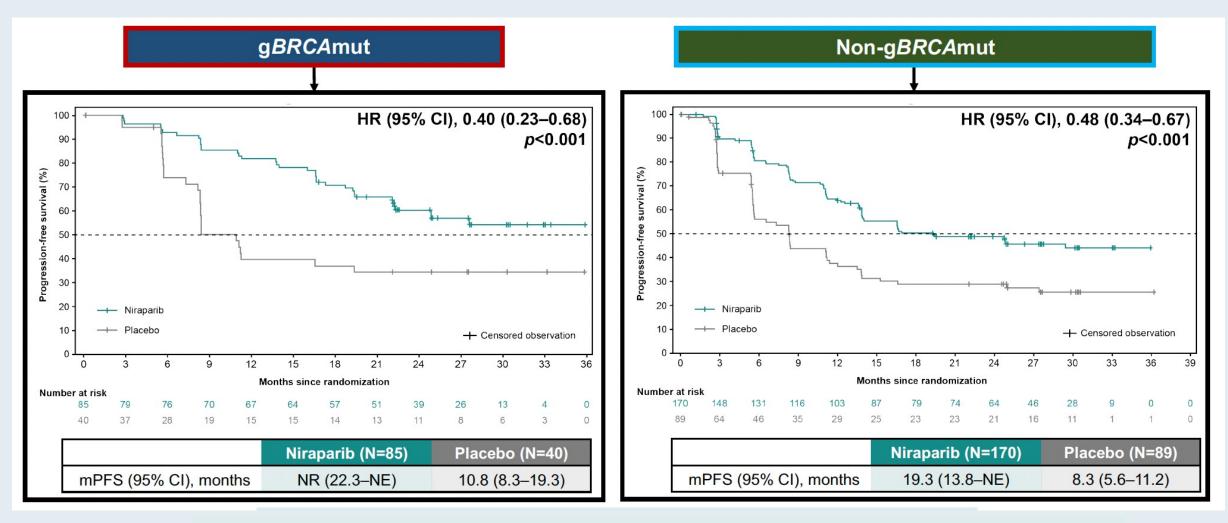
PRIME: Demographics and Baseline Characteristics


Characteristic	Niraparib (N=255)	Placebo (N=129)
Median age (range), years	53.0 (32–77)	54.0 (33–77)
Median weight (range), kg	59.0 (39.5–100.0)	57.0 (37.0–97.0)
ECOG performance status, n (%)		
0	98 (38.4)	52 (40.3)
1	157 (61.6)	77 (59.7)
FIGO stage, n (%)		
III	182 (71.4)	94 (72.9)
IV	73 (28.6)	35 (27.1)
Primary tumor location, n (%)		
Ovary	229 (89.8)	117 (90.7)
Fallopian tube	19 (7.5)	9 (7.0)
Peritoneum	7 (2.7)	3 (2.3)
Histologic subtype, n (%)		
Serous ovarian cancer	253 (99.2)	128 (99.2)
Endometrioid carcinoma	2 (0.8)	0
Other	0	1 (0.8)

Characteristic	Niraparib (N=255)	Placebo (N=129)
Neoadjuvant chemotherapy, n (%)		
Yes	121 (47.5)	59 (45.7)
No	134 (52.5)	70 (54.3)
Response to Pt-based CT, n (%)		
CR	212 (83.1)	103 (79.8)
PR	43 (16.9)	26 (20.2)
gBRCA mutation status, n (%)		
g <i>BRCA</i> mut	85 (33.3)	40 (31.0)
Non-gBRCAmut	170 (66.7)	89 (69.0)
Homologous recombination ^a , n (%)		
Deficient	170 (66.7)	87 (67.4)
Proficient	85 (33.3)	42 (32.6)
Postoperative residual disease status, n (%)		
Optimal (R0/R1)	193 (75.7)	105 (81.4)
Suboptimal (R2) or missing	52 (24.3)	24 (18.6)

• The niraparib and placebo groups were well-balanced.

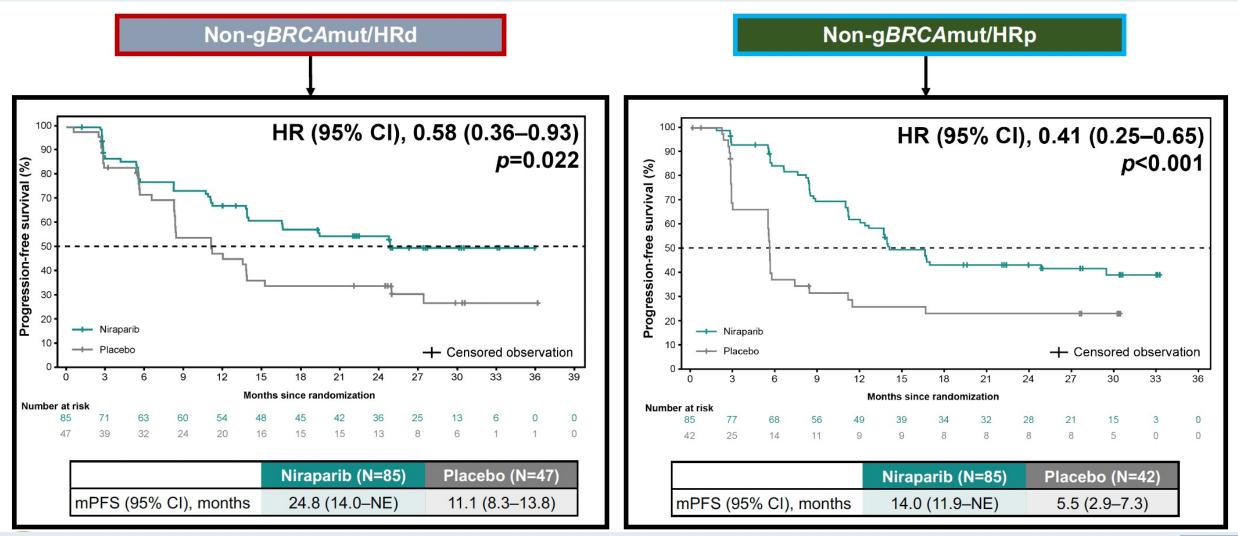
PRIME: PFS (by Blinded Independent Central Review) in the ITT Population


Li et al. SGO 2022;Abstract LBA5.

PRIME: PFS Benefit in Prespecified Subgroups

Subgroup	Events/pa	Events/patients (%)		PFS (95% CI)
	Niraparib	Placebo		
Overall	123/255 (48.2)	86/129 (66.7)	=	0.45 (0.34–0.60)
Age				
<65 years	108/229 (47.2)	73/114 (64.0)	┠═┤│	0.47 (0.34–0.63)
≥65 years	15/26 (57.7)	13/15 (86.7)	┠──■──┤│	0.24 (0.09-0.66)
Neoadjuvant chemotherapy				
Yes	62/121 (51.2)	46/59 (78.0)	┝═┤│	0.32 (0.21–0.48)
No	61/134 (45.5)	40/70 (57.1)	┝╼╢	0.63 (0.42–0.94)
Response to Pt-based chemotherapy				
Complete response	98/212 (46.2)	66/103 (64.1)	⊦=┤│	0.45 (0.32-0.61)
Partial response	25/43 (58.1)	20/26 (76.9)	┝╼╌╢	0.45 (0.23-0.86)
gBRCA mutation status				
gBRCAmut	35/85 (41.2)	25/40 (62.5)	┝╼┤│	0.40 (0.23–0.68)
Non-gBRCAmut	88/170 (51.8)	61/89 (68.5)	┠═┤│	0.48 (0.34–0.67)
Homologous recombination				
Deficient	75/170 (44.1)	57/87 (65.5)	┠═┤│	0.48 (0.34–0.68)
Proficient	48/85 (56.5)	29/42 (69.0)	┝╼┤│	0.41 (0.25–0.65)
Postoperative residual disease status				
Optimal	94/193 (48.7)	71/105 (67.6)	⊦=┤	0.44 (0.32–0.61)
Suboptimal or missing	29/62 (46.8)	15/24 (62.5)	┝╼┥	0.43 (0.21–0.87)

PRIME: PFS Benefit by Germline BRCA Mutation Status



- Median PFS has not been yet reached for the gBRCAmut population.
- The benefit of niraparib in the non-gBRCAmut population is confirmed.

Li et al. SGO 2022;Abstract LBA5.

PRIME: PFS Benefit in Non-gBRCAmut Subgroups

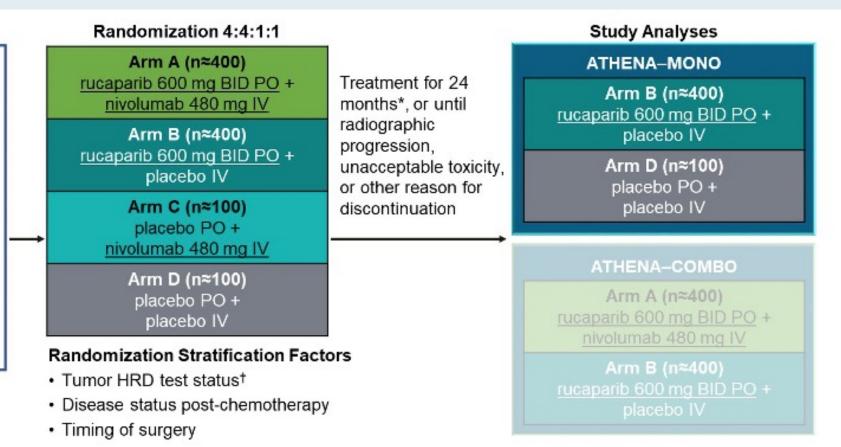
PRIME and PRIMA Trials: Safety Overview

	PR	IME	P	RIMA ¹
TEAEs, n (%)	Niraparib (N=255)	Placebo (N=129)	Niraparib (N=484)	Plac (N=2
Any TEAEs	253 (99.2)	121 (93.8)	478 (98.8)	224 (
Treatment-related	249 (97.6)	111 (86.0)	466 (96.3)	168 (
Grade≥3 TEAEs	139 (54.5)	23 (17.8)	341 (70.5)	46 (1
Treatment-related	125 (49.0)	9 (7.0)	316 (65.3)	16 (6
Serious TEAEs	48 (18.8)	11 (8.5)	156 (32.2)	32 (1
Treatment-related	38 (14.9)	5 (3.9)	118 (24.4)	6 (2
TEAEs leading to treatment interruption	160 (62.7)	25 (19.4)	385 (79.5)	44 (1
TEAEs leading to dose reduction ^b	103 (40.4)	8 (6.2)	343 (70.9)	20 (8
TEAEs leading to discontinuation	17 (6.7)	7 (5.4)	58 (12.0)	6 (2
TEAEs leading to death	1 (0.4)	0	2 (0.4)	1 (0

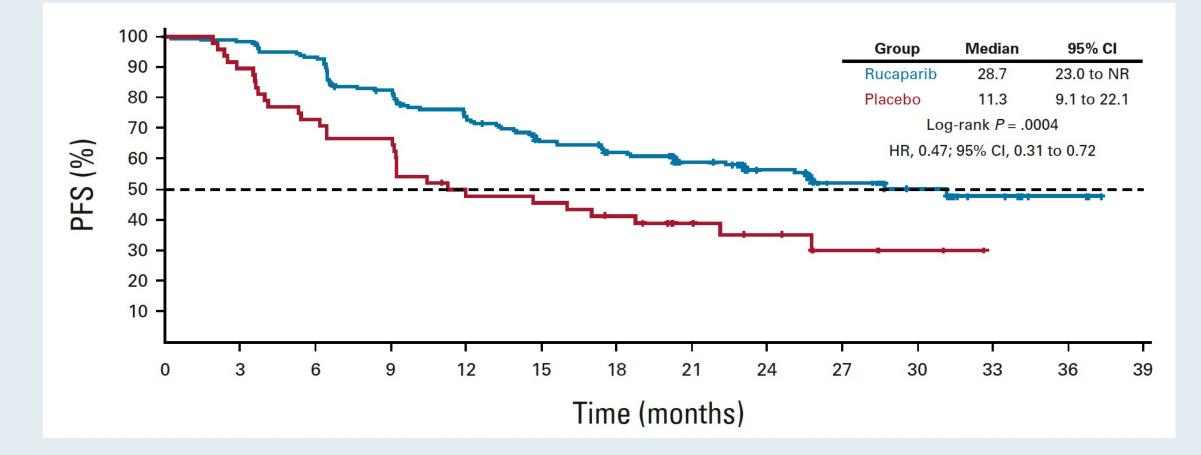
A Randomized, Phase III Trial to Evaluate original **Rucaparib Monotherapy as Maintenance Treatment in Patients With Newly Diagnosed Ovarian Cancer (ATHENA-MONO/GOG-3020/** ENGOT-ov45)

reports

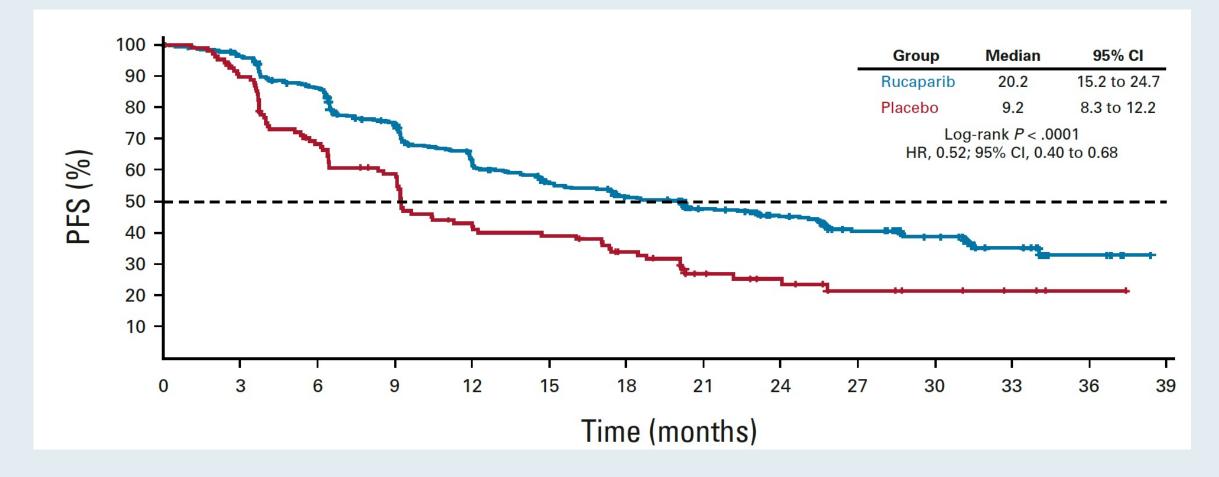
Bradley J. Monk, MD¹; Christine Parkinson, MD²; Myong Cheol Lim, MD, PhD³; David M. O'Malley, MD⁴; Ana Oaknin, MD, PhD⁵; Michelle K. Wilson, MD⁶; Robert L. Coleman, MD⁷; Domenica Lorusso, MD, PhD⁸; Paul Bessette, MD⁹; Sharad Ghamande, MD¹⁰; Athina Christopoulou, MD, PhD¹¹; Diane Provencher, MD¹²; Emily Prendergast, MD¹³; Fuat Demirkiran, MD¹⁴; Olga Mikheeva, MD¹⁵; Oladapo Yeku, MD, PhD¹⁶; Anita Chudecka-Glaz, MD, PhD¹⁷; Michael Schenker, MD, PhD¹⁸; Ramey D. Littell, MD¹⁹; Tamar Safra, MD²⁰; Hung-Hsueh Chou, MD^{21,22}; Mark A. Morgan, MD²³; Vít Drochýtek, MD²⁴; Joyce N. Barlin, MD²⁵; Toon Van Gorp, MD²⁶; Fred Ueland, MD²⁷; Gabriel Lindahl, MD^{28,29}; Charles Anderson, MD³⁰; Dearbhaile C. Collins, MBBCh, MA, PhD³¹; Kathleen Moore, MD³²; Frederik Marme, MD, PhD³³; Shannon N. Westin, MD, MPH³⁴; Iain A. McNeish, MD, PhD³⁵; Danny Shih, BA³⁶; Kevin K. Lin, PhD³⁷; Sandra Goble, MS³⁸; Stephanie Hume, PhD³⁹; Keiichi Fujiwara, MD, PhD⁴⁰; and Rebecca S. Kristeleit, MD, PhD⁴¹


J Clin Oncol 2022;[Online ahead of print].

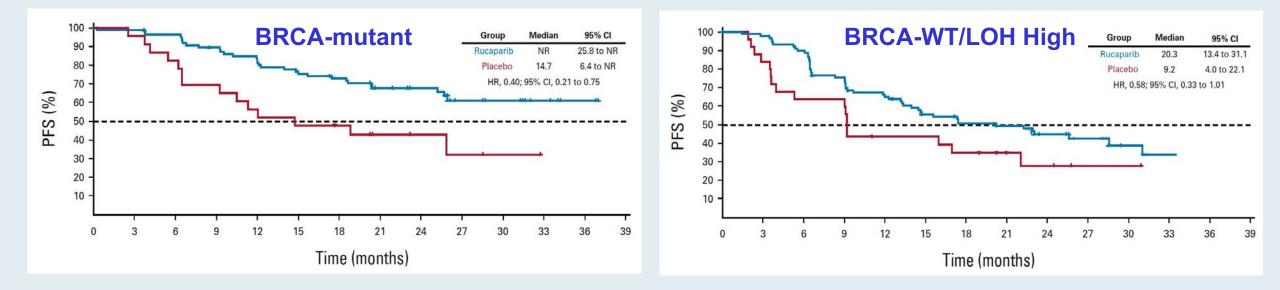
ATHENA-MONO Study Schema

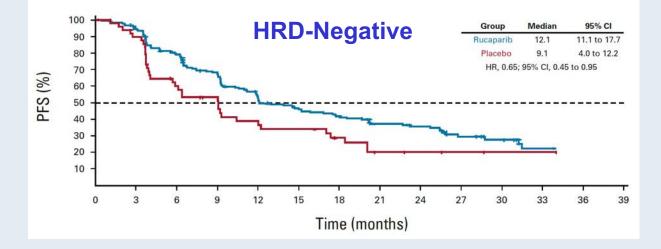

Key Patient Eligibility

- Newly diagnosed, stage III–IV, highgrade epithelial ovarian, fallopian tube, or primary peritoneal cancer
- Completed frontline platinum-doublet chemotherapy and surgery
 - Achieved investigator-assessed CR or PR
 - Received cytoreductive surgery (primary or interval; R0/complete resection permitted)
- · ECOG PS 0 or 1
- No prior treatment for ovarian cancer, including any maintenance treatment, other than frontline platinum regimen



ATHENA-MONO: Investigator-Assessed PFS in the HRD Population (N = 234)




ATHENA-MONO: Investigator-Assessed PFS in the ITT Population (N = 538)

ATHENA-MONO: Investigator-Assessed PFS

ATHENA-MONO: Investigator-Confirmed ORR

	HRD Pop	oulation	ITT Pop	ITT Population		
Response	Rucaparib (n $=$ 17)	Placebo (n $=$ 5)	Rucaparib ($n = 41$)	Placebo ($n = 11$)		
Confirmed ORR per RECIST						
No.	10	1	20	1		
% (95% CI)	58.8 (32.9 to 81.6)	20.0 (0.5 to 71.6)	48.8 (32.9 to 64.9)	9.1 (0.2 to 41.3)		
CR, No. (%)	0	0	1 (2.4)	0		
PR, No. (%)	10 (58.8)	1 (20.0)	19 (46.3)	1 (9.1)		
Stable disease, No. (%)	6 (35.3)	2 (40.0)	10 (24.4)	4 (36.4)		
Progressive disease, No. (%)	1 (5.9)	2 (40.0)	10 (24.4)	6 (54.5)		
Not evaluable, No. (%)	0	0	1 (2.4)	0		

ORR = objective response rate

ATHENA-MONO: Common Treatment-Emergent Adverse Events

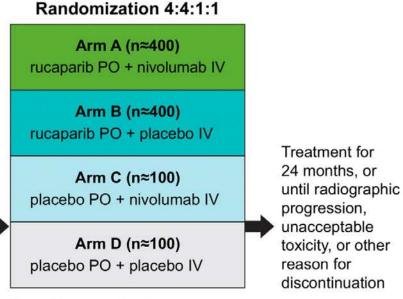
	Rucaparib	(n = 425)	Placebo	(n = 110)
TEAE	Any Grade	Grade \geq 3	Any Grade	Grade \geq 3
At least one TEAE, No. (%)	411 (96.7)	257 (60.5)	102 (92.7)	25 (22.7)
Nausea	239 (56.2)	8 (1.9)	33 (30.0)	0
Asthenia/fatigue	237 (55.8)	21 (4.9)	41 (37.3)	1 (0.9)
Anemia/decreased hemoglobin	198 (46.6)	122 (28.7)	10 (9.1)	0
Increased ALT/AST	181 (42.6)	45 (10.6)	9 (8.2)	1 (0.9)
Neutropenia/neutrophil count decreased	118 (27.8)	62 (14.6)	8 (7.3)	1 (0.9)
Abdominal pain	106 (24.9)	2 (0.5)	31 (28.2)	2 (1.8)
Diarrhea	102 (24.0)	6 (1.4)	23 (20.9)	1 (0.9)
Thrombocytopenia/platelet count decreased	101 (23.8)	30 (7.1)	1 (0.9)	0
Vomiting	100 (23.5)	6 (1.4)	13 (11.8)	0
Dysgeusia	90 (21.2)	1 (0.2)	6 (5.5)	0
Arthralgia	86 (20.2)	1 (0.2)	25 (22.7)	0
Headache	85 (20.0)	2 (0.5)	16 (14.5)	0

FDA Advises Manufacturer Not to Submit First-Line Maintenance sNDA for Rucaparib Until OS Survival Data from the ATHENA-MONO Trial Are More Mature June 17, 2022

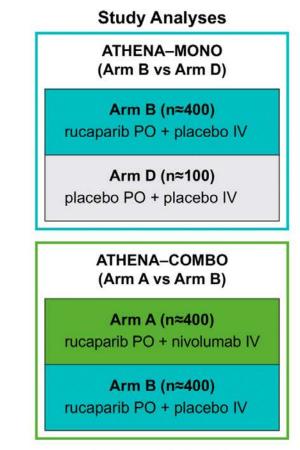
"In consultation with the FDA, [the manufacturer of rucaparib] recently was advised not to file a supplemental new drug application based on data from a cohort of the Phase III ATHENA study until the study's overall survival data mature.

In the 8-K, [the manufacturer] said the FDA has accepted a request for a pre-NDA meeting and noted that the ATHENA-MONO portion of the Phase III study has met its primary endpoint of progression-free survival compared to placebo. OS is a secondary endpoint for ATHENA-MONO and the data are approximately 25% mature at present. [The manufacturer] said the FDA urged it to hold off filing for supplemental approval until the OS data reach 50% maturity, and indicated an advisory committee review would likely be necessary if the data were filed earlier than that point.

In a statement to *Scrip*, the firm said that although it cannot anticipate the outcome of the pre-NDA meeting, 'we are encouraged that the FDA is willing to have a dialogue.' [They] estimate the ATHENA-MONO OS data will reach 50% maturity in approximately two years."


https://scrip.pharmaintelligence.informa.com/SC146575/Clovis-Withdraws-Rubraca-Ovarian-Cancer-Indication-Due-To-Survival-Imbalance?vid=Pharma

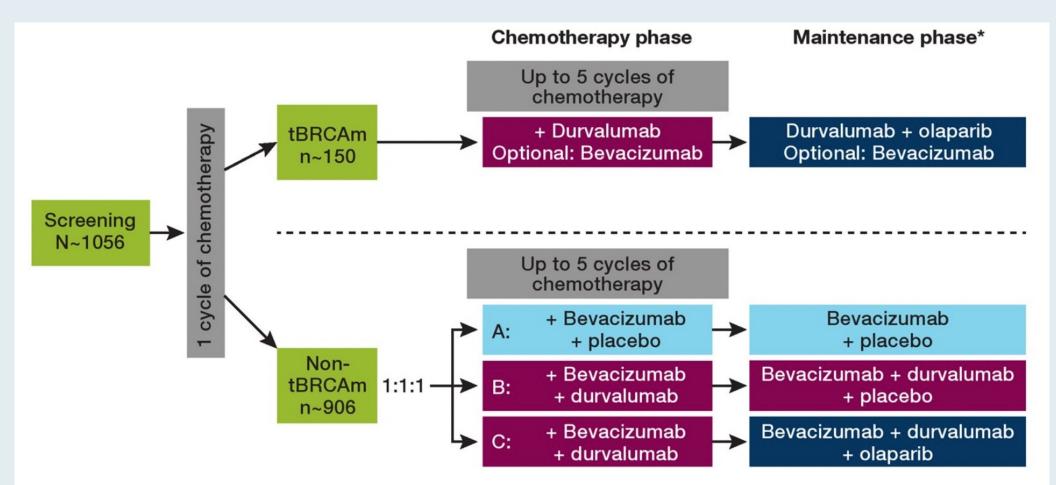
ATHENA-MONO and ATHENA-COMBO Study Design


Key Patient Eligibility

- Newly diagnosed, stage III/IV, high-grade epithelial ovarian, fallopian tube, or primary peritoneal cancer
- Completed frontline platinum-doublet chemotherapy and surgery
 - Achieved investigator-assessed CR or PR without disease progression or rise in CA-125 at any time during frontline platinum-doublet chemotherapy
 - Received cytoreductive surgery (R0 permitted), either prior to chemotherapy or following neoadjuvant chemotherapy, with sufficient tissue available for analysis
- ECOG PS 0 or 1
- No prior treatment for ovarian cancer, including any maintenance treatment, other than frontline platinum regimen

Stratification Factors

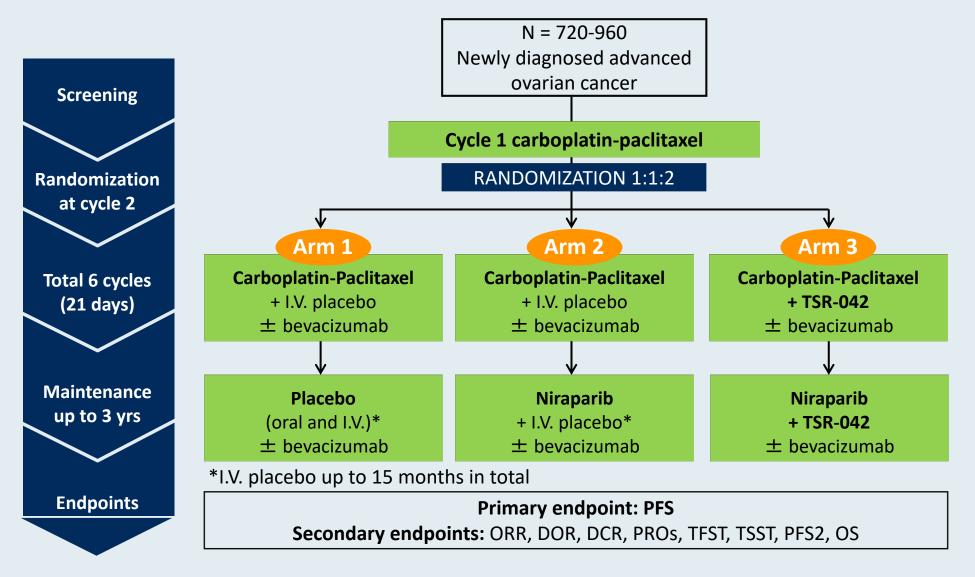
- Centrally assessed tumor status (BRCA mutation, BRCA wild-type/high LOH, BRCA wild-type/low LOH, BRCA wild-type/LOH indeterminate)
- Response to frontline platinum doublet (no residual disease vs residual disease)
- · Timing of surgery (primary vs interval debulking)



Primary Endpoint Investigator-assessed PFS per RECIST v1.

Monk BJ et al. Int J Gynecol Cancer 2021;31(12):1589-94.

DUO-O Study Design in Newly Diagnosed Advanced Ovarian Cancer


*Olaparib administered for a maximum of 24 months after chemotherapy. Durvalumab and bevacizumab administered for a maximum of 15 months

Estimated completion date: July 2023

Harter P et al. ASCO 2019; Abstract TPS5598; www.clinicaltrials.gov (NCT03737643) Accessed July 2022.

FIRST Phase III Trial of Dostarlimab (TSR-042) for Newly Diagnosed Ovarian Cancer

www.clinicaltrials.gov/ct2/show/NCT03602859

Courtesy of Ursula Matulonis, MD

Current Treatment Paradigm for Recurrent Disease

Ongoing Research with PARP Inhibitors for Newly Diagnosed and Relapsed Disease

Eligibility and Dosing in Pivotal Studies of PARP Inhibitors for Recurrent, Platinum-Sensitive Ovarian Cancer

	NOVA ¹ (niraparib)	SOLO-2 ² (olaparib)	ARIEL3 ³ (rucaparib)
BRCA status	With or without gBRCA mutation	gBRCA mutation (Study 19: +/- gBRCA mutation)	With or without gBRCA mutation
HRD testing	Yes	No	Yes
Tumor assessment schedule	Every 8 wk to C14 → every 12 wk	Every 12 wk until wk 72 → every 24 wk	Every 8 wk to C14 → every 12 wk
Dosing/formulation	300 mg qd	300 mg BID	600 mg BID
No. of prior lines of chemo	2 or more	2 or more	2 or more

¹ Mirza MR et al. *N Engl J Med* 2016;375(22):2154-64; ² Pujade-Lauraine E et al. *Lancet* 2017;18(9):1274-84; ³ Coleman RL et al. *Lancet* 2017;390(10106):1949-61.

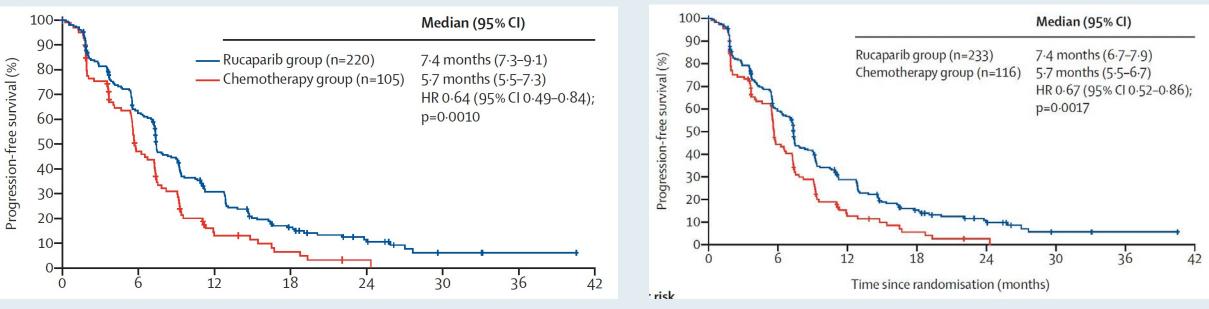
Progression-Free Survival with PARP Inhibitors for Recurrent, Platinum-Sensitive Ovarian Cancer

	PARPi	Control	HR				
NOVA ¹⁻² — niraparib							
gBRCA mutation	21.0 mo	5.5 mo	0.27				
No gBRCA mutation, HRD+	12.9 mo	3.8 mo	0.38				
No gBRCA mutation	9.3 mo	3.9 mo	0.45				
SOLO-2 ³⁻⁴ — olaparib							
gBRCA mutation	19.1 mo	5.5 mo	0.30				
Overall survival	51.7 mo	38.8 mo	0.74				
ARIEL3 ⁵⁻⁶ — rucaparib							
ITT (all comers)	10.8 mo	5.4 mo	0.36				
g or sBRCA mutation	16.6 mo	5.4 mo	0.23				
HRD+	13.6 mo	5.4 mo	0.32				
BRCA ^{wT} /high LOH	13.6 mo	5.4 mo	0.32				
BRCA ^{WT} /low LOH	6.7 mo	5.4 mo	0.58				

¹ Mirza MR et al. *N Engl J Med* 2016;375(22):2154-64; ²Del Campo JM et al. *J Clin Oncol* 2019;37(32):2968-73. ³Poveda A et al. *Lancet Oncol* 2021;22(5):620-31. ⁴Pujade-Lauraine E et al. *Lancet* 2017;18(9):1274-84; ⁵ Coleman RL et al. *Lancet* 2017;390(10106):1949-61; ⁶Ledermann JA et al. *Lancet Oncol* 2020;21(5):710-722.

Lancet Oncol 2022;23(4):465-78.

Rucaparib versus standard-of-care chemotherapy in patients 🐪 🖲 with relapsed ovarian cancer and a deleterious BRCA1 or BRCA2 mutation (ARIEL4): an international, open-label, randomised, phase 3 trial



Rebecca Kristeleit, Alla Lisyanskaya, Alexander Fedenko, Mikhail Dvorkin, Andreia Cristina de Melo, Yaroslav Shparyk, Irina Rakhmatullina, Igor Bondarenko, Nicoletta Colombo, Valentyn Svintsitskiy, Luciano Biela, Marina Nechaeva, Domenica Lorusso, Giovanni Scambia, David Cibula, Róbert Póka, Ana Oaknin, Tamar Safra, Beata Mackowiak-Matejczyk, Ling Ma, Daleen Thomas, Kevin K Lin, Karen McLachlan, Sandra Goble, Amit M Oza

ARIEL4: Progression-Free Survival in the Efficacy and ITT Populations

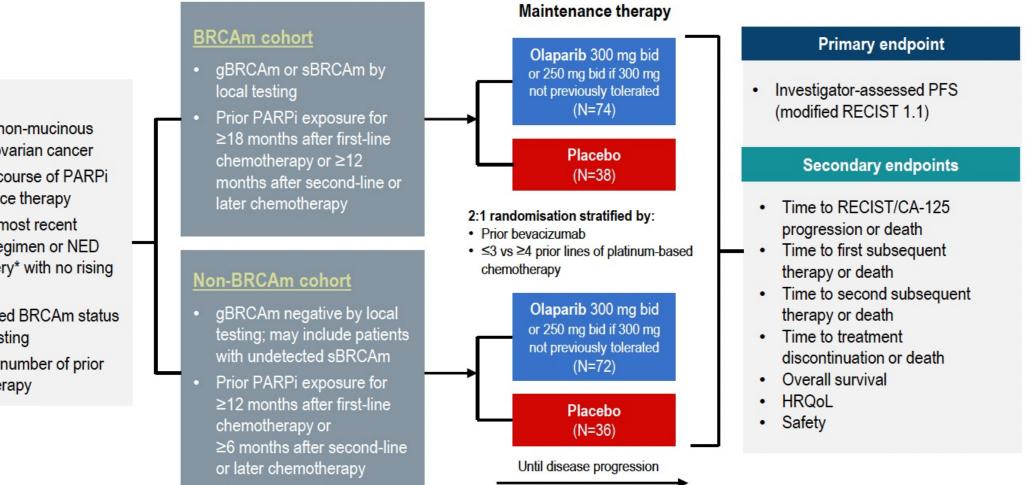
Efficacy population (BRCA1 or BRCA2 mutations with reversion mutations)

Intent to treat population

ARIEL4: Overall Response Rate and Duration of Response

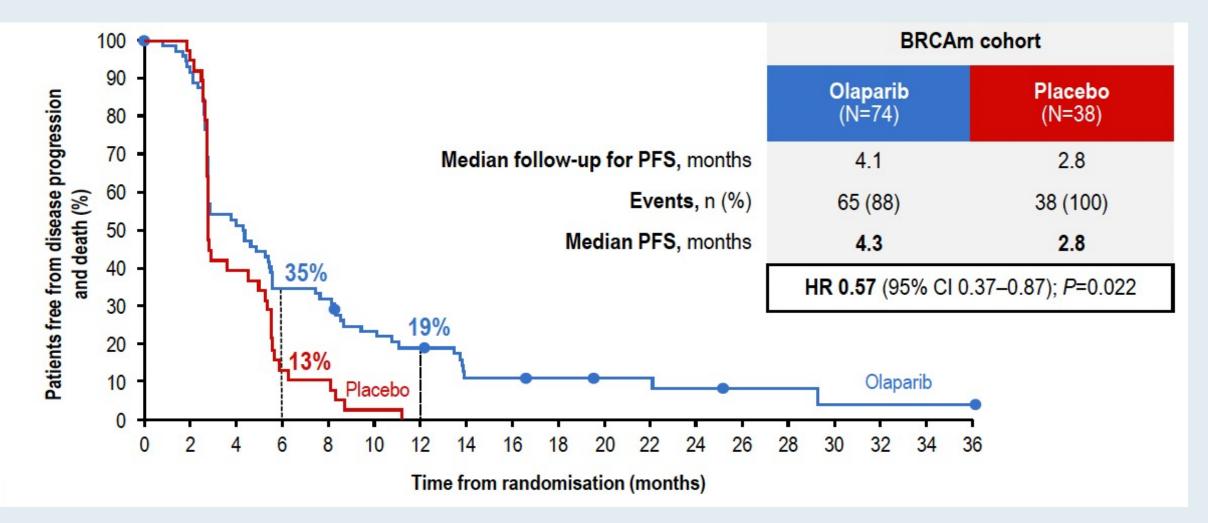
	Eff	icacy population			ITT population	
Endpoint	Rucaparib (n = 220)	Chemotherapy (n = 105)	<i>p</i> -value	Rucaparib (n = 233)	Chemotherapy (n = 116)	<i>p</i> -value
ORR	40%	32%	0.13	38%	30%	0.13
DoR, median	9.4 mo	7.2 mo		9.4 mo	7.2 mo	

ORR = overall response rate; DoR = duration of response

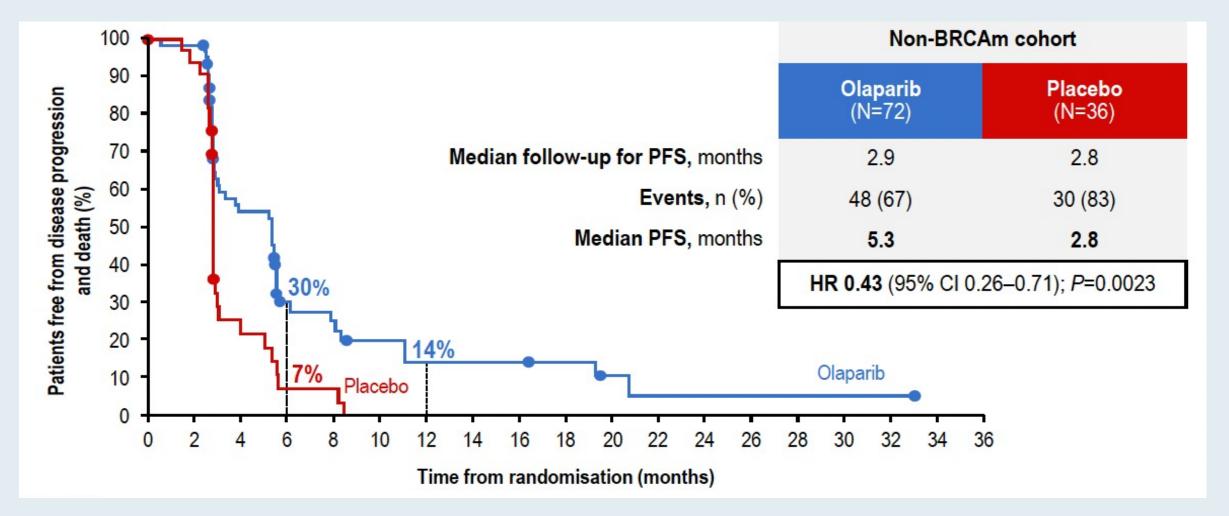

Kristeleit et al. *Lancet Oncol* 2022;23(4):465-78.

Abstract LBA33 Maintenance olaparib rechallenge in patients with ovarian carcinoma previously treated with a PARP inhibitor: Phase IIIb OReO/ENGOT Ov-38 trial

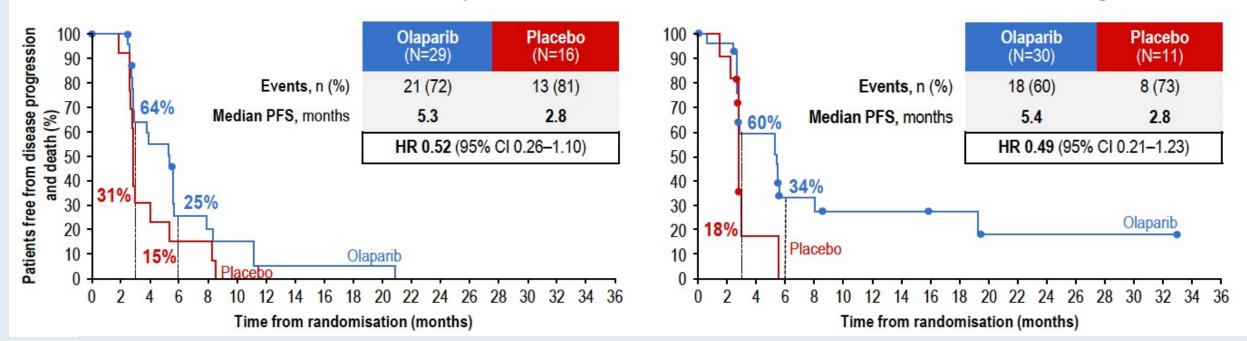
Eric Pujade-Lauraine,¹ Frédéric Selle,² Giovanni Scambia,³ Bernard Asselain,⁴ Frederik Marmé,⁵ Kristina Lindemann,⁶ Nicoletta Colombo,⁷ Radoslaw Madry,⁸ Rosalind Glasspool,⁹ Coraline Dubot,¹⁰ Ana Oaknin,¹¹ Claudio Zamagni,¹² Florian Heitz,¹³ Laurence Gladieff,¹⁴ Maria Jesús Rubio-Pérez,¹⁵ Paolo Scollo,¹⁶ Christopher Blakeley,¹⁷ Bob Shaw,¹⁷ Isabelle Ray-Coquard,¹⁸ Andrés Redondo¹⁹


OReO Phase IIIB Study Schema

Patients


- Relapsed non-mucinous epithelial ovarian cancer
- One prior course of PARPi maintenance therapy
- CR/PR to most recent platinum regimen or NED after surgery* with no rising CA-125
- Documented BRCAm status by local testing
- No limit to number of prior • lines of therapy

OReO: Progression-Free Survival in the BRCAm Cohort

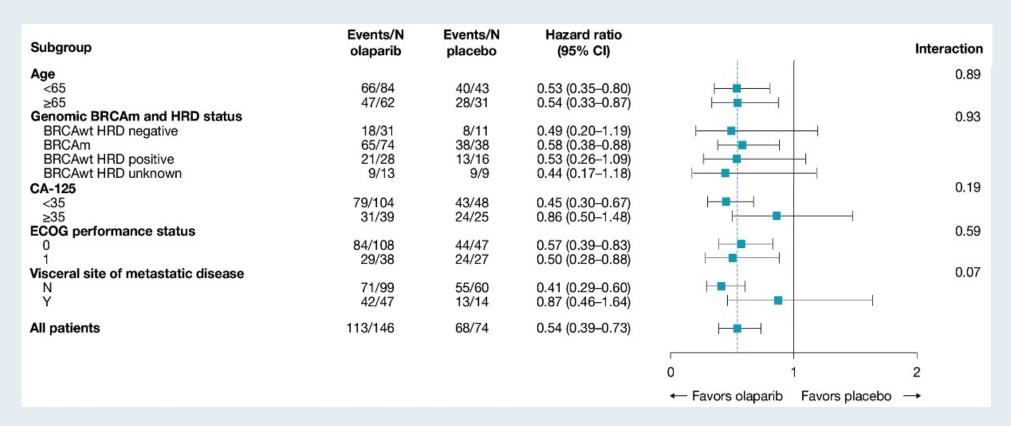


OReO: Progression-Free Survival in the Non-BRCAm Cohort

OReO: Progression-Free Survival in the Non-BRCAm Cohort by Homologous Recombination Deficiency (HRD) Status

Non-BRCAm cohort: HRD-negative

Pujade-Lauraine E et al. ESMO 2021;Abstract LBA33.


Non-BRCAm cohort: HRD-positive

OReO/ENGOT Ov-38 Trial: Impact of Maintenance Olaparib Rechallenge According to Ovarian Cancer Patient Prognosis — An Exploratory Joint Analysis of the BRCA and Non-BRCA Cohorts

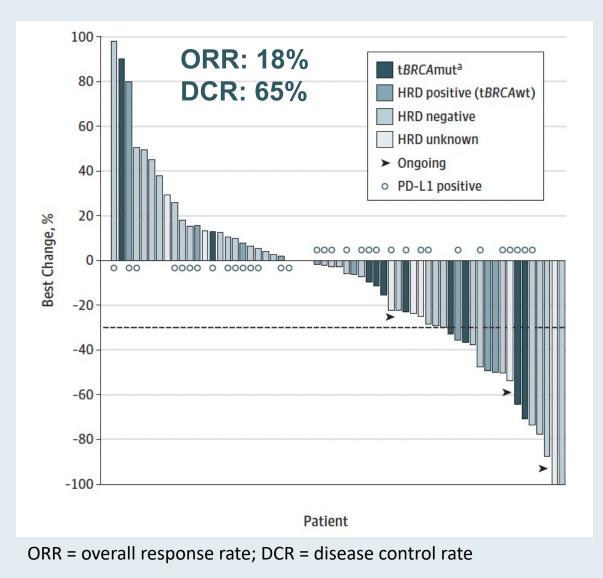
Selle F et al. ASCO 2022;Abstract 5558.

OReO: Post-hoc Analysis of Progression-Free Survival According to Patient Characteristics and Prognostic Factors

- Olaparib rechallenge was effective regardless of prognostic subgroup
- CA-125 levels and the presence of visceral disease at baseline were the best predictors of patient outcome

Research

JAMA Oncol 2019;5(8):1141-9.


JAMA Oncology | Original Investigation

Single-Arm Phases 1 and 2 Trial of Niraparib in Combination With Pembrolizumab in Patients With Recurrent Platinum-Resistant Ovarian Carcinoma

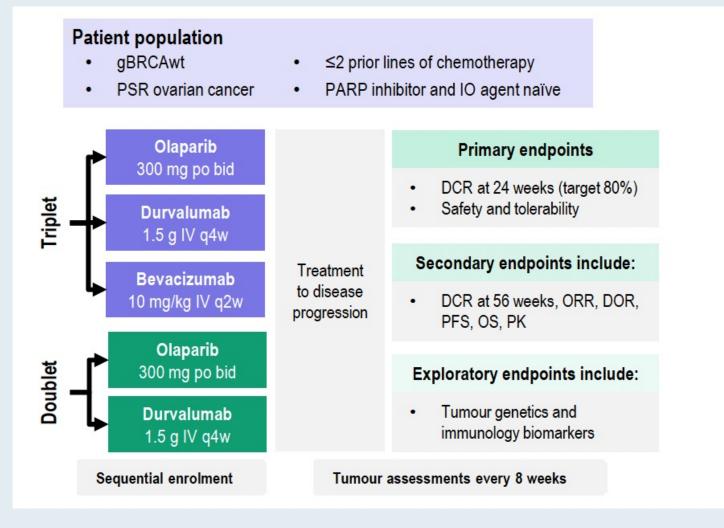
Panagiotis A. Konstantinopoulos, MD, PhD; Steven Waggoner, MD; Gregory A. Vidal, MD; Monica Mita, MD; John W. Moroney, MD; Robert Holloway, MD; Linda Van Le, MD; Jasgit C. Sachdev, MD; Eloise Chapman-Davis, MD; Gerardo Colon-Otero, MD; Richard T. Penson, MD; Ursula A. Matulonis, MD; Young Bae Kim, MD; Kathleen N. Moore, MD; Elizabeth M. Swisher, MD; Anniina Färkkilä, MD; Alan D'Andrea, MD; Erica Stringer-Reasor, MD; Jing Wang, PhD; Nathan Buerstatte, MPH; Sujata Arora, MS; Julie R. Graham, PhD; Dmitri Bobilev, MD; Bruce J. Dezube, MD; Pamela Munster, MD

TOPACIO/KEYNOTE-162: Antitumor Activity of Niraparib in Combination with Pembrolizumab

Konstantinopoulos PA et al. JAMA Oncol 2019;5(8):1141-9.

Abstract 814MO.

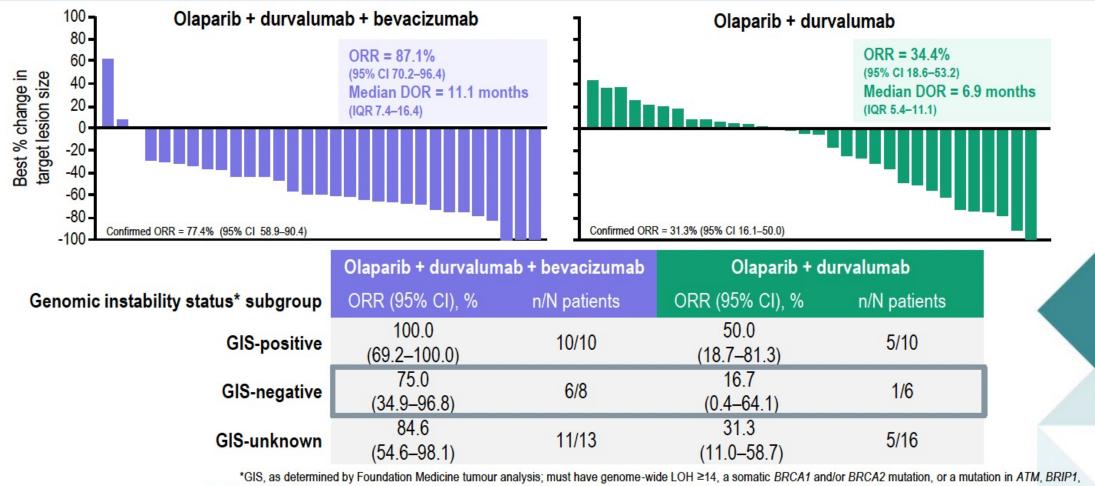
Phase II study of olaparib plus durvalumab and bevacizumab (MEDIOLA): initial results in patients with non-germline BRCA-mutated platinum sensitive relapsed ovarian cancer


<u>Yvette Drew</u>,¹ Richard Penson,² David M O'Malley,³ Jae-Weon Kim,⁴ Stefan Zimmermann,⁵ Patricia Roxburgh,⁶ Joohyuk Sohn,⁷ Salomon M Stemmer,⁸ Sara Bastian,⁹ Michelle Ferguson,¹⁰ Benoit You,¹¹ Susan Domchek,¹² Haiyan Gao,¹³ Helen K Angell,¹³ Kassondra Meyer,¹⁴ Laura Opincar,¹⁴ Lone Ottesen,¹³ Susana Banerjee¹⁵

¹Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, and Newcastle University, Newcastle upon Tyne, UK; ²Massachusetts General Hospital, Boston, MA, USA; ³The Ohio State University – James Comprehensive Cancer Center, Columbus, OH, USA; ⁴Seoul National University Hospital, Seoul, Republic of Korea; ⁵Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; ⁶Beatson West of Scotland Cancer Centre, and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK, ⁷Yonsei Cancer Centre, Yonsei University, Sinchon-dong, Republic of Korea; ⁸Rabin Medical Center-Beilinson Campus, Petach Tikva and Tel-Aviv University, Tel-Aviv, Israel; ⁹Kantonsspital Graubuenden, Chur, Switzerland; ¹⁰NHS Tayside, Dundee, UK; ¹¹Institut de Cancérologie des Hospices Civils de Lyon, CITOHL, GINECO, Université Claude Bernard Lyon 1, Lyon, France; ¹²Basser Center for BRCA University of Pennsylvania, Philadelphia, PA, USA; ¹³AstraZeneca, Cambridge, UK; ¹⁴AstraZeneca, Gaithersburg, MD, USA; ¹⁵The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK

ClinicalTrials.gov identifier: NCT02734004 This study was sponsored by AstraZeneca

MEDIOLA gBRCA Wild Type Study Schema



	Olap + durva + bev (N=31)	Olap + durva (N=32)
Median age, years	64.0	68.5
Age group (years), n (%)		
<50	3 (9.7)	4 (12.5)
≥50–<65	14 (45.2)	8 (25.0)
≥65	14 (45.2)	20 (62.5)
Race, n (%)		
White	20 (64.5)	24 (75.0)
Asian	10 (32.3)	3 (9.4)
Other	1 (3.2)	5 (15.6)
Platinum sensitivity, n (%	%)	
>6–12 months	18 (58.1)	14 (43.8)
>12 months	13 (41.9)	18 (56.3)
Number of prior lines of	chemotherapy, n (%)	
1 prior line	20 (64.5)	23 (71.9)
2 prior lines	11 (35.5)	9 (28.1)
Enrolment completed	January 2019	February 2019
Patients on study treatm	nent at DCO, n (%) (13 Februar	y 2020)

Olap; durva; bev 13 (41.9); 13 (41.9); 12 (38.7) 7 (21.9); 6 (18.8); NA

MEDIOLA gBRCA Wild Type: Antitumor Activity

PALB2, RAD51C, BARD1, CDK12, CHEK1, CHEK2, FANCL, PPP2R2A, RAD51B, RAD51D or RAD54L to be considered positive. At the time of the DCO, the prespecified cut-off for genome-wide LOH of 14% was used¹; GIS, genomic instability status; IQR, interquartile range; LOH, loss of heterozygosity. ¹Swisher et al. Lancet Oncol 2017;18:75–87

Phase II study of olaparib + durvalumab (MEDIOLA): Updated results in the germline BRCA-mutated platinum-sensitive relapsed ovarian cancer cohort

Yvette Drew,¹ Bella Kaufman,² Susana Banerjee,³ Alain Lortholary,⁴ Sook Hee Hong,⁵ Yeon Hee Park,⁶ Stefan Zimmermann,⁷ Patricia Roxburgh,⁸ Michelle Ferguson,⁹ Ricardo H Alvarez,¹⁰ Susan Domchek,¹¹ Christopher Gresty,¹² Helen K Angell,¹² Vidalba Rocher Ros,¹³ Kassondra Meyer,¹³ Mark Lanasa,¹³ Pia Herbolsheimer,¹³ Maja de Jonge¹⁴

¹Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne, UK; ²Chaim Sheba Medical Center, Tel Hashomer, Israel; ³The Royal Marsden Hospital, London, UK; ⁴Centre Catherine de Sienne, Nantes, France; ⁵Seoul St Mary's Hospital, Catholic University of Korea, Seoul, South Korea; ⁶Samsung Medical Center, Seoul, Republic of Korea; ⁷Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; ⁸University of Glasgow and Beatson West of Scotland Cancer Centre, Glasgow, UK; ⁹NHS Tayside, Dundee, UK; ¹⁰Cancer Treatment Centers of America-Atlanta and Augusta University, Augusta, GA, USA; ¹¹Basser Center for BRCA University of Pennsylvania, Philadelphia, PA, USA; ¹²AstraZeneca, Cambridge, UK**;** ¹³AstraZeneca, Gaithersburg, MD, USA and ¹⁴Erasmus MC Daniel den Hoed Cancer Center, Rotterdam, Netherlands

MEDIOLA mBRCA Cohort Study Schema

- MEDIOLA is a multi-cohort, Phase I/II study
- The design of the BRCAm ovarian cohort is presented below; other ovarian cancer cohorts are ongoing

N=34*

- Platinum-sensitive relapsed ovarian cancer[†]
- Germline mutation in
 BRCA1 or BRCA2
- ≥1 previous platinumbased therapy
- PARP inhibitor and immunotherapy naïve

Olaparib monotherapy 300 mg bid PO for 4 weeks

then

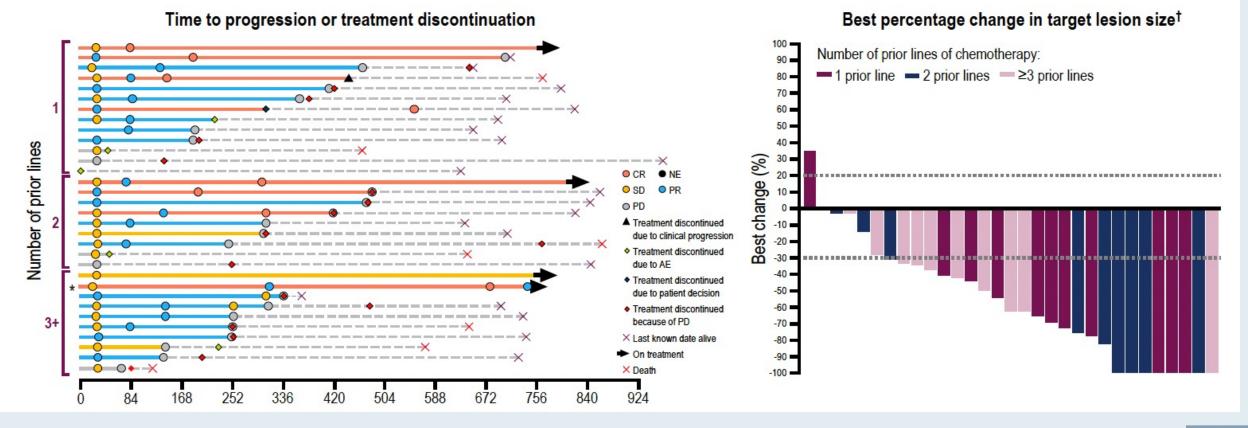
Olaparib 300 mg bid PO plus durvalumab IV 1.5 g every 4 weeks

Treatment until disease progression or intolerable toxicity

Primary endpoints

- Disease control rate at 12 weeks
- Safety and tolerability

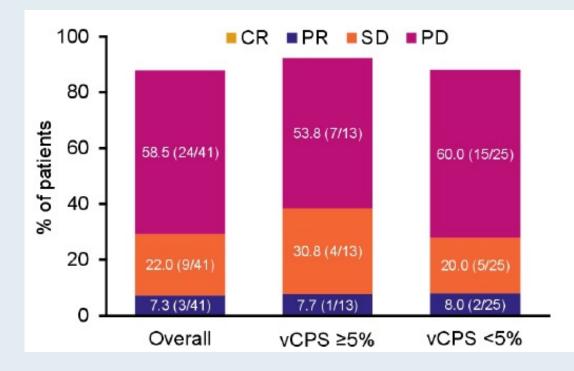
Secondary endpoints


- Disease control rate at 28 weeks
- Objective response rate
- Duration of response
- Progression-free survival
- Overall survival
- PD-L1 expression in tumour samples

MEDIOLA mBRCA Cohort: Efficacy

 DCR at 12 weeks: 81.3% (90% CI 66.3, 91.5) DCR at 28 weeks: 65.6% (90% CI 49.6, 79.4) Unconfirmed ORR: 71.9% (95% CI 53.3, 86.3) mPFS: 11.1 months (95% CI 8.2, 15.6)

Greater clinical activity was seen in earlier- versus later-line patients



MOONSTONE/GOG-3032: Interim Analysis of a Phase 2 Study of Niraparib + Dostarlimab in Patients (pts) with Platinum-Resistant Ovarian Cancer (PROC)

Randall LM et al. ASCO 2022;Abstract 5573.

MOONSTONE: Efficacy Summary of Niraparib with Dostarlimab for Platinum-Resistant Ovarian Cancer

	Overall	PD-L1 status	
Efficacy, n (%)	N=41	vCPS ≥5%	vCPS <5%
[95% Cl]*		n=13	n=25
ORR (CR + PR)	3 (7.3)	1 (7.7)	2 (8.0)
	[1.5–19.9]	[0.2–36.0]	[1.0–26.0]
DCR (CR + PR + SD)	12 (29.3)	5 (38.5)	7 (28.0)
	[16.1–45.5]	[13.9–68.4]	[12.1–49.4]
Median PFS, months (95% CI)	2.1	2.2 (1.6–not	2.1
	(2.0–2.2)	evaluable)	(1.8–2.2)

MOONSTONE: Select Treatment-Related Adverse Events in >10% of Patients

Adverse event n (%)	Related to either niraparib or dostarlimab	Related to niraparib	Related to dostarlimab
Nausea	23 (56.1)	21 (51.2)	11 (26.8)
Fatigue	14 (34.1)	13 (31.7)	13 (31.7)
Vomiting	13 (31.7)	13 (31.7)	7 (17.1)
Anemia	13 (31.7)	13 (31.7)	7 (17.1)
Platelet count decreased	11 (26.8)	11 (26.8)	0 (0)
Thrombocytopenia	8 (19.5)	8 (19.5)	0 (0)

An Open-Label Phase 2 Study of Dostarlimab, Bevacizumab, and Niraparib Combination in Patients with Platinum-Resistant Ovarian Cancer: Cohort A of the OPAL Trial

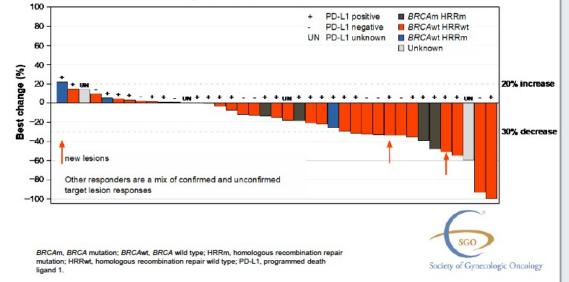
Joyce F. Liu,¹ Stéphanie Gaillard,² Andrea E. Wahner Hendrickson,³ John W. Moroney,⁴ Oladapo Yeku,⁵ Elisabeth Diver,⁶ Camille Gunderson,⁷ Rebecca Arend,⁸ Elena Ratner,⁹ Vivek Samnotra,¹⁰ Divya Gupta,¹⁰ Lena Evilevitch,¹⁰ Zebin Wang,¹⁰ Ping Wang,¹⁰ Joseph Tang,¹⁰ Emeline Bacqué,¹⁰ Xiaohong Liu,¹⁰ Gottfried E. Konecny¹¹

Poster #23

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA; ³Mayo Clinic Rochester, Rochester, NY, USA; ⁴University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA; ⁵Massachusetts General Cancer Center, Boston, MA, USA; ⁶Stanford Women's Cancer Center, Palo Alto, CA, USA; ⁷University of Oklahoma Stephenson Cancer Center, Oklahoma City, OK, USA; ⁸The University of Alabama at Birmingham, UAB Comprehensive Cancer Center, Birmingham, AL, USA; ⁹Yale University, New Haven, CT, USA; ¹⁰GlaxoSmithKline, Waltham, MA, USA; ¹¹Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA.

SGO VIRTUAL ANNUAL MEETING 2021 ON WOMEN'S CANCER®

Abstract 10415

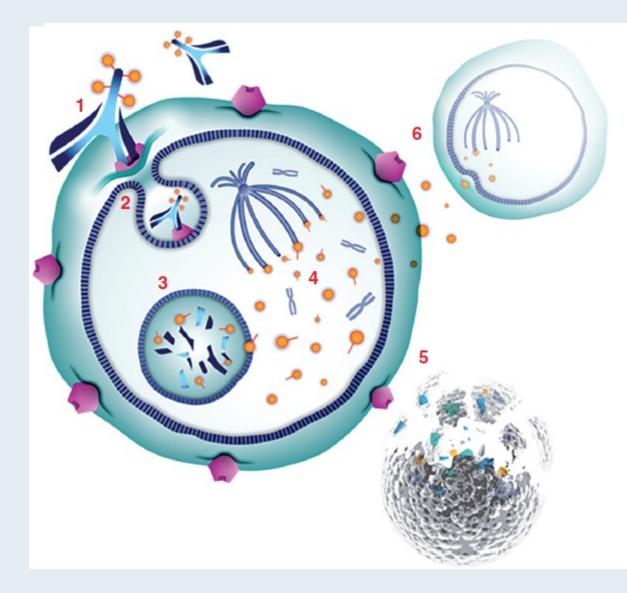

Antitumor Activity

- Antitumor activity was assessed in the response-evaluable population (n=39)
 - 2 patients in the safety population did not have a postbaseline scan and were excluded from the responseevaluable population
- Response data required that patients with a best response of complete response or partial response had a confirmation scan ≥4 weeks after the first scan in which a response was observed

SGO	VIRTUAL ANNUAL MEETING
2021	ON WOMEN'S CANCER®

Antitumor Activity per RECIST v1.1		
Variable, n (%)	Response-evaluable population (n=39)	
Complete response	0	
Partial response	7 (17.9)	
Stable disease	23 (59.0)	
Progressive disease	8 (20.5)	
Inconclusive	1 (2.6)	
ORR (90% CI), %	17.9 (8.7–31.1)	
DCR (90% CI), %	76.9 (63.2–87.4)	

Best Percent Change from Baseline Sum of Target Lesions by HRR and PD-L1 Status



Liu JF et al. SGO 2021; Abstract 10415.

Novel Investigational Agents and Strategies

Mirvetuximab Soravtansine: Mechanism of Action

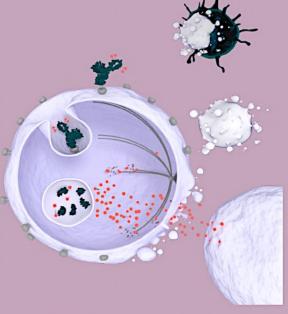
(1) Mirvetuximab soravtansine binds with high affinity to FRα expressed on the tumor cell surface

(2) The antibody-drug conjugate (ADC)/receptor complex becomes internalized via antigenmediated endocytosis

(3) Lysosomal processing releases active DM4 catabolites from the ADC molecule

(4) These maytansinoid derivatives inhibit tubulin polymerization and microtubule assembly

(5) The potent antimitotic effects result in cell-cycle arrest and apoptosis

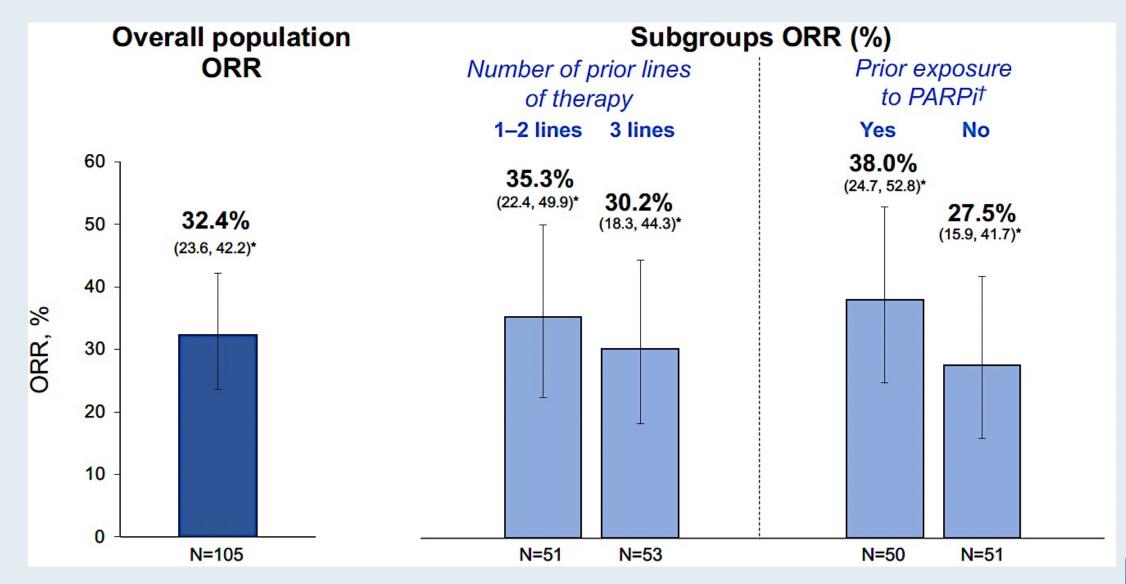

(6) Active metabolites can also diffuse into neighboring cells and induce further cell death — in other words, bystander killing

Efficacy and Safety of Mirvetuximab Soravtansine in Patients With Platinum-Resistant Ovarian Cancer With High Folate Receptor Alpha Expression: Results From the SORAYA Study

Ursula A. Matulonis,¹ Domenica Lorusso,² Ana Oaknin,³ Sandro Pignata,⁴ Hannelore Denys,⁵ Nicoletta Colombo,⁶ Toon Van Gorp,⁷ Jason A. Konner,⁸ Margarita Romeo Marin,⁹ Philipp Harter,¹⁰ Conleth G. Murphy,¹¹ Jiuzhou Wang,¹² Elizabeth Noble,¹² Brooke Esteves,¹² Michael Method,¹² Robert L. Coleman¹³

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²Fondazione Policlinico Universitario A. Gemelli, IRCCS and Catholic University of Sacred Heart, Rome, Italy; ³Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; ⁴Istituto Nazionale Tumori di Napoli Fondazione G Pascale IRCCS, Naples, Italy; ⁵Ghent University Hospital, Ghent, Belgium; ⁶European Institute of Oncology IRCCS, Milan, Italy and University of Milan-Bicocca, Milan, Italy; ⁷University Hospital Leuven, Leuven Cancer Institute, Leuven, Belgium; ⁸Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁹Institut Català d'Oncologia, Badalona, Spain; ¹⁰Ev. Kliniken Essen-Mitte, Essen, Germany; ¹¹Bon Secours Hospital and Cancer Trials, Cork, Ireland; ¹²ImmunoGen, Inc., Waltham, MA, USA; ¹³US Oncology Research, Texas Oncology, The Woodlands, TX, USA

S^{*}RAYA



SGO 2022; Abstract LBA4.

SORAYA: Investigator-Assessed Objective Response Rate by Prior Therapy

Matulonis UA et al. SGO 2022; Abstract LBA4.

SORAYA: Treatment-Related Adverse Events (≥10%)

TRAEs, n (%)	All Grades	Grade 3	Grade 4
Patients with any event	9 <mark>1 (</mark> 86)	29 (27)	1 (1)
Blurred vision	43 (41)	6 (6)	0 (0)
Keratopathy*†	38 (36)	8 (8)	1 (1)
Nausea	<mark>31 (</mark> 29)	0 (0)	0 (0)
Dry eye	24 (23)	2 (2)	0 (0)
Fatigue	24 (23)	1 (1)	0 (0)
Diarrhea	23 (22)	2 (2)	0 (0)
Asthenia	16 (15)	1 (1)	0 (0)
Photophobia	15 (14)	0 (0)	0 (0)
Peripheral neuropathy	13 (12)	0 (0)	0 (0)
Decreased appetite	13 (12)	1 (1)	0 (0)
Vomiting	12 (11)	0 (0)	0 (0)
Neutropenia	11 (10)	1 (1)	0 (0)

- Most adverse events (AEs) were lowgrade, reversible ocular and GI events
- Serious Grade ≥3 treatment-related AEs (TRAEs) were reported in 8% of patients
- TRAEs led to dose delay in 32% and dose reduction in 19%
- 7 patients (7%) discontinued treatment due to TRAEs
- 1 death was recorded as possibly related to study drug
 - Respiratory failure
 - Autopsy: No evidence of drug reaction; lung metastases

Matulonis UA et al. SGO 2022; Abstract LBA4.

Unique Events Associated with Mirvetuximab Soravtansine: Keratopathy and Blurred Vision

Events developed in 50/106 (47%) patients: mostly low grade

Keratopathy

n=7

Both n=31

n=12 Blurred vision

Proactive supportive care

- Lubricating artificial tears
- Corticosteroid eye drops

Predictable

- Median time to onset: cycle 2 (~1.5 months)

Manageable with dose modifications, if needed

- 22% of patients (23/106) had dose delay and/or reduction

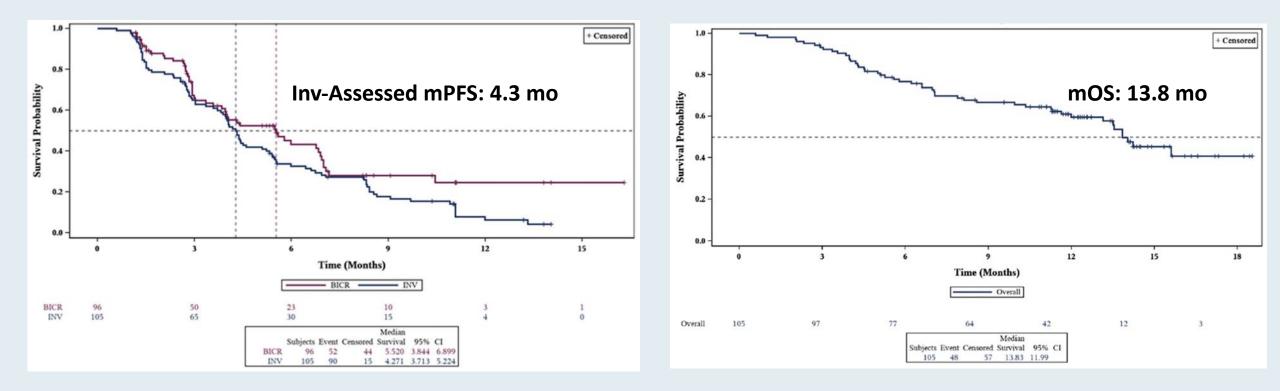
Reversible

At data cutoff: >80% of Grade 2-3 events had resolved to
 Grade 0-1

9 patients still receiving mirvetuximab soravtansine or being followed up for resolution

<1% discontinuation due to ocular events

– 1 of 106 patients discontinued due to Grade 4 keratopathy,
 which resolved within 15 days



Mirvetuximab Soravtansine (MIRV) in Patients with Platinum-Resistant Ovarian Cancer with High Folate Receptor Alpha (FRα) Expression: Characterization of Antitumor Activity in the SORAYA Study

Matulonis UA et al. ASCO 2022;Abstract 5512.

SORAYA: Overall Response Rate in the BRCA Mutation-Positive Subgroup

Matulonis UA et al. ASCO 2022; Abstract 5512.

SORAYA: Overall Response Rate in the BRCA Mutation-Positive Subgroups

	<i>BRCAmt</i> with prior PARPi (n=16)	<i>BRCAmt</i> without prior PARPi (n=4)
Responders, n	6	3
ORR	38%	75%

Matulonis UA et al. ASCO 2022; Abstract 5512.

MIRASOL Phase III Study Schema

MIRAS[®]L

Enrollment and Key Eligibility

- Platinum-resistant disease (PFI ≤ 6 mo)
 - 1° platinum refractory disease excluded (primary PFI < 3 mo)
- Prior bevacizumab and PARPi allowed
- 1-3 prior lines of therapy
- Patients with BRCA mutations allowed
- FRα-high by PS2+ scoring (≥75% PS2+)

Statistical Assumptions

- 430 patients/ 330 events for PFS by INV
- α=0.05 (two-sided)
- Power=90%; HR=0.7; control arm mPFS 3.5 mo

Mirvetuximab Soravtansine 6 mg/kg AIBW (calculated using adjusted ideal body weight) intravenously once every 3 weeks

> 1:1 Randomization STRATIFICATION FACTORS Investigator's Choice (IC) Chemotherapy (Paclitaxel, PLD, Topotecan) Prior Therapies (1 vs 2 vs 3)

Investigator's Choice (IC) Chemotherapy Paclitaxel, PLD,⁺ or Topotecan Paclitaxel: 80 mg/m2 weekly; PLD: 40 mg/m² every 4 weeks; Topotecan: 4 mg/m² on days 1, 8, and 15 every four weeks; or 1.25 mg/m² on days 1-5 every 3 weeks

Moore KN et al. SGO 2022; Abstract 297.

PICCOLO Phase II Trial Schema

PICC¹

Enrollment and Key Eligibility

- Platinum-sensitive disease (PFI >6 mo)
- At least 2 prior lines of platinum-based therapy
 - Patients with documented platinum allergy require only 1 prior line of platinum
- FRα-high by IHC scoring (≥75% PS2+)
- Appropriate for single agent therapy as next line of therapy as determined by investigator

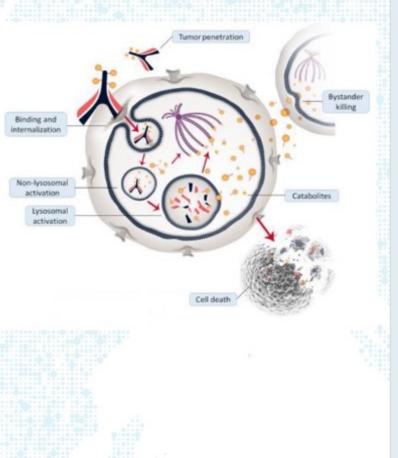
Statistical Assumptions

- N=75
- Null hypothesis: ORR is ≤ 28% tested using an optimal Simon's two-stage design w/o pause in enrollment

Mirvetuximab Soravtansine

6 mg/kg AIBW (calculated using adjusted ideal body weight) intravenously once every 3 weeks

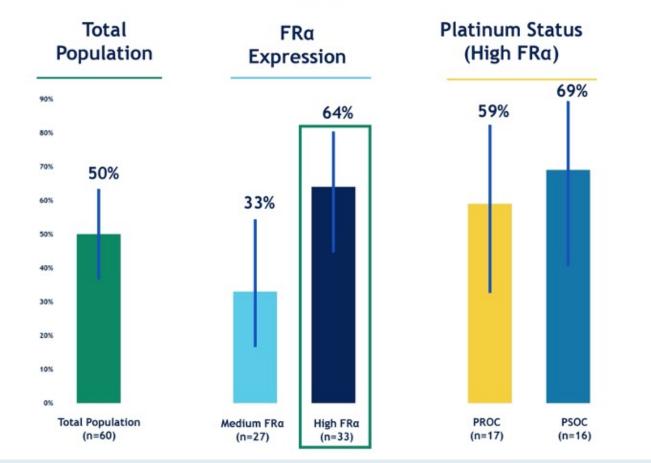
Alvarez Secord A et al. SGO 2022; Abstract 300.


2021 ASCO ANNUAL MEETING

Abstract 5504

Mirvetuximab Soravtansine, a folate receptor alpha-targeting antibody drug conjugate, in combination with bevacizumab in patients with platinumagnostic ovarian cancer: final analysis

David M. O'Malley¹, Ana Oaknin², Ursula A. Matulonis³, Gina M. Mantia-Smaldone⁴, Peter Lim⁵, Cesar Castro⁶, Diane Provencher⁷, Sanaz Memarzadeh⁸, Patrick Zweidler-McKay⁹, Jiuzhou Wang⁹, Brooke Esteves⁹, Kathleen N. Moore¹⁰ Lucy Gilbert¹¹

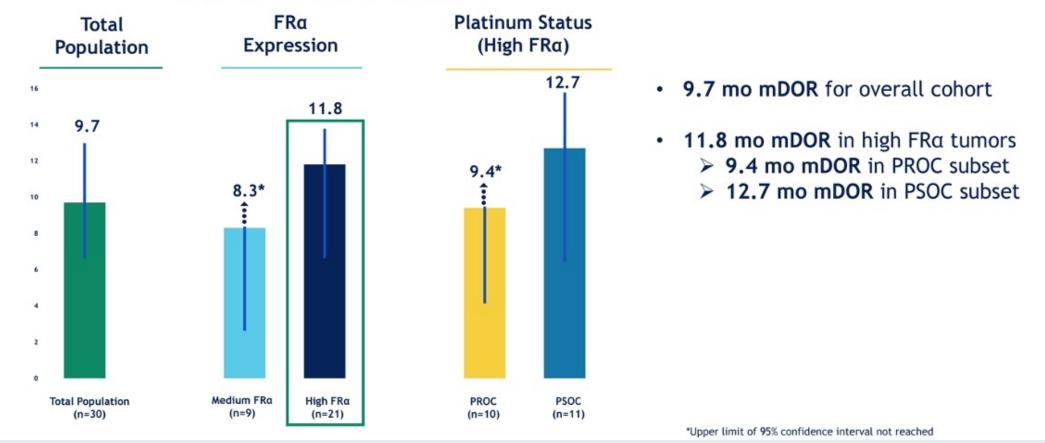

¹Ohio State University, Columbus, OH; ²Vall D'Hebron University Hospital, Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ³Dana Farber Cancer Institute, Boston, MA; ⁴Fox Chase Cancer Center, Philadelphia, PA; ⁵The Center of Hope Renown Regional Medical Center, Reno, NV; ⁶Massachusetts General Hospital, Boston, MA; ⁷Institute du Cancer de Montreal, Montreal, Canada; ⁸Ronald Reagan UCLA Medical Center UCLA Medical Center, Santa Monica^{; 9}ImmunoGen, Inc., Waltham, MA; ¹⁰University of Oklahoma Health Sciences Center, Oklahoma City, OK/Sarah Cannon Research Institute, Nashville, TN; ¹¹McGill University Health Center-RI, Montreal, Canada

Confirmed ORR by FRa Expression and Platinum Status

ORR (%)

• 50% ORR (30/60) for overall cohort

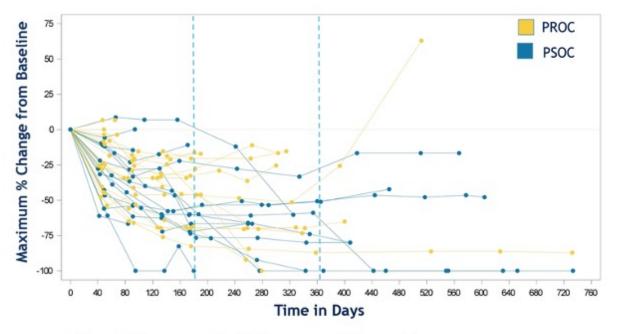
64% ORR (21/33) in high FRα tumors
 59% ORR (10/17) in PROC subset
 69% ORR (11/16) in PSOC subset


ORR = overall response rate; PROC = platinum-resistant ovarian cancer; PSOC = platinum-sensitive ovarian cancer

O'Malley DM et al. ASCO 2021; Abstract 5504.

Median Duration of Response (mDOR) by FRa Expression and Platinum Status


Median DOR (months)


High FRa Tumors Showed a Deep Response and Durable Benefit

Maximum % Change from Baseline

 97% (32/33) of patients demonstrated tumor burden reduction

Percent Change and Duration from Baseline

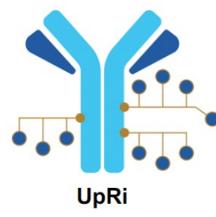
- Rapid tumor shrinkage, with early responses
- Durable benefit in both PSOC and PROC

Updated Results From the Phase 1b Expansion Study of Upifitamab Rilsodotin (UpRi; XMT-1536), a NaPi2bdirected Dolaflexin Antibody Drug Conjugate (ADC) in Ovarian Cancer

<u>Richardson, Debra L</u>¹; Hamilton, Erika P²; Barve, Minal³; Anderson, Charles K⁴; Taylor, Sara K⁵; Lakhani, Nehal⁶; Buscema, Joseph⁷; Tolcher, Anthony W⁸; Zarwan, Corrine⁹; Werner, Theresa L¹⁰; Hays, John L¹¹; Richards, Paul¹²; Arend, Rebecca¹³; Edenfield, Jeffery¹⁴; Putiri, Emily¹⁵; Bernardo, Patricia¹⁵; Burger, Robert A¹⁵; Matulonis, Ursula A¹⁶

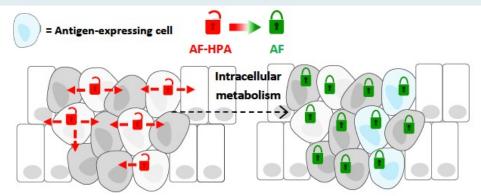
¹Stephenson Cancer Center, University of Oklahoma Health Sciences Center and the Sarah Cannon Research Institute, Oklahoma City, OK; ²Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ³Mary Crowley Cancer Research, Dallas, TX; ⁴Willamette Valley Cancer Institute and Research Center, Eugene, OR; ⁵BC Cancer - Kelowna BC, Canada; ⁶START Midwest, Grand Rapids, MI; ⁷Arizona Oncology, Tucson, AZ; ⁸NEXT Oncology, San Antonio, TX; ⁹Lahey Clinic, Burlington, MA; ¹⁰Huntsman Cancer Institute, University of Utah,

Salt Lake City, UT; ¹¹Arthur James Cancer Hospital, Ohio State University, Columbus, OH; ¹²US Oncology, Oncology and Hematology Assoc. of Southwest VA, Salem, VA; ¹³University of Alabama at Birmingham, Birmingham, AL; ¹⁴Prisma Health Cancer Institute, Greenville, SC; ¹⁵Mersana Therapeutics, Inc, Cambridge, MA; ¹⁶Dana-Farber Cancer Institute, Boston, MA



SGO 2022; Abstract 76.

Upifitamab Rilsodotin (UpRi): First-in-Class ADC Targeting NaPi2b

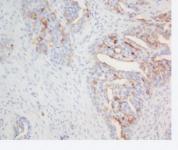


Antibody: Humanized monoclonal anti-NaPi2b¹

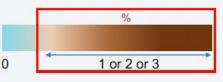
Linker: Polymer scaffold; cleavable ester linker²

Payload: AF-HPA (DolaLock-controlled bystander effect)¹

Drug-to-Antibody Ratio: ~10


Upon ADC internalization into tumor cells and efficient release of payload, AF-HPA payload is metabolized to AF that remains highly potent but loses the ability to cross the cell membrane, locking it in the tumor, controlling the bystander effect, and consequently limiting impact on adjacent healthy cells^{2,3}

NaPi2b Is a Sodium-Dependent Phosphate Transporter Broadly Expressed in Ovarian Cancer With Limited Expression



- NaPi2b expressed by tumor cells in two-thirds of patients with high-grade serous ovarian cancer²
- NaPi2b is a lineage antigen (not an oncogene)¹

in Healthy Tissues⁴

NaPi2b IHC assay in development – an optimal diagnostic assay would be robust, predictive, reproducible, easily able to distinguish a wide range of expression using TPS scoring method²

UpRi Phase Ib Study Schema

Patient Population: HGSOC^a progressing after standard treatments; measurable disease per RECIST v1.1; ECOG PS 0 or 1

Ovarian Cancer Cohort

- 1–3 prior lines in platinum-resistant
- 4 prior lines regardless of platinum status
- High-grade serous histology
- Archived tumor and fresh biopsy (if medically feasible) for NaPi2b
- Exclusion: Primary platinum-refractory disease

UpRi IV Q4W until disease progression or unacceptable toxicity

36 mg/m² cohort initiated in August 2019

43 mg/m² to a max of ~80 mg cohort initiated in December 2019

Primary Objectives

- Evaluate safety and tolerability of MTD or RP2D
- Assess preliminary efficacy (ORR, DCR)

Secondary Objectives

- Association of tumor NaPi2b expression and objective tumor response using an IHC assay with a broad dynamic range to distinguish tumors with high and low NaPi2b expression
- Further assessment of preliminary anti-neoplastic activity (DoR)

Assessment: Tumor imaging (MRI or CT) at baseline and every 2nd cycle; response assessed per RECIST v1.1

Expansion Cohort Experience Across a Range of Doses Allowed for Further Optimization of UpRi Profile

Updated Analysis of Phase 1b PROC Expansion Cohort to Evaluate Safety and ORR Based on UpRi Dose Levels^a

Dose Group 36 (33–38 mg/m²) (n=29)

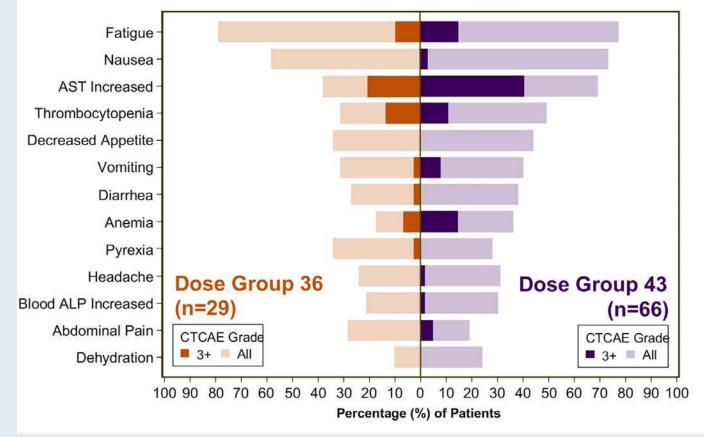
12 patients at **36 mg/m²** starting dose (all BSA levels)

+

17 patients at ~80 mg starting dose with BSA ≥1.8 who received an <u>actual</u> dose of **33 to 38 mg/m**² Dose Group 43 (>38–43 mg/m²) (n=66)

39 patients at **43 mg/m²** starting dose with BSA <1.8

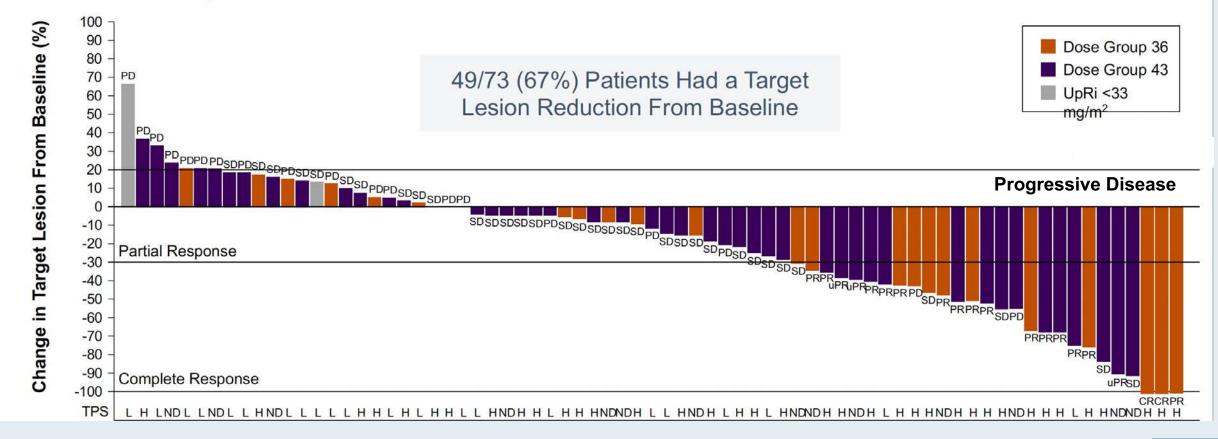
27 patients at ~80 mg starting dose with BSA ≥1.8 who received an <u>actual</u> dose of **>38 mg/m**²


+

Richardson DL et al. SGO 2022; Abstract 76.

TRAEs by UpRi Dose Group

Dose Group 36 Had a More Favorable Safety Profile Compared to Dose Group 43

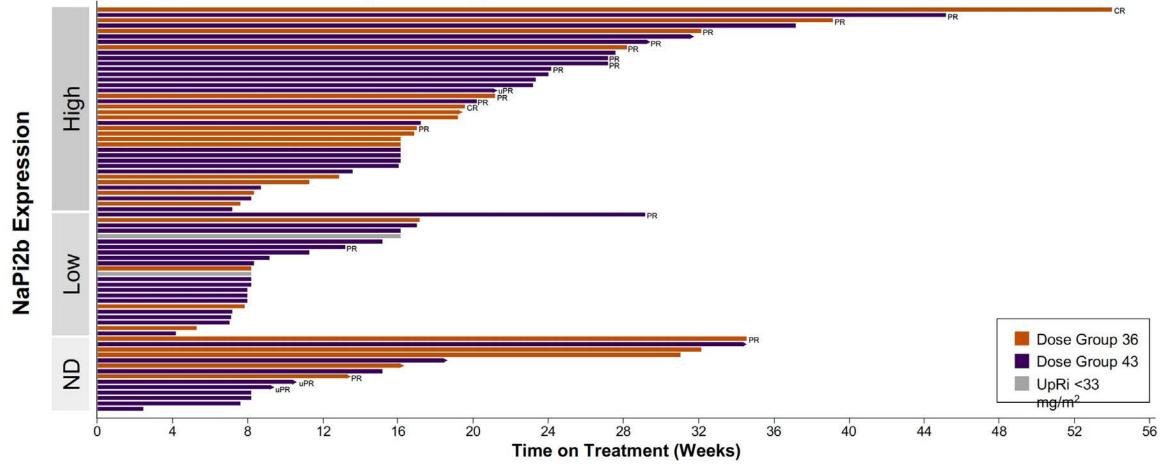

TRAEs ≥20%

- No severe ocular toxicity, neutropenia, or peripheral neuropathy in either dose group
- 4 (14%) patients had treatment-related SAEs in Dose Group 36 vs 18 (27%) in Dose Group 43
- Lower frequencies and lower grade pneumonitis occurred in Dose Group 36 (with no Grade 3+) vs Dose Group 43^a

Best Response by UpRi Dose Group

Similar Tumor Reduction in Both Dose Groups: Two-thirds of Patients Had Reductions in Target Tumor Lesions by RECIST 1.1

Confirmed ORR by UpRiDose Group and NaPi2b Level and Duration of Response (DoR)


		All Dose Levels	Dose Group 36	Dose Group 43
	Ν	38	16	22
	ORR, n (%)	13 (34)	7 (44)	6 (27)
NaPi2b-High (TPS ≥75)	CR, n (%)	2 (5)	2 (13)	0
(110 = 10)	PR, n (%)	11 (29)	5 (31)	6 (27)
	DCR, n (%)	33 (87)	12 (75)	21 (95)
	Ν	75	25	48
	ORR, n (%)	17 (23)	9 (36)	8 (17)
All NaPi2b Levels	CR, n (%)	2 (3)	2 (8)	0
	PR, n (%)	15 (20)	7 (28)	8 (17)
	DCR, n (%)	54 (72)	18 (72)	35 (73)

- Median DoR in patients (all dose levels) with NaPi2b-high ovarian cancer (n=13): 5 months
- No obvious difference in median DoR observed between Dose Groups 36 and 43

Time on UpRi Study in Evaluable Patients

Trend to Longer Time on Study With High NaPi2b Expression

Ongoing UPLIFT (ENGOT-OV67/GOG-3048) Study Schema

Patient Population: HGSOC^a progressing after standard treatments; measurable disease per RECIST v1.1; ECOG PS 0 or 1; enrolling regardless of NaPi2b expression

Key Inclusion Criteria

- Platinum-resistant ovarian cancer (PROC)
- 1–4 prior lines of therapy
- Grade ≤2 peripheral neuropathy
- Archival or fresh tissue required for biomarker evaluation

Key Exclusion Criteria

- 1–2 prior lines bevacizumab-naive
- Primary platinum-refractory disease

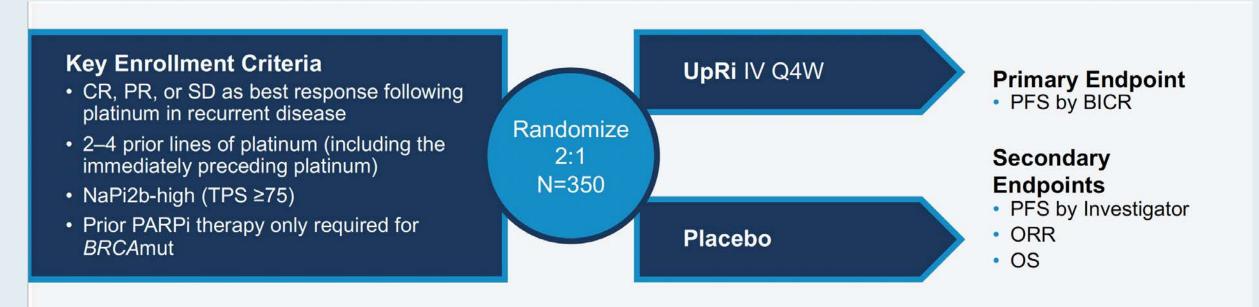
UpRi 36 mg/m² up to max 80 mg; IV Q4W

Primary Endpoint

Confirmed ORR in NaPi2b-high (N = ~100)

Secondary Endpoint

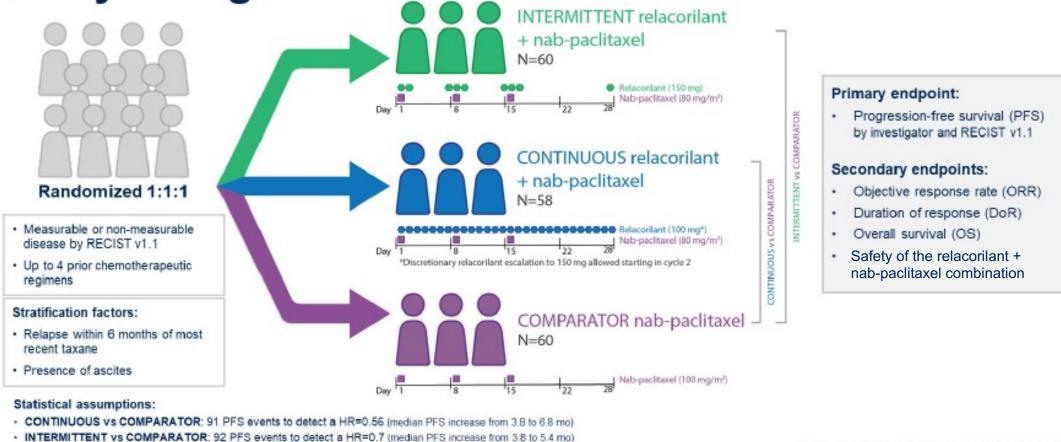
 Confirmed ORR in overall population (N = up to ~180 including 100 NaPi2b-high)


Other Secondary Endpoints

- DoR
- Safety

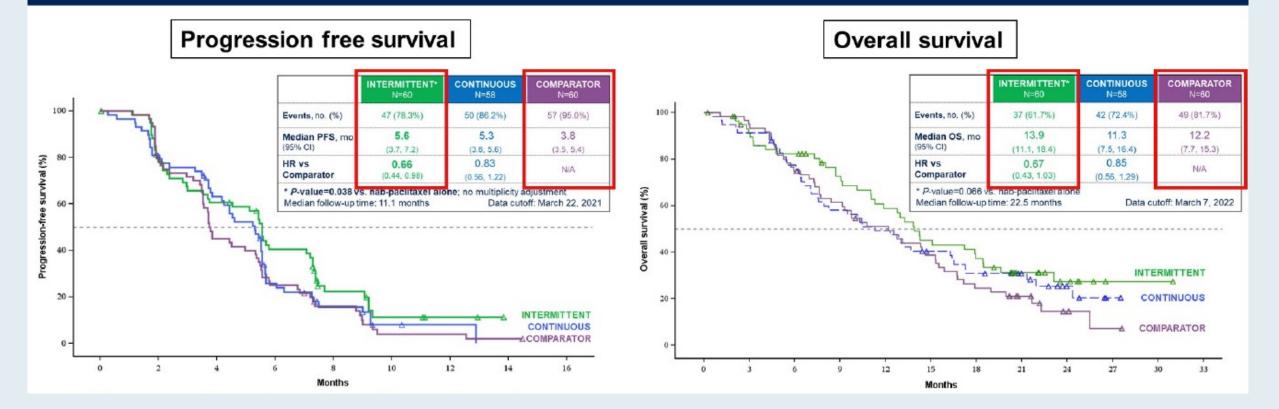
Prospectively-defined retrospective analysis to validate NaPi2b biomarker cutoff

Ongoing UP-NEXT Phase III (ENGOT-OV71-NSGO-CTU/GOG-3049) Study Schema



Informed by FDA Feedback and CHMP Scientific Advice; Plans to Initiate in 2022

Richardson DL et al. SGO 2022; Abstract 76.


Relacorilant + Nab-paclitaxel Phase 2 Study Design

PFS analysis reported at ESMO 2021

Investigator assessed PFS and OS of relacorilant + nabpaclitaxel

Colombo N et al. ASCO 2022; Abstract LBA5503; Liu N. ASCO 2022; Highlights of the Day: Gynecologic Cancers.

Recent Advances in Medical Oncology: A daylong CME hybrid (live/online) event Saturday, August 6, 2022 9:00 AM - 4:30 PM PT (12:00 PM - 7:30 PM ET) Bellagio Las Vegas | Las Vegas, Nevada Faculty Neeraj Agarwal, MD Craig Moskowitz, MD Harold J Burstein, MD, PhD Joyce O'Shaughnessy, MD Krina Patel, MD, MSc Ibiayi Dagogo-Jack, MD **Rafael Fonseca, MD** Philip A Philip, MD, PhD, FRCP Suresh S Ramalingam, MD **Brad S Kahl, MD** Rutika Mehta, MD, MPH Sandy Srinivas, MD **Moderator** Neil Love, MD In Partnership with the American Oncology Network

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

