Meet The Professor Optimizing the Management of Ovarian Cancer

Ursula Matulonis, MD

Chief, Division of Gynecologic Oncology Brock-Wilson Family Chair Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School Boston, Massachusetts

Commercial Support

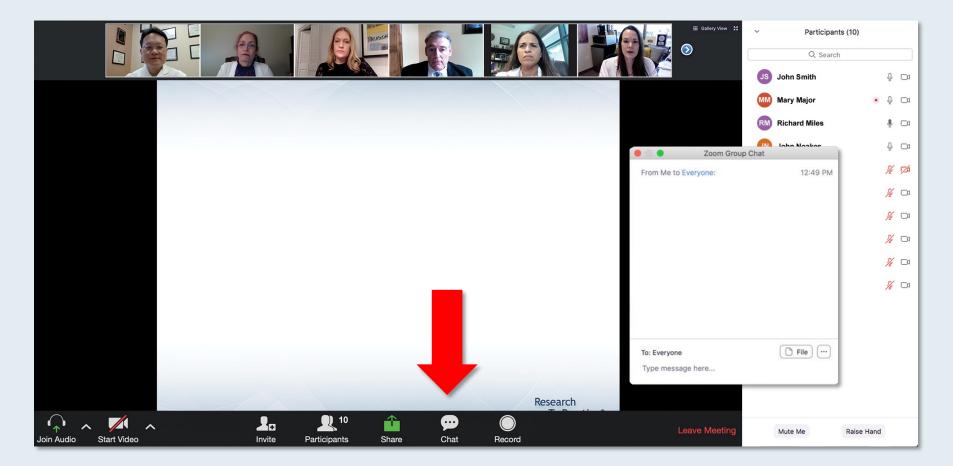
This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, GlaxoSmithKline, Merck, and Mersana Therapeutics Inc.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, the parent company of GHI, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

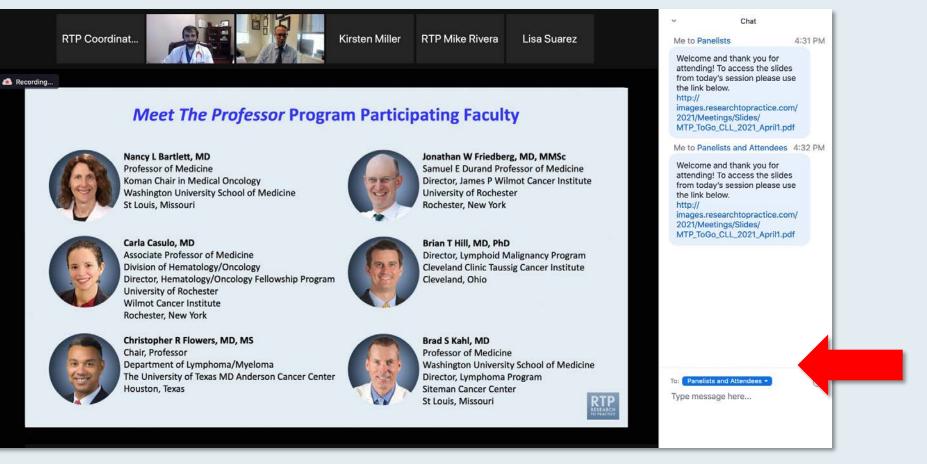
Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



Dr Matulonis — Disclosures

Advisory Committee	2X Oncology, Agenus Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Clearity Foundation, ImmunoGen Inc, NextCure, Ovarian Cancer Research Alliance, Rivkin Foundation, Trillium Therapeutics Inc
Consulting Agreements	AstraZeneca Pharmaceuticals LP, GlaxoSmithKline, Merck, Novartis
Contracted Research	FUJIFILM Pharmaceuticals USA Inc, ImmunoGen Inc, Merck, Mersana Therapeutics Inc
Data and Safety Monitoring Board/Committee	Advaxis Inc, Alkermes, Symphogen A/S

We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

ONCOLOGY TODAY WITH DR NEIL LOVE

Updates on Ovarian Cancer from SGO 2022

DR DAVID O'MALLEY THE OHIO STATE UNIVERSITY AND THE JAMES CANCER CENTER

Dr David O'Malley – Updates on Ovaria Oncology Today with Dr Neil Love —

(15) (30)

Meet The Professor Optimizing the Management of Hepatobiliary Cancers

> Thursday, July 7, 2022 5:00 PM – 6:00 PM ET

Faculty Ghassan Abou-Alfa, MD, MBA

Meet The Professor Optimizing the Management of Gastroesophageal Cancers

> Tuesday, July 12, 2022 5:00 PM – 6:00 PM ET

Faculty Samuel J Klempner, MD

Management of Acute Myeloid Leukemia and Myelodysplastic Syndromes – A Review of the 2022 ASCO Annual Meeting and EHA Congress

> Wednesday, July 13, 2022 5:00 PM – 6:00 PM ET

Faculty Richard M Stone, MD

Meet The Professor Optimizing the Management of Chronic Myeloid Leukemia

> Tuesday, July 19, 2022 5:00 PM – 6:00 PM ET

Faculty Daniel J DeAngelo, MD, PhD

Meet The Professor Optimizing the Management of Hepatobiliary Cancers

> Thursday, July 28, 2022 5:00 PM – 6:00 PM ET

> > Faculty Robin K Kelley, MD

Meet The Professor Optimizing the Management of Ovarian Cancer

Wednesday, August 3, 2022 5:00 PM – 6:00 PM ET

Faculty Prof Jonathan A Ledermann

Recent Advances in Medical Oncology: A daylong CME hybrid (live/online) event Saturday, August 6, 2022 9:00 AM - 4:30 PM PT (12:00 PM - 7:30 PM ET) Bellagio Las Vegas | Las Vegas, Nevada Faculty Neeraj Agarwal, MD Craig Moskowitz, MD Harold J Burstein, MD, PhD Joyce O'Shaughnessy, MD Krina Patel, MD, MSc Ibiayi Dagogo-Jack, MD **Rafael Fonseca, MD** Philip A Philip, MD, PhD, FRCP Suresh S Ramalingam, MD **Brad S Kahl, MD** Rutika Mehta, MD, MPH Sandy Srinivas, MD **Moderator** Neil Love, MD In Partnership with the American Oncology Network

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Optimizing the Management of Ovarian Cancer

Ursula Matulonis, MD

Chief, Division of Gynecologic Oncology Brock-Wilson Family Chair Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School Boston, Massachusetts

Meet The Professor Program Participating Faculty

Ramez N Eskander, MD

Associate Clinical Professor of Obstetrics, Gynecology and Reproductive Sciences UC San Diego Health La Jolla, California

Stephanie Lheureux, MD, PhD

Drug Development Program - Gynecology Division of Medical Oncology and Hematology Gynecology Site Lead Co-Director of the Beyond Chemotherapy Program Princess Margaret Cancer Centre Associate Professor University of Toronto Toronto, Ontario, Canada

Prof Jonathan A Ledermann Professor of Medical Oncology UCL Cancer Institute London, United Kingdom

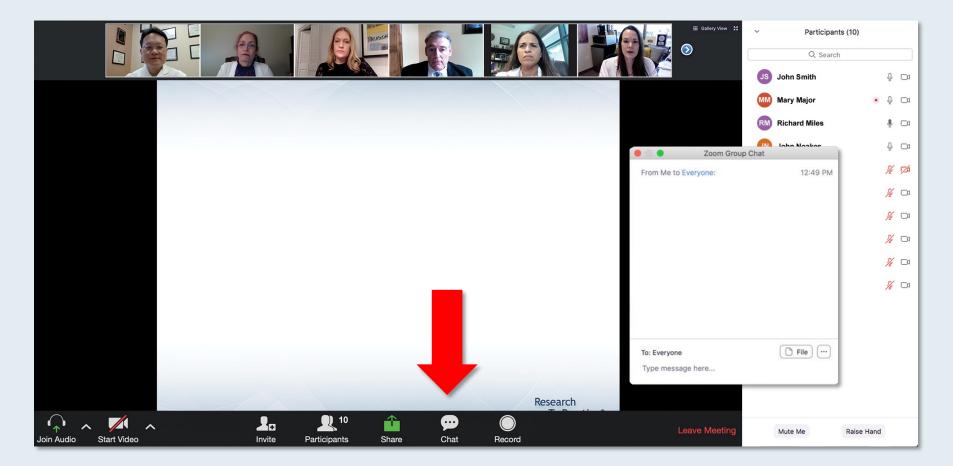
Ursula Matulonis, MD Chief, Division of Gynecologic Oncology Brock-Wilson Family Chair Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School Boston, Massachusetts

Meet The Professor Program Participating Faculty

Richard T Penson, MD, MRCP Associate Professor of Medicine Harvard Medical School Clinical Director, Medical Gynecologic Oncology Massachusetts General Hospital Boston, Massachusetts

MODERATOR

Neil Love, MD Research To Practice



Shannon N Westin, MD, MPH

Associate Professor Director, Early Drug Development Department of Gynecologic Oncology and Reproductive Medicine The University of Texas MD Anderson Cancer Center Houston, Texas

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

ONCOLOGY TODAY WITH DR NEIL LOVE

Updates on Ovarian Cancer from SGO 2022

DR DAVID O'MALLEY THE OHIO STATE UNIVERSITY AND THE JAMES CANCER CENTER

Dr David O'Malley – Updates on Ovaria Oncology Today with Dr Neil Love —

(15) (30)

Meet The Professor Optimizing the Management of Hepatobiliary Cancers

> Thursday, July 7, 2022 5:00 PM – 6:00 PM ET

Faculty Ghassan Abou-Alfa, MD, MBA

Meet The Professor Optimizing the Management of Gastroesophageal Cancers

> Tuesday, July 12, 2022 5:00 PM – 6:00 PM ET

Faculty Samuel J Klempner, MD

Management of Acute Myeloid Leukemia and Myelodysplastic Syndromes – A Review of the 2022 ASCO Annual Meeting and EHA Congress

> Wednesday, July 13, 2022 5:00 PM – 6:00 PM ET

Faculty Richard M Stone, MD

Meet The Professor Optimizing the Management of Chronic Myeloid Leukemia

> Tuesday, July 19, 2022 5:00 PM – 6:00 PM ET

Faculty Daniel J DeAngelo, MD, PhD

Meet The Professor Optimizing the Management of Hepatobiliary Cancers

> Thursday, July 28, 2022 5:00 PM – 6:00 PM ET

> > Faculty Robin K Kelley, MD

Meet The Professor Optimizing the Management of Ovarian Cancer

Wednesday, August 3, 2022 5:00 PM – 6:00 PM ET

Faculty Prof Jonathan A Ledermann

Recent Advances in Medical Oncology: A daylong CME hybrid (live/online) event Saturday, August 6, 2022 9:00 AM - 4:30 PM PT (12:00 PM - 7:30 PM ET) Bellagio Las Vegas | Las Vegas, Nevada Faculty Neeraj Agarwal, MD Craig Moskowitz, MD Harold J Burstein, MD, PhD Joyce O'Shaughnessy, MD Krina Patel, MD, MSc Ibiayi Dagogo-Jack, MD **Rafael Fonseca, MD** Philip A Philip, MD, PhD, FRCP Suresh S Ramalingam, MD **Brad S Kahl, MD** Rutika Mehta, MD, MPH Sandy Srinivas, MD **Moderator** Neil Love, MD In Partnership with the American Oncology Network

Meet The Professor Optimizing the Management of Ovarian Cancer

Ursula Matulonis, MD

Chief, Division of Gynecologic Oncology Brock-Wilson Family Chair Dana-Farber Cancer Institute Professor of Medicine Harvard Medical School Boston, Massachusetts

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, GlaxoSmithKline, Merck, and Mersana Therapeutics Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Matulonis — Disclosures

Advisory Committee	2X Oncology, Agenus Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Clearity Foundation, ImmunoGen Inc, NextCure, Ovarian Cancer Research Alliance, Rivkin Foundation, Trillium Therapeutics Inc
Consulting Agreements	AstraZeneca Pharmaceuticals LP, GlaxoSmithKline, Merck, Novartis
Contracted Research	FUJIFILM Pharmaceuticals USA Inc, ImmunoGen Inc, Merck, Mersana Therapeutics Inc
Data and Safety Monitoring Board/Committee	Advaxis Inc, Alkermes, Symphogen A/S

Bruce Bank, MD Northwest Oncology and Hematology Rolling Meadows, Illinois

Dana M Chase, MD Arizona Center for Cancer Care Virginia G Piper Cancer Care Network Phoenix, Arizona

Gigi Chen, MD John Muir Health Pleasant Hill, California

Atif Hussein, MD, MMM Memorial Healthcare System Florida International University Hollywood, Florida

Vikas Malhotra, MD Florida Cancer Specialists Spring Hill, Florida

Rajalaxmi McKenna, MD Southwest Medical Consultants SC Willowbrook, Illinois

Paul DiSilvestro, MD Women and Infants Hospital of Rhode Island/Alpert School of Medicine at Brown Providence, Rhode Island

Syed F Zafar, MD Florida Cancer Specialists Fort Myers, Florida

Meet The Professor with Dr Matulonis

Introduction: Journal Club with Dr Matulonis – Part 1

MODULE 1: Case Presentations – Part 1

- Dr Chase: A 67-year-old woman with primary peritoneal carcinoma and a gBRCA mutation s/p naturopathic therapy
- Dr DiSilvestro: A 78-year-old woman with Stage IIIC fallopian tube cancer (HRp) s/p neoadjuvant chemotherapy
- Dr Malhotra: A 69-year-old woman with high-grade serous ovarian carcinoma (HGSOC) and extensive peritoneal and omental metastases (HRp) s/p chemotherapy and bevacizumab → niraparib
- Dr Bank: A 75-year-old woman (gBRCA1 mutation) s/p bilateral breast cancer with a CR to chemotherapy for metastatic ovarian cancer for 8 years
- Dr Hussein: A 36-year-old woman s/p R0 debulking surgery for Stage IIIC HGSOC (HRp)

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Matulonis – Part 2

MODULE 4: Case Presentations – Part 2

- Dr Zafar: A 46-year-old woman s/p multiple relapses of MSI-high clear cell ovarian cancer
- Dr McKenna: A 92-year-old woman with Stage IIIC/IV papillary ovarian cancer and concurrent CLL
- Dr Chen: A 60-year-old woman with recurrent ovarian cancer s/p multiple prior therapies, including Tumor Treating Fields

MODULE 5: Appendix of Key Publications

Meet The Professor with Dr Matulonis

Introduction: Journal Club with Dr Matulonis – Part 1

MODULE 1: Case Presentations – Part 1

- Dr Chase: A 67-year-old woman with primary peritoneal carcinoma and a gBRCA mutation s/p naturopathic therapy
- Dr DiSilvestro: A 78-year-old woman with Stage IIIC fallopian tube cancer (HRp) s/p neoadjuvant chemotherapy
- Dr Malhotra: A 69-year-old woman with high-grade serous ovarian carcinoma (HGSOC) and extensive peritoneal and omental metastases (HRp) s/p chemotherapy and bevacizumab → niraparib
- Dr Bank: A 75-year-old woman (gBRCA1 mutation) s/p bilateral breast cancer with a CR to chemotherapy for metastatic ovarian cancer for 8 years
- Dr Hussein: A 36-year-old woman s/p R0 debulking surgery for Stage IIIC HGSOC (HRp)

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Matulonis – Part 2

MODULE 4: Case Presentations – Part 2

- Dr Zafar: A 46-year-old woman s/p multiple relapses of MSI-high clear cell ovarian cancer
- Dr McKenna: A 92-year-old woman with Stage IIIC/IV papillary ovarian cancer and concurrent CLL
- Dr Chen: A 60-year-old woman with recurrent ovarian cancer s/p multiple prior therapies, including Tumor Treating Fields

MODULE 5: Appendix of Key Publications

Int J Gynecol Cancer. 2021 May ; 31(5): 733-743.

Differential blood count as triage tool in evaluation of pelvic masses

Daniel W Cramer¹, William J Benjamin IV², Allison F Vitonis¹, Ross Berkowitz³, Annekathryn Goodman⁴, Ursula Matulonis⁵

Highlights

- Information on body mass, parity, smoking, and family history improve the differential diagnosis of a pelvic mass.
- Similarly, a complete blood count/differential adds value to CA125 in distinguishing benign versus malignant masses.
- Separate models for pre- and postmenopausal women outperform a single model with menopausal status as a term.

Front Surg 2021;8:594570.

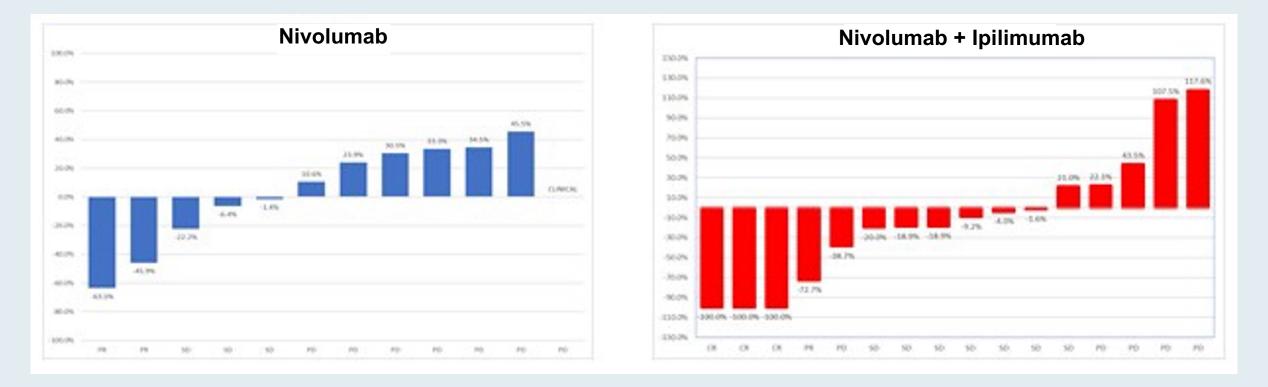
Case Report: Frontoparietal Metastasis From a Primary Fallopian Tube Carcinoma

Anthony I. Jang¹, Joshua D. Bernstock², David J. Segar², Marcello Distasio³, Ursula Matulonis³ and Wenya Linda Bi^{2*}

Immunotherapy for Ovarian Cancer

Rebecca Porter, MD, PhD, and Ursula A. Matulonis, MD Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts

Clin Adv Hematol Oncol 2022;20(4):240-53.



Stage 1 Results of BrUOG 354: A Randomized Phase II Trial of Nivolumab Alone or in Combination with Ipilimumab for People with Ovarian and Other Extra-Renal Clear Cell Carcinomas (NCT03355976)

Dizon DS et al. ASCO 2022;Abstract 5598.

BrUOG 354: Tumor Change

Dizon DS et al. ASCO 2022; Abstract 5598.

Cancer Res. 2021 January 01; 81(1): 158-173.

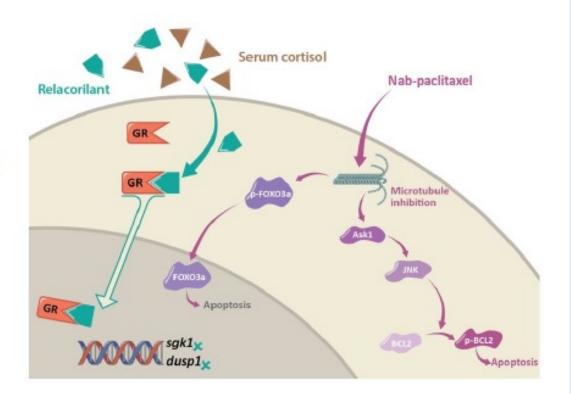
Enhanced efficacy of simultaneous PD-1 and PD-L1 immune checkpoint blockade in high grade serous ovarian cancer

Changxin Wan^{1,2}, Matthew P. Keany^{3,4}, Han Dong^{3,5}, Linah F. Al-Alem^{6,7}, Unnati M. Pandya^{6,7}, Suzan Lazo^{3,4}, Karsten Boehnke⁸, Katherine N. Lynch^{4,9}, Rui Xu^{6,7,10}, Dominique T. Zarrella⁷, Shengqing Gu¹, Paloma Cejas^{4,11}, Klothilda Lim^{4,11}, Henry W. Long^{4,11}, Kevin M. Elias^{12,13}, Neil S. Horowitz^{12,13}, Colleen M. Feltmate^{12,13}, Michael G. Muto^{12,13}, Michael J. Worley Jr.^{12,13}, Ross S. Berkowitz^{12,13}, Ursula A. Matulonis^{4,14}, Marisa R. Nucci^{15,16}, Christopher P. Crum^{15,16}, Bo R. Rueda^{6,7,12}, Myles Brown^{4,9,11}, Xiaole Shirley Liu^{1,11}, Sarah J. Hill^{4,9,15,16,*}

Abstract LBA5503

OVERALL SURVIVAL DATA FROM A 3-ARM, RANDOMIZED, OPEN-LABEL, PHASE 2 STUDY OF RELACORILANT, A SELECTIVE GLUCOCORTICOID RECEPTOR MODULATOR, COMBINED WITH NAB-PACLITAXEL IN PATIENTS WITH RECURRENT PLATINUM-RESISTANT OVARIAN CANCER

<u>Nicoletta Colombo</u>, Toon Van Gorp, Ursula A. Matulonis, Ana Oaknin, Rachel N. Grisham, Gini F. Fleming, Alexander B. Olawaiye, Hristina I. Pashova, Dorothy D. Nguyen, Domenica Lorusso


Can we improve on taxanes as therapy for platinumresistant ovarian cancer?

Cortisol contributes to chemotherapy resistance by suppressing apoptotic pathways that cytotoxic agents, such as **nab-paclitaxel**, utilize

Cortisol acts by binding to the glucocorticoid receptor (GR)

GR is abundantly expressed in ovarian tumors, and high GR expression is associated with poor outcomes²

GR modulation with relacorilant inhibits the anti-apoptotic effects of cortisol and enhances the efficacy of cytotoxic agents.

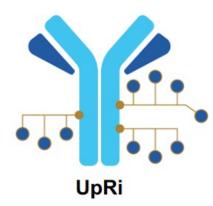
Colombo N et al. ASCO 2022; Abstract LBA5503; Liu N. ASCO 2022; Highlights of the Day: Gynecologic Cancers.

Updated Results From the Phase 1b Expansion Study of Upifitamab Rilsodotin (UpRi; XMT-1536), a NaPi2bdirected Dolaflexin Antibody Drug Conjugate (ADC) in Ovarian Cancer

<u>Richardson, Debra L</u>¹; Hamilton, Erika P²; Barve, Minal³; Anderson, Charles K⁴; Taylor, Sara K⁵; Lakhani, Nehal⁶; Buscema, Joseph⁷; Tolcher, Anthony W⁸; Zarwan, Corrine⁹; Werner, Theresa L¹⁰; Hays, John L¹¹; Richards, Paul¹²; Arend, Rebecca¹³; Edenfield, Jeffery¹⁴; Putiri, Emily¹⁵; Bernardo, Patricia¹⁵; Burger, Robert A¹⁵; Matulonis, Ursula A¹⁶

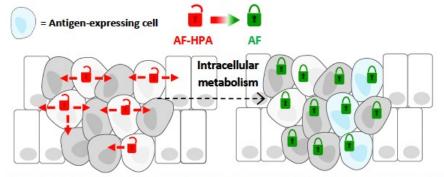
¹Stephenson Cancer Center, University of Oklahoma Health Sciences Center and the Sarah Cannon Research Institute, Oklahoma City, OK; ²Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ³Mary Crowley Cancer Research, Dallas, TX; ⁴Willamette Valley Cancer Institute and Research Center, Eugene, OR; ⁵BC Cancer - Kelowna, Kelowna BC, Canada; ⁶START Midwest, Grand Rapids, MI; ⁷Arizona Oncology, Tucson, AZ; ⁸NEXT Oncology, San Antonio, TX; ⁹Lahey Clinic, Burlington, MA; ¹⁰Huntsman Cancer Institute, University of Utah,

Salt Lake City, UT; ¹¹Arthur James Cancer Hospital, Ohio State University, Columbus, OH; ¹²US Oncology, Oncology and Hematology Assoc. of Southwest VA, Salem, VA; ¹³University of Alabama at Birmingham, Birmingham, AL; ¹⁴Prisma Health Cancer Institute, Greenville, SC; ¹⁵Mersana Therapeutics, Inc, Cambridge, MA; ¹⁶Dana-Farber Cancer Institute, Boston, MA



Abstract 76

Upifitamab Rilsodotin (UpRi) – First-in-Class ADC Targeting NaPi2b

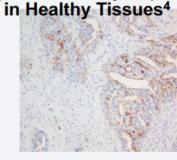


Antibody: Humanized monoclonal anti-NaPi2b¹

Linker: Polymer scaffold; cleavable ester linker²

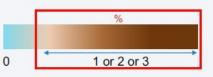
Payload: AF-HPA (DolaLock-controlled bystander effect)¹

Drug-to-Antibody Ratio: ~10



Upon ADC internalization into tumor cells and efficient release of payload, AF-HPA payload is metabolized to AF that remains highly potent but loses the ability to cross the cell membrane, locking it in the tumor, controlling the bystander effect, and consequently limiting impact on adjacent healthy cells^{2,3}

NaPi2b Is a Sodium-Dependent Phosphate Transporter Broadly Expressed in Ovarian Cancer With Limited Expression



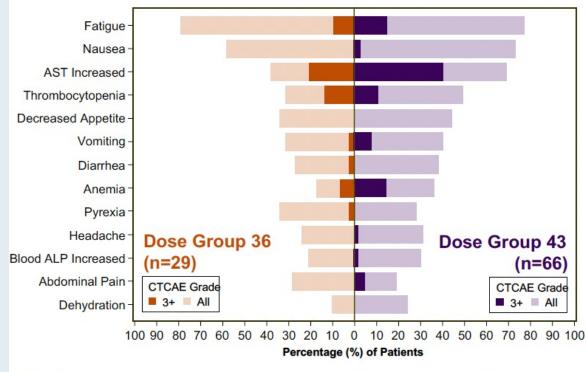
- NaPi2b expressed by tumor cells in two-thirds of patients with high-grade serous ovarian cancer²
- NaPi2b is a lineage antigen (not an oncogene)¹

NaPi2b IHC assay in

development – an optimal diagnostic assay would be robust, predictive, reproducible, easily able to distinguish a wide range of expression using TPS scoring method²

ADC, antibody drug conjugate; AF, Auristatin F; AF-HPA, auristatin F-hydroxypropylamide; IHC, immunohistochemistry; NaPi2b, sodium-dependent phosphate transport protein 2B; TPS, tumor proportion score; UpRi, upifitamab rilsodotin.

1. Bodyak ND et al. Mol Cancer Ther. 2021;20(5):885–895. 2. Mersana. Data on File. 2022. 3. Tolcher AW et al. ASCO Annual Meeting 2019; Abstract 3010.


4. Lin K et al. Clin Cancer Res. 2015;21(22):5139-5150.

Treatment-Related AEs by UpRi Dose Group

Dose Group 36 Had a More Favorable Safety Profile Compared to Dose Group 43

TRAEs ≥20%

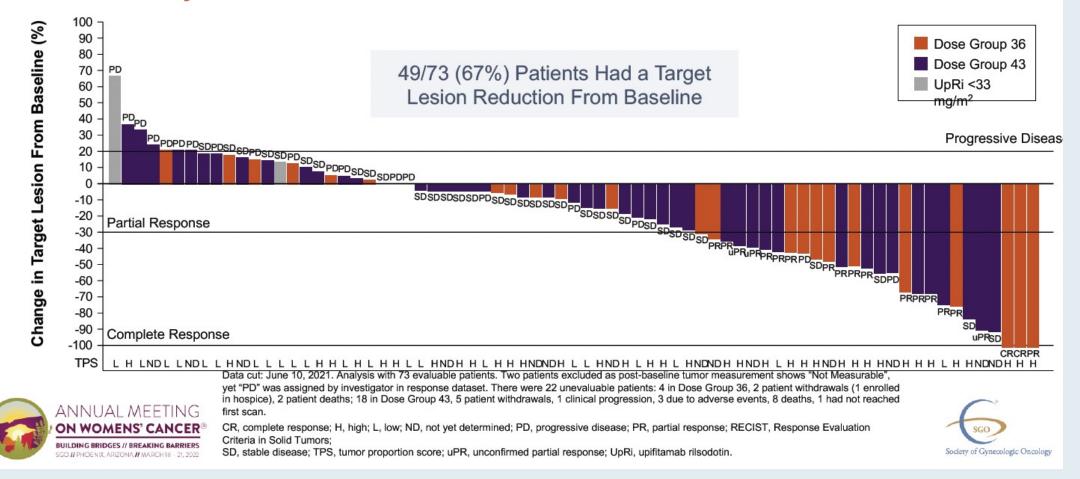
- No severe ocular toxicity, neutropenia, or peripheral neuropathy in either dose group
- 4 (14%) patients had treatment-related SAEs in Dose Group 36 vs 18 (27%) in Dose Group 43
- Lower frequencies and lower grade pneumonitis occurred in Dose Group 36 (with no Grade 3+) vs Dose Group 43^a

Data cut: June 10, 2021. Analysis with 95 patients. Two patients received <30 mg/m² and therefore were not included in either dose group. ^a Dose Group 36 pneumonitis: Grade 1–2 (n=2), Grade 3+ (n=0); Dose Group 43 pneumonitis: Grade 1–2 (n=5), Grade 3+ (n=4). AE, adverse event; ALP, alkaline phosphatase; AST, aspartate aminotransferase; CTCAE, Common Terminology Criteria for Adverse Events; SAE, serious adverse event; TRAE, treatment-related adverse event; UpRi, upifitamab rilsodotin.

Dose Modification by UpRi Dose Group

Dose Group 36 Had Fewer Treatment-Related Dose Modifications and Treatment Discontinuations Compared to Dose Group 43

	Dose Group 36 (n=29)	Dose Group 43 (n=66)
Any Dose Modification d/t TRAE (Reduction, Delay, Discontinuation), n (%)	10 (34)	32 (48)
Dose Reduction d/t TRAE, n (%)	6 (21)	20 (30)
Dose Delay d/t TRAE, n (%)	4 (14)	12 (18)
Dose Discontinuation d/t TRAE, n (%)	2 (7)	8 (12)


Data cut: June 10, 2021. Analysis with 95 patients. Two patients received <30 mg/m² and therefore were not included in either dose group. d/t, due to; TRAE, treatment-related adverse event; UpRi, upifitamab rilsodotin.

Best Response by UpRi Dose Group

Similar Tumor Reduction in Both Dose Groups: Two-thirds of Patients Had Reductions in Target Tumor Lesions by RECIST 1.1

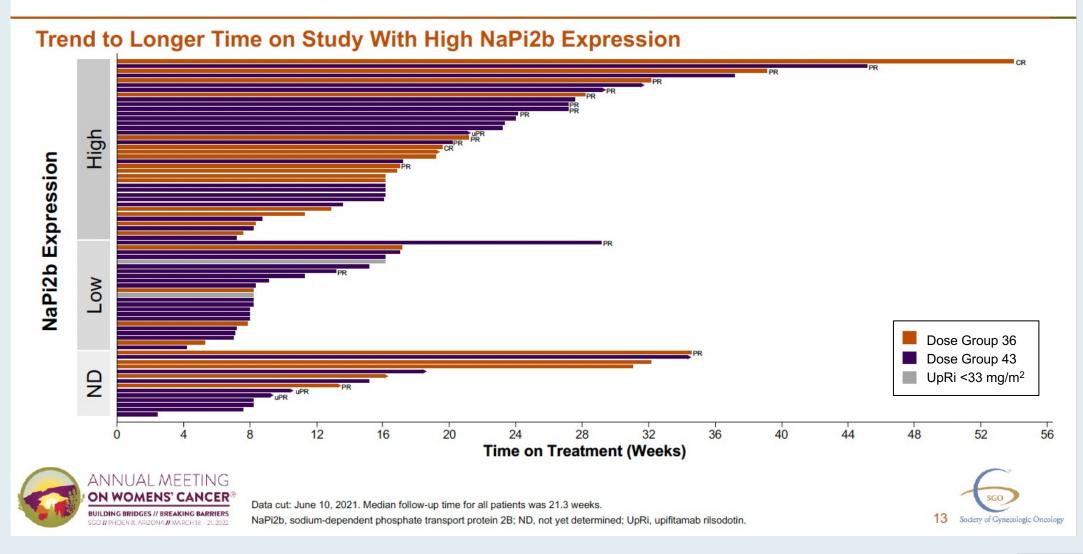
Confirmed ORR by UpRi Dose Group and NaPi2b Level, Duration of Response

44% ORR in Dose Group 36 for Patients With NaPi2b-High Ovarian Cancer

		All Dose Levels	Dose Group 36	Dose Group 43
NaPi2b-High (TPS ≥75)	N	38	16	22
	ORR, n (%)	13 (34)	7 (44)	6 (27)
	CR, n (%)	2 (5)	2 (13)	0
	PR, n (%)	11 (29)	5 (31)	6 (27)
	DCR, n (%)	33 (87)	12 (75)	21 (95)
All NaPi2b Levels	N	75	25	48
	ORR, n (%)	17 (23)	9 (36)	8 (17)
	CR, n (%)	2 (3)	2 (8)	0
	PR, n (%)	15 (20)	7 (28)	8 (17)
	DCR, n (%)	54 (72)	18 (72)	35 (73)

- Median DoR in patients (all dose levels) with NaPi2b-high ovarian cancer (n=13): 5 months
- No obvious difference in median DoR observed between Dose Groups 36 and 43

ANNUAL MEETING ON WOMENS' CANCER BUILDING BRIDGES // BREAKING BARRIERS SCO // PHOENIX, ARIZONA, // WARCHIB - 21, 2022


Data cut: June 10, 2021. Two patients received <30 mg/m² and therefore were not included in either dose group. All responses are confirmed. There were 75 evaluable patients. There were 22 unevaluable patients: 4 in Dose Group 36, 2 patient withdrawals (1 enrolled in hospice), 2 patient deaths; 18 in Dose Group 43, 5 patient withdrawals, 1 clinical progression, 3 due to adverse events, 8 deaths, 1 had not reached first scan. Of 4 unevaluable patients in Dose Group 36, 2 were NaPi2b-high; of 18 unevaluable in Dose Group 43, 10 were NaPi2b-high.

JOURNAL CLUB RTP RESEARCH TO PRACTICE

CR, complete response; DCR, disease control rate; DoR, duration of response; NaPi2b, sodium-dependent phosphate transport protein 2B; ORR, overall response rate; PR, partial response; TPS, tumor proportion score; UpRi, upifitamab rilsodotin.

Time on UpRi Study in Evaluable Patients

UPLIFT (ENGOT-ov67 / GOG-3048)

UpRi Single-Arm Registrational Trial in Platinum-Resistant Ovarian Cancer

Patient Population: HGSOC^a progressing after standard treatments; measurable disease per RECIST v1.1; ECOG PS 0 or 1; enrolling regardless of NaPi2b expression

Key Inclusion Criteria

- Platinum-resistant ovarian cancer (PROC)
- 1–4 prior lines of therapy
- Grade ≤2 peripheral neuropathy
- Archival or fresh tissue required for biomarker evaluation

Key Exclusion Criteria

- 1–2 prior lines bevacizumab-naive
- Primary platinum-refractory disease

UpRi 36 mg/m² up to max 80 mg; IV Q4W

Global US, Europe, Australia, Canada

Primary Endpoint

Confirmed ORR in NaPi2b-high (N = ~100)

Secondary Endpoint

 Confirmed ORR in overall population (N = up to ~180 including 100 NaPi2b-high)

Other Secondary Endpoints

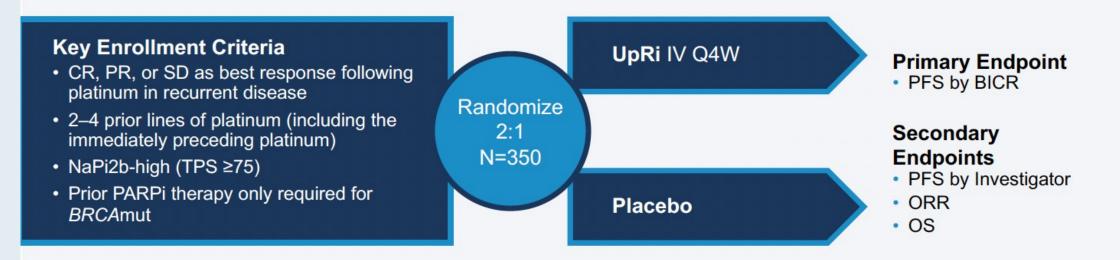
- DoR
- Safety

Prospectively-defined retrospective analysis to validate NaPi2b biomarker cutoff

NCT03319628: Trial Currently Enrolling Patients

^a HGSOC including fallopian tube and primary peritoneal cancer.

HGSOC, high-grade serous ovarian cancer; IV, intravenous; DoR, duration of response; ECOG, Eastern Cooperative Oncology Group; FPD, first patient dosed;


NaPi2b, sodium-dependent phosphate transport protein 2B; ORR, overall response rate, PROC, platinum-resistant ovarian cancer; PS, performance score; Q4W, every 4 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; UpRi, upifitamab rilsodotin.

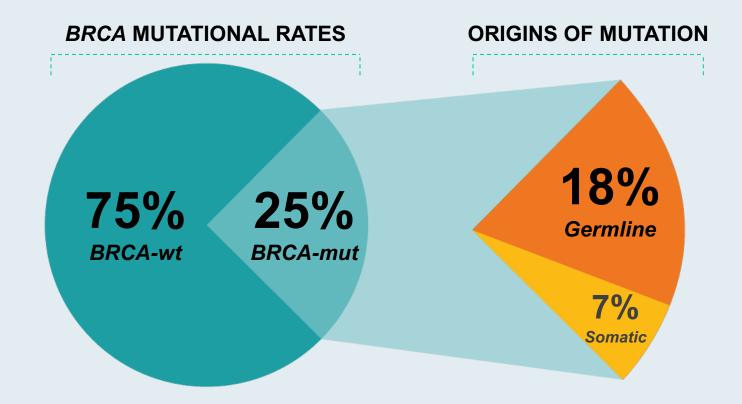
UP-NEXT (GOG-3049 / ENGOT-OV71-NSGO-CTU)

Phase 3 Study of UpRi Monotherapy Maintenance vs Placebo in Recurrent Platinum-Sensitive Ovarian Cancer

Informed by FDA Feedback and CHMP Scientific Advice; Plans to Initiate in 2022

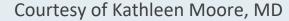
BICR, blinded independent central review; BRCAmut, breast cancer susceptibility gene mutated; CHMP, Committee for Medicinal Products for Human

Use; CR, complete response; FDA, Food and Drug Administration; IV, intravenous; NaPi2b, sodium-dependent phosphate transport protein 2B; ORR, overall response rate; OS, overall survival; PARPi, poly (ADP-ribose) polymerase inhibitor; PFS, progression-free survival; PR, partial response; Q4W, every 4 weeks; SD, stable disease; TPS, tumor proportion score; UpRi, upifitamab rilsodotin.


If there were no data with olaparib or niraparib in the up-front maintenance setting and the only available data were from ATHENA, would you want to use rucaparib as maintenance therapy for your patients with newly diagnosed advanced ovarian cancer?

1. Yes

- 2. Yes, in patients with BRCA mutations/HR deficiency
- 3. No
- 4. I'm not sure



An Estimated 25% of Newly Diagnosed Ovarian Cancers Harbor BRCA1/2 Mutations

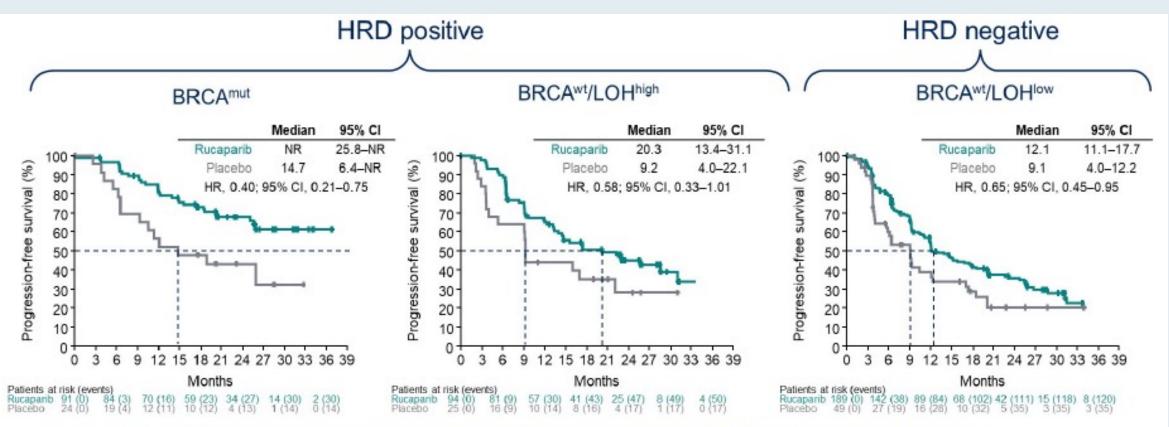
An estimated 1 in 4 women with EOC will have a *BRCA*-positive tumor result Tumor testing detects more patients with *BRCA* mutations than blood/saliva tests that do not look at tumor DNA

EOC = epithelial ovarian cancer; mut = mutation; wt = wild type Pennington et al. *Clin Cancer Res* 2014;20(3):764-75.

Highlights of the Day: Gynecologic Cancers

Joyce F. Liu, MD, MPH Dana-Farber Cancer Institute June 7, 2022

Ovarian cancer 1L PARPi maintenance trials: design and populations


Trial	PARP inhibitor	Duration	BRCA status	R0 at PDS allowed	% PDS	CR/PR to platinum
SOLO1 ^{1,2}	Olaparib	2 years	BRCAmt only	Yes	62.9	Yes
PRIMA ³	Niraparib	3 years	All comers	No if Stage III	33	Yes
PRIME ⁴	Niraparib	3 years	All comers	Yes	53.1	Yes
PAOLA1⁵	Olaparib (w/bevacizumab)	2 years	All comers	Yes	50.7	Yes
	Veliparib (w/chemo)	36 total cycles	All comers	Yes	67.5	No (tx starts with chemo)
ATHENA-MONO ⁷	Rucaparib	2 years	All comers	Yes	48.9	Yes

¹Moore et al., *N Engl J Med* 2018; ²Banerjee et al., 2020 ESMO Congress; ³Gonzalez-Martin et al., *N Engl J Med* 2019; ⁴Li et al., 2022 SGO Annual Meeting; ⁵Ray-Coquard et al., *N Engl J Med* 2019; ⁶Coleman et al., *N Engl J Med* 2019; ⁷Monk et al., 2022 ASCO Annual Meeting

Liu N. ASCO 2022; Highlights of the Day: Gynecologic Cancers.

ATHENA-MONO: Investigator-Assessed PFS – Exploratory Subgroups

Rucaparib demonstrated treatment benefit vs placebo regardless of BRCA mutation and HRD status

Data cutoff date: March 23, 2022. BRCA, BRCA1 or BRCA2; HR, hazard ratio; HRD, homologous recombination deficiency; LOH, loss of heterozygosity; mut, mutant; NR, not reached; PFS, progression-free survival; wt, wild type.

Monk BJ et al. ASCO 2022; Abstract LBA5500; Liu N. ASCO 2022; Highlights of the Day: Gynecologic Cancers.

Trials of 1L PARPi maintenance in ovarian cancer

Trial	PARP inhibitor	Duration	All comers	BRCAmt	BRCAwt overall	BRCAwt – HRD	BRCAwt – HRP	HRD assay
ATHENA-MONO ¹	Rucaparib	2 years	HR 0.52 20.2 vs 9.2 mos	HR 0.40 NR vs 14.7 mos		HR 0.58 95%Cl 0.33-1.01 20.3 vs 9.2 mos	HR 0.65 95%Cl 0.45-0.95 12.1 vs 9.1 mos	Foundation One CDx
SOL01 ^{2,3}	Olaparib	2 years	-	HR 0.33 56.0 vs 13.8 mos	-		-	-
PRIMA ⁴	Niraparib	3 years	HR 0.62 13.8 vs 8.2 mos	HR 0.40 22.1 vs 10.9 mos		HR 0.50 19.6 vs 8.2 mos	HR 0.68 8.1 vs 5.4 mos	Myriad MyChoice
PRIME ⁵	Niraparib	3 years	HR 0.45 24.8 vs 8.3 mos	HR 0.40 NR vs 10.8 mos	HR 0.48* 19.3 vs 8.3 mos	HR 0.58 24.8 vs 11.1 mos	HR 0.41 14.0 vs 5.5 mos	Not published
PAOLA16	Olaparib (w/bevacizumab)	2 years	HR 0.59 22.1 vs 16.6 mos	HR 0.31 37.2 vs 21.7 mos	HR 0.71 18.9 vs 16.0 mos	HR 0.43 28.1 vs 16.6 mos	HR 0.92 (NS) 18.9 vs 16.0 mos	Myriad MyChoice
VELIA ⁷	Veliparib (w/chemo)	36 total cycles	HR 0.68 23.5 vs 17.3 mos	HR 0.44 34.7 vs 22.0 mos	HR 0.80 18.2 vs 15.1 mos	HR 0.74 (NS) 15.0 vs 11.5 mos	HR 0.81 (NS) 18.2 vs 15.1 mos	Myriad MyChoice

*does not exclude pts with sBRCAmt tumors

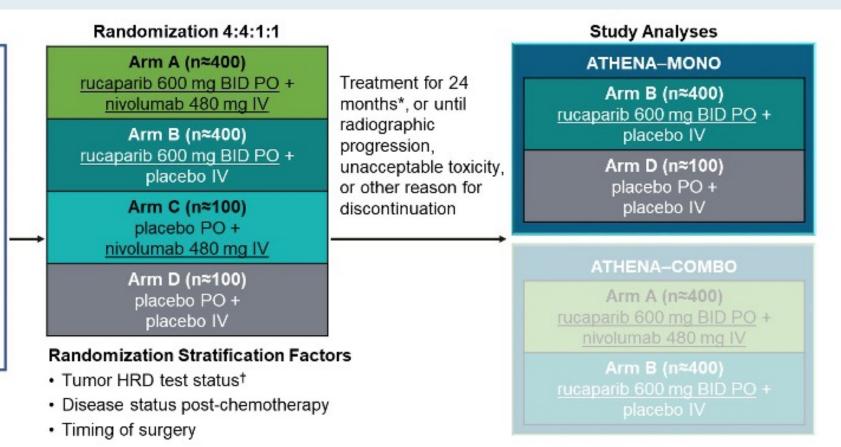
¹Monk et al., 2022 ASCO Annual Meeting; ²Moore et al., *N Engl J Med* 2018; ³Banerjee et al., 2020 ESMO Congress; ⁴Gonzalez-Martin et al., *N Engl J Med* 2019; ⁵Li et al., 2022 SGO Annual Meeting; ⁶Ray-Coquard et al., *N Engl J Med* 2019; ⁷Coleman et al., *N Engl J Med* 2019

Liu N. ASCO 2022; Highlights of the Day: Gynecologic Cancers.

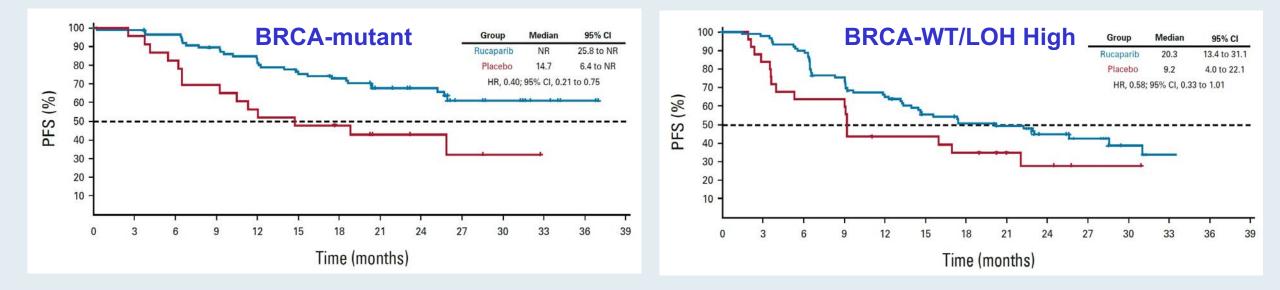
A Randomized, Phase III Trial to Evaluate original **Rucaparib Monotherapy as Maintenance Treatment in Patients With Newly Diagnosed Ovarian Cancer (ATHENA-MONO/GOG-3020/** ENGOT-ov45)

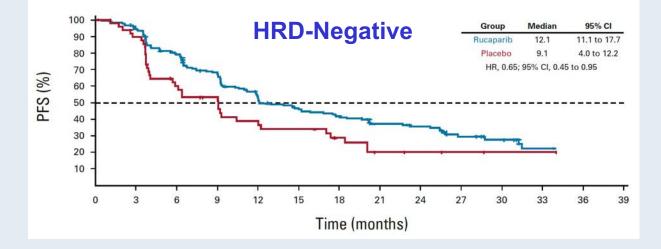
reports

Bradley J. Monk, MD¹; Christine Parkinson, MD²; Myong Cheol Lim, MD, PhD³; David M. O'Malley, MD⁴; Ana Oaknin, MD, PhD⁵; Michelle K. Wilson, MD⁶; Robert L. Coleman, MD⁷; Domenica Lorusso, MD, PhD⁸; Paul Bessette, MD⁹; Sharad Ghamande, MD¹⁰; Athina Christopoulou, MD, PhD¹¹; Diane Provencher, MD¹²; Emily Prendergast, MD¹³; Fuat Demirkiran, MD¹⁴; Olga Mikheeva, MD¹⁵; Oladapo Yeku, MD, PhD¹⁶; Anita Chudecka-Glaz, MD, PhD¹⁷; Michael Schenker, MD, PhD¹⁸; Ramey D. Littell, MD¹⁹; Tamar Safra, MD²⁰; Hung-Hsueh Chou, MD^{21,22}; Mark A. Morgan, MD²³; Vít Drochýtek, MD²⁴; Joyce N. Barlin, MD²⁵; Toon Van Gorp, MD²⁶; Fred Ueland, MD²⁷; Gabriel Lindahl, MD^{28,29}; Charles Anderson, MD³⁰; Dearbhaile C. Collins, MBBCh, MA, PhD³¹; Kathleen Moore, MD³²; Frederik Marme, MD, PhD³³; Shannon N. Westin, MD, MPH³⁴; Iain A. McNeish, MD, PhD³⁵; Danny Shih, BA³⁶; Kevin K. Lin, PhD³⁷; Sandra Goble, MS³⁸; Stephanie Hume, PhD³⁹; Keiichi Fujiwara, MD, PhD⁴⁰; and Rebecca S. Kristeleit, MD, PhD⁴¹


J Clin Oncol 2022;[Online ahead of print].

ATHENA-MONO Study Schema


Key Patient Eligibility


- Newly diagnosed, stage III–IV, highgrade epithelial ovarian, fallopian tube, or primary peritoneal cancer
- Completed frontline platinum-doublet chemotherapy and surgery
 - Achieved investigator-assessed CR or PR
 - Received cytoreductive surgery (primary or interval; R0/complete resection permitted)
- · ECOG PS 0 or 1
- No prior treatment for ovarian cancer, including any maintenance treatment, other than frontline platinum regimen

ATHENA-MONO: Investigator-Assessed PFS

Monk BJ et al. J Clin Oncol 2022;[Online ahead of print].

Lancet Oncol 2022;23(4):465-78.

Rucaparib versus standard-of-care chemotherapy in patients 🐪 🖲 with relapsed ovarian cancer and a deleterious BRCA1 or BRCA2 mutation (ARIEL4): an international, open-label, randomised, phase 3 trial

Rebecca Kristeleit, Alla Lisyanskaya, Alexander Fedenko, Mikhail Dvorkin, Andreia Cristina de Melo, Yaroslav Shparyk, Irina Rakhmatullina, Igor Bondarenko, Nicoletta Colombo, Valentyn Svintsitskiy, Luciano Biela, Marina Nechaeva, Domenica Lorusso, Giovanni Scambia, David Cibula, Róbert Póka, Ana Oaknin, Tamar Safra, Beata Mackowiak-Matejczyk, Ling Ma, Daleen Thomas, Kevin K Lin, Karen McLachlan, Sandra Goble, Amit M Oza

FDA Advises Manufacturer Not to Submit First-Line Maintenance sNDA for Rucaparib Until OS Survival Data from the ATHENA-MONO Trial Are More Mature June 17, 2022

"In consultation with the FDA, [the manufacturer of rucaparib] recently was advised not to file a supplemental new drug application based on data from a cohort of the Phase III ATHENA study until the study's overall survival data mature.

In the 8-K, [the manufacturer] said the FDA has accepted a request for a pre-NDA meeting and noted that the ATHENA-MONO portion of the Phase III study has met its primary endpoint of progression-free survival compared to placebo. OS is a secondary endpoint for ATHENA-MONO and the data are approximately 25% mature at present. [The manufacturer] said the FDA urged it to hold off filing for supplemental approval until the OS data reach 50% maturity, and indicated an advisory committee review would likely be necessary if the data were filed earlier than that point.

In a statement to *Scrip*, the firm said that although it cannot anticipate the outcome of the pre-NDA meeting, 'we are encouraged that the FDA is willing to have a dialogue.' [They] estimate the ATHENA-MONO OS data will reach 50% maturity in approximately two years."

Meet The Professor with Dr Matulonis

Introduction: Journal Club with Dr Matulonis – Part 1

MODULE 1: Case Presentations – Part 1

- Dr Chase: A 67-year-old woman with primary peritoneal carcinoma and a gBRCA mutation s/p naturopathic therapy
- Dr DiSilvestro: A 78-year-old woman with Stage IIIC fallopian tube cancer (HRp) s/p neoadjuvant chemotherapy
- Dr Malhotra: A 69-year-old woman with high-grade serous ovarian carcinoma (HGSOC) and extensive peritoneal and omental metastases (HRp) s/p chemotherapy and bevacizumab → niraparib
- Dr Bank: A 75-year-old woman (gBRCA1 mutation) s/p bilateral breast cancer with a CR to chemotherapy for metastatic ovarian cancer for 8 years
- Dr Hussein: A 36-year-old woman s/p R0 debulking surgery for Stage IIIC HGSOC (HRp)

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Matulonis – Part 2

MODULE 4: Case Presentations – Part 2

- Dr Zafar: A 46-year-old woman s/p multiple relapses of MSI-high clear cell ovarian cancer
- Dr McKenna: A 92-year-old woman with Stage IIIC/IV papillary ovarian cancer and concurrent CLL
- Dr Chen: A 60-year-old woman with recurrent ovarian cancer s/p multiple prior therapies, including Tumor Treating Fields

MODULE 5: Appendix of Key Publications

Case Presentation: A 67-year-old woman with primary peritoneal carcinoma and a germline BRCA mutation s/p naturopathic therapy

Dr Dana Chase (Phoenix, Arizona)

Case Presentation: A 78-year-old woman with Stage IIIC fallopian tube cancer (HRP) s/p neoadjuvant chemotherapy

Dr Paul DiSilvestro (Providence, Rhode Island)

Case Presentation: A 69-year-old woman with high-grade serous ovarian carcinoma (HGSOC) and extensive peritoneal and omental metastases (HRP) s/p chemotherapy and bevacizumab → niraparib

Dr Vikas Malhotra (Spring Hill, Florida)

Case Presentation: A 75-year-old woman (gBRCA1 mutation) s/p bilateral breast cancer with a CR to chemotherapy for metastatic ovarian cancer for 8 years

Dr Bruce Bank (Rolling Meadows, Illinois)

Case Presentation: A 36-year-old woman s/p R0 debulking surgery for Stage IIIC HGSOC (HRP)

Dr Atif Hussein (Hollywood, Florida)

Meet The Professor with Dr Matulonis

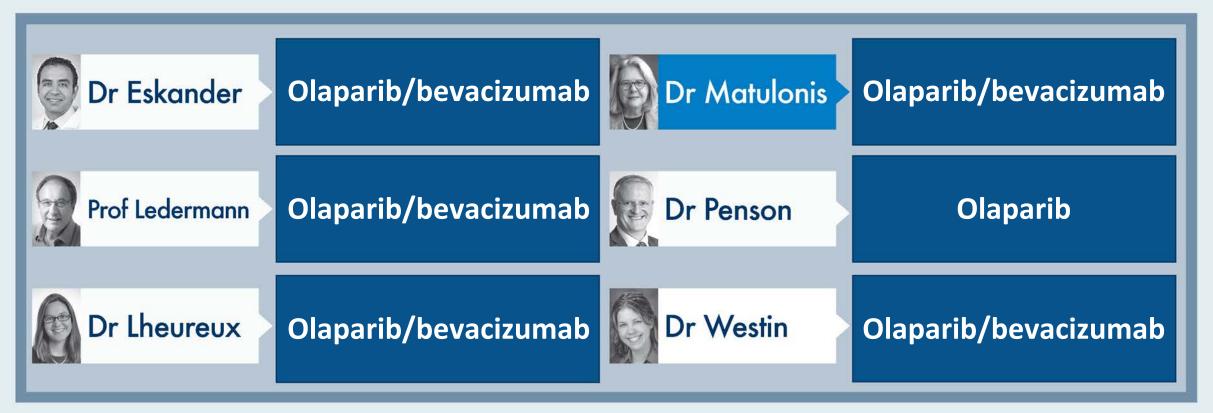
Introduction: Journal Club with Dr Matulonis – Part 1

MODULE 1: Case Presentations – Part 1

- Dr Chase: A 67-year-old woman with primary peritoneal carcinoma and a gBRCA mutation s/p naturopathic therapy
- Dr DiSilvestro: A 78-year-old woman with Stage IIIC fallopian tube cancer (HRp) s/p neoadjuvant chemotherapy
- Dr Malhotra: A 69-year-old woman with high-grade serous ovarian carcinoma (HGSOC) and extensive peritoneal and omental metastases (HRp) s/p chemotherapy and bevacizumab → niraparib
- Dr Bank: A 75-year-old woman (gBRCA1 mutation) s/p bilateral breast cancer with a CR to chemotherapy for metastatic ovarian cancer for 8 years
- Dr Hussein: A 36-year-old woman s/p R0 debulking surgery for Stage IIIC HGSOC (HRp)

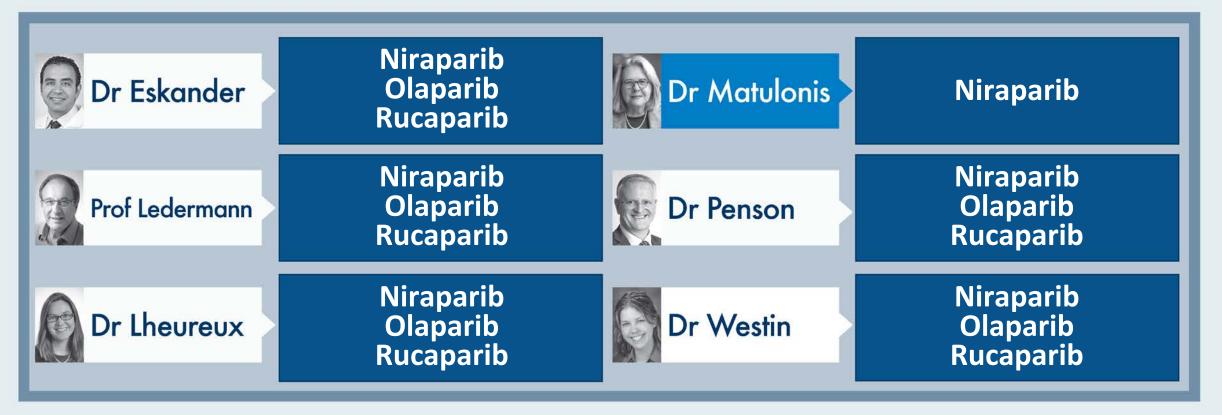
MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Matulonis – Part 2


MODULE 4: Case Presentations – Part 2

- Dr Zafar: A 46-year-old woman s/p multiple relapses of MSI-high clear cell ovarian cancer
- Dr McKenna: A 92-year-old woman with Stage IIIC/IV papillary ovarian cancer and concurrent CLL
- Dr Chen: A 60-year-old woman with recurrent ovarian cancer s/p multiple prior therapies, including Tumor Treating Fields

MODULE 5: Appendix of Key Publications

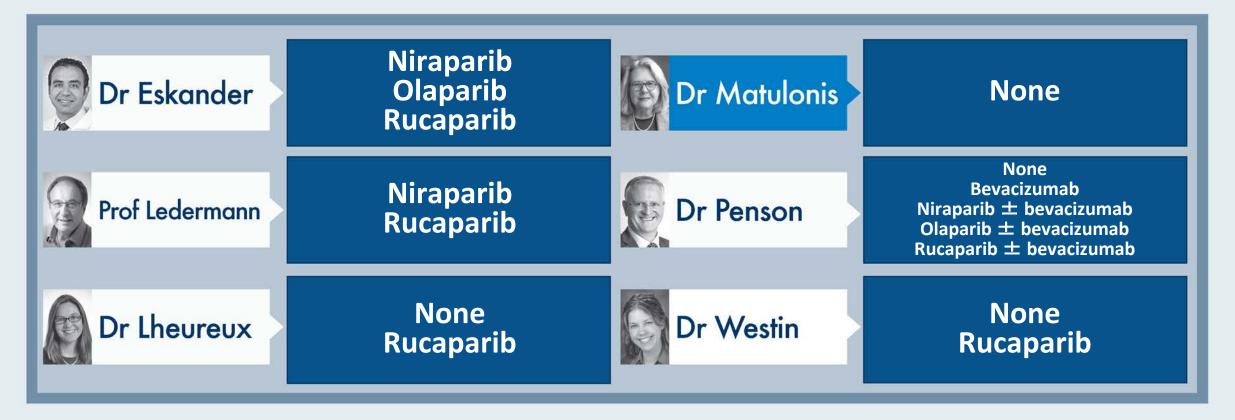


A patient presenting with ovarian cancer with extensive intra-abdominal disease (clinical Stage IIIC) receives neoadjuvant carboplatin/paclitaxel/ bevacizumab with good response and proceeds to surgery with R0 resection. Regulatory and reimbursement issues aside, what would be your preferred approach to maintenance therapy if genetic testing revealed a germline BRCA mutation?

A patient presenting with ovarian cancer with extensive intra-abdominal disease (clinical Stage IIIC) receives neoadjuvant carboplatin/paclitaxel/ bevacizumab with good response and proceeds to surgery with R0 resection. Genetic testing revealed a germline BRCA mutation. Beyond your preferred approach, which other approaches to maintenance therapy do you believe are acceptable in this situation?

A patient presenting with Stage IIIC ovarian cancer undergoes R0 resection and receives adjuvant carboplatin/paclitaxel with good response. Regulatory and reimbursement issues aside, what would you most likely recommend as maintenance therapy if genetic testing revealed <u>BRCA wild type, HR proficient (eg, LOH low)?</u>

- 1. None
- 2. Bevacizumab
- 3. Niraparib
- 4. Olaparib
- 5. Rucaparib
- 6. Olaparib/bevacizumab
- 7. Niraparib/bevacizumab
- 8. Rucaparib/bevacizumab
- 9. Other



A patient presenting with Stage IIIC ovarian cancer undergoes R0 resection and receives adjuvant carboplatin/paclitaxel with good response. Regulatory and reimbursement issues aside, what would you most likely recommend as maintenance therapy if genetic testing revealed <u>BRCA wild type, HR proficient (eg, LOH low)</u>?

A patient presenting with Stage IIIC ovarian cancer undergoes R0 resection and receives adjuvant carboplatin/paclitaxel with good response. Genetic testing revealed <u>BRCA wild type, HR proficient (eg, LOH low)</u>. Beyond your preferred approach, which other approaches to maintenance therapy do you believe are acceptable in this situation?

A patient presenting with Stage IIIC ovarian cancer undergoes R0 resection and receives adjuvant carboplatin/paclitaxel with good response. Regulatory and reimbursement issues aside, what would you most likely recommend as maintenance therapy if genetic testing revealed a germline PALB2 mutation?

A patient presenting with Stage IIIC ovarian cancer undergoes R0 resection and receives adjuvant carboplatin/paclitaxel with good response. Regulatory and reimbursement issues aside, what would you most likely recommend as maintenance therapy if genetic testing revealed a <u>somatic BRCA mutation</u>?

A patient presenting with Stage IIIC ovarian cancer undergoes R0 resection and receives adjuvant carboplatin/paclitaxel with good response. Regulatory and reimbursement issues aside, what would you most likely recommend as maintenance therapy if genetic testing revealed <u>BRCA wild type, HR deficient (eg, LOH high)</u>?

Meet The Professor with Dr Matulonis

Introduction: Journal Club with Dr Matulonis – Part 1

MODULE 1: Case Presentations – Part 1

- Dr Chase: A 67-year-old woman with primary peritoneal carcinoma and a gBRCA mutation s/p naturopathic therapy
- Dr DiSilvestro: A 78-year-old woman with Stage IIIC fallopian tube cancer (HRp) s/p neoadjuvant chemotherapy
- Dr Malhotra: A 69-year-old woman with high-grade serous ovarian carcinoma (HGSOC) and extensive peritoneal and omental metastases (HRp) s/p chemotherapy and bevacizumab → niraparib
- Dr Bank: A 75-year-old woman (gBRCA1 mutation) s/p bilateral breast cancer with a CR to chemotherapy for metastatic ovarian cancer for 8 years
- Dr Hussein: A 36-year-old woman s/p R0 debulking surgery for Stage IIIC HGSOC (HRp)

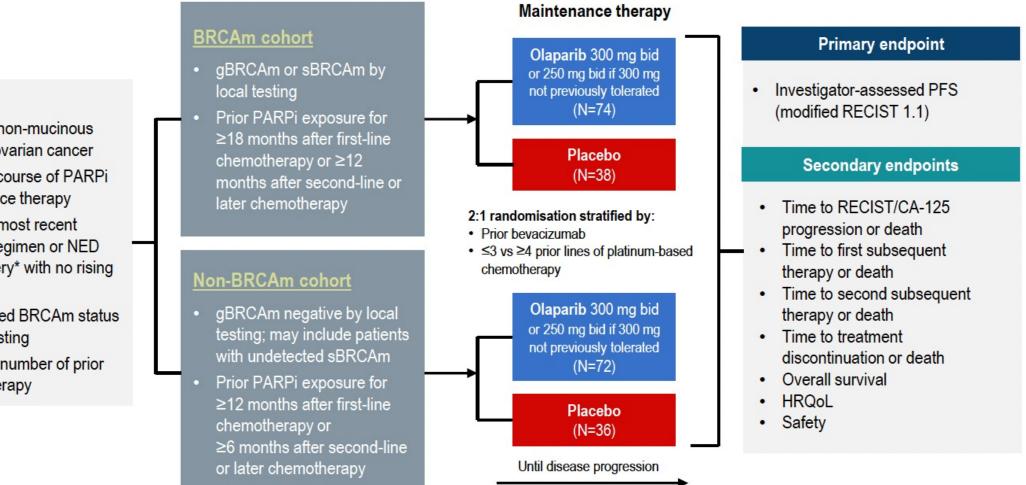
MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Matulonis – Part 2

MODULE 4: Case Presentations – Part 2

- Dr Zafar: A 46-year-old woman s/p multiple relapses of MSI-high clear cell ovarian cancer
- Dr McKenna: A 92-year-old woman with Stage IIIC/IV papillary ovarian cancer and concurrent CLL
- Dr Chen: A 60-year-old woman with recurrent ovarian cancer s/p multiple prior therapies, including Tumor Treating Fields

MODULE 5: Appendix of Key Publications

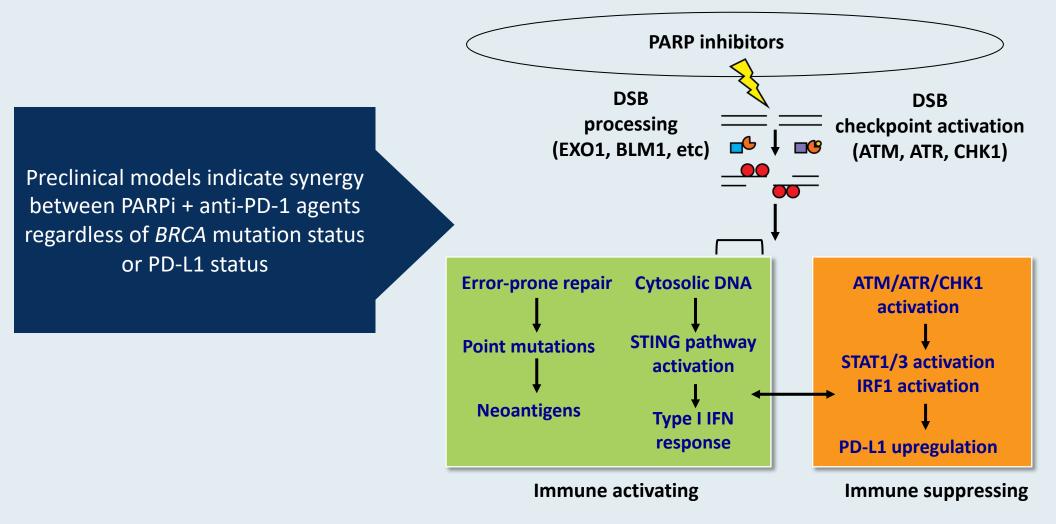


Abstract LBA33 Maintenance olaparib rechallenge in patients with ovarian carcinoma previously treated with a PARP inhibitor: Phase IIIb OReO/ENGOT Ov-38 trial

Eric Pujade-Lauraine,¹ Frédéric Selle,² Giovanni Scambia,³ Bernard Asselain,⁴ Frederik Marmé,⁵ Kristina Lindemann,⁶ Nicoletta Colombo,⁷ Radoslaw Madry,⁸ Rosalind Glasspool,⁹ Coraline Dubot,¹⁰ Ana Oaknin,¹¹ Claudio Zamagni,¹² Florian Heitz,¹³ Laurence Gladieff,¹⁴ Maria Jesús Rubio-Pérez,¹⁵ Paolo Scollo,¹⁶ Christopher Blakeley,¹⁷ Bob Shaw,¹⁷ Isabelle Ray-Coquard,¹⁸ Andrés Redondo¹⁹

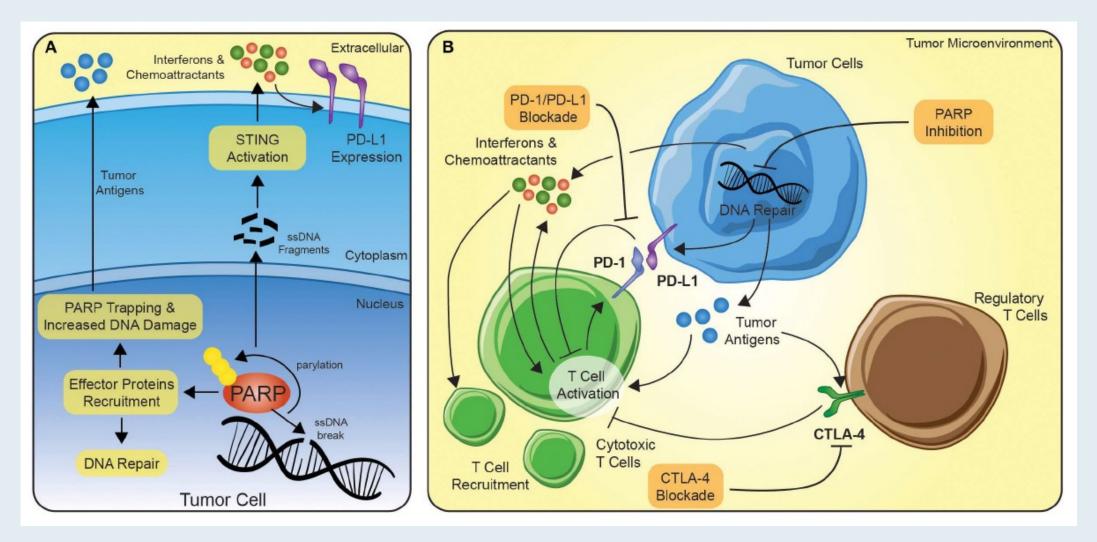
OReO Phase IIIB Study Schema

Patients


- Relapsed non-mucinous epithelial ovarian cancer
- One prior course of PARPi maintenance therapy
- CR/PR to most recent platinum regimen or NED after surgery* with no rising CA-125
- Documented BRCAm status by local testing
- No limit to number of prior • lines of therapy

OReO/ENGOT Ov-38 Trial: Impact of Maintenance Olaparib Rechallenge According to Ovarian Cancer Patient Prognosis — An Exploratory Joint Analysis of the BRCA and Non-BRCA Cohorts

Selle F et al. ASCO 2022;Abstract 5558.


Biologic Rationale for the Combination of a PARP Inhibitor (PARPi) with an Immune Checkpoint Inhibitor

Preclinical data demonstrate synergy with PARPi and anti-PD-1 combinations.

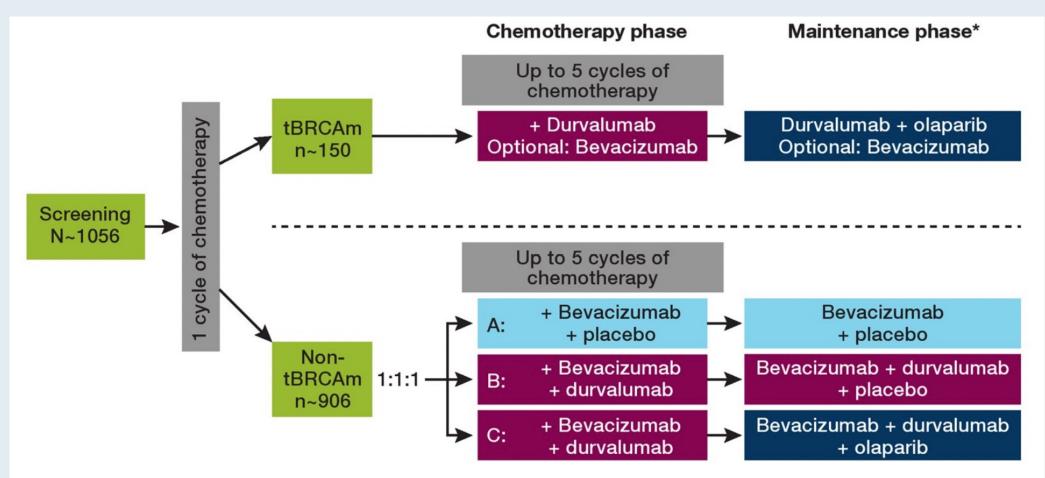
Potential Synergy Between PARP Inhibition and Immune Checkpoint Blockade

MOONSTONE/GOG-3032: Interim Analysis of a Phase 2 Study of Niraparib + Dostarlimab in Patients (pts) with Platinum-Resistant Ovarian Cancer (PROC)

Randall LM et al. ASCO 2022;Abstract 5573.

MOONSTONE RESULTS

Best overall response, n (%)	Overall N=41	PD-L1+ n=13	PD-L1– n=25
Complete (CR)	0	0	0
Partial (PR)	3 (7.3)	3 (7.3) 1 (7.7)	
Stable disease (SD)	9 (22.0)	9 (22.0) 4 (30.8)	
Progressive disease	24 (58.5)	7 (53.8)	15 (60.0)
Efficacy, n (%) [95% CI]*	3 (7.3) [1.5–19.9]	1 (7.7) [0.2–36.0]	2 (8.0) [1.0–26.0]
ORR (CR + PR)	12 (29.3)	5 (38.5)	7 (28.0)
DCR (CR + PR + SD)	[16.1–45.5]	[13.9–68.4]	[12.1–49.4]
DOR, mo		3.8+	3.0, 9.2+
Median PFS, mo (95% CI)	2.1 (2.0–2.2)	2.2 (1.6–not evaluable)	2.1 (1.8–2.2)



MOONSTONE UPDATE

"PROC remains difficult to treat; the ORR observed with niraparib + dostarlimab did not reach the threshold for 2nd-stage accrual in this cohort of pts with PROC, no known *BRCA*m, and prior bevacizumab treatment. PD-L1 status did not predict response; HRD testing is in process. Although DCR was 29%, futility was declared based on low ORR. The safety of the combination was similar to the safety profile of each monotherapy."

DUO-O Study Design in Newly Diagnosed Advanced Ovarian Cancer

*Olaparib administered for a maximum of 24 months after chemotherapy. Durvalumab and bevacizumab administered for a maximum of 15 months

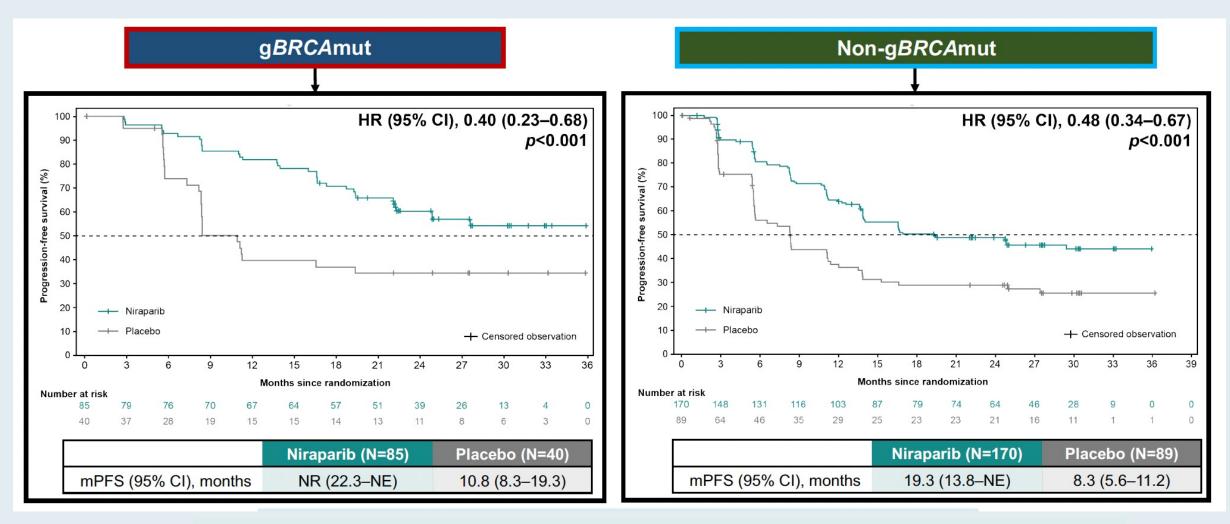
Estimated completion date: July 2023

Harter P et al. ASCO 2019; Abstract TPS5598; www.clinicaltrials.gov. NCT03737643. Accessed July 2022.

Efficacy and Safety of Niraparib as Maintenance Treatment in Patients with Newly Diagnosed Advanced Ovarian Cancer Using an Individualized Starting Dose (PRIME Study): A Randomized, Double-blind, Placebocontrolled, Phase 3 Trial

Ning Li^{*}, Jianqing Zhu, Rutie Yin, Jing Wang, Lingya Pan, Beihua Kong, Hong Zheng, Jihong Liu, Xiaohua Wu, Li Wang, Yi Huang, Ke Wang, Dongling Zou, Hongqin Zhao, Chunyan Wang, Weiguo Lu, An Lin, Ge Lou, Guiling Li, Pengpeng Qu, Hongying Yang, Xiaoa Zhen, Wenzhao Hang, Jianmei Hou, Lingying Wu^{*}

* National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China



PRIME: PFS Benefit in Prespecified Subgroups

Subgroup	Events/patients (%)		Hazard ratio for PFS (95% CI)		
	Niraparib	Placebo			
Overall	123/255 (48.2)	86/129 (66.7)	=	0.45 (0.34–0.60)	
Age					
<65 years	108/229 (47.2)	73/114 (64.0)	┠═┤│	0.47 (0.34–0.63)	
≥65 years	15/26 (57.7)	13/15 (86.7)	┠──■──┤│	0.24 (0.09-0.66)	
Neoadjuvant chemotherapy					
Yes	62/121 (51.2)	46/59 (78.0)	┝═┤│	0.32 (0.21–0.48)	
No	61/134 (45.5)	40/70 (57.1)	┝╼╢	0.63 (0.42–0.94)	
Response to Pt-based chemotherapy					
Complete response	98/212 (46.2)	66/103 (64.1)	⊦=1	0.45 (0.32-0.61)	
Partial response	25/43 (58.1)	20/26 (76.9)	┝╼╌╢	0.45 (0.23-0.86)	
gBRCA mutation status					
gBRCAmut	35/85 (41.2)	25/40 (62.5)	┝╼┤│	0.40 (0.23–0.68)	
Non-gBRCAmut	88/170 (51.8)	61/89 (68.5)	┠═┤│	0.48 (0.34–0.67)	
Homologous recombination					
Deficient	75/170 (44.1)	57/87 (65.5)	┠═┤│	0.48 (0.34–0.68)	
Proficient	48/85 (56.5)	29/42 (69.0)	┝╼┤│	0.41 (0.25–0.65)	
Postoperative residual disease status					
Optimal	94/193 (48.7)	71/105 (67.6)	⊦=┤	0.44 (0.32–0.61)	
Suboptimal or missing	29/62 (46.8)	15/24 (62.5)	┝╼┥	0.43 (0.21–0.87)	

PRIME: PFS Benefit by gBRCAmut Status

- Median PFS has not been yet reached for the gBRCAmut population.
- The benefit of niraparib in the non-gBRCAmut population is confirmed.

PRIME: Safety Overview (and PRIMA)

	PRIME			PRIMA ¹	
TEAEs, n (%)	Niraparib (N=255)	Placebo (N=129)	Niraparib (N=484)	Place (N=2	
Any TEAEs	253 (99.2)	121 (93.8)	478 (98.8)	224 (9	
Treatment-related	249 (97.6)	111 (86.0)	466 (96.3)	168 (6	
Grade≥3 TEAEs	139 (54.5)	23 (17.8)	341 (70.5)	46 (18	
Treatment-related	125 (49.0)	9 (7.0)	316 (65.3)	16 (6	
Serious TEAEs	48 (18.8)	11 (8.5)	156 (32.2)	32 (13	
Treatment-related	38 (14.9)	5 (3.9)	118 (24.4)	6 (2.	
TEAEs leading to treatment interruption	160 (62.7)	25 (19.4)	385 (79.5)	44 (18	
TEAEs leading to dose reduction ^b	103 (40.4)	8 (6.2)	343 (70.9)	20 (8	
TEAEs leading to discontinuation	17 (6.7)	7 (5.4)	58 (12.0)	6 (2.	
TEAEs leading to death	1 (0.4)	0	2 (0.4)	1 (0.4	

2021 ASCO ANNUAL MEETING Abstract 5518

NIRAPARIB EFFICACY AND SAFETY IN PATIENTS WITH BRCA-MUTATED (BRCAm) OVARIAN CANCER: RESULTS FROM THREE PHASE 3 NIRAPARIB TRIALS

Antonio González-Martín,¹ Ursula Matulonis,² Jacob Korach,³ Mansoor R. Mirza,⁴ Kathleen Moore,⁵ Xiaohua Wu,⁶ Divya Gupta,⁷ Stanislav Lechpammer,⁷ and Bradley J. Monk⁸

 ¹Grupo Español de Investigación en Cáncer de Ovario (GEICO) and Medical Oncology Department, Clínica Universidad de Navarra, Madrid, Spain; ²Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; and Harvard Medical School, Boston, MA, USA; ³Gynecologic Oncology Department, Sheba Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel;
 ⁴Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; ⁵Division of Obstetrics and Gynecology, Department of Gynecologic Oncology, University of Oklahoma Health Science Center, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA; ⁶Gynecologic Oncology Department of Fudan University Shanghai Cancer Centre, Shanghai, China;
 ⁷GlaxoSmithKline, Waltham, MA, USA; ⁸Arizona Oncology (US Oncology Network), University of Arizona College of Medicine, Creighton University School of Medicine, Phoenix, AZ, USA.

June 4, 2021

Three Phase III Niraparib Trials: Background and Methods

endpoint

Background

- Niraparib is an oral poly(ADP-ribose) polymerase (PARP) inhibitor approved for the maintenance treatment of patients with advanced ovarian, fallopian tube, or primary peritoneal cancer after first-line chemotherapy and in the recurrent setting
- BRCA mutations occur in approximately 20%–25% of patients with epithelial ovarian cancer and are associated with improved outcomes in comparison with patients with BRCA wild-type ovarian cancer^{1,2}
- Niraparib has shown efficacy in tumors with and without BRCA mutations, and the efficacy and safety of niraparib in patients with BRCA mutated (BRCAm) was assessed in the PRIMA, NOVA, and NORA trials

Methods

- PRIMA was a randomized, double-blind, placebo-controlled, phase 3 trial of niraparib maintenance therapy in patients with newly diagnosed, advanced ovarian cancer that responded to first-line platinum-based chemotherapy³
- NOVA and NORA were randomized, double-blind, placebocontrolled phase 3 trials of niraparib maintenance therapy in patients with platinum-sensitive, recurrent ovarian cancer^{4,5}
- Subgroup analysis by BRCAm status was prespecified in all three trials

	PRIMA, NOVA, and NORA Study Overview						
	PRIMA ³ (1L maintenance)	NOVA ⁴ (2L maintenance)	NORA ⁵ (2L maintenance)				
Patient population	 Patients with newly diagnosed advanced ovarian cancer Stage III or IV high-grade serous or endometrioid tumors Complete or partial response to their first-line platinum-based chemotherapy treatment Subgroup analysis by tumor <i>BRCA</i>m status was prespecified 	 Patients with platinum-sensitive recurrent ovarian cancer Received ≥2 lines of platinum-based chemotherapy Cohort enrollment based on gBRCA mutation status (gBRCAm vs gBRCAwt) 	 Patients with platinum-sensitive recurrent ovarian cancer Received ≥2 lines of platinum-based chemotherapy Subgroup analysis by tumor <i>BRCA</i>m status was prespecified 				
Treatment arms		2:1 Randomization Niraparib Placebo					
	Study start: fixed starting dose	Fixed starting dose	Study start: fixed starting dose				
Niraparib dosing	300 mg for all patients	300 mg for all patients	300 mg for all patients				
	November 2017: individualized starting dose ^a		December 2017: individualized starting dos				
	200 mg for patients with 300 mg for patients with baseline body weight baseline body weight <77 kg		200 mg for patients with 300 mg for patients with baseline body weight baseline body weight <77 kg				
Primary	DEC hut	linded independent central review per RF(

PFS by blinded independent central review per RECIST v1.1

Gonzalez-Martin A et al. ASCO 2021; Abstract 5518.

Long-term safety and secondary efficacy endpoints in the ENGOT-OV16/NOVA phase 3 trial of niraparib in recurrent ovarian cancer

Ursula A. Matulonis,¹ Jørn Herrstedt,² Amit Oza,³ Sven Mahner,⁴ Andrés Redondo,⁵ Dominique Berton,⁶ Jonathan S. Berek,⁷ Bente Lund,⁸ Frederik Marme,⁹ Antonio González-Martín,¹⁰ Anna V. Tinker,¹¹ Jonathan Ledermann,¹² Benedict Benigno,¹³ Gabriel Lindahl,¹⁴ Nicoletta Colombo,¹⁵ Yong Li,¹⁶ Divya Gupta,¹⁶ Bradley J. Monk,¹⁷ Mansoor R. Mirza¹⁸

¹Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; ²Department of Oncology, Odense University Hospital, and Department of Clinical Oncology, Zealand University Hospital, Roskilde, Denmark; ³Division of Medical Oncology and Hematology, University Health Network and Princess Margaret Cancer Centre, Toronto, Ontario, Canada; ⁴Arbeitsgemeinschaft Gynäkologische Onkologie (AGO), Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians University of Munich, Munich, Germany; ⁵Grupo Español de Investigación en Cáncer de Ovario (GEICO) and Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; ⁶Groupe d'Investigateurs Nationaux pour l'Étude des Cancers Ovariens (GINECO), Institut de Cancérologie de l'Ouest (ICO) Centre René Gauducheau, Saint-Herblain, France; ⁷Stanford Women's Cancer Center, Stanford Cancer Institute, Stanford, CA, USA; ⁸Aalborg University Hospital, Aalborg, Denmark; ⁹University Hospital Heidelberg, Heidelberg, Germany; ¹⁰GEICO and Medical Oncology Department, Clinica Universidad de Navarra, Madrid, Spain; ¹¹British Colombia Cancer Agency, Vancouver, British Columbia, Canada; ¹²National Cancer Research Institute (NCRI), University College London, London, UK; ¹³Northside Hospital, Atlanta, GA, USA; ¹⁴Department of Oncology, Linkoping University Hospital, Linkoping, Sweden; ¹⁵Department of Surgical Sciences, University of Milano-Bicocca and European Institute of Oncology, Milano, Italy; ¹⁶GlaxoSmithKline, Waltham, MA, USA; ¹⁷Arizona Oncology Network), University of Arizona College of Medicine, Phoenix, AZ, USA; ¹⁸Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark

SGO VIRTUAL ANNUAL MEETING 2021 ON WOMEN'S CANCER"

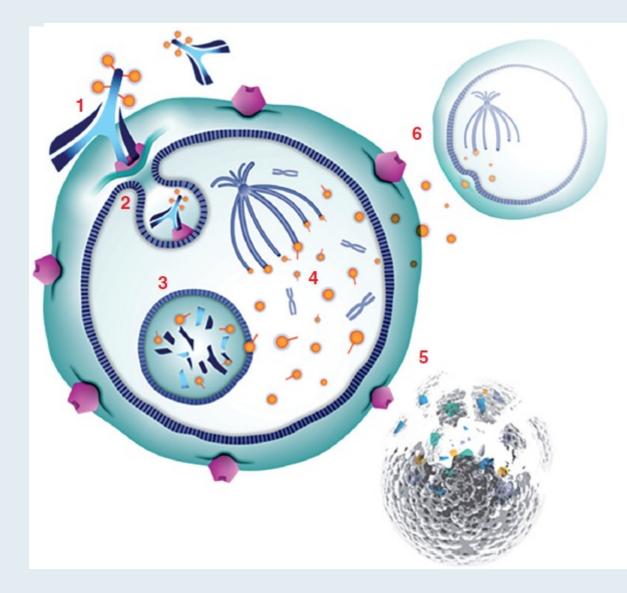
Abstract 11139

ENGOT-OV16/NOVA: Summary of Myelodysplastic Syndromes (MDS)/Acute Myeloid Leukemia (AML)

- At the time of the primary analysis, incidence of MDS/AML was 1.4% (5/367) in the niraparib arm vs. 1.1% (2/179) in the placebo arm¹
- With long-term follow-up and administration of subsequent therapies, 3.5% (13/367) of patients in the niraparib arm vs. 1.7% (3/179) in the placebo arm developed MDS/AML

	Niraparib arm			Placebo arm		
Adverse event, n (%)	All (N=367)	g <i>BRCA</i> m (n=136)	Non- g <i>BRCA</i> m (n=231)	All (N=179)	g <i>BRCA</i> m (n=65)	Non- g <i>BRCA</i> m (n=114)
MDS/AML all	13ª (3.5)	9 (6.6)	4 (1.7)	3 (1.7)	2 (3.1)	<mark>1 (</mark> 0.9)
TEAE (treatment)	9 (2.5)	7 (5.1)	2 (0.9)	0	0	0
TEAE (follow-up)	4 (1.1)	2 (1.5)	2 (0.9)	3 (1.7)	2 (3.1)	1 (0.9)

Matulonis UA et al. SGO 2021;Abstract 11139.


Gynecol Oncol. 2021 June ; 161(3): 653–659.

Incidence of Myelodysplastic Syndrome and Acute Myeloid Leukemia in Patients Receiving Poly-ADP Ribose Polymerase Inhibitors for the Treatment of Solid Tumors: A Meta-analysis of Randomized Trials

Roni Nitecki, MD, MPH^{1,1}, Alexander Melamed, MD, MPH^{2,1}, Allison A. Gockley, MD², Jessica Floyd, MD³, Kate J. Krause, MLIS⁴, Robert L. Coleman, MD⁵, Ursula A. Matulonis, MD⁶, Sharon H. Giordano, MD, MPH⁷, Karen H. Lu, MD¹, J.Alejandro Rauh-Hain, MD, MPH^{1,*}

Mirvetuximab Soravtansine: Mechanism of Action

(1) Mirvetuximab soravtansine binds with high affinity to FRα expressed on the tumor cell surface

(2) The antibody-drug conjugate (ADC)/receptor complex becomes internalized via antigenmediated endocytosis

(3) Lysosomal processing releases active DM4 catabolites from the ADC molecule

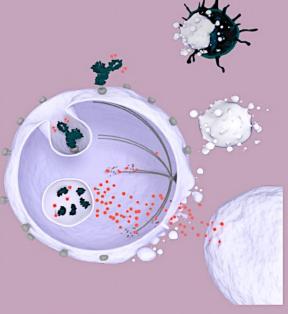
(4) These maytansinoid derivatives inhibit tubulin polymerization and microtubule assembly

(5) The potent antimitotic effects result in cell-cycle arrest and apoptosis

(6) Active metabolites can also diffuse into neighboring cells and induce further cell death — in other words, bystander killing

ASCO 2021 | Abstract TPS5611

A phase 2, two-stage study of mirvetuximab soravtansine (IMGN853) in combination with pembrolizumab in patients with microsatellite stable (MSS) endometrial cancer (EC).


Rebecca Porter¹, Jennifer Veneris¹, Nabihah Tayob², Gabriela West¹, Madeline Polak¹, Jeanette Gardner¹, Susana Campos¹, Carolyn Krasner¹, Elizabeth Lee¹, Joyce Liu¹, Elizabeth Stover¹, Alexi Wright¹, Ursula Matulonis¹, Panagiotis Konstantinopoulos¹

Efficacy and Safety of Mirvetuximab Soravtansine in Patients With Platinum-Resistant Ovarian Cancer With High Folate Receptor Alpha Expression: Results From the SORAYA Study

Ursula A. Matulonis,¹ Domenica Lorusso,² Ana Oaknin,³ Sandro Pignata,⁴ Hannelore Denys,⁵ Nicoletta Colombo,⁶ Toon Van Gorp,⁷ Jason A. Konner,⁸ Margarita Romeo Marin,⁹ Philipp Harter,¹⁰ Conleth G. Murphy,¹¹ Jiuzhou Wang,¹² Elizabeth Noble,¹² Brooke Esteves,¹² Michael Method,¹² Robert L. Coleman¹³

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²Fondazione Policlinico Universitario A. Gemelli, IRCCS and Catholic University of Sacred Heart, Rome, Italy; ³Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; ⁴Istituto Nazionale Tumori di Napoli Fondazione G Pascale IRCCS, Naples, Italy; ⁵Ghent University Hospital, Ghent, Belgium; ⁶European Institute of Oncology IRCCS, Milan, Italy and University of Milan-Bicocca, Milan, Italy; ⁷University Hospital Leuven, Leuven Cancer Institute, Leuven, Belgium; ⁸Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁹Institut Català d'Oncologia, Badalona, Spain; ¹⁰Ev. Kliniken Essen-Mitte, Essen, Germany; ¹¹Bon Secours Hospital and Cancer Trials, Cork, Ireland; ¹²ImmunoGen, Inc., Waltham, MA, USA; ¹³US Oncology Research, Texas Oncology, The Woodlands, TX, USA

S^{*}RAYA

SGO 2022; Abstract LBA4.

Mirvetuximab Soravtansine (MIRV) in Patients with Platinum-Resistant Ovarian Cancer with High Folate Receptor Alpha (FRα) Expression: Characterization of Antitumor Activity in the SORAYA Study

Matulonis UA et al. ASCO 2022;Abstract 5512.

MIRASOL Phase III Study Schema

MIRAS[®]L

Enrollment and Key Eligibility

- Platinum-resistant disease (PFI ≤ 6 mo)
 - 1° platinum refractory disease excluded (primary PFI < 3 mo)
- Prior bevacizumab and PARPi allowed
- 1-3 prior lines of therapy
- Patients with BRCA mutations allowed
- FRα-high by PS2+ scoring (≥75% PS2+)

Statistical Assumptions

- 430 patients/ 330 events for PFS by INV
- α=0.05 (two-sided)
- Power=90%; HR=0.7; control arm mPFS 3.5 mo

Mirvetuximab Soravtansine 6 mg/kg AIBW (calculated using adjusted ideal body weight) intravenously once every 3 weeks

> 1:1 Randomization STRATIFICATION FACTORS Investigator's Choice (IC) Chemotherapy (Paclitaxel, PLD, Topotecan) Prior Therapies (1 vs 2 vs 3)

Investigator's Choice (IC) Chemotherapy Paclitaxel, PLD,⁺ or Topotecan Paclitaxel: 80 mg/m2 weekly; PLD: 40 mg/m² every 4 weeks; Topotecan: 4 mg/m² on days 1, 8, and 15 every four weeks; or 1.25 mg/m² on days 1-5 every 3 weeks

Moore KN et al. SGO 2022; Abstract 297.

PICCOLO Phase II Trial Schema

PICC¹

Enrollment and Key Eligibility

- Platinum-sensitive disease (PFI >6 mo)
- At least 2 prior lines of platinum-based therapy
 - Patients with documented platinum allergy require only 1 prior line of platinum
- FRα-high by IHC scoring (≥75% PS2+)
- Appropriate for single agent therapy as next line of therapy as determined by investigator

Statistical Assumptions

- N=75
- Null hypothesis: ORR is ≤ 28% tested using an optimal Simon's two-stage design w/o pause in enrollment

Mirvetuximab Soravtansine

6 mg/kg AIBW (calculated using adjusted ideal body weight) intravenously once every 3 weeks

Alvarez Secord A et al. SGO 2022; Abstract 300.

Integrated Safety Summary of Single-Agent Mirvetuximab Soravtansine in Patients with Folate Receptor α (FRα)-Positive Recurrent Ovarian Cancer: Phase 1 and 3 Clinical Trials

Moore KN et al. ASCO 2022;Abstract 5574.

Meet The Professor with Dr Matulonis

Introduction: Journal Club with Dr Matulonis – Part 1

MODULE 1: Case Presentations – Part 1

- Dr Chase: A 67-year-old woman with primary peritoneal carcinoma and a gBRCA mutation s/p naturopathic therapy
- Dr DiSilvestro: A 78-year-old woman with Stage IIIC fallopian tube cancer (HRp) s/p neoadjuvant chemotherapy
- Dr Malhotra: A 69-year-old woman with high-grade serous ovarian carcinoma (HGSOC) and extensive peritoneal and omental metastases (HRp) s/p chemotherapy and bevacizumab → niraparib
- Dr Bank: A 75-year-old woman (gBRCA1 mutation) s/p bilateral breast cancer with a CR to chemotherapy for metastatic ovarian cancer for 8 years
- Dr Hussein: A 36-year-old woman s/p R0 debulking surgery for Stage IIIC HGSOC (HRp)

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Matulonis – Part 2

MODULE 4: Case Presentations – Part 2

- Dr Zafar: A 46-year-old woman s/p multiple relapses of MSI-high clear cell ovarian cancer
- Dr McKenna: A 92-year-old woman with Stage IIIC/IV papillary ovarian cancer and concurrent CLL
- Dr Chen: A 60-year-old woman with recurrent ovarian cancer s/p multiple prior therapies, including Tumor Treating Fields

MODULE 5: Appendix of Key Publications

Case Presentation: A 46-year-old woman s/p multiple relapses of MSI (microsatellite instability)-high clear cell ovarian cancer

Dr Syed Zafar (Fort Myers, Florida)

Case Presentation: A 92-year-old woman with Stage IIIC/IV papillary ovarian cancer and concurrent chronic lymphocytic leukemia

Dr Rajalaxmi McKenna (Willowbrook, Illinois)

Case Presentation: A 60-year-old woman with recurrent ovarian cancer s/p multiple prior therapies, including Tumor Treating Fields (TT Fields)

Dr Gigi Chen (Pleasant Hill, California)

Meet The Professor with Dr Matulonis

Introduction: Journal Club with Dr Matulonis – Part 1

MODULE 1: Case Presentations – Part 1

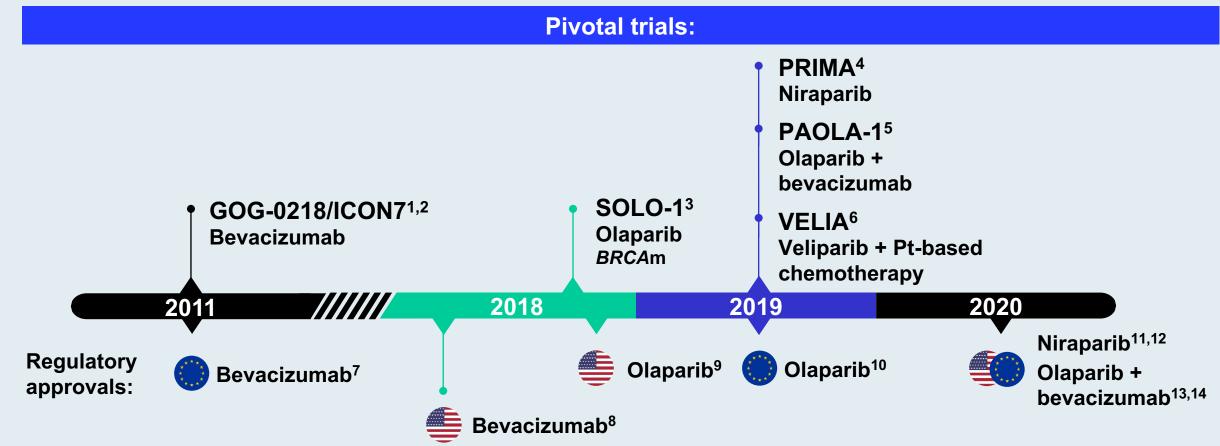
- Dr Chase: A 67-year-old woman with primary peritoneal carcinoma and a gBRCA mutation s/p naturopathic therapy
- Dr DiSilvestro: A 78-year-old woman with Stage IIIC fallopian tube cancer (HRp) s/p neoadjuvant chemotherapy
- Dr Malhotra: A 69-year-old woman with high-grade serous ovarian carcinoma (HGSOC) and extensive peritoneal and omental metastases (HRp) s/p chemotherapy and bevacizumab → niraparib
- Dr Bank: A 75-year-old woman (gBRCA1 mutation) s/p bilateral breast cancer with a CR to chemotherapy for metastatic ovarian cancer for 8 years
- Dr Hussein: A 36-year-old woman s/p R0 debulking surgery for Stage IIIC HGSOC (HRp)

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Matulonis – Part 2

MODULE 4: Case Presentations – Part 2

- Dr Zafar: A 46-year-old woman s/p multiple relapses of MSI-high clear cell ovarian cancer
- Dr McKenna: A 92-year-old woman with Stage IIIC/IV papillary ovarian cancer and concurrent CLL
- Dr Chen: A 60-year-old woman with recurrent ovarian cancer s/p multiple prior therapies, including Tumor Treating Fields


MODULE 5: Appendix of Key Publications

Optimal Biomarker Evaluation and Front-Line Management

Pivotal Trials and Regulatory Milestones in First-Line Maintenance Therapy for Advanced Ovarian Cancer

Dates shown indicate the year of the publication of the pivotal studies and regulatory approvals for these compounds.

BRCAm, breast cancer gene mutant; GOG, Gynecologic Oncology Group; Pt, platinum.

1. Burger RA et al. *N Engl J Med.* 2011;365(26):2473-2483. 2. Perren TJ et al. *N Engl J Med.* 2011;365(26):2484-2496. 3. Moore K et al. *N Engl J Med.* 2018;379(26):2495-2505. 4. González-Martín A et al. *N Engl J Med.* 2019;381(25):2391-2402. . Ray-Coquard I et al. *N Engl J Med.* 2019;381(25):2416-2428. 6. Coleman RL et al. *N Engl J Med.* 2019;381(25):2403-2415. 7. European Medicines Agency. Published September 22, 2011. Accessed June 7, 2021. 8. F. Hoffmann-La Roche Ltd. Published June 13, 2018. Accessed June 7, 2021. 9. US Food and Drug Administration. Published December 26, 2018. Accessed June 7, 2021. 10. European Medicines Agency. Published April 26, 2019. Accessed June 7, 2021. 11. GlaxoSmithKline. Published April 29, 2020. Accessed June 7, 2021. 12. GlaxoSmithKline. Published October 29, 2020. Accessed June 7, 2021. 13. US Food and Drug Administration. Published May 11, 2020. Accessed June 7, 2021. 14. European Medicines Agency. Published September 17, 2020. Accessed June 7, 2021.

Courtesy of Kathleen Moore, MD

Phase III First-Line PARP Inhibitor Maintenance Trials

Study design	SOLO-1 ¹ (N = 391)	PAOLA-1 ² (N = 612)	PRIMA ³ (N = 620)	VELIA ⁴ (N = 1,140)
Treatment arms vs placebo	Olaparib (n=260)	Bevacizumab ± olaparib	Niraparib	Veliparib
Patient population	BRCA mutation	All comers	All comers	All comers
Treatment duration	24 mo	15 mo for bev 24 mo for olaparib	36 mo or until PD	24 mo
Median PFS	56 mo vs 14 mo HR: 0.33	22.1 mo vs 16.6 mo HR: 0.59	22.1 mo vs 10.9 mo HR 0.40	23.5 mo vs 17.3 mo HR: 0.68

bev = bevacizumab; PD = disease progression

¹ Banerjee et al. *Lancet Oncol* 2021;22(12):1721-31; ² Ray-Coquard et al. SGO 2020;Abstract 33; ³ González-Martín A et al. ASCO 2021;Abstract 5518; ⁴ Aghajanian C et al. *Gyn Oncol* 2021;162(2):375-81.

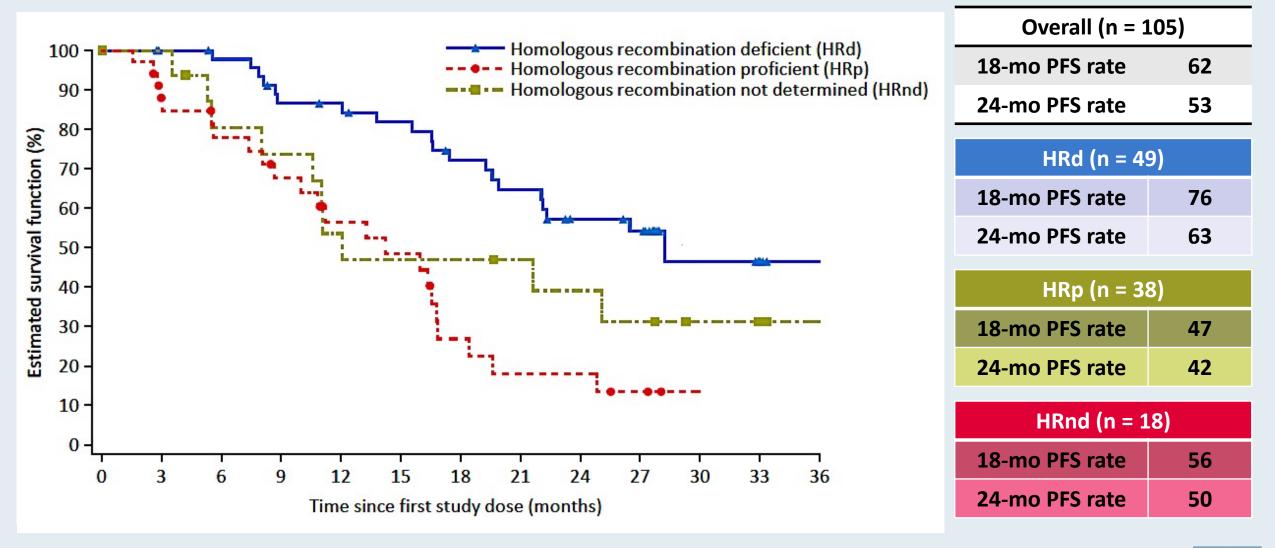
Phase 2 OVARIO Study of Niraparib + Bevacizumab Therapy in Advanced Ovarian Cancer Following Frontline Platinum-Based Chemotherapy with Bevacizumab

Melissa M. Hardesty,¹ Thomas Krivak,² Gail S. Wright,³ Erika Hamilton,⁴ Evelyn L. Fleming,⁵ Jimmy Belotte,⁶ Erika Keeton,⁶ Ping Wang,⁶ Aine Clements,⁷ Heidi J. Gray,⁸ Gottfried E. Konecny,⁹ Richard G. Moore,¹⁰ Debra L. Richardson¹¹

¹Alaska Women's Cancer Care, Anchorage, AK, USA; ²Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Western Pennsylvania Hospital, Pittsburgh, PA, USA; ³Florida Cancer Specialists and Research Institute, New Port Richey, FL, USA; ⁴Sarah Cannon Research Institute; Tennessee Oncology, Nashville, TN, USA; ⁵Division of Gynecologic Oncology, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; ⁶GlaxoSmithKline, Waltham, MA, USA; ⁷Department of Gynecologic Oncology, Riverside Methodist Hospital, Columbus, OH, USA; ⁸Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; ⁹University of California Los Angeles, Los Angeles, CA, USA; ¹⁰Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA; ¹¹Division of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

Patients with newly diagnosed high-grade serous or endometrioid stage IIIB to IV epithelia ovarian, fallopian tube, or peritoneal cancer who achieved a CR, PR, or NED result after front-line platinum-based chemotherapy + bevacizumab

HRd at enrollment Starting niraparib dose, n (%) N=105 200 mg (<77 kg and/or platelet 82 (78) count <150,000/µL)


All patients underwent tissue testing for

300 mg (all others) 23 (22) Niraparib (200 or 300 mg QD) + bevacizumab (15 mg/kg Q3W)

Endpoint assessment				
Primary endpoint	PFS rate at 18 months (PFS18)			
Secondary endpoints	 PFS Overall survival RECIST or CA-125 PFS Time to first subsequent therapy Time to second subsequent therapy Safety and tolerability Patient-reported outcome 			
Exploratory endpoints	PFS rate at 6 months (PFS6) and 12 months (PFS12)			
Statistical analysis plan	 Efficacy: PFS18 and PFS24 will be estimated by frequency analysis, with corresponding 95% exact CI will be reported The time to event endpoints (PFS, TFST, TSST) will be analyzed using Kaplan-Meier methodology Progression will be assessed by RECIST v1.1 per investigator 			

OVARIO: PFS by Homologous Recombination Deficiency Status

Hardesty et al. SGO 2022; Abstract 40.

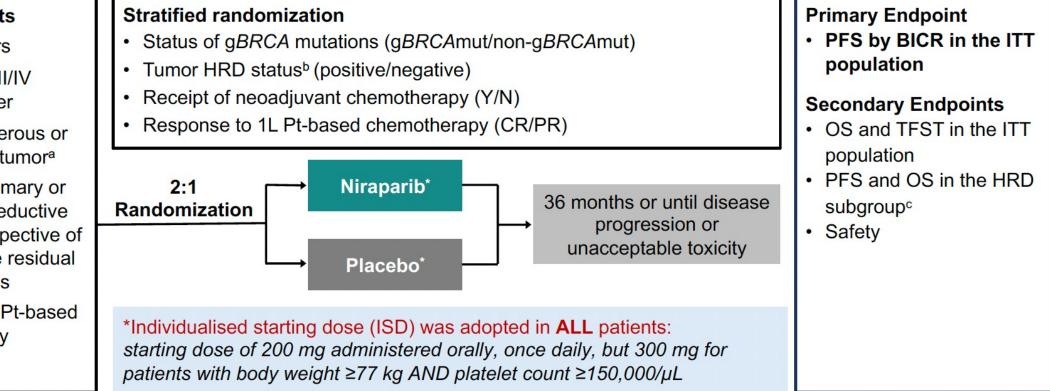
OVARIO: Treatment Related Adverse Events (TRAEs)

	N=105			TRAEs in ≥20% of patients (N=105)		
Parameter, n (%)	Related	Related	Related	Related to niraparib	or bevacizuma	b
	to nira or	to nira	to bev	Preferred term, n (%)	Any Grade	Grade ≥3
	bev			Thrombocytopenia ^a	74 (70)	41 (39)
Any TRAE	105 (100)	104 <mark>(</mark> 99)	96 (91)	Fatigue	60 (57)	9 (9)
Any Grade ≥3 TRAE	84 <mark>(</mark> 80)	81 (77)	54 (51)	Anemia ^b	55 (52)	36 (34)
Any serious TRAE	21 (20)	19 (18)	7 (7)	Nausea	55 (52)	1 (1)
TRAE leading to	42 (40)	32 (30)	23 (22)	Hypertension ^c	53 (50)	28 (27)
treatment discontinuation	42 (40)	52 (50)	23 (22)	Proteinuria	41 (39)	5 (5)
TRAE leading to dose reduction	78 (74)	77 (73)	27 (26)	Headache	32 (30)	6 (6)
TRAE leading to				Neutropenia ^d	28 (27)	13 (12)
treatment interruption	93 (88)	90 (86)	58 (55)	Leukopenia ^e	24 (23)	0

Efficacy and Safety of Niraparib as Maintenance Treatment in Patients with Newly Diagnosed Advanced Ovarian Cancer Using an Individualized Starting Dose (PRIME Study): A Randomized, Double-blind, Placebocontrolled, Phase 3 Trial

Ning Li^{*}, Jianqing Zhu, Rutie Yin, Jing Wang, Lingya Pan, Beihua Kong, Hong Zheng, Jihong Liu, Xiaohua Wu, Li Wang, Yi Huang, Ke Wang, Dongling Zou, Hongqin Zhao, Chunyan Wang, Weiguo Lu, An Lin, Ge Lou, Guiling Li, Pengpeng Qu, Hongying Yang, Xiaoa Zhen, Wenzhao Hang, Jianmei Hou, Lingying Wu^{*}

* National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China


PRIME: Study Design

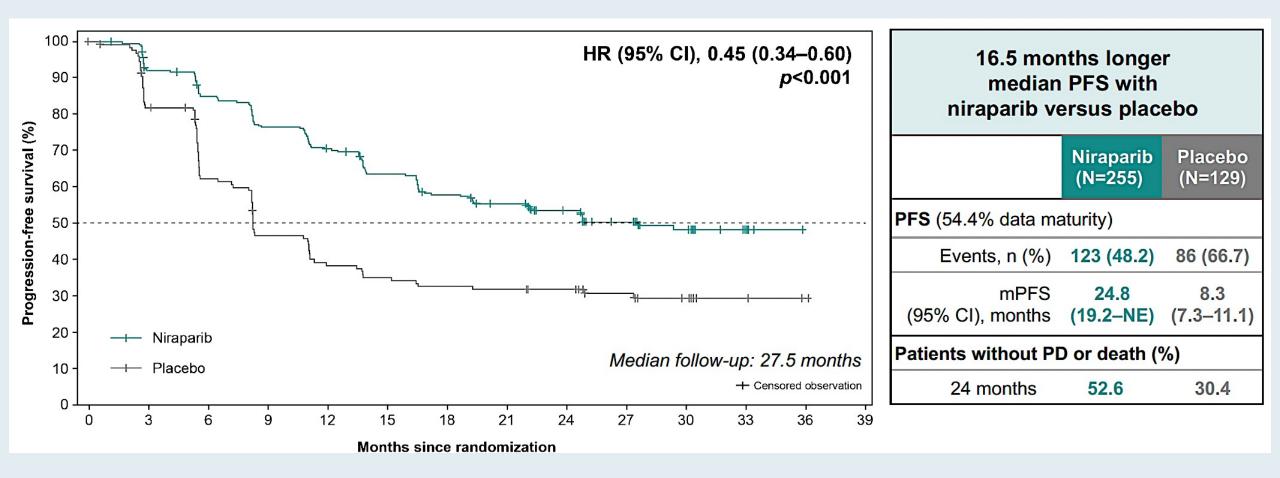
PRIME is a randomized, double-blind, placebo-controlled phase III trial (NCT03709316).

Schema

Eligible Patients

- Age ≥18 years
- FIGO stage III/IV
 ovarian cancer
- High-grade serous or endometroid tumor^a
- Receipt of primary or interval cytoreductive surgery, irrespective of postoperative residual disease status
- CR/PR to 1L Pt-based chemotherapy

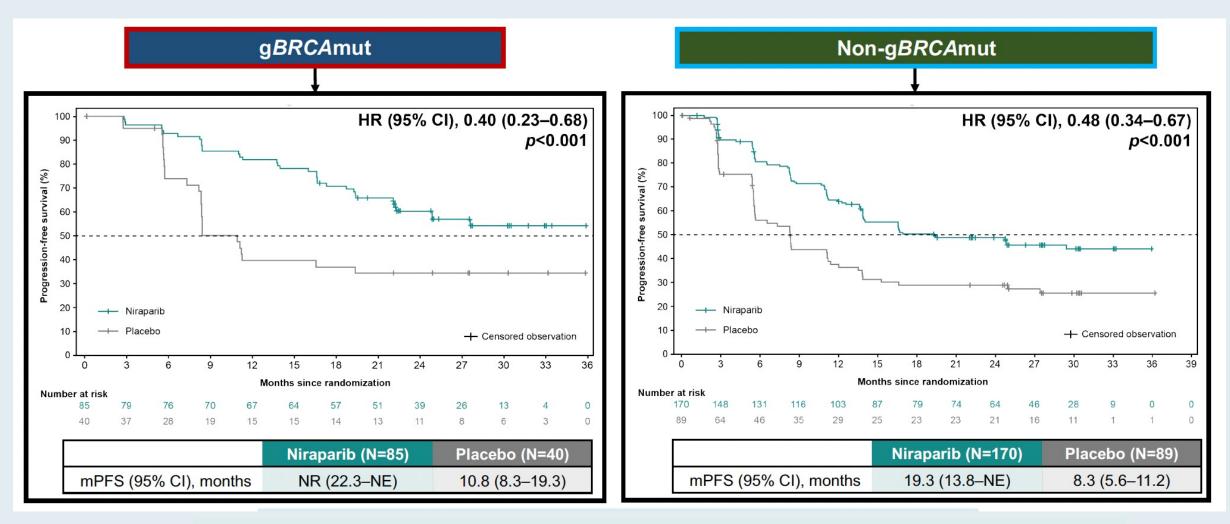
PRIME: Demographics and Baseline Characteristics


Characteristic	Niraparib (N=255)	Placebo (N=129)	
Median age (range), years	53.0 (32–77)	54.0 (33–77)	
Median weight (range), kg	59.0 (39.5–100.0)	57.0 (37.0–97.0)	
ECOG performance status, n (%)			
0	98 (38.4)	52 (40.3)	
1	157 (61.6)	77 (59.7)	
FIGO stage, n (%)			
III	182 (71.4)	94 (72.9)	
IV	73 (28.6)	35 (27.1)	
Primary tumor location, n (%)			
Ovary	229 (89.8)	117 (90.7)	
Fallopian tube	19 (7.5)	9 (7.0)	
Peritoneum	7 (2.7)	3 (2.3)	
Histologic subtype, n (%)			
Serous ovarian cancer	253 (99.2)	128 (99.2)	
Endometrioid carcinoma	2 (0.8)	0	
Other	0	1 (0.8)	

Characteristic	Niraparib (N=255)	Placebo (N=129)
Neoadjuvant chemotherapy, n (%)		
Yes	121 (47.5)	59 (45.7)
No	134 (52.5)	70 (54.3)
Response to Pt-based CT, n (%)		
CR	212 (83.1)	103 (79.8)
PR	43 (16.9)	26 (20.2)
gBRCA mutation status, n (%)		
g <i>BRCA</i> mut	85 (33.3)	40 (31.0)
Non-gBRCAmut	170 (66.7)	89 (69.0)
Homologous recombination ^a , n (%)		
Deficient	170 (66.7)	87 (67.4)
Proficient	85 (33.3)	42 (32.6)
Postoperative residual disease status, n (%)		
Optimal (R0/R1)	193 (75.7)	105 (81.4)
Suboptimal (R2) or missing	52 (24.3)	24 (18.6)

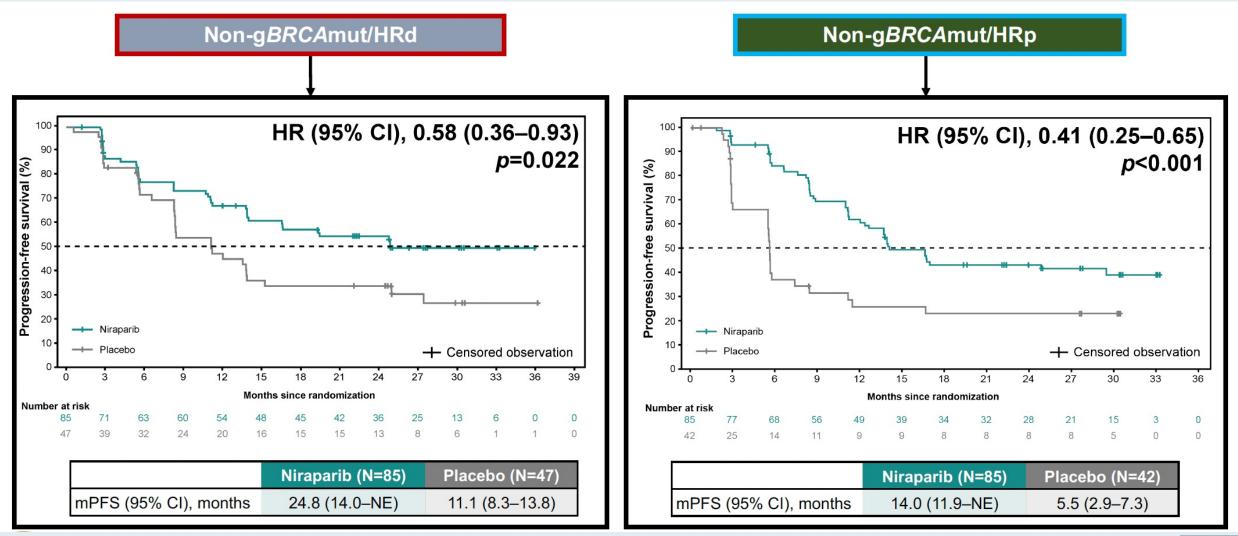
• The niraparib and placebo groups were well-balanced.

PRIME: PFS (by Blinded Independent Central Review) in the ITT Population


Li et al. SGO 2022;Abstract LBA5.

PRIME: PFS Benefit in Prespecified Subgroups

Subgroup	Events/pa	tients (%)	Hazard ratio for PFS (95% CI)	
	Niraparib	Placebo		
Overall	123/255 (48.2)	86/129 (66.7)	=	0.45 (0.34–0.60)
Age				
<65 years	108/229 (47.2)	73/114 (64.0)	┠═┤│	0.47 (0.34–0.63)
≥65 years	15/26 (57.7)	13/15 (86.7)	┠──■──┤│	0.24 (0.09-0.66)
Neoadjuvant chemotherapy				
Yes	62/121 (51.2)	46/59 (78.0)	┝═┤│	0.32 (0.21–0.48)
No	61/134 (45.5)	40/70 (57.1)	┝╼╢	0.63 (0.42–0.94)
Response to Pt-based chemotherapy				
Complete response	98/212 (46.2)	66/103 (64.1)	⊦=1	0.45 (0.32-0.61)
Partial response	25/43 (58.1)	20/26 (76.9)	┝╼╌╢	0.45 (0.23-0.86)
gBRCA mutation status				
gBRCAmut	35/85 (41.2)	25/40 (62.5)	┝╼┤│	0.40 (0.23–0.68)
Non-gBRCAmut	88/170 (51.8)	61/89 (68.5)	┠═┤│	0.48 (0.34–0.67)
Homologous recombination				
Deficient	75/170 (44.1)	57/87 (65.5)	┠═┤│	0.48 (0.34–0.68)
Proficient	48/85 (56.5)	29/42 (69.0)	┝╼┤│	0.41 (0.25–0.65)
Postoperative residual disease status				
Optimal	94/193 (48.7)	71/105 (67.6)	⊦=┤	0.44 (0.32–0.61)
Suboptimal or missing	29/62 (46.8)	15/24 (62.5)	┝╼┥	0.43 (0.21–0.87)


PRIME: PFS Benefit by gBRCAmut Status

- Median PFS has not been yet reached for the gBRCAmut population.
- The benefit of niraparib in the non-gBRCAmut population is confirmed.

PRIME: PFS Benefit in non-gBRCAmut Subgroups

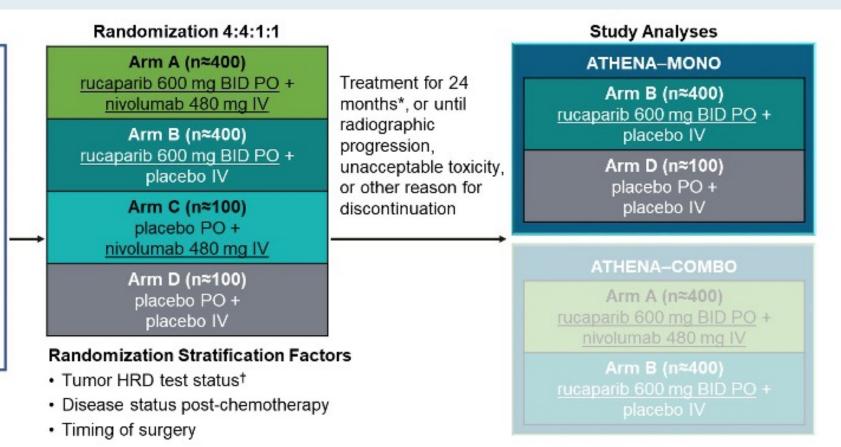
PRIME: Safety Overview (and PRIMA)

	PR	ME	P	RIMA ¹
TEAEs, n (%)	Niraparib (N=255)	Placebo (N=129)	Niraparib (N=484)	Place (N=2
Any TEAEs	253 (99.2)	121 (93.8)	478 (98.8)	224 (9
Treatment-related	249 (97.6)	111 (86.0)	466 (96.3)	168 (6
Grade≥3 TEAEs	139 (54.5)	23 (17.8)	341 (70.5)	46 (18
Treatment-related	125 (49.0)	9 (7.0)	316 (65.3)	16 (6
Serious TEAEs	48 (18.8)	11 (8.5)	156 (32.2)	32 (13
Treatment-related	38 (14.9)	5 (3.9)	118 (24.4)	6 (2.
TEAEs leading to treatment interruption	160 (62.7)	25 (19.4)	385 (79.5)	44 (18
TEAEs leading to dose reduction ^b	103 (40.4)	8 (6.2)	343 (70.9)	20 (8
TEAEs leading to discontinuation	17 (6.7)	7 (5.4)	58 (12.0)	6 (2.
TEAEs leading to death	1 (0.4)	0	2 (0.4)	1 (0.4

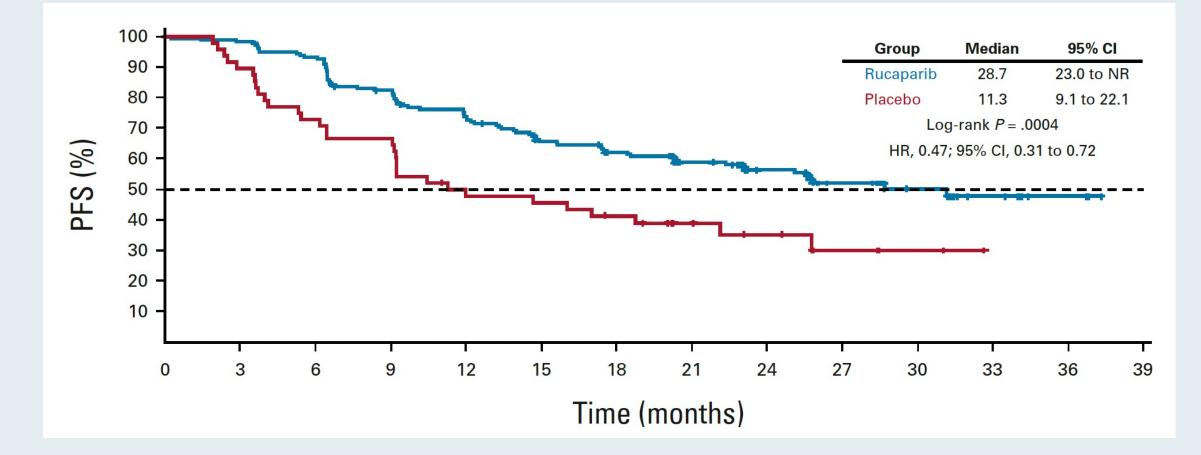
A Randomized, Phase III Trial to Evaluate original **Rucaparib Monotherapy as Maintenance Treatment in Patients With Newly Diagnosed Ovarian Cancer (ATHENA-MONO/GOG-3020/** ENGOT-ov45)

reports

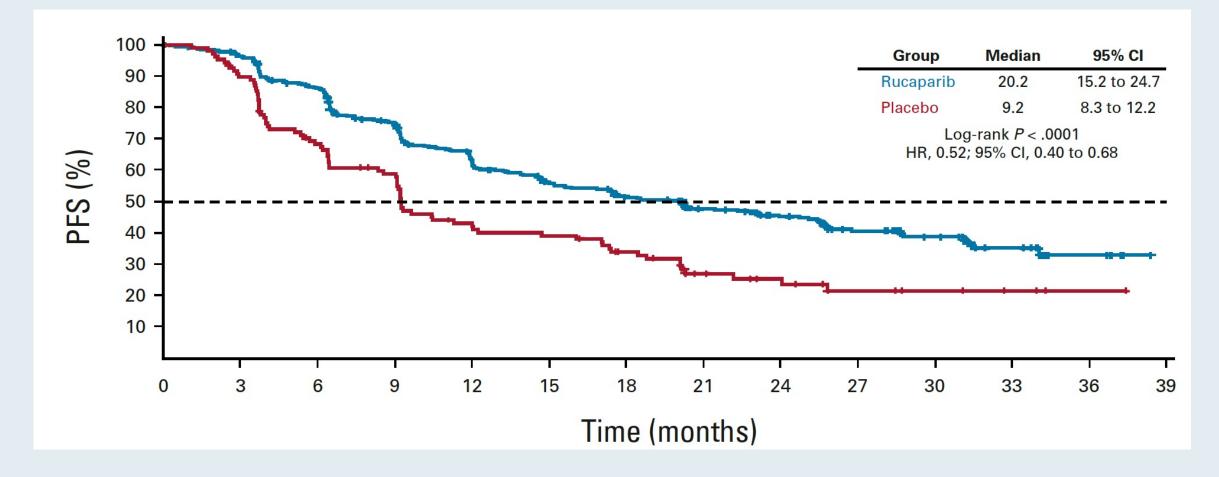
Bradley J. Monk, MD¹; Christine Parkinson, MD²; Myong Cheol Lim, MD, PhD³; David M. O'Malley, MD⁴; Ana Oaknin, MD, PhD⁵; Michelle K. Wilson, MD⁶; Robert L. Coleman, MD⁷; Domenica Lorusso, MD, PhD⁸; Paul Bessette, MD⁹; Sharad Ghamande, MD¹⁰; Athina Christopoulou, MD, PhD¹¹; Diane Provencher, MD¹²; Emily Prendergast, MD¹³; Fuat Demirkiran, MD¹⁴; Olga Mikheeva, MD¹⁵; Oladapo Yeku, MD, PhD¹⁶; Anita Chudecka-Glaz, MD, PhD¹⁷; Michael Schenker, MD, PhD¹⁸; Ramey D. Littell, MD¹⁹; Tamar Safra, MD²⁰; Hung-Hsueh Chou, MD^{21,22}; Mark A. Morgan, MD²³; Vít Drochýtek, MD²⁴; Joyce N. Barlin, MD²⁵; Toon Van Gorp, MD²⁶; Fred Ueland, MD²⁷; Gabriel Lindahl, MD^{28,29}; Charles Anderson, MD³⁰; Dearbhaile C. Collins, MBBCh, MA, PhD³¹; Kathleen Moore, MD³²; Frederik Marme, MD, PhD³³; Shannon N. Westin, MD, MPH³⁴; Iain A. McNeish, MD, PhD³⁵; Danny Shih, BA³⁶; Kevin K. Lin, PhD³⁷; Sandra Goble, MS³⁸; Stephanie Hume, PhD³⁹; Keiichi Fujiwara, MD, PhD⁴⁰; and Rebecca S. Kristeleit, MD, PhD⁴¹


J Clin Oncol 2022;[Online ahead of print].

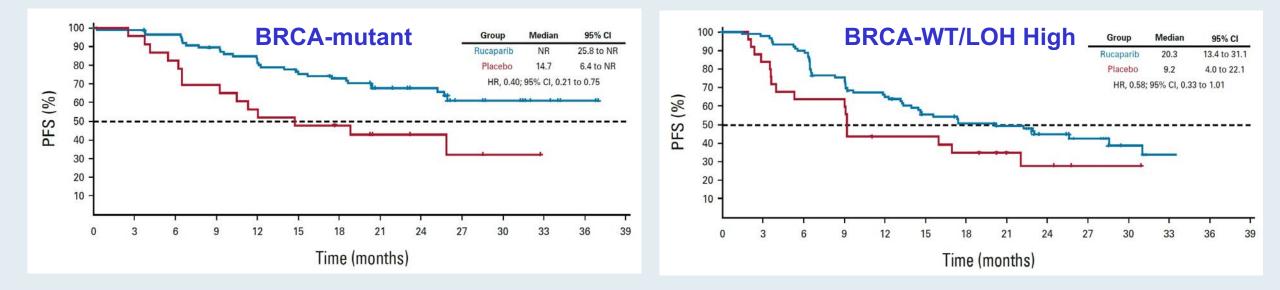
ATHENA-MONO Study Schema

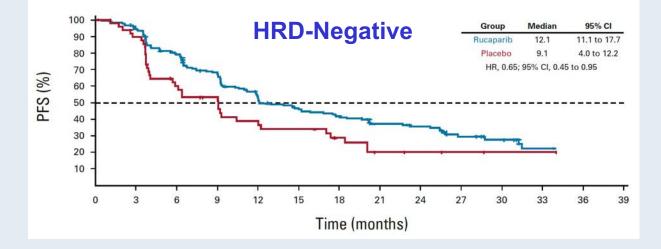

Key Patient Eligibility

- Newly diagnosed, stage III–IV, highgrade epithelial ovarian, fallopian tube, or primary peritoneal cancer
- Completed frontline platinum-doublet chemotherapy and surgery
 - Achieved investigator-assessed CR or PR
 - Received cytoreductive surgery (primary or interval; R0/complete resection permitted)
- · ECOG PS 0 or 1
- No prior treatment for ovarian cancer, including any maintenance treatment, other than frontline platinum regimen



ATHENA-MONO: Investigator-Assessed PFS in the HRD Population (N = 234)




ATHENA-MONO: Investigator-Assessed PFS in the ITT Population (N = 538)

ATHENA-MONO: Investigator-Assessed PFS

ATHENA-MONO: Investigator-Confirmed ORR

	HRD Population		ITT Pop	ulation
Response	Rucaparib (n $=$ 17)	Placebo (n $=$ 5)	Rucaparib ($n = 41$)	Placebo ($n = 11$)
Confirmed ORR per RECIST				
No.	10	1	20	1
% (95% CI)	58.8 (32.9 to 81.6)	20.0 (0.5 to 71.6)	48.8 (32.9 to 64.9)	9.1 (0.2 to 41.3)
CR, No. (%)	0	0	1 (2.4)	0
PR, No. (%)	10 (58.8)	1 (20.0)	19 (46.3)	1 (9.1)
Stable disease, No. (%)	6 (35.3)	2 (40.0)	10 (24.4)	4 (36.4)
Progressive disease, No. (%)	1 (5.9)	2 (40.0)	10 (24.4)	6 (54.5)
Not evaluable, No. (%)	0	0	1 (2.4)	0

ORR = objective response rate

ATHENA-MONO: Common Treatment-Emergent Adverse Events

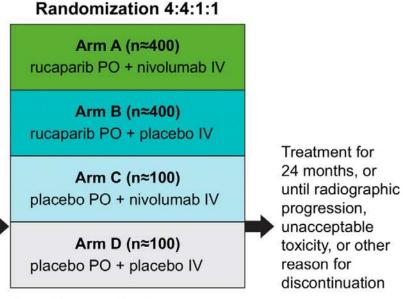
	Rucaparib	(n = 425)	Placebo (n = 110)	
TEAE	Any Grade	Grade \geq 3	Any Grade	Grade \geq 3
At least one TEAE, No. (%)	411 (96.7)	257 (60.5)	102 (92.7)	25 (22.7)
Nausea	239 (56.2)	8 (1.9)	33 (30.0)	0
Asthenia/fatigue	237 (55.8)	21 (4.9)	41 (37.3)	1 (0.9)
Anemia/decreased hemoglobin	198 (46.6)	122 (28.7)	10 (9.1)	0
Increased ALT/AST	181 (42.6)	45 (10.6)	9 (8.2)	1 (0.9)
Neutropenia/neutrophil count decreased	118 (27.8)	62 (14.6)	8 (7.3)	1 (0.9)
Abdominal pain	106 (24.9)	2 (0.5)	31 (28.2)	2 (1.8)
Diarrhea	102 (24.0)	6 (1.4)	23 (20.9)	1 (0.9)
Thrombocytopenia/platelet count decreased	101 (23.8)	30 (7.1)	1 (0.9)	0
Vomiting	100 (23.5)	6 (1.4)	13 (11.8)	0
Dysgeusia	90 (21.2)	1 (0.2)	6 (5.5)	0
Arthralgia	86 (20.2)	1 (0.2)	25 (22.7)	0
Headache	85 (20.0)	2 (0.5)	16 (14.5)	0

FDA Advises Manufacturer Not to Submit First-Line Maintenance sNDA for Rucaparib Until OS Survival Data from the ATHENA-MONO Trial Are More Mature June 17, 2022

"In consultation with the FDA, [the manufacturer of rucaparib] recently was advised not to file a supplemental new drug application based on data from a cohort of the Phase III ATHENA study until the study's overall survival data mature.

In the 8-K, [the manufacturer] said the FDA has accepted a request for a pre-NDA meeting and noted that the ATHENA-MONO portion of the Phase III study has met its primary endpoint of progression-free survival compared to placebo. OS is a secondary endpoint for ATHENA-MONO and the data are approximately 25% mature at present. [The manufacturer] said the FDA urged it to hold off filing for supplemental approval until the OS data reach 50% maturity, and indicated an advisory committee review would likely be necessary if the data were filed earlier than that point.

In a statement to *Scrip*, the firm said that although it cannot anticipate the outcome of the pre-NDA meeting, 'we are encouraged that the FDA is willing to have a dialogue.' [They] estimate the ATHENA-MONO OS data will reach 50% maturity in approximately two years."


https://scrip.pharmaintelligence.informa.com/SC146575/Clovis-Withdraws-Rubraca-Ovarian-Cancer-Indication-Due-To-Survival-Imbalance?vid=Pharma

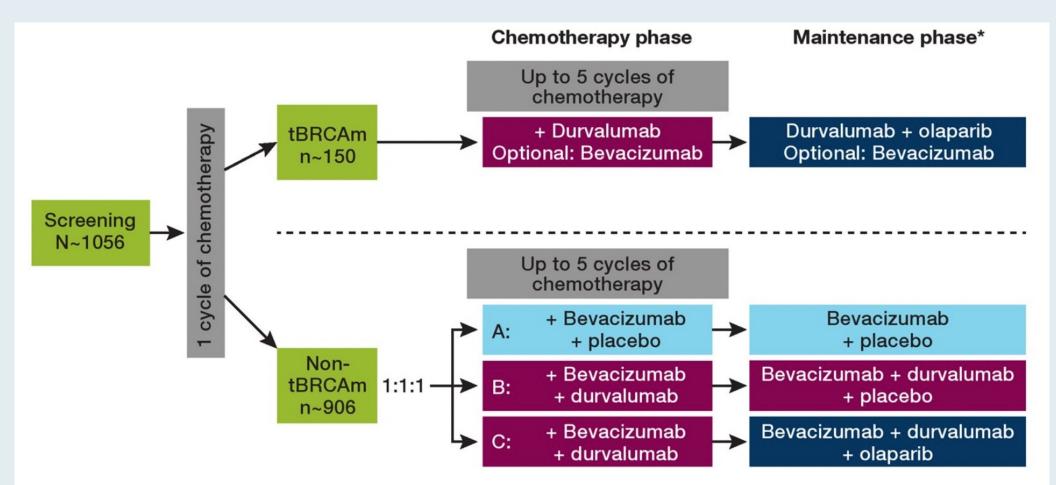
ATHENA-MONO and ATHENA-COMBO Study Design


Key Patient Eligibility

- Newly diagnosed, stage III/IV, high-grade epithelial ovarian, fallopian tube, or primary peritoneal cancer
- Completed frontline platinum-doublet chemotherapy and surgery
 - Achieved investigator-assessed CR or PR without disease progression or rise in CA-125 at any time during frontline platinum-doublet chemotherapy
 - Received cytoreductive surgery (R0 permitted), either prior to chemotherapy or following neoadjuvant chemotherapy, with sufficient tissue available for analysis
- ECOG PS 0 or 1
- No prior treatment for ovarian cancer, including any maintenance treatment, other than frontline platinum regimen

Stratification Factors

- Centrally assessed tumor status (BRCA mutation, BRCA wild-type/high LOH, BRCA wild-type/low LOH, BRCA wild-type/LOH indeterminate)
- Response to frontline platinum doublet (no residual disease vs residual disease)
- · Timing of surgery (primary vs interval debulking)



Primary Endpoint Investigator-assessed PFS per RECIST v1.

Monk BJ et al. Int J Gynecol Cancer 2021;31(12):1589-94.

DUO-O Study Design in Newly Diagnosed Advanced Ovarian Cancer

*Olaparib administered for a maximum of 24 months after chemotherapy. Durvalumab and bevacizumab administered for a maximum of 15 months

Estimated completion date: July 2023

Harter P et al. ASCO 2019; Abstract TPS5598; www.clinicaltrials.gov (NCT03737643) Accessed July 2022.

FIRST Phase III Trial of Dostarlimab (TSR-042) for Newly Diagnosed Ovarian Cancer

www.clinicaltrials.gov/ct2/show/NCT03602859

Courtesy of Ursula Matulonis, MD

Current Treatment Paradigm for Recurrent Disease

Ongoing Research with PARP Inhibitors for Newly Diagnosed and Relapsed Disease

Eligibility and Dosing in Pivotal Studies of PARP Inhibitors for Recurrent, Platinum-Sensitive Ovarian Cancer

	NOVA ¹ (niraparib)	SOLO-2 ² (olaparib)	ARIEL3 ³ (rucaparib)
BRCA status	With or without gBRCA mutation	gBRCA mutation (Study 19: +/- gBRCA mutation)	With or without gBRCA mutation
HRD testing	Yes	No	Yes
Tumor assessment schedule	Every 8 wk to C14 → every 12 wk	Every 12 wk until wk 72 → every 24 wk	Every 8 wk to C14 → every 12 wk
Dosing/formulation	300 mg qd	300 mg BID	600 mg BID
No. of prior lines of chemo	2 or more	2 or more	2 or more

¹ Mirza MR et al. *N Engl J Med* 2016;375(22):2154-64; ² Pujade-Lauraine E et al. *Lancet* 2017;18(9):1274-84; ³ Coleman RL et al. *Lancet* 2017;390(10106):1949-61.

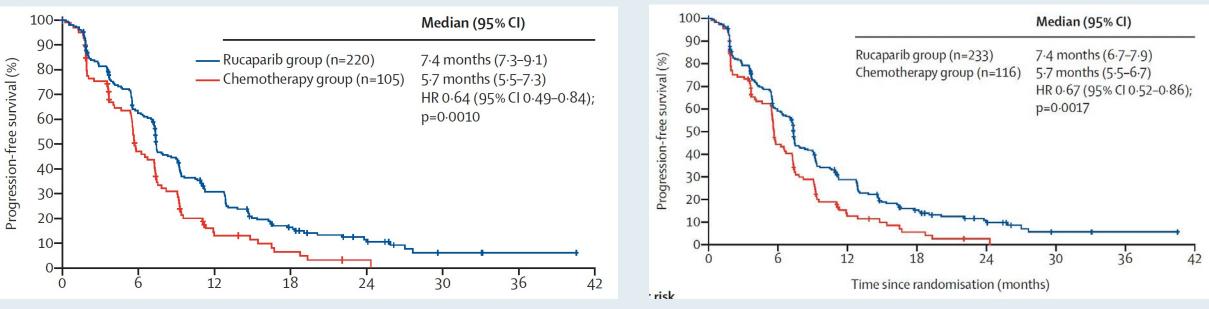
Progression-Free Survival with PARP Inhibitors for Recurrent, Platinum-Sensitive Ovarian Cancer

	PARPi	Control	HR				
NOVA ¹⁻² — niraparib							
gBRCA mutation	21.0 mo	5.5 mo	0.27				
No gBRCA mutation, HRD+	12.9 mo	3.8 mo	0.38				
No gBRCA mutation	9.3 mo	3.9 mo	0.45				
SOLO-2 ³⁻⁴ — olaparib							
gBRCA mutation	19.1 mo	5.5 mo	0.30				
Overall survival	51.7 mo	38.8 mo	0.74				
ARIEL3 ⁵⁻⁶ — rucaparib							
ITT (all comers)	10.8 mo	5.4 mo	0.36				
g or sBRCA mutation	16.6 mo	5.4 mo	0.23				
HRD+	13.6 mo	5.4 mo	0.32				
BRCA ^{wT} /high LOH	13.6 mo	5.4 mo	0.32				
BRCA ^{WT} /low LOH	6.7 mo	5.4 mo	0.58				

¹ Mirza MR et al. *N Engl J Med* 2016;375(22):2154-64; ²Del Campo JM et al. *J Clin Oncol* 2019;37(32):2968-73. ³Poveda A et al. *Lancet Oncol* 2021;22(5):620-31. ⁴Pujade-Lauraine E et al. *Lancet* 2017;18(9):1274-84; ⁵ Coleman RL et al. *Lancet* 2017;390(10106):1949-61; ⁶Ledermann JA et al. *Lancet Oncol* 2020;21(5):710-722.

Lancet Oncol 2022;23(4):465-78.

Rucaparib versus standard-of-care chemotherapy in patients 🐪 🖲 with relapsed ovarian cancer and a deleterious BRCA1 or BRCA2 mutation (ARIEL4): an international, open-label, randomised, phase 3 trial



Rebecca Kristeleit, Alla Lisyanskaya, Alexander Fedenko, Mikhail Dvorkin, Andreia Cristina de Melo, Yaroslav Shparyk, Irina Rakhmatullina, Igor Bondarenko, Nicoletta Colombo, Valentyn Svintsitskiy, Luciano Biela, Marina Nechaeva, Domenica Lorusso, Giovanni Scambia, David Cibula, Róbert Póka, Ana Oaknin, Tamar Safra, Beata Mackowiak-Matejczyk, Ling Ma, Daleen Thomas, Kevin K Lin, Karen McLachlan, Sandra Goble, Amit M Oza

ARIEL4: Progression-Free Survival in the Efficacy and ITT Populations

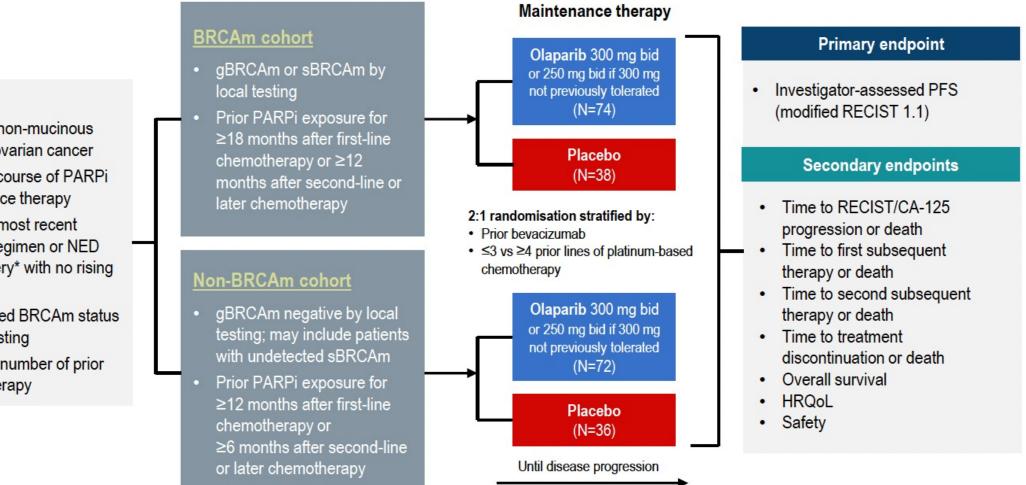
Efficacy population (BRCA1 or BRCA2 mutations with reversion mutations)

Intent to treat population

ARIEL4: Overall Response Rate and Duration of Response

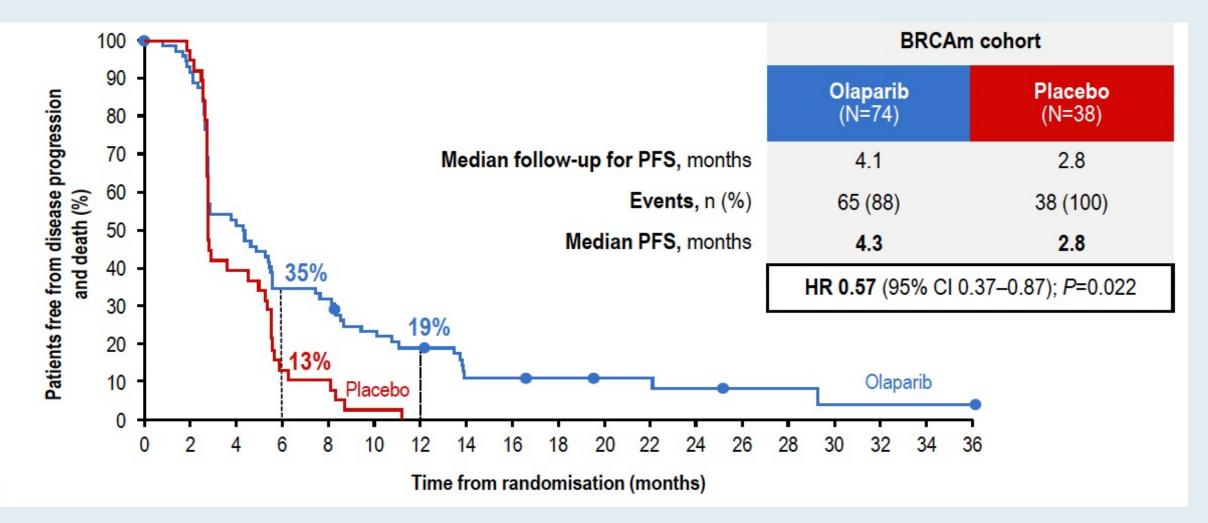
	Efficacy population			ITT population		
Endpoint	Rucaparib (n = 220)	Chemotherapy (n = 105)	<i>p</i> -value	Rucaparib (n = 233)	Chemotherapy (n = 116)	<i>p</i> -value
ORR	40%	32%	0.13	38%	30%	0.13
DoR, median	9.4 mo	7.2 mo		9.4 mo	7.2 mo	

ORR = overall response rate; DoR = duration of response

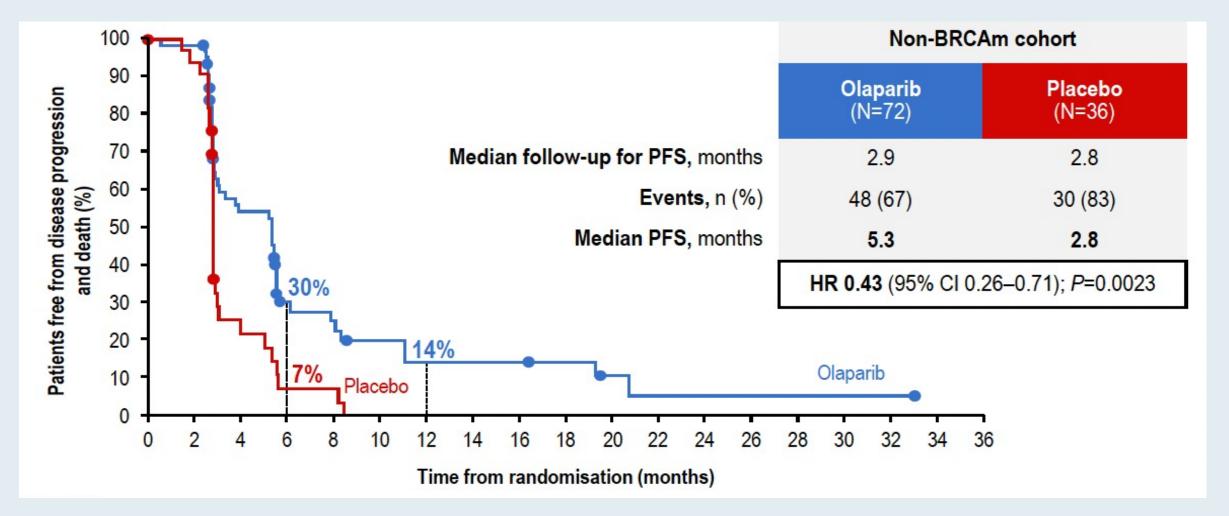

Kristeleit et al. *Lancet Oncol* 2022;23(4):465-78.

Abstract LBA33 Maintenance olaparib rechallenge in patients with ovarian carcinoma previously treated with a PARP inhibitor: Phase IIIb OReO/ENGOT Ov-38 trial

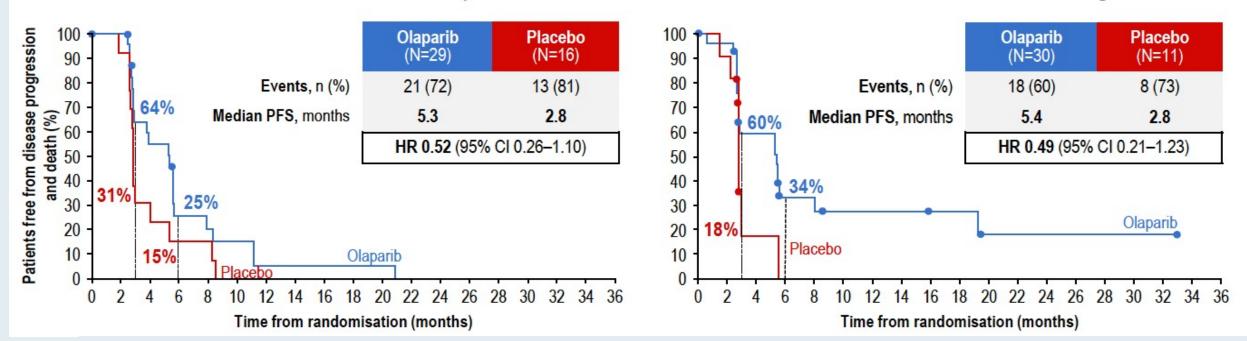
Eric Pujade-Lauraine,¹ Frédéric Selle,² Giovanni Scambia,³ Bernard Asselain,⁴ Frederik Marmé,⁵ Kristina Lindemann,⁶ Nicoletta Colombo,⁷ Radoslaw Madry,⁸ Rosalind Glasspool,⁹ Coraline Dubot,¹⁰ Ana Oaknin,¹¹ Claudio Zamagni,¹² Florian Heitz,¹³ Laurence Gladieff,¹⁴ Maria Jesús Rubio-Pérez,¹⁵ Paolo Scollo,¹⁶ Christopher Blakeley,¹⁷ Bob Shaw,¹⁷ Isabelle Ray-Coquard,¹⁸ Andrés Redondo¹⁹


OReO Phase IIIB Study Schema

Patients


- Relapsed non-mucinous epithelial ovarian cancer
- One prior course of PARPi maintenance therapy
- CR/PR to most recent platinum regimen or NED after surgery* with no rising CA-125
- Documented BRCAm status by local testing
- No limit to number of prior • lines of therapy

OReO: Progression-Free Survival in the BRCAm Cohort

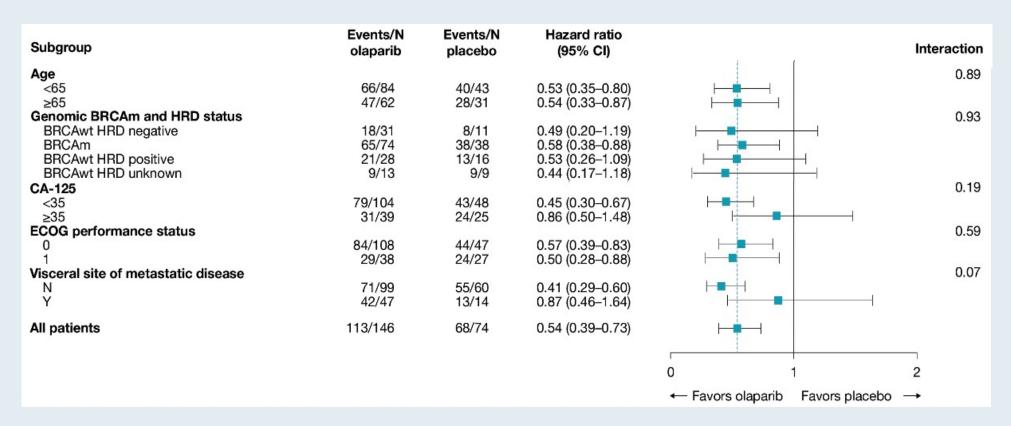


OReO: Progression-Free Survival in the Non-BRCAm Cohort

OReO: Progression-Free Survival in the Non-BRCAm Cohort by Homologous Recombination Deficiency (HRD) Status

Non-BRCAm cohort: HRD-negative

Pujade-Lauraine E et al. ESMO 2021;Abstract LBA33.


Non-BRCAm cohort: HRD-positive

OReO/ENGOT Ov-38 Trial: Impact of Maintenance Olaparib Rechallenge According to Ovarian Cancer Patient Prognosis — An Exploratory Joint Analysis of the BRCA and Non-BRCA Cohorts

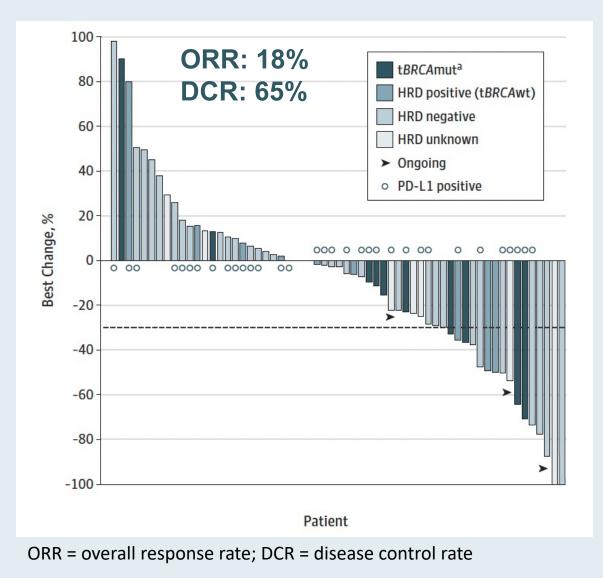
Selle F et al. ASCO 2022;Abstract 5558.

OReO: Post-hoc Analysis of Progression-Free Survival According to Patient Characteristics and Prognostic Factors

- Olaparib rechallenge was effective regardless of prognostic subgroup
- CA-125 levels and the presence of visceral disease at baseline were the best predictors of patient outcome

Research

JAMA Oncol 2019;5(8):1141-9.


JAMA Oncology | Original Investigation

Single-Arm Phases 1 and 2 Trial of Niraparib in Combination With Pembrolizumab in Patients With Recurrent Platinum-Resistant Ovarian Carcinoma

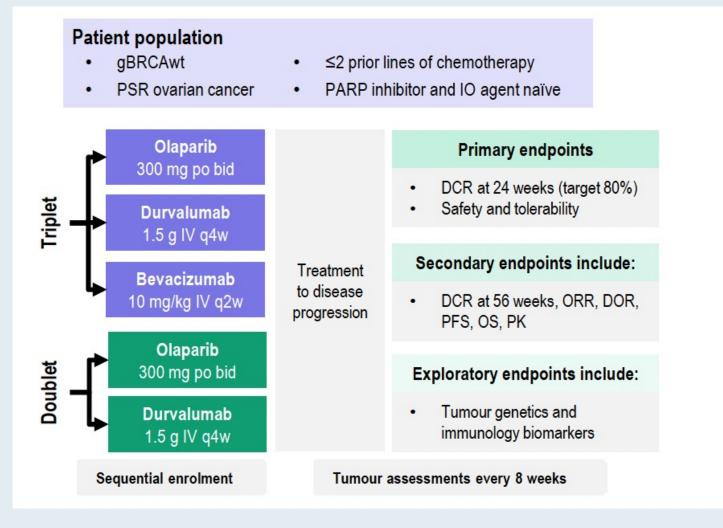
Panagiotis A. Konstantinopoulos, MD, PhD; Steven Waggoner, MD; Gregory A. Vidal, MD; Monica Mita, MD; John W. Moroney, MD; Robert Holloway, MD; Linda Van Le, MD; Jasgit C. Sachdev, MD; Eloise Chapman-Davis, MD; Gerardo Colon-Otero, MD; Richard T. Penson, MD; Ursula A. Matulonis, MD; Young Bae Kim, MD; Kathleen N. Moore, MD; Elizabeth M. Swisher, MD; Anniina Färkkilä, MD; Alan D'Andrea, MD; Erica Stringer-Reasor, MD; Jing Wang, PhD; Nathan Buerstatte, MPH; Sujata Arora, MS; Julie R. Graham, PhD; Dmitri Bobilev, MD; Bruce J. Dezube, MD; Pamela Munster, MD

TOPACIO/KEYNOTE-162: Antitumor Activity of Niraparib in Combination with Pembrolizumab

Konstantinopoulos PA et al. JAMA Oncol 2019;5(8):1141-9.

Abstract 814MO.

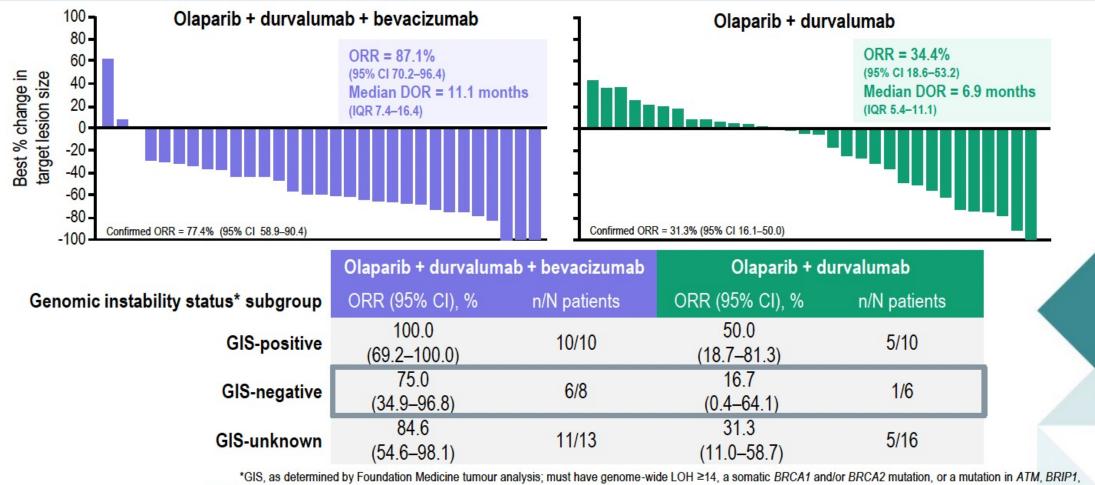
Phase II study of olaparib plus durvalumab and bevacizumab (MEDIOLA): initial results in patients with non-germline BRCA-mutated platinum sensitive relapsed ovarian cancer


<u>Yvette Drew</u>,¹ Richard Penson,² David M O'Malley,³ Jae-Weon Kim,⁴ Stefan Zimmermann,⁵ Patricia Roxburgh,⁶ Joohyuk Sohn,⁷ Salomon M Stemmer,⁸ Sara Bastian,⁹ Michelle Ferguson,¹⁰ Benoit You,¹¹ Susan Domchek,¹² Haiyan Gao,¹³ Helen K Angell,¹³ Kassondra Meyer,¹⁴ Laura Opincar,¹⁴ Lone Ottesen,¹³ Susana Banerjee¹⁵

¹Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, and Newcastle University, Newcastle upon Tyne, UK; ²Massachusetts General Hospital, Boston, MA, USA; ³The Ohio State University – James Comprehensive Cancer Center, Columbus, OH, USA; ⁴Seoul National University Hospital, Seoul, Republic of Korea; ⁵Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; ⁶Beatson West of Scotland Cancer Centre, and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK, ⁷Yonsei Cancer Centre, Yonsei University, Sinchon-dong, Republic of Korea; ⁸Rabin Medical Center-Beilinson Campus, Petach Tikva and Tel-Aviv University, Tel-Aviv, Israel; ⁹Kantonsspital Graubuenden, Chur, Switzerland; ¹⁰NHS Tayside, Dundee, UK; ¹¹Institut de Cancérologie des Hospices Civils de Lyon, CITOHL, GINECO, Université Claude Bernard Lyon 1, Lyon, France; ¹²Basser Center for BRCA University of Pennsylvania, Philadelphia, PA, USA; ¹³AstraZeneca, Cambridge, UK; ¹⁴AstraZeneca, Gaithersburg, MD, USA; ¹⁵The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK

ClinicalTrials.gov identifier: NCT02734004 This study was sponsored by AstraZeneca

MEDIOLA gBRCA Wild Type Study Schema



	Olap + durva + bev (N=31)	Olap + durva (N=32)		
Median age, years	64.0	68.5		
Age group (years), n (%)			
<50	3 (9.7)	4 (12.5)		
≥50-<65	14 (45.2)	8 (25.0)		
≥65	14 (45.2)	20 (62.5)		
Race, n (%)				
White	20 (64.5)	24 (75.0)		
Asian	10 (32.3)	3 (9.4)		
Other	1 (3.2)	5 (15.6)		
Platinum sensitivity, n (%)			
>6–12 months	18 (58.1)	14 (43.8)		
>12 months	13 (41.9)	18 (56.3)		
Number of prior lines of chemotherapy, n (%)				
1 prior line	20 (64.5)	23 (71.9)		
2 prior lines	11 (35.5)	9 (28.1)		
Enrolment completed	January 2019	February 2019		

Patients on study treatment at DCO, n (%) (13 February 2020) Olap; durva; bev 13 (41.9); 13 (41.9); 12 (38.7) 7 (21.9); 6 (18.8); NA

MEDIOLA gBRCA Wild Type: Antitumor Activity

^aGIS, as determined by Foundation Medicine tumour analysis; must have genome-wide LOH ≥14, a somatic *BRCA1* and/or *BRCA2* mutation, or a mutation in *ATM*, *BRIP1*, *PALB2*, *RAD51C*, *BARD1*, *CDK12*, *CHEK1*, *CHEK2*, *FANCL*, *PPP2R2A*, *RAD51B*, *RAD51D* or *RAD54L* to be considered positive. At the time of the DCO, the prespecified cut-off for genome-wide LOH of 14% was used¹; GIS, genomic instability status; IQR, interquartile range; LOH, loss of heterozygosity. ¹Swisher et al. Lancet Oncol 2017;18:75–87

Phase II study of olaparib + durvalumab (MEDIOLA): Updated results in the germline BRCA-mutated platinum-sensitive relapsed ovarian cancer cohort

Yvette Drew,¹ Bella Kaufman,² Susana Banerjee,³ Alain Lortholary,⁴ Sook Hee Hong,⁵ Yeon Hee Park,⁶ Stefan Zimmermann,⁷ Patricia Roxburgh,⁸ Michelle Ferguson,⁹ Ricardo H Alvarez,¹⁰ Susan Domchek,¹¹ Christopher Gresty,¹² Helen K Angell,¹² Vidalba Rocher Ros,¹³ Kassondra Meyer,¹³ Mark Lanasa,¹³ Pia Herbolsheimer,¹³ Maja de Jonge¹⁴

¹Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne, UK; ²Chaim Sheba Medical Center, Tel Hashomer, Israel; ³The Royal Marsden Hospital, London, UK; ⁴Centre Catherine de Sienne, Nantes, France; ⁵Seoul St Mary's Hospital, Catholic University of Korea, Seoul, South Korea; ⁶Samsung Medical Center, Seoul, Republic of Korea; ⁷Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland; ⁸University of Glasgow and Beatson West of Scotland Cancer Centre, Glasgow, UK; ⁹NHS Tayside, Dundee, UK; ¹⁰Cancer Treatment Centers of America-Atlanta and Augusta University, Augusta, GA, USA; ¹¹Basser Center for BRCA University of Pennsylvania, Philadelphia, PA, USA; ¹²AstraZeneca, Cambridge, UK**;** ¹³AstraZeneca, Gaithersburg, MD, USA and ¹⁴Erasmus MC Daniel den Hoed Cancer Center, Rotterdam, Netherlands

MEDIOLA mBRCA Cohort Study Schema

- MEDIOLA is a multi-cohort, Phase I/II study
- The design of the BRCAm ovarian cohort is presented below; other ovarian cancer cohorts are ongoing

N=34*

- Platinum-sensitive relapsed ovarian cancer[†]
- Germline mutation in
 BRCA1 or BRCA2
- ≥1 previous platinumbased therapy
- PARP inhibitor and immunotherapy naïve

Olaparib monotherapy 300 mg bid PO for 4 weeks

then

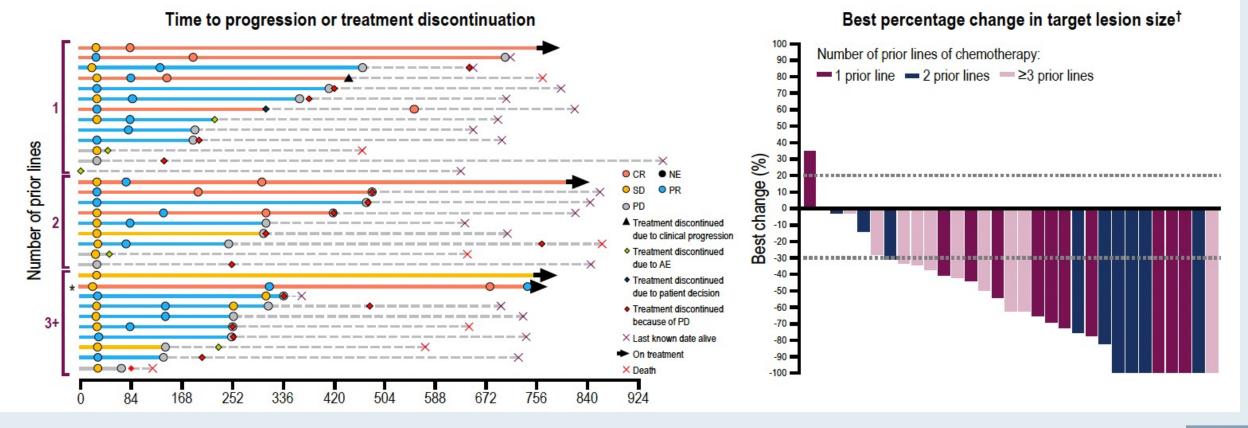
Olaparib 300 mg bid PO plus durvalumab IV 1.5 g every 4 weeks

Treatment until disease progression or intolerable toxicity

Primary endpoints

- Disease control rate at 12 weeks
- Safety and tolerability

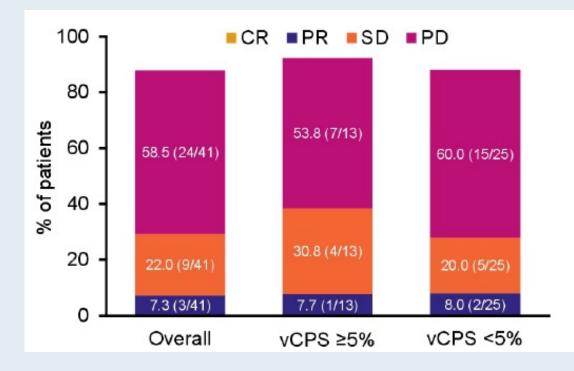
Secondary endpoints


- Disease control rate at 28 weeks
- Objective response rate
- Duration of response
- Progression-free survival
- Overall survival
- PD-L1 expression in tumour samples

MEDIOLA mBRCA Cohort: Efficacy

 DCR at 12 weeks: 81.3% (90% CI 66.3, 91.5) DCR at 28 weeks: 65.6% (90% CI 49.6, 79.4) Unconfirmed ORR: 71.9% (95% CI 53.3, 86.3) mPFS: 11.1 months (95% CI 8.2, 15.6)

Greater clinical activity was seen in earlier- versus later-line patients



MOONSTONE/GOG-3032: Interim Analysis of a Phase 2 Study of Niraparib + Dostarlimab in Patients (pts) with Platinum-Resistant Ovarian Cancer (PROC)

Randall LM et al. ASCO 2022;Abstract 5573.

MOONSTONE: Efficacy Summary of Niraparib with Dostarlimab for Platinum-Resistant Ovarian Cancer

	Overall	PD-L1 status	
Efficacy, n (%)	N=41	vCPS ≥5%	vCPS <5%
[95% Cl]*		n=13	n=25
ORR (CR + PR)	3 (7.3)	1 (7.7)	2 (8.0)
	[1.5–19.9]	[0.2–36.0]	[1.0–26.0]
DCR (CR + PR + SD)	12 (29.3)	5 (38.5)	7 (28.0)
	[16.1–45.5]	[13.9–68.4]	[12.1–49.4]
Median PFS, months (95% CI)	2.1	2.2 (1.6–not	2.1
	(2.0–2.2)	evaluable)	(1.8–2.2)

MOONSTONE: Select Treatment-Related Adverse Events in >10% of Patients

Adverse event n (%)	Related to either niraparib or dostarlimab	Related to niraparib	Related to dostarlimab
Nausea	23 (56.1)	21 (51.2)	11 (26.8)
Fatigue	14 (34.1)	13 (31.7)	13 (31.7)
Vomiting	13 (31.7)	13 (31.7)	7 (17.1)
Anemia	13 (31.7)	13 (31.7)	7 (17.1)
Platelet count decreased	11 (26.8)	11 (26.8)	0 (0)
Thrombocytopenia	8 (19.5)	8 (19.5)	0 (0)

An Open-Label Phase 2 Study of Dostarlimab, Bevacizumab, and Niraparib Combination in Patients with Platinum-Resistant Ovarian Cancer: Cohort A of the OPAL Trial

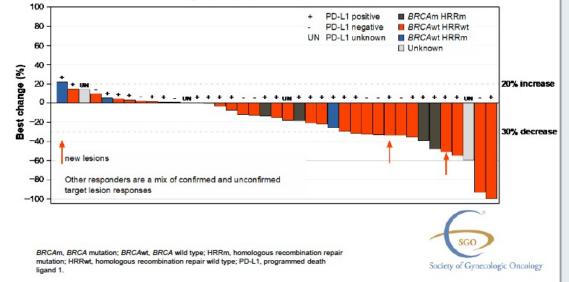
Joyce F. Liu,¹ Stéphanie Gaillard,² Andrea E. Wahner Hendrickson,³ John W. Moroney,⁴ Oladapo Yeku,⁵ Elisabeth Diver,⁶ Camille Gunderson,⁷ Rebecca Arend,⁸ Elena Ratner,⁹ Vivek Samnotra,¹⁰ Divya Gupta,¹⁰ Lena Evilevitch,¹⁰ Zebin Wang,¹⁰ Ping Wang,¹⁰ Joseph Tang,¹⁰ Emeline Bacqué,¹⁰ Xiaohong Liu,¹⁰ Gottfried E. Konecny¹¹

Poster #23

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA; ³Mayo Clinic Rochester, Rochester, NY, USA; ⁴University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA; ⁵Massachusetts General Cancer Center, Boston, MA, USA; ⁶Stanford Women's Cancer Center, Palo Alto, CA, USA; ⁷University of Oklahoma Stephenson Cancer Center, Oklahoma City, OK, USA; ⁸The University of Alabama at Birmingham, UAB Comprehensive Cancer Center, Birmingham, AL, USA; ⁹Yale University, New Haven, CT, USA; ¹⁰GlaxoSmithKline, Waltham, MA, USA; ¹¹Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA.

SGO VIRTUAL ANNUAL MEETING 2021 ON WOMEN'S CANCER®

Abstract 10415

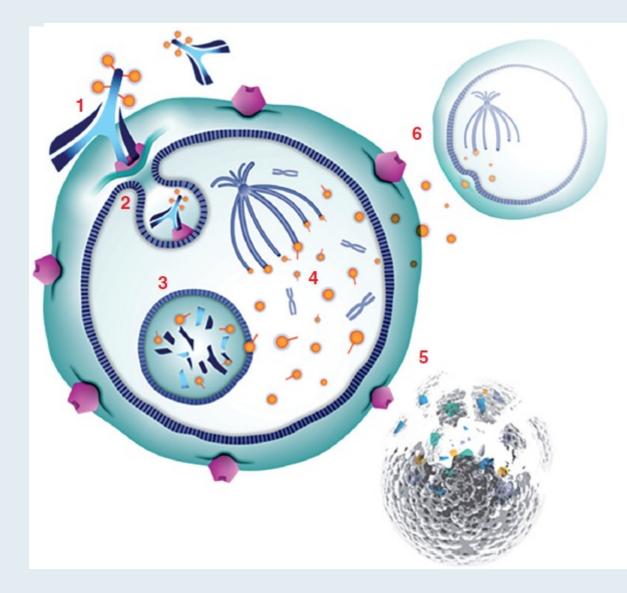

Antitumor Activity

- Antitumor activity was assessed in the response-evaluable population (n=39)
 - 2 patients in the safety population did not have a postbaseline scan and were excluded from the responseevaluable population
- Response data required that patients with a best response of complete response or partial response had a confirmation scan ≥4 weeks after the first scan in which a response was observed

SGO	VIRTUAL ANNUAL MEETING
2021	ON WOMEN'S CANCER®

Antitumor Activity per RECIST v1.1		
Variable, n (%)	Response-evaluable population (n=39)	
Complete response	0	
Partial response	7 (17.9)	
Stable disease	23 (59.0)	
Progressive disease	8 (20.5)	
Inconclusive	1 (2.6)	
ORR (90% CI), %	17.9 (8.7–31.1)	
DCR (90% CI), %	76.9 (63.2–87.4)	

Best Percent Change from Baseline Sum of Target Lesions by HRR and PD-L1 Status



Liu JF et al. SGO 2021; Abstract 10415.

Novel Investigational Agents and Strategies

Mirvetuximab Soravtansine: Mechanism of Action

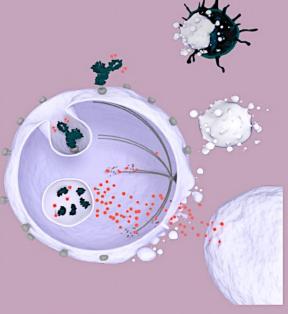
(1) Mirvetuximab soravtansine binds with high affinity to FRα expressed on the tumor cell surface

(2) The antibody-drug conjugate (ADC)/receptor complex becomes internalized via antigenmediated endocytosis

(3) Lysosomal processing releases active DM4 catabolites from the ADC molecule

(4) These maytansinoid derivatives inhibit tubulin polymerization and microtubule assembly

(5) The potent antimitotic effects result in cell-cycle arrest and apoptosis

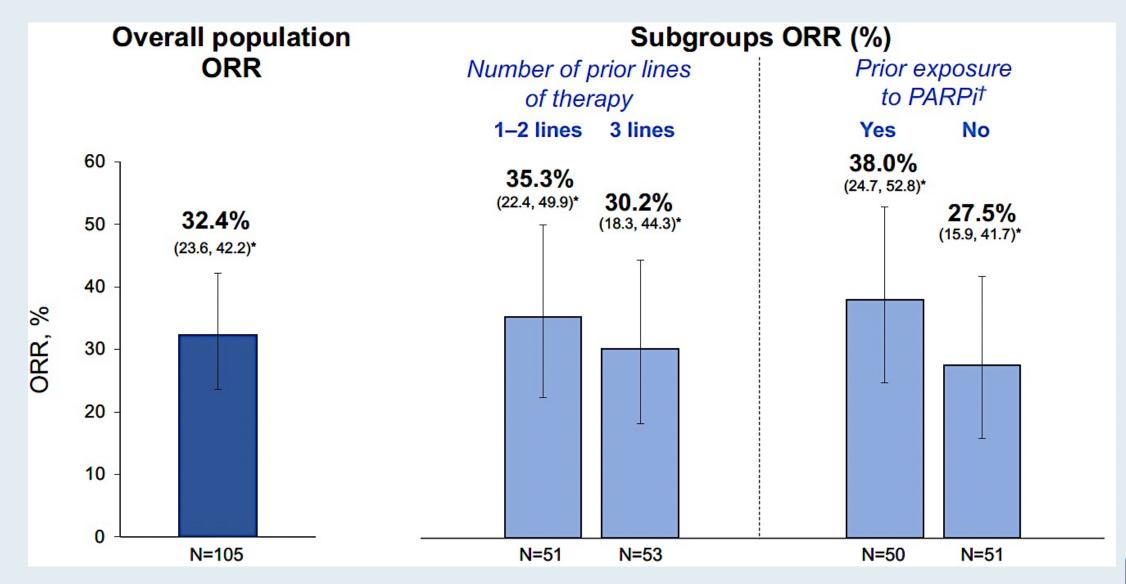

(6) Active metabolites can also diffuse into neighboring cells and induce further cell death — in other words, bystander killing

Efficacy and Safety of Mirvetuximab Soravtansine in Patients With Platinum-Resistant Ovarian Cancer With High Folate Receptor Alpha Expression: Results From the SORAYA Study

Ursula A. Matulonis,¹ Domenica Lorusso,² Ana Oaknin,³ Sandro Pignata,⁴ Hannelore Denys,⁵ Nicoletta Colombo,⁶ Toon Van Gorp,⁷ Jason A. Konner,⁸ Margarita Romeo Marin,⁹ Philipp Harter,¹⁰ Conleth G. Murphy,¹¹ Jiuzhou Wang,¹² Elizabeth Noble,¹² Brooke Esteves,¹² Michael Method,¹² Robert L. Coleman¹³

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²Fondazione Policlinico Universitario A. Gemelli, IRCCS and Catholic University of Sacred Heart, Rome, Italy; ³Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; ⁴Istituto Nazionale Tumori di Napoli Fondazione G Pascale IRCCS, Naples, Italy; ⁵Ghent University Hospital, Ghent, Belgium; ⁶European Institute of Oncology IRCCS, Milan, Italy and University of Milan-Bicocca, Milan, Italy; ⁷University Hospital Leuven, Leuven Cancer Institute, Leuven, Belgium; ⁸Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁹Institut Català d'Oncologia, Badalona, Spain; ¹⁰Ev. Kliniken Essen-Mitte, Essen, Germany; ¹¹Bon Secours Hospital and Cancer Trials, Cork, Ireland; ¹²ImmunoGen, Inc., Waltham, MA, USA; ¹³US Oncology Research, Texas Oncology, The Woodlands, TX, USA

S^{*}RAYA



SGO 2022; Abstract LBA4.

SORAYA: Investigator-Assessed Objective Response Rate by Prior Therapy

Matulonis UA et al. SGO 2022; Abstract LBA4.

SORAYA: Treatment-Related Adverse Events (≥10%)

TRAEs, n (%)	All Grades	Grade 3	Grade 4
Patients with any event	9 <mark>1 (</mark> 86)	29 (27)	1 (1)
Blurred vision	43 (41)	6 (6)	0 (0)
Keratopathy*†	38 (36)	8 (8)	1 (1)
Nausea	<mark>31 (</mark> 29)	0 (0)	0 (0)
Dry eye	24 (23)	2 (2)	0 (0)
Fatigue	24 (23)	1 (1)	0 (0)
Diarrhea	23 (22)	2 (2)	0 (0)
Asthenia	16 (15)	1 (1)	0 (0)
Photophobia	15 (14)	0 (0)	0 (0)
Peripheral neuropathy	13 (12)	0 (0)	0 (0)
Decreased appetite	13 (12)	1 (1)	0 (0)
Vomiting	12 (11)	0 (0)	0 (0)
Neutropenia	11 (10)	1 (1)	0 (0)

- Most adverse events (AEs) were lowgrade, reversible ocular and GI events
- Serious Grade ≥3 treatment-related AEs (TRAEs) were reported in 8% of patients
- TRAEs led to dose delay in 32% and dose reduction in 19%
- 7 patients (7%) discontinued treatment due to TRAEs
- 1 death was recorded as possibly related to study drug
 - Respiratory failure
 - Autopsy: No evidence of drug reaction; lung metastases

Matulonis UA et al. SGO 2022; Abstract LBA4.

Unique Events Associated with Mirvetuximab Soravtansine: Keratopathy and Blurred Vision

Events developed in 50/106 (47%) patients: mostly low grade

Keratopathy

n=7

Both n=31

n=12 Blurred vision

Proactive supportive care

- Lubricating artificial tears
- Corticosteroid eye drops

Predictable

- Median time to onset: cycle 2 (~1.5 months)

Manageable with dose modifications, if needed

- 22% of patients (23/106) had dose delay and/or reduction

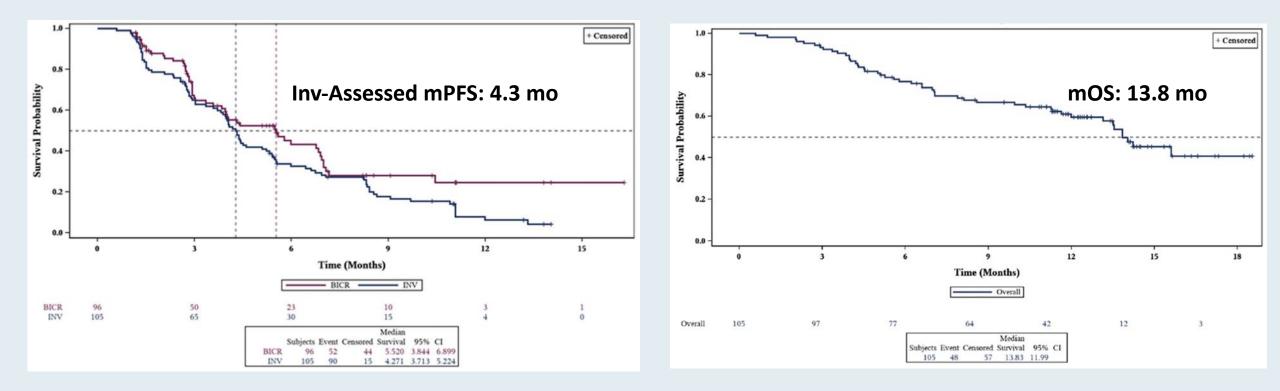
Reversible

At data cutoff: >80% of Grade 2-3 events had resolved to
 Grade 0-1

9 patients still receiving mirvetuximab soravtansine or being followed up for resolution

<1% discontinuation due to ocular events

– 1 of 106 patients discontinued due to Grade 4 keratopathy,
 which resolved within 15 days



Mirvetuximab Soravtansine (MIRV) in Patients with Platinum-Resistant Ovarian Cancer with High Folate Receptor Alpha (FRα) Expression: Characterization of Antitumor Activity in the SORAYA Study

Matulonis UA et al. ASCO 2022;Abstract 5512.

SORAYA: Overall Response Rate in the BRCA Mutation-Positive Subgroup

Matulonis UA et al. ASCO 2022; Abstract 5512.

SORAYA: Overall Response Rate in the BRCA Mutation-Positive Subgroups

	<i>BRCAmt</i> with prior PARPi (n=16)	<i>BRCAmt</i> without prior PARPi (n=4)
Responders, n	6	3
ORR	38%	75%

Matulonis UA et al. ASCO 2022; Abstract 5512.

MIRASOL Phase III Study Schema

MIRAS[®]L

Enrollment and Key Eligibility

- Platinum-resistant disease (PFI ≤ 6 mo)
 - 1° platinum refractory disease excluded (primary PFI < 3 mo)
- Prior bevacizumab and PARPi allowed
- 1-3 prior lines of therapy
- Patients with BRCA mutations allowed
- FRα-high by PS2+ scoring (≥75% PS2+)

Statistical Assumptions

- 430 patients/ 330 events for PFS by INV
- α=0.05 (two-sided)
- Power=90%; HR=0.7; control arm mPFS 3.5 mo

Mirvetuximab Soravtansine 6 mg/kg AIBW (calculated using adjusted ideal body weight) intravenously once every 3 weeks

> 1:1 Randomization STRATIFICATION FACTORS Investigator's Choice (IC) Chemotherapy (Paclitaxel, PLD, Topotecan) Prior Therapies (1 vs 2 vs 3)

Investigator's Choice (IC) Chemotherapy Paclitaxel, PLD,⁺ or Topotecan Paclitaxel: 80 mg/m2 weekly; PLD: 40 mg/m² every 4 weeks; Topotecan: 4 mg/m² on days 1, 8, and 15 every four weeks; or 1.25 mg/m² on days 1-5 every 3 weeks

Moore KN et al. SGO 2022; Abstract 297.

PICCOLO Phase II Trial Schema

PICC¹

Enrollment and Key Eligibility

- Platinum-sensitive disease (PFI >6 mo)
- At least 2 prior lines of platinum-based therapy
 - Patients with documented platinum allergy require only 1 prior line of platinum
- FRα-high by IHC scoring (≥75% PS2+)
- Appropriate for single agent therapy as next line of therapy as determined by investigator

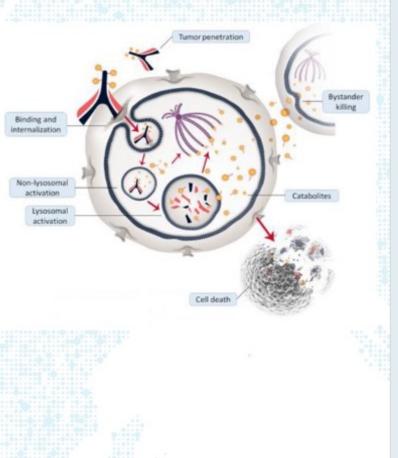
Statistical Assumptions

- N=75
- Null hypothesis: ORR is ≤ 28% tested using an optimal Simon's two-stage design w/o pause in enrollment

Mirvetuximab Soravtansine

6 mg/kg AIBW (calculated using adjusted ideal body weight) intravenously once every 3 weeks

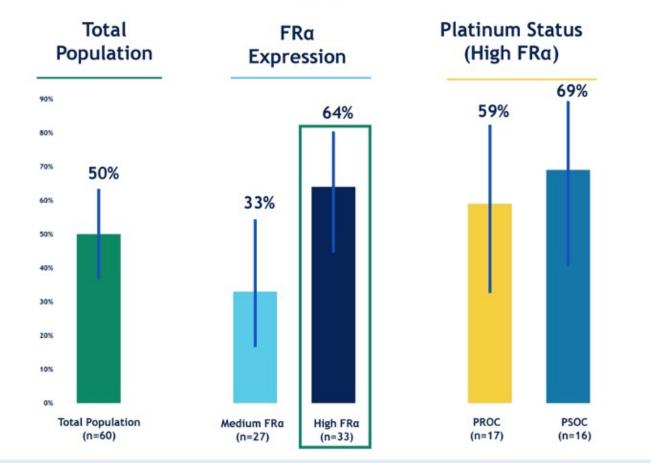
Alvarez Secord A et al. SGO 2022; Abstract 300.


2021 ASCO ANNUAL MEETING

Abstract 5504

Mirvetuximab Soravtansine, a folate receptor alpha-targeting antibody drug conjugate, in combination with bevacizumab in patients with platinumagnostic ovarian cancer: final analysis

David M. O'Malley¹, Ana Oaknin², Ursula A. Matulonis³, Gina M. Mantia-Smaldone⁴, Peter Lim⁵, Cesar Castro⁶, Diane Provencher⁷, Sanaz Memarzadeh⁸, Patrick Zweidler-McKay⁹, Jiuzhou Wang⁹, Brooke Esteves⁹, Kathleen N. Moore¹⁰ Lucy Gilbert¹¹

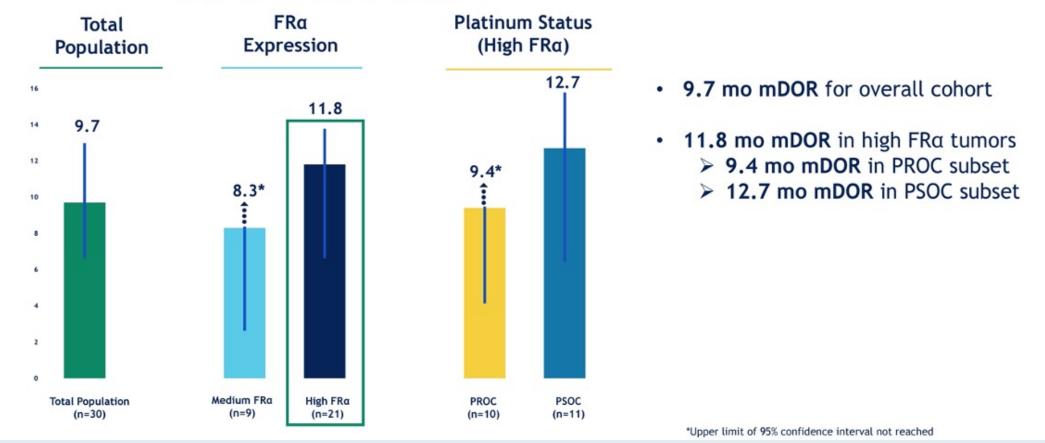

¹Ohio State University, Columbus, OH; ²Vall D'Hebron University Hospital, Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ³Dana Farber Cancer Institute, Boston, MA; ⁴Fox Chase Cancer Center, Philadelphia, PA; ⁵The Center of Hope Renown Regional Medical Center, Reno, NV; ⁶Massachusetts General Hospital, Boston, MA; ⁷Institute du Cancer de Montreal, Montreal, Canada; ⁸Ronald Reagan UCLA Medical Center UCLA Medical Center, Santa Monica^{; 9}ImmunoGen, Inc., Waltham, MA; ¹⁰University of Oklahoma Health Sciences Center, Oklahoma City, OK/Sarah Cannon Research Institute, Nashville, TN; ¹¹McGill University Health Center-RI, Montreal, Canada

Confirmed ORR by FRa Expression and Platinum Status

ORR (%)

• 50% ORR (30/60) for overall cohort

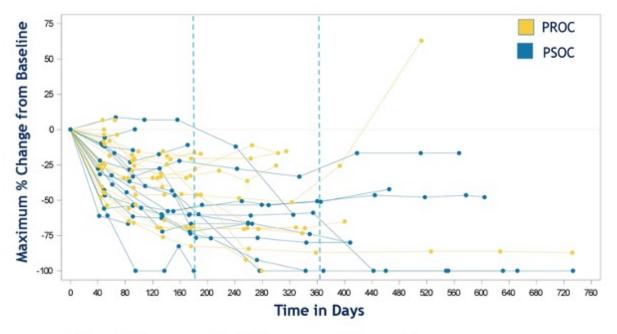
64% ORR (21/33) in high FRα tumors
 59% ORR (10/17) in PROC subset
 69% ORR (11/16) in PSOC subset


ORR = overall response rate; PROC = platinum-resistant ovarian cancer; PSOC = platinum-sensitive ovarian cancer

O'Malley DM et al. ASCO 2021; Abstract 5504.

Median Duration of Response (mDOR) by FRa Expression and Platinum Status


Median DOR (months)


High FRa Tumors Showed a Deep Response and Durable Benefit

Maximum % Change from Baseline

 97% (32/33) of patients demonstrated tumor burden reduction

Percent Change and Duration from Baseline

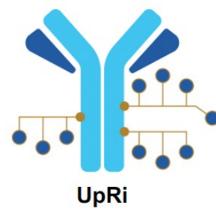
- Rapid tumor shrinkage, with early responses
- Durable benefit in both PSOC and PROC

Updated Results From the Phase 1b Expansion Study of Upifitamab Rilsodotin (UpRi; XMT-1536), a NaPi2bdirected Dolaflexin Antibody Drug Conjugate (ADC) in Ovarian Cancer

<u>Richardson, Debra L</u>¹; Hamilton, Erika P²; Barve, Minal³; Anderson, Charles K⁴; Taylor, Sara K⁵; Lakhani, Nehal⁶; Buscema, Joseph⁷; Tolcher, Anthony W⁸; Zarwan, Corrine⁹; Werner, Theresa L¹⁰; Hays, John L¹¹; Richards, Paul¹²; Arend, Rebecca¹³; Edenfield, Jeffery¹⁴; Putiri, Emily¹⁵; Bernardo, Patricia¹⁵; Burger, Robert A¹⁵; Matulonis, Ursula A¹⁶

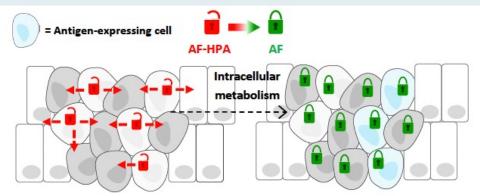
¹Stephenson Cancer Center, University of Oklahoma Health Sciences Center and the Sarah Cannon Research Institute, Oklahoma City, OK; ²Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ³Mary Crowley Cancer Research, Dallas, TX; ⁴Willamette Valley Cancer Institute and Research Center, Eugene, OR; ⁵BC Cancer - Kelowna BC, Canada; ⁶START Midwest, Grand Rapids, MI; ⁷Arizona Oncology, Tucson, AZ; ⁸NEXT Oncology, San Antonio, TX; ⁹Lahey Clinic, Burlington, MA; ¹⁰Huntsman Cancer Institute, University of Utah,

Salt Lake City, UT; ¹¹Arthur James Cancer Hospital, Ohio State University, Columbus, OH; ¹²US Oncology, Oncology and Hematology Assoc. of Southwest VA, Salem, VA; ¹³University of Alabama at Birmingham, Birmingham, AL; ¹⁴Prisma Health Cancer Institute, Greenville, SC; ¹⁵Mersana Therapeutics, Inc, Cambridge, MA; ¹⁶Dana-Farber Cancer Institute, Boston, MA



SGO 2022; Abstract 76.

Upifitamab Rilsodotin (UpRi): First-in-Class ADC Targeting NaPi2b

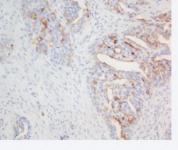


Antibody: Humanized monoclonal anti-NaPi2b¹

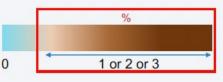
Linker: Polymer scaffold; cleavable ester linker²

Payload: AF-HPA (DolaLock-controlled bystander effect)¹

Drug-to-Antibody Ratio: ~10


Upon ADC internalization into tumor cells and efficient release of payload, AF-HPA payload is metabolized to AF that remains highly potent but loses the ability to cross the cell membrane, locking it in the tumor, controlling the bystander effect, and consequently limiting impact on adjacent healthy cells^{2,3}

NaPi2b Is a Sodium-Dependent Phosphate Transporter Broadly Expressed in Ovarian Cancer With Limited Expression



- NaPi2b expressed by tumor cells in two-thirds of patients with high-grade serous ovarian cancer²
- NaPi2b is a lineage antigen (not an oncogene)¹

in Healthy Tissues⁴

NaPi2b IHC assay in development – an optimal diagnostic assay would be robust, predictive, reproducible, easily able to distinguish a wide range of expression using TPS scoring method²

UpRi Phase Ib Study Schema

Patient Population: HGSOC^a progressing after standard treatments; measurable disease per RECIST v1.1; ECOG PS 0 or 1

Ovarian Cancer Cohort

- 1–3 prior lines in platinum-resistant
- 4 prior lines regardless of platinum status
- High-grade serous histology
- Archived tumor and fresh biopsy (if medically feasible) for NaPi2b
- Exclusion: Primary platinum-refractory disease

UpRi IV Q4W until disease progression or unacceptable toxicity

36 mg/m² cohort initiated in August 2019

43 mg/m² to a max of ~80 mg cohort initiated in December 2019

Primary Objectives

- Evaluate safety and tolerability of MTD or RP2D
- Assess preliminary efficacy (ORR, DCR)

Secondary Objectives

- Association of tumor NaPi2b expression and objective tumor response using an IHC assay with a broad dynamic range to distinguish tumors with high and low NaPi2b expression
- Further assessment of preliminary anti-neoplastic activity (DoR)

Assessment: Tumor imaging (MRI or CT) at baseline and every 2nd cycle; response assessed per RECIST v1.1

Expansion Cohort Experience Across a Range of Doses Allowed for Further Optimization of UpRi Profile

Updated Analysis of Phase 1b PROC Expansion Cohort to Evaluate Safety and ORR Based on UpRi Dose Levels^a

Dose Group 36 (33–38 mg/m²) (n=29)

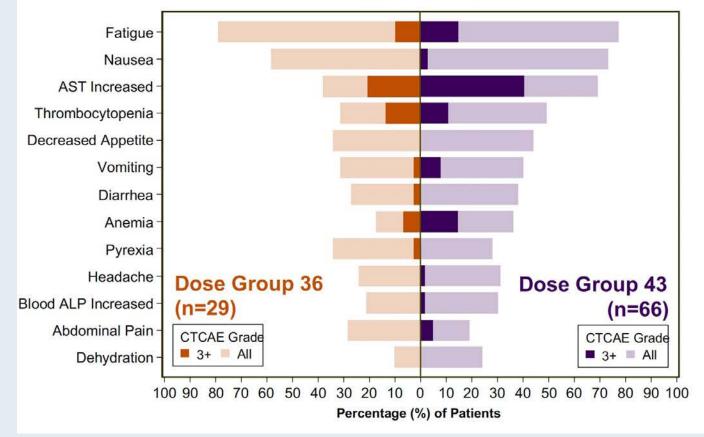
12 patients at **36 mg/m²** starting dose (all BSA levels)

+

17 patients at ~80 mg starting dose with BSA ≥1.8 who received an <u>actual</u> dose of **33 to 38 mg/m**² Dose Group 43 (>38–43 mg/m²) (n=66)

39 patients at **43 mg/m²** starting dose with BSA <1.8

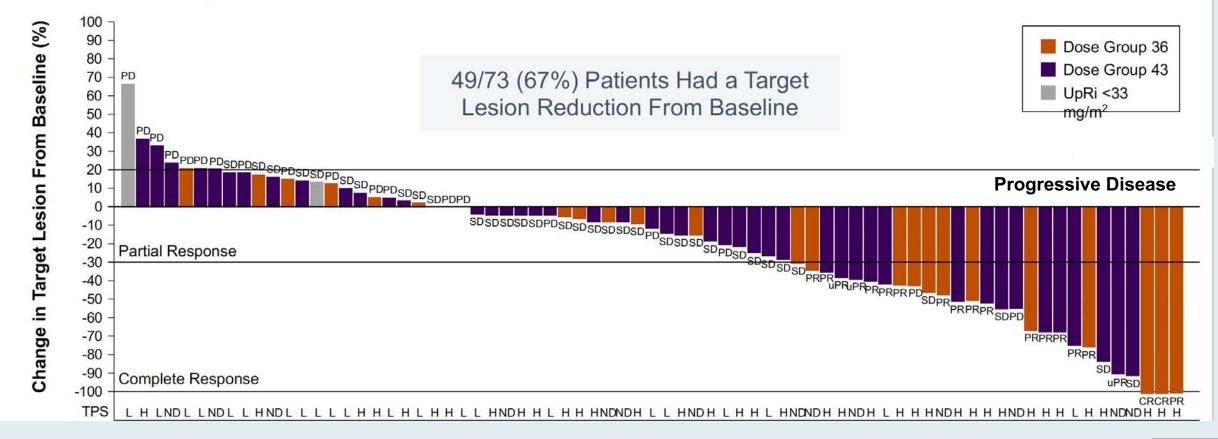
27 patients at ~80 mg starting dose with BSA ≥1.8 who received an <u>actual</u> dose of **>38 mg/m**²


+

Richardson DL et al. SGO 2022; Abstract 76.

TRAEs by UpRi Dose Group

Dose Group 36 Had a More Favorable Safety Profile Compared to Dose Group 43

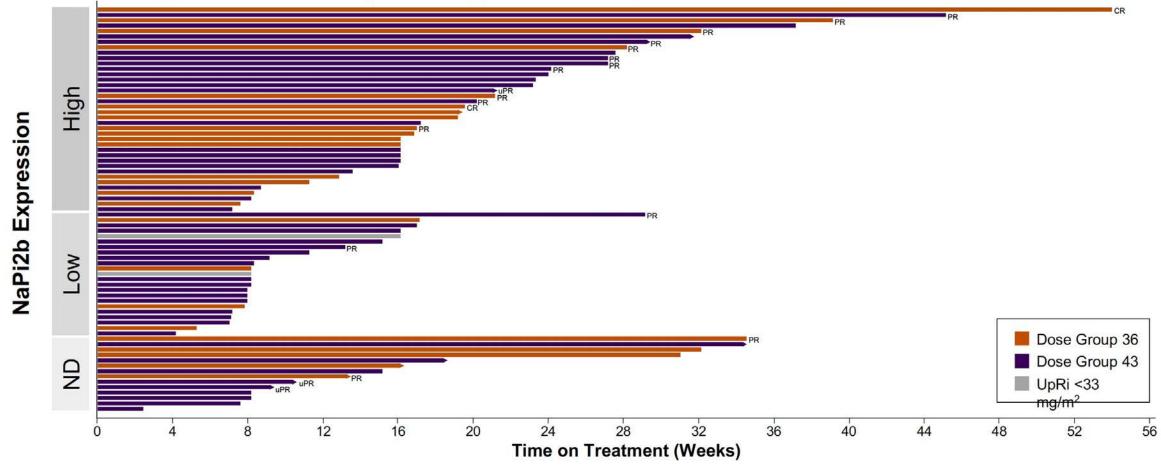

TRAEs ≥20%

- No severe ocular toxicity, neutropenia, or peripheral neuropathy in either dose group
- 4 (14%) patients had treatment-related SAEs in Dose Group 36 vs 18 (27%) in Dose Group 43
- Lower frequencies and lower grade pneumonitis occurred in Dose Group 36 (with no Grade 3+) vs Dose Group 43^a

Best Response by UpRi Dose Group

Similar Tumor Reduction in Both Dose Groups: Two-thirds of Patients Had Reductions in Target Tumor Lesions by RECIST 1.1

Confirmed ORR by UpRiDose Group and NaPi2b Level and Duration of Response (DoR)


		All Dose Levels	Dose Group 36	Dose Group 43
	Ν	38	16	22
	ORR, n (%)	13 (34)	7 (44)	6 (27)
NaPi2b-High (TPS ≥75)	CR, n (%)	2 (5)	2 (13)	0
(110 = 10)	PR, n (%)	11 (29)	5 (31)	6 (27)
	DCR, n (%)	33 (87)	12 (75)	21 (95)
	Ν	75	25	48
	ORR, n (%)	17 (23)	9 (36)	8 (17)
All NaPi2b Levels	CR, n (%)	2 (3)	2 (8)	0
	PR, n (%)	15 (20)	7 (28)	8 (17)
	DCR, n (%)	54 (72)	18 (72)	35 (73)

- Median DoR in patients (all dose levels) with NaPi2b-high ovarian cancer (n=13): 5 months
- No obvious difference in median DoR observed between Dose Groups 36 and 43

Time on UpRi Study in Evaluable Patients

Trend to Longer Time on Study With High NaPi2b Expression

Ongoing UPLIFT (ENGOT-OV67/GOG-3048) Study Schema

Patient Population: HGSOC^a progressing after standard treatments; measurable disease per RECIST v1.1; ECOG PS 0 or 1; enrolling regardless of NaPi2b expression

Key Inclusion Criteria

- Platinum-resistant ovarian cancer (PROC)
- 1–4 prior lines of therapy
- Grade ≤2 peripheral neuropathy
- Archival or fresh tissue required for biomarker evaluation

Key Exclusion Criteria

- 1–2 prior lines bevacizumab-naive
- Primary platinum-refractory disease

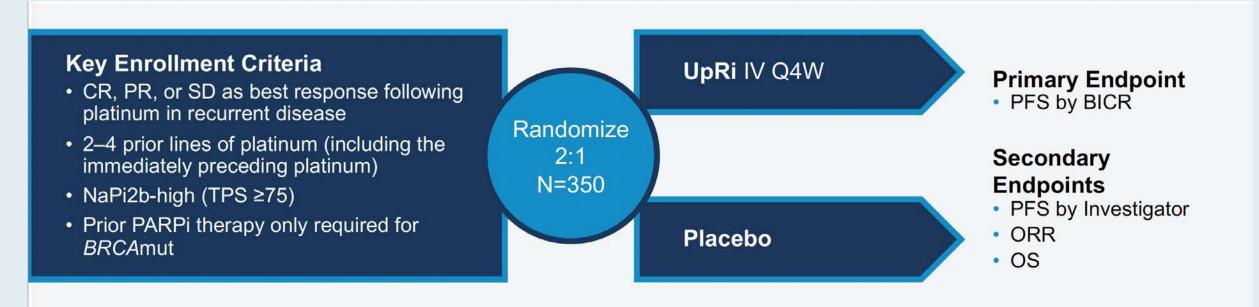
UpRi 36 mg/m² up to max 80 mg; IV Q4W

Primary Endpoint

Confirmed ORR in NaPi2b-high (N = ~100)

Secondary Endpoint

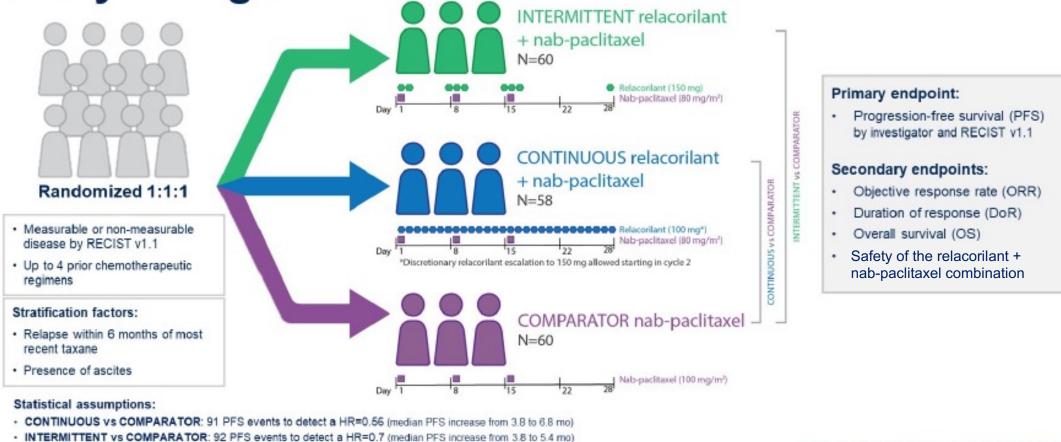
 Confirmed ORR in overall population (N = up to ~180 including 100 NaPi2b-high)


Other Secondary Endpoints

- DoR
- Safety

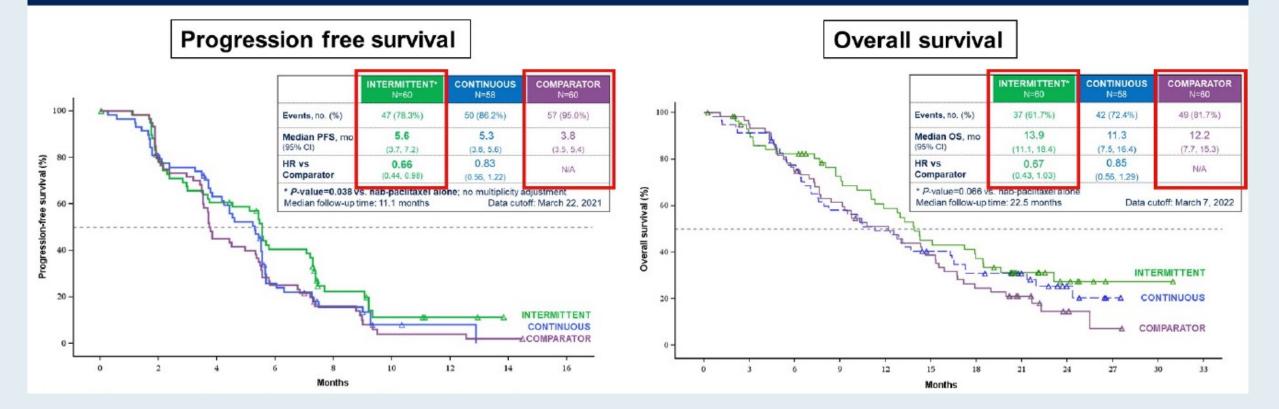
Prospectively-defined retrospective analysis to validate NaPi2b biomarker cutoff

Ongoing UP-NEXT Phase III (ENGOT-OV71-NSGO-CTU/GOG-3049) Study Schema



Informed by FDA Feedback and CHMP Scientific Advice; Plans to Initiate in 2022

Richardson DL et al. SGO 2022; Abstract 76.


Relacorilant + Nab-paclitaxel Phase 2 Study Design

PFS analysis reported at ESMO 2021

Investigator assessed PFS and OS of relacorilant + nabpaclitaxel

Colombo N et al. ASCO 2022; Abstract LBA5503; Liu N. ASCO 2022; Highlights of the Day: Gynecologic Cancers.

Meet The Professor Optimizing the Management of Hepatobiliary Cancers

> Thursday, July 7, 2022 5:00 PM – 6:00 PM ET

Faculty Ghassan Abou-Alfa, MD, MBA

> Moderator Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

