Meet The Professor Optimizing the Management of Hepatobiliary Cancers

Robin K (Katie) Kelley, MD Professor of Clinical Medicine Division of Hematology/Oncology Helen Diller Family Comprehensive Cancer Center University of California, San Francisco (UCSF) San Francisco, California

Commercial Support

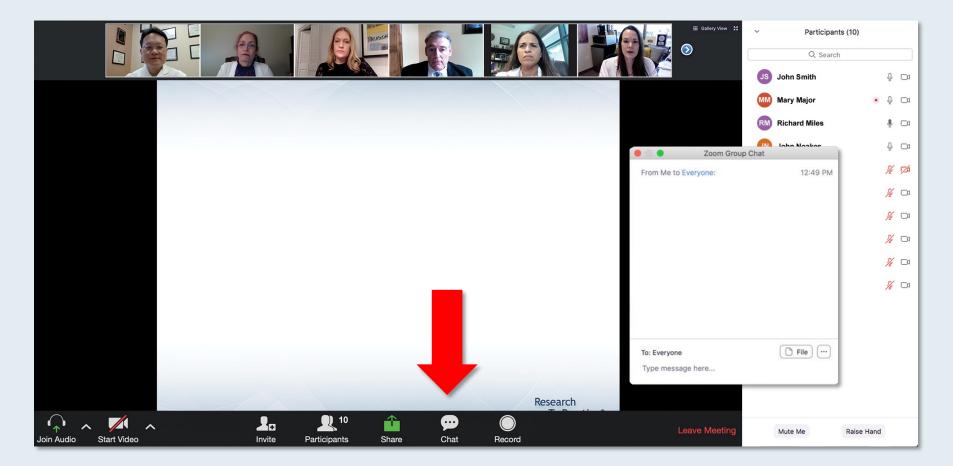
This activity is supported by an educational grant from AstraZeneca Pharmaceuticals LP.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, the parent company of GHI, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

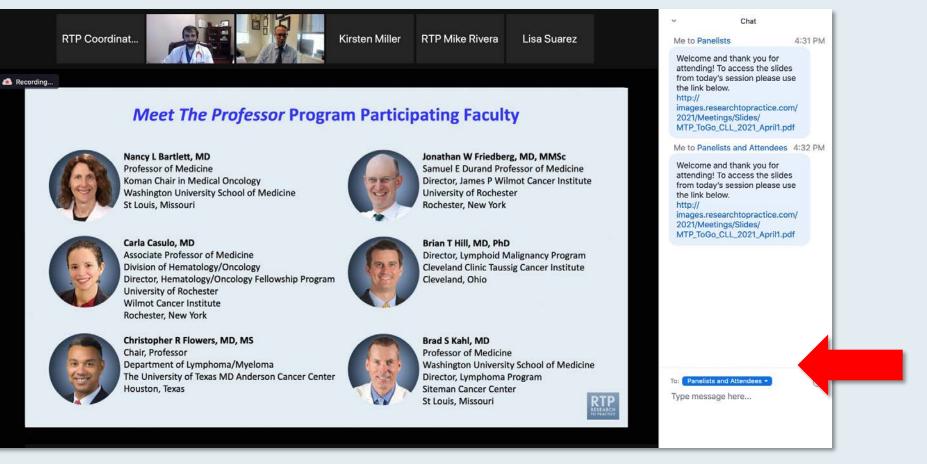
Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



Dr Kelley — Disclosures

Advisory Committee	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Exelixis Inc, Ipsen Biopharmaceuticals Inc, Kinnate Biopharma, Merck
Advisory Board	Kinnate Biopharma
Advisory Board or Steering Committee (to Institution)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Exelixis Inc, Ipsen Biopharmaceuticals Inc, Merck
Research Funding (to Institution)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb Company, EMD Serono Inc, Exelixis Inc, Genentech, a member of the Roche Group, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Novartis, Partner Therapeutics, QED Therapeutics, Relay Therapeutics, Surface Oncology, Taiho Oncology Inc
Uncompensated Service on IDMC	Genentech, a member of the Roche Group, Merck

We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

ONCOLOGY TODAY WITH DR NEIL LOVE

Management of Cholangiocarcinoma and Other Biliary Tract Cancers

PROF JUAN VALLE

THE CHRISTIE NHS FOUNDATION TRUST

Prof Juan Valle – New Directions in the Oncology Today with Dr Neil Love —

WORLD PREMIERE OF AN ENDURING CME ACTIVITY

Oncology Today: Management of Unresectable Stage III Non-Small Cell Lung Cancer

Monday, August 1, 2022 5:00 PM - 6:00 PM ET

Faculty Jeffrey Bradley, MD David R Spigel, MD

WORLD PREMIERE OF AN ENDURING CME ACTIVITY

Oncology Today: The Use of T-DXd in HER2-Low Breast Cancer

Tuesday, August 2, 2022 5:00 PM – 6:00 PM ET

> Faculty Shanu Modi, MD

Meet The Professor Optimizing the Management of Ovarian Cancer

Wednesday, August 3, 2022 5:00 PM – 6:00 PM ET

Faculty Prof Jonathan A Ledermann

Recent Advances in Medical Oncology: A daylong CME hybrid (live/online) event Saturday, August 6, 2022 9:00 AM - 4:30 PM PT (12:00 PM - 7:30 PM ET) Bellagio Las Vegas | Las Vegas, Nevada Faculty Neeraj Agarwal, MD Craig Moskowitz, MD Harold J Burstein, MD, PhD Joyce O'Shaughnessy, MD Krina Patel, MD, MSc Ibiayi Dagogo-Jack, MD **Rafael Fonseca, MD** Philip A Philip, MD, PhD, FRCP Suresh S Ramalingam, MD **Brad S Kahl, MD** Rutika Mehta, MD, MPH Sandy Srinivas, MD **Moderator** Neil Love, MD In Partnership with the American Oncology Network

Meet The Professor Optimizing the Management of Small Cell Lung Cancer

> Thursday, August 11, 2022 5:00 PM – 6:00 PM ET

> > Faculty Jacob Sands, MD

Meet The Professor Optimizing the Management of Gastroesophageal Cancers

> Wednesday, August 17, 2022 5:00 PM – 6:00 PM ET

> > Faculty John Strickler, MD

Thank you for joining us!

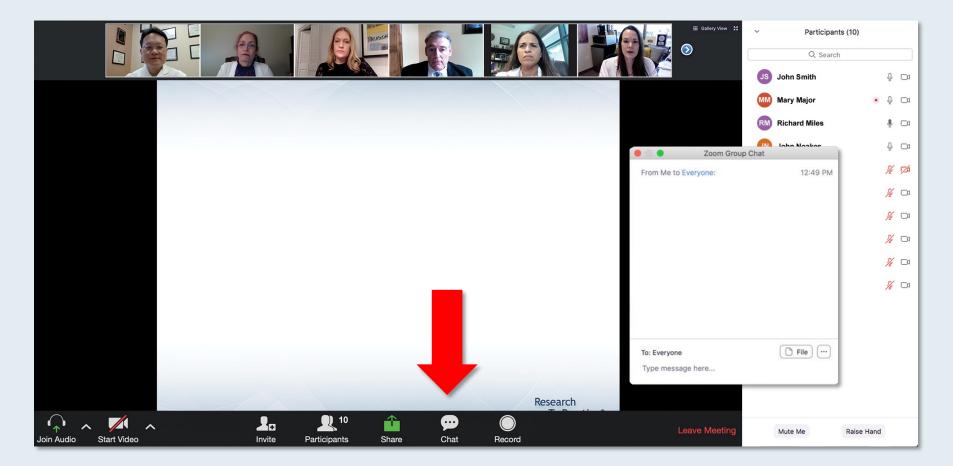
CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Optimizing the Management of Hepatobiliary Cancers

Robin K (Katie) Kelley, MD Professor of Clinical Medicine Division of Hematology/Oncology Helen Diller Family Comprehensive Cancer Center University of California, San Francisco (UCSF) San Francisco, California

Meet The Professor Program Participating Faculty

Ghassan Abou-Alfa, MD, MBA Attending Memorial Sloan Kettering Cancer Center Professor Weill Cornell College at Cornell University New York, New York


MODERATOR Neil Love, MD Research To Practice

Robin K Kelley, MD Professor of Clinical Medicine, Division of Hematology/Oncology Helen Diller Family Comprehensive Cancer Center University of California, San Francisco (UCSF) San Francisco, California

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

ONCOLOGY TODAY WITH DR NEIL LOVE

Management of Cholangiocarcinoma and Other Biliary Tract Cancers

PROF JUAN VALLE

THE CHRISTIE NHS FOUNDATION TRUST

Prof Juan Valle – New Directions in the Oncology Today with Dr Neil Love —

WORLD PREMIERE OF AN ENDURING CME ACTIVITY

Oncology Today: Management of Unresectable Stage III Non-Small Cell Lung Cancer

Monday, August 1, 2022 5:00 PM - 6:00 PM ET

Faculty Jeffrey Bradley, MD David R Spigel, MD

WORLD PREMIERE OF AN ENDURING CME ACTIVITY

Oncology Today: The Use of T-DXd in HER2-Low Breast Cancer

Tuesday, August 2, 2022 5:00 PM – 6:00 PM ET

> Faculty Shanu Modi, MD

Meet The Professor Optimizing the Management of Ovarian Cancer

Wednesday, August 3, 2022 5:00 PM – 6:00 PM ET

Faculty Prof Jonathan A Ledermann

Recent Advances in Medical Oncology: A daylong CME hybrid (live/online) event Saturday, August 6, 2022 9:00 AM - 4:30 PM PT (12:00 PM - 7:30 PM ET) Bellagio Las Vegas | Las Vegas, Nevada Faculty Neeraj Agarwal, MD Craig Moskowitz, MD Harold J Burstein, MD, PhD Joyce O'Shaughnessy, MD Krina Patel, MD, MSc Ibiayi Dagogo-Jack, MD **Rafael Fonseca, MD** Philip A Philip, MD, PhD, FRCP Suresh S Ramalingam, MD **Brad S Kahl, MD** Rutika Mehta, MD, MPH Sandy Srinivas, MD **Moderator** Neil Love, MD In Partnership with the American Oncology Network

Recent Advances and Real-World Implications in Medical Oncology A Daylong Multitumor Educational Symposium in Partnership with the American Oncology Network Saturday, August 6, 2022

Breast Cancer 9:05 AM – 10:05 AM PT Faculty Harold J Burstein, MD, PhD Joyce O'Shaughnessy, MD Genitourinary Cancers 10:05 AM – 11:05 AM PT Faculty Neeraj Agarwal, MD Sandy Srinivas, MD

Recent Advances and Real-World Implications in Medical Oncology A Daylong Multitumor Educational Symposium in Partnership with the American Oncology Network Saturday, August 6, 2022

Multiple Myeloma 11:20 AM – 12:20 PM PT Faculty Rafael Fonseca, MD Krina Patel, MD, MSc **CLL and Lymphomas** 12:55 PM – 1:55 PM PT

Faculty Brad S Kahl, MD Craig Moskowitz, MD

Recent Advances and Real-World Implications in Medical Oncology A Daylong Multitumor Educational Symposium in Partnership with the American Oncology Network Saturday, August 6, 2022

Gastrointestinal Cancers 1:55 PM – 2:55 PM PT Faculty Rutika Mehta, MD, MPH Philip A Philip, MD, PhD, FRCP Lung Cancer 3:10 PM – 4:10 PM PT Faculty Ibiayi Dagogo-Jack, MD Suresh S Ramalingam, MD

Meet The Professor Optimizing the Management of Small Cell Lung Cancer

> Thursday, August 11, 2022 5:00 PM – 6:00 PM ET

> > Faculty Jacob Sands, MD

Meet The Professor Optimizing the Management of Gastroesophageal Cancers

> Wednesday, August 17, 2022 5:00 PM – 6:00 PM ET

> > Faculty John Strickler, MD

Meet The Professor Optimizing the Management of Hepatobiliary Cancers

Robin K (Katie) Kelley, MD Professor of Clinical Medicine Division of Hematology/Oncology Helen Diller Family Comprehensive Cancer Center University of California, San Francisco (UCSF) San Francisco, California

Commercial Support

This activity is supported by an educational grant from AstraZeneca Pharmaceuticals LP.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Kelley — Disclosures

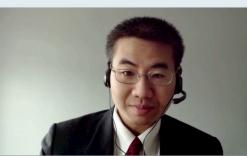
Advisory Committee	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Exelixis Inc, Ipsen Biopharmaceuticals Inc, Kinnate Biopharma, Merck
Advisory Board	Kinnate Biopharma
Advisory Board or Steering Committee (to Institution)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Exelixis Inc, Ipsen Biopharmaceuticals Inc, Merck
Research Funding (to Institution)	Agios Pharmaceuticals Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb Company, EMD Serono Inc, Exelixis Inc, Genentech, a member of the Roche Group, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Novartis, Partner Therapeutics, QED Therapeutics, Relay Therapeutics, Surface Oncology, Taiho Oncology Inc
Uncompensated Service on IDMC	Genentech, a member of the Roche Group, Merck

Warren S Brenner, MD Lynn Cancer Institute Boca Raton, Florida

Minesh Dinubhai Patel, MD Piedmont Cancer Institute Peachtree City, Georgia

Jennifer L Dallas, MD Novant Health Cancer Institute Charlotte, North Carolina

Priya Rudolph, MD, PhD Georgia Cancer Specialists Northside Hospital Cancer Institute Athens, Georgia


Shaachi Gupta, MD, MPH Florida Cancer Specialists Lake Worth, Florida

Liudmila N Schafer, MD Saint Luke's Cancer Institute Kansas City, Missouri

Pavel A Levin, MD, PhD Texas Oncology-Pearland Houston, Texas

John Yang, MD Oncologist Fall River, Massachusetts

Meet The Professor with Dr Kelley

Introduction

MODULE 1: Hepatocellular Carcinoma

- Case Presentations
- Journal Club with Dr Kelley

MODULE 2: Biliary Tract Cancers

- Case Presentations
- Key Recent Data Sets; Journal Club with Dr Kelley

MODULE 3: Appendix of Key Publications

Meet The Professor with Dr Kelley

Introduction

MODULE 1: Hepatocellular Carcinoma

- Case Presentations
- Journal Club with Dr Kelley

MODULE 2: Biliary Tract Cancers

- Case Presentations
- Key Recent Data Sets; Journal Club with Dr Kelley

MODULE 3: Appendix of Key Publications

Nat Rev Dis Primers 2021;7(1):6.

Hepatocellular carcinoma

Josep M. Llovet[®]^{1,2,3}[™], Robin Kate Kelley⁴, Augusto Villanueva[®]¹, Amit G. Singal⁵, Eli Pikarsky⁶, Sasan Roayaie⁷, Riccardo Lencioni^{8,9}, Kazuhiko Koike¹⁰, Jessica Zucman-Rossi[®]^{11,12} and Richard S. Finn¹³

Molecular pathogenesis and systemic therapies for hepatocellular carcinoma

Josep M. Llovet^{®1,2,3}[™], Roser Pinyol¹, Robin K. Kelley⁴, Anthony El-Khoueiry⁵, Helen L. Reeves^{6,7}, Xin Wei Wang^{8,9}, Gregory J. Gores¹⁰ and Augusto Villanueva^{®2}

N Engl J Med 2021;385(3):280-2.

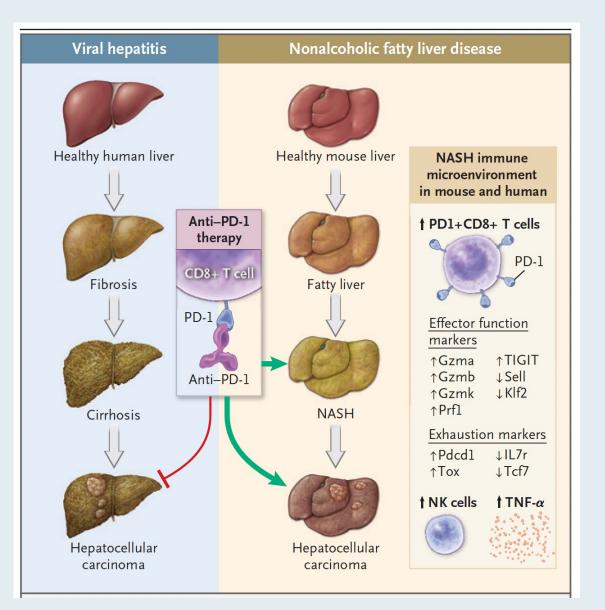
Article

The NEW ENGLAND JOURNAL of MEDICINE

CLINICAL IMPLICATIONS OF BASIC RESEARCH

Elizabeth G. Phimister, Ph.D., Editor

Hepatocellular Carcinoma — Origins and Outcomes


Robin K. Kelley, M.D., and Tim F. Greten, M.D.

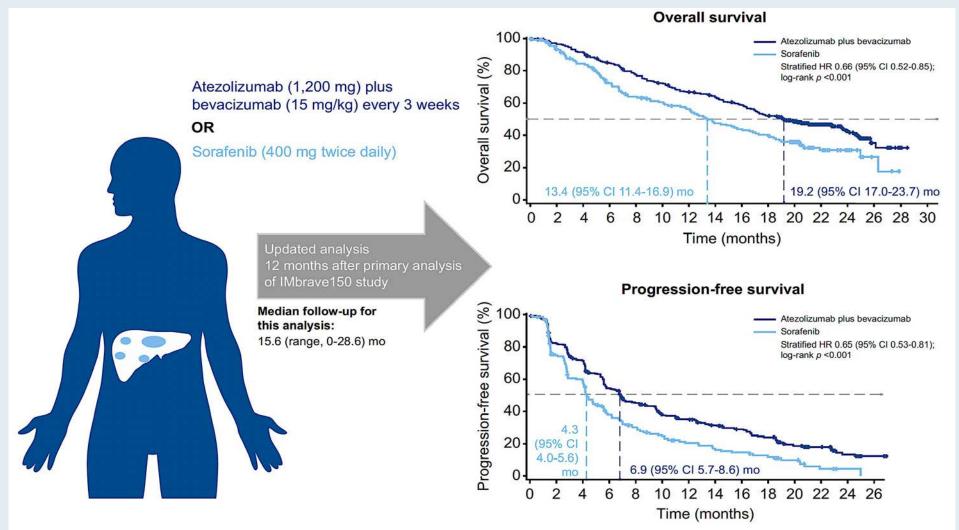
Pfister D et al. *Nature* 2021;592:450-6.

NASH limits anti-tumour surveillance in immunotherapy-treated HCC

PD-1 Inhibition for Hepatocellular Carcinoma in the Context of NASH

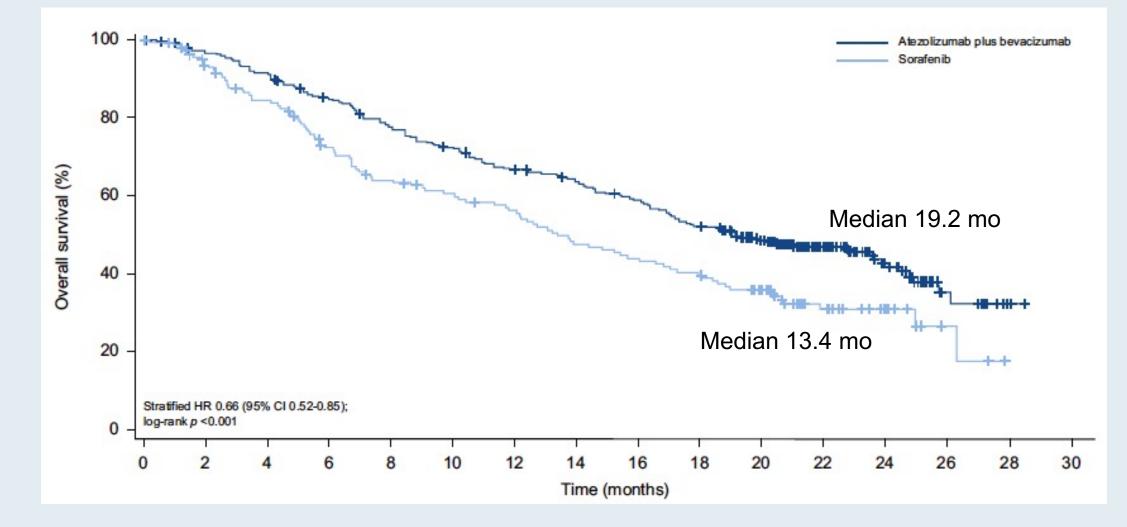
Kelley RK, Greten TF. N Engl J Med 2021;385(3):280-2.

Research Article Hepatic and Biliary Cancer

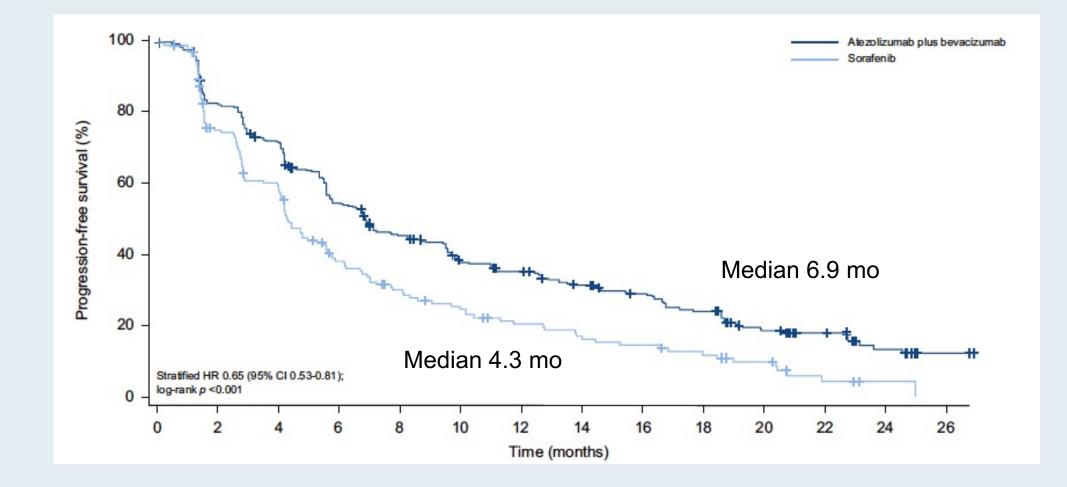

Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma

Ann-Lii Cheng^{1,*}, Shukui Qin², Masafumi Ikeda³, Peter R. Galle⁴, Michel Ducreux⁵, Tae-You Kim⁶, Ho Yeong Lim⁷, Masatoshi Kudo⁸, Valeriy Breder⁹, Philippe Merle¹⁰, Ahmed O. Kaseb¹¹, Daneng Li¹², Wendy Verret¹³, Ning Ma¹⁴, Alan Nicholas¹⁵, Yifan Wang¹⁶, Lindong Li¹⁷, Andrew X. Zhu^{18,19}, Richard S. Finn^{20,*}

J Hepatol 2022;76(4):862-73.


IMbrave150: Updated OS and PFS with Atezolizumab and Bevacizumab (Median Follow-Up = 15.6 Months)

Confirmed objective response rate: 30% with atezolizumab plus bevacizumab, 11% with sorafenib



IMbrave150: Updated OS with Atezolizumab and Bevacizumab (Median Follow-Up = 15.6 Months)

IMbrave150: Updated PFS with Atezolizumab and Bevacizumab (Median Follow-Up = 15.6 Months)

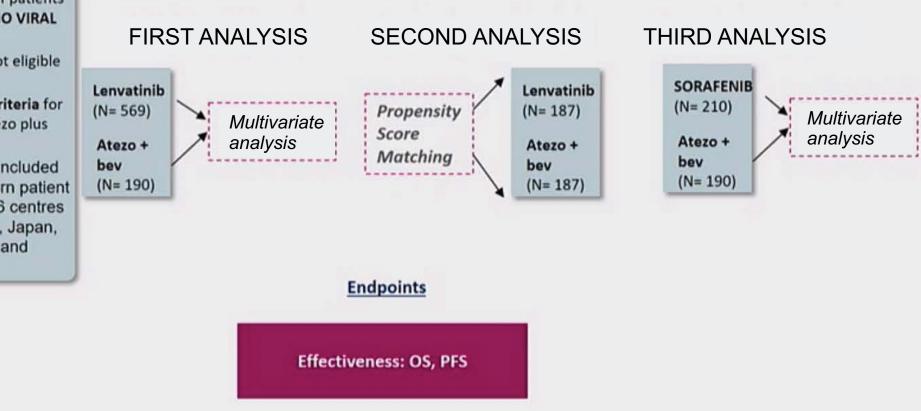
Cheng A-L et al. J Hepatol 2022;76(4):862-73.

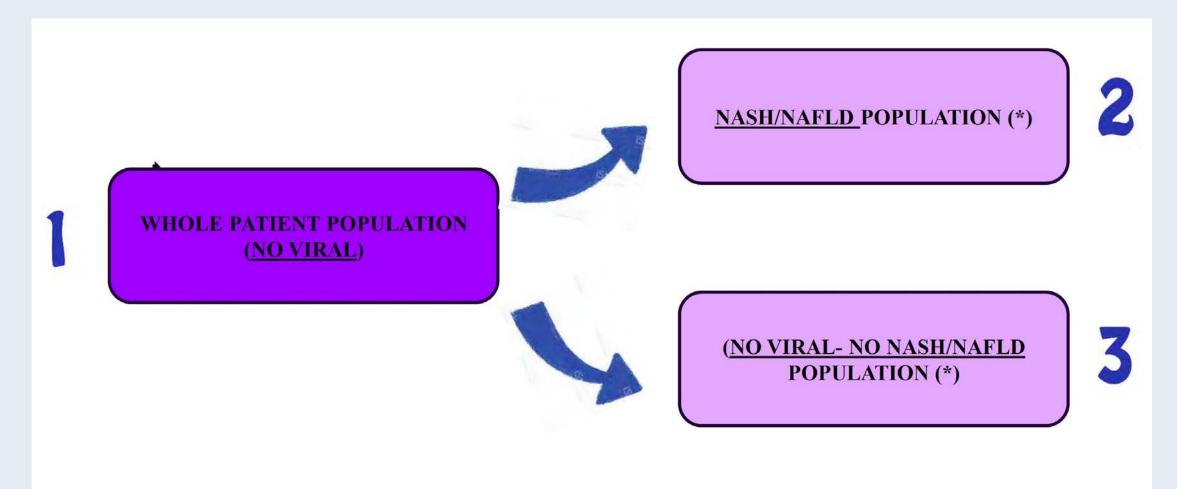
IMbrave150 Update: Subgroup Analysis of OS with Atezolizumab and Bevacizumab (Median Follow-Up = 15.6 Months)

Subgroup	Atezolizumab plus bevacizumab		Sorafenib		Hencyd ystia fay daeth (05% CI)	
	Events/ Median OS patients months (95%		Events/ Median OS, patients months (95% CI)		Hazard ratio for death (95% CI)	
Etiology					^	
Hepatitis B	86/164	19.0 (16.1-NE)	46/76	12.4 (6.7-16.9)	⊢◆⊣	0.58 (0.40-0.83)
Hepatitis C	31/72	24.6 (19.8-NE)	24/36	12.6 (7.4-18.4)	⊢ → →	0.43 (0.25-0.73)
Non-viral	63/100	17.0 (11.7-22.8)	30/53	18.1 (11.7-26.3)	⊢	1.05 (0.68-1.63)
PD-L1 status						
TC or IC ≥1%	44/86	22.8 (17.0-NE)	24/36	12.6 (7.4-17.1)	⊢ → –-	0.52 (0.32-0.87)
TC and IC <1%	27/49	19.9 (13.9-NE)	17/28	15.4 (11.4-26.3)	⊢ ♦ ¦i	0.81 (0.44-1.49)
Unknown	109/201	18.0 (16.1-24.0)	59/101	13.4 <mark>(</mark> 9.7-18.6)	⊢◆⊣	0.69 (0.50-0.94)

Cheng A-L et al. J Hepatol 2022;76(4):862-73.

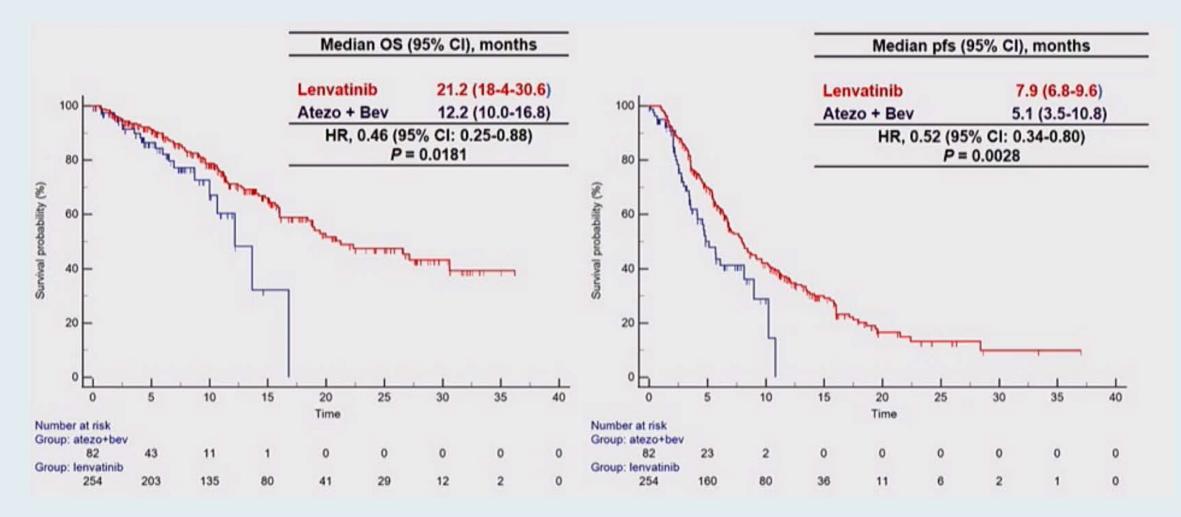
Atezolizumab Plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: An international study


ANDREA CASADEI GARDINI and MARGHERITA RIMINI SAN RAFFAELE HOSPITAL; MILAN

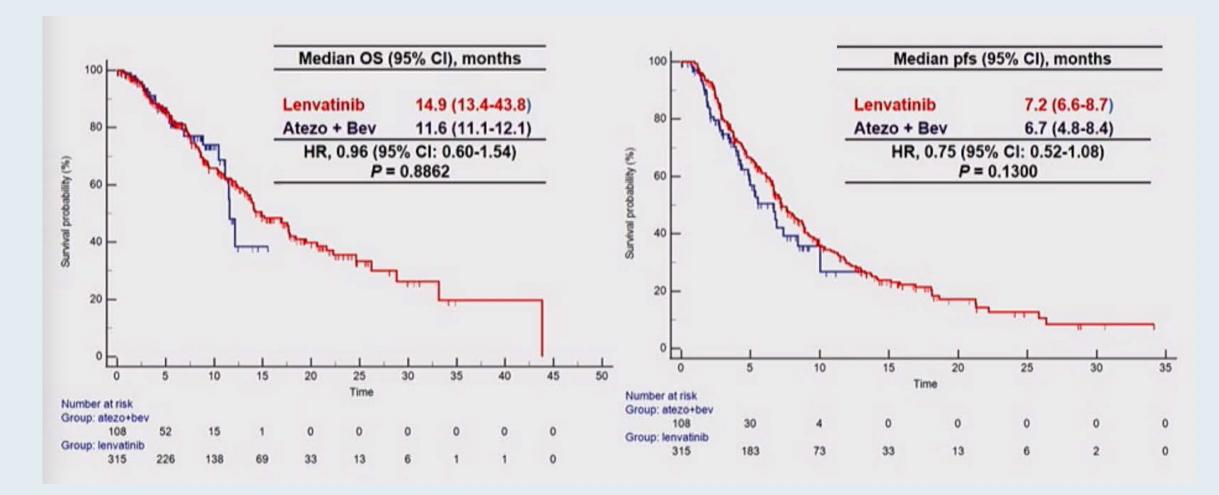

Study Design

- Retrospective data of patients treated in 1L WITH NO VIRAL ETIOLOGY
- BCLC-C or BCLC-B (not eligible for LRT)
- Common inclusion criteria for the use of LEN or Atezo plus bev were applied
- The overall cohort included Western and Eastern patient populations from 36 centres in 4 countries (Italy, Japan, Republic of Korea, and United Kingdom)

Study Design and Population

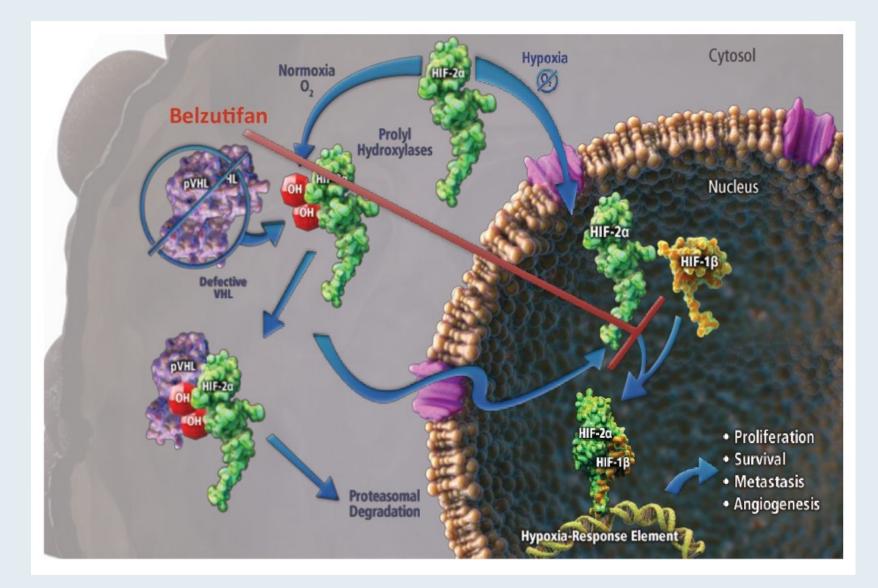


* EASL-EASD-EASO Clinical Practice Guidelines


NASH = nonalcoholic steatohepatitis; NAFLD = nonalcoholic fatty liver disease

Efficacy Results (First Study): NASH/NAFLD

Clinical Outcomes in Nonviral, Non-NASH/NAFLD Population



Phase 2 Open-Label Study of Pembrolizumab Plus Lenvatinib and Belzutifan in Patients With Advanced Solid Tumors

R.K. Kelley¹; E. Van Cutsem²; M.S. Lee³; I. Wolf⁴; M. Fakih⁵; J. de Vos-Geelen⁶; V. Lee⁷; A. Vogel⁸; X.L. Wu⁹; F. Jin⁹; G.S. Naik⁹; <u>E.M. O'Reilly¹⁰</u>

Belzutifan Inhibition of HIF-2α Affects Downstream Pathways

Kelley RK et al. ASCO 2022; Abstract TPS4173.

Meet The Professor with Dr Kelley

Introduction

MODULE 1: Hepatocellular Carcinoma (HCC)

Case Presentations

- Dr Patel: An 84-year-old man with newly diagnosed HCC who has a PR with atezolizumab/bevacizumab
- Dr Brenner: A 66-year-old man with HCC and lung metastases (AFP: 30,000) who receives front-line atezolizumab/bevacizumab
- Dr Gupta: A 66-year-old man with metastatic HCC and rapid disease progression on first-line atezolizumab/bevacizumab
- Dr Yang: A 78-year-old man with PMH of alcoholic cirrhosis and newly diagnosed multifocal HCC
- Dr Schafer: An 82-year-old man with NASH liver cirrhosis and advanced HCC who develops proteinuria on atezolizumab/bevacizumab
- Journal Club with Dr Kelley

MODULE 2: Biliary Tract Cancers

- Case Presentations
- Key Recent Data Sets; Journal Club with Dr Kelley

MODULE 3: Appendix of Key Publications

Case Presentation: An 84-year-old man with newly diagnosed HCC who has a PR with atezolizumab/bevacizumab

Dr Minesh Patel (Peachtree City, Georgia)

Case Presentation: An 84-year-old man with newly diagnosed HCC who has a PR with atezolizumab/bevacizumab (continued)

Dr Minesh Patel (Peachtree City, Georgia)

ASCO Gastrointestinal Cancers Symposium 2022 | Abstract 379

Phase 3 randomized, open-label, multicenter study of tremelimumab and durvalumab as first-line therapy in patients with unresectable hepatocellular carcinoma: HIMALAYA

Ghassan K Abou-Alfa,^{1,2*} Stephen L Chan,^{3*} Masatoshi Kudo,^{4*} George Lau,^{5*} Robin Kate Kelley,⁶ Junji Furuse,⁷ Wattana Sukeepaisarnjaroen,⁸ Yoon-Koo Kang,⁹ Tu V Dao,¹⁰ Enrico N De Toni,¹¹ Lorenza Rimassa,^{12,13} Valery Breder,¹⁴ Alexander Vasilyev,¹⁵ Alexandra Heurgué,¹⁶ Vincent C Tam,¹⁷ Kabir Mody,¹⁸ Satheesh Chiradoni Thungappa,¹⁹ Philip He,²⁰ Alejandra Negro,²⁰ and Bruno Sangro²¹

¹Department of Medicine, Memorial Sloan Kettering Center, New York, NY, USA; ²Weill Medical College, Cornell University, New York, NY, USA; ³State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Sir Yue-Kong Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong, China; ⁴Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan; ⁵Humanity and Health Clinical Trial Center, Humanity and Health Medical Group, Hong Kong, China; ⁶Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA; ⁷Department of Medical Oncology, Kyorin University Faculty of Medicine, Mitaka, Japan; ⁸Department of Medicine, Srinagarind Hospital, Khon Kaen University, Khon Kaen, Thailand; ⁹Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea; ¹⁰Cancer Research and Clinical Trial Center, National Cancer Hospital, Hanoi, Vietnam; ¹¹Department of Medicine II, University Hospital, LMU Munich, Munich, Germany; ¹²Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; ¹³Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; ¹⁴Chemotherapy Department No17, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia; ¹⁶Railway Clinical Hospital, St. Petersburg, Russia; ¹⁶Service d'Hépato-Gastro-entérologie, Hôpital Robert-Debré, Reims, France; ¹⁷Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada; ¹⁸Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA; ¹⁹ Sri Venkateshwara Hospital, Bangalore, India; ²⁰AstraZeneca, Gaithersburg, MD, USA; ²¹Liver Unit and HPB Oncology Area, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain

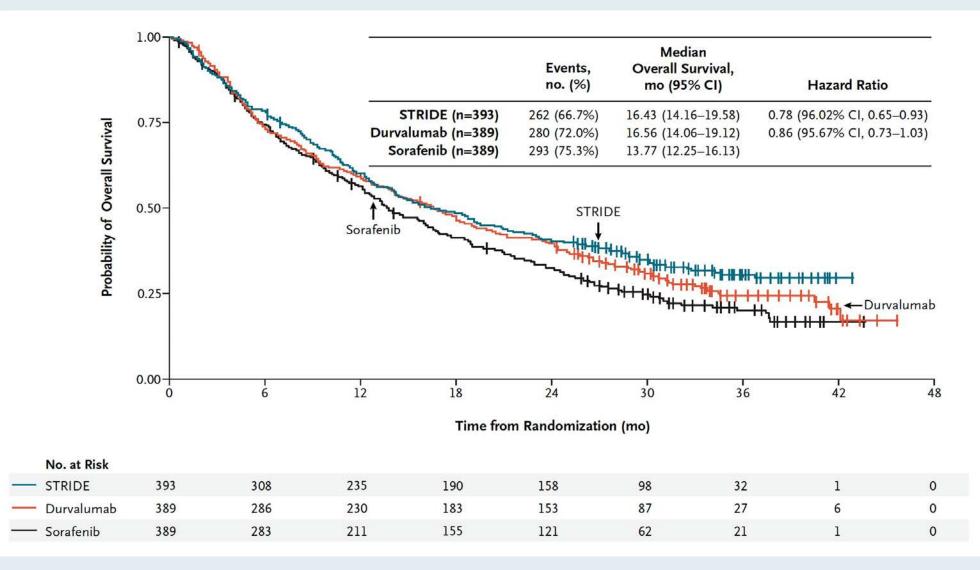
*Drs Ghassan K Abou-Alfa, Stephen L Chan, Masatoshi Kudo, and George Lau contributed equally to this work.

ASCO Gastrointestinal Cancers Symposium

PRESENTED BY: Ghassan K Abou-Alfa, MD, MBA Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

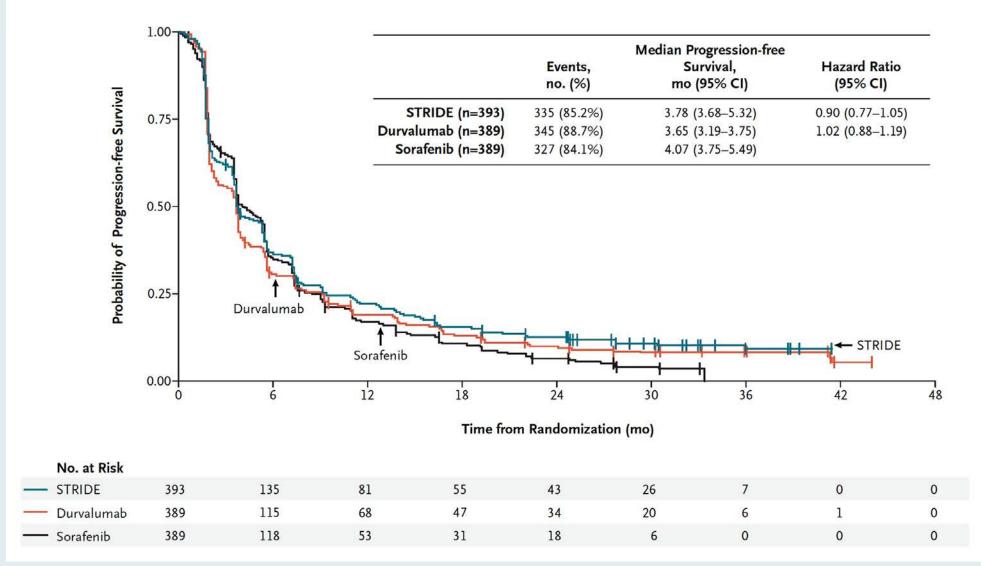
Published June 6, 2022

DOI: 10.1056/EVIDoa2100070


ORIGINAL ARTICLE

Tremelimumab Plus Durvalumab in Unresectable Hepatocellular Carcinoma

Ghassan K. Abou-Alfa, M.D., M.B.A.,^{1,2} George Lau, M.D., F.R.C.P.,³ Masatoshi Kudo, M.D., Ph.D.,⁴ Stephen L. Chan, M.D.,⁵ Robin Kate Kelley, M.D.,⁶ Junji Furuse, M.D., Ph.D.,⁷ Wattana Sukeepaisarnjaroen, M.D.,⁸ Yoon-Koo Kang, M.D., Ph.D.,⁹ Tu Van Dao, M.D., Ph.D.,¹⁰ Enrico N. De Toni, M.D., Ph.D.,¹¹ Lorenza Rimassa, M.D.,^{12,13} Valeriy Breder, M.D., Ph.D.,¹⁴ Alexander Vasilyev, M.D.,¹⁵ Alexandra Heurgué, M.D.,¹⁶ Vincent C. Tam, M.D.,¹⁷ Kabir Mody, M.D.,¹⁸ Satheesh Chiradoni Thungappa, M.D.,¹⁹ Yuriy Ostapenko, M.D.,²⁰ Thomas Yau, M.D.,²¹ Sergio Azevedo, M.D.,²² María Varela, M.D., Ph.D.,²³ Ann-Lii Cheng, M.D., Ph.D.,²⁴ Shukui Qin, M.D., Ph.D.,²⁵ Peter R. Galle, M.D., Ph.D.,²⁶ Sajid Ali, M.D.,²⁷ Michelle Marcovitz, Ph.D.,²⁷ Mallory Makowsky, Pharm.D.,²⁷ Philip He, Ph.D.,²⁷ John F. Kurland, Ph.D.,²⁷ Alejandra Negro, Ph.D.,²⁷ and Bruno Sangro, M.D., Ph.D.,²⁸


HIMALAYA: Overall Survival

Abou-Alfa G et al. NEJM Evidence, June 6, 2022.

HIMALAYA: Progression-Free Survival

Abou-Alfa G et al. NEJM Evidence, June 6, 2022.

HIMALAYA: Response Outcomes (Intent-to-Treat Population)

STRIDE (n=393)	Durvalumab (n=389)	Sorafenib (n=389)
79 (20.1)	66 (17.0)	20 (5.1)
12 (3.1)	6 (1.5)	0
67 (17.0)	60 (15.4)	20 (5.1)
157 (39.9)	147 (37.8)	216 (55.5)
236 (60.1)	213 (54.8)	236 (60.7)
22.34	16.82	18.43
8.54–NR	7.43–NR	6.51–25.99
2.17	2.09	3.78
	79 (20.1) 12 (3.1) 67 (17.0) 157 (39.9) 236 (60.1) 22.34 8.54–NR	79 (20.1) 66 (17.0) 12 (3.1) 6 (1.5) 67 (17.0) 60 (15.4) 157 (39.9) 147 (37.8) 236 (60.1) 213 (54.8) 22.34 16.82 8.54-NR 7.43-NR

Abou-Alfa G et al. NEJM Evidence, June 6, 2022.

O-5: Outcomes by baseline liver function in patients with unresectable hepatocellular carcinoma treated with tremelimumab and durvalumab in the Phase 3 HIMALAYA study

Arndt Vogel, MD

30 June 2022

Arndt Vogel, MD,¹ Stephen L Chan, MD,² Junji Furuse, MD, PhD,³ Won Young Tak, MD, PhD,⁴ Gianluca Masi, MD,⁵ María Varela, MD, PhD,⁶ Jee Hyun Kim, MD, PhD,⁷ Suebpong Tanasanvimon, MD,⁸ Maria Reig, MD, PhD,⁹ Farshid Dayyani, MD, PhD,¹⁰ Mallory Makowsky, PharmD,¹¹ Michelle Marcovitz, PhD,¹¹ Alejandra Negro, PhD,¹¹ Ghassan K Abou-Alfa, MD, MBA^{12,13}

¹Hannover Medical School, Hannover, Germany; ²Sir Yue-Kong Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong, China; ³Kyorin University Faculty of Medicine, Mitaka, Japan; ⁴School of Medicine, Kyungpook National University, Daegu, Republic of Korea; ⁵Pisa University, Pisa, Italy; ⁶Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain; ⁷Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea; ⁸Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; ⁹Barcelona Clinic Liver Cancer (BCLC), Hospital Clinic de Barcelona, Barcelona University, Barcelona, Spain; ¹⁰University of California, Irvine, CA, USA; ¹¹AstraZeneca, Gaithersburg, MD, USA; ¹²Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹³Weill Medical College, Cornell University, New York, NY, USA

HIMALAYA: Response Outcomes in ALBI Grade Subgroups

	ALBI grade 1			ALBI grade 2/3			Full analysis set ¹		
Parameter	T300+D	Durvalumab	Sorafenib	T300+D	Durvalumab	Sorafenib	T300+D	Durvalumab	Sorafenib
	(n=217)	(n=198)	(n=203)	(n=175)	(n=191)	(n=186)	(n=393)	(n=389)	(n=389)
ORR,* %	21.7	18.7	7.4	18.3	15.2	2.7	20.1	17.0	5.1
Median TTR‡	2.07	1.91	3.52	3.52	3.65	9.10	2.17	2.09	3.78
(IQR), mo	(1.84–3.94)	(1.81–3.98)	(1.84–5.49)	(1.91–5.40)	(1.94–3.94)	(7.79–11.01)	(1.84–3.98)	(1.87–3.98)	(1.89–8.44)
Median DoR, ^{†,‡}	22.34	23.26	22.06	26.55	13.83	12.25	22.34	16.82	18.43
(IQR), mo	(8.71–NR)	(7.43–NR)	(6.51–25.99)	(7.43–NR)	(7.43–27.43)	(7.69–NR)	(8.54–NR)	(7.43–NR)	(6.51–25.99)

• Similar to the full analysis set¹:

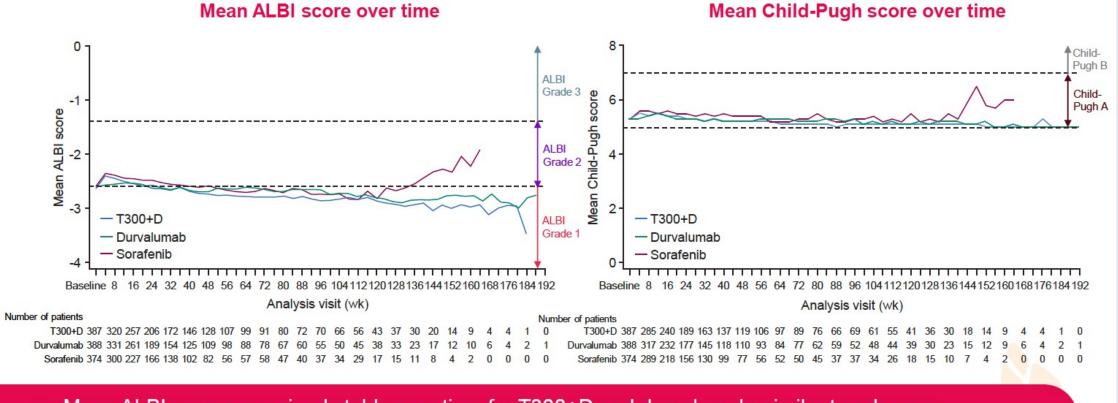
- ORR was higher for T300+D and durvalumab than for sorafenib in both ALBI subgroups
- Median TTR was shorter for T300+D and durvalumab than for sorafenib in both ALBI subgroups

ORR = overall response rate; TTR = time to response; DoR = duration of response

Vogel A et al. ESMO World Congress on Gastrointestinal Cancer 2022; Abstract O-5.

HIMALAYA: Safety for T300 + D versus Sorafenib in ALBI Grade Subgroups

	ALBI grade 1		ALBI grade 2/3		Safety analysis set ¹	
Patients with an event, n (%)	T300+D (n=216)	Sorafenib (n=197)	T300+D (n=171)	Sorafenib (n=177)	T300+D (n=388)	Sorafenib (n=374)
Any TEAE Any TRAE	210 (97.2) 166 (76.9)	187 (94.9) 168 (85.3)	167 (97.7) 127 (74.3)	170 (96.0) 149 (84.2)	378 (97.4) 294 (75.8)	357 (95.5) 317 (84.8)
Any grade 3/4 TEAE	111 (51.4)	102 (51.8)	85 (49.7)	94 (53.1)	196 (50.5)	196 (52.4)
Any grade 3/4 TRAE Any TEAE leading to death	59 (27.3) 8 (3.7)	76 (38.6) 11 (5.6)	41 (24.0) 22 (12.9)	62 (35.0) 16 (9.0)	100 (25.8) 30 (7.7)	138 (36.9) 27 (7.2)
Any TRAE leading to death Any serious TEAE	5 (2.3) 89 (41.2)	1 (0.5) 49 (24.9)	4 (2.3) 68 (39.8)	2 (1.1) 62 (35.0)	9 (2.3) 157 (40.5)	3 (0.8) 111 (29.7)
Any serious TRAE Any TEAE leading to	44 (20.4)	15 (7.6)	24 (14.0)	20 (11.3)	68 (17.5)	35 (9.4)
discontinuation Any TRAE leading to	27 (12.5)	20 (10.2)	26 (15.2)	43 (24.3)	53 (13.7)	63 (16.8)
discontinuation	20 (9.3)	15 (7.6)	12 (7.0)	26 (14.7)	32 (8.2)	41 (11.0)
Any immune-mediated TEAE	94 (43.5)	20 (10.2)	45 (26.3)	10 (5.6)	139 (35.8)	30 (8.0)


 In contrast to sorafenib, T300+D had a similar safety profile in both ALBI subgroups, similar to the safety analysis set¹

TEAE = treatment-emergent adverse event; TRAE = treatment-related adverse event

Vogel A et al. ESMO World Congress on Gastrointestinal Cancer 2022; Abstract O-5.

HIMALAYA: Liver Function Over Time in the Study Population

 Mean ALBI scores remained stable over time for T300+D and durvalumab; similar trends were observed in Child-Pugh scores

Vogel A et al. ESMO World Congress on Gastrointestinal Cancer 2022; Abstract O-5.

Safety, Efficacy, and Pharmacodynamics of Tremelimumab Plus Durvalumab for Patients With Unresectable Hepatocellular Carcinoma: Randomized Expansion of a Phase I/I Study Robin Kate Kelley, MD¹; Bruno Sangro, MD, PhD²; William Harris, MD³; Masafumi Ikeda, MD, PhD⁴; Takuji Okusaka, MD, PhD⁵; Yoon-Koo Kang, MD, PhD⁶; Shukui Qin, MD, PhD⁷; David W.-M. Tai, MD⁸; Ho Yeong Lim, MD⁹; Thomas Yau, MD¹⁰; Wei-Peng Yong, MD¹⁰

Robin Kate Kelley, MD¹; Bruno Sangro, MD, PhD²; William Harris, MD³; Masafumi Ikeda, MD, PhD⁴; Takuji Okusaka, MD, PhD⁵; Yoon-Koo Kang, MD, PhD⁶; Shukui Qin, MD, PhD⁷; David W.-M. Tai, MD⁸; Ho Yeong Lim, MD⁹; Thomas Yau, MD¹⁰; Wei-Peng Yong, MD¹¹; Ann-Lii Cheng, MD, PhD¹²; Antonio Gasbarrini, MD¹³; Silvia Damian, MD¹⁴; Jordi Bruix, MD¹⁵; Mitesh Borad, MD¹⁶; Johanna Bendell, MD¹⁷; Tae-You Kim, MD¹⁸; Nathan Standifer, PhD¹⁹; Philip He, PhD²⁰; Mallory Makowsky, PharmD²⁰; Alejandra Negro, PhD²⁰; Masatoshi Kudo, MD, PhD²¹; and Ghassan K. Abou-Alfa, MD, MBA^{22,23}

J Clin Oncol 2021;39(27):2991-3001.

ASCO 2021

T cell receptor pharmacodynamics associated with survival and response to tremelimumab (T) in combination with durvalumab (D) in patients (pts) with unresectable hepatocellular carcinoma (uHCC)

Patricia McCoon,¹ Young S. Lee,² R. Kate Kelley,³ Violeta Beleva Guthrie,² Song Wu,² Stephanie A. Bien,⁴ Alejandra Negro,⁵ Philip He,⁵ John Kurland,⁵ Carl Barrett,¹ Fernanda Pilataxi,⁵ Steven Ching,⁵ Ghassan K. Abou-Alfa⁶

Poster 4074

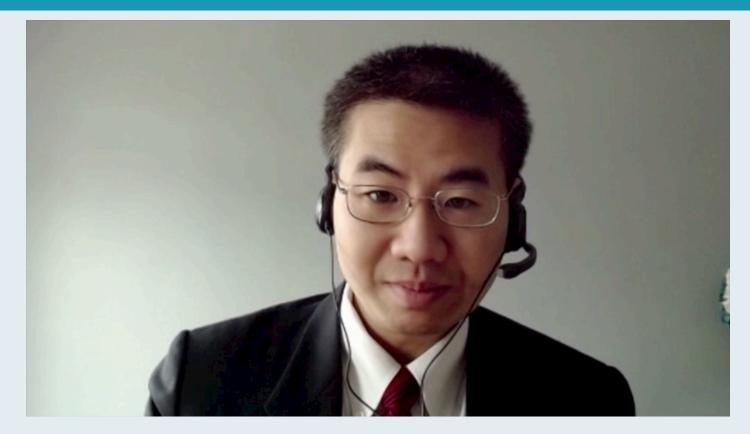
ASCO 2022

Patient-reported outcomes from the Phase 3 HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma

Bruno Sangro,¹ Peter R Galle,² Robin Kate Kelley,³ Chaiyut Charoentum,⁴ Enrico N De Toni,⁵ Yuriy Ostapenko,⁶ Jeong Heo,⁷ Ann-Lii Cheng,⁸ Arndt Vogel,⁹ Michelle Marcovitz,¹⁰ Jayne Abraham,¹¹ Nikunj Patel,¹⁰ Alejandra Negro,¹⁰ Ghassan K Abou-Alfa^{12,13}

Case Presentation: A 66-year-old man with HCC and lung metastases (AFP: 30,000) who receives front-line atezolizumab/bevacizumab

Dr Warren Brenner (Boca Raton, Florida)


Case Presentation: A 66-year-old man with metastatic HCC and rapid disease progression on first-line atezolizumab/bevacizumab

Dr Shaachi Gupta (Lake Worth, Florida)

Case Presentation: A 78-year-old man with PMH of alcoholic cirrhosis and newly diagnosed multifocal HCC

Dr John Yang (Fall River, Massachusetts)

Case Presentation: An 82-year-old man with NASH liver cirrhosis and advanced HCC who develops proteinuria on atezolizumab/bevacizumab

Dr Liudmila Schafer (Kansas City, Missouri)

Meet The Professor with Dr Kelley

Introduction

MODULE 1: Hepatocellular Carcinoma

- Case Presentations
- Journal Club with Dr Kelley

MODULE 2: Biliary Tract Cancers

- Case Presentations
- Key Recent Data Sets; Journal Club with Dr Kelley

MODULE 3: Appendix of Key Publications

Gastrointestinal Cancers Symposium 2022.

Safety and efficacy of durvalumab plus bevacizumab in unresectable hepatocellular carcinoma: results from the Phase 2 Study 22 (NCT02519348)

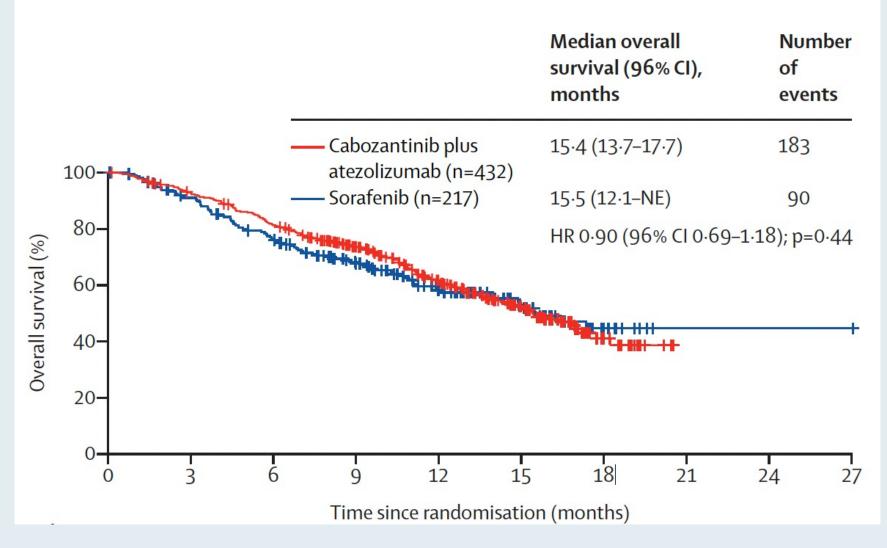
Ho Yeong Lim,¹ Jeong Heo,² Tae-You Kim,³ David W M Tai,⁴ Yoon-Koo Kang,⁵ George Lau,⁶ Masatoshi Kudo,⁷ Won Young Tak,⁸ Magdalena Watras,⁹ Sajid Ali,¹⁰ Alejandra Negro,¹¹ Ghassan K Abou-Alfa,^{12,13} R Kate Kelley^{14*}

Lancet Oncol 2022;23:77-90.

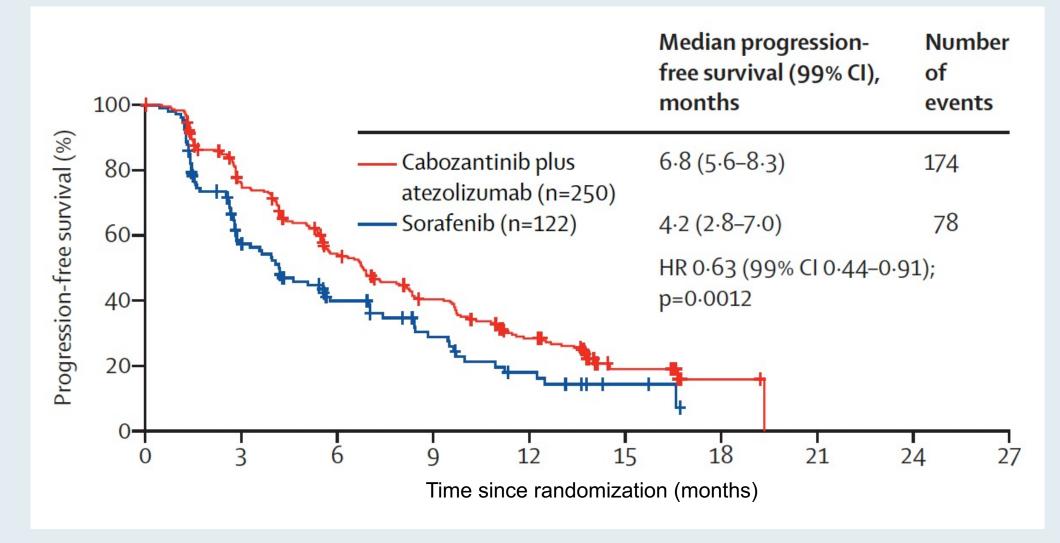
Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial

Thomas Yau, Joong-Won Park, Richard S Finn, Ann-Lii Cheng, Philippe Mathurin, Julien Edeline, Masatoshi Kudo, James J Harding, Philippe Merle, Olivier Rosmorduc, Lucjan Wyrwicz, Eckart Schott, Su Pin Choo, Robin Kate Kelley, Wolfgang Sieghart, Eric Assenat, Renata Zaucha, Junji Furuse, Ghassan K Abou-Alfa, Anthony B El-Khoueiry, Ignacio Melero, Damir Begic, Gong Chen, Jaclyn Neely, Tami Wisniewski, Marina Tschaika, Bruno Sangro

Lancet Oncology 2022;[Online ahead of print].


Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial

Robin Kate Kelley*, Lorenza Rimassa*, Ann-Lii Cheng, Ahmed Kaseb, Shukui Qin, Andrew X Zhu, Stephen L Chan, Tamar Melkadze, Wattana Sukeepaisarnjaroen, Valery Breder, Gontran Verset, Edward Gane, Ivan Borbath, Jose David Gomez Rangel, Baek-Yeol Ryoo, Tamta Makharadze, Philippe Merle, Fawzi Benzaghou, Kamalika Banerjee, Saswati Hazra, Jonathan Fawcett, Thomas Yau



COSMIC-312: Overall Survival in the ITT Population (Interim Analysis)

Kelley RK et al. Lancet Oncol 2022;[Online ahead of print].

COSMIC-312: Progression-Free Survival in the ITT Population (Final Analysis)

Kelley RK et al. Lancet Oncol 2022;[Online ahead of print].

Open access

Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of hepatocellular carcinoma

Tim F Greten ⁽ⁱ⁾, ¹ Ghassan K Abou-Alfa,^{2,3} Ann-Lii Cheng,⁴ Austin G Duffy,⁵ Anthony B. El-Khoueiry,⁶ Richard S Finn,⁷ Peter R Galle,⁸ Lipika Goyal,⁹ Aiwu Ruth He,¹⁰ Ahmed O Kaseb,¹¹ Robin Kate Kelley,¹² Riccardo Lencioni,^{13,14} Amaia Lujambio,¹⁵ Donna Mabry Hrones,¹ David J Pinato ⁽ⁱ⁾,¹⁶ Bruno Sangro,^{17,18} Roberto I Troisi,¹⁹ Andrea Wilson Woods,²⁰ Thomas Yau,²¹ Andrew X Zhu,^{9,22}

J Immunother Cancer 2021;9(9):e002794.

Meet The Professor with Dr Kelley

Introduction

MODULE 1: Hepatocellular Carcinoma

- Case Presentations
- Journal Club with Dr Kelley

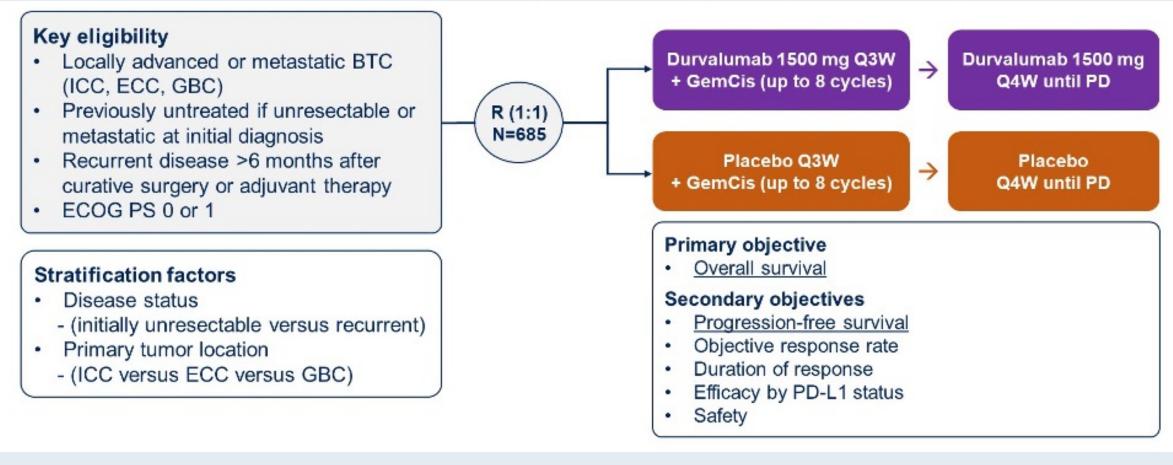
MODULE 2: Biliary Tract Cancers

- Case Presentations
- Key Recent Data Sets; Journal Club with Dr Kelley

MODULE 3: Appendix of Key Publications

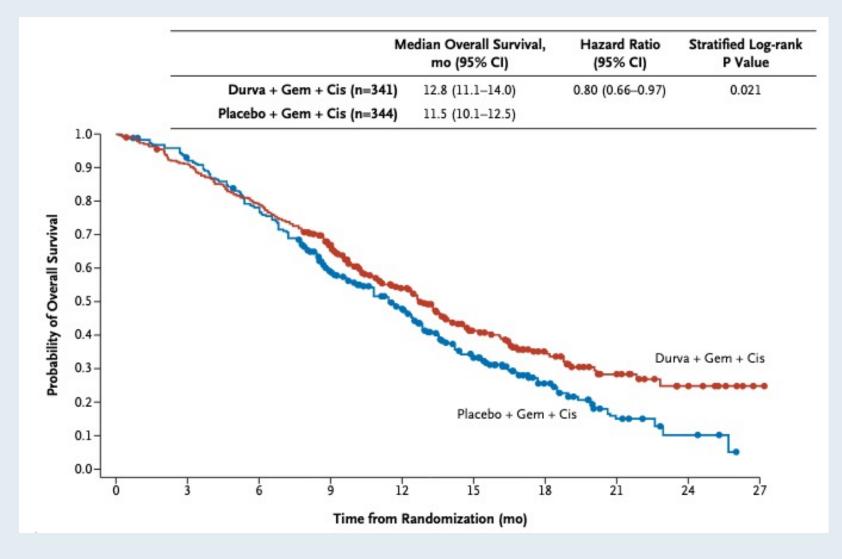
Published June 1, 2022

DOI: 10.1056/EVIDoa2200015


ORIGINAL ARTICLE

Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer

Do-Youn Oh, M.D., Ph.D.,¹ Aiwu Ruth He, M.D., Ph.D.,² Shukui Qin, M.D.,³ Li-Tzong Chen, M.D., Ph.D.,^{4,5,6} Takuji Okusaka, M.D., Ph.D.,⁷ Arndt Vogel, M.D.,⁸ Jin Won Kim, M.D., Ph.D.,⁹ Thatthan Suksombooncharoen, M.D.,¹⁰ Myung Ah Lee, M.D., Ph.D.,¹¹ Masayuki Kitano, M.D., Ph.D.,¹² Howard Burris, M.D.,¹³ Mohamed Bouattour, M.D.,¹⁴ Suebpong Tanasanvimon, M.D.,¹⁵ Mairéad G. McNamara, M.B., Ph.D.,¹⁶ Renata Zaucha, M.D., Ph.D.,¹⁷ Antonio Avallone, M.D.,¹⁸ Benjamin Tan, M.D.,¹⁹ Juan Cundom, M.D.,²⁰ Choong-kun Lee, M.D., Ph.D.,²¹ Hidenori Takahashi, M.D., Ph.D.,²² Masafumi Ikeda, M.D., Ph.D.,²³ Jen-Shi Chen, M.D.,²⁴ Julie Wang, Ph.D.,²⁵ Mallory Makowsky, Pharm.D.,²⁵ Nana Rokutanda, M.D., Ph.D.,²⁵ Philip He, Ph.D.,^{25,26} John F. Kurland, Ph.D.,²⁵ Gordon Cohen, M.D., M.P.H.,²⁵ and Juan W. Valle, M.D.¹⁶


TOPAZ-1 Phase III Trial Schema

BTC = biliary tract cancer

Oh D-Y et al. Gastrointestinal Cancers Symposium 2022; Abstract 378.

TOPAZ-1: Primary Overall Survival Endpoint with Durvalumab and Gemcitabine/Cisplatin for Advanced Biliary Tract Cancer

Oh D-Y et al. NEJM Evidence, June 1, 2022.

TOPAZ-1: Overall Survival Subgroup Analysis

Subgroup		Hazard Ratio (95% C
All patients	H O -1	0.80 (0.66-0.97)
Sex: female	H-++H	0.82 (0.62-1.08)
Sex: male	F	0.78 (0.60-1.01)
Age at randomization: <65 yr	F	0.80 (0.61-1.04)
Age at randomization: ≥65 yr	⊢ •−+I	0.79 (0.60-1.04)
PD-L1 expression: TAP ≥1%	H	0.79 (0.61-1.00)
PD-L1 expression: TAP <1%	F	0.86 (0.60-1.23)
Disease status at randomization: initially unresectable	⊢ ●-+	0.84 (0.69-1.03)
Disease status at randomization: recurrent	·	0.56 (0.32-0.96)
Primary tumor location: intrahepatic cholangiocarcinoma	⊢ ●−1	0.76 (0.58-0.98)
Primary tumor location: extrahepatic cholangiocarcinoma	F	0.76 (0.49-1.19)
Primary tumor location: gallbladder cancer		0.94 (0.65-1.37)
Race: Asian	⊢ ●→	0.73 (0.57-0.94)
Race: non-Asian	F •	0.89 (0.66-1.19)
Region: Asia	⊢ ●−−1	0.72 (0.56-0.94)
Region: rest of the world	F • • •	0.89 (0.66-1.19)
ECOG performance status at baseline: 0	⊢ • →	0.90 (0.68-1.20)
ECOG performance status at baseline: 1	⊢ •−−1	0.72 (0.56-0.94)
Biliary tract cancer: locally advanced	H	0.49 (0.26-0.88)
Biliary tract cancer: metastatic	H.	0.83 (0.68-1.02)
0.05 0.1	0.5 1 1.5	2
	Hazard Ratio (95% CI)	

Oh D-Y et al. *NEJM Evidence*, June 1, 2022.

TOPAZ-1: Adverse Event Summary

Parameter	Durvalumab plus Gemcitabine and Cisplatin (n=338)	Placebo plus Gemcitabine and Cisplatin (n=342)
Adverse events — no. (%)		
Any grade	336 (99.4)	338 (98.8)
Serious	160 (47.3)	149 (43.6)
Grade 3 or 4	256 (75.7)	266 (77.8)
Leading to discontinuation of any study treatment	44 (13.0)	52 (15.2)
Leading to death	12 (3.6)	14 (4.1)
Treatment-related adverse events — no. (%)		
Any grade	314 (92.9)	308 (90.1)
Serious	53 (15.7)	59 (17.3)
Grade 3 or 4	212 (62.7)	222 (64.9)
Leading to discontinuation of any study treatment	30 (8.9)	39 (11.4)
Leading to death*	2 (0.6)	1 (0.3)

Outcomes by primary tumour location in patients with advanced biliary tract cancer treated with durvalumab or placebo plus gemcitabine and cisplatin in the Phase 3 TOPAZ-1 study

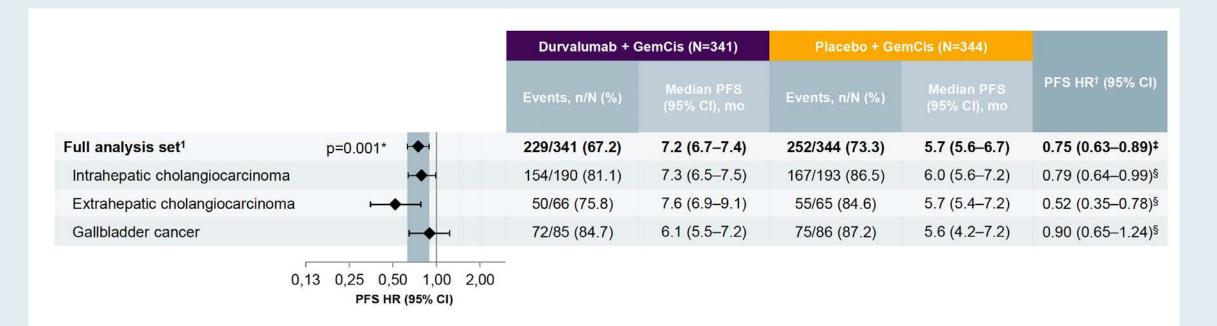
Aiwu Ruth He, MD, PhD

29 June 2022

Aiwu Ruth He, MD, PhD,¹ Juan W Valle, MD,² Choong-kun Lee, MD, PhD,³ Masafumi Ikeda, MD, PhD,⁴ Piotr Potemski, MD, PhD,⁵ Chigusa Morizane, MD, PhD,⁶ Juan Cundom, MD,⁷ David Tougeron, MD, PhD,⁸ Farshid Dayyani, MD, PhD,⁹ Nana Rokutanda, MD, PhD,¹⁰ Julia Xiong, PhD,^{11,*} Magdalena Watras, MSc,¹² Gordon Cohen, MD, MPH,¹⁰ Do-Youn Oh, MD, PhD¹³

TOPAZ-1: OS by Primary Tumor Location and Region

OS HRs were <1, favouring durvalumab, across primary tumour locations


OS benefit with durvalumab was consistent in patients with ICC and ECC, and in patients with GBC in Asia, Europe, and North America

			Durvalumab + GemCis (N=341)		Placebo + GemCis (N=344)		
			Events, n/N (%)	Median OS (95% Cl), mo	Events, n/N (%)	Median OS (95% Cl), mo	OS HR† (95% Cl)
Full analysis set ¹ p=0.	.021* 🛏		198/341 (58.1)	12.8 (11.1-14.0)	226/344 (65.7)	11.5 (10.1-12.5)	0.80 (0.66-0.97)
Intrahepatic cholangiocarcinoma	H	H	105/190 (55.3)	13.5 (11.9-15.1)	126/193 (65.3)	11.5 (9.8-12.8)	0.76 (0.58-0.98)
Asia	•		60/100 (60.0)	13.0 (9.8–14.6)	81/111 (73.0)	11.4 (9.2–12.5)	0.73 (0.52-1.02)§
Europe	-	♦	31/61 (50.8)	13.5 (9.5–18.8)	35/61 (57.4)	14.0 (8.0–18.3)	0.87 (0.53-1.42)§
North America	• •	•	→ 11/21 (52.4)	15.1 (6.8–NC)	9/18 (50.0)	13.3 (5.3-NC)	0.83 (0.33-2.12)§
South America	N	IC	3/8 (37.5)	NR (2.3-NC)	1/3 (33.3)	NR (8.0-NC)	NCII
Europe + North America	-	• •	42/82 (51.2)	13.7 (10.9–18.1)	44/79 (55.7)	13.6 (8.5–17.7)	0.85 (0.55–1.30)§
Extrahepatic cholangiocarcinoma			38/66 (57.6)	12.7 (9.8-16.6)	42/65 (64.6)	12.1 (7.8-14.4)	0.76 (0.49-1.19)
Asia			18/35 (51.4)	16.6 (12.6-NC)	27/42 (65.3)	12.8 (7.7–17.3)	0.66 (0.36-1.20)§
Europe	+	•	H 14/23 (60.9)	9.1 (8.7–NC)	12/19 (63.2)	14.4 (7.0-NC)	0.86 (0.39-1.90)§
North America	N	IC	5/6 (83.3)	11.0 (0.9-NC)	3/4 (75.0)	9.6 (3.4-NC)	NCII
South America	Ν	IC	1/2 (50.0)	NR (10.0-NC)	0	NC	NCI
Europe + North America		• •	19/29 (65.5)	9.8 (8.7–16.2)	15/23 (65.2)	12.1 (7.0–14.4)	0.86 (0.43-1.73)§
Gallbladder cancer	<u>н</u>	+	55/85 (64.7)	10.7 (8.9-13.2)	58/86 (67.4)	11.0 (8.7-12.8)	0.94 (0.65-1.37)
Asia	í í 🕂	• •	25/43 (58.1)	13.3 (9.0–20.1)	29/43 (67.4)	12.6 (8.4-17.7)	0.82 (0.48-1.40)§
Europe			18/24 (75.0)	9.6 (5.2-11.1)	22/27 (81.5)	8.1 (4.9–11.0)	0.80 (0.42-1.51)§
North America	N	IC	5/10 (50.0)	12.2 (2.6–NC)	4/6 (66.7)	10.2 (5.7–NC)	NCI
	N	IC	7/8 (87.5)	8.1 (0.9-NC)	3/10 (30.0)¶	NR (2.0-NC)	NCI
South America				10.3 (6.6-12.2)	26/33 (78.8)	8.7 (6.0-11.0)	0.78 (0.44-1.37)§

He AR et al. ESMO World Congress on Gastrointestinal Cancer; Abstract O-1.

TOPAZ-1: PFS by Primary Tumor Location

 PFS HR was statistically significant in the full analysis set for durvalumab plus GemCis versus placebo plus GemCis

He AR et al. ESMO World Congress on Gastrointestinal Cancer; Abstract O-1.

TOPAZ-1: ORR and DoR by Primary Tumor Location

	Full analysis set (N=684) ¹		Intrahepatic cholangiocarcinoma (N=383)		Extrahepatic cholangiocarcinoma (N=131)		Gallbladder cancer (N=171)	
	Durvalumab + GemCis (n=341)	Placebo + GemCis (n=343)	Durvalumab + GemCis (n=190)	Placebo + GemCis (n=193)	Durvalumab + GemCis (n=66)	Placebo + GemCis (n=65)*	Durvalumab + GemCis (n=85)	Placebo + GemCis (n=86)
ORR,† %	26.7	18.7	24.7	15.5	28.8	15.6	29.4	27.9
ORR OR (95% CI)	1.60 (1.1	1–2.31)	1.79 (1.0	07–2.97)	2.18 (0.9	92–5.16)	1.08 (0.5	5–2.09)
Median TTR, mo	1.6	2.7	2.8	2.7	1.4	2.6	1.4	2.7
Median DoR,‡ mo	6.4	6.2	6.0	6.0	8.9	6.2	6.0	6.6
DoR ≥9 mo, %	32.6	25.3	28.3	24.0	43.3	23.3	33.2	27.5
DoR ≥12 mo, %	26.1	15.0	18.9	12.0	43.3	23.3	27.6	16.5

ORR benefit for durvalumab plus GemCis was consistent and durable across primary tumour locations

ORR = objective response rate; DoR = duration of response; OR = odds ratio; TTR = time to response

He AR et al. ESMO World Congress on Gastrointestinal Cancer; Abstract O-1.

Meet The Professor with Dr Kelley

Introduction

MODULE 1: Hepatocellular Carcinoma

- Case Presentations
- Journal Club with Dr Kelley

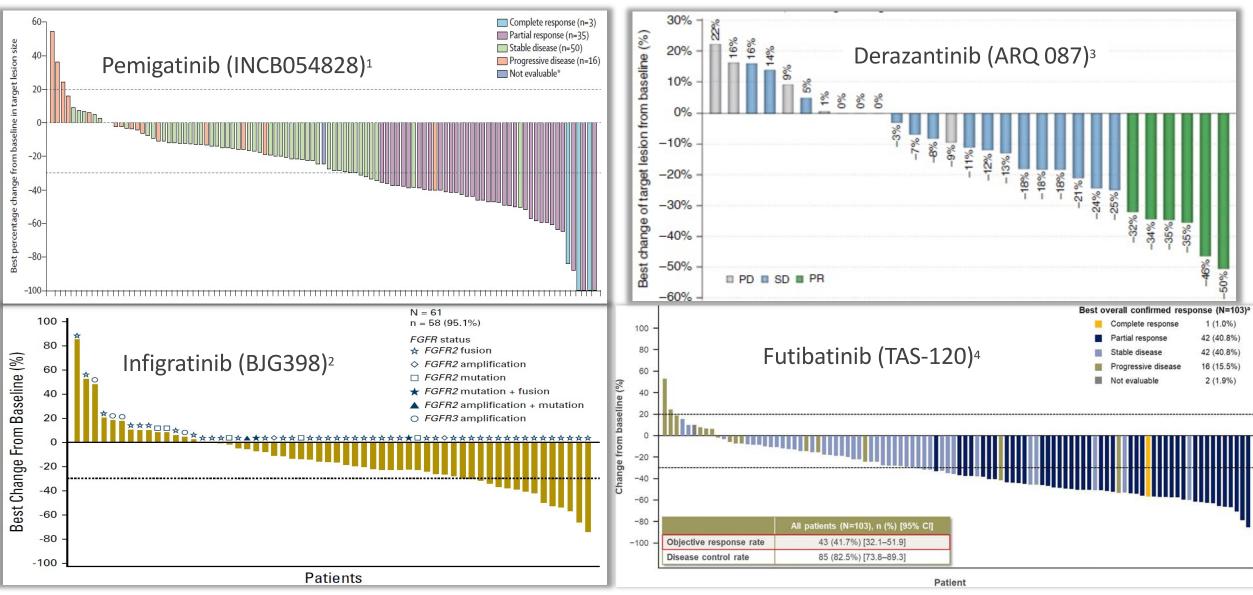
MODULE 2: Biliary Tract Cancers

- Case Presentations
 - Dr Rudolph: A 71-year-old woman with metastatic pancreaticobiliary cancer thought to be intrahepatic cholangiocarcinoma
 - Dr Levin: A 49-year-old woman with intrahepatic cholangiocarcinoma and micrometastases in portal lymph nodes
 - Dr Dallas: A 66-year-old man with metastatic cholangiocarcinoma who has stable disease on gemcitabine (NGS: MSS, PIK3CA, KRAS G12A)
 - Dr Patel: A 72-year-old man with metastatic cholangiocarcinoma with PD on chemoimmunotherapy and Y-90 (NGS: PD-L1 10%, PTEN mutation, MYC alteration)
- Key Recent Data Sets; Journal Club with Dr Kelley

MODULE 3: Appendix of Key Publications

Case Presentation: A 71-year-old woman with metastatic pancreaticobiliary cancer thought to be intrahepatic cholangiocarcinoma

Dr Priya Rudolph (Athens, Georgia)



Do you generally offer anti-PD-1/PD-L1 monotherapy to a patient with biliary tract cancer who experiences disease progression on first-line gemcitabine/cisplatin, and would your decision be dependent on PD-L1 status?

- 1. Yes, for a patient with high PD-L1
- 2. Yes, independent of PD-L1 status
- 3. No, I would not offer anti-PD-1/PD-L1 monotherapy in this setting
- 4. I'm not sure

Multiple FGFR2-targeted agents

1. Abou Alfa et al. Lancet Oncol 2020;21(5):671-684; 2. Javle et al J Clin Oncol 2018;36(3):276-282; 3. Mazzaferro et al Br J Cancer 2019;120(2):165-171; 4. Goyal et al ASCO 2022 abstr 4009

Courtesy of Professor Juan W Valle, MD

Case Presentation: A 49-year-old woman with intrahepatic cholangiocarcinoma and micrometastases in portal lymph nodes

Dr Pavel Levin (Houston, Texas)

Case Presentation: A 66-year-old man with metastatic cholangiocarcinoma who has stable disease on gemcitabine (NGS: MSS, PIK3CA, KRAS G12A)

Dr Jennifer Dallas (Charlotte, North Carolina)

Case Presentation: A 72-year-old man with metastatic cholangiocarcinoma with PD on chemoimmunotherapy and Y-90 (NGS: PD-L1 10%, PTEN mutation, MYC alteration)

Dr Minesh Patel (Peachtree City, Georgia)

Meet The Professor with Dr Kelley

Introduction

MODULE 1: Hepatocellular Carcinoma

- Case Presentations
- Journal Club with Dr Kelley

MODULE 2: Biliary Tract Cancers

- Case Presentations
- Key Recent Data Sets; Journal Club with Dr Kelley

MODULE 3: Appendix of Key Publications

Multimodal Profiling of Biliary Tract Cancers to Detect Potentially Actionable Biomarkers and Differences in Immune Signatures Between Subtypes

Mody K et al. Gastrointestinal Cancers Symposium 2021;Abstract 4023.

Final Results from ClarIDHy, a Global, Phase 3, Randomized, Double-Blind Study of Ivosidenib (IVO) versus Placebo (PBO) in Patients (pts) with Previously Treated Cholangiocarcinoma (CCA) and an Isocitrate Dehydrogenase 1 (IDH1) Mutation

Abou-Alfa GK et al. ASCO 2021;Abstract 4069.

Prevalence of Germline Mutations and Homologous Recombination Deficiency (HRD) in a Real-World Biliary Tract Cancer (BTC) Cohort

Kelley RK et al.

Gastrointestinal Cancers Symposium 2022; Abstract 476.

The Journal of Molecular Diagnostics, Vol. 24, No. 4, April 2022

jmdjournal.org

Validation and Characterization of *FGFR2* Rearrangements in Cholangiocarcinoma with Comprehensive Genomic Profiling

Ian M. Silverman,* Meijuan Li,[†] Karthikeyan Murugesan,[†] Melanie A. Krook,[‡] Milind M. Javle,[§] Robin K. Kelley,[¶] Mitesh J. Borad,^{||} Sameek Roychowdhury,[‡] Wei Meng,[†] Bahar Yilmazel,[†] Coren Milbury,[†] Shantanu Shewale,[†] Luis Feliz,** Timothy C. Burn,* and Lee A. Albacker[†]

J Gastrointest Oncol 2022;13(2):822-32.

Original Article

Biliary cancer brain metastases: a multi-institution case series with case reports

Samuel R. Falkson^{1#}[^], Karen Zhang^{2#}, Hriday P. Bhambhvani¹, Jennifer L. Wild², Ann Griffin², Robin K. Kelley², Melanie Hayden Gephart¹

Meet The Professor with Dr Kelley

Introduction

MODULE 1: Hepatocellular Carcinoma

- Case Presentations
- Journal Club with Dr Kelley

MODULE 2: Biliary Tract Cancers

- Case Presentations
- Key Recent Data Sets; Journal Club with Dr Kelley

MODULE 3: Appendix of Key Publications

First-Line Treatment for Advanced Hepatocellular Carcinoma (HCC)

FDA-Approved Systemic Therapy for Advanced HCC

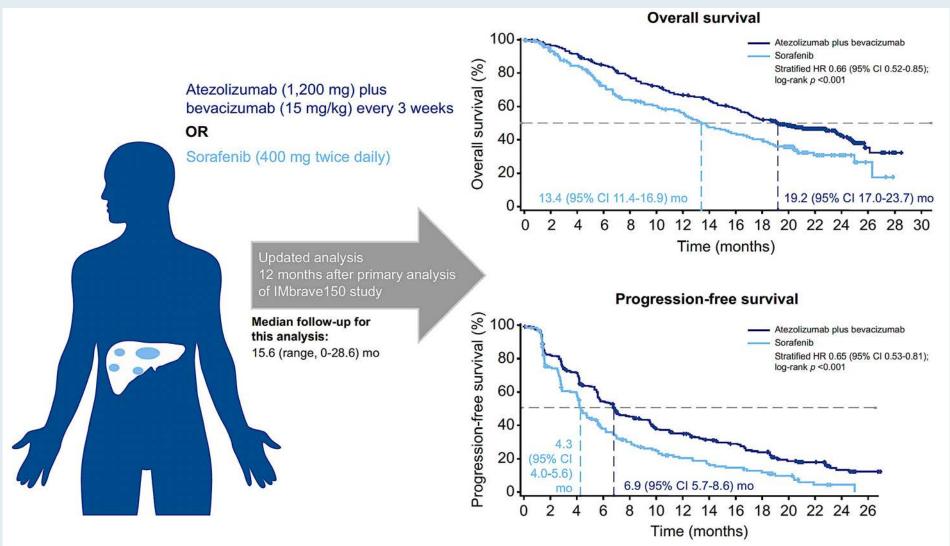
FDA-Approved Anti-VEGF-Directed Monotherapy for HCC

Approved line of therapy	Agent	Study	Primary outcomes	
Sorafenib ¹		Sorafenib vs placebo (N = 602) Phase III SHARP trial	TTP 4.1 mo vs 4.9 mo mOS 10.7 mo vs 7.9 mo	
First line	Lenvatinib ²	Lenvatinib vs sorafenib (N = 954) Phase III REFLECT trial	mPFS 7.4 mo vs 3.7 mo mOS 13.6 mo vs 12.3 mo	
Second line	Regorafenib ³	Regorafenib vs placebo (N = 573) Phase III RESORCE trial	mPFS 3.1 mo vs 1.5 mo mOS 10.7 mo vs 7.9 mo	
	Cabozantinib ⁴	Cabozantinib vs placebo (N = 707) Phase III CELESTIAL trial	mPFS 5.2 mo vs 1.9 mo mOS 10.2 mo vs 8.0 mo	
	Ramucirumab ⁵	Ramucirumab vs placebo (N = 565) Phase III REACH-2 trial	mPFS 2.8 mo vs 1.6 mo mOS 8.5 mo vs 7.3 mo	

TTP = time to progression; mPFS = median progression-free survival; mOS = median overall survival

¹Llovet JM et al. *N Engl J Med* 2008;359(4):378-90; ² Kudo M et al. *Lancet* 2018;391(10126):1163-73; ³ Bruix J et al. *Lancet* 2017;389(10064):56-66; ⁴ Abou-Alfa GK et al. *N Engl J Med* 2018;379(1):54-63; ⁵ Zhu AX et al. *Lancet Oncol* 2019;20(2):282-96.

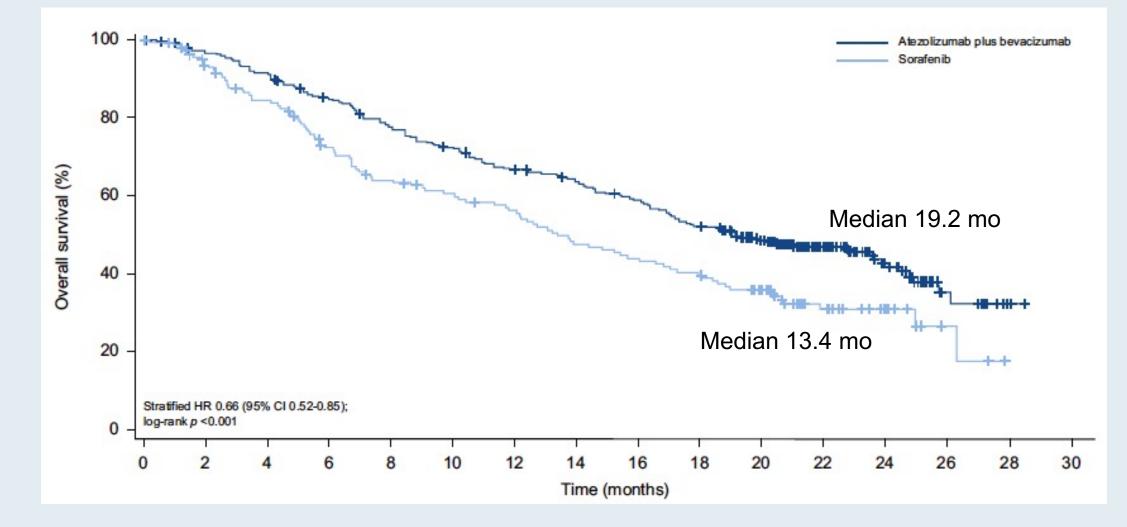
Research Article Hepatic and Biliary Cancer


Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma

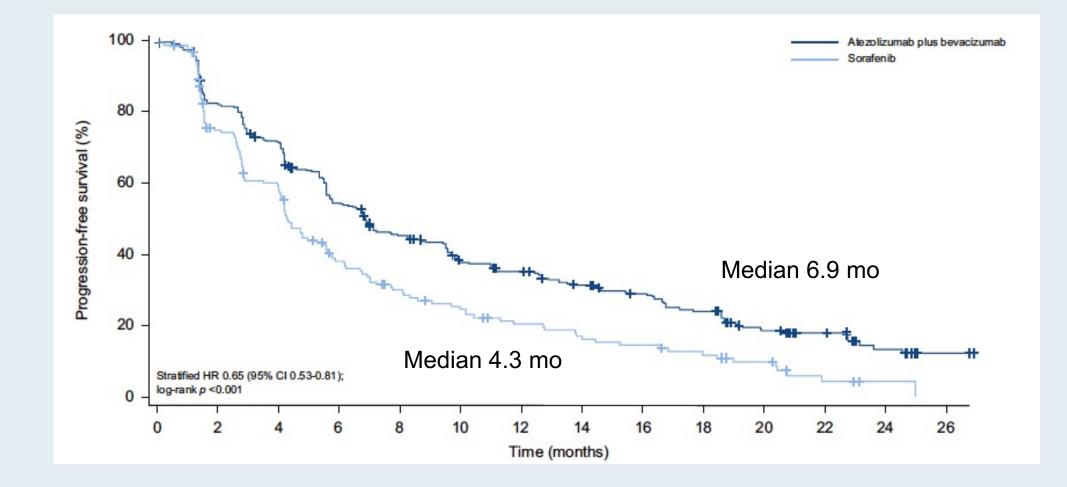
Ann-Lii Cheng^{1,*}, Shukui Qin², Masafumi Ikeda³, Peter R. Galle⁴, Michel Ducreux⁵, Tae-You Kim⁶, Ho Yeong Lim⁷, Masatoshi Kudo⁸, Valeriy Breder⁹, Philippe Merle¹⁰, Ahmed O. Kaseb¹¹, Daneng Li¹², Wendy Verret¹³, Ning Ma¹⁴, Alan Nicholas¹⁵, Yifan Wang¹⁶, Lindong Li¹⁷, Andrew X. Zhu^{18,19}, Richard S. Finn^{20,*}

J Hepatol 2022;76(4):862-73.

IMbrave150: Updated OS and PFS with Atezolizumab and Bevacizumab (Median Follow-Up = 15.6 Months)



Confirmed objective response rate: 30% with atezolizumab plus bevacizumab, 11% with sorafenib


Cheng A-L et al. J Hepatol 2022;76(4):862-73.

IMbrave150: Updated OS with Atezolizumab and Bevacizumab (Median Follow-Up = 15.6 Months)

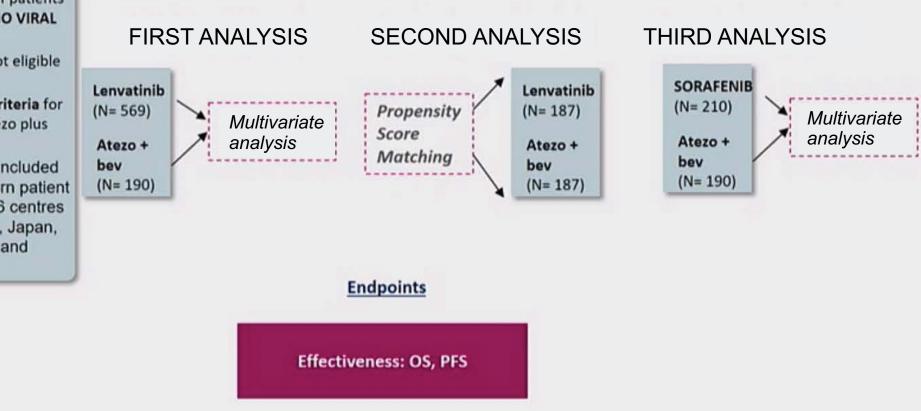
IMbrave150: Updated PFS with Atezolizumab and Bevacizumab (Median Follow-Up = 15.6 Months)

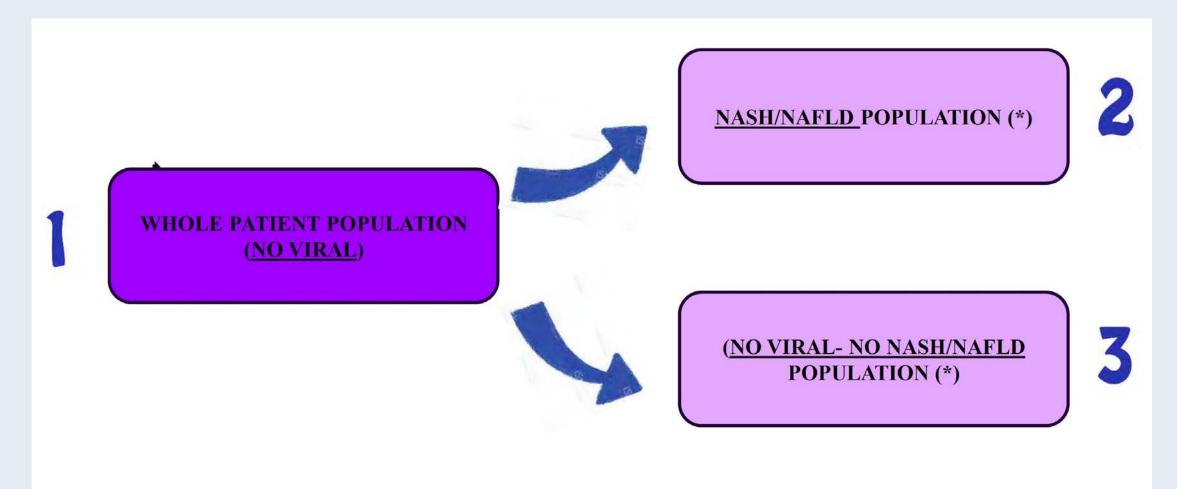
Cheng A-L et al. J Hepatol 2022;76(4):862-73.

IMbrave150 Update: Subgroup Analysis of OS with Atezolizumab and Bevacizumab (Median Follow-Up = 15.6 Months)

0.1		Atezolizumab plus bevacizumab		Sorafenib			
Subgroup	Events/ patients	Median OS, months (95% CI)	Events/ patients	Median OS, months (95% CI)	Hazard ratio for death (95% CI)		
Etiology					▲		
Hepatitis B	86/164	19.0 (16.1-NE)	46/76	12.4 (6.7-16.9)	⊢♠⊣	0.58 (0.40-0.83)	
Hepatitis C	31/72	24.6 (19.8-NE)	24/36	12.6 (7.4-18.4)	⊢ →	0.43 (0.25-0.73)	
Non-viral	63/100	17.0 (11.7-22.8)	30/53	18.1 (11.7-26.3)	⊢∳ i	1.05 (0.68-1.63)	
PD-L1 status							
TC or IC ≥1%	44/86	22.8 (17.0-NE)	24/36	12.6 (7.4-17.1)	⊢ →	0.52 (0.32-0.87)	
TC and IC <1%	27/49	19.9 (13.9-NE)	17/28	15.4 (11.4-26.3)	⊢ ♦ ¦i	0.81 (0.44-1.49)	
Unknown	109/201	18.0 (16.1-24.0)	59/101	13.4 (9.7-18.6)	⊢♠⊣	0.69 (0.50-0.94)	

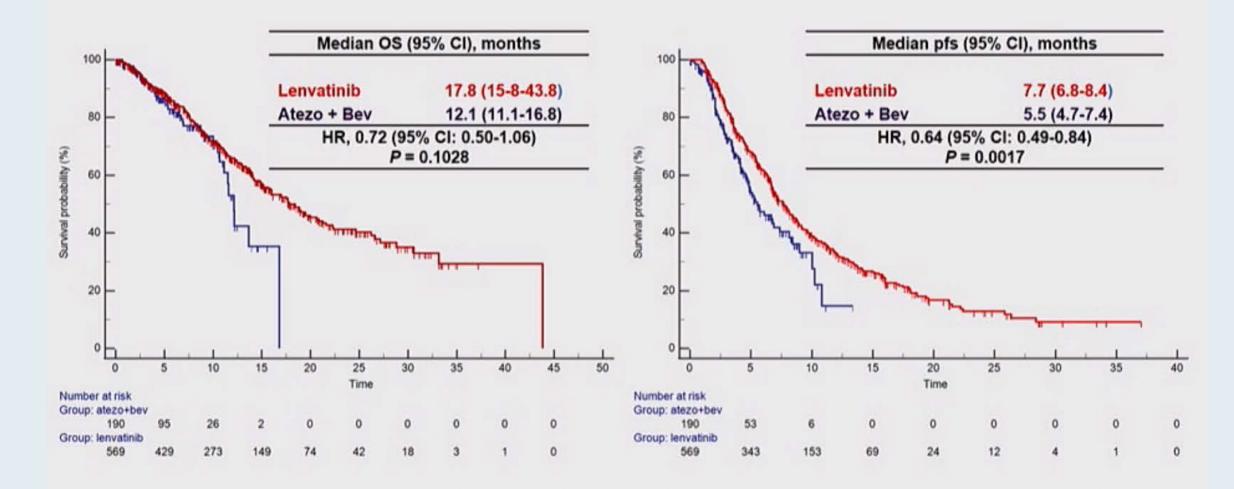
Atezolizumab Plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: An international study


ANDREA CASADEI GARDINI and MARGHERITA RIMINI SAN RAFFAELE HOSPITAL; MILAN


Study Design

- Retrospective data of patients treated in 1L WITH NO VIRAL ETIOLOGY
- BCLC-C or BCLC-B (not eligible for LRT)
- Common inclusion criteria for the use of LEN or Atezo plus bev were applied
- The overall cohort included Western and Eastern patient populations from 36 centres in 4 countries (Italy, Japan, Republic of Korea, and United Kingdom)

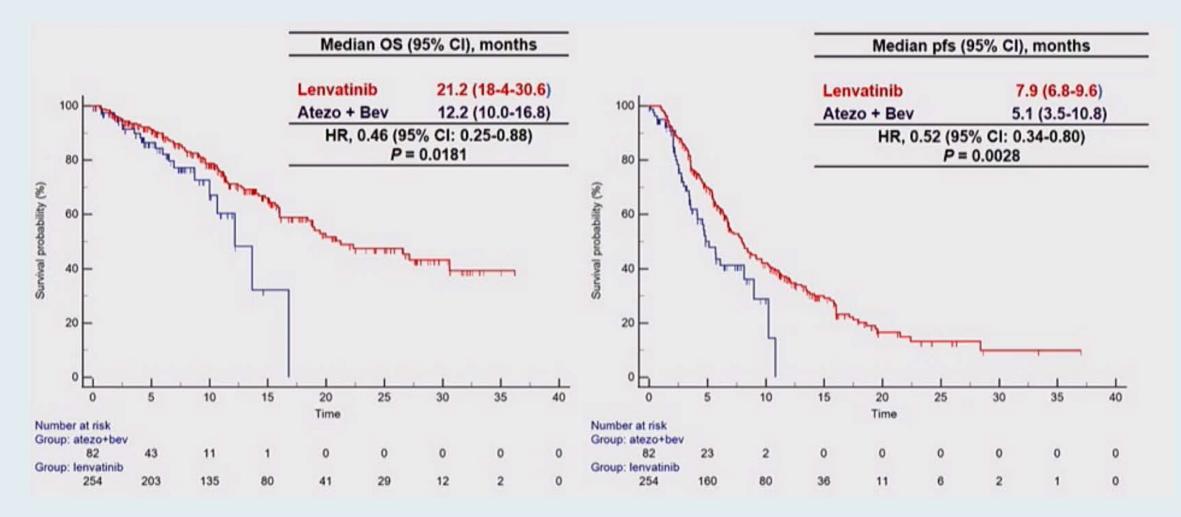
Study Design and Population



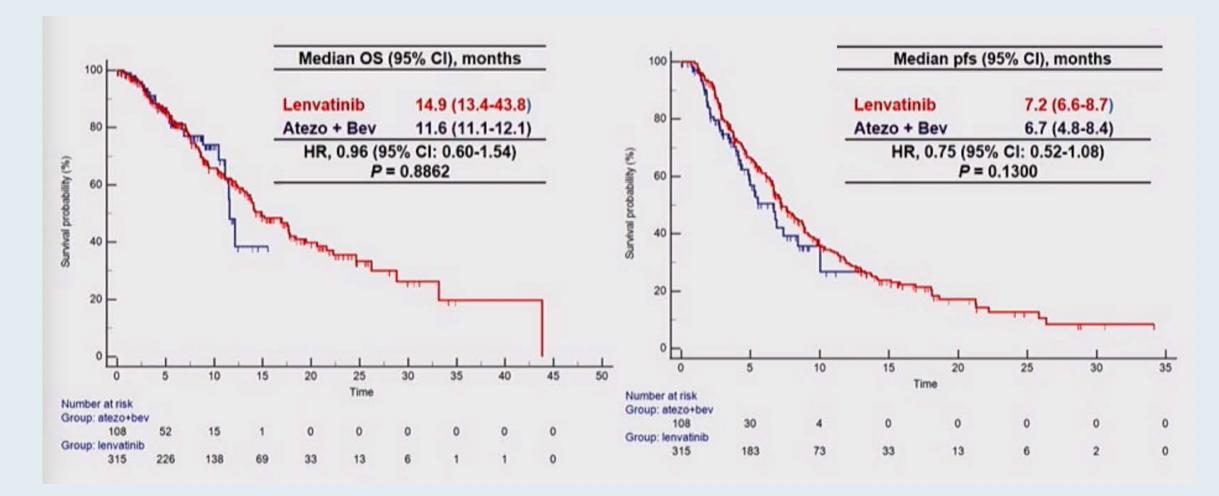
* EASL-EASD-EASO Clinical Practice Guidelines

NASH = nonalcoholic steatohepatitis; NAFLD = nonalcoholic fatty liver disease

Efficacy Results (First Study): ALL Population No Viral

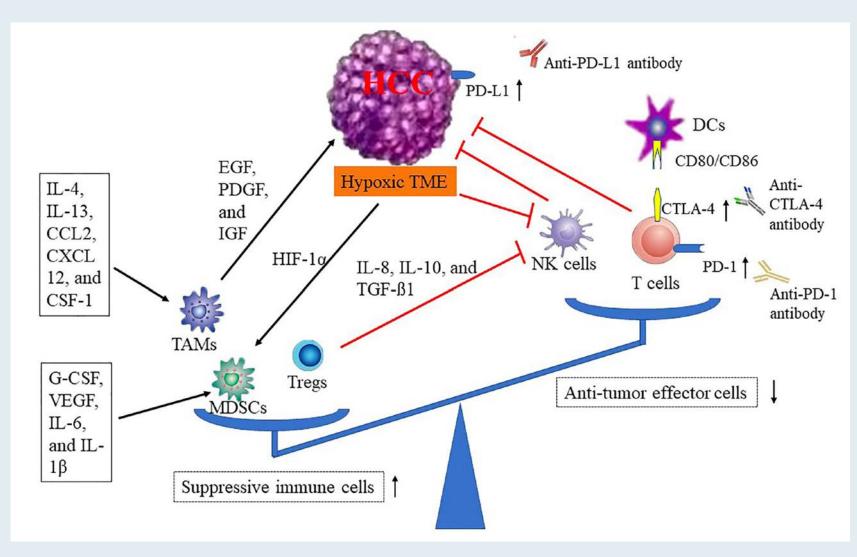


Clinical Outcomes in Whole Patient Population


	whole p	atients population	BCLC		
	Univariate HR (95% IC);	Multivariate HR (95% IC);	B C	1 1.60 (1.25-2.05)	1 1.47 (1.07-2.01)
Treatment arm Atezolizumab plus bevacizumab Lenvatinib Gender		1 0.65 (0.44-0.95) 0.0268	ECOG 0 >0	0.0002 1 0.92 (0.67-1.26) 0.5913	0.0167
Male Female Age	1 0.73 (0.54-0.99) 0.0430	1 0.74 (0.50-1.09) 0.1240	Macrovascular invasion Yes No	1 0.63 (0.46-0.87) 0.0048	
<75 >75 Previously Surgery	1 0.94 (0.73-1.20) 0.6035		AFP <400 >400	1 1.69 (1.26-2.28) 0.0005	1 1.08 (0.77-1.51) 0.6487
Yes No Previously Radiofrequency	1 1.50 (1.16-1.94) 0.0021	1 1.78 (1.26-2.14) 0.0072	NLR <3 >3	1 2.02 (1.51-2.70) <0.0001	1.66 (1.24-2.22) 0.0005
Yes No Previously TACE	1 0.87 (0.63-1.21) 0.6932		ALBI 1 2	1 5.20 (3.19-8.47)	1 1.94 (1.22-3.08)
Yes No	1 1.44 (1.12-1.84) 0.0038	1 1.70 (0.89-1.98) 0.6591	Aspartate aminotransferase AST	<0.0001 1.00 (1.00-1.00) 0.0033	0.0045 1.01 (1.00-1.01) 0.0001
Child pugh A B	1 2.19 (1.45-3.33) 0.0002	1 1.36 (0.83-2.01) 0.4270	Alanine aminotransferase (ALT)	1.00 (0.99-1.00) 0.0202	

Efficacy Results (First Study): NASH/NAFLD

Clinical Outcomes in Nonviral, Non-NASH/NAFLD Population



Conclusion

- The present analysis conducted on a large number of non-viral HCC patients showed for the first time an association with a better outcome of lenvatinib compared to atezolizumab plus bevacizumab, in particular in patients with NAFLD/NASH-related HCC.
- In light of the lack of level I evidence comparing lenvatinib to atezolizumab and bevacizumab our study adds important and novel evidence highlighting the clinical impact of underlying etiology as a factor influencing outcome from treatment of advanced HCC patients.
- Future large prospective trials are needed to validate our results and to deepen the potential role of etiology in the clinical management of these patients.

Increase in Immune Checkpoint Proteins in the Tumor Microenvironment of HCC: Rationale for Targeting PD-1/PD-L1 and CTLA-4

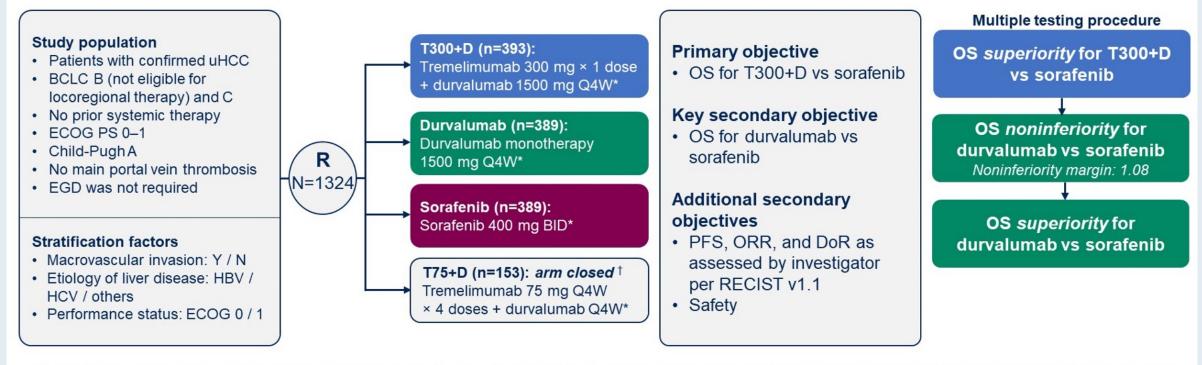
Due to the differences in timing, location, and nonoverlapping effects between the PD-1/PD-L1 and CTLA-4 signaling pathways, combination therapy concurrently targeting these 2 immune checkpoints may achieve synergistic effects in the treatment of HCC

Xing R et al. Front Immunol 2021;12:783236.

Published June 6, 2022

DOI: 10.1056/EVIDoa2100070

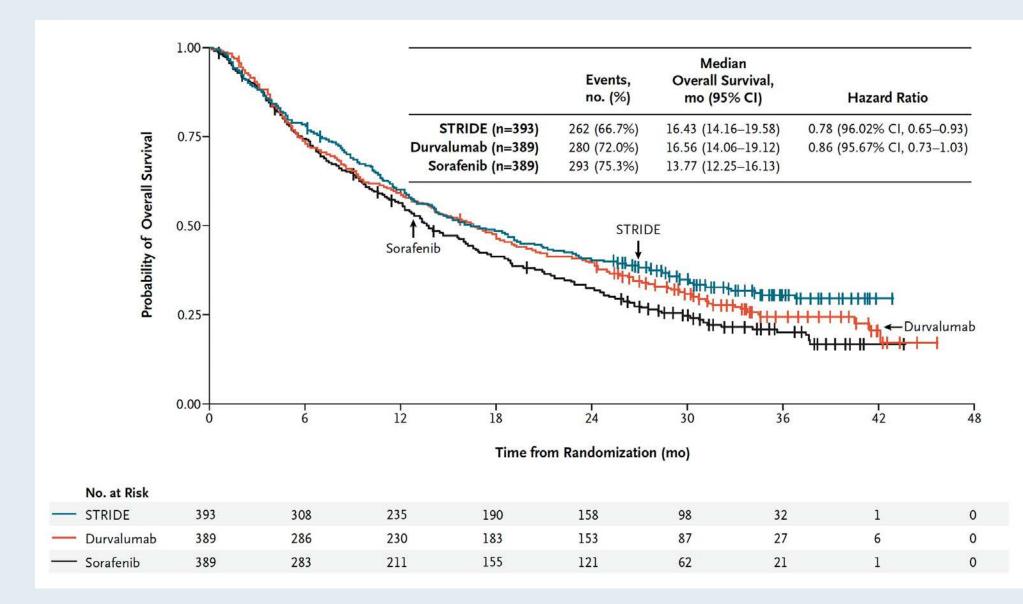
ORIGINAL ARTICLE


Tremelimumab Plus Durvalumab in Unresectable Hepatocellular Carcinoma

Ghassan K. Abou-Alfa, M.D., M.B.A.,^{1,2} George Lau, M.D., F.R.C.P.,³ Masatoshi Kudo, M.D., Ph.D.,⁴ Stephen L. Chan, M.D.,⁵ Robin Kate Kelley, M.D.,⁶ Junji Furuse, M.D., Ph.D.,⁷ Wattana Sukeepaisarnjaroen, M.D.,⁸ Yoon-Koo Kang, M.D., Ph.D.,⁹ Tu Van Dao, M.D., Ph.D.,¹⁰ Enrico N. De Toni, M.D., Ph.D.,¹¹ Lorenza Rimassa, M.D.,^{12,13} Valeriy Breder, M.D., Ph.D.,¹⁴ Alexander Vasilyev, M.D.,¹⁵ Alexandra Heurgué, M.D.,¹⁶ Vincent C. Tam, M.D.,¹⁷ Kabir Mody, M.D.,¹⁸ Satheesh Chiradoni Thungappa, M.D.,¹⁹ Yuriy Ostapenko, M.D.,²⁰ Thomas Yau, M.D.,²¹ Sergio Azevedo, M.D.,²² María Varela, M.D., Ph.D.,²³ Ann-Lii Cheng, M.D., Ph.D.,²⁴ Shukui Qin, M.D., Ph.D.,²⁵ Peter R. Galle, M.D., Ph.D.,²⁶ Sajid Ali, M.D.,²⁷ Michelle Marcovitz, Ph.D.,²⁷ Mallory Makowsky, Pharm.D.,²⁷ Philip He, Ph.D.,²⁷ John F. Kurland, Ph.D.,²⁷ Alejandra Negro, Ph.D.,²⁷ and Bruno Sangro, M.D., Ph.D.²⁸

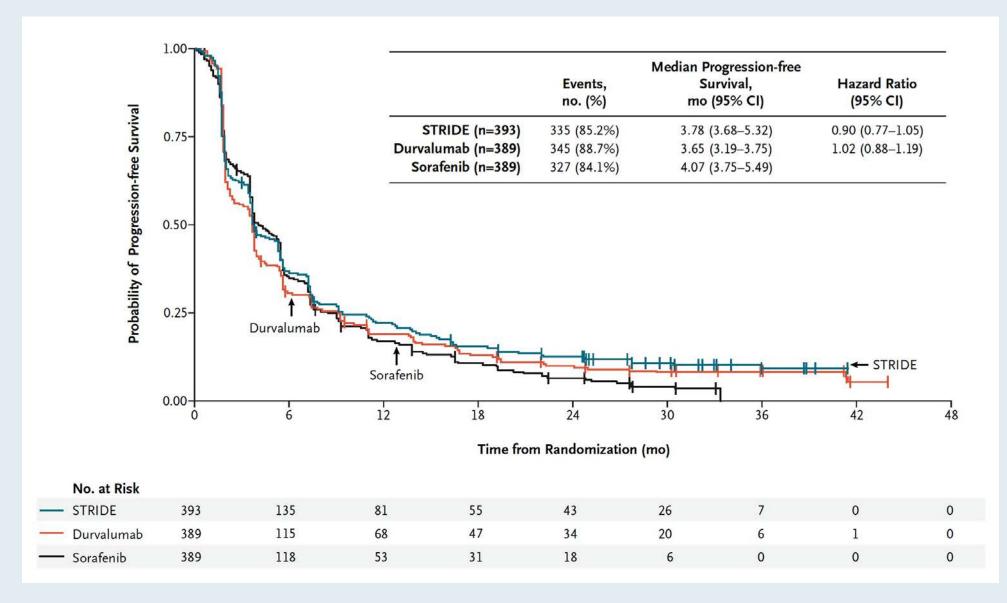
HIMALAYA Phase III Trial Schema

HIMALAYA was an open-label, multicenter, global, Phase 3 trial



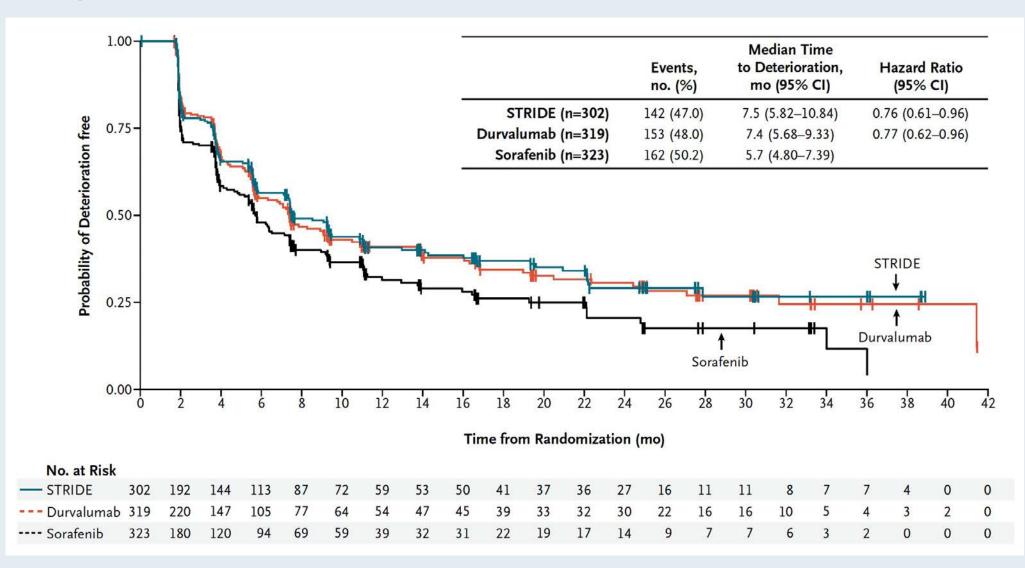
*Treatment continued until disease progression. Patients with progressive disease who, in the investigator's opinion, continued to benefit from treatment and met the criteria for treatment in the setting of progressive disease could continue treatment. †The T75+D arm was closed following a preplanned analysis of a Phase 2 study. Patients randomized to this arm (n=153) could continue treatment following arm closure. Results from this arm are not reported in this presentation.

BID, twice a day; EGD, esophagogastroduodenoscopy; Q4W, every 4 weeks.


HIMALAYA: Overall Survival

Abou-Alfa G et al. NEJM Evidence, June 6, 2022.

HIMALAYA: Progression-Free Survival


Abou-Alfa G et al. NEJM Evidence, June 6, 2022.

HIMALAYA: Response Outcomes (Intent-to-Treat Population)

Parameter	STRIDE (n=393)	Durvalumab (n=389)	Sorafenib (n=389)
Response — no. (%)			
Objective '	79 (20.1)	66 (17.0)	20 (5.1)
Complete	12 (3.1)	6 (1.5)	0
Partial	67 (17.0)	60 (15.4)	20 (5.1)
Stable disease — no. (%)	157 (39.9)	147 (37.8)	216 (55.5)
Disease control rate — %	236 (60.1)	213 (54.8)	236 (60.7)
Duration of response — mo‡			
Median	22.34	16.82	18.43
IQR	8.54–NR	7.43–NR	6.51–25.99
Time to response — mo			
Median	2.17	2.09	3.78

HIMALAYA: Time to Deterioration of Global Health Status or Quality of Life

Abou-Alfa G et al. NEJM Evidence, June 6, 2022.

HIMALAYA: Summary of Treatment-Related Adverse Events

Event	STRIDE (n=388)	Durvalumab (n=388)	Sorafenib (n=374)	T75+D (n=152)
Any	294 (75.8)	202 (52.1)	317 (84.8)	106 (69.7)
Any serious	68 (17.5)	32 (8.2)	35 (9.4)	28 (18.4)
Grade 3 or 4	100 (25.8)	50 (12.9)	138 (36.9)	32 (21.1)
Leading to discontinuation	32 (8.2)	16 (4.1)	41 (11.0)	13 (8.6)
Leading to dose delay	83 (21.4)	54 (13.9)	144 (38.5)	42 (27.6)
Leading to death	9 (2.3)†	0	3 (0.8)‡	2 (1.3)
Grade 3 or 4 immune-mediated	49 (12.6)	24 (6.2)	9 (2.4)	18 (11.8)
Any immune-mediated leading to death	6 (1.5)∬	0	0	0
Grade 3 or 4 hepatic SMQ	23 (5.9)	20 (5.2)	17 (4.5)	15 (9.9)

HIMALAYA: Select Treatment-Emergent Adverse Events

	STRIDE (STRIDE (n=388)		Durvalumab (n=388)		(n=374)	T75+D (N=152)	
Event	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4	Any Grade	Grade 3 or 4
Diarrhea	103 (26.5)	17 (4.4)	58 (14.9)	6 (1.5)	167 <mark>(</mark> 44.7)	16 (4.3)	32 (21.1)	4 (2.6)
Constipation	36 (9.3)	0	42 (10.8)	0	35 (9.4)	0	12 (7.9)	1 (0.7)
Abdominal pain	46 (11.9)	5 (1.3)	37 (9.5)	4 (1.0)	63 (16.8)	12 (3.2)	26 (17.1)	3 (2.0)
Nausea	47 (12.1)	0	37 (9.5)	0	53 (14.2)	0	14 (9.2)	0
Pruritus	89 (22.9)	0	56 (14.4)	0	24 (6.4)	1 (0.3)	27 (17.8)	0
Rash	87 (22.4)	6 (1.5)	40 (10.3)	1 (0.3)	51 (13.6)	4 (1.1)	27 (17.8)	0
Alopecia	2 (0.5)	0	5 (1.3)	0	53 (14.2)	0	1 (0.7)	0
Palmar-plantar erythrodysesthesia syndrome	3 (0.8)	0	1 (0.3)	0	174 (46.5)	34 (9.1)	3 (2.0)	1 (0.7)
Aspartate aminotransferase increased	48 (12.4)	20 (5.2)	56 (14.4)	26 (6.7)	24 (6.4)	12 (3.2)	16 (10.5)	10 (6.6)
Alanine aminotransferase increased	36 (9.3)	10 (2.6)	44 (11.3)	12 (3.1)	20 (5.3)	7 (1.9)	10 (6.6)	5 (3.3)

O-5: Outcomes by baseline liver function in patients with unresectable hepatocellular carcinoma treated with tremelimumab and durvalumab in the Phase 3 HIMALAYA study

Arndt Vogel, MD

30 June 2022

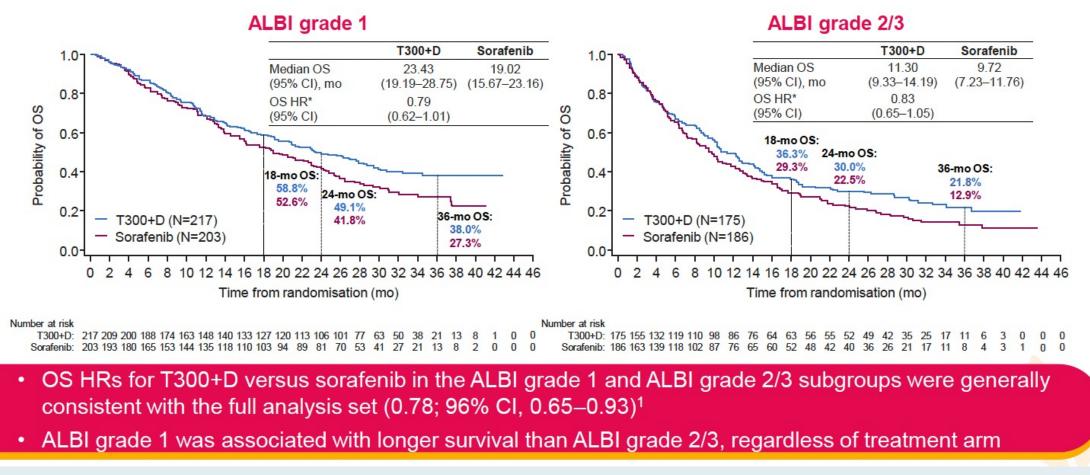
Arndt Vogel, MD,¹ Stephen L Chan, MD,² Junji Furuse, MD, PhD,³ Won Young Tak, MD, PhD,⁴ Gianluca Masi, MD,⁵ María Varela, MD, PhD,⁶ Jee Hyun Kim, MD, PhD,⁷ Suebpong Tanasanvimon, MD,⁸ Maria Reig, MD, PhD,⁹ Farshid Dayyani, MD, PhD,¹⁰ Mallory Makowsky, PharmD,¹¹ Michelle Marcovitz, PhD,¹¹ Alejandra Negro, PhD,¹¹ Ghassan K Abou-Alfa, MD, MBA^{12,13}

¹Hannover Medical School, Hannover, Germany; ²Sir Yue-Kong Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong, China; ³Kyorin University Faculty of Medicine, Mitaka, Japan; ⁴School of Medicine, Kyungpook National University, Daegu, Republic of Korea; ⁵Pisa University, Pisa, Italy; ⁶Hospital Universitario Central de Asturias, Universidad de Oviedo, Oviedo, Spain; ⁷Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea; ⁸Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; ⁹Barcelona Clinic Liver Cancer (BCLC), Hospital Clinic de Barcelona, Barcelona University, Barcelona, Spain; ¹⁰University of California, Irvine, CA, USA; ¹¹AstraZeneca, Gaithersburg, MD, USA; ¹²Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹³Weill Medical College, Cornell University, New York, NY, USA

HIMALAYA: Exploratory Liver Function Analysis

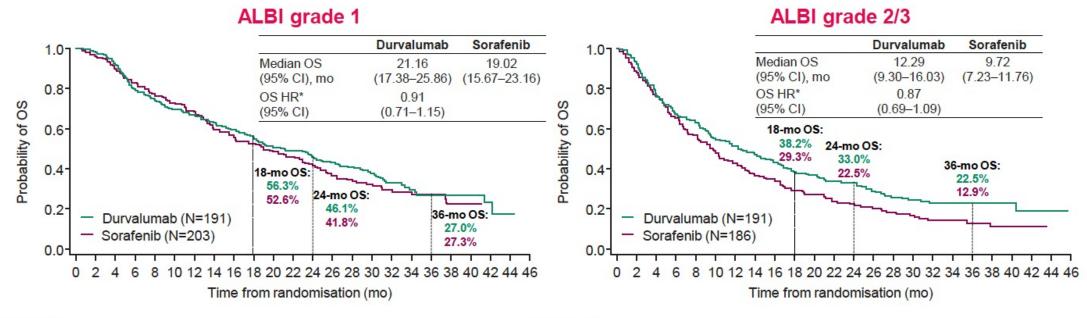
Liver function assessments

- Child-Pugh score
- ALBI score, calculated as: log10(bilirubin) × 0.66 albumin × 0.085


OS, ORR, DoR, TTR, and safety outcomes were assessed by baseline ALBI score

Baseline ALBI score subgroups:

ALBI grade 1	score ≤−2.60	Lowest risk group
ALBI grade 2	score >−2.60 to ≤−1.39	Intermediate risk group
ALBI grade 3*	score >-1.39	Highest risk group


HIMALAYA: OS for T300 + D versus Sorafenib by ALBI Grade

OS = overall survival; T300 + D = 300-mg priming dose of tremelimumab and regular schedule of durvalumab; HR = hazard ratio

RTP RESEARCH TO PRACTICE

HIMALAYA: OS for Durvalumab versus Sorafenib by ALBI Grade

Number at risk		Number at risk	
Durvalumab:	198 193 183 157 147 137 132 124 116 110 99	90 83 71 56 35 23 15 13 9 4 1 0 Durvalumab: 191 176 145 129 120 104 98 90 83 73 70 64 63 50 36 31 26 16 12 7 7	2 1 0
Sorafenib:	203 193 180 165 153 144 135 118 110 103 94	81 70 53 41 27 21 13 8 2 0 0 0 Sorafenib: 186 163 139 118 102 87 76 65 60 52 48 42 40 36 26 21 17 11 8 4 3	1 0 0

- OS HRs for durvalumab versus sorafenib in the ALBI grade 1 and ALBI grade 2/3 subgroups were generally consistent with the full analysis set (0.86; 96% CI, 0.73–1.03)¹
- ALBI grade 1 was associated with longer survival than ALBI grade 2/3, regardless of treatment arm

HIMALAYA: Response Outcomes in ALBI Grade Subgroups

	ALBI grade 1			ALBI grade 2/3			Full analysis set ¹		
Parameter	T300+D	Durvalumab	Sorafenib	T300+D	Durvalumab	Sorafenib	T300+D	Durvalumab	Sorafenib
	(n=217)	(n=198)	(n=203)	(n=175)	(n=191)	(n=186)	(n=393)	(n=389)	(n=389)
ORR,* %	21.7	18.7	7.4	18.3	15.2	2.7	20.1	17.0	5.1
Median TTR‡	2.07	1.91	3.52	3.52	3.65	9.10	2.17	2.09	3.78
(IQR), mo	(1.84–3.94)	(1.81–3.98)	(1.84–5.49)	(1.91–5.40)	(1.94–3.94)	(7.79–11.01)	(1.84–3.98)	(1.87–3.98)	(1.89–8.44)
Median DoR, ^{†,‡}	22.34	23.26	22.06	26.55	13.83	12.25	22.34	16.82	18.43
(IQR), mo	(8.71–NR)	(7.43–NR)	(6.51–25.99)	(7.43–NR)	(7.43–27.43)	(7.69–NR)	(8.54–NR)	(7.43–NR)	(6.51–25.99)

• Similar to the full analysis set¹:

- ORR was higher for T300+D and durvalumab than for sorafenib in both ALBI subgroups
- Median TTR was shorter for T300+D and durvalumab than for sorafenib in both ALBI subgroups

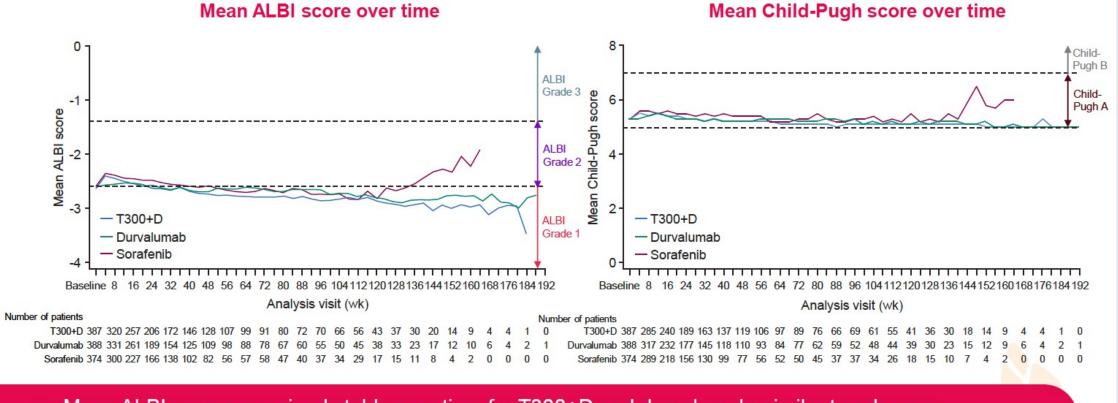
ORR = overall response rate; TTR = time to response; DoR = duration of response

HIMALAYA: Safety for T300 + D versus Sorafenib in ALBI Grade Subgroups

	ALBI grade 1		ALBI gr	ade 2/3	Safety analysis set ¹	
Patients with an event, n (%)	T300+D (n=216)	Sorafenib (n=197)	T300+D (n=171)	Sorafenib (n=177)	T300+D (n=388)	Sorafenib (n=374)
Any TEAE Any TRAE	210 (97.2) 166 (76.9)	187 (94.9) 168 (85.3)	167 (97.7) 127 (74.3)	170 (96.0) 149 (84.2)	378 (97.4) 294 (75.8)	357 (95.5) 317 (84.8)
Any grade 3/4 TEAE	111 (51.4)	102 (51.8)	85 (49.7)	94 (53.1)	196 (50.5)	196 (52.4)
Any grade 3/4 TRAE Any TEAE leading to death	59 (27.3) 8 (3.7)	76 (38.6) 11 (5.6)	41 (24.0) 22 (12.9)	62 (35.0) 16 (9.0)	100 (25.8) 30 (7.7)	138 (36.9) 27 (7.2)
Any TRAE leading to death Any serious TEAE	5 (2.3) 89 (41.2)	1 (0.5) 49 (24.9)	4 (2.3) 68 (39.8)	2 (1.1) 62 (35.0)	9 (2.3) 157 (40.5)	3 (0.8) 111 (29.7)
Any serious TRAE Any TEAE leading to	44 (20.4)	15 (7.6)	24 (14.0)	20 (11.3)	68 (17.5)	35 (9.4)
discontinuation Any TRAE leading to	27 (12.5)	20 (10.2)	26 (15.2)	43 (24.3)	53 (13.7)	63 (16.8)
discontinuation	20 (9.3)	15 (7.6)	12 (7.0)	26 (14.7)	32 (8.2)	41 (11.0)
Any immune-mediated TEAE	94 (43.5)	20 (10.2)	45 (26.3)	10 (5.6)	139 (35.8)	30 (8.0)

 In contrast to sorafenib, T300+D had a similar safety profile in both ALBI subgroups, similar to the safety analysis set¹

TEAE = treatment-emergent adverse event; TRAE = treatment-related adverse event


HIMALAYA: Safety for Durvalumab versus Sorafenib in ALBI Grade Subgroups

	ALBI grade 1		ALBI gra	ALBI grade 2/3		lysis set¹
Patients with an event,	Durvalumab	Sorafenib	Durvalumab	Sorafenib	Durvalumab	Sorafenib
n (%)	(n=198)	(n=197)	(n=190)	(n=177)	(n=388)	(n=374)
Any TEAE	171 (86.4)	187 (94.9)	174 (91.6)	170 (96.0)	345 (88.9)	357 (95.5)
Any TRAE	99 (50.0)	168 (85.3)	103 (54.2)	149 (84.2)	202 (52.1)	317 (84.8)
Any grade 3/4 TEAE	63 (31.8)	102 (51.8)	81 (42.6)	94 (53.1)	144 (37.1)	196 (52.4)
Any grade 3/4 TRAE	17 (8.6)	76 (38.6)	33 (17.4)	62 (35.0)	50 (12.9)	138 (36.9)
Any TEAE leading to death	6 (3.0)	11 (5.6)	20 (10.5)	16 (9.0)	26 (6.7)	27 (7.2)
Any TRAE leading to death	0	1 (0.5)	0	2 (1.1)	0	3 (0.8)
Any serious TEAE	48 (24.2)	49 (24.9)	67 (35.3)	62 (35.0)	115 (29.6)	111 (29.7)
Any serious TRAE	14 (7.1)	15 (7.6)	18 (9.5)	20 (11.3)	32 (8.2)	35 (9.4)
Any TEAE leading to discontinuation	10 (5.1)	20 (10.2)	22 (11.6)	43 (24.3)	32 (8.2)	63 (16.8)
Any TRAE leading to discontinuation	4 (2.0)	15 (7.6)	12 (6.3)	26 (14.7)	16 (4.1)	41 (11.0)
Any immune-mediated TEAE	25 (12.6)	20 (10.2)	39 (20.5)	10 (5.6)	64 (16.5)	30 (8.0)

• Durvalumab had a similar safety profile in both ALBI subgroups, similar to the safety analysis set¹

HIMALAYA: Liver Function Over Time in the Study Population

 Mean ALBI scores remained stable over time for T300+D and durvalumab; similar trends were observed in Child-Pugh scores

HIMALAYA: Conclusions

In this exploratory analysis from the Phase 3 HIMALAYA study:

- The STRIDE (T300+D) regimen and durvalumab monotherapy showed favourable benefitrisk profiles compared with sorafenib, irrespective of baseline ALBI grade
- Improvement in overall survival and duration of response with the STRIDE (T300+D) regimen versus sorafenib was consistent across ALBI subgroups
- Liver function was stable over time for patients who remained on the study in either the STRIDE (T300+D) or durvalumab groups
- Safety in both ALBI subgroups was generally consistent with the full analysis set¹
- ALBI grade is prognostic of response with the STRIDE (T300+D) regimen, durvalumab monotherapy, or sorafenib
- These results support the use of the STRIDE (T300+D) regimen as a new treatment option in patients with unresectable HCC

Select Ongoing Phase III Trials of Combination Therapy for Locoregional HCC

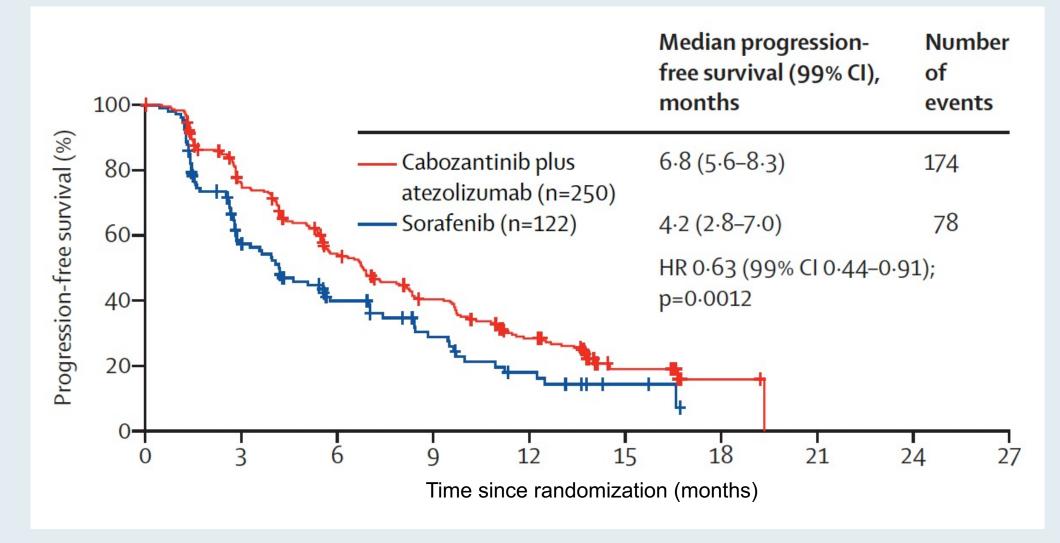
Study	N	Eligibility	Randomization arms	Est primary completion
EMERALD-1	724	Child-Pugh A-B7 Not amenable to curative surgery, transplant or ablation	 TACE + durvalumab TACE + durvalumab + bevacizumab TACE + placebo 	September 2022
EMERALD-2	877	Child-Pugh score of 5-6 High risk of recurrence after curative resection or ablation	 Durvalumab + bevacizumab q3wk Durvalumab + placebo q3wk Durvalumab + placebo q2wk 	June 2023
EMERALD-3	525	Child-Pugh A Not amenable to curative surgery, transplant or ablation	 TACE + durvalumab + tremelimumab + lenvatinib TACE + durvalumab + tremelimumab TACE 	October 2025

TACE = transarterial chemoembolization

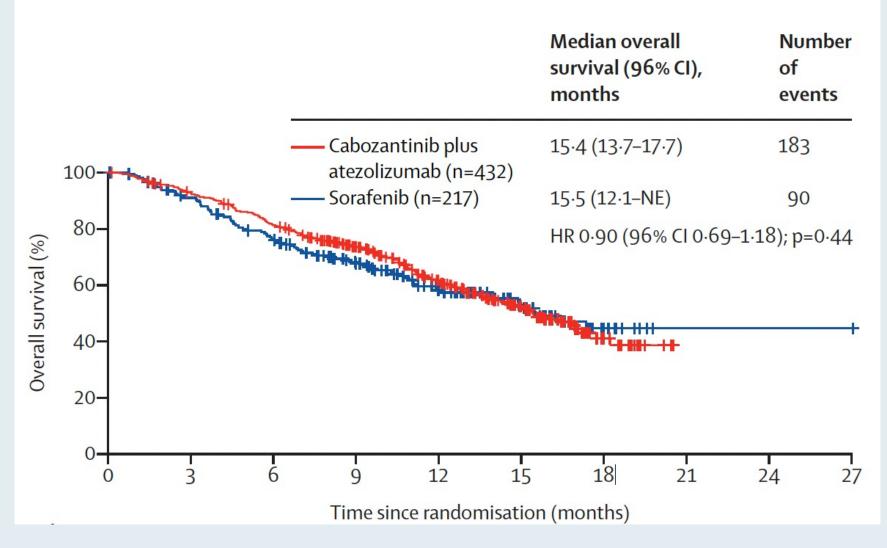
www.clinicaltrials.gov. Accessed June 2022.

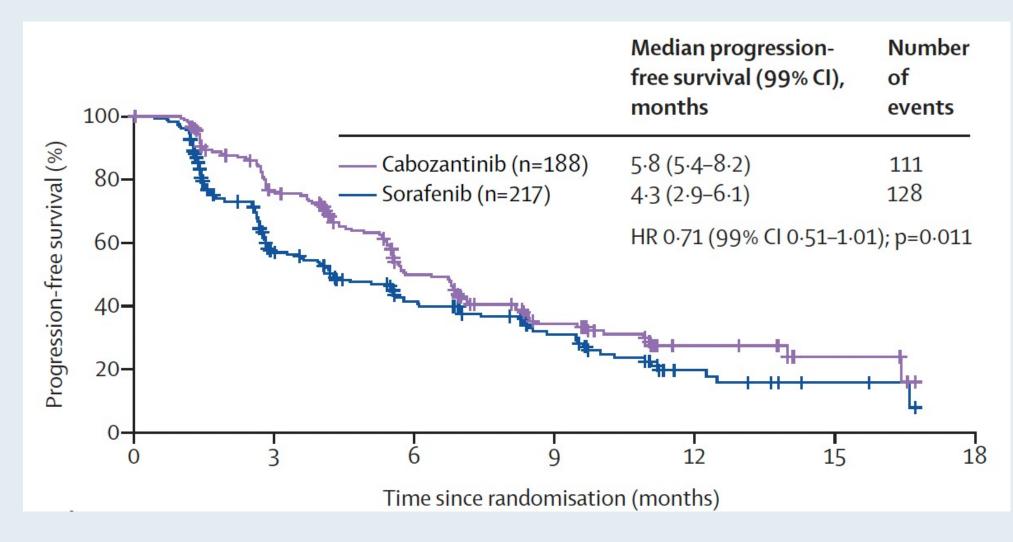
Lancet Oncol 2022;[Online ahead of print].

Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial



Robin Kate Kelley*, Lorenza Rimassa*, Ann-Lii Cheng, Ahmed Kaseb, Shukui Qin, Andrew X Zhu, Stephen L Chan, Tamar Melkadze, Wattana Sukeepaisarnjaroen, Valery Breder, Gontran Verset, Edward Gane, Ivan Borbath, Jose David Gomez Rangel, Baek-Yeol Ryoo, Tamta Makharadze, Philippe Merle, Fawzi Benzaghou, Kamalika Banerjee, Saswati Hazra, Jonathan Fawcett, Thomas Yau


COSMIC-312: Progression-Free Survival in the ITT Population (Final Analysis)


Kelley RK et al. Lancet Oncol 2022;[Online ahead of print].

COSMIC-312: Overall Survival in the ITT Population (Interim Analysis)

Kelley RK et al. Lancet Oncol 2022;[Online ahead of print].

COSMIC-312: Interim Analysis of PFS for Cabozantinib versus Sorafenib

COSMIC-312: Tumor Response by Blinded Independent Review Committee

Progression-free survi	val ITT population	ITT population		
Cabozantinib plus atezolizumab (n=250)	Sorafenib (n=122)	Cabozantinib plus atezolizumab (n=432)	Sorafenib (n=217)	Cabozantinib (n=188)
32 (13%, 8.9–17.6)	6 (5%, 1.8–10.4)	47 (11%, 8.1–14.2)	8 (4%, 1.6-7.1)	12 (6%, 3.3-10.9)
1(<1%)	0	1(<1%)	0	0
31 (12%)	6 (5%)	46 (11%)	8 (4%)	12 (6%)
172 (69%)	71 (58%)	290 (67%)	132 (61%)	145 (77%)
32 (13%)	26 (21%)	61 (14%)	44 (20%)	20 (11%)
12 (5%)	19 (16%)	29 (7%)	32 (15%)	8 (4%)
2 (1%)	0	5 (1%)	1 (<1%)	3 (2%)
204 (82%)	77 (63%)	337 (78%)	140 (65%)	157 (84%)
4.1 (2.5-8.4)	3.5 (1.5-4.5)	4.0 (2.6-8.3)	3.5 (2.1-4.4)	4.2 (2.1-5.6)
12·4 (9·8-NE)	8.4 (3.0-NE)	10.6 (7.1–12.7)	8.8 (3.0-NE)	15·1 (4·4-NE)
7.1 (6.3-8.5)	4.2 (2.9-7.0)	7.0 (6.7-8.3)	4.6 (3.6-6.1)	6.8 (5.6-8.2)
	Cabozantinib plus atezolizumab (n=250) 32 (13%, 8·9–17·6) 1 (<1%) 31 (12%) 172 (69%) 32 (13%) 12 (5%) 2 (13%) 2 (1%) 204 (82%) 4·1 (2·5–8·4) 12·4 (9·8–NE)	atezolizumab (n=250) (n=122) 32 (13%, 8·9-17·6) 6 (5%, 1·8-10·4) 1 (<1%)	Cabozantinib plus atezolizumab (n=250) Sorafenib (n=122) Cabozantinib plus atezolizumab (n=432) 32 (13%, 8·9–17·6) 6 (5%, 1·8–10·4) 47 (11%, 8·1–14·2) 1 (<1%)	Cabozantinib plus atezolizumab (n=250) Sorafenib (n=122) Cabozantinib plus atezolizumab (n=432) Sorafenib (n=217) 32 (13%, 8·9-17·6) 6 (5%, 1·8-10·4) 47 (11%, 8·1-14·2) 8 (4%, 1·6-7·1) 1 (<1%)

Data are n (%) unless otherwise indicated. ITT=intention-to-treat. NE=not estimable. RECIST 1.1=Response Evaluation Criteria in Solid Tumors version 1.1. *Disease control was defined as the proportion of patients with a complete response, partial response, or stable disease (post-hoc analysis). BIRC=blinded independent radiology committee.

Kelley RK et al. Lancet Oncol 2022;[Online ahead of print].

COSMIC-312: Select Adverse Events

	Cabozantinib plus atezolizumab (n=429)				Sorafenib (n=207)				Cabozantinib (n=188)			
	Grade 1-2	Grade 3	Grade 4	Grade 5	Grade 1-2	Grade 3	Grade 4	Grade 5	Grade 1-2	Grade 3	Grade 4	Grade 5
Any event	104 (24%)	245 (57%)	28 (7%)	51 (12%)	87 (42%)	84 (41%)	11 (5%)	23 (11%)	44 (23%)	101 (54%)	12 (6%)	30 (16%)
Diarrhoea	190 (44%)	18 (4%)	0	0	93 (45%)	4 (2%)	0	0	91 (48%)	12 (6%)	0	0
Palmar-plantar erythrodysaesthesia syndrome	148 (34%)	<mark>35 (</mark> 8%)	0	0	75 (36%)	17 (8%)	0	0	66 (35%)	16 (9%)	0	0
Aspartate aminotransferase increased	92 (21%)	37 (9%)	0	0	22 (11%)	7 (3%)	1(<1%)	0	43 (23%)	18 (10%)	0	0
Alanine aminotransferase increased	89 (21%)	35 (8%)	3 (1%)	0	17 (8%)	5 (2%)	1(<1%)	0	43 (23%)	12 (6%)	0	0
Decreased appetite	109 (25%)	7 (2%)	0	0	37 (18%)	4 (2%)	0	0	69 (37%)	9 (5%)	0	0
Fatigue	91 (21%)	15 (3%)	0	0	25 (12%)	8 (4%)	0	0	52 (28%)	7 (4%)	0	0
Hypertension	63 (15%)	37 (9%)	0	0	21 (10%)	17 (8%)	0	0	32 (17%)	23 (12%)	0	0

Kelley RK et al. *Lancet Oncol* 2022;[Online ahead of print].

Selection and Sequencing of Therapies for Relapsed/Refractory HCC

FDA-Approved Anti-VEGF-Directed Monotherapy for HCC

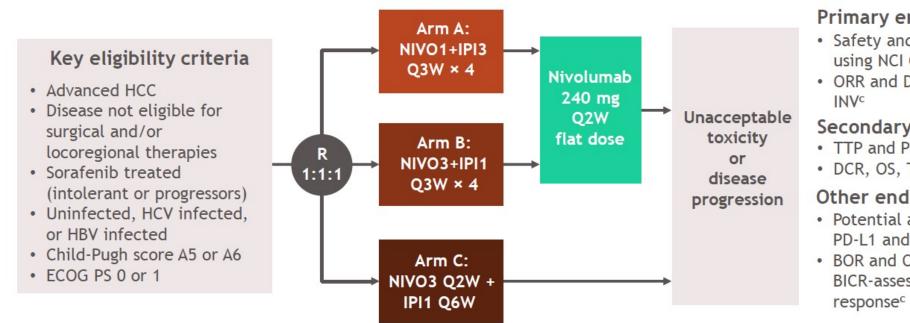
Approved line of therapy	Agent	Study	Primary outcomes		
First line	Sorafenib ¹	Sorafenib vs placebo (N = 602) Phase III SHARP trial	TTP 4.1 mo vs 4.9 mo mOS 10.7 mo vs 7.9 mo		
First line	Lenvatinib ²	Lenvatinib vs sorafenib (N = 954) Phase III REFLECT trial	mPFS 7.4 mo vs 3.7 mo mOS 13.6 mo vs 12.3 mo		
Second line	Regorafenib ³	Regorafenib vs placebo (N = 573) Phase III RESORCE trial	mPFS 3.1 mo vs 1.5 mo mOS 10.7 mo vs 7.9 mo		
	Cabozantinib ⁴	Cabozantinib vs placebo (N = 707) Phase III CELESTIAL trial	mPFS 5.2 mo vs 1.9 mo mOS 10.2 mo vs 8.0 mo		
	Ramucirumab ⁵	Ramucirumab vs placebo (N = 565) Phase III REACH-2 trial	mPFS 2.8 mo vs 1.6 mo mOS 8.5 mo vs 7.3 mo		

TTP = time to progression; mPFS = median progression-free survival ; mOS = median overall survival

¹Llovet JM et al. *N Engl J Med* 2008;359(4):378-90; ² Kudo M et al. *Lancet* 2018;391(10126):1163-73; ³ Bruix J et al. *Lancet* 2017;389(10064):56-66; ⁴ Abou-Alfa GK et al. *N Engl J Med* 2018;379(1):54-63; ⁵ Zhu AX et al. *Lancet Oncol* 2019;20(2):282-96.

Nivolumab plus ipilimumab combination therapy in patients with advanced hepatocellular carcinoma: 5-year results from CheckMate 040

Ignacio Melero,¹ Thomas Yau,² Yoon-Koo Kang,³ Tae-You Kim,⁴ Armando Santoro,⁵ Bruno Sangro,⁶ Masatoshi Kudo,⁷ Ming-Mo Hou,⁸ Ana Matilla,⁹ Francesco Tovoli,¹⁰ Jennifer Knox,¹¹ Aiwu Ruth He,¹² Bassel El-Rayes,¹³ Mirelis Acosta-Rivera,¹⁴ Ho Yeong Lim,¹⁵ Samira Soleymani,¹⁶ Jin Yao,¹⁶ Jaclyn Neely,¹⁶ Marina Tschaika,¹⁶ Chiun Hsu,¹⁷ Anthony B. El-Khoueiry¹⁸


¹Clinica Universidad de Navarra and CIBERONC, Pamplona, Spain; ²University of Hong Kong, Hong Kong, China; ³University of Ulsan, Seoul, South Korea; ⁴Seoul National University, Seoul, South Korea; ⁵Humanitas University and IRCCS Humanitas Research Hospital - Humanitas Cancer Center, Rozzano, Italy; ⁶Clinica Universidad de Navarra-CCUN and CIBEREHD, Pamplona, Spain; ⁷Kindai University Faculty of Medicine, Osaka, Japan; ⁸Chang Gung Memorial Hospital, Taipei, Taiwan; ⁹Hospital General Universitario Gregorio Marañón CIBEREHD, Madrid, Spain; ¹⁰University of Bologna, Bologna, Italy; ¹¹Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹²Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA; ¹³University of Alabama at Birmingham, AL, USA; ¹⁴Fundacion de Investigacion, San Juan, Puerto Rico; ¹⁵School of Medicine, Sungkyunkwan University, Korea; ¹⁶Bristol Myers Squibb, Princeton, NJ, USA; ¹⁷National Taiwan University Hospital, Taipei, Taiwan; ¹⁸USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA

Abstract Number SO-12

Primary publication: Yau T, et al. JAMA Oncol 2020;6:e204564.

CheckMate 040: Phase I/II Study Design

Primary endpoints:

- Safety and tolerability using NCI CTCAE v4.0
- ORR and DOR based on

Secondary endpoints:

- TTP and PFS by BICR and INV^b
- DCR, OS, TTR

Other endpoints:

- Potential association between PD-L1 and clinical efficacy
- BOR and ORR based on BICR-assessed tumor

• At data cutoff (September 28, 2021), minimum follow-up^d was 60 months

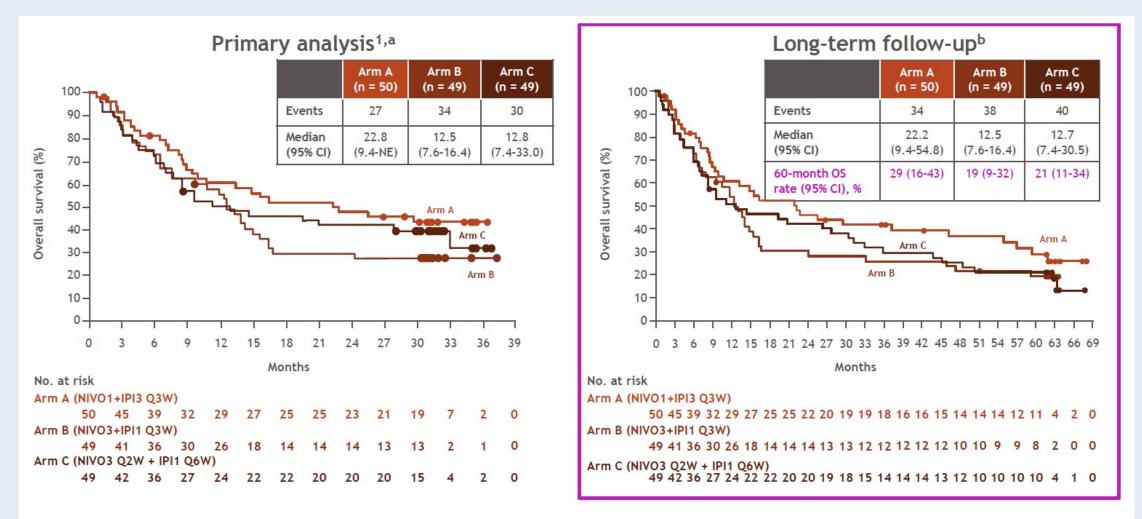
a Clinical Trials.gov number, NCT01658878; b Tumor assessments were conducted using computed tomography or magnetic resonance imaging per RECIST v1.1 at baseline; every 6 weeks for 48 weeks; then every 12 weeks until disease progression or treatment discontinuation. Treatment beyond progression was permitted if the patient experienced clinical benefit and tolerated the study treatment per investigator assessment; ^cUsing RECIST v1.1; ^dTime from last patient randomized to clinical data cutoff.

Melero I et al. ESMO World Congress on Gastrointestinal Cancer 2022; Abstract SO-12.

CheckMate 040: 5-Year Efficacy Results

	Arm A NIVO1+IPI3 Q3W (n = 50)		NIVO3+I	m B PI1 Q3W : 49)	Arm C NIVO3 Q2W + IPI1 Q6W (n = 49)		
	INV	BICR	INV	BICR	INV	BICR	
ORR per RECIST v1.1, % (95% CI) ^{a,b}	34 (21-49)	32 (20-47)	27 (15-41)	31 (18-45)	29 (17-43)	31 (18-45)	
CR, n (%)	1 (2)	4 (8)	1 (2)	3 (6)	0	1 (2)	
PR, n (%)	16 (32)	12 (24)	12 (24)	12 (24)	14 (29)	14 (29)	
SD, n (%)	15 (30)	9 (18)	9 (18)	5 (10)	8 (16)	9 (18)	
Non-CR/non-PD, n (%)	NA	2 (4)	NA	1 (2)	NA	0	
PD, n (%)	16 (32)	20 (40)	24 (49)	24 (49)	22 (45)	21 (43)	
TTR, median (range), months	2.6 (1.2-12.8)	2.0 (1.1-12.8)	2.6 (1.2-4.1)	2.6 (1.2-5.5)	1.6 (1.2-5.5)	2.7 (1.2-8.7)	
DOR, median (95% CI), months	51.2 (12.6-NE)	17.5 (8.3-NE)	15.2 (7.1-NE)	22.2 (4.4-NE)	21.7 (4.2-NE)	16.6 (4.3-NE)	
DCR, % (95% CI) ^c	64 (49-77)	54 (39-68)	45 (31-60)	43 (29-58)	45 (31-60)	49 (34-64)	
DDC, median (95% CI), months ^d	NA	16.6 (8.2-28.4)	NA	16.5 (7.0-55.3)	NA	11.5 (5.5-23.2)	
PFS, median (95% CI), months	6.8 (2.7-16.4)	3.9 (2.6-8.3)	2.7 (1.4-4.2)	1.6 (1.3-6.9)	2.7 (1.4-4.4)	2.6 (1.3-4.5)	

• After a minimum follow-up of 60 months, outcomes were consistent with the primary analysis¹


• Durable responses were achieved across the treatment arms

INV = investigator; BICR = blinded independent central review

Melero I et al. ESMO World Congress on Gastrointestinal Cancer 2022; Abstract SO-12.

CheckMate 040: 5-Year Overall Survival

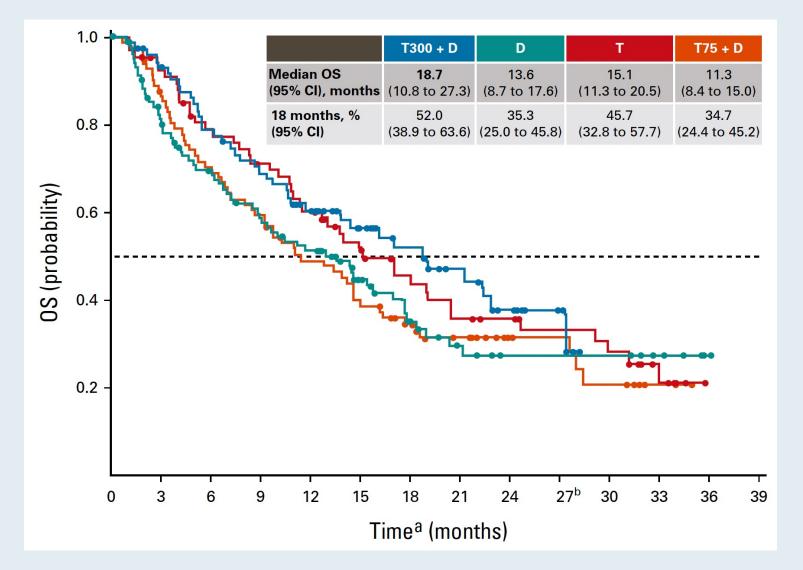
^aMedian follow-up, 30.7 months; ^bMedian follow-up, 62.6 months; minimum follow-up, 60 months. 1. Yau T, et al. JAMA Oncol 2020;6:e204564.

Melero I et al. ESMO World Congress on Gastrointestinal Cancer 2022; Abstract SO-12.

Safety, Efficacy, and Pharmacodynamics of Tremelimumab Plus Durvalumab for Patients With Unresectable Hepatocellular Carcinoma: Randomized Expansion of a Phase I/II Study Robin Kate Kelley, MD¹; Bruno Sangro, MD, PhD²; William Harris, MD³; Masafumi Ikeda, MD, PhD⁴; Takuji Okusaka, MD, PhD⁵; Yoon-Koo Kang, MD, PhD⁶; Shukui Qin, MD, PhD⁷; David W.-M. Tai, MD⁸; Ho Yeong Lim, MD⁹; Thomas Yau, MD¹⁰; Wei-Peng Yong, MD¹

Robin Kate Kelley, MD¹; Bruno Sangro, MD, PhD²; William Harris, MD³; Masafumi Ikeda, MD, PhD⁴; Takuji Okusaka, MD, PhD⁵; Yoon-Koo Kang, MD, PhD⁶; Shukui Qin, MD, PhD⁷; David W.-M. Tai, MD⁸; Ho Yeong Lim, MD⁹; Thomas Yau, MD¹⁰; Wei-Peng Yong, MD¹¹; Ann-Lii Cheng, MD, PhD¹²; Antonio Gasbarrini, MD¹³; Silvia Damian, MD¹⁴; Jordi Bruix, MD¹⁵; Mitesh Borad, MD¹⁶; Johanna Bendell, MD¹⁷; Tae-You Kim, MD¹⁸; Nathan Standifer, PhD¹⁹; Philip He, PhD²⁰; Mallory Makowsky, PharmD²⁰; Alejandra Negro, PhD²⁰; Masatoshi Kudo, MD, PhD²¹; and Ghassan K. Abou-Alfa, MD, MBA^{22,23}

J Clin Oncol 2021;39(27):2991-3001.


Durvalumab and Tremelimumab Alone or in Combination for Progressive HCC After Prior Sorafenib: Response Outcomes

Outcome	T300 + D (n = 75)	Durvalumab (n = 104)	Tremelimumab (n = 69)	T75 + D (n = 84)
ORR	24%	11%	7%	10%
CR	1%	0	0	2%
PR	17%	11%	5%	6%
SD	16%	28%	29%	23%
Disease control rate	34%	39%	34%	31%
Median DoR	Not reached	11 mo	24 mo	13 mo
Median PFS	2.2 mo	2.1 mo	2.7 mo	1.9 mo

ORR = objective response rate; CR = complete response; PR = partial response; SD = stable disease; DoR = duration of response; PFS = progression-free survival

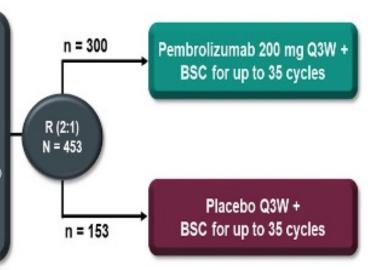
Durvalumab and Tremelimumab Alone or in Combination for Progressive HCC After Prior Sorafenib: Overall Survival

Kelley RK et al. J Clin Oncol 2021;39(27):2991-3001.

Pembrolizumab Plus Best Supportive Care Versus Placebo Plus Best Supportive Care as Second-line Therapy in Patients in Asia With Advanced Hepatocellular Carcinoma: Phase 3 KEYNOTE-394 Study

Shukui Qin, MD¹; Zhendong Chen, MD²; Weijia Fang, MD³; Zhenggang Ren, MD⁴; Ruocai Xu, MD⁵; Baek-Yeol Ryoo, MD⁶; Zhiqiang Meng, MD⁷; Yuxian Bai, MD⁸; Xiaoming Chen, MD^{9,10}; Xiufeng Liu, MD¹; Juxiang Xiao, MD¹¹; Gwo Fuang Ho, MRCP, MBChB¹²; Yimin Mao, MD¹³; Xin Wang, MD¹⁴; Jieer Ying, MD¹⁵; Jianfeng Li, MD¹⁶; Wen Yan Zhong, PhD¹⁷; Yu Zhou, MD¹⁷; Abby B. Siegel, MD¹⁸; Chunyi Hao, MD¹⁹

Gastrointestinal Cancers Symposium 2022; Abstract 383.

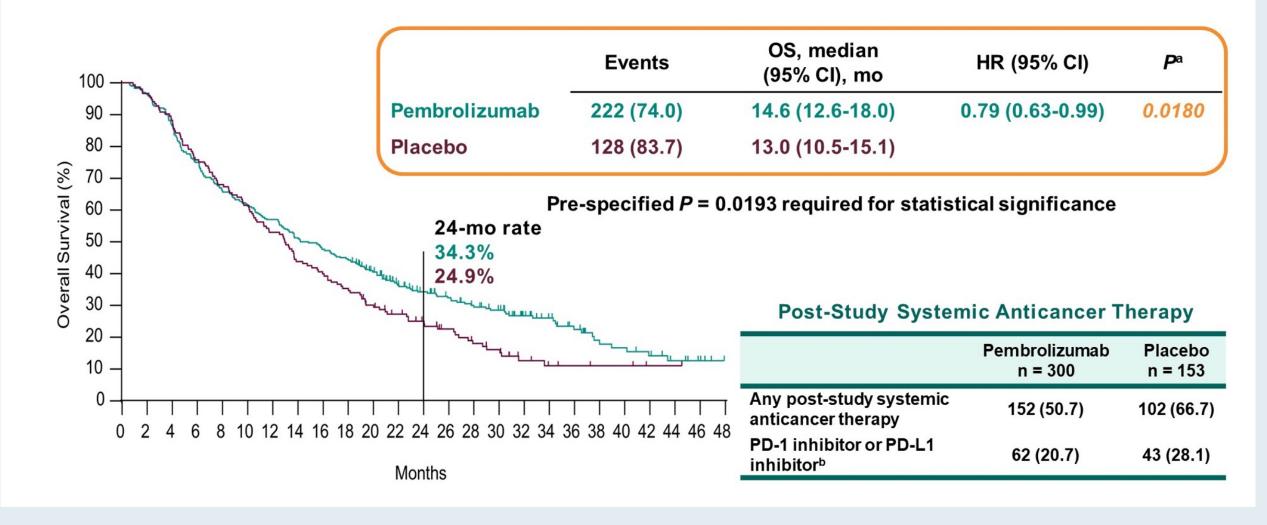

KEYNOTE-394 Study Design and Statistical Considerations

Key Eligibility Criteria

- Confirmed HCC^a
- Measurable disease per RECIST v1.1^b
- Progression during or after or intolerance to sorafenib or oxaliplatin-based chemotherapy
- · Child-Pugh class A
- BCLC stage C or B not amenable or refractory to locoregional therapy, and not amenable to curative treatment
- · ECOG PS 0 or 1

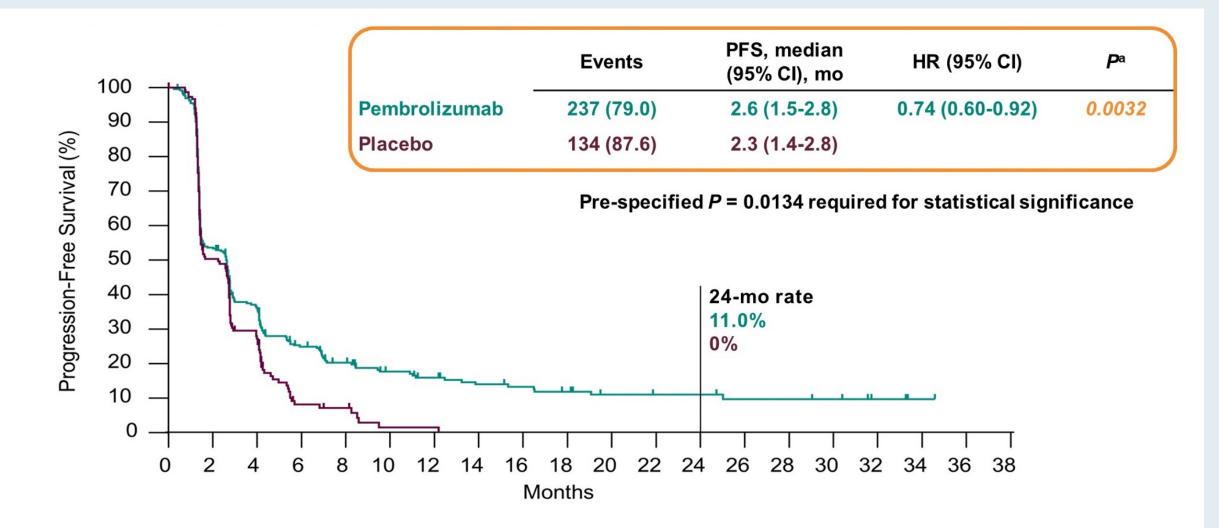
Stratification Factors

- Prior treatment (sorafenib vs. chemotherapy)
- Macrovascular invasion (yes vs. no)
- HCC etiology (HBV vs. other [HCV or noninfection])


End Points

- Primary: OS
- Secondary: PFS, ORR, DOR, DCR, TTP (all assessed by BICR per RECIST v1.1), and safety/tolerability

- Overall Type I error = 0.025 controlled across testing of OS, PFS, and ORR¹
 - Initial allocation PFS = 0.002; OS = 0.023
 - Re-allocated per multiplicity strategy specified in the protocol among 3 endpoints above
- Per protocol, there were 2 interim and 1 final analysis for OS and 1 interim and 1 final analysis for PFS and ORR
 - Interim analysis for PFS and ORR at the time of OS 1st interim analysis
 - Final analysis at the time of OS 2nd interim analysis
- Efficacy boundaries
 - P = 0.0193 for OS (final analysis cutoff, June 30, 2021, based on 350 observed events)
 - P = 0.0134 for PFS and P = 0.0091 for ORR (at 2nd interim cutoff, June 30, 2020; only if OS criteria met)



KEYNOTE-394: Overall Survival

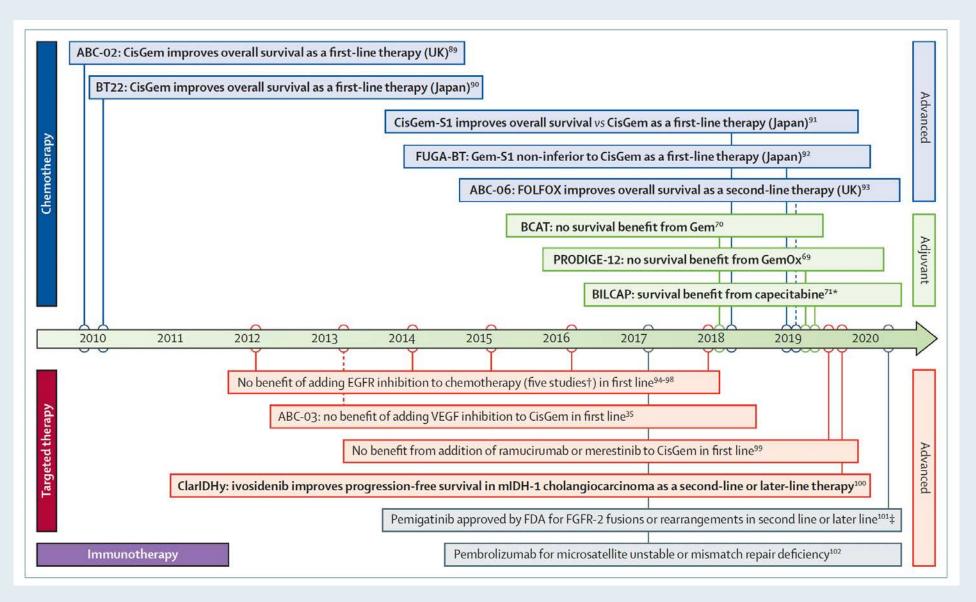
KEYNOTE-394: Progression-Free Survival

Qin S et al. Gastrointestinal Cancers Symposium 2022; Abstract 383.

KEYNOTE-394: Objective Response

	Pembrolizumab n = 300	Placebo n = 153	
ORR (CR + PR), % (95% CI)	12.7 (9.1-17.0)	1.3 (0.2-4.6)	
Estimated treatment difference, (95% CI; <i>P</i> ª)	11.4 (6.7-16.	0); <0.0001	Pre-specified P = 0.0091 required for statistical
Best overall response, n (%)			significance
CR	6 (2.0)	1 (0.7)	
PR	32 (10.7)	1 (0.7)	
SD	115 (38.3)	70 (45.8)	
Sustained SD ^b	26 (8.7)	8 (5.2)	
PD	129 (43.0)	72 (47.1)	
Not evaluable	10 (3.3)	1 (0.7)	
Not assessable ^c	8 (2.7)	8 (5.2)	
DOR, ^d median (range), mo	23.9 (2.8 to 32.0+)	5.6 (3.0+ to 5.6)	

KEYNOTE-394: Adverse Event (AE) Summary

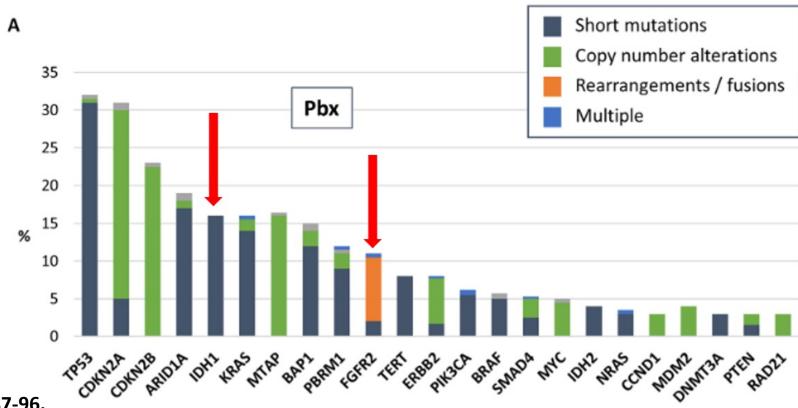

n (%)	Pembrolizumab n = 299	Placebo n = 153	n (%)	Pembrolizumab n = 299	Placebo n = 153
All-cause AEs			Immune-mediated AEs ^b		
Any	283 (94.6)	147 (96.1)			
Grade 3-5	157 (52.5)	50 (32.7)	Any	54 (18.1)	16 (10.5)
Led to discontinuation	38 (12.7)	12 (7.8)	Grade 3-5	9 (3.0)	0
Led to death	10 (3.3)	2 (1.3)	Led to	5 (1.7)	0
Treatment-related AEs			discontinuation	5(1.7)	U
Any	200 (66.9)	76 (49.7)	Led to death ^c		
Grade 3-5ª	43 (14.4)	9 (5.9)		1 (0.3)	0
Led to discontinuation	12 (4.0)	1 (0.7)	Immune-mediated	5 (1.7)	0
Led to death	3 (1.0)	0	hepatitis ^{c,d}	0(117)	v

Qin S et al. Gastrointestinal Cancers Symposium 2022; Abstract 383.

Current Treatment Strategies for Advanced Biliary Tract Cancers

Timeline of Developments in Systemic Therapy of Biliary Tract Cancer

Valle JW et al. Lancet 2021;397(10272):428-44.


Therapeutic Targets and Approach to Molecular Profiling for Biliary Tract Cancers

Target	Frequency	Targeted agents	Molecular test
IDH1	13% of intrahepatic cholangiocarcinomas	Ivosidenib	Tumor next-generation DNA sequencing or targeted sequencing for hotspot mutations in coding region of IDH1
FGFR pathway	20% of intrahepatic cholangiocarcinomas	Erdafitinib; futibatinib; infigratinib; pemigatinib	Tumor next-generation DNA sequencing including FGFR2 intronic region, targeted RNAseq or FISH testing for FGFR2 translocation
BRAF	5% of intrahepatic cholangiocarcinomas	Dabrafenib with trametinib; vemurafenib	Tumor next-generation DNA sequencing or targeted sequencing for hotspot mutations in coding region of BRAF
MSI-high or MMR deficiency	2% of biliary tract cancers	Pembrolizumab	Multiple testing modalities available: PCR, immunohistochemistry or tumor next-generation DNA sequencing
ERBB2 (HER2)	15%-20% gallbladder cancer; extrahepatic cholangiocarcinomas		Multiple testing modalities available including immunohistochemistry and FISH for expression and amplification, tumor next-generation DNA sequencing for mutations

Emerging Targets in Cholangiocarcinoma: Focus on FGFR2 and IDH1

- Mutation profiling of N=1632 iCCA using Foundation Medicine panel
 - n=1048 with primary tumor biopsy (PbX)
 - FGFR2 fusion or rearrangement: 9%
 - IDH1 mutation: 16%

Israel MA et al. *Oncologist* 2021;26(9):787-96.

FGFR Inhibitor Efficacy in FGFR2 Fusion-Positive Cholangiocarcinoma

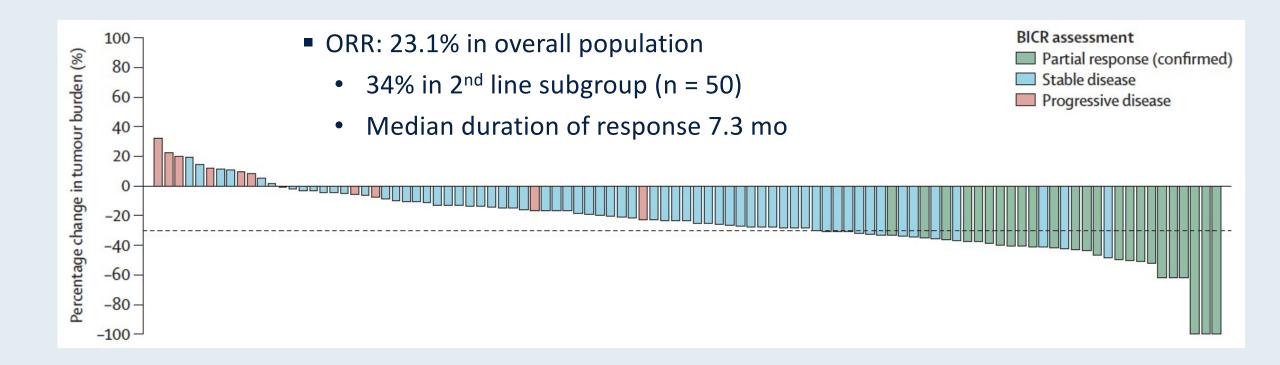
	Pemigatinib* (N = 107)	Infigratinib* (N = 108)	Futibatinib (N = 67)	Derazantinib (N = 29)
ORR	35.5%	23.1%	37.3%	20.7%
DCR	82.2%	84.3%	82.1%	82.8%
mPFS	6.9 mo	7.3 mo	7.2 mo	5.7 mo
mOS	21.1 mo	12.2 mo	NR	NR
Toxicities	Hyperphosphatemia, alopecia, diarrhea	Hyperphosphatemia, stomatitis, fatigue	Hyperphosphatemia, diarrhea, dry mouth	Hyperphosphatemia, fatigue, ocular

* FDA approved

Abou-Alfa GK et al. *Lancet Oncol* 2020;21(5):671-84; Javle M et al. Gastrointestinal Cancers Symposium 2021; Goyal L et al. ASCO 2020; Mazzaferro V et al. *Br J Cancer* 2019;120(2):165-71.

Lancet Gasteroenterol Hepatol 2021;6(10):803-15.

Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study



Milind Javle, Sameek Roychowdhury, Robin Kate Kelley, Saeed Sadeghi, Teresa Macarulla, Karl Heinz Weiss, Dirk-Thomas Waldschmidt, Lipika Goyal, Ivan Borbath, Anthony El-Khoueiry, Mitesh J Borad, Wei Peng Yong, Philip A Philip, Michael Bitzer, Surbpong Tanasanvimon, Ai Li, Amit Pande, Harris S Soifer, Stacie Peacock Shepherd, Susan Moran, Andrew X Zhu, Tanios S Bekaii-Saab, Ghassan K Abou-Alfa

Articles

Phase II Study of Infigratinib for Advanced or Metastatic Cholangiocarcinoma Harboring FGFR2 Fusions or Rearrangements

Javle M et al. Lancet Gasteroenterol Hepatol 2021;6(10):803-15.

Infigratinib for Advanced or Metastatic Cholangiocarcinoma: Adverse Events in ≥20% of Patients

	Treatment-emergent adverse events					Treatment-related adverse events of any grade
	Grade 1	Grade 2	Grade 3	Grade 4	Any grade	_
Any adverse event	8 (7%)	29 (27%)	61 (56%)	9 (8%)	107 (99%)	104 (96%)
Hyperphosphataemia	37 (34%)	35 (32%)	11 (10%)	0	83 (77%)	80 (74%)
Stomatitis	29 (27%)	14 (13%)	16 (15%)	0	59 (55%)	55 (51%)
Fatigue	21 (19%)	18 (17%)	4 (4%)	0	43 (40%)	31 (29%)
Alopecia	34 (31%)	7 (6%)	0	0	41 (38%)	35 (32%)
Dry eye	25 (23%)	11 (10%)	1 (1%)	0	37 (34%)	34 (31%)
Palmar-plantar erythrodysaesthesia syndrome	11 (10%)	18 (17%)	7 (6%)	0	36 (33%)	35 (32%)
Arthralgia	22 (20%)	12 (11%)	0	0	34 (31%)	31 (29%)
Dysgeusia	27 (25%)	7(6%)	0	0	34 (31%)	28 (26%)
Constipation	22 (20%)	9 (8%)	1 (1%)	0	32 (30%)	10 (9%)
Dry mouth	24 (22%)	3 (3%)	0	0	27 (25%)	23 (21%)
Hypercalcaemia	13 (12%)	8 (7%)	5 (5%)	1 (1%)	27 (25%)	17 (16%)
Blood creatinine concentration increased	19 (18%)	7 (6%)	0	0	26 (24%)	17 (16%)
Diarrhoea	17 (16%)	6 (6%)	3 (3%)	0	26 (24%)	19 (18%)
Dry skin	23 (21%)	2 (2%)	0	0	25 (23%)	22 (20%)
Decreased appetite	16 (15%)	7 (6%)	1 (1%)	0	24 (22%)	16 (15%)
Hypophosphataemia	6 (6%)	4 (4%)	13 (12%)	1(1%)	24 (22%)	10 (9%)
Blurred vision	13 (12%)	10 (9%)	0	0	23 (21%)	20 (19%)
AST concentration increased	18 (17%)	3 (3%)	2 (2%)	0	23 (21%)	10 (9%)
Vomiting	16 (15%)	6 (6%)	1(1%)	0	23 (21%)	14 (13%)

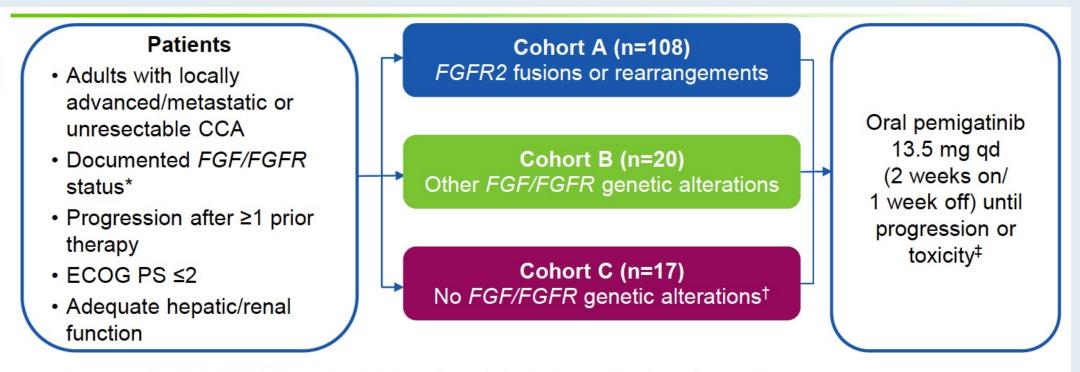
Javle M et al. Lancet Gasteroenterol Hepatol 2021;6(10):803-15.

2022 | Abstract O-2

O-2

#575

Presented at the 2022 ESMO World Congress on Gastrointestinal Cancer; 29 June-2 July, 2022; Barcelona, Spain


Pemigatinib for Previously Treated Locally Advanced or Metastatic Cholangiocarcinoma: Final Results From FIGHT-202

Arndt Vogel, MD

<u>Arndt Vogel, MD,¹</u> Vaibhav Sahai, MBBS, MS,² Antoine Hollebecque, MD,³ Gina M. Vaccaro, MD,⁴ Davide Melisi, MD, PhD,⁵ Raed M. Al Rajabi, MD,⁶ Andrew S. Paulson, MD,⁷ Mitesh J. Borad, MD,⁸ David Gallinson, DO,⁹ Adrian G. Murphy, MD,¹⁰ Do-Youn Oh, MD, PhD,¹¹ Efrat Dotan, MD,¹² Daniel V. Catenacci, MD,¹³ Eric Van Cutsem, MD, PhD,¹⁴ Christine F. Lihou, BS,¹⁵ Huiling Zhen, PhD,¹⁵ Luisa Veronese, MD,¹⁶ Ghassan K. Abou-Alfa, MD¹⁷

FIGHT-202 Trial Schema

- Primary endpoint: ORR[§] in cohort A (confirmed by independent central review)
- Secondary endpoints: ORR[§] in cohorts A/B combined, B, and C; DOR/DCR/PFS/OS/safety in all cohorts

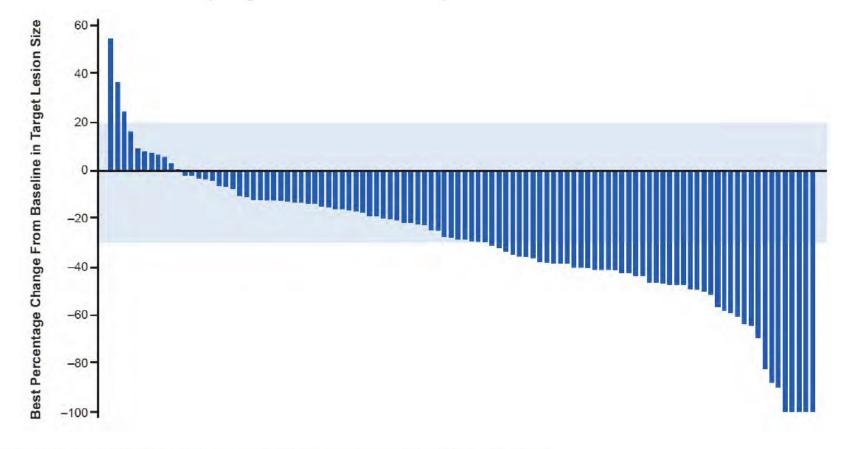
CCA, cholangiocarcinoma; DCR, disease control rate; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; qd, once daily.

*Patients prescreened for *FGF/FGFR* status, documented either centrally (FoundationOne[®], Foundation Medicine), based on local assessment, or an existing Foundation Medicine report. Retrospective central confirmation of locally documented *FGF/FGFR* status was required. [†]United States only. [‡]The efficacy population included all patients with centrally confirmed *FGF/FGFR* status who received \geq 1 pemigatinib dose; the safety population included all patients who received \geq 1 pemigatinib dose. [§]ORR was defined as the percentage of patients with complete response (disappearance of all target lesions) or partial response (\geq 30% decrease in sum of the longest diameters of target lesions).

FIGHT-202 Final Results: Response to Pemigatinib

Parameter	Cohort A (n=108)	Cohort B (n=20)	Cohort C (n=17)
Duration of follow-up, median (range), mo	42.9 (19.9–52.2)	47.5 (43.7–51.1)	51.9 (49.5–53.7)
ORR,* % (95% CI)	37 (28, 47)	0 (0, 17)	0 (0, 20)
DCR, [†] % (95% CI)	82 (74, 89)	40 (19, 64)	18 (4, 43)
Best overall response, %			
Complete response	3	0	0
Partial response	34	0	0
Stable disease	45	40	18
Progressive disease	15	35	65
Not evaluable	3	25	18
DOR, median (95% CI), mo	9.1 (6.0, 14.5)		—

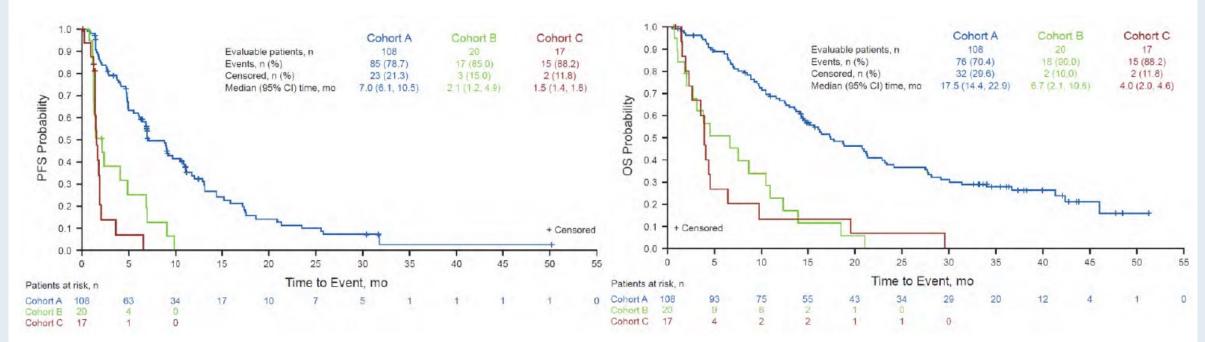
DCR, disease control rate; DOR, duration of response; ORR, objective response rate.


*ORR is complete response + partial response; [†]DCR is complete response + partial response + stable disease.

Vogel A et al. ESMO World Congress on Gastrointestinal Cancer 2022; Abstract O-2.

FIGHT-202 Final Results: Best Percentage Change from Baseline in Target Lesion Size in Cohort A

 Among 104 evaluable patients, median best percentage change from baseline in the sum of target lesion diameters was –28.4% (range, –100% to +55%)


Lower limit of blue shading indicates criterion for partial response (≥30% decrease in sum of target lesion diameters).

FIGHT-202 Final Results: PFS and OS for All Patients

PFS

 Median PFS in cohort A was 7.0 months (95% CI: 6.1, 10.5) Median OS in cohort A was 17.5 months (95% CI: 14.4, 22.9)

Vogel A et al. ESMO World Congress on Gastrointestinal Cancer 2022; Abstract O-2.

FIGHT-202: TEAEs Occurring in ≥25% of Patients

	Cohort A (n=108)			Cohort B (n=20)		Cohort C (n=17)		Total (N=147)*	
Event	All Grades	Grade ≥3	All Grades	Grade ≥3	All Grades	Grade ≥3	All Grades	Grade ≥3	
Any TEAE, %	100	67	100	75	100	76	100	69	
Hyperphosphatemia	56	0	65	0	71	0	59	0	
Alopecia	59	0	20	0	18	0	50	0	
Diarrhoea	54	4	25	0	35	6	48	3	
Fatigue	46	5	25	0	53	18	44	5	
Nausea	43	3	35	0	41	0	41	2	
Stomatitis	43	9	30	0	18	0	38	7	
Constipation	43	1	25	0	12	0	37	1	
Dysgeusia	42	0	15	0	18	0	36	0	
Decreased appetite	31	1	40	5	41	6	34	2	
Dry mouth	39	0	25	0	6	0	34	0	
Arthralgia	34	6	25	10	12	0	30	6	
Vomiting	33	2	15	0	24	0	29	1	
Dry eye	35	0	5	0	6	0	28	1	

• The safety profile remained consistent with the primary publication¹; no new safety signals were observed

TEAE, treatment-emergent adverse event.

*The total includes 2 patients for whom *FGF/FGFR* status could not be centrally determined; the 2 patients were not assigned to a cohort and were evaluated for safety but not for efficacy. 1. Abou-Alfa GH, et al. *Lancet Oncol.* 2020;21(5):671-684.

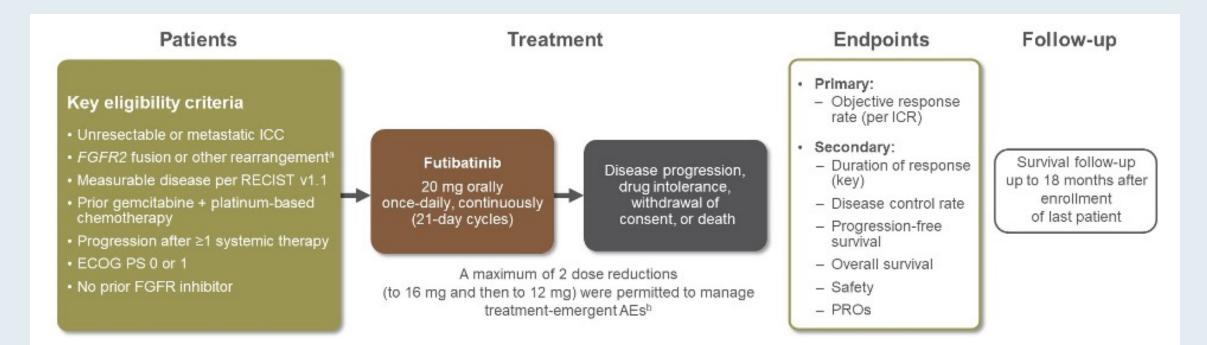
FDA Accepts for Priority Review Futibanib's New Drug Application for Cholangiocarcinoma Press Release: March 30, 2022

"The US Food and Drug Administration (FDA) has accepted for priority review the New Drug Application (NDA) for futibatinib in the treatment of patients with previously treated locally advanced or metastatic cholangiocarcinoma (CCA) harboring FGFR2 gene rearrangements, including gene fusions. Futibatinib is an investigational, oral, potent, selective and irreversible small-molecule inhibitor of FGFR1, 2, 3 and 4. The FDA provided an anticipated Prescription Drug User Fee Act (PDUFA) action date of September 30, 2022.

The NDA is based on data from the pivotal Phase 2b FOENIX-CCA2 trial in 103 patients with locally advanced or metastatic unresectable intrahepatic (inside the liver) CCA, harboring FGFR2 gene rearrangements including fusions who had received one or more prior lines of systemic therapy. Patients in the trial received futibatinib 20 mg once daily until disease progression or unacceptable toxicity. The trial's primary endpoint was an objective response rate (ORR), which was 41.7% as assessed by independent central review. The key secondary endpoint of duration of response (DOR) demonstrated a median of 9.7 months (72% of responses ≥6 months). Common treatment-related adverse events (TRAEs) in the trial were hyperphosphatemia (85%), alopecia (33%) and dry mouth (30%). The only serious adverse reaction reported in more than one patient enrolled in the FOENIX-CCA2 trial was migraine (1.9%)."

https://www.prnewswire.com/news-releases/us-food-and-drug-administration-fda-accepts-for-priority-review-taiho-oncologys-new-drug-application-for-futibatinib-for-cholangiocarcinoma-301513278.html?tc=eml_cleartime

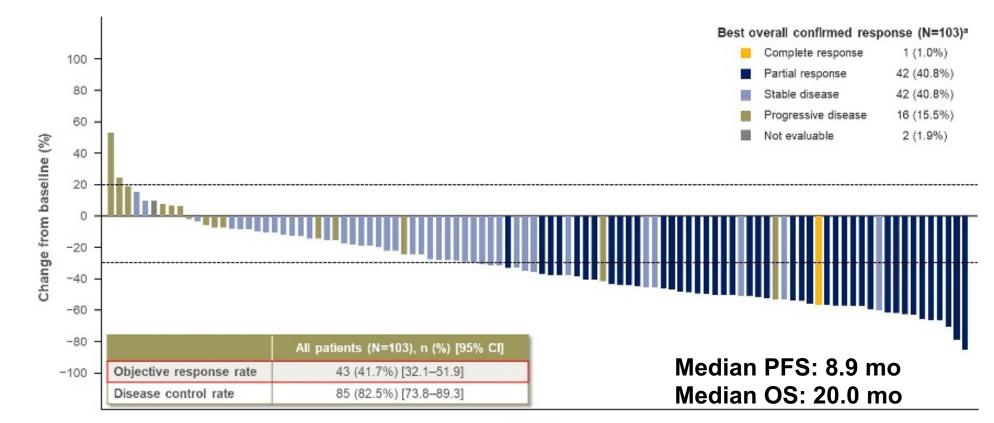
Updated Results of the FOENIX-CCA2 Trial: Efficacy and Safety of Futibatinib in Intrahepatic Cholangiocarcinoma Harboring FGFR2 Fusions/Rearrangements


Lipika Goyal,¹ Funda Meric-Bernstam,² Antoine Hollebecque,³ Chigusa Morizane,⁴ Juan W. Valle,⁵ Thomas B. Karasic,⁶ Thomas A. Abrams,⁷ Robin Kate Kelley,⁸ Philippe Cassier,⁹ Junji Furuse,¹⁰ Heinz-Josef Klümpen,¹¹ Heung-Moon Chang,¹² Li-Tzong Chen,¹³ Yoshito Komatsu,¹⁴ Kunihiro Masuda,¹⁵ Daniel Ahn,¹⁶ Kate Li,¹⁷ Karim A. Benhadji,¹⁷ Volker Wacheck,¹⁷ John A. Bridgewater¹⁸

¹Massachusetts General Hospital Cancer Center, Boston, MA, USA; ²University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Gustave Roussy, Drug Development Department (DITEP), F-94805, Villejuif, France; ⁴National Cancer Center Hospital, Tokyo, Japan; ⁵University of Manchester and The Christie NHS Foundation Trust, Manchester, UK; ⁶Hospital of the University of Pennsylvania, Philadelphia, PA, USA; ⁷Dana-Farber Cancer Institute, Boston, MA, USA; ⁸University of California, San Francisco, CA, USA; ⁹Centre Léon-Bérard, Lyon, France; ¹⁰Kyorin University, Faculty of Medicine, Tokyo, Japan; ¹¹Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; ¹²Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; ¹³National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; ¹⁴Hokkaido University Hospital Cancer Center, Hokkaido, Japan; ¹⁵Tohoku University Graduate School of Medicine, Miyagi, Japan; ¹⁰Mayo Clinic, Phoenix, AZ, USA; ¹⁷Taiho Oncology, Inc., Princeton, NJ, USA; ¹⁸UCL Cancer Institute, London, UK

ASCO 2022; Abstract 4009.

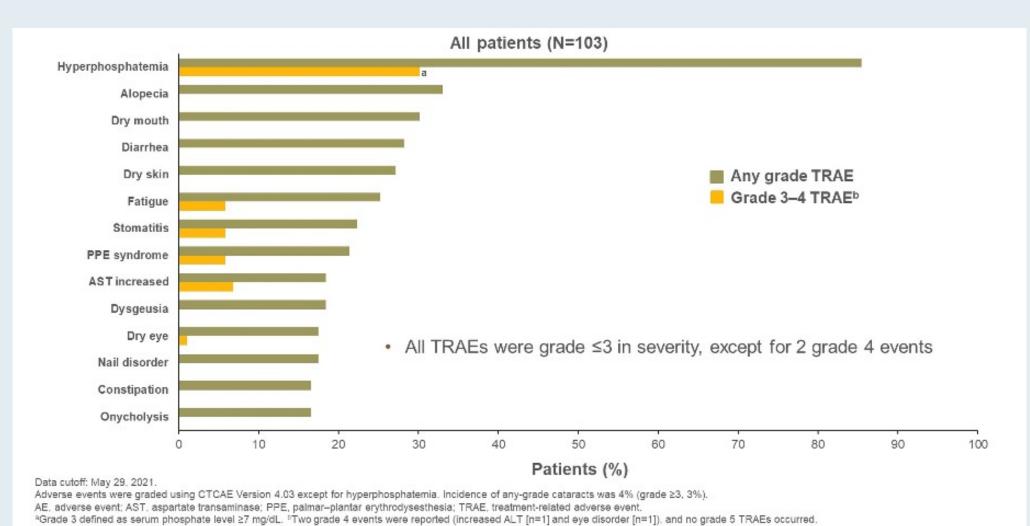
FOENIX-CCA2: Phase II Study Design



- At the time of the final data cutoff (May 29, 2021), median follow-up was 25.0 months, and 96/103 patients (93%) had discontinued treatment
- The median number of treatment cycles was 13.0, for a median treatment duration of 9.1 months

Goyal L et al. ASCO 2022; Abstract 4009.

FOENIX-CCA2: Phase II Study of Futibatinib for Intrahepatic Cholangiocarcinoma with FGFR2 Fusions/Rearrangements


Patlent

^aAssessed by independent central review

Data cutoff: May 29, 2021. Dotted horizontal lines represent partial response (≥30% reduction in lesion size) and progressive disease (≥20% increase) per RECIST v1.1. RECIST v1.1. Response Evaluation Criteria in Solid Tumors version 1.1.

FOENIX-CCA2: Most Common (≥15%) Treatment-Related Adverse Events (TRAEs) with Futibatinib for Intrahepatic Cholangiocarcinoma

RTP RESEARCH TO PRACTICE

Goyal L et al. ASCO 2022; Abstract 4009.

FOENIX-CCA2: Adverse Events (AEs) of Special Interest with Futibatinib for Intrahepatic Cholangiocarcinoma

	Safety population (N=103), n (%)					
AE of special interest by group term	Any grade ^a	Grade 3	Grade 4			
Hyperphosphatemia ^b	94 (91)	32 (31)	0			
Nail toxicities ^c	54 (52)	2 (2)	0			
Increased ALT and AST ^d	28 (27)	12 (12)	1 (1)			
Palmar–plantar erythrodysesthesia (PPE) syndrome	23 (22)	6 (6)	0			
Rash ^e	9 (9)	0	0			
Retinal disorders ^f	8 (8)	0	0			

One AE of special interest led to treatment discontinuation (PPE syndrome, grade 1)

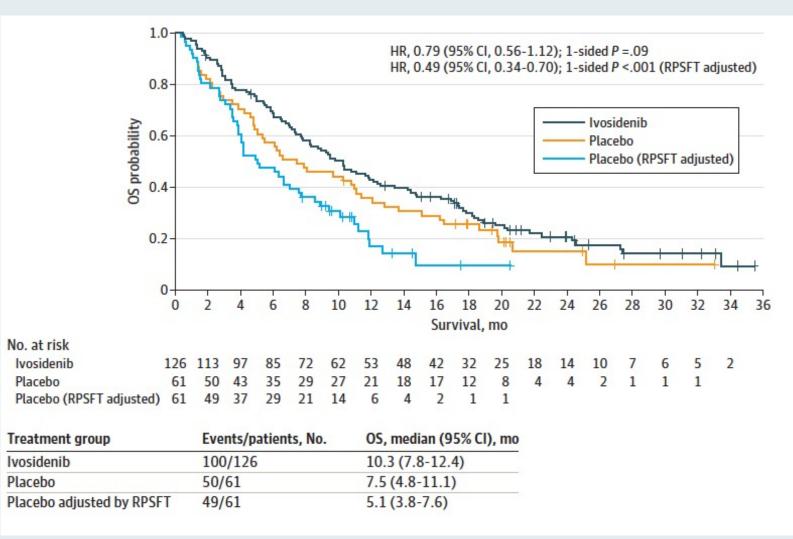
- · Hyperphosphatemia was manageable with phosphate-lowering therapy and dose modification
 - Median time to resolution of grade 3 hyperphosphatemia was 7.0 days (range, 2.0–26.0 days)

Ongoing Phase III Studies of FGFR Inhibitors for Advanced Cholangiocarcinoma

Study	N	Eligibility	Randomization arms	Est primary completion
FIGHT-302	434	 Previously untreated Unresectable and/or metastatic FGFR2 rearrangement 	PemigatinibGemcitabine + cisplatin	March 2027
PROOF	300	 Previously untreated Unresectable and/or metastatic FGFR2 fusion/translocation 	InfigratinibGemcitabine + cisplatin	January 2026
FOENIX-CCA3	216	 Previously untreated Unresectable and/or metastatic FGFR2 rearrangement 	FutibatinibGemcitabine + cisplatin	April 2025

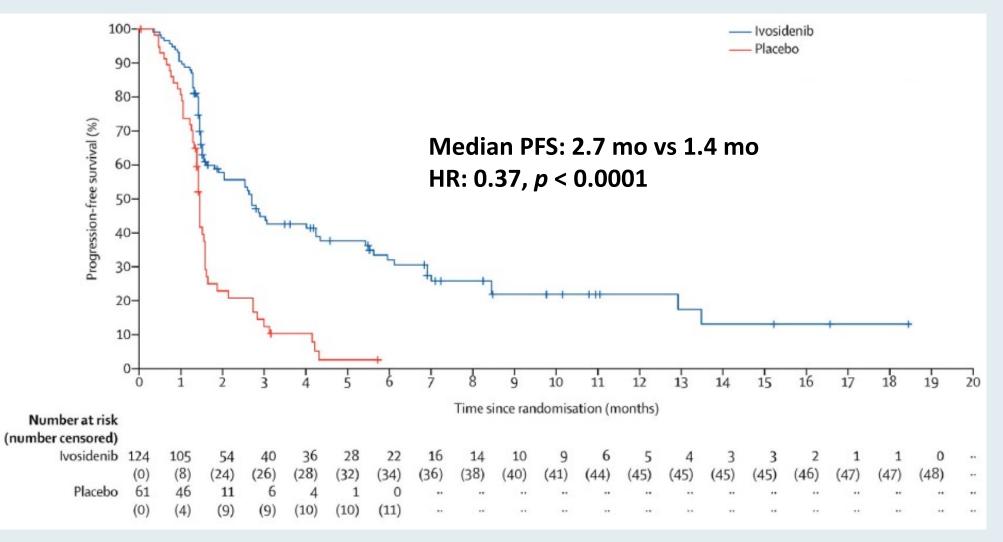
Research

JAMA Oncology | Original Investigation


Final Overall Survival Efficacy Results of Ivosidenib for Patients With Advanced Cholangiocarcinoma With *IDH1* Mutation The Phase 3 Randomized Clinical ClarIDHy Trial

Andrew X. Zhu, MD, PhD; Teresa Macarulla, MD; Milind M. Javle, MD; R. Kate Kelley, MD; Sam J. Lubner, MD; Jorge Adeva, MD; James M. Cleary, MD; Daniel V. T. Catenacci, MD; Mitesh J. Borad, MD; John A. Bridgewater, PhD; William P. Harris, MD; Adrian G. Murphy, MD; Do-Youn Oh, MD; Jonathan R. Whisenant, MD; Maeve A. Lowery, MD; Lipika Goyal, MD; Rachna T. Shroff, MD; Anthony B. El-Khoueiry, MD; Christina X. Chamberlain, PhD; Elia Aguado-Fraile, PhD; Sung Choe, PhD; Bin Wu, PhD; Hua Liu, PhD; Camelia Gliser, BS; Shuchi S. Pandya, MD; Juan W. Valle, MD; Ghassan K. Abou-Alfa, MD

JAMA Oncol 2021;7(11):1669-77.


ClarIDHy: Final Overall Survival (OS) with Ivosidenib for Advanced Cholangiocarcinoma with an IDH1 Mutation

Zhu AX et al. JAMA Oncol 2021;7(1):1669-77.

ClarIDHy: Progression-Free Survival (PFS) with Ivosidenib for Advanced Cholangiocarcinoma with an IDH1 Mutation

Abou-Alfa GK et al. Lancet Oncol 2020;21(6):796-807.

ClarIDHy: Select Adverse Events

	lvosidenib (n = 121)		Placebo (n = 59)			
Adverse Event	Grade 1-2	Grade 3	Grade 4	Grade 1-2	Grade 3	Grade 4
Diarrhea	33%	2%	0	24%	2%	0
Fatigue	23%	3%	0	15%	0	0
Ascites	13%	7%	0	8%	7%	0
Electrocardiogram QT prolonged	8%	1%	0	2%	0	0
ALT increased	7%	2%	0	2%	0	0
AST increased	6%	5%	0	3%	2%	0
Hyponatremia	5%	3%	2%	2%	8%	2%
Blood bilirubin increased	4%	6%	0	5%	2%	0

Abou-Alfa GK et al. *Lancet Oncol* 2020;21(6):796-807.

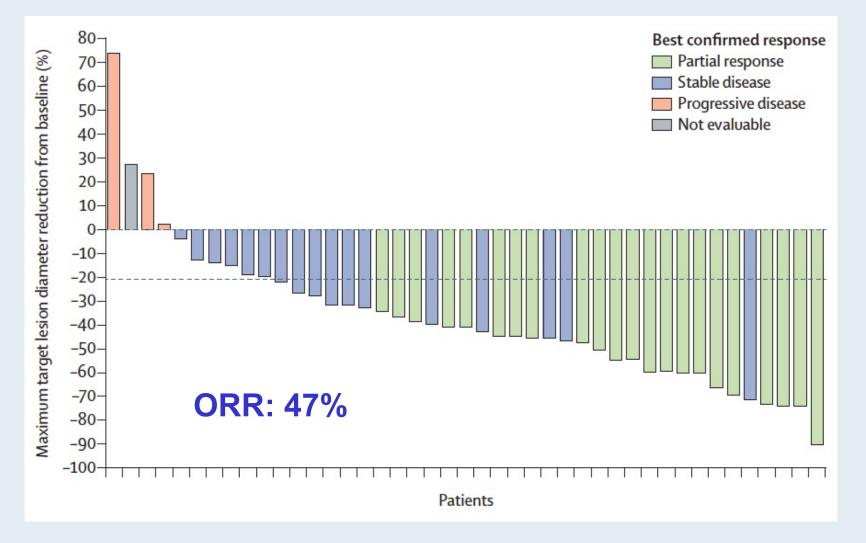
Dabrafenib/Trametinib Combination Granted Accelerated Approval for a Tumor-Agnostic Indication for Solid Tumors with BRAF V600E Mutation Press Release: June 23, 2022

"The US Food and Drug Administration (FDA) granted accelerated approval for dabrafenib + trametinib for the treatment of adult and pediatric patients 6 years of age and older with unresectable or metastatic solid tumors with BRAF V600E mutation who have progressed following prior treatment and have no satisfactory alternative treatment options. In accordance with the Accelerated Approval Program, continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial(s).

The FDA approval was based on clinical efficacy and safety demonstrated in three clinical trials. In the Phase II ROAR (Rare Oncology Agnostic Research) basket study and the NCI-MATCH Subprotocol H study, dabrafenib + trametinib resulted in overall response rates of up to 80% in patients with BRAF V600E solid tumors, including high- and low-grade glioma, biliary tract cancer and certain gynecological and gastrointestinal cancers. An additional study (Study X2101) demonstrated the clinical benefit and acceptable safety profile of dabrafenib + trametinib in pediatric patients.

The safety profile of dabrafenib + trametinib observed in these studies was consistent with the known safety profile in other approved indications."

https://www.novartis.com/news/media-releases/novartis-tafinlar-mekinist-receives-fda-approval-first-tumor-agnostic-indication-braf-v600e-solid-tumors


Dabrafenib plus trametinib in patients with BRAF^{V600E}-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial

Vivek Subbiah, Ulrik Lassen, Elena Élez, Antoine Italiano, Giuseppe Curigliano, Milind Javle, Filippo de Braud, Gerald W Prager, Richard Greil, Alexander Stein, Angelica Fasolo, Jan H M Schellens, Patrick Y Wen, Kert Viele, Aislyn D Boran, Eduard Gasal, Paul Burgess, Palanichamy Ilankumaran, Zev A Wainberg

Lancet Oncol 2020;21(9):1234-43.

ROAR Phase II Basket Trial: Dabrafenib/Trametinib Combination for Cholangiocarcinoma with a BRAF V600E Mutation

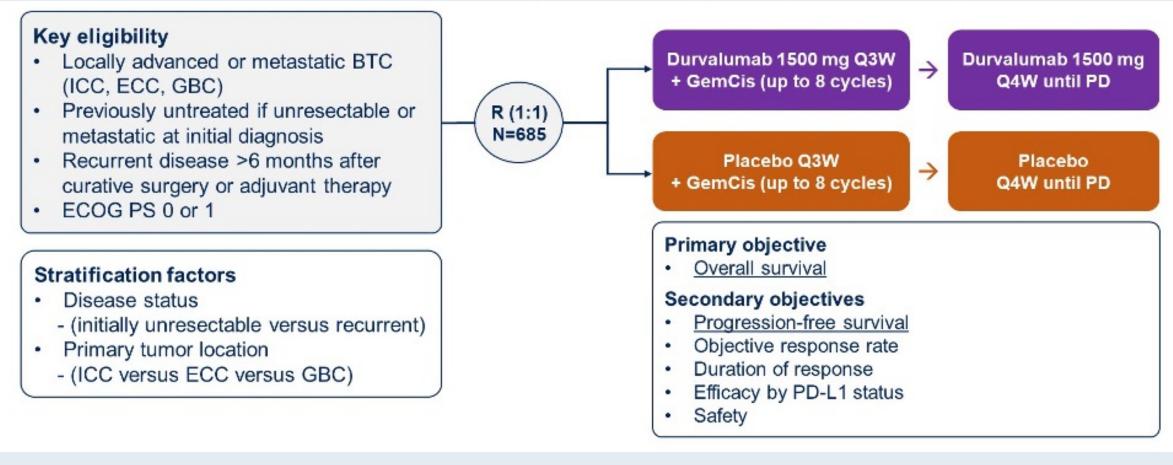
ROAR Phase II Basket Trial: Select Adverse Events with Dabrafenib/Trametinib for Cholangiocarcinoma with a BRAF V600E Mutation

	Grade 1-2	Grade 3	Grade 4
Increased gamma-glutamyltransferase	7 (16%)	5 (12%)	0
Pyrexia	26 (60%)	3 (7%)	0
Decreased WBC count	7 (16%)	3 (7%)	0
Hypertension	2 (5%)	3 (7%)	0
Hyperglycemia	6 (14%)	2 (5%)	0

Future Directions in the Management of Biliary Tract Cancers

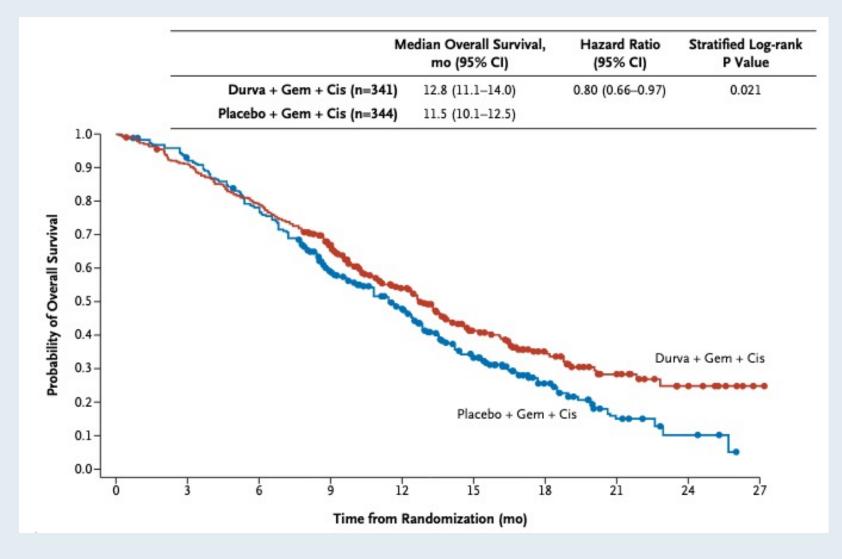
Published June 1, 2022

DOI: 10.1056/EVIDoa2200015


ORIGINAL ARTICLE

Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer

Do-Youn Oh, M.D., Ph.D.,¹ Aiwu Ruth He, M.D., Ph.D.,² Shukui Qin, M.D.,³ Li-Tzong Chen, M.D., Ph.D.,^{4,5,6} Takuji Okusaka, M.D., Ph.D.,⁷ Arndt Vogel, M.D.,⁸ Jin Won Kim, M.D., Ph.D.,⁹ Thatthan Suksombooncharoen, M.D.,¹⁰ Myung Ah Lee, M.D., Ph.D.,¹¹ Masayuki Kitano, M.D., Ph.D.,¹² Howard Burris, M.D.,¹³ Mohamed Bouattour, M.D.,¹⁴ Suebpong Tanasanvimon, M.D.,¹⁵ Mairéad G. McNamara, M.B., Ph.D.,¹⁶ Renata Zaucha, M.D., Ph.D.,¹⁷ Antonio Avallone, M.D.,¹⁸ Benjamin Tan, M.D.,¹⁹ Juan Cundom, M.D.,²⁰ Choong-kun Lee, M.D., Ph.D.,²¹ Hidenori Takahashi, M.D., Ph.D.,²² Masafumi Ikeda, M.D., Ph.D.,²³ Jen-Shi Chen, M.D.,²⁴ Julie Wang, Ph.D.,²⁵ Mallory Makowsky, Pharm.D.,²⁵ Nana Rokutanda, M.D., Ph.D.,²⁵ Philip He, Ph.D.,^{25,26} John F. Kurland, Ph.D.,²⁵ Gordon Cohen, M.D., M.P.H.,²⁵ and Juan W. Valle, M.D.¹⁶


TOPAZ-1 Phase III Trial Schema

BTC = biliary tract cancer

Oh D-Y et al. Gastrointestinal Cancers Symposium 2022; Abstract 378.

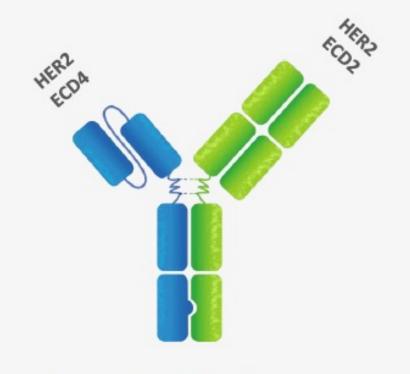
TOPAZ-1: Primary Overall Survival Endpoint with Durvalumab and Gemcitabine/Cisplatin for Advanced Biliary Tract Cancer

Oh D-Y et al. NEJM Evidence, June 1, 2022.

TOPAZ-1: Overall Survival Subgroup Analysis

Subgroup		Hazard Ratio (95% C
All patients		0.80 (0.66-0.97)
Sex: female	F	0.82 (0.62-1.08)
Sex: male	H	0.78 (0.60-1.01)
Age at randomization: <65 yr	F • H	0.80 (0.61-1.04)
Age at randomization: ≥65 yr	⊢ ●− I	0.79 (0.60-1.04)
PD-L1 expression: TAP ≥1%	F	0.79 (0.61-1.00)
PD-L1 expression: TAP <1%	F	0.86 (0.60-1.23)
Disease status at randomization: initially unresectable		0.84 (0.69-1.03)
Disease status at randomization: recurrent		0.56 (0.32-0.96)
Primary tumor location: intrahepatic cholangiocarcinoma	⊢ • - •	0.76 (0.58-0.98)
Primary tumor location: extrahepatic cholangiocarcinoma	F	0.76 (0.49-1.19)
Primary tumor location: gallbladder cancer	F	0.94 (0.65-1.37)
Race: Asian	⊢ •−1	0.73 (0.57-0.94)
Race: non-Asian	⊢ • − 1	0.89 (0.66-1.19)
Region: Asia	⊢ ●→	0.72 (0.56-0.94)
Region: rest of the world		0.89 (0.66-1.19)
ECOG performance status at baseline: 0	⊢ • ⊢ 1	0.90 (0.68-1.20)
COG performance status at baseline: 1		0.72 (0.56-0.94)
Biliary tract cancer: locally advanced	H	0.49 (0.26-0.88)
Biliary tract cancer: metastatic		0.83 (0.68-1.02)
0.05 0.1	0.5 1 1.5	2
	Hazard Ratio (95% CI)	

Oh D-Y et al. *NEJM Evidence*, June 1, 2022.


TOPAZ-1: Adverse Event Summary

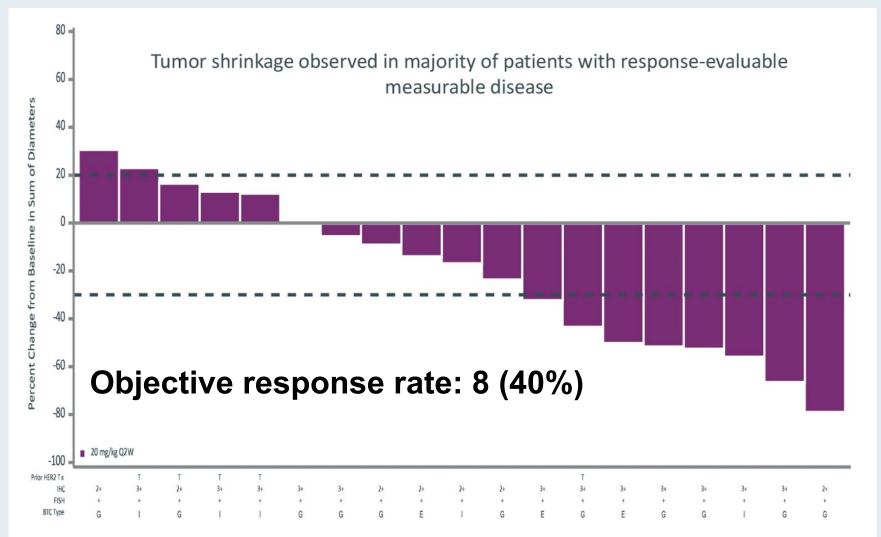
Parameter	Durvalumab plus Gemcitabine and Cisplatin (n=338)	Placebo plus Gemcitabine and Cisplatin (n=342)
Adverse events — no. (%)		
Any grade	336 (99.4)	338 (98.8)
Serious	160 (47.3)	149 (43.6)
Grade 3 or 4	256 (75.7)	266 (77.8)
Leading to discontinuation of any study treatment	44 (13.0)	52 (15.2)
Leading to death	12 (3.6)	14 (4.1)
Treatment-related adverse events — no. (%)		
Any grade	314 (92.9)	308 (90.1)
Serious	53 (15.7)	59 (17.3)
Grade 3 or 4	212 (62.7)	222 (64.9)
Leading to discontinuation of any study treatment	30 (8.9)	39 (11.4)
Leading to death*	2 (0.6)	1 (0.3)

Zanidatamab: A Bispecific HER2-Targeted Antibody

- A biparatopic antibody that simultaneously binds two distinct sites on HER2: ECD4 (targeted by trastuzumab) and ECD2 (targeted by pertuzumab)
- Unique binding results in multiple mechanisms of action of zanidatamab that lead to improved binding, clustering, and receptor internalization and downregulation, inhibition of ligand-dependent and -independent proliferation, and potent activation of antibody-dependent cellular cytotoxicity

ECD=extracellular domain

Pant S et al. Gastrointestinal Cancers Symposium 2021; Abstract TPS352.

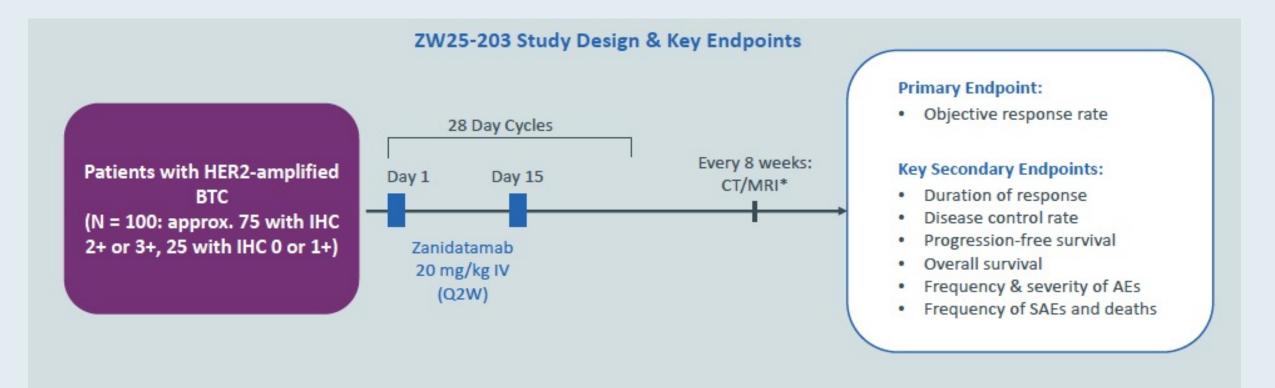

Zanidatamab (ZW25) in HER2-Positive Biliary Tract Cancer (BTC): Results from a Phase I Study

Meric-Bernstam F et al.

Gastrointestinal Cancers Symposium 2021; Abstract 299.

Antitumor Activity of Zanidatamab in a Phase I Study for Advanced Biliary Tract Cancer

Meric-Bernstam F et al. Gastrointestinal Cancers Symposium 2021; Abstract 299.


Adverse Events (AEs) Associated with Zanidatamab in a Phase I Study for Advanced Biliary Tract Cancer

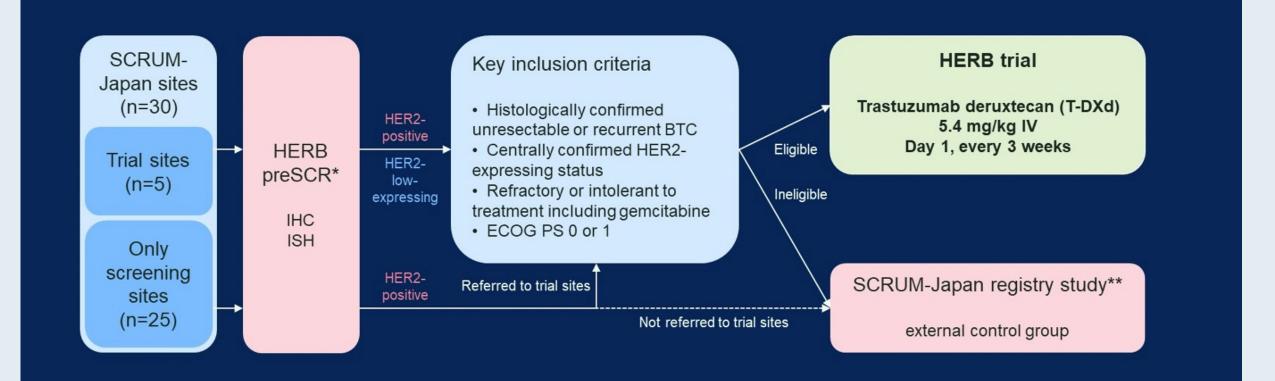
	N = 21		
Patients with treatment-emergent AEs	21 (100%)		
Patients with zanidatamab-related AEs (≥15% of patients)			
Any AE	15 (71%)		
Diarrhea	9 (43%)		
Infusion-related reaction	7 (33%)		

Meric-Bernstam F et al. Gastrointestinal Cancers Symposium 2021; Abstract 299.

HERIZON-BTC-01 (ZW25-203): Phase IIb Study of Zanidatamab Monotherapy for Advanced or Metastatic HER2-Amplified Biliary Tract Cancer

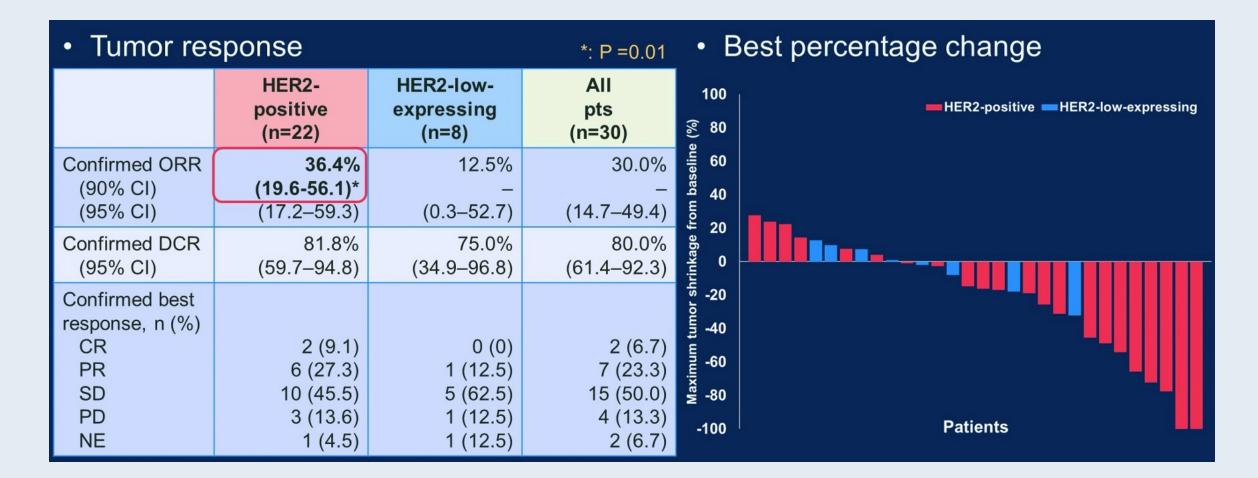
Pant S et al. Gastrointestinal Cancers Symposium 2021; Abstract TPS352.

Abstract 4006.


Trastuzumab deruxtecan (T-DXd; DS-8201) in patients (pts) with HER2-expressing unresectable or recurrent biliary tract cancer (BTC): An investigator-initiated multicenter phase 2 study (HERB trial)

<u>Akihiro Ohba</u>¹, Chigusa Morizane¹, Yasuyuki Kawamoto², Yoshito Komatsu², Makoto Ueno³, Satoshi Kobayashi³, Masafumi Ikeda⁴, Mitsuhito Sasaki⁴, Junji Furuse⁵, Naohiro Okano⁵, Nobuyoshi Hiraoka¹, Hiroshi Yoshida¹, Aya Kuchiba¹, Ryo Sadachi¹, Kenichi Nakamura¹, Naoko Matsui¹, Yoshiaki Nakamura⁴, Wataru Okamoto⁶, Takayuki Yoshino⁴, Takuji Okusaka¹

¹National Cancer Center Hospital, ²Hokkaido University Hospital, ³Kanagawa Cancer Center, ⁴National Cancer Center Hospital East, ⁵Kyorin University Faculty of Medicine, ⁶Hiroshima University Hospital


HERB: A Phase II Study of Trastuzumab Deruxtecan (T-DXd) for HER2-Expressing Biliary Tract Cancer

Ohba A et al. ASCO 2022; Abstract 4006.

HERB Primary Endpoint: Confirmed Objective Response Rate (ORR) by Blinded Independent Central Review with T-DXd for Biliary Tract Cancer

HERB Secondary Endpoints: Progression-Free Survival (PFS) and Overall Survival (OS) with T-DXd for Biliary Tract Cancer

	HER2-positive disease (n = 22)	HER2-low expressing disease (n = 8)
Median PFS	5.1 mo	3.5 mo
6-month PFS rate	40.9%	0
Median OS	7.1 mo	8.9 mo
6-month OS rate	63.6%	75.0%

HERB: Treatment-Emergent Adverse Events with T-DXd for Biliary Tract Cancer

Event	Any grade, n (%)	Grade ≥ 3, n (%)
Anemia	22 (68.8)	17 (53.1)
Neutrophil count decreased	18 (56.3)	10 (31.3)
White blood cell count decreased	18 (56.3)	10 (31.3)
Platelet count decreased	14 (43.8)	3 (9.4)
Nausea	14 (43.8)	0 (0)
Alopecia	13 (40.6)	0 (0)
Anorexia	12 (37.5)	1 (3.1)
Lymphocyte count decreased	11 (34.4)	7 (21.9)
Fatigue / Malaise	11 (34.4)	0 (0)
Interstitial lung disease / Pneumonitis	8 (25.0)	4 (12.5)
Hypoalbuminemia	7 (21.9)	1 (3.1)
Vomiting	7 (21.9)	0 (0)
Mucositis oral	5 (15.6)	0 (0)

HERB: Interstitial Lung Disease (ILD)/Pneumonitis with T-DXd for Biliary Tract Cancer

	ILDs (n=8)*
Grade, n (%) 1 2 3 5	3 (37.5) 1 (12.5) 2 (25.0) 2 (25.0)
Median time to onset (range), days	124 (35–247)**
Median Age (range), years	73 (51–75)
Sex, female, n (%)	3 (37.5)
Number of prior regimens, n (%) 1 ≥ 2	4 (50.0) 4 (50.0)
HER2 status of IHC/ISH, n (%) 3+/+ 2+/+	5 (62.5) 3 (37.5)
Lung metastasis, n (%)	3 (37.5)
Smoking history, n (%)	3 (37.5)
Biliary drainage, n (%)	4 (50.0)

ASCO Gastrointestinal Cancers Symposium

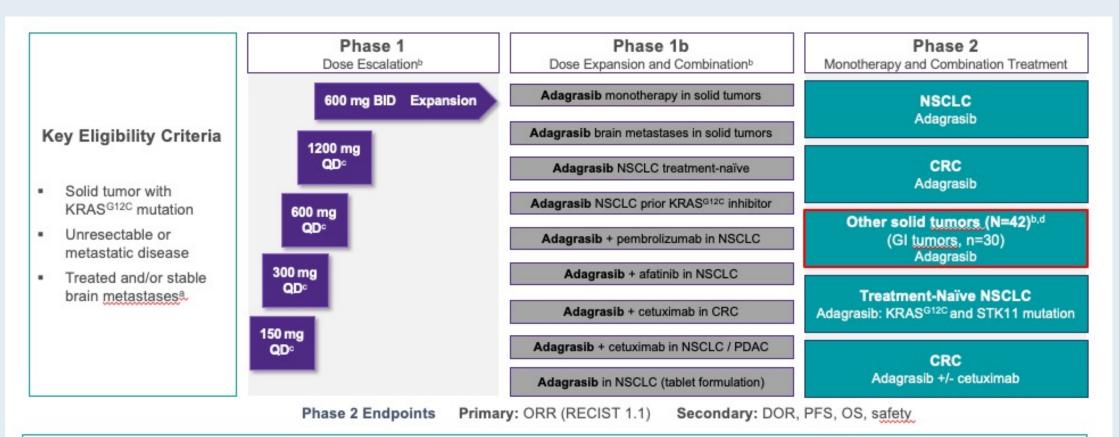
Abstract 519.

KRYSTAL-1: Updated Activity and Safety of Adagrasib (MRTX849) in Patients (Pts) With Unresectable or Metastatic Pancreatic Cancer (PDAC) and Other Gastrointestinal (GI) Tumors Harboring a KRAS^{G12C} Mutation

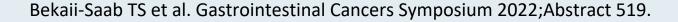
TS Bekaii-Saab¹, AI Spira², R Yaeger³, GL Buchschacher Jr.⁴, AJ McRee⁵, JK Sabari⁶, ML Johnson⁷, M Barve⁸, N Hafez⁹, K Velastegui¹⁰, JG Christensen¹⁰, T Kheoh¹⁰, H Der-Torossian¹⁰, SM Gadgeel¹¹

¹Department of Medical Oncology and Hematology, Mayo Clinic, Scottsdale, Arizona, USA; ²Virginia Cancer Specialists, Fairfax, Virginia, NEXT Oncology, Virginia, US Oncology Research, The Woodlands, Texas, USA; ³Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA; ⁴Kaiser Permanente Southern California, Los Angeles, California, USA; ⁵Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA; ⁶Perlmutter Cancer Center, New York University Langone Health, New York, New York, USA; ⁷Sarah Cannon Research Institute, Tennessee Oncology, Nashville, Tennessee, USA; ⁸Mary Crowley Cancer Research, Dallas, Texas, USA; ⁹Yale Cancer Center, New Haven, Connecticut, USA; ¹⁰Mirati Therapeutics, Inc., San Diego, California, USA; ¹¹Henry Ford Cancer Institute/Henry Ford Health System, Detroit, Michigan, USA

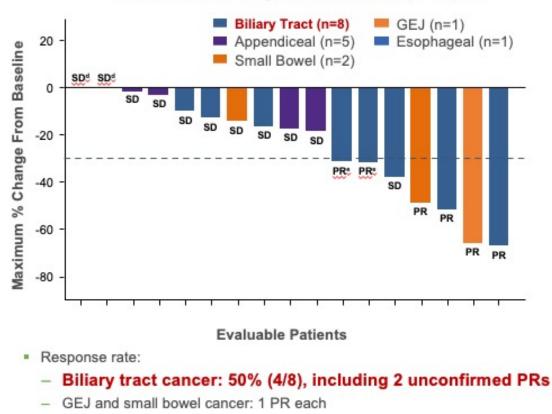
Copies of this slide deck obtained through Quick Response (QR Code are for personal use only and may not be reproduced without permission from ASCO® or the author of these slides.



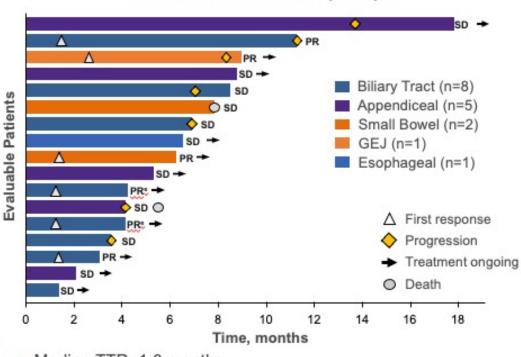
ASCO[•] Gastrointestinal Cancers Symposium


PRESENTED BY: Dr Tanios Bekaii-Saab Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse

KRYSTAL-1: Trial Schema


 Previously reported data demonstrated clinical activity with adagrasib in patients with various KRAS^{G12C}-mutated solid tumors, including NSCLC, CRC and other tumors such as PDAC, ovarian and endometrial cancers, and cholangiocarcinoma^{1–3}

Here we report preliminary data from a Phase 2 cohort evaluating adagrasib 600 mg BID in patients with previously-treated GI tumors (n=30), excluding CRC, with a focus on PDAC (n=12) and other GI cancers (n=18), with a KRAS^{G12C} mutation



KRYSTAL-1: Best Tumor Change from Baseline and Duration of Treatment with Adagrasib for Other Gastrointestinal Tumors

Best Tumor Change From Baseline (n=17)

DCR: 100% (17/17 patients)

Duration of Treatment (n=17)bc

- Median TTR: 1.3 months
- Median DOR: 7.85 months
- Median PFS: 7.85 months (95% CI 6.90–11.30)
- Treatment ongoing in 65% (11/17) of patients

Bekaii-Saab TS et al. Gastrointestinal Cancers Symposium 2022; Abstract 519.

WORLD PREMIERE OF AN ENDURING CME ACTIVITY

Oncology Today: Management of Unresectable Stage III Non-Small Cell Lung Cancer

Monday, August 1, 2022 5:00 PM - 6:00 PM ET

Faculty Jeffrey Bradley, MD David R Spigel, MD

> Moderator Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

