Meet The Professor Optimizing the Management of Head and Neck and Thyroid Cancers

Tuesday, September 20, 2022 5:00 PM - 6:00 PM ET

Faculty
Robert Haddad, MD

Commercial Support

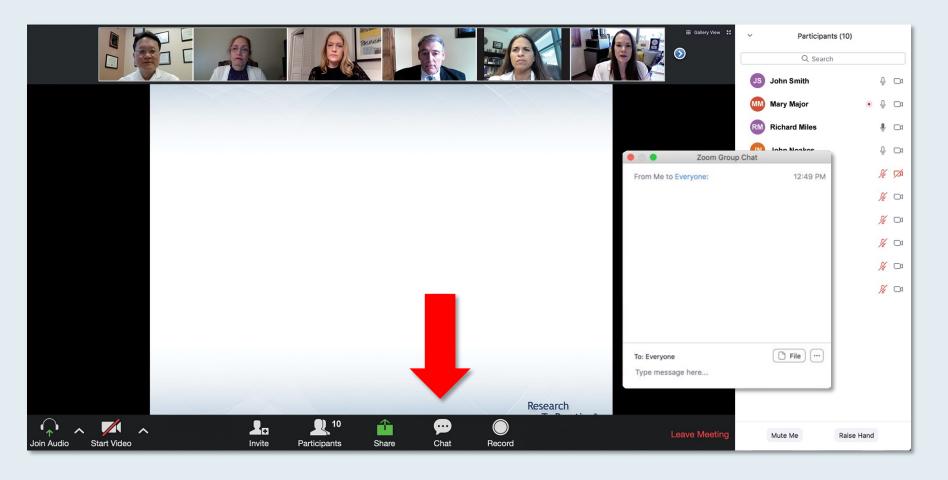
This activity is supported by educational grants from Bayer HealthCare Pharmaceuticals and Coherus BioSciences.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

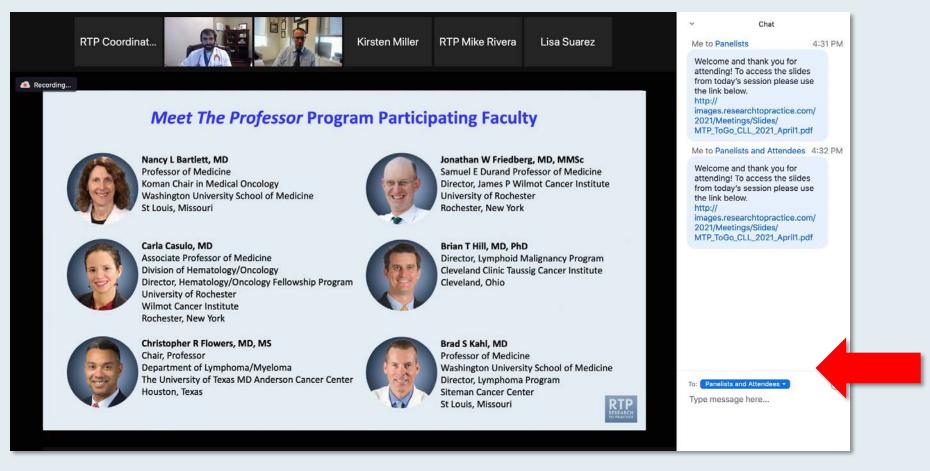
Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



Dr Haddad — Disclosures

No relevant conflicts of interest to disclose.

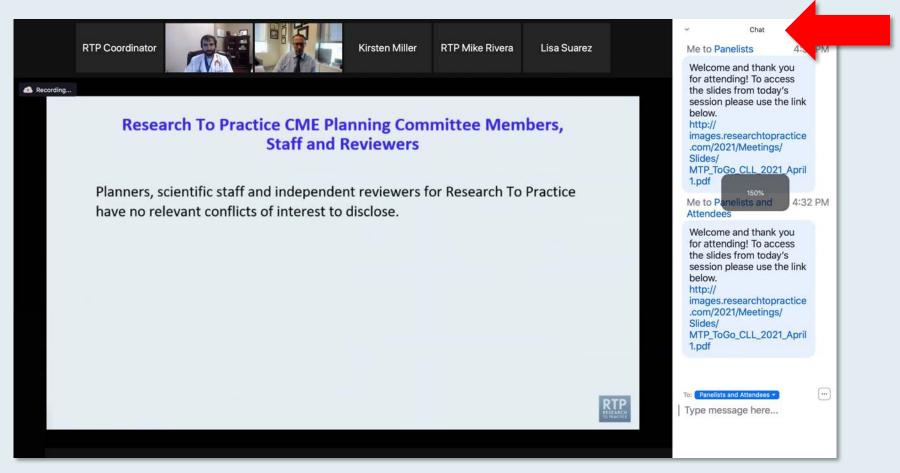
We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box



Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY

WITH DR NEIL LOVE

Key Abstracts in Head, Neck and Thyroid Cancers from the 2022 ASCO Annual Meeting

DR EZRA COHEN

UC SAN DIEGO MOORES CANCER CENTER

Meet The Professor Optimizing the Management of Small Cell Lung Cancer

Wednesday, September 21, 2022 5:00 PM - 6:00 PM ET

Faculty
Carl M Gay, MD, PhD

Meet The ProfessorOptimizing the Management of Ovarian Cancer

Thursday, September 29, 2022 5:00 PM - 6:00 PM ET

Faculty
Stephanie Lheureux, MD, PhD

Meet The Professor Optimizing the Management of HER2-Positive Breast Cancer

Tuesday, October 4, 2022 5:00 PM - 6:00 PM ET

Faculty
Nancy U Lin, MD

Meet The Professor Optimizing the Management of Multiple Myeloma

Thursday, October 6, 2022 5:00 PM - 6:00 PM ET

Faculty
Sagar Lonial, MD

The Clinical Implications of Key Recent Data Sets in Oncology: A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists

Saturday, October 22, 2022 7:30 AM – 5:30 PM ET

JW Marriott Orlando | Orlando, Florida

Faculty

Ghassan Abou-Alfa, MD, MBA
Matthew P Goetz, MD
Ian E Krop, MD, PhD
Ann S LaCasce, MD, MMSc
Corey J Langer, MD
Prof Georgina Long, AO, BSc, PhD, MBBS
Christine M Lovly, MD, PhD
Wells A Messersmith, MD

Alicia K Morgans, MD, MPH
David M O'Malley, MD
Thomas Powles, MBBS, MRCP, MD
Mitchell R Smith, MD, PhD
John Strickler, MD
Shannon N Westin, MD, MPH
Evan Y Yu, MD
Saad Zafar Usmani, MD, MBA

The Clinical Implications of Key Recent Data Sets in Oncology

A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists

Saturday, October 22, 2022

Lung Cancer

7:30 AM - 8:30 AM ET

Faculty

Corey J Langer, MD
Christine M Lovly, MD, PhD

CLL and Lymphomas

8:30 AM - 9:30 AM ET

Faculty

Ann S LaCasce, MD, MMSc Mitchell R Smith, MD, PhD

The Clinical Implications of Key Recent Data Sets in Oncology

A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists
Saturday, October 22, 2022

Prostate and Bladder Cancers

10:00 AM - 11:00 AM ET

Faculty

Alicia K Morgans, MD, MPH Evan Y Yu, MD **Renal Cell Carcinoma**

11:00 AM - 11:20 AM ET

Faculty

Thomas Powles, MBBS, MRCP, MD

The Clinical Implications of Key Recent Data Sets in Oncology

A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists

Saturday, October 22, 2022

CAR-T and Bispecific Therapy for Multiple Myeloma

11:20 AM - 11:40 AM ET

Faculty

Saad Zafar Usmani, MD, MBA

Hepatobiliary Cancer

11:40 AM - 12:00 PM ET

Faculty

Ghassan Abou-Alfa, MD, MBA

The Clinical Implications of Key Recent Data Sets in Oncology

A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists
Saturday, October 22, 2022

Breast Cancer

2:00 PM - 3:00 PM ET

Faculty

Matthew P Goetz, MD Ian E Krop, MD, PhD

Endometrial Cancer

3:00 PM - 3:20 PM ET

Faculty

Shannon N Westin, MD, MPH

The Clinical Implications of Key Recent Data Sets in Oncology

A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists

Saturday, October 22, 2022

Ovarian Cancer and PARP Inhibitors

3:50 PM - 4:10 PM ET

Faculty I NA O'NA O'N

David M O'Malley, MD

Gastrointestinal Cancers

4:10 PM - 5:10 PM ET

Faculty

Wells A Messersmith, MD John Strickler, MD

The Clinical Implications of Key Recent Data Sets in Oncology

A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists

Saturday, October 22, 2022

Melanoma

5:10 PM - 5:30 PM ET

Faculty

Prof Georgina Long, AO, BSc, PhD, MBBS

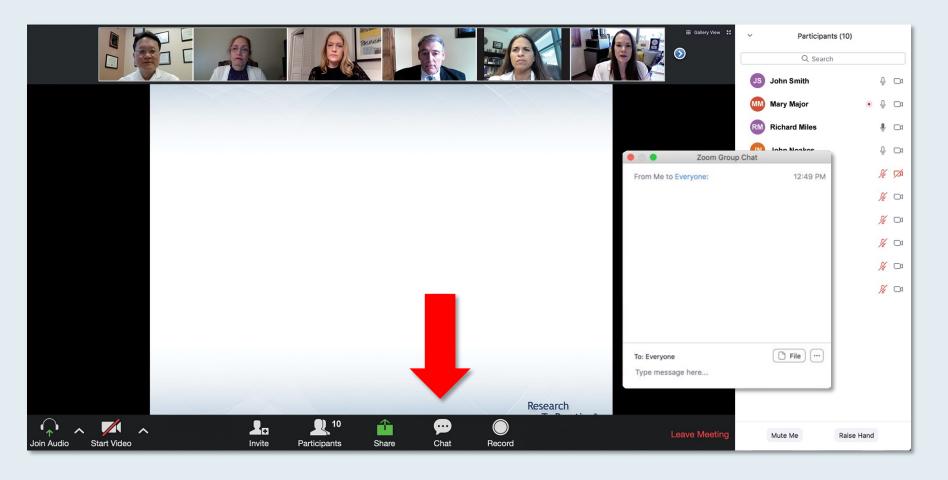
Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Optimizing the Management of Head and Neck and Thyroid Cancers

Robert Haddad, MD
Chief, Division of Head and Neck Oncology
McGraw Chair in Head and Neck Oncology
Institute Physician
Dana-Farber Cancer Institute
Professor of Medicine
Harvard Medical School
Boston, Massachusetts

Meet The Professor Program Participating Faculty


Robert Haddad, MD
Chief, Division of Head and Neck Oncology
McGraw Chair in Head and Neck Oncology
Institute Physician
Dana-Farber Cancer Institute
Professor of Medicine
Harvard Medical School
Boston, Massachusetts

MODERATOR
Neil Love, MD
Research To Practice

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY

WITH DR NEIL LOVE

Key Abstracts in Head, Neck and Thyroid Cancers from the 2022 ASCO Annual Meeting

DR EZRA COHEN

UC SAN DIEGO MOORES CANCER CENTER

Meet The Professor Optimizing the Management of Small Cell Lung Cancer

Wednesday, September 21, 2022 5:00 PM - 6:00 PM ET

Faculty
Carl M Gay, MD, PhD

Meet The ProfessorOptimizing the Management of Ovarian Cancer

Thursday, September 29, 2022 5:00 PM - 6:00 PM ET

Faculty
Stephanie Lheureux, MD, PhD

Meet The Professor Optimizing the Management of HER2-Positive Breast Cancer

Tuesday, October 4, 2022 5:00 PM - 6:00 PM ET

Faculty
Nancy U Lin, MD

Meet The Professor Optimizing the Management of Multiple Myeloma

Thursday, October 6, 2022 5:00 PM - 6:00 PM ET

Faculty
Sagar Lonial, MD

The Clinical Implications of Key Recent Data Sets in Oncology: A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists

Saturday, October 22, 2022 7:30 AM – 5:30 PM ET

JW Marriott Orlando | Orlando, Florida

Faculty

Ghassan Abou-Alfa, MD, MBA
Matthew P Goetz, MD
Ian E Krop, MD, PhD
Ann S LaCasce, MD, MMSc
Corey J Langer, MD
Prof Georgina Long, AO, BSc, PhD, MBBS
Christine M Lovly, MD, PhD
Wells A Messersmith, MD

Alicia K Morgans, MD, MPH
David M O'Malley, MD
Thomas Powles, MBBS, MRCP, MD
Mitchell R Smith, MD, PhD
John Strickler, MD
Shannon N Westin, MD, MPH
Evan Y Yu, MD
Saad Zafar Usmani, MD, MBA

The Clinical Implications of Key Recent Data Sets in Oncology

A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists

Saturday, October 22, 2022

Lung Cancer

7:30 AM - 8:30 AM ET

Faculty

Corey J Langer, MD
Christine M Lovly, MD, PhD

CLL and Lymphomas

8:30 AM - 9:30 AM ET

Faculty

Ann S LaCasce, MD, MMSc Mitchell R Smith, MD, PhD

The Clinical Implications of Key Recent Data Sets in Oncology

A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists
Saturday, October 22, 2022

Prostate and Bladder Cancers

10:00 AM - 11:00 AM ET

Faculty

Alicia K Morgans, MD, MPH Evan Y Yu, MD **Renal Cell Carcinoma**

11:00 AM - 11:20 AM ET

Faculty

Thomas Powles, MBBS, MRCP, MD

The Clinical Implications of Key Recent Data Sets in Oncology

A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists

Saturday, October 22, 2022

CAR-T and Bispecific Therapy for Multiple Myeloma

11:20 AM - 11:40 AM ET

Faculty

Saad Zafar Usmani, MD, MBA

Hepatobiliary Cancer

11:40 AM - 12:00 PM ET

Faculty

Ghassan Abou-Alfa, MD, MBA

The Clinical Implications of Key Recent Data Sets in Oncology

A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists
Saturday, October 22, 2022

Breast Cancer

2:00 PM - 3:00 PM ET

Faculty

Matthew P Goetz, MD Ian E Krop, MD, PhD

Endometrial Cancer

3:00 PM - 3:20 PM ET

Faculty

Shannon N Westin, MD, MPH

Join Us In Person or Virtually

The Clinical Implications of Key Recent Data Sets in Oncology

A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists

Saturday, October 22, 2022

Ovarian Cancer and PARP Inhibitors

3:50 PM - 4:10 PM ET

Faculty I NA O'NA O'N

David M O'Malley, MD

Gastrointestinal Cancers

4:10 PM - 5:10 PM ET

Faculty

Wells A Messersmith, MD John Strickler, MD

Moderator Neil Love, MD

Join Us In Person or Virtually

The Clinical Implications of Key Recent Data Sets in Oncology

A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists

Saturday, October 22, 2022

Melanoma

5:10 PM - 5:30 PM ET

Faculty

Prof Georgina Long, AO, BSc, PhD, MBBS

Moderator Neil Love, MD

Meet The Professor Optimizing the Management of Head and Neck and Thyroid Cancers

Robert Haddad, MD
Chief, Division of Head and Neck Oncology
McGraw Chair in Head and Neck Oncology
Institute Physician
Dana-Farber Cancer Institute
Professor of Medicine
Harvard Medical School
Boston, Massachusetts

Commercial Support

This activity is supported by educational grants from Bayer HealthCare Pharmaceuticals and Coherus BioSciences.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Haddad — Disclosures

No relevant conflicts of interest to disclose.

Ezra Cohen, MD

Chief, Division of Hematology-Oncology

Department of Medicine, UC San Diego

Co-Director, San Diego Center for Precision Immunotherapy

Co-Director, IEM Center for Engineering in Cancer

Associate Director for Clinical Sciences

Moores Cancer Center at UC San Diego Health

Co-Leader, Solid Tumor Therapeutics Program

Co-Director, Hanna and Mark Gleiberman Head and Neck Cancer Center La Jolla, California

Spencer H Bachow, MD Lynn Cancer Institute Boca Raton, Florida

Neil Morganstein, MDAtlantic Health System
Summit, New Jersey

Mamta Choksi, MD Florida Cancer Specialists New Port Richey, Florida

Erik Rupard, MDThe Reading Hospital
West Reading, Pennsylvania

Meet The Professor with Dr Haddad

MODULE 1: ESMO 2022

MODULE 2: Needle in a Haystack

MODULE 3: Head and Neck Cancer

MODULE 4: Thyroid Cancer

MODULE 5: Journal Club with Dr Haddad

MODULE 6: Appendix

Meet The Professor with Dr Haddad

MODULE 1: ESMO 2022

MODULE 2: Needle in a Haystack

MODULE 3: Head and Neck Cancer

MODULE 4: Thyroid Cancer

MODULE 5: Journal Club with Dr Haddad

MODULE 6: Appendix

Lancet 2021;398(10318):2289-99.

Seminar

Head and neck cancer

Mayur D Mody, James W Rocco, Sue S Yom, Robert I Haddad, Nabil F Saba

Regulatory and reimbursement issues aside, which of the following would be your most likely first-line systemic treatment recommendation for a patient with metastatic squamous cell carcinoma of the head and neck and a PD-L1 CPS of <1?

Chemotherapy

Chemotherapy + cetuximab

Chemotherapy + pembrolizumab

Chemotherapy + pembrolizumab + cetuximab

Other

I'm not sure

Regulatory and reimbursement issues aside, which of the following would be your most likely first-line systemic treatment recommendation for a symptomatic patient with metastatic squamous cell carcinoma and a <u>PD-L1 CPS of 20</u>?

Chemotherapy

Chemotherapy + cetuximab

Chemotherapy + pembrolizumab

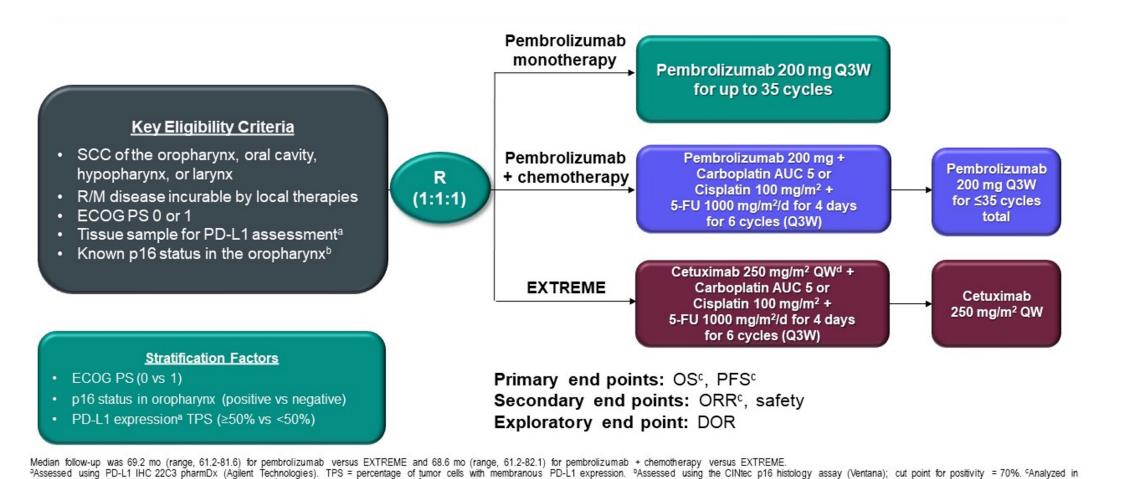
Chemotherapy + pembrolizumab + cetuximab

Pembrolizumab

Other

I'm not sure

ESMO 2022; Abstract 659MO.


Pembrolizumab With or Without Chemotherapy For First-Line Treatment of Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma: 5-year Results from KEYNOTE-048

Makoto Tahara¹; Richard Greil²; Danny Rischin³; Kevin J. Harrington⁴; Barbara Burtness⁵; Gilberto de Castro⁶; Amanda Psyrri⁷; Irene Brana⁸; Prakash Neupane⁹; Åse Bratland¹⁰; Thorsten Fuereder¹¹; Brett G.M. Hughes¹²; Ricard Mesia¹³; Nuttapong Ngamphaiboon¹⁴; Tamara Rordorf¹⁵; Wan Zamaniah Wan Ishak¹⁶; Jianxin Lin¹⁷; Burak Gumuscu¹⁷; Nati Lerman¹⁷; Denis Soulières¹⁸

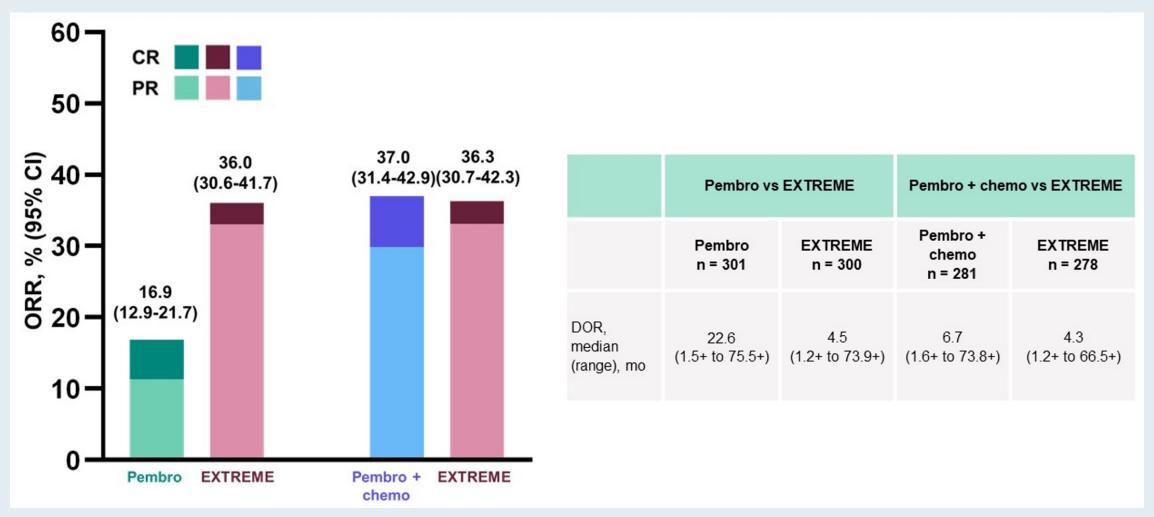
¹National Cancer Center Hospital East, Kashiwa, Japan; ²Paracelsus Medical University Salzburg Cancer Research Institute and Cancer Cluster, Salzburg, Austria; ³Peter MacCallum Cancer Institute University of Melbourne, Melbourne, VIC, Australia; ⁴The Institute of Cancer Research, London, United Kingdom; ⁵Yale School of Medicine, New Haven, CT, USA; ⁵Instituto do Cancer de Sao Paulo—ICESP, São Paulo, Brazil; ¬National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece; ®Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ³University of Kansas Medical Center, Kansas City, MO, USA; ¹¹Oslo University Hospital, Oslo, Norway; ¹¹Medical University of Vienna/General Hospital Vienna, Vienna, Austria; ¹²Royal Brisbane & Women's Hospital, and University of Queensland, Herston, QLD, Australia; ¹³Catalan Institute of Oncology, Barcelona, Spain; ¹⁴Ramathibodi Hospital, Mahidol University, Ratchatewi, Bangkok, Thailand, ¹⁵University Hospital, Zurich, Switzerland; ¹⁵University Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia; ¹¹Merck & Co., Inc., Rahway, NJ, USA; ¹³CHUM, Montréal, Quebec, Canada

KEYNOTE-048 Phase III Study Design

Median follow-up was 69.2 mo (range, 61.2-81.6) for pembrolizumab versus EXTREME and 68.6 mo (range, 61.2-82.1) for pembrolizumab + chemotherapy versus EXTREME.

³Assessed using PD-L1 IHC 22C3 pharmDx (Agilent Technologies). TPS = percentage of tumor cells with membranous PD-L1 expression.

⁵Assessed using the CINtec p16 histology assay (Ventana); cut point for positivity = 70%. canalyzed in PD-L1 CPS \geq 1, PD-L1 CPS \geq 20, and total populations.


⁶After a loading dose of 400 mg/m². Data cutoff date February 21, 2022.

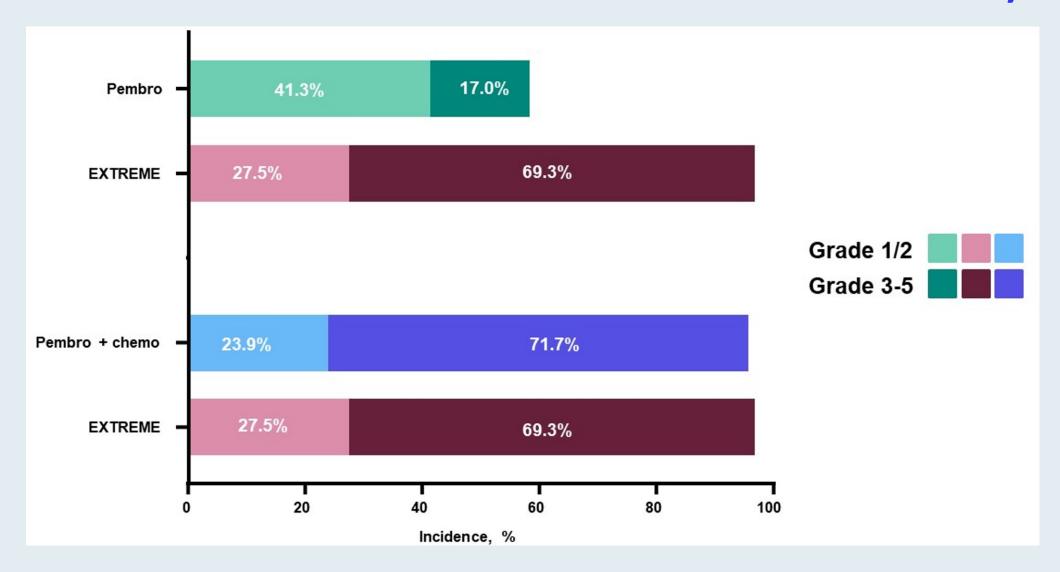
Burtness B et al. Lancet. 2019;394:1915-1928.

SCC = squamous cell carcinoma; OS = overall survival; PFS = progression-free survival; ORR = objective response rate; DOR = duration of response

KEYNOTE-048: Objective Response Rate and Duration of Response by BICR in the ITT Population

BICR = blinded independent central review; CR = complete response; PR = partial response; ORR = objective response rate;

DOR = duration of response



KEYNOTE-048: Objective Response Rate and Duration of Response by PD-L1 Status

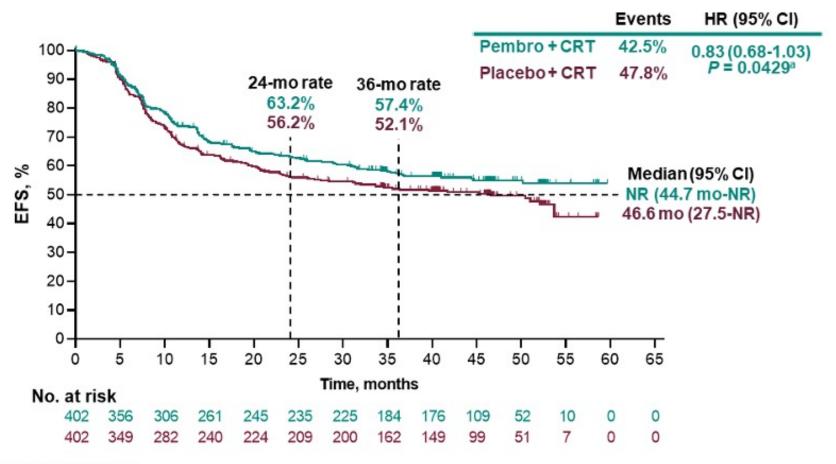
	Pembro vs EXTREME		Pembro + chemo vs EXTREME	
	Pembro	EXTREME	Pembro + chemo	EXTREME
CPS ≥1, n	257	255	242	235
ORR, % (95% CI)	19.1 (14.5-24.4)	34.9 (29.1-41.1)	38.0 (31.9-44.5)	35.7 (29.6-42.2)
DOR, median, (range) mo	23.4 (1.5+ to 75.5+)	4.5 (1.2+ to 73.9+)	6.7 (1.6+ to 73.8+)	4.3 (1.2+ to 66.5+)
CPS ≥20, n	133	122	126	110
ORR, % (95% CI)	23.3 (16.4-31.4)	36.1 (27.6-45.3)	45.2 (36.4-54.3)	38.2 (29.1-47.9)
DOR, median, (range) mo	23.4 (2.7 to 75.5+)	4.3 (1.2+ to 38.2+)	7.1 (2.1+ to 73.8+)	4.2 (1.2+ to 38.2+)

KEYNOTE-048: Treatment-Related Adverse Events Summary

KEYNOTE-048 Conclusions

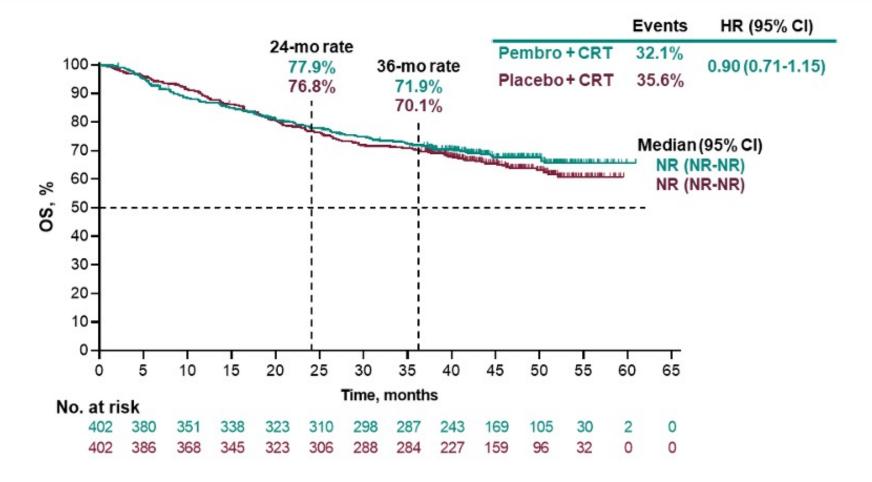
- With an extended follow-up of 5 years, first-line pembrolizumab monotherapy and pembrolizumab + chemotherapy continue to suggest clinical benefit in R/M HNSCC regardless of PD-L1 status
 - 5-year OS rate for overall ITT population
 - 14.4% versus 6.5% for pembrolizumab monotherapy versus EXTREME
 - 16.0% versus 5.2% for pembrolizumab + chemotherapy versus EXTREME
 - DOR remained longer with pembrolizumab or pembrolizumab + chemotherapy than with EXTREME
 - Safety was consistent with that of previous reports1
- Results from this study further support treatment with pembrolizumab and pembrolizumab + chemotherapy as first-line standard of care in R/M HNSCC

ESMO 2022; Abstract LBA5


Primary Results of the Phase 3 KEYNOTE-412 Study: Pembrolizumab Plus Chemoradiation Therapy (CRT) vs Placebo Plus CRT for Locally Advanced Head and Neck Squamous Cell Carcinoma

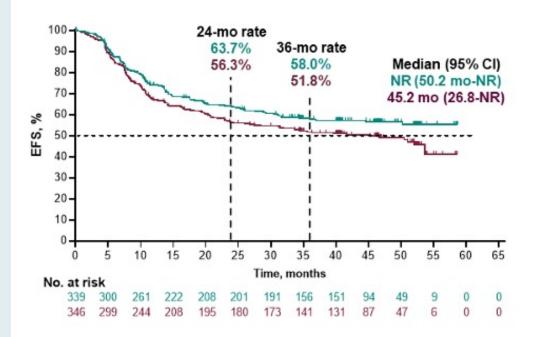
Jean-Pascal Machiels¹, Yungan Tao², Barbara Burtness³, Makoto Tahara⁴, Danny Rischin⁵, Gustavo V. Alves⁶, Iane Pinto Figueiredo Lima⁷, Brett G.M. Hughes⁸, Yoann Pointreau⁹, Sercan Aksoy¹⁰, Simon Laban¹¹, Richard Greil¹², Martin Burian¹³, Marcin Hetnal¹⁴, Lisa Licitra¹⁵, Ramona Swaby¹⁶, Yayan Zhang¹⁷, Burak Gumuscu¹⁷, Behzad Bidadi¹⁷, Lillian L. Siu¹⁸

¹Cliniques universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, Brussels, Belgium; ²Institut Gustave Roussy, Villejuif, France; ³Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA; ⁴National Cancer Center Hospital East, Kashiwa, Japan; ⁵Peter MacCallum Cancer Centre and the University of Melbourne, Melbourne, Australia; ⁵Centro Integrado de Pesquisa em Oncologia, Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil; ³CRIO Centro Regional Integrado de Oncologia, Fortaleza-CE, Brazil; ³Royal Brisbane and Women's Hospital and University of Queensland, Brisbane, Queensland, Australia; ³Centre Jean Bernard, Le Mans, France; ¹¹OHacettepe University, Cancer Institute, Ankara, Turkey; ¹¹Ulm University Medical Center, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Department of Otorhinolaryngology, Head & Neck Surgery, Ulm, Germany; ¹²Paracelsus Medical University, Salzburg Cancer Research Institute, and Cancer Cluster Salzburg, Salzburg, Austria; ¹³Krankenhaus der Barmherzigen Schwestern Linz, Linz, Austria; ¹⁴Andrzej Frycz Modrzewski Krakow University, Amethyst Radiotherapy Centre, Rydygier Hospital, Krakow, Poland; ¹⁵Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; University of Milan, Milan, Italy; ¹¹⁵Merck & Co., Inc., Rahway, NJ, USA; ¹¹⁵Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada.

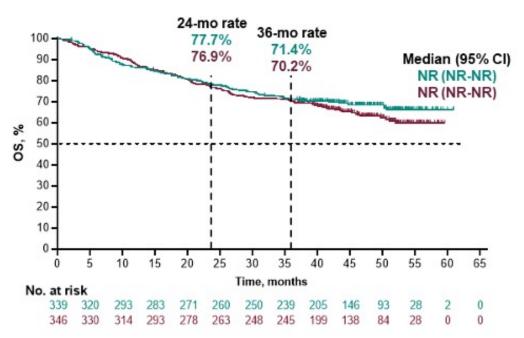

Event-Free Survival, ITT Population

 ${}^{3}P$ value did not meet the superiority threshold of one-sided α of 0.0242. Data cutoff date: May 31, 2022.

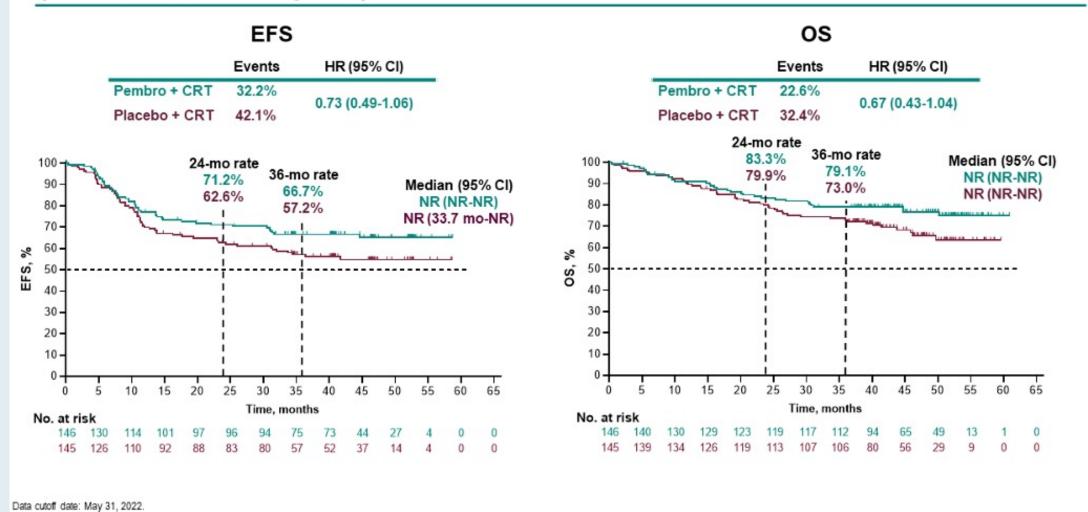
Overall Survival, ITT Population



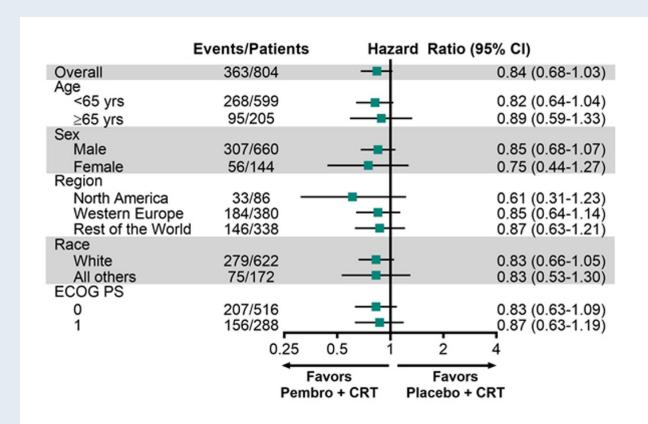
Data cutoff date: May 31, 2022.

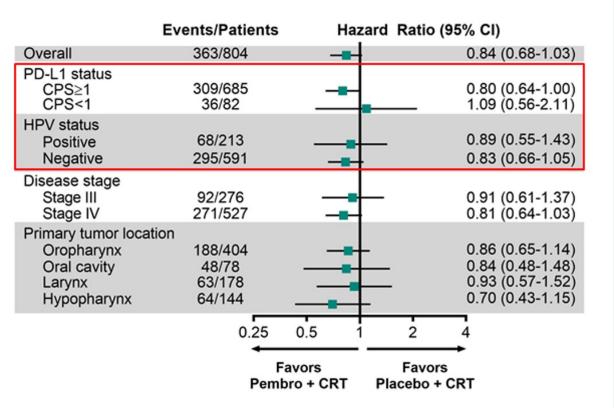


EFS and OS in Patients With PD-L1 CPS ≥1 (Prespecified Subgroup Analysis)



Data cutoff date: May 31, 2022.




EFS and OS in Patients With PD-L1 CPS ≥20 (Post Hoc Analysis)

KEYNOTE-412: EFS in Prespecified Subgroups (ITT)

Summary and Conclusions

- Pembrolizumab plus CRT was associated with a favorable trend toward improved EFS vs placebo plus CRT in patients with LA HNSCC (HR, 0.83; P = 0.0429)
 - The difference did not reach statistical significance (superiority threshold, one-sided P = 0.0242)
 - 24-mo EFS rate: 63.2% vs 56.2%
- PD-L1 expression^a may be an informative predictive biomarker
 - CPS ≥1: 24-mo EFS rate, 63.7% vs 56.3%; 36-mo OS rate, 71.4% vs 70.2%
 - CPS ≥20: 24-mo EFS rate, 71.2% vs 62.6%; 36-mo OS rate, 79.1% vs 73.0% (post hoc analysis)
- No new safety signals with the combination of pembrolizumab plus CRT
- LA HNSCC remains a challenging disease to treat

^aMeasured by CPS using PD-L1 IHC 22C3 pharmDx.

Presidential Symposium 2

Medical Oncologist's Point of View

LBA 4, 5, 6 and 7

James Larkin

Royal Marsden NHS Foundation Trust / Institute of Cancer Research London UK

Why did KN 412 miss the primary endpoint?

Chemotherapy + anti-PD1 has benefit in advanced disease, so why the difference?

There is a signal here, particularly in the high PD-L1 group, consistent with the (also negative) Javelin 100 study, although caution required comparing avelumab (anti-PD-L1) with pembrolizumab (anti-PD1)

Is there an issue with treatment schedule? e.g. PACIFIC in NSCLC is an analogous (positive) trial where checkpoint inhibition was given after chemoradiotherapy

Is there an issue with lymph node RT when combining with checkpoint inhibitors? RT is the central component of treatment in this setting but could it be modified?

As already suggested, a better understanding of integrating checkpoint inhibition with radiotherapy in terms of timing, fields, dose and fractionation is needed

Meet The Professor with Dr Haddad

MODULE 1: ESMO 2022

MODULE 2: Needle in a Haystack

• Dr Cohen: 51-year-old man presents with metastatic anaplastic thyroid cancer

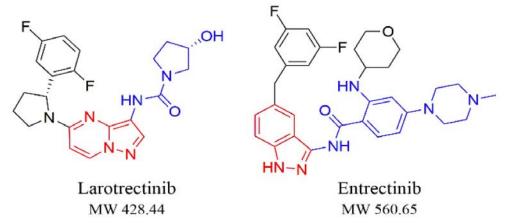
MODULE 3: Head and Neck Cancer

MODULE 4: Thyroid Cancer

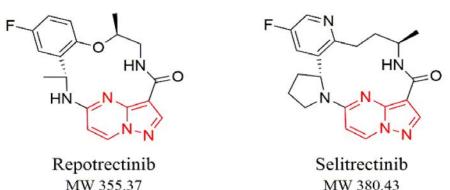
MODULE 5: Journal Club with Dr Haddad

MODULE 6: Appendix

Case Presentation: 51-year-old man presents with metastatic anaplastic thyroid cancer



Dr Ezra Cohen (La Jolla, California)



FDA Approved and Investigational TRK Inhibitors for Patients with Solid Tumors with NTRK Gene Fusions

FDA-approved first-generation NTRK gene fusion inhibitors

Second-generation investigational NTRK gene fusion inhibitors

Larotrectinib: FDA approval 11/26/2018

 Based on LOXO-TRK-14001, SCOUT and NAVIGATE

Entrectinib: FDA approval 8/15/2019

Based on ALKA, STARTRK-1 and STARTRK-2

Repotrectinib* and selitrectinib

 Next-generation TRK tyrosine kinase inhibitors with a compact macrocyclic structure that binds completely inside the ATP binding pocket even in the presence of mutations

Besse B et al. AACR-NCI-EORTIC Virtual International Conference 2021; Abstract LB6546.

Larotrectinib PI, rev 3/2021; Entrectinib PI, rev 7/2022; https://www.tptherapeutics.com/news-releases/news-release-details/turning-point-therapeutics-granted-breakthrough-therapy

^{*} Breakthrough therapy designation: 10/6/2021

TRK Inhibitor Activity in Solid Tumors with NTRK Gene Fusions – Data from the Registrational Studies

	Larotrectinib (LOXO-TRK-14001, SCOUT, NAVIGATE) (N = 244)	Entrectinib (ALKA, STARTRK-1, STARTRK-2) (N = 150)
Median age	38	58.5
NTRK fusion NTRK1 NTRK2 NTRK3	46% 3% 51%	Not reported
Prior lines of systemic therapy 0 1 ≥2	27% 28% 44%	34% 29% 37%
ORR (CR)	69% (21%)	61% (17%)
Median DoR	33 mo	20 mo
Median PFS	29 mo	14 mo
Median OS	Not reached	37 mo

Genetic Alterations Associated with Different Histotypes of Thyroid Cancer

	PTC	FTC	PDTC	ATC	мтс
AKT	1%	1%-2.6%	-	0%-3%	-
BRAF	61.7%	1.7%	19%-33%	19%-45%	-
DICER1	2.7%	5.1%		1.1%	(- 6
EIF1AX	1.5%	5.1%	10%	9%	0.6%
HRAS	2%	7%	5%	6%	9.3%-15.8%
KRAS	1.3%	4%	2%	0%-5%	3.0%-6.2%
NRAS	6%	17%-57%	21%	18%	0.6%-1%
PAX8-PPARy	0.8%	12%-53%	4%	0	-
PI3KCA	-	5.5%	2%	18%	-
PTEN	1%	7.1%	4%	15%	1%
RET	-	-		-	55.8%
RET/PTC	6.8%	0	14%	0	Very rare
SWI/SNF	-	-	6%	18%-36%	-
TERT promoter	9.4%	-	33%-40%	43%-73%	-
TP53	6%	5.1%-9.7%	0%-8%	43%-78%	1.2%
NTRK-Fusion	2-19%	-	-		- 1-1
TSHR	2%	10.3%	2%	6%	0.6%

Considerations for RET and TRK Fusion Testing Methodologies

FISH

- Current standard for detection of gene fusions; break-apart probes preferred to fusion probes
- Difficulties in FISH interpretation: pericentric fusions, close proximity of several possible partner genes to fusion gene (RET or TRK)
- Limitation: not optimal for extensive and multiplex screening, or when recognition of fusion partner influences clinical decisions

RT-PCR

- Can detect fusion transcripts and identify fusion partner if primer for specific partner is present
- Limitation: imbalance assay for unknown fusion partner is highly dependent on expression of partner and may not be reliable

DNA NGS

- NGS panel sequencing can identify fusions if specifically designed to examine introns
- Limitations: limited sensitivity for detection of fusion genes and no information on effective transcription of rearranged *RET or TRK* genes

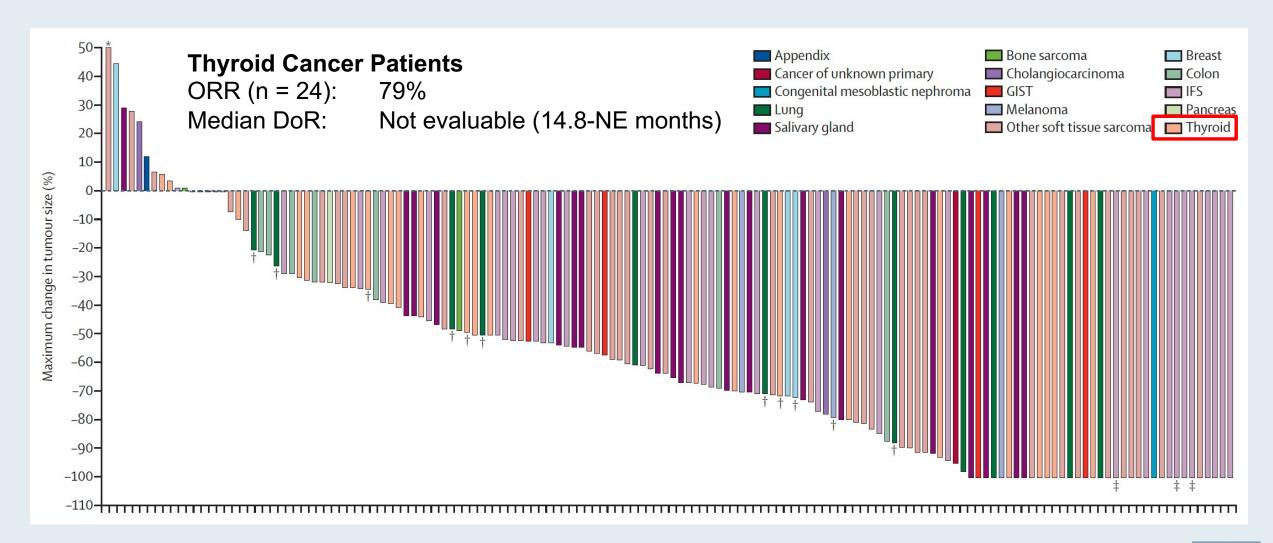
RNA NGS

- Targeted RNA-based assays are method of choice for *RET* and TRK fusion screening; allows detection of gene fusions with complex rearrangements
- Limitation: assessment of RNA quality is crucial to ensure accuracy; poor preanalytical conditions may affect assay

Lancet Oncol 2020;21(4):531-40.

Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials

David S Hong, Steven G DuBois, Shivaani Kummar, Anna F Farago, Catherine M Albert, Kristoffer S Rohrberg, Cornelis M van Tilburg, Ramamoorthy Nagasubramanian, Jordan D Berlin, Noah Federman, Leo Mascarenhas, Birgit Geoerger, Afshin Dowlati, Alberto S Pappo, Stefan Bielack, François Doz, Ray McDermott, Jyoti D Patel, Russell J Schilder, Makoto Tahara, Stefan M Pfister, Olaf Witt, Marc Ladanyi, Erin R Rudzinski, Shivani Nanda, Barrett H Childs, Theodore W Laetsch, David M Hyman*, Alexander Drilon*


Clinical Characteristics of Patients in 3 Pooled Phase I/II Studies

	All patients (n=159)
Study*	
Adult phase 1	12 (8%)
Paediatric phase 1/2	50 (31%)
Adolescents and adult phase 2 basket study	97 (61%)
Sex	
Male	77 (48%)
Female	82 (52%)
Age	
Median, years	43.0 (6.5-61)
Range	<1 month to 84 years
Age group distribution, years	
<1	24 (15%)
1 to <18	28 (18%)
18 to <65	77 (48%)
≥65	30 (19%)

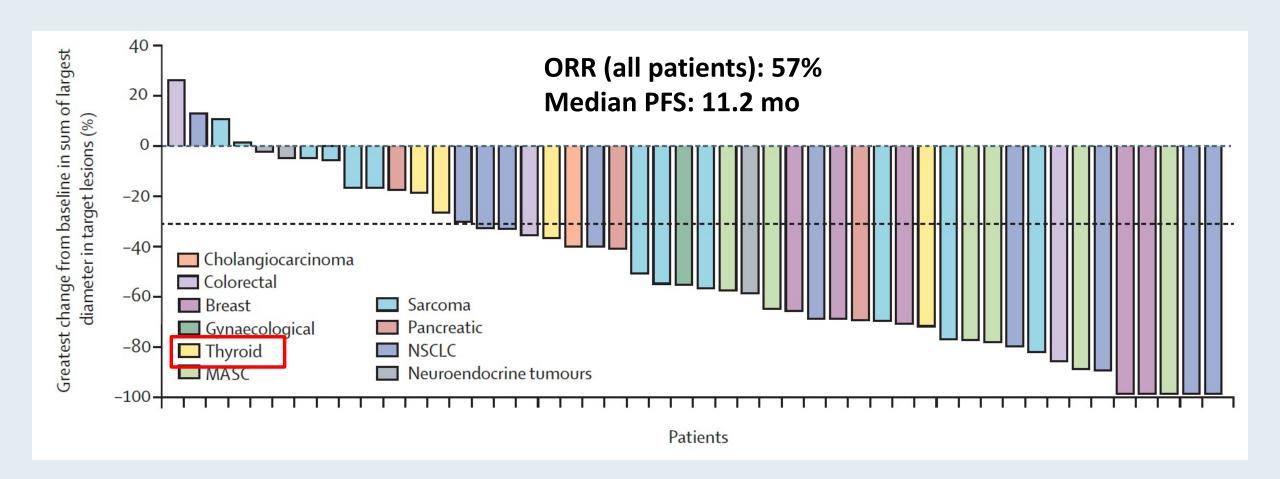
Tumour type	
Soft tissue sarcoma	
Infantile fibrosarcoma	29 (18%)
Gastrointestinal stromal tumour	4 (3%)
Other	36 (23%)
Thyroid	26 (16%)
Salivary gland	21 (13%)
Lung	12 (8%)
Colon	8 (5%)
Melanoma	7 (4%)
Breast	5 (3%)
Bone sarcoma	2 (1%)
Cholangiocarcinoma	2 (1%)
Pancreas	2 (1%)
Appendix	1 (<1%)
Congenital mesoblastic nephroma	1 (<1%)
Hepatocellular	1 (<1%)
Prostate	1 (<1%)
Unknown primary	1 (<1%)

Waterfall Plot of Maximum Percent Change in Tumor Size with Larotrectinib in Patients with Solid Tumors with TRK Fusions

Lancet Oncol 2020;21(2):271-82.

Entrectinib in patients with advanced or metastatic *NTRK* fusion-positive solid tumours: integrated analysis of three phase 1–2 trials

Robert C Doebele*, Alexander Drilon*, Luis Paz-Ares, Salvatore Siena, Alice T Shaw, Anna F Farago, Collin M Blakely, Takashi Seto, Byung Chul Cho, Diego Tosi, Benjamin Besse, Sant P Chawla, Lyudmila Bazhenova, John C Krauss, Young Kwang Chae, Minal Barve, Ignacio Garrido-Laguna, Stephen V Liu, Paul Conkling, Thomas John, Marwan Fakih, Darren Sigal, Herbert H Loong, Gary L Buchschacher Jr, Pilar Garrido, Jorge Nieva, Conor Steuer, Tobias R Overbeck, Daniel W Bowles, Elizabeth Fox, Todd Riehl, Edna Chow-Maneval, Brian Simmons, Na Cui, Ann Johnson, Susan Eng, Timothy R Wilson, George D Demetri, on behalf of the trial investigators



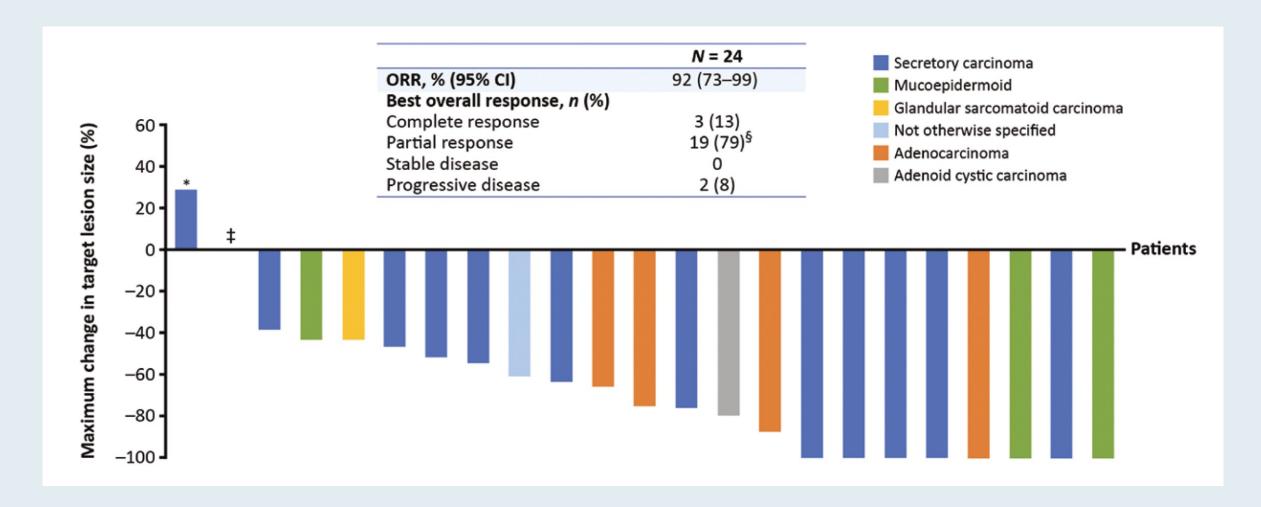
Entrectinib for Advanced or Metastatic Solid Tumors with NTRK Fusions (ALKA, STARTRK-1, STARTRK-2)

58 (48–67)
13 (24%)
10 (19%)
7 (13%)
6 (11%)
5 (9%)
4 (7%)
3 (6%)
3 (6%)
2 (4%)
1 (2%)
1 (2%)
1 (2%)

Entrectinib for Advanced or Metastatic Solid Tumors with NTRK Fusions (ALKA, STARTRK-1, STARTRK-2)

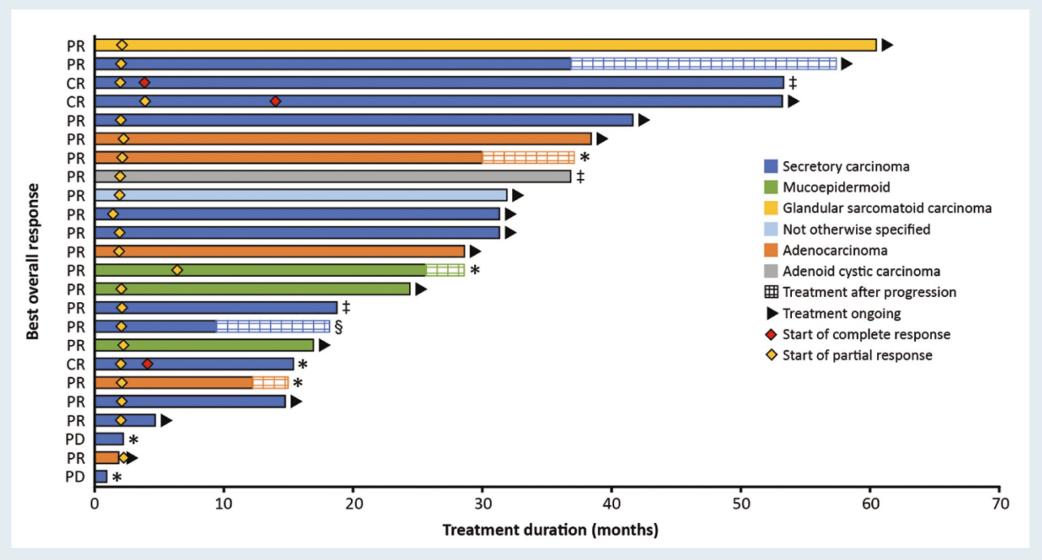
Oncologist 2022 May 10; [Online ahead of print].

Original Article

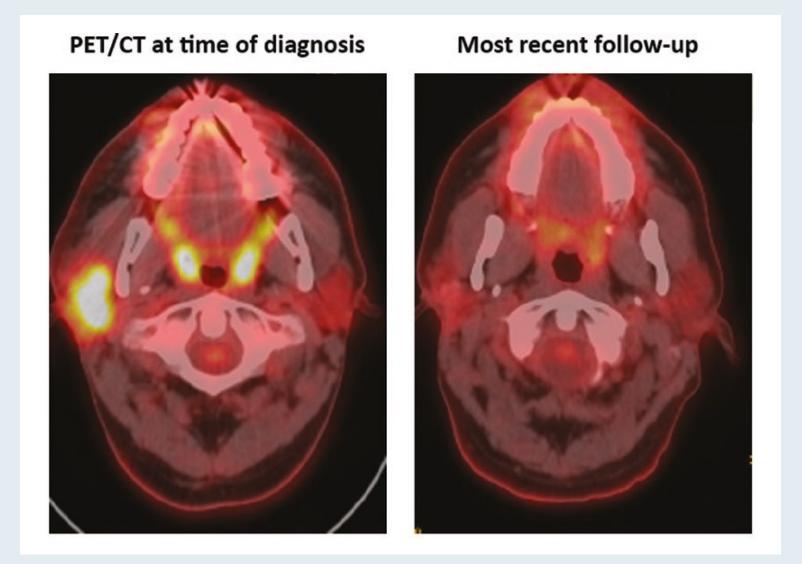


Larotrectinib Treatment for Patients With TRK Fusion-Positive Salivary Gland Cancers

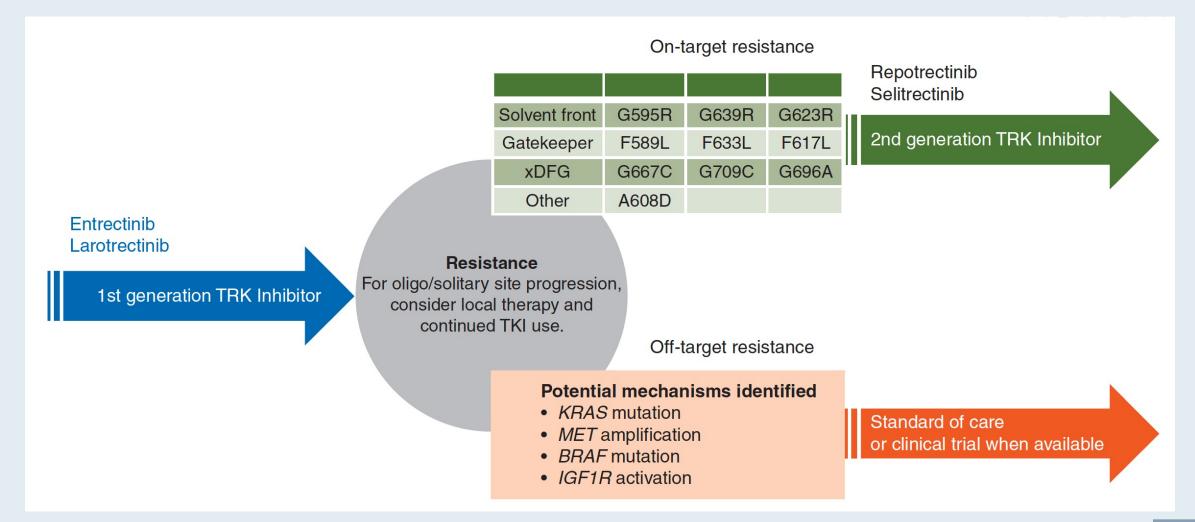
Xiuning Le^{1,*}, Christina Baik², Jessica Bauman³, Jill Gilbert⁴, Marcia S. Brose⁵, Juneko E. Grilley-Olson⁶, Tejas Patil⁷, Ray McDermott^{8,9}, Luis E. Raez¹⁰, Jennifer M. Johnson⁵, Lin Shen¹¹, Makoto Tahara^{12,10}, Alan L. Ho^{13,14}, Ricarda Norenberg¹⁵, Laura Dima¹⁶, Nicoletta Brega¹⁷, Alexander Drilon^{13,14,10}, David S. Hong¹



Maximum Change in Target Lesion Size and Response After Treatment with Larotrectinib



Treatment Duration with Larotectinib for Patients with Salivary Gland Cancer with NTRK Fusions



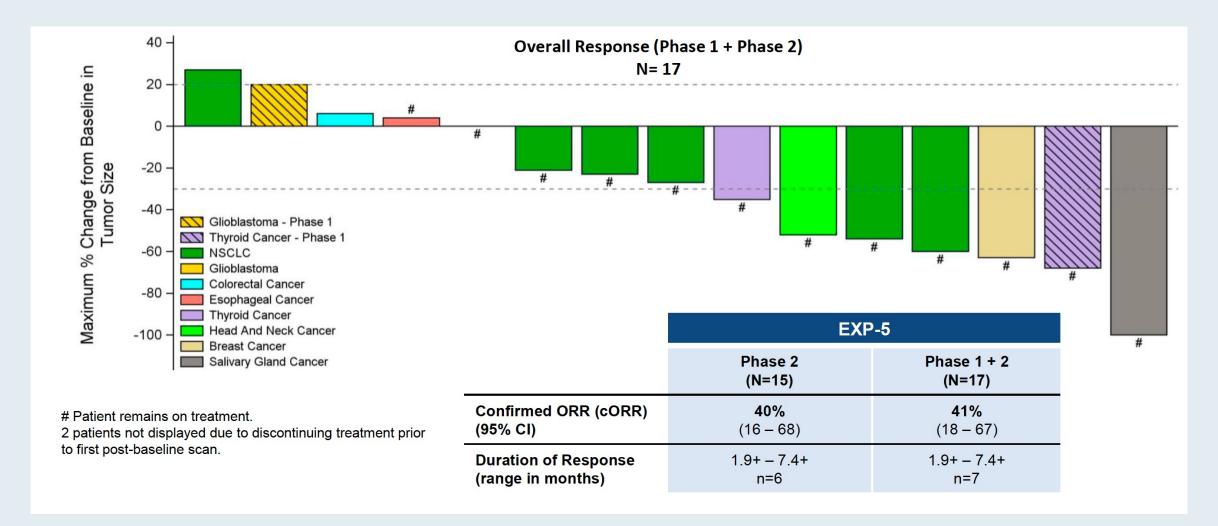
Response to Larotrectinib in a Patient with Secretory Carcinoma of the Salivary Gland with ETV6-NTRK3 Fusion

Mechanisms of Resistance to NTRK Inhibitors and Sequential Therapy

AACR-NCI-EORTC Virtual International Conference on

MOLECULAR TARGETS AND CANCER THERAPEUTICS

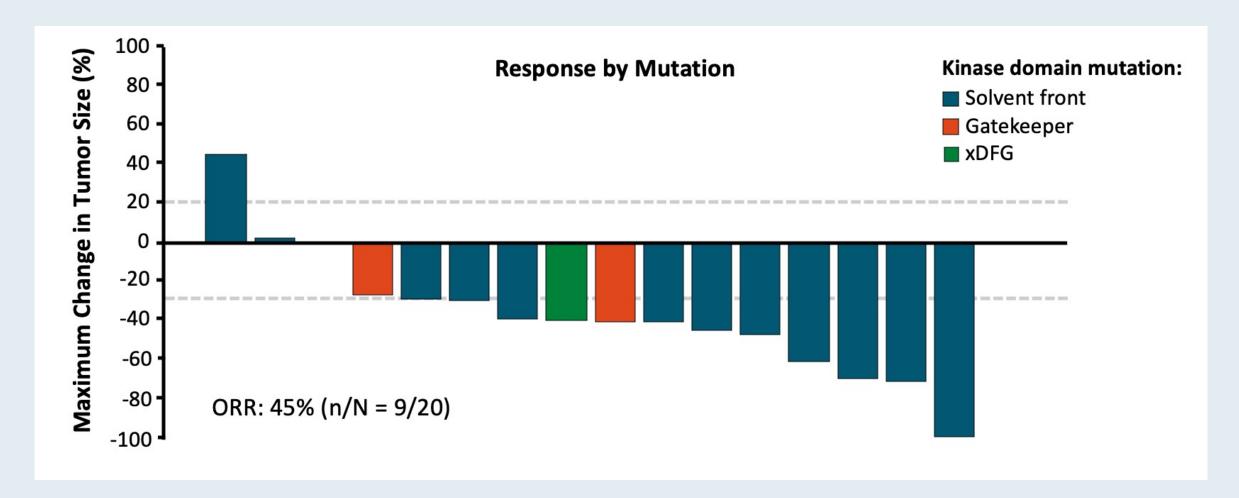
LB #6546


October 7-10, 2021

Repotrectinib in patients with *NTRK* fusion-positive advanced solid tumors: update from the registrational phase 2 TRIDENT-1 trial

Benjamin Besse,¹ Christina Baik,² Christoph Springfeld,³ Alice Hervieu,⁴ Victor Moreno,⁵ Lyudmila Bazhenova,⁶ Jessica J. Lin,⁷ D. Ross Camidge,⁸ Benjamin Solomon,⁹ Vamsidhar Velcheti,¹⁰ Young-Chul Kim,¹¹ Anthonie J. van der Wekken,¹² Enriqueta Felip,¹³ Dipesh Uprety,¹⁴ Denise Trone,¹⁵ Shanna Stopatschinskaja,¹⁵ Byoung Chul Cho,¹⁶ Alexander Drilon¹⁷

TRIDENT-1: Preliminary Efficacy with Repotrectinib for TKI-Naïve Advanced Solid Tumors with NTRK Fusions

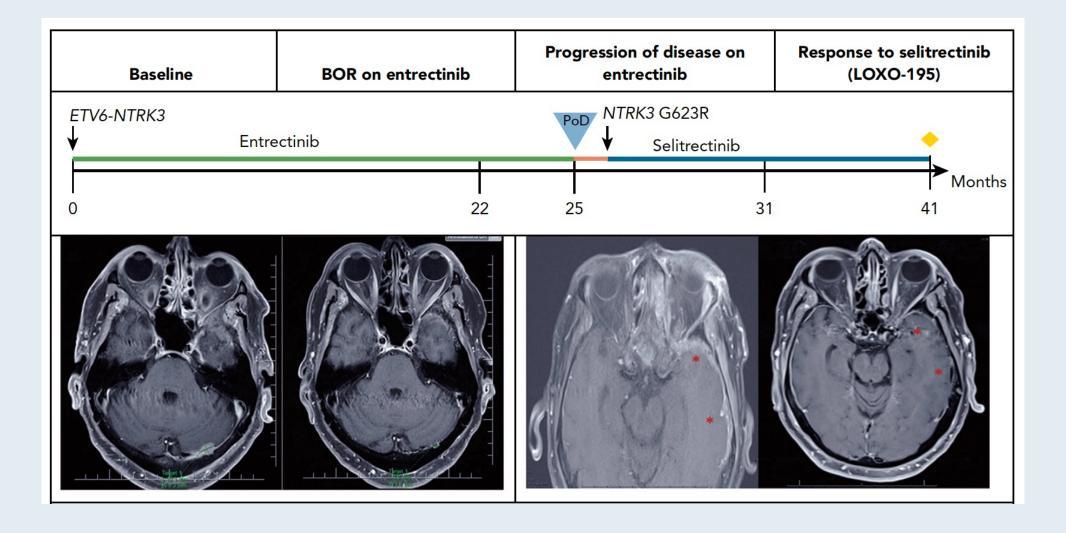

Phase I and Expanded Access Experience of LOXO-195 (BAY 2731954), a Selective Next-Generation TRK Inhibitor (TRKi)

Hyman D et al.

AACR 2019; Abstract CT127.

Activity of Selitrectinib (LOXO-195) in a Phase I/Expanded Access Study for Adults and Children with Progressive Disease or Intolerance to a Prior TRK Inhibitor

MOLECULAR INSIGHTS IN PATIENT CARE


Clinical Activity of Selitrectinib in a Patient With Mammary Analogue Secretory Carcinoma of the Parotid Gland With Secondary Resistance to Entrectinib

Vaia Florou, MD¹; Christopher Nevala-Plagemann, MD¹; Jonathan Whisenant, MD¹; Patricia Maeda, MD²; Glynn W. Gilcrease, MD¹; and Ignacio Garrido-Laguna, MD, PhD¹

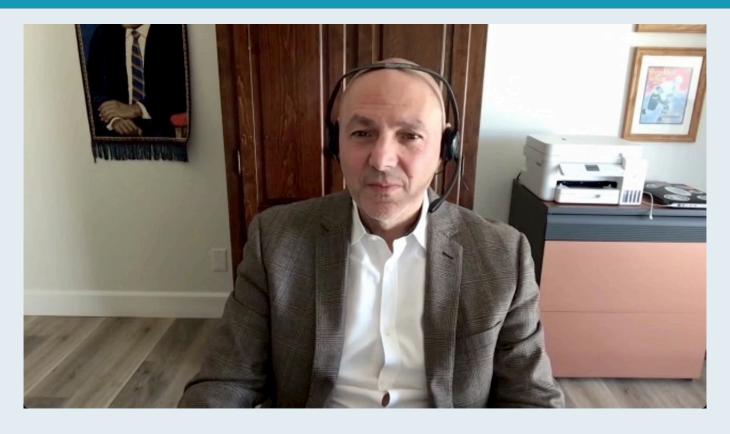
J Natl Compr Canc Netw 2021;19(5):478-82.

Most Characteristic Imaging Studies Showing Response to Selitrectinib After Disease Progression on Entrectinib

Meet The Professor with Dr Haddad

MODULE 3: Head and Neck Cancer

- Dr Rupard: 67-year-old man s/p IO therapy for melanoma is diagnosed with Stage I (cN2 N1) p16-positive SCC of the left tonsil
- Dr Cohen: 42-year-old Asian woman s/p cisplatin/RT and gemcitabine/cisplatin for locoregionally advanced nasopharyngeal cancer develops metastatic disease PD-L1 CPS 10
- Dr Morganstein: 72-year-old man presents with recurrent and rapidly progressing HPV-negative metastatic head and neck cancer
- Dr Choksi: 58-year-old man s/p definitive RT and surgery for locally recurrent SCC of the head and neck presents with worsening shortness of breath
- Dr Bachow: 73-year-old man with a longstanding history of T-cell large granular lymphocytic leukemia presents with metastatic HPV-positive SCC of the left tonsil – PD-L1-negative
- Dr Cohen: 57-year-old man presents with HPV-positive Stage III cancer of the base of the tongue

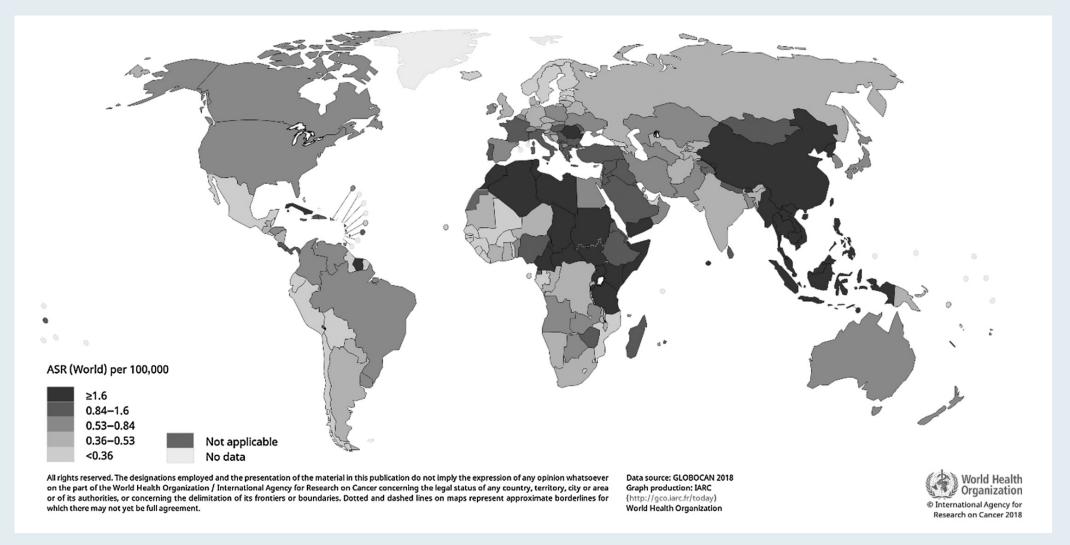

Case Presentation: 67-year-old man s/p IO therapy for melanoma is diagnosed with Stage I (cN2 N1) p16-positive SCC of the left tonsil

Dr Erik Rupard (West Reading, Pennsylvania)

Case Presentation: 42-year-old Asian woman s/p cisplatin/RT and gemcitabine/cisplatin for locoregionally advanced nasopharyngeal cancer develops metastatic disease – PD-L1 CPS 10

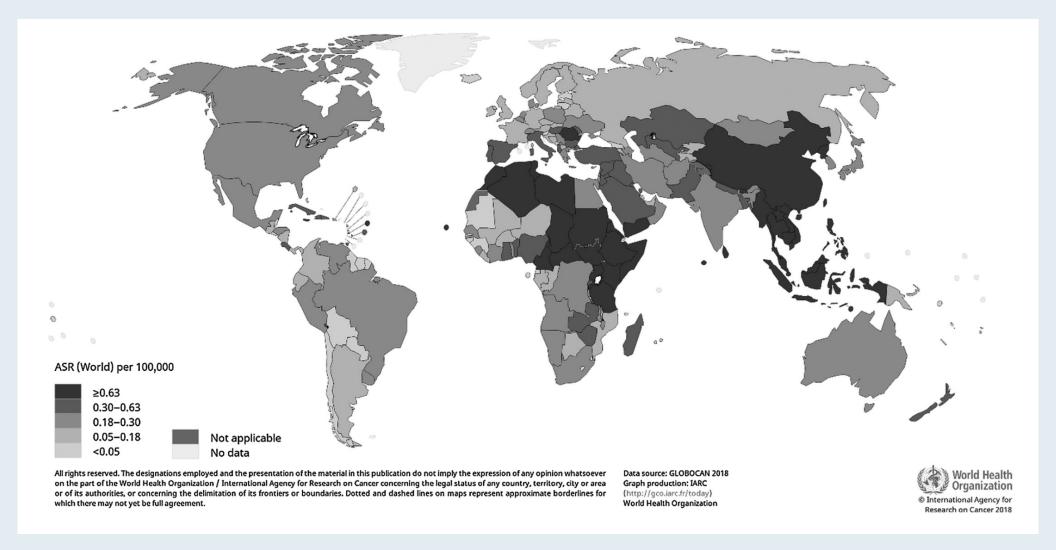
Dr Ezra Cohen (La Jolla, California)

Cancer Epidemiol Biomarkers Prev 2021;30:1035-47.


CANCER EPIDEMIOLOGY, BIOMARKERS & PREVENTION | REVIEW

The Evolving Epidemiology of Nasopharyngeal Carcinoma Ac

Ellen T. Chang^{1,2}, Weimin Ye³, Yi-Xin Zeng^{4,5}, and Hans-Olov Adami^{6,7}



Estimated Age-Standardized (World Population Standard) Incidence Rates of Nasopharyngeal Cancer Among Males by Country

Estimated Age-Standardized (World Population Standard) Incidence Rates of Nasopharyngeal Cancer Among <u>Females</u> by Country

Cancer Treatment Reviews 109 (2022) 102428

Contents lists available at ScienceDirect

Cancer Treatment Reviews

Clinical trial data of Anti–PD-1/PD-L1 therapy for recurrent or metastatic nasopharyngeal Carcinoma: A review

Douglas R. Adkins a,*, Robert I. Haddad b

a Division of Medical Oncology and Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA

b Department of Medical Oncology, Center for Head & Neck Oncology, Dana-Farber Cancer Institute, Boston, MA, USA

2021 ASCO Abstract LBA2.

JUPITER-02:

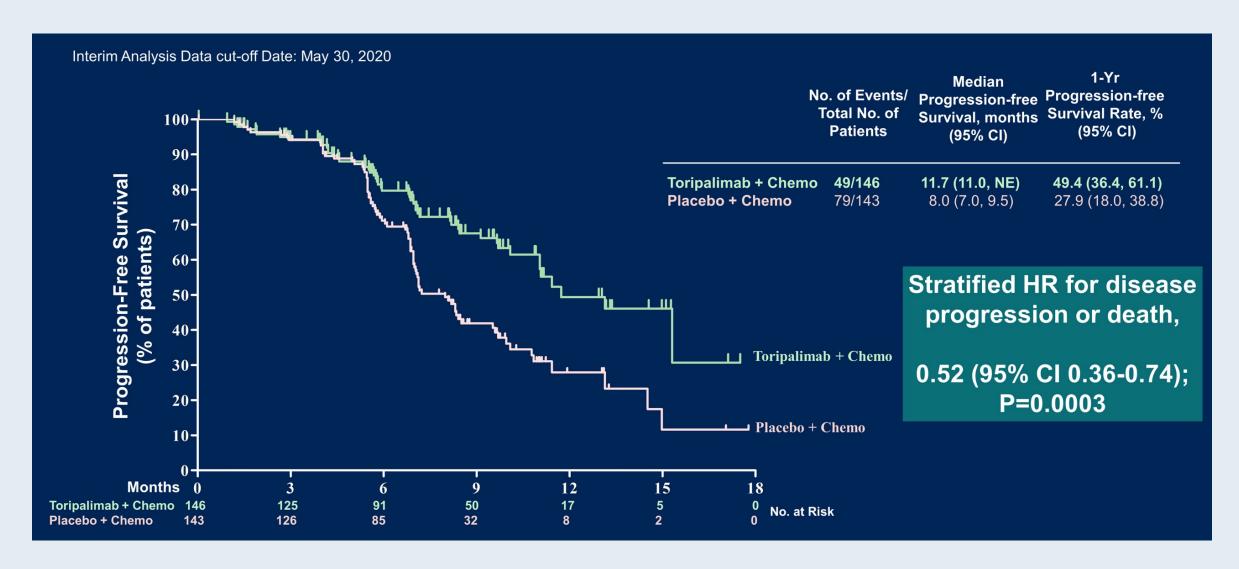
The randomized, double-blind, phase 3 study of toripalimab or placebo plus cisplatin and gemcitabine as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (NPC)

Rui-Hua Xu^{1, *}, Hai-Qiang Mai², Qiu-Yan Chen² Dongping Chen³, Chaosu Hu⁴, Kunyu Yang⁵, Jiyu Wen⁶, Jingao Li⁷, Ying-Rui Shi⁸, Feng Jin⁹, Ruilian Xu¹⁰, Jianji Pan¹¹, Shenhong Qu¹², Ping Li¹³, Chunhong Hu¹⁴, Yi-Chun Liu¹⁵, Yi Jiang¹⁶, Xia He¹⁷, Hung-Ming Wang¹⁸ and Wan-Teck Lim¹⁹, Coherus Biosciences and Shanghai Junshi Biosciences.

Department of Medical Oncology, Sun Yal-Sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China; Popartment of Medical Oncology, Sun Yal-Sen University Cancer Center, Saffistaed Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Chinā; Fuden University Cancer Center, Shangshal, China; Union Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, China; Validated Hospital of Guangdong Medical University, Zhanjiang, China; Vilango Cancer Hospital, Nanchang, China; Sun Anderson, China; Sun Ande

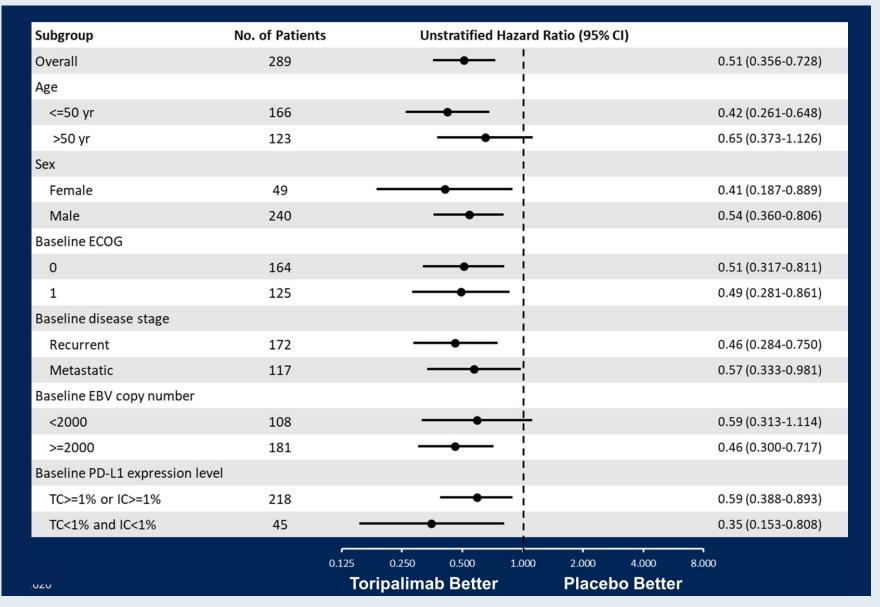
ARTICLES Nat Med 2021 Sep;27(9):1536-43.

https://doi.org/10.1038/s41591-021-01444-0

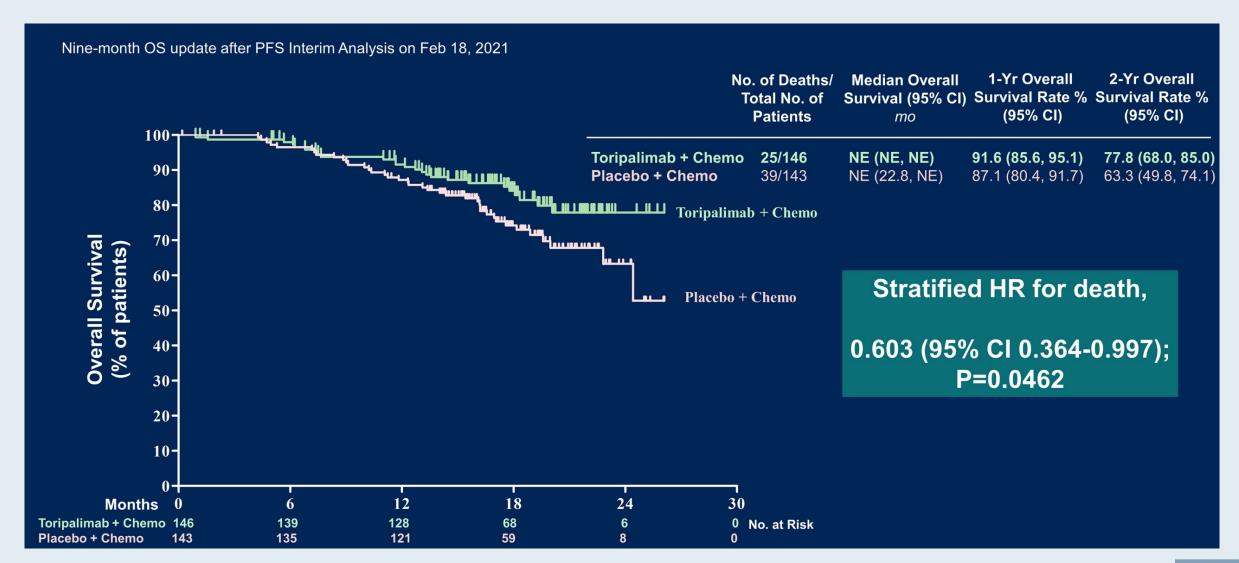


Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized phase 3 trial

Hai-Qiang Mai^{1,37}, Qiu-Yan Chen^{1,37}, Dongping Chen², Chaosu Hu³, Kunyu Yang⁴, Jiyu Wen⁵, Jingao Li⁶, Ying-Rui Shi⊓, Feng Jin³, Ruilian Xu⁶, Jianji Pan¹⁰, Shenhong Qu¹¹, Ping Li¹², Chunhong Hu¹³, Yi-Chun Liu¹⁴, Yi Jiang¹⁵, Xia He¹⁶, Hung-Ming Wang¹७, Wan-Teck Lim⁰¹³, Wangjun Liao¹ゥ, Xiaohui He²⁰, Xiaozhong Chen²¹, Zhigang Liu⁰²², Xianglin Yuan²³, Qi Li²⁴, Xiaoyan Lin²⁵, Shanghua Jing²⁶, Yanju Chen²⊓, Yin Lu²³, Ching-Yun Hsieh²ゥ, Muh-Hwa Yang⁰³₀, Chia-Jui Yen³¹, Jens Samol³², Hui Feng³⁴,⁵, Sheng Yao³⁴,³⁵, Patricia Keegan⁰³⁵ and Rui-Hua Xu⁰³⁶ ⊠



JUPITER-02: Progression-Free Survival by BIRC



JUPITER-02: Progression-Free Survival by BIRC in Key Subgroups

JUPITER-02: Overall Survival Update

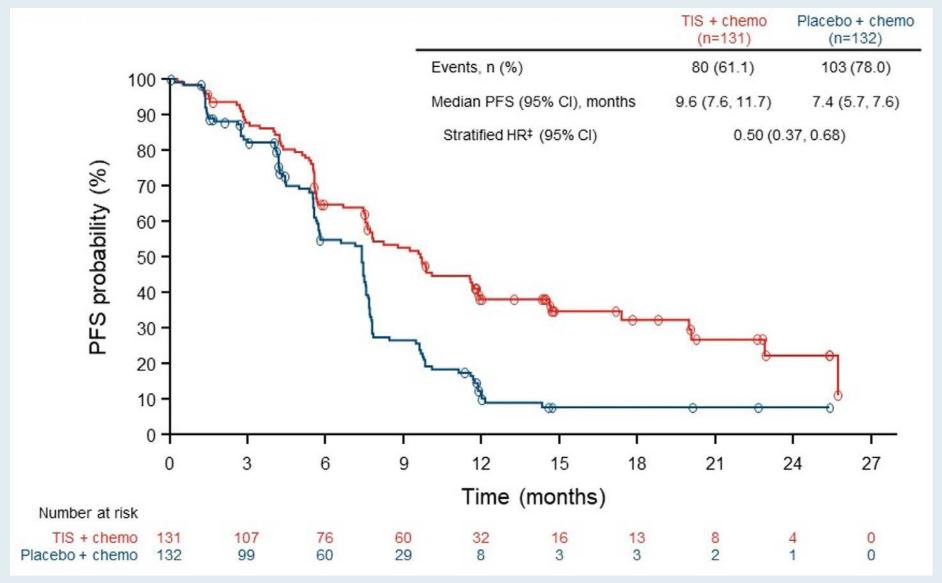
Presentation 384950.

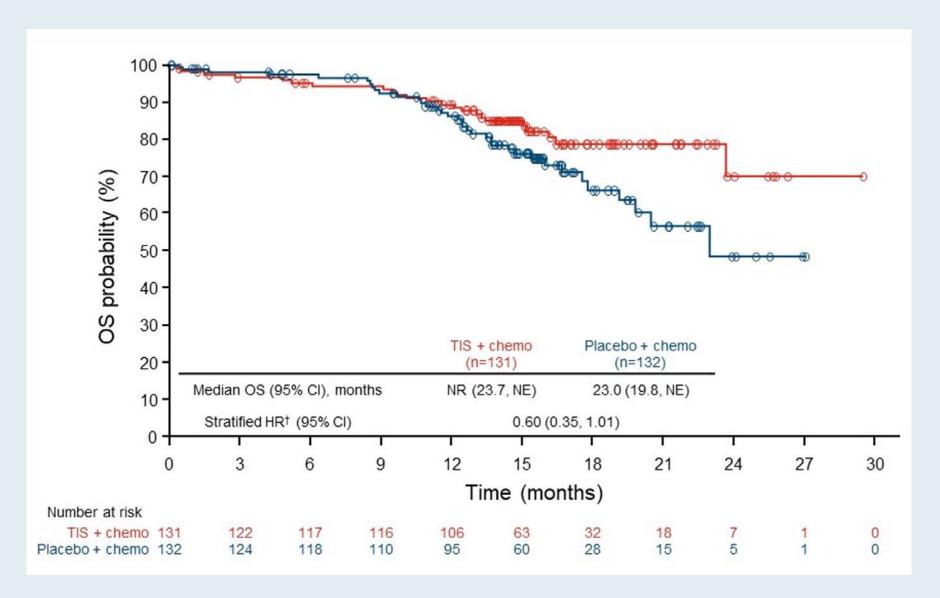
RATIONALE-309: Updated PFS, PFS2, and OS from a Phase 3 double-blind trial of tislelizumab versus placebo, plus chemotherapy, as first-line treatment for recurrent/metastatic nasopharyngeal cancer

Li Zhang, MD¹

on behalf of Yunpeng Yang, ¹ Jianji Pan, ² Xiaozhong Chen, ³ Yan Sun, ⁴ Hui Wang, ⁵ Shenhong Qu, ⁶ Nianyong Chen, ⁷ Lizhu Lin, ⁸ Siyang Wang, ⁹ Qitao Yu, ¹⁰ Guihua Wang, ¹¹ Feng Lei, ¹² Jiyu Wen, ¹³ Chengi Chen, ¹⁴ Yanjie Wu, ¹⁴ Shiangjiin Leaw, ¹⁴ Wenfeng Fang¹

¹Sun Yat-sen University Cancer Center, Guangzhou, China; ²Fujian Cancer Hospital, Fuzhou, China; ³Zhejiang Cancer Hospital, Hangzhou, China; ⁴Beijing Cancer Hospital, Beijing, China; ⁵Hunan Cancer Hospital, Changsha, China; ⁶The People's Hospital of Guangxi Zhuang Autonomous Region, Otolaryngology Department, Nanning, China; ¬West China Hospital of Sichuan University, Chengdu, China; ⁶The First Affiliated Hospital of Guangzhou Traditional Chinese Medicine University, Guangzhou, China; ⁰The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, China; ¹¹Changsha, China; ¹¹Changsha Central Hospital, Changsha, China; ¹²The People's Hospital of Zhongshan City, Zhongshan, China; ¹³Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; ¹⁴BeiGene (Shanghai) Co., Ltd., Shanghai, China

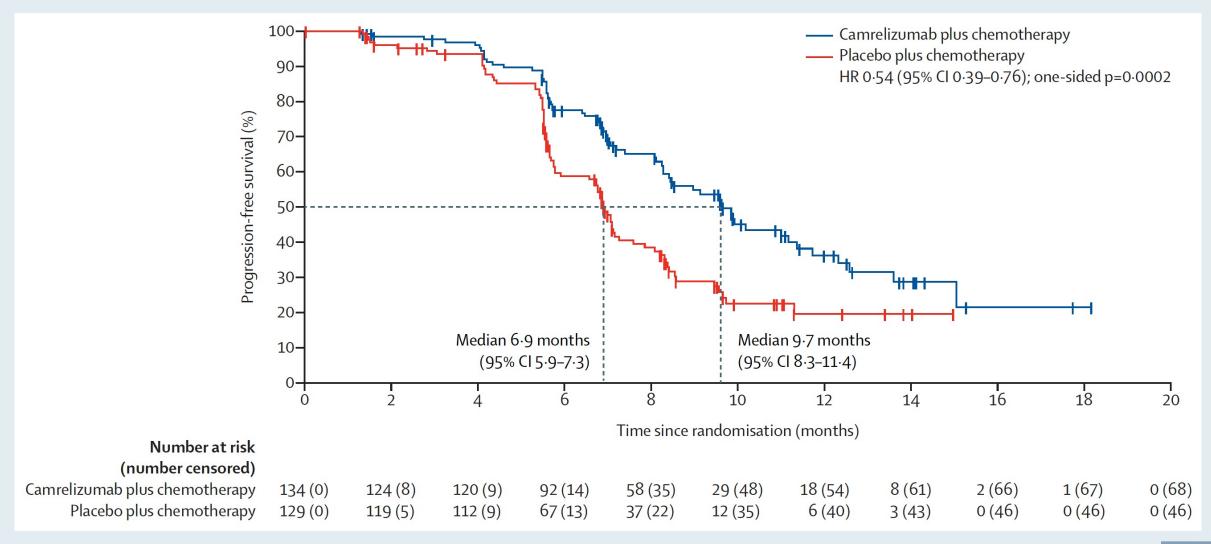




RATIONALE-309: Updated PFS (Median Follow-Up 15.5 Months)

RATIONALE-309: Updated Overall Survival

Lancet Oncol 2021August;22(8):1162-74.



Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): a multicentre, randomised, double-blind, phase 3 trial

Yunpeng Yang*, Song Qu*, Jingao Li*, Chaosu Hu*, Mingjun Xu*, Weidong Li*, Ting Zhou*, Liangfang Shen, Hui Wu, Jinyi Lang, Guangyuan Hu, Zhanxiong Luo, Zhichao Fu, Shenhong Qu, Weineng Feng, Xiaozhong Chen, Shaojun Lin, Weimin Zhang, Xiaojiang Li, Yan Sun, Zhixiong Lin, Qin Lin, Feng Lei, Jianting Long, Jinsheng Hong, Xiaoming Huang, Lingzhi Zeng, Peiguo Wang, Xiaohui He, Ben Zhang, Qing Yang, Xiaojing Zhang, Jianjun Zou, Wenfeng Fang†, Li Zhang†



CAPTAIN-1st Primary Endpoint: Progression-Free Survival

Case Presentation: 72-year-old man presents with recurrent and rapidly progressing HPV-negative metastatic head and neck cancer

Dr Neil Morganstein (Summit, New Jersey)

Case Presentation: 58-year-old man s/p definitive RT and surgery for locally recurrent SCC of the head and neck presents with worsening shortness of breath

Dr Mamta Choksi (New Port Richey, Florida)

Case Presentation: 73-year-old man with a longstanding history of T-cell large granular lymphocytic leukemia presents with metastatic HPV-positive SCC of the left tonsil – PD-L1-negative

Dr Spencer Bachow (Boca Raton, Florida)

Case Presentation: 57-year-old man presents with HPV-positive Stage III cancer of the base of the tongue

Dr Ezra Cohen (La Jolla, California)

Meet The Professor with Dr Haddad

MODULE 1: ESMO 2022

MODULE 2: Needle in a Haystack

MODULE 3: Head and Neck Cancer

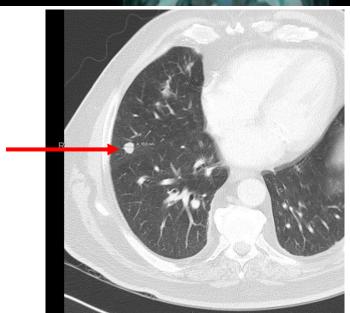
MODULE 4: Thyroid Cancer

- Dr Rupard: 73-year-old man presents with metastatic anaplastic thyroid cancer PD-L1-positive, mutations in TERT promoter, TP53 and MEN1
- Dr Cohen: 63-year-old man presents with BRAF V600E mutation-positive metastatic papillary thyroid cancer

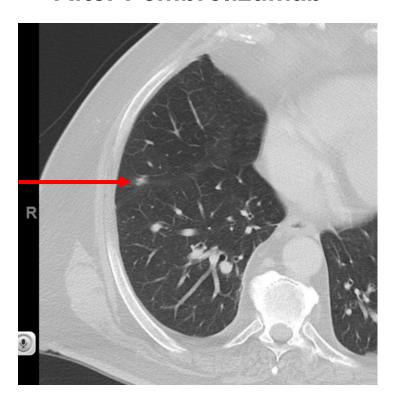
MODULE 5: Journal Club with Dr Haddad

MODULE 6: Appendix

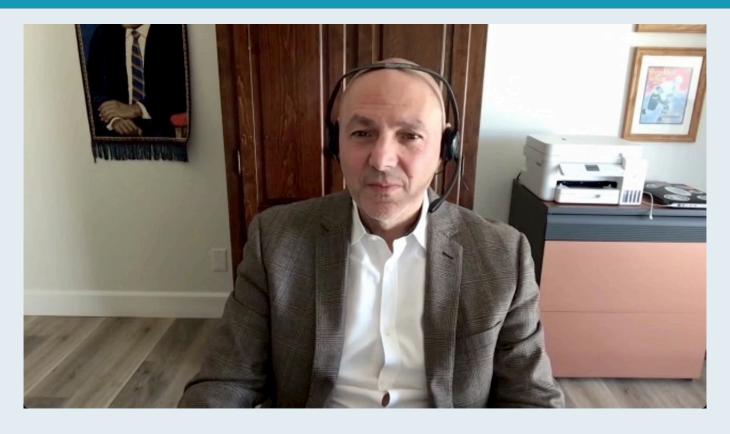
Case Presentation: 73-year-old man presents with metastatic anaplastic thyroid cancer – PD-L1-positive, mutations in TERT promoter, TP53 and MEN1



Dr Erik Rupard (West Reading, Pennsylvania)



Before Pembrolizumab



After Pembrolizumab

Case Presentation: 63-year-old man presents with BRAF V600E mutation-positive metastatic papillary thyroid cancer

Dr Ezra Cohen (La Jolla, California)

Meet The Professor with Dr Haddad

MODULE 1: ESMO 2022

MODULE 2: Needle in a Haystack

MODULE 3: Head and Neck Cancer

MODULE 4: Thyroid Cancer

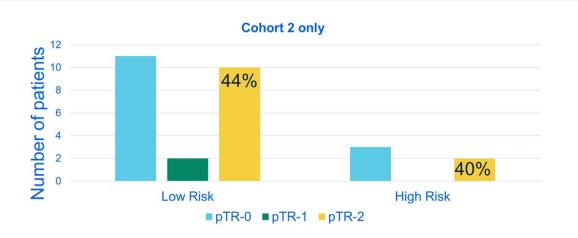
MODULE 5: Journal Club with Dr Haddad

MODULE 6: Appendix

Enhanced Pathologic Tumor Response with Two Cycles of Neoadjuvant Pembrolizumab in Surgically Resectable, Locally Advanced HPV-Negative Head and Neck Squamous Cell Carcinoma (HNSCC)

Uppaluri R et al.

ASCO 2021; Abstract 6008.

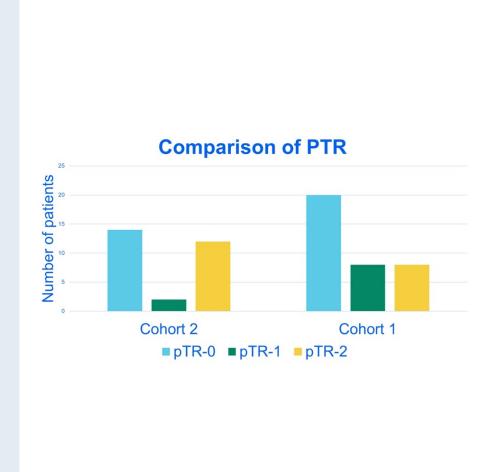


Post-Surgery Findings

Characteristic	Cohort 2 (N=28)*		
pTR Category**			
pTR-0	14	50.0%	
pTR-1	2	7.1%	
pTR-2	12	42.9%	
Pathologic disease Stage, N (%)			
I-II	5	17.9%	
III	5	17.9%	
IVA-IVB	18	64.3%	
Pathologic risk category (positive margins/ENE)			
High risk	5	17.9%	
Intermediate/low risk	23	82.1%	

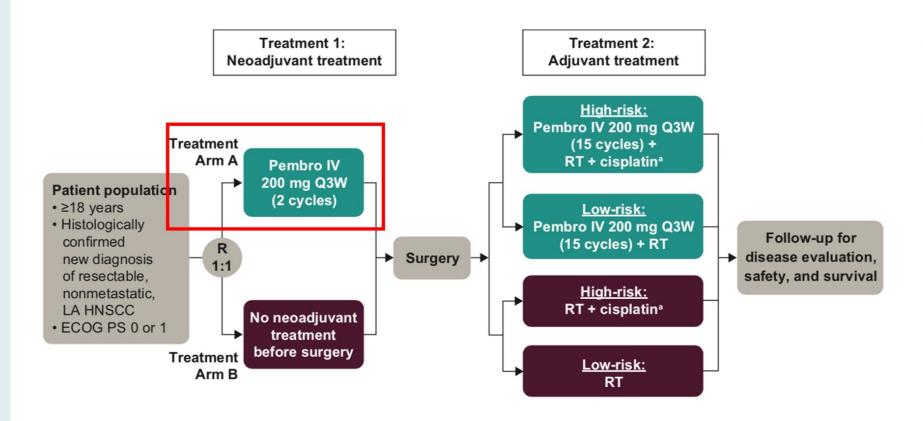
^{*1} patient enrolled but withdrew from trial- did not have surgery

pTR = pathologic tumor response; ENE = extranodal extension



- ➤ Any pTR was seen in 14/28 (50%) of patients
- pTR-2 was seen in 42.9% of patients-higher than Cohort 1
- > pTR-1 rates (7.1%) were lower than Cohort 1
- > pTR distributions were similar across risk categories

^{**3} samples with prelim pTR, pending central review for pTR


Cohort 1 versus Cohort 2

Characteristic	Cohort 2 (N=28) Co		Cohort 1	Cohort 1 (N=36)		Diff (95% CI)	
pTR Category							
pTR-0	14	50.0%	20	55.6%	0.11	-5.6 (-28.4 to 18.0)	
pTR-1	2	7.1%	8	22.2%		-15.1 (-31.8 to 3.6)	
pTR-2	12	42.9%	8	22.2%		20.6 (-2.1 to 41.5)	
Pathologic risk category (positive margins/ENE)							
High risk	5	17.9%	18	50.0%	0.008		
Intermediate/low risk	23	82.1%	18	50.0%		32.1 (8.6 to 50.6)	
Pathologic disease Stage, N (%)							
1-11	5	17.9%	3	8.3%	0.54	9.5 (-7.3 to 28.1)	
III	5	17.9%	6	16.7%		1.2 (-17.0 to 21.0)	
IVA-IVB	18	64.3%	27	75.0%		-10.7 (-32.3 to 11.3)	

Resectable, Locally Advanced Head and Neck Squamous Cell Carcinoma

KEYNOTE-689- testing neoadjuvant/ adjuvant pembrolizumab in HNSCC uses 2 doses pre-operatively

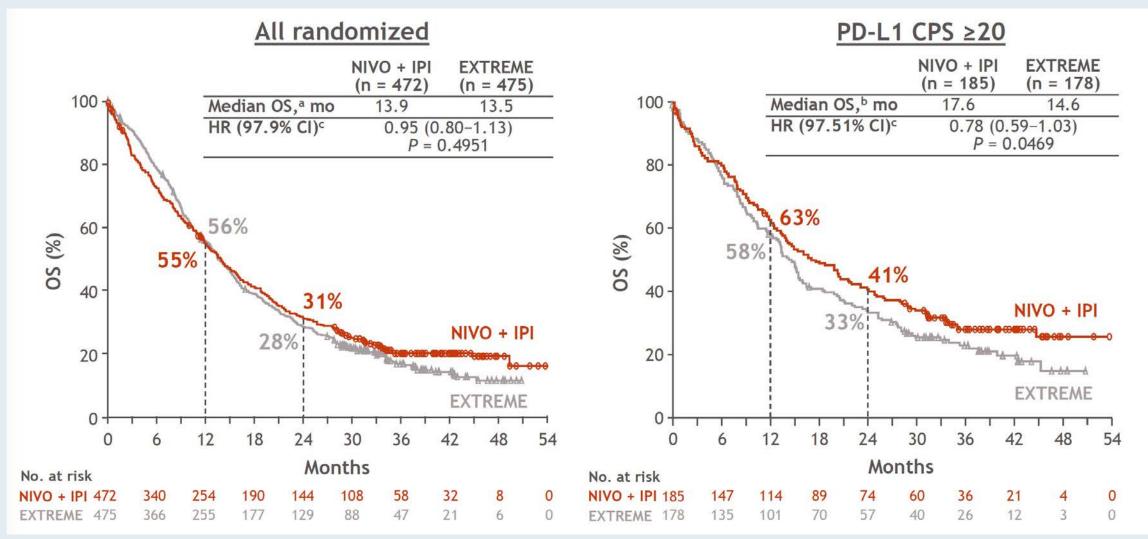
NCT03765918

Association between radiation dose to organs at risk and acute patient reported outcome during radiation treatment for head and neck cancers

Baseline and End-of-Treatment Symptom Scores

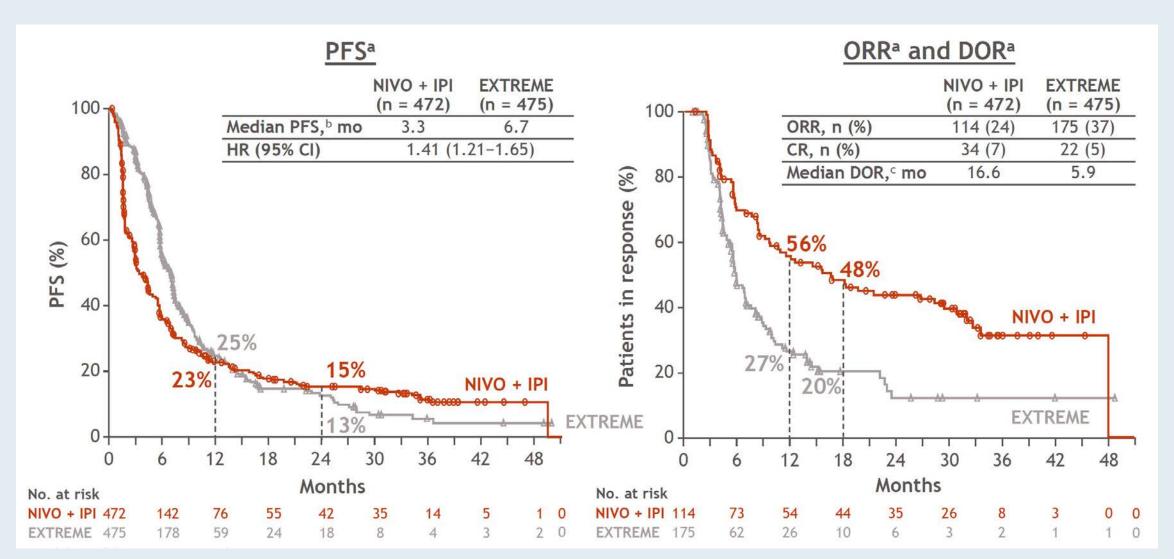
	Baseline score		End of treatment score	
Symptom	Median	Range	Median	Range
Difficulty swallowing/chewing	0	0-10	6	0-10
Choking/coughing	0	0-10	2	0–10
Problem with mucus in mouth/throat	0	0-8	6	0–10
Difficulty with speech	0	0-8	4	0–10
Dry mouth	1	0–9	6	0–10

Nivolumab + ipilimumab vs EXTREME regimen as first-line treatment for recurrent/metastatic squamous cell carcinoma of the head and neck: final results of CheckMate 651

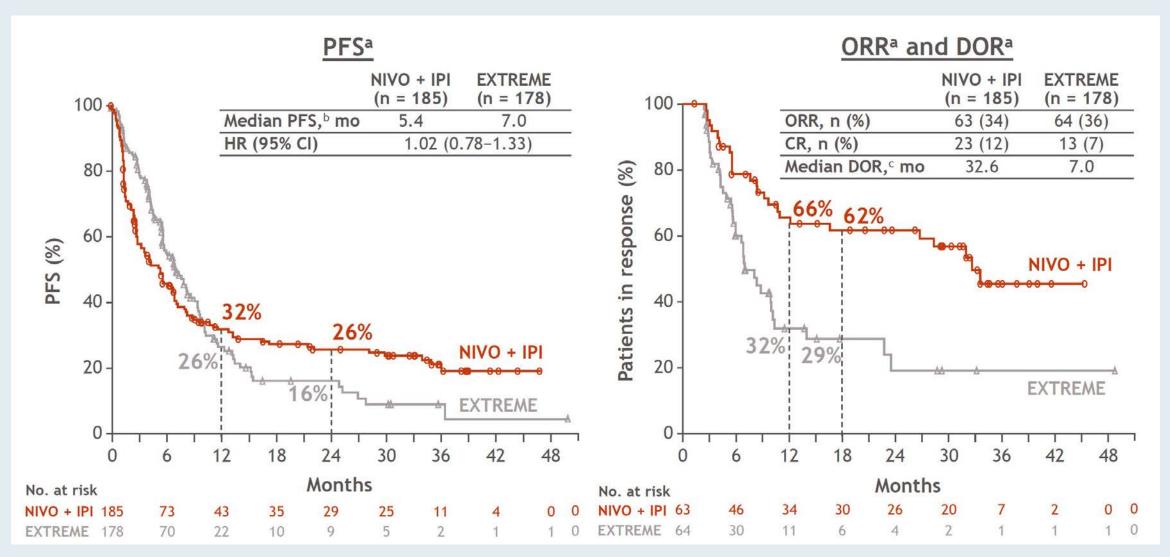

Athanassios Argiris, 1,2 Kevin Harrington, 3 Makoto Tahara, 4 Robert L. Ferris, 5 Maura Gillison, 6 Jerome Fayette, 7 Amaury Daste, 8 Piotr Koralewski, 9 Ricard Mesia, 10 Nabil F. Saba, 11 Milena Mak, 12 Miguel Angel Álvarez Avitia, 13 Alexander Guminski, 14 Urs Müller-Richter, 15 Naomi Kiyota, 16 Mustimbo Roberts, 17 Tariq Aziz Khan, 17 Karen Miller-Moslin, 17 Li Wei, 17 Robert Haddad 18

¹Hygeia Hospital, Marousi, Greece; ²Thomas Jefferson University, Philadelphia, PA, USA; ³Royal Marsden Hospital/The Institute of Cancer Research, London, UK; ⁴National Cancer Center Hospital East, Kashiwa, Japan; ⁵UPMC Hillman Cancer Center, Pittsburgh, PA, USA; ⁴The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁷Centre Léon Bérard, Lyon, France; ⁸Hôpital Saint-André, Bordeaux, France; ⁹Wojewodzki Szpital Specjalistyczny im. Ludwika Rydygiera w Krakowie, Krakow, Poland; ¹¹Catalan Institut of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; ¹¹Winship Cancer Institute of Emory University, Atlanta, GA, USA; ¹²Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; ¹³Instituto Nacional De Cancerología, Mexico City, Mexico; ¹⁴Royal North Shore Hospital, Sydney, Australia; ¹⁵University Hospital Würzburg, Bavarian Cancer Research Center (BZKF), Würzburg, Germany; ¹⁶Kobe University Hospital, Kobe, Japan; ¹¬®ristol Myers Squibb, Princeton, NJ, USA; ¹³Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

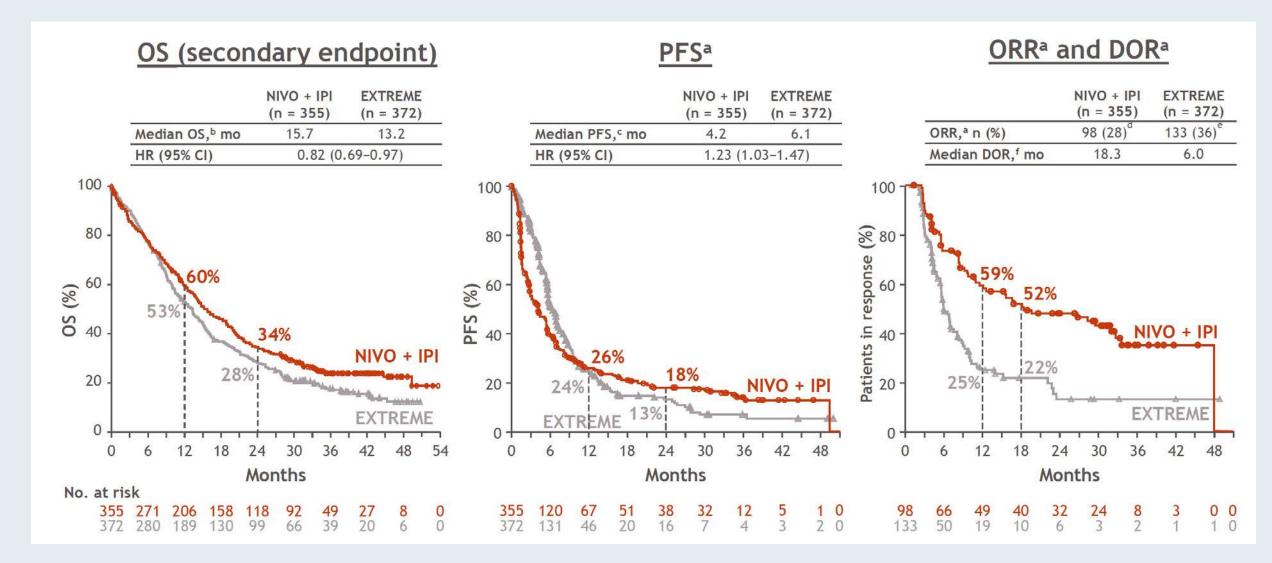
Presentation number LBA36


Primary Endpoints: Overall Survival (OS) with Nivolumab (NIVO) + Ipilimumab (IPI) versus EXTREME Regimen

EXTREME regimen: cetuximab + cisplatin/carboplatin + fluorouracil ≤6 cycles, then cetuximab maintenance



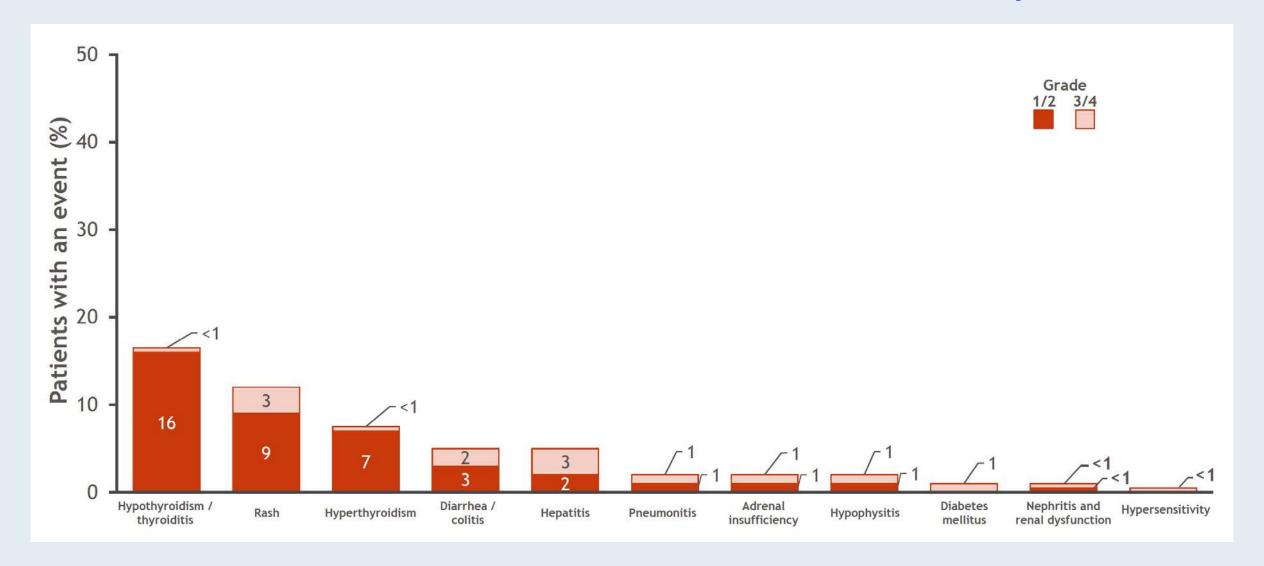
Efficacy in All Randomized Patients


Efficacy in PD-L1 CPS ≥20 Population

CPS = combined positive score; PFS = progression-free survival; ORR = objective response rate; DOR = duration of response

Efficacy in PD-L1 CPS ≥1 Population

Safety and Exposure Summary for All Patients Receiving Treatment


	NIVO + IPI (n = 468)		EXTREME (n = 441)	
TRAE, %	Any grade	Grade 3/4	Any grade	Grade 3/4
Any TRAEs	72	28	98	71
TRAEs leading to discontinuation of any component of the regimen	12ª	10	13	9
Serious TRAEs	16	12	28	24
Treatment-related deaths	1 ^b		2°	

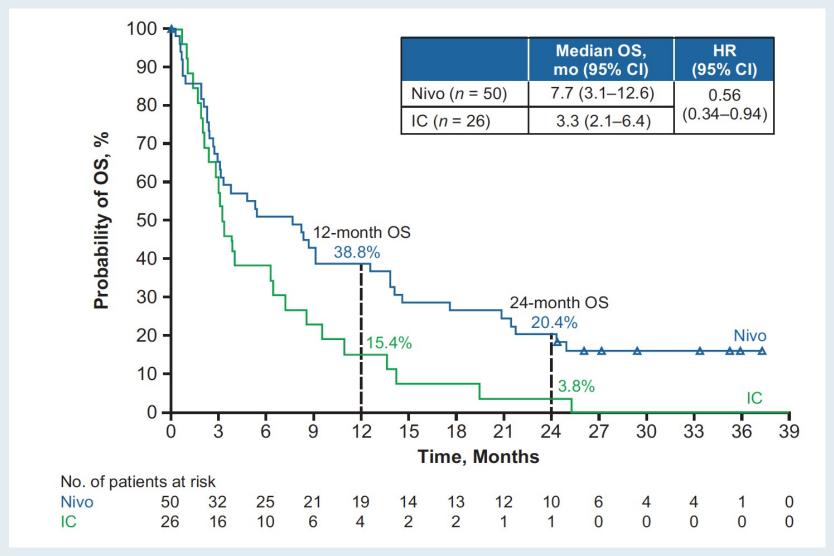
- Median (range) duration of therapy was 3.8 (<0.1–24.0) months in the NIVO + IPI arm vs 5.0 (<0.1–50.7) months in the EXTREME arm
- Patients in the NIVO + IPI arm received a median (range) of 8 (1-53) doses of NIVO and 3 (1-18) doses of IPI

TRAE = treatment-related adverse event

Immune-Mediated Adverse Events with Nivolumab and Ipilimumab

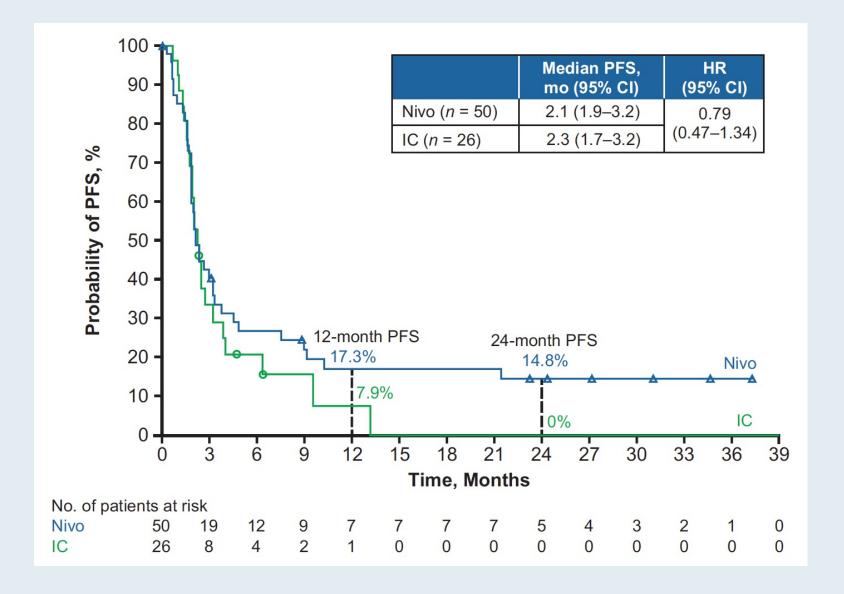
The Oncologist, 2022, **27**, e194—e198 https://doi.org/10.1093/oncolo/oyab036 Advance access publication 15 February 2022

Brief Communication



Long-term Outcomes with Nivolumab as First-line Treatment in Recurrent or Metastatic Head and Neck Cancer: Subgroup Analysis of CheckMate 141

Maura L. Gillison^{1,*}, George Blumenschein Jr.¹, Jerome Fayette², Joel Guigay³,
A. Dimitrios Colevas⁴, Lisa Licitra⁵, Kevin J. Harrington⁶, Stefan Kasper⁷, Everett E. Vokes⁸,
Caroline Even⁹, Francis Worden¹⁰, Nabil F. Saba¹¹, Lara CarmenIglesias Docampo¹²,
Robert Haddad¹³, Tamara Rordorf¹⁴, Naomi Kiyota¹⁵, Makoto Tahara¹⁶, D, Vijayvel Jayaprakash^{17,†},
Li Wei¹⁷, Robert L. Ferris¹⁸


OS Among Patients Randomly Assigned to Nivolumab or Investigator's Choice (IC) as First-Line Treatment for Recurrent or Metastatic SCCHN

SCCHN = squamous cell carcimona of the head and neck

PFS Among Patients Randomly Assigned to Nivolumab or IC as First-Line Treatment for Recurrent or Metastatic SCCHN

2022 Feb;10(2):e003026

Influence of tumor mutational burden, inflammatory gene expression profile, and PD-L1 expression on response to pembrolizumab in head and neck squamous cell carcinoma

Robert I Haddad , ¹ Tanguy Y Seiwert , ² Laura Q M Chow, ³ Shilpa Gupta, ⁴ Jared Weiss, ⁵ Iris Gluck, ⁶ Joseph P Eder, ⁷ Barbara Burtness, ⁸ Makoto Tahara, ⁹ Bhumsuk Keam , ¹⁰ Hyunseok Kang , ¹¹ Kei Muro, ¹² Andrew Albright, ¹³ Robin Mogg, ¹³ Mark Ayers, ¹³ Lingkang Huang, ¹³ Jared Lunceford, ¹³ Razvan Cristescu, ¹³ Jonathan Cheng, ¹³ Ranee Mehra ¹⁴

Neoadjuvant and Adjuvant Nivolumab and Lirilumab in Patients with Recurrent, Resectable Squamous Cell Carcinoma of the Head and Neck

Hanna GJ et al.

ASCO 2021; Abstract 6053.

Research

JAMA Otolaryngology-Head & Neck Surgery | Original Investigation

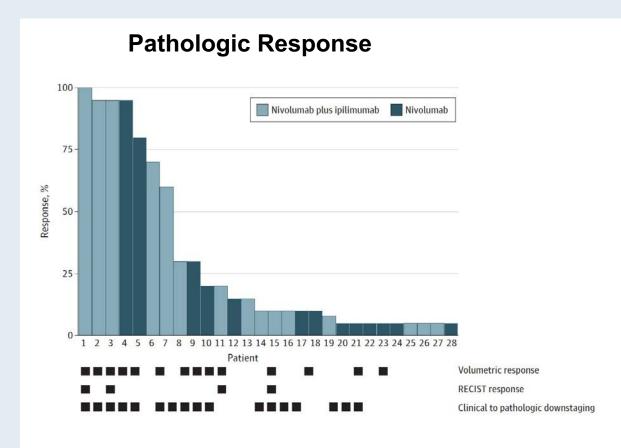
Use of Fluoro-[¹⁸F]-Deoxy-2-D-Glucose Positron Emission Tomography/ Computed Tomography to Predict Immunotherapy Treatment Response in Patients With Squamous Cell Oral Cavity Cancers

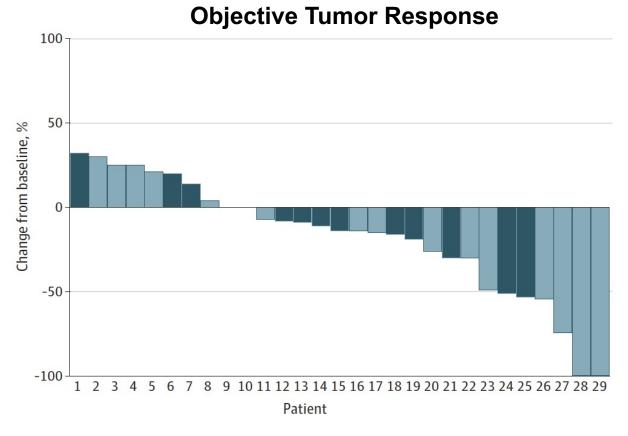
Hina Shah, MD; Yating Wang; Su-Chun Cheng, ScD; Lauren Gunasti; Yu-Hui Chen, MS; Ana Lako, MD; Jeffrey Guenette, MD; Scott Rodig, MD, PhD; Vickie Y. Jo, MD; Ravindra Uppaluri, MD, PhD; Robert Haddad, MD; Jonathan D. Schoenfeld, MD, MPH; Heather A. Jacene, MD

JAMA Otolaryngol Head Neck Surg 2022;148(3):268-76.

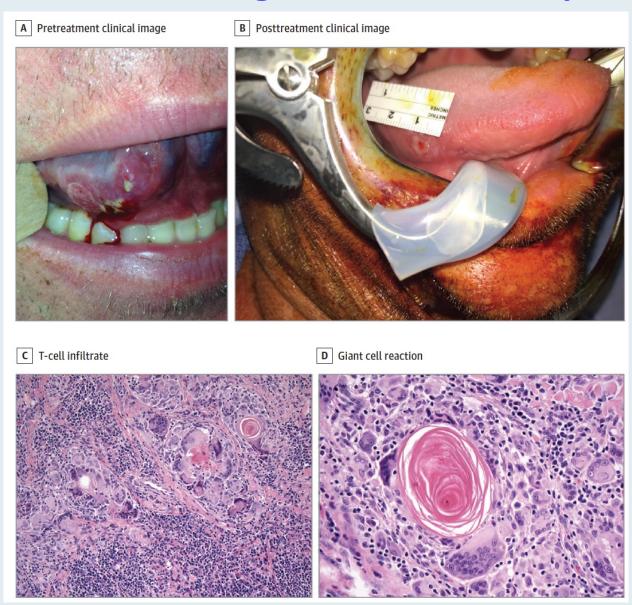
Research

JAMA Oncol 2020;6(10):1563-70.


JAMA Oncology | Original Investigation

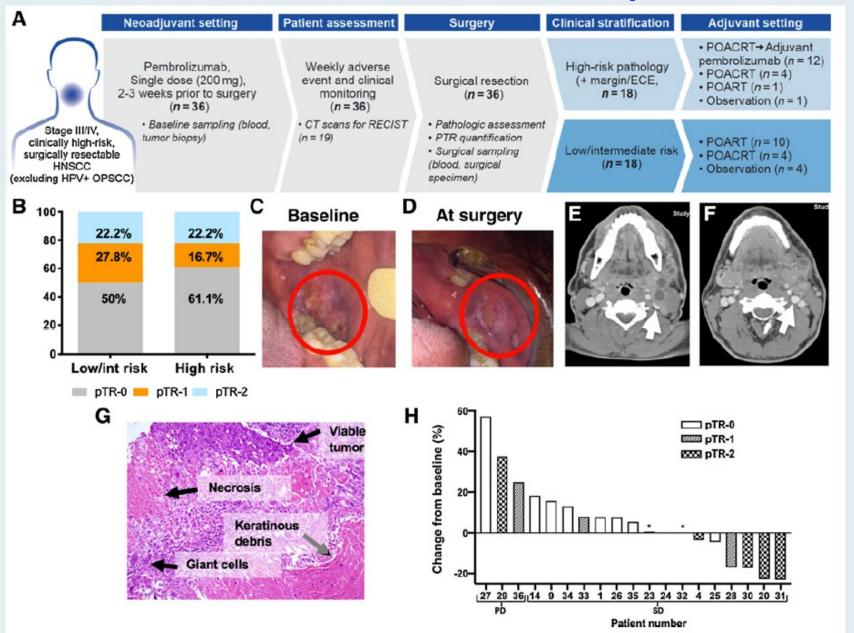

Neoadjuvant Nivolumab or Nivolumab Plus Ipilimumab in Untreated Oral Cavity Squamous Cell Carcinoma A Phase 2 Open-Label Randomized Clinical Trial

Jonathan D. Schoenfeld, MD, MPH; Glenn J. Hanna, MD; Vickie Y. Jo, MD; Bhupendra Rawal, MS; Yu-Hui Chen, MS; Paul S. Catalano, ScD; Ana Lako, PhD; Zoe Ciantra, BS; Jason L. Weirather, PhD; Shana Criscitiello, BA; Adrienne Luoma, PhD; Nicole Chau, MD; Jochen Lorch, MD, MS; Jason I. Kass, MD, PhD; Donald Annino, MD, DMD; Laura Goguen, MD; Anupam Desai, MD; Brendan Ross, BS; Hina J. Shah, MD; Heather A. Jacene, MD; Danielle N. Margalit, MD, MPH; Roy B. Tishler, MD, PhD; Kai W. Wucherpfennig, MD, PhD; Scott J. Rodig, MD, PhD; Ravindra Uppaluri, MD, PhD; Robert I. Haddad, MD


Summary of Response in Both Treatment Arms

Clinical and Pathologic Features of Response

Clin Cancer Res 2021;27(1):357.


CLINICAL CANCER RESEARCH | CLINICAL TRIALS: IMMUNOTHERAPY

Neoadjuvant and Adjuvant Pembrolizumab in Resectable Locally Advanced, Human Papillomavirus-Unrelated Head and Neck Cancer: A Multicenter, Phase II Trial

Ravindra Uppaluri^{1,2}, Katie M. Campbell^{3,4}, Ann Marie Egloff¹, Paul Zolkind⁵, Zachary L. Skidmore⁴, Brian Nussenbaum^{5,6}, Randal C. Paniello^{5,6}, Jason T. Rich^{5,6}, Ryan Jackson^{5,6}, Patrik Pipkorn^{5,6}, Loren S. Michel^{6,7}, Jessica Ley⁷, Peter Oppelt^{6,7}, Gavin P. Dunn^{6,8}, Erica K. Barnell^{3,4}, Nicholas C. Spies⁴, Tianxiang Lin⁵, Tiantian Li⁹, David T. Mulder⁹, Youstina Hanna⁹, Iulia Cirlan⁹, Trevor J. Pugh^{9,10,11}, Tenny Mudianto², Rachel Riley², Liye Zhou², Vickie Y. Jo¹, Matthew D. Stachler¹², Glenn J. Hanna², Jason Kass^{1,2}, Robert Haddad^{1,2}, Jonathan D. Schoenfeld^{2,13}, Evisa Gjini¹², Ana Lako¹², Wade Thorstad^{6,14}, Hiram A. Gay^{6,14}, Mackenzie Daly^{6,14}, Scott J. Rodig^{12,15}, Ian S. Hagemann¹⁶, Dorina Kallogjeri⁵, Jay F. Piccirillo^{5,6}, Rebecca D. Chernock¹⁶, Malachi Griffith^{3,4,6,7}, Obi L. Griffith^{3,4,6,7}, and Douglas R. Adkins^{6,7}

Trial Profile and Tumor Response

Meet The Professor with Dr Haddad

MODULE 1: ESMO 2022

MODULE 2: Needle in a Haystack

MODULE 3: Head and Neck Cancer

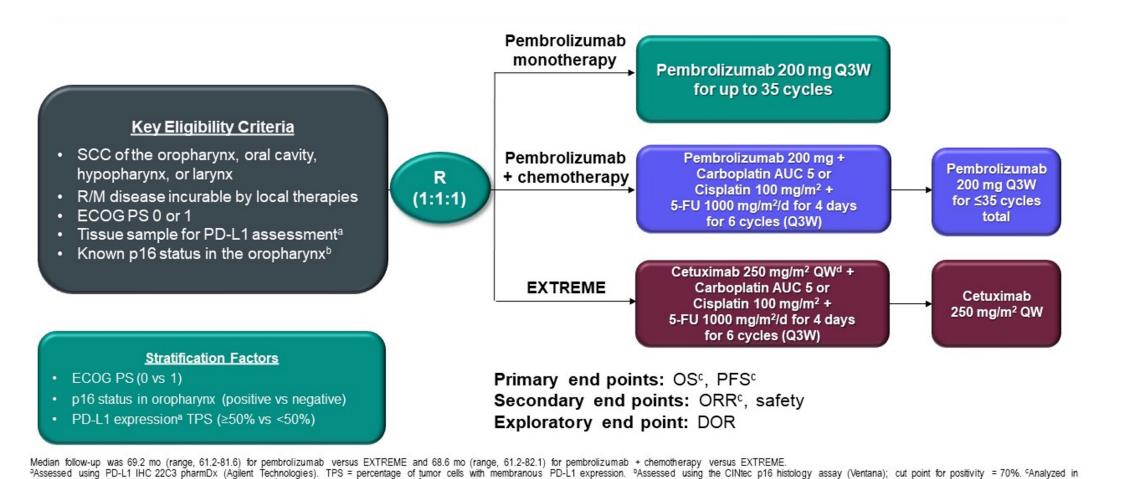
MODULE 4: Thyroid Cancer

MODULE 5: Journal Club with Dr Haddad

MODULE 6: Appendix

Immunotherapeutic Strategies for Metastatic/Unresectable Head and Neck Cancer

ESMO 2022; Abstract 659MO.


Pembrolizumab With or Without Chemotherapy For First-Line Treatment of Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma: 5-year Results from KEYNOTE-048

Makoto Tahara¹; Richard Greil²; Danny Rischin³; Kevin J. Harrington⁴; Barbara Burtness⁵; Gilberto de Castro⁶; Amanda Psyrri⁷; Irene Brana⁸; Prakash Neupane⁹; Åse Bratland¹⁰; Thorsten Fuereder¹¹; Brett G.M. Hughes¹²; Ricard Mesia¹³; Nuttapong Ngamphaiboon¹⁴; Tamara Rordorf¹⁵; Wan Zamaniah Wan Ishak¹⁶; Jianxin Lin¹⁷; Burak Gumuscu¹⁷; Nati Lerman¹⁷; Denis Soulières¹⁸

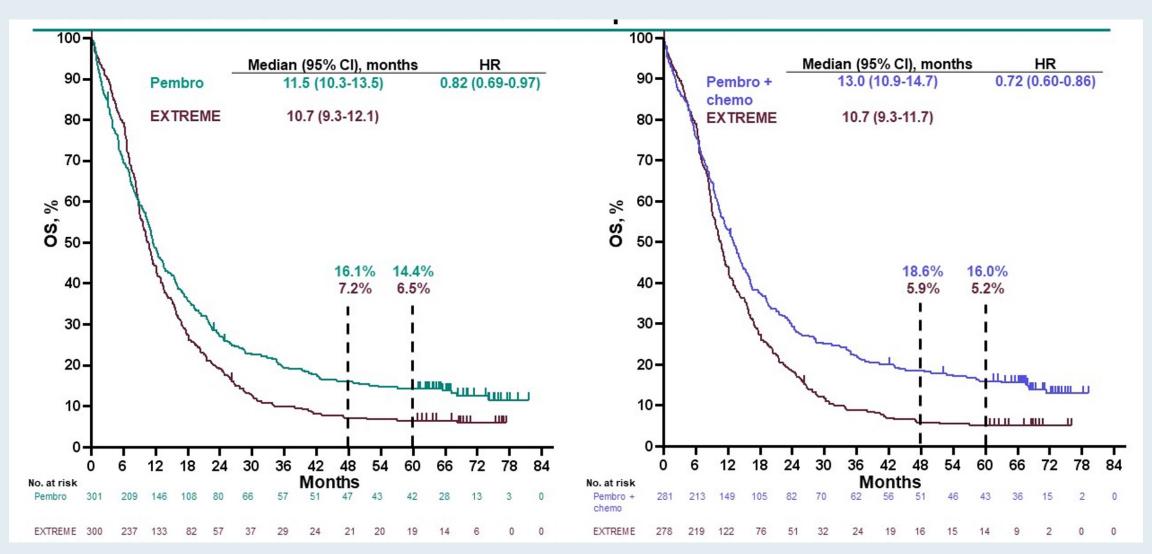
¹National Cancer Center Hospital East, Kashiwa, Japan; ²Paracelsus Medical University Salzburg Cancer Research Institute and Cancer Cluster, Salzburg, Austria; ³Peter MacCallum Cancer Institute University of Melbourne, Melbourne, VIC, Australia; ⁴The Institute of Cancer Research, London, United Kingdom; ⁵Yale School of Medicine, New Haven, CT, USA; ⁵Instituto do Cancer de Sao Paulo—ICESP, São Paulo, Brazil; ¬National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece; ®Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ³University of Kansas Medical Center, Kansas City, MO, USA; ¹¹Oslo University Hospital, Oslo, Norway; ¹¹Medical University of Vienna/General Hospital Vienna, Vienna, Austria; ¹²Royal Brisbane & Women's Hospital, and University of Queensland, Herston, QLD, Australia; ¹³Catalan Institute of Oncology, Barcelona, Spain; ¹⁴Ramathibodi Hospital, Mahidol University, Ratchatewi, Bangkok, Thailand, ¹⁵University Hospital, Zurich, Switzerland; ¹⁵University Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia; ¹¹Merck & Co., Inc., Rahway, NJ, USA; ¹³CHUM, Montréal, Quebec, Canada

KEYNOTE-048 Phase III Study Design

Median follow-up was 69.2 mo (range, 61.2-81.6) for pembrolizumab versus EXTREME and 68.6 mo (range, 61.2-82.1) for pembrolizumab + chemotherapy versus EXTREME.

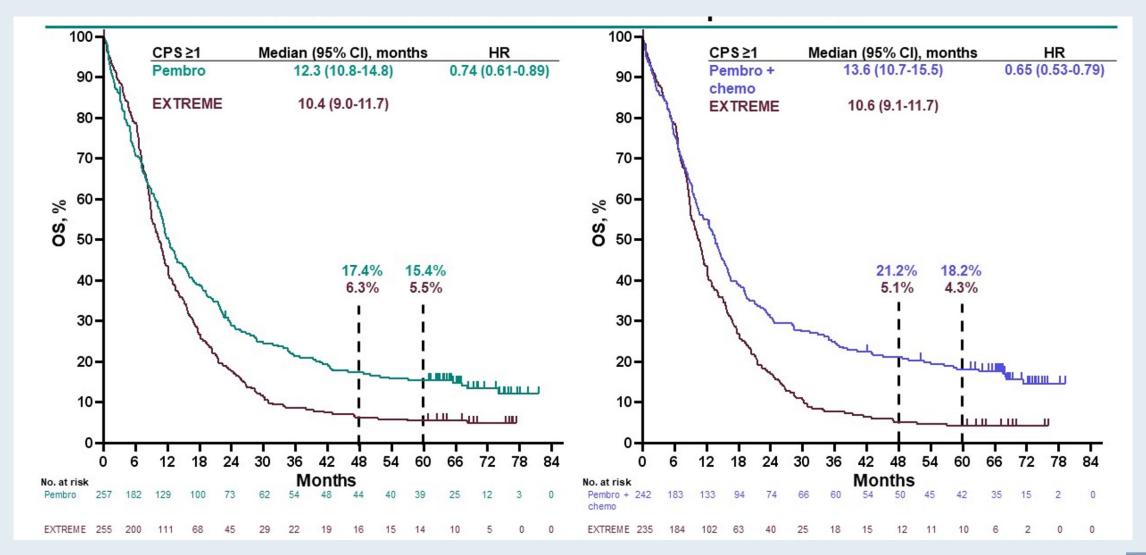
³Assessed using PD-L1 IHC 22C3 pharmDx (Agilent Technologies). TPS = percentage of tumor cells with membranous PD-L1 expression.

⁵Assessed using the CINtec p16 histology assay (Ventana); cut point for positivity = 70%. canalyzed in PD-L1 CPS \geq 1, PD-L1 CPS \geq 20, and total populations.

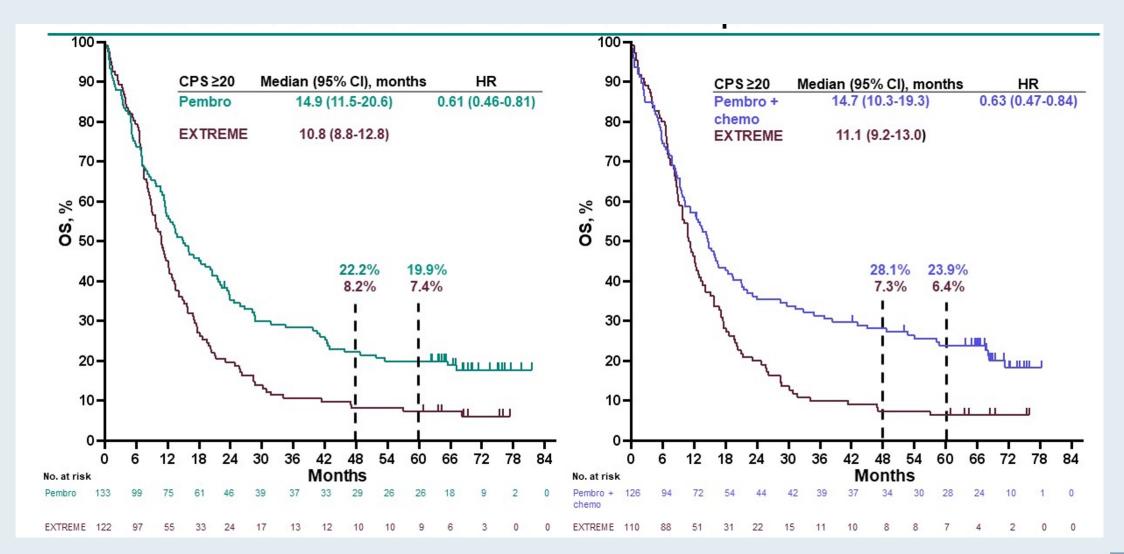

⁶After a loading dose of 400 mg/m². Data cutoff date February 21, 2022.

Burtness B et al. Lancet. 2019;394:1915-1928.

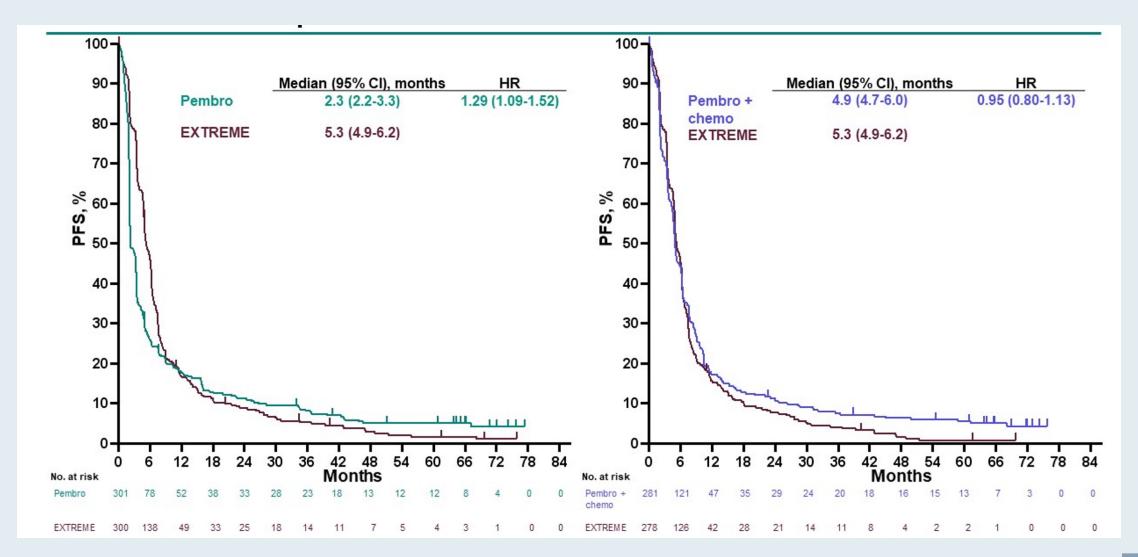
SCC = squamous cell carcinoma; OS = overall survival; PFS = progression-free survival; ORR = objective response rate; DOR = duration of response


KEYNOTE-048: Overall Survival in the ITT Population

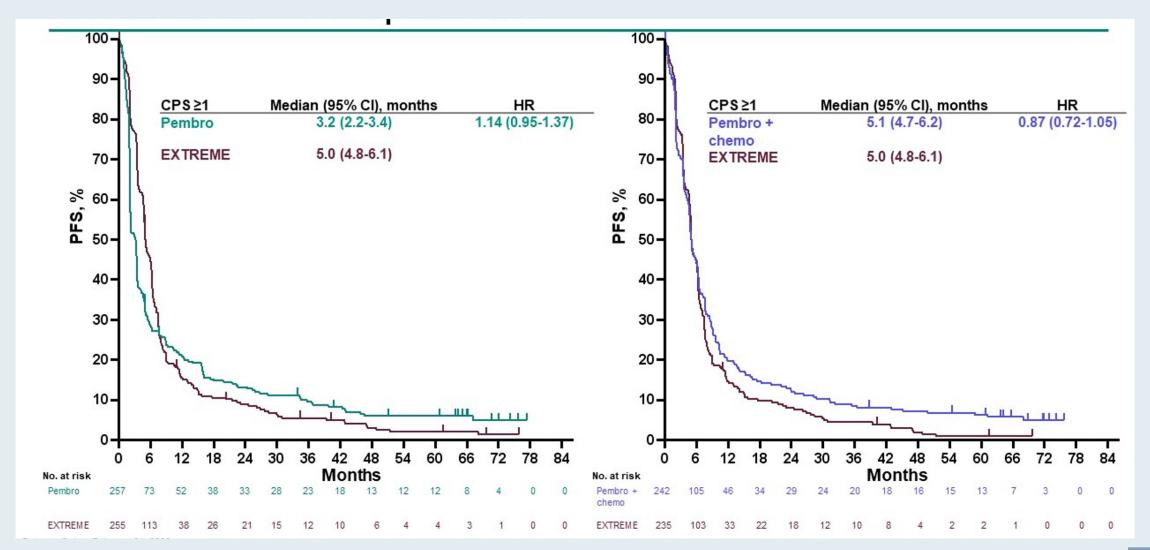
ITT = intent-to-treat



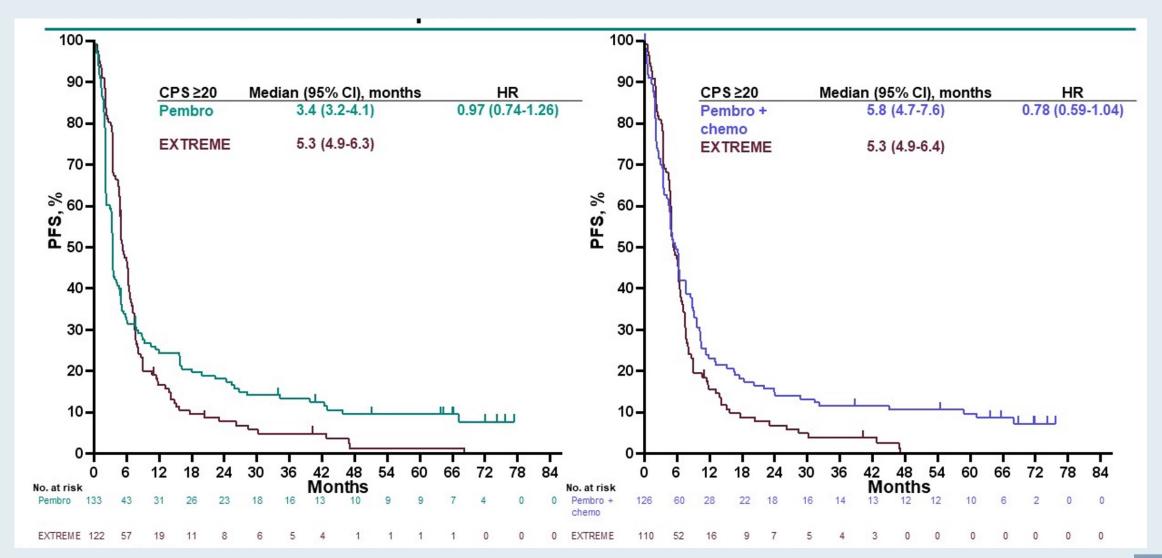
KEYNOTE-048: Overall Survival in the CPS ≥1 Population



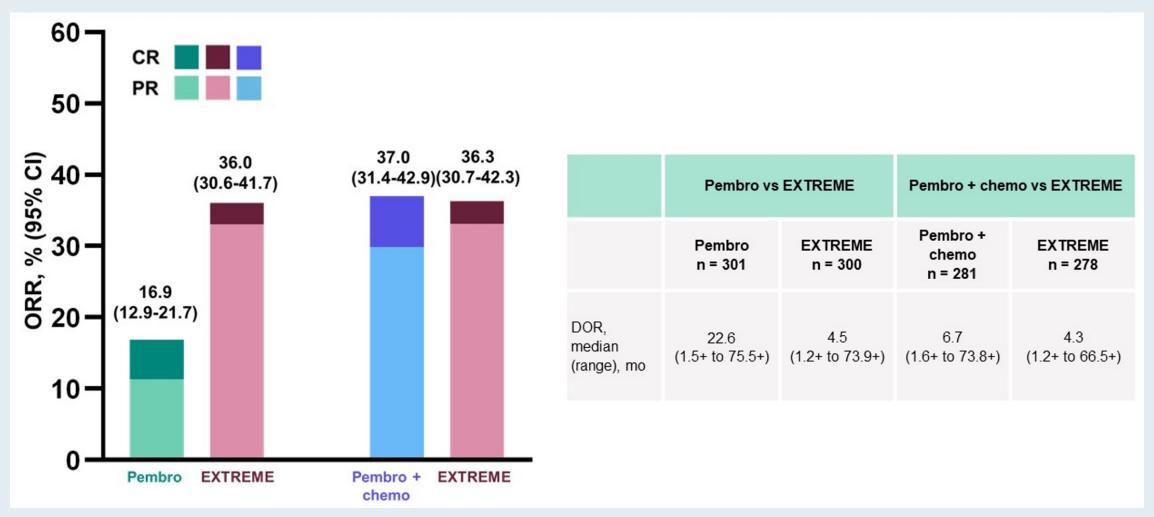
KEYNOTE-048: Overall Survival in the CPS ≥20 Population



KEYNOTE-048: PFS in the ITT Population



KEYNOTE-048: PFS in the CPS ≥1 Population

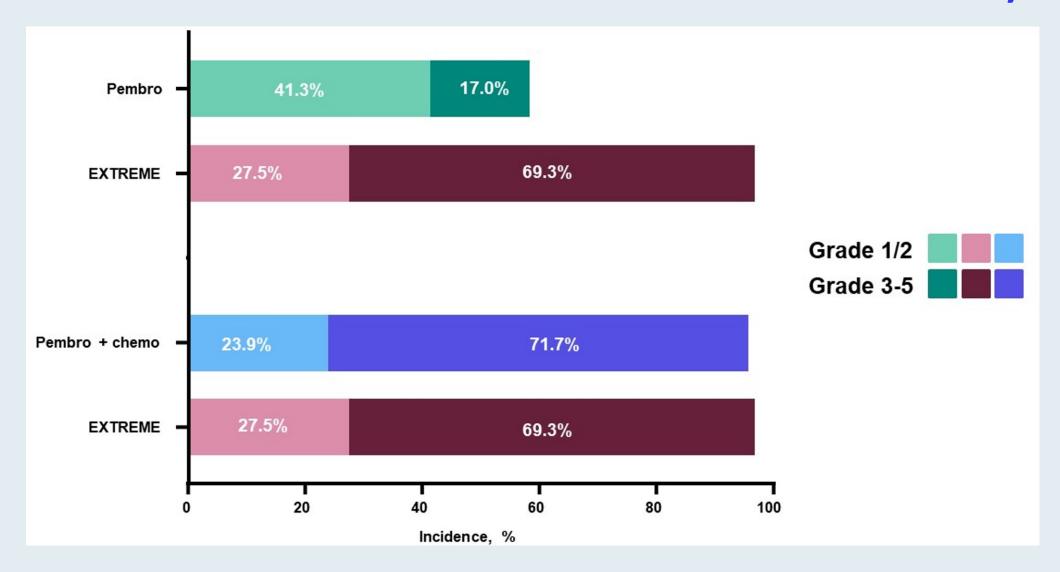


KEYNOTE-048: PFS in the CPS ≥20 Population

KEYNOTE-048: Objective Response Rate and Duration of Response by BICR in the ITT Population

BICR = blinded independent central review; CR = complete response; PR = partial response; ORR = objective response rate;

DOR = duration of response



KEYNOTE-048: Objective Response Rate and Duration of Response by PD-L1 Status

	Pembro vs EXTREME		Pembro + chemo vs EXTREME		
	Pembro	EXTREME	Pembro + chemo	EXTREME	
CPS ≥1, n	257	255	242	235	
ORR, % (95% CI)	19.1 (14.5-24.4)	34.9 (29.1-41.1)	38.0 (31.9-44.5)	35.7 (29.6-42.2)	
DOR, median, (range) mo	23.4 (1.5+ to 75.5+)	4.5 (1.2+ to 73.9+)	6.7 (1.6+ to 73.8+)	4.3 (1.2+ to 66.5+)	
CPS ≥20, n	133	122	126	110	
ORR, % (95% CI)	23.3 (16.4-31.4)	36.1 (27.6-45.3)	45.2 (36.4-54.3)	38.2 (29.1-47.9)	
DOR, median, (range) mo	23.4 (2.7 to 75.5+)	4.3 (1.2+ to 38.2+)	7.1 (2.1+ to 73.8+)	4.2 (1.2+ to 38.2+)	

KEYNOTE-048: Treatment-Related Adverse Events Summary

KEYNOTE-048 Conclusions

- With an extended follow-up of 5 years, first-line pembrolizumab monotherapy and pembrolizumab + chemotherapy continue to suggest clinical benefit in R/M HNSCC regardless of PD-L1 status
 - 5-year OS rate for overall ITT population
 - 14.4% versus 6.5% for pembrolizumab monotherapy versus EXTREME
 - 16.0% versus 5.2% for pembrolizumab + chemotherapy versus EXTREME
 - DOR remained longer with pembrolizumab or pembrolizumab + chemotherapy than with EXTREME
 - Safety was consistent with that of previous reports1
- Results from this study further support treatment with pembrolizumab and pembrolizumab + chemotherapy as first-line standard of care in R/M HNSCC

2021 ASCO Abstract LBA2.

JUPITER-02:

The randomized, double-blind, phase 3 study of toripalimab or placebo plus cisplatin and gemcitabine as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (NPC)

Rui-Hua Xu^{1, *}, Hai-Qiang Mai², Qiu-Yan Chen² Dongping Chen³, Chaosu Hu⁴, Kunyu Yang⁵, Jiyu Wen⁶, Jingao Li⁷, Ying-Rui Shi⁸, Feng Jin⁹, Ruilian Xu¹⁰, Jianji Pan¹¹, Shenhong Qu¹², Ping Li¹³, Chunhong Hu¹⁴, Yi-Chun Liu¹⁵, Yi Jiang¹⁶, Xia He¹⁷, Hung-Ming Wang¹⁸ and Wan-Teck Lim¹⁹, Coherus Biosciences and Shanghai Junshi Biosciences.

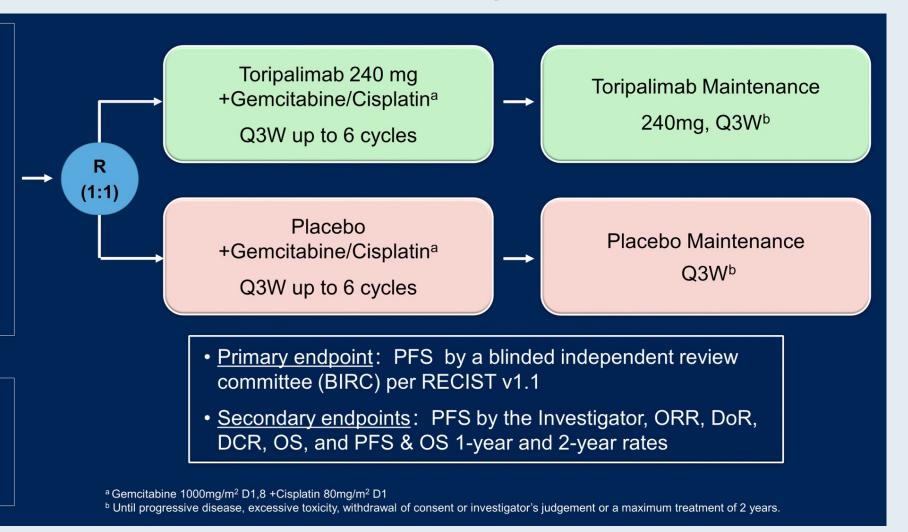
Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Centur of Cancer Medicine, Guangchou, China; *Department of Medical Oncology, Sun Yat-Sen University Cancer Center Cancer Absolute A Institute of Quangchou, China; *Oncology in Newspire Cancer Center Cancer Absolute A Institute of Quangchou Medical University, Cancer Center Standard, Onlina; *Union Hospital College Huszhorg University and Science and Technology, Wuhan, China; *Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; *Janga Cancer Hospital, Randong China; *Sulphan Cancer Hospital of Guangdong Medical University, Cancer Hospital, Fuzione, *Shenzhen, China; *Sulphan Provincial Cancer Hospital, Fuzion, China; *Shenzhen, China; Shenzhen, China; S

ARTICLES Nat Med 2021 Sep;27(9):1536-43.

https://doi.org/10.1038/s41591-021-01444-0

Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized phase 3 trial

Hai-Qiang Mai^{1,37}, Qiu-Yan Chen^{1,37}, Dongping Chen², Chaosu Hu³, Kunyu Yang⁴, Jiyu Wen⁵, Jingao Li⁶, Ying-Rui Shi⁷, Feng Jin³, Ruilian Xu⁶, Jianji Pan¹⁰, Shenhong Qu¹¹, Ping Li¹², Chunhong Hu¹³, Yi-Chun Liu¹⁴, Yi Jiang¹⁵, Xia He¹⁶, Hung-Ming Wang¹७, Wan-Teck Lim⊚¹³, Wangjun Liao¹ゥ, Xiaohui He²⁰, Xiaozhong Chen²¹, Zhigang Liu⊚²², Xianglin Yuan²³, Qi Li²⁴, Xiaoyan Lin²⁵, Shanghua Jing²⁶, Yanju Chen²⁷, Yin Lu²³, Ching-Yun Hsieh²ゥ, Muh-Hwa Yang⊚³₀, Chia-Jui Yen³¹, Jens Samol³²², Hui Feng³⁴,⁵, Sheng Yao³⁴,³⁵, Patricia Keegan⊚³⁵ and Rui-Hua Xu⊙³⁶ ⊠

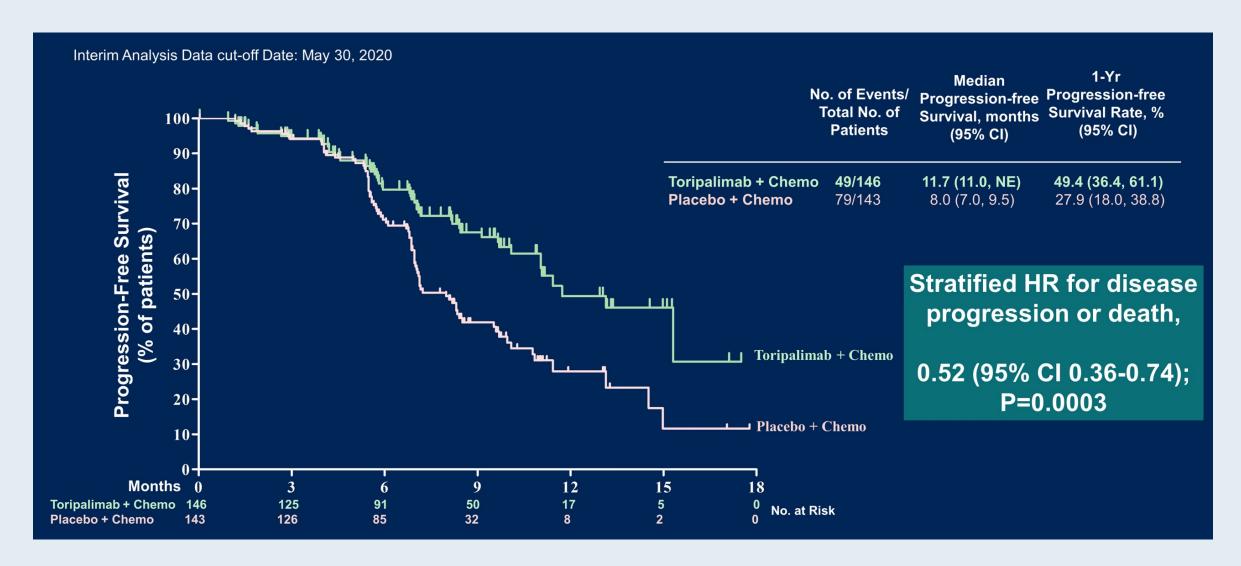

JUPITER-02 Phase III Study

Key Eligibility Criteria

- Primary metastatic NPC or recurrent NPC after curativeintent therapy
- •Treatment naïve for recurrent or metastatic (R/M) disease
- •ECOG 0-1
- •18-75 yrs
- Measurable disease per RECIST v1.1

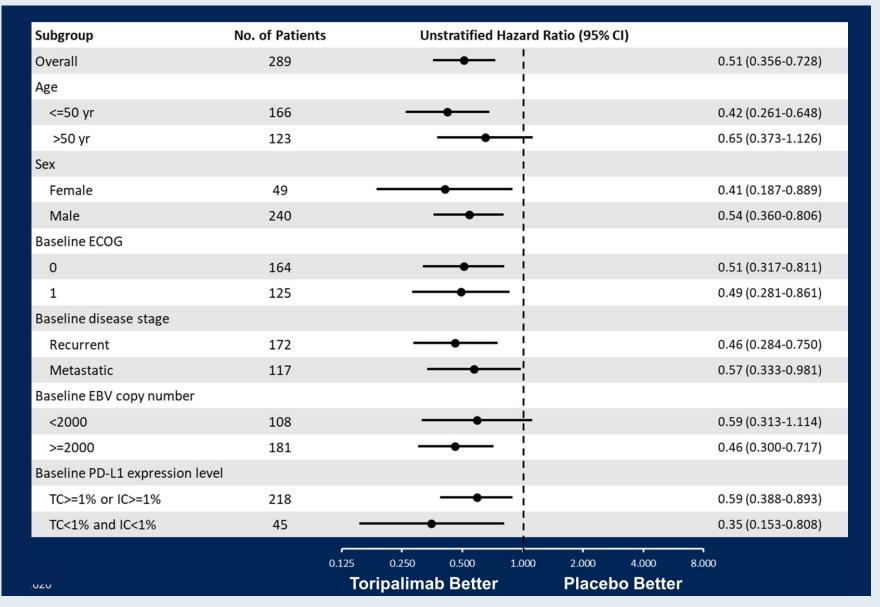
Stratification Factors

- •Recurrent vs Primary metastatic
- •ECOG PS 0 vs 1

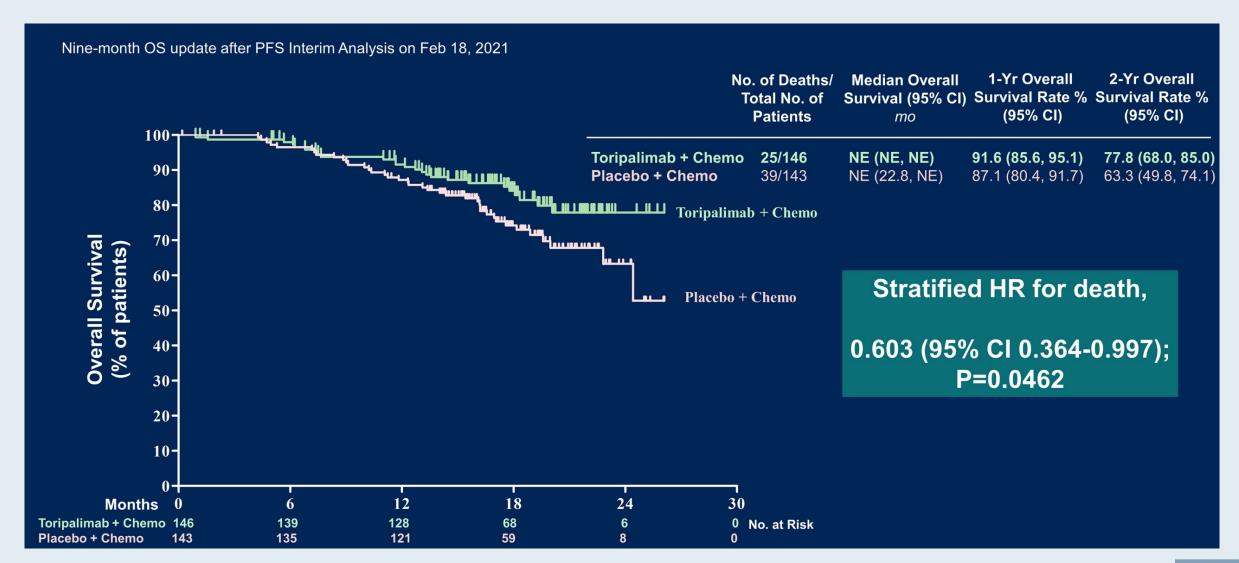


NPC = nasopharyngeal carcinoma; PFS = progression-free survival; ORR = overall response rate; DoR = duration of response;

DCR = disease control rate; OS = overall survival



JUPITER-02: Progression-Free Survival by BIRC



JUPITER-02: Progression-Free Survival by BIRC in Key Subgroups



JUPITER-02: Overall Survival Update

JUPITER-02: Exposure and Clinical Events in the ITT Population and DoR in Patients with Confirmed Objective Response

JUPITER-02: Response and Duration or Response

Characteristic (%)	Toripalimab + GP (N=146)	Placebo + GP (N=143)	
Objective Response Rate ^a	77.4	66.4	
95% CI	(69.8, 83.9)	(58.1, 74.1)	
P value	0.0335		
Best Overall Response a			
Complete Response	19.2	11.2	
Partial Response	58.2	55.2	
Stable Disease	10.3	13.3	
Progressive Disease	3.4	5.6	
Not evaluable	6.2	5.6	
Non-CR/non-PD b	2.7	8.4	
No evidence of disease c	0	0.7	
Median DoR, (95%CI), months	10.0 (8.8, NE)	5.7 (5.4, 6.8)	
HR (95%CI)	0.50 (0.33-0.78)		
P value	0.0014		

GP = gemcitabine/cisplatin

JUPITER-02: Safety Overview

Patients, n (%)	Toripalim (N=1		Placebo + GP (N=143)	
	Any grade	Grade≥3	Any grade	Grade≥3
All Treatment Emergent AEs	146 (100.0)	130 (89.0)	143 (100.0)	128 (89.5)
AEs related to study drug b,c	139 (95.2)	118 (80.8)	139 (97.2)	119 (83.2)
Immune-related AEs ^c	58 (39.7)	11 (7.5)	27 (18.9)	1 (0.7)
AEs leading to discontinuation	11 (7.5)	/	7 (4.9)	1
Infusion reactions	6 (4.1)	0	6 (4.2)	0
Fatal AEs	4 (2.7)	4 (2.7)	4 (2.8)	4 (2.8)

AEs = adverse events

JUPITER-02: Common Treatment-Emergent Adverse Events

Patients, n (%)	Toripalim (N=1		Placebo + GP (N=143)	
	Any grade	Grade≥3	Any grade	Grade≥3
Leukopenia	133 (91.1)	90 (61.6)	135 (94.4)	83 (58.0)
Anemia	129 (88.4)	69 (47.3)	135 (94.4)	57 (39.9)
Neutropenia	125 (85.6)	84 (57.5)	133 (93.0)	91 (63.6)
Nausea	101 (69.2)	2 (1.4)	119 (83.2)	4 (2.8)
Vomiting	98 (67.1)	3 (2.1)	94 (65.7)	3 (2.1)
Thrombocytopenia	93 (63.0)	48 (32.9)	89 (62.2)	41 (28.7)
Decreased appetite	78 (53.4)	1 (0.7)	84 (58.7)	0 (0)
Constipation	57 (39.0)	0 (0)	64 (44.8)	0 (0)
Aspartate aminotransferase increased	55 (37.7)	2 (1.4)	44 (30.8)	2 (1.4)
Alanine aminotransferase increased	53 (36.3)	1 (0.7)	57 (39.9)	0 (0)
Fatigue	52 (35.6)	2 (1.4)	51 (35.7)	3 (2.1)
Pyrexia	45 (30.8)	2 (1.4)	31 (21.7)	1 (0.7)
Hypothyroidism	45 (30.8)	0 (0)	24 (16.8)	0 (0)
Neuropathy peripheral	44 (30.1)	0 (0)	41 (28.7)	1 (0.7)
Diarrhea	44 (30.1)	3 (2.1)	33 (23.1)	0 (0)
Hyponatremia	37 (25.3)	13 (8.9)	52 (36.4)	6 (4.2)

JUPITER-02 Summary and Conclusions

- The addition of toripalimab to GP as a first-line treatment for R/M NPC patients provided superior PFS, OS, ORR and DoR than GP alone.
 - Significant improvement in PFS: mPFS 11.7 vs. 8.0 months, HR=0.52 (95%CI: 0.36-0.74), p=0.0003
 - Although mOS was not mature in either arm, a 40% reduction in risk of death was observed in the toripalimab arm over the placebo arm.
 - A second interim OS analysis will be performed at pre-specified final PFS analysis followed by the final OS analysis
- No new safety signals were identified with toripalimab added to GP.
- Toripalimab plus GP represents a new standard of care as 1st line therapy for patients with R/M NPC.

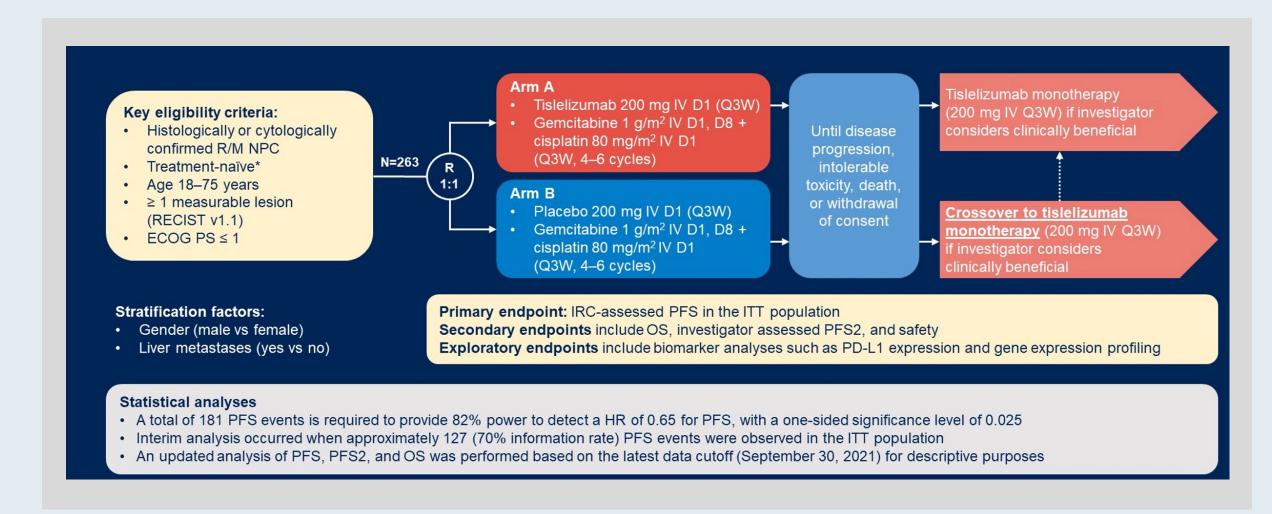
Presentation 384950.

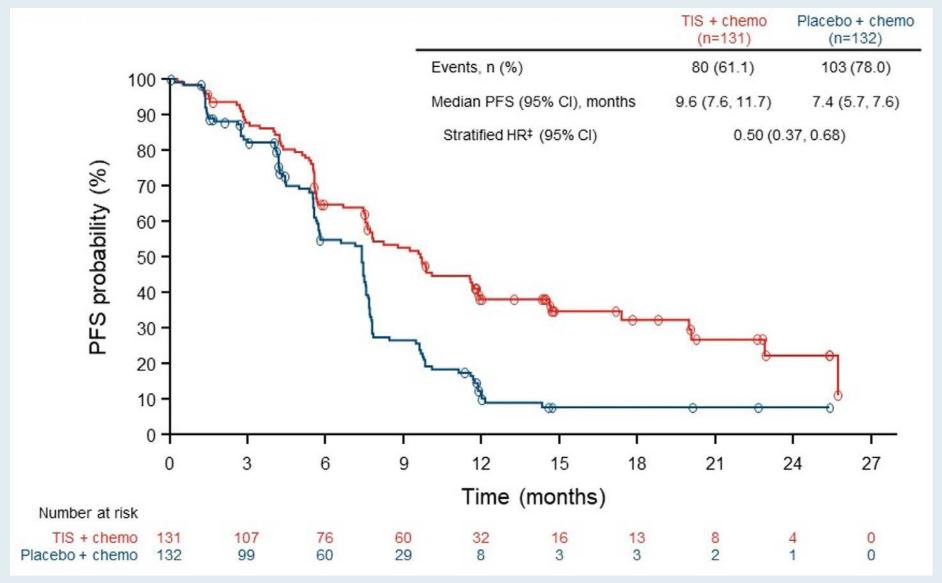
RATIONALE-309: Updated PFS, PFS2, and OS from a Phase 3 double-blind trial of tislelizumab versus placebo, plus chemotherapy, as first-line treatment for recurrent/metastatic nasopharyngeal cancer

Li Zhang, MD¹

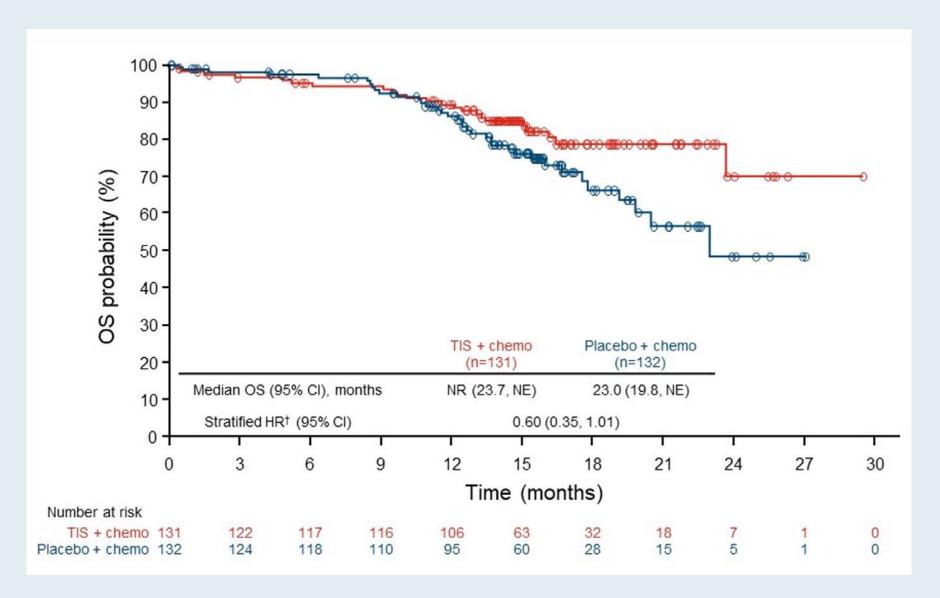
on behalf of Yunpeng Yang, ¹ Jianji Pan, ² Xiaozhong Chen, ³ Yan Sun, ⁴ Hui Wang, ⁵ Shenhong Qu, ⁶ Nianyong Chen, ⁷ Lizhu Lin, ⁸ Siyang Wang, ⁹ Qitao Yu, ¹⁰ Guihua Wang, ¹¹ Feng Lei, ¹² Jiyu Wen, ¹³ Chengi Chen, ¹⁴ Yanjie Wu, ¹⁴ Shiangjiin Leaw, ¹⁴ Wenfeng Fang¹

¹Sun Yat-sen University Cancer Center, Guangzhou, China; ²Fujian Cancer Hospital, Fuzhou, China; ³Zhejiang Cancer Hospital, Hangzhou, China; ⁴Beijing Cancer Hospital, Beijing, China; ⁵Hunan Cancer Hospital, Changsha, China; ⁶The People's Hospital of Guangxi Zhuang Autonomous Region, Otolaryngology Department, Nanning, China; ¬West China Hospital of Sichuan University, Chengdu, China; ⁶The First Affiliated Hospital of Guangzhou Traditional Chinese Medicine University, Guangzhou, China; ⁰The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, China; ¹¹Changsha, China; ¹¹Changsha Central Hospital, Changsha, China; ¹²The People's Hospital of Zhongshan City, Zhongshan, China; ¹³Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; ¹⁴BeiGene (Shanghai) Co., Ltd., Shanghai, China

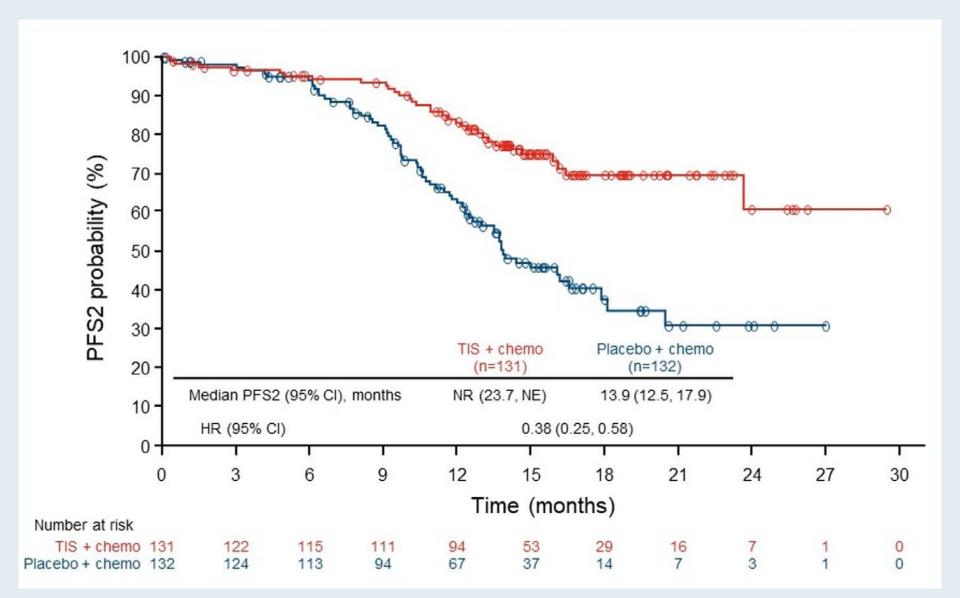




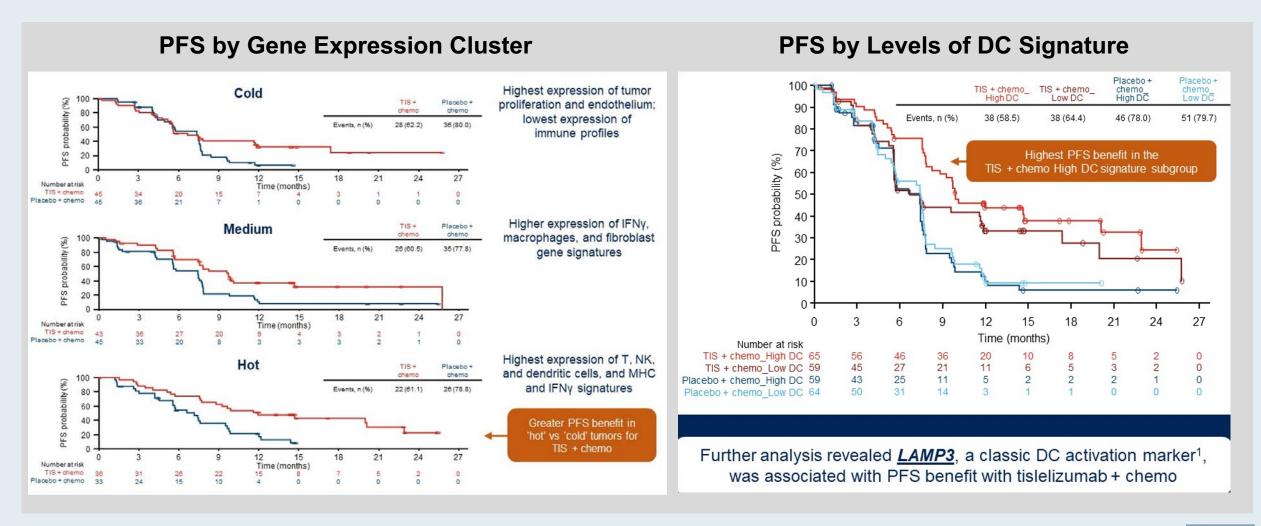
RATIONALE-309 Phase III Study Design



RATIONALE-309: Updated PFS (Median Follow-Up 15.5 Months)



RATIONALE-309: Updated Overall Survival



RATIONALE-309: Updated PFS2

RATIONALE-309: Gene Expression Profiling Identified 3 Gene Expression Clusters and Activated DC Signature as Potential Biomarkers of Efficacy

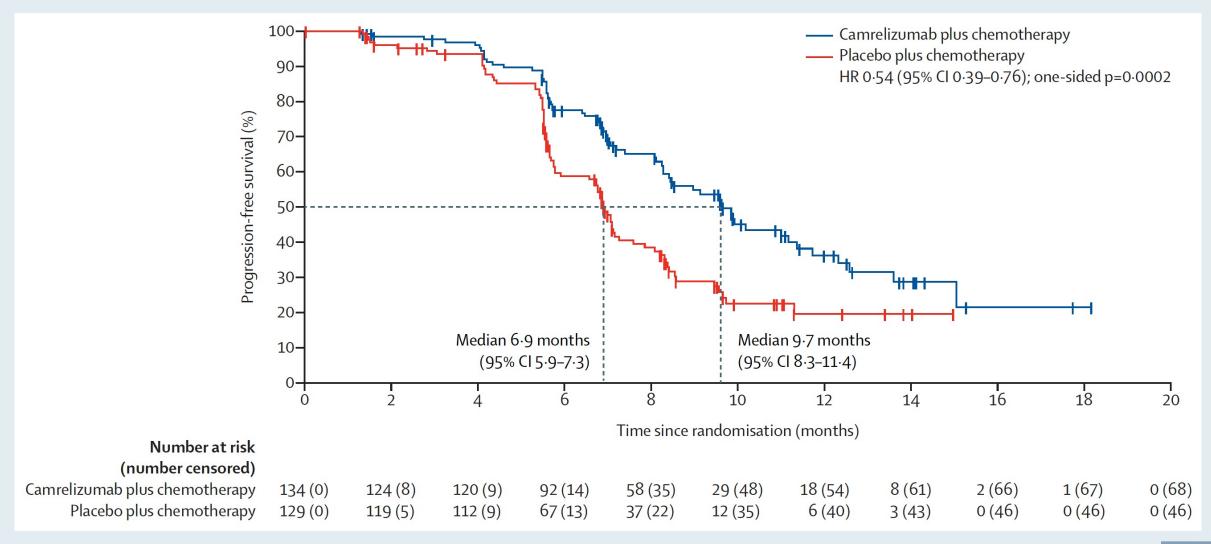
Clinical Implications of RATIONALE-309

- RATIONALE-309 met its primary endpoint at the interim analysis
- The results of RATIONALE-309 are consistent with other Phase 3 RCTs in R/M NPC*1,2
 - Combined, these three studies provide robust support for the use of a PD-1 inhibitor + chemo for 1L R/M NPC
- This is the first analysis of PFS2 in 1L R/M NPC and the observed PFS2 benefit supports the use of tislelizumab + chemo first in the treatment sequence
- Biomarker analyses identified three unique gene expression clusters representing hot and cold tumors. Further analysis identified an activated DC signature as a potential biomarker for efficacy[‡]
 - In addition, the DC activation marker LAMP3³ was found to be most associated with tislelizumab + chemo PFS benefit[‡]
- The safety profile of tislelizumab + chemo was manageable in the interim analysis and consistent with prior reports (presented previously)^{4,5}

PFS and OS in Phase 3 RCTs in R/M NPC*

	RATIONALE-309†		JUPITER-021		CAPTAIN-1st ²	
	TIS +	Placebo +	Tori +	Placebo +	Cam +	Placebo +
	chemo	chemo	chemo	chemo	chemo	chemo
	(n=131)	(n=132)	(n=146)	(n=143)	(n=134)	(n=129)
PFS events, n (%)	80 (61.1)	103 (78.0)	49 (33.6)	79 (55.2)	78 (58.2)	100 (77.5)
Median PFS	9.6	7.4	11.7	8.0	10.8	6.9
(95% CI), months	(7.6, 11.7)	(5.7, 7.6)	(11.0, NE)	(7.0, 9.5)	(8.5, 13.6)	(5.9, 7.9)
HR	0.50		0.52		0.51	
(95% CI)	(0.37, 0.68)		(0.36, 0.74)		(0.37, 0.69)	
Median OS	NR	23.0	NE	NE	NR	22.6
(95% CI), months	(23.7, NE)	(19.8, NR)	(NE, NE)	(22.8, NE)		(19.2, NR)
HR (95% CI)	0.6 (0.35,	60 1.01)	0.0 (0.36,		0.4 (0.41,	518 Co. 1000

Lancet Oncol 2021August;22(8):1162-74.



Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): a multicentre, randomised, double-blind, phase 3 trial

Yunpeng Yang*, Song Qu*, Jingao Li*, Chaosu Hu*, Mingjun Xu*, Weidong Li*, Ting Zhou*, Liangfang Shen, Hui Wu, Jinyi Lang, Guangyuan Hu, Zhanxiong Luo, Zhichao Fu, Shenhong Qu, Weineng Feng, Xiaozhong Chen, Shaojun Lin, Weimin Zhang, Xiaojiang Li, Yan Sun, Zhixiong Lin, Qin Lin, Feng Lei, Jianting Long, Jinsheng Hong, Xiaoming Huang, Lingzhi Zeng, Peiguo Wang, Xiaohui He, Ben Zhang, Qing Yang, Xiaojing Zhang, Jianjun Zou, Wenfeng Fang†, Li Zhang†

CAPTAIN-1st Primary Endpoint: Progression-Free Survival

CAPTAIN-1st: Tumor Response per Independent Review Committee

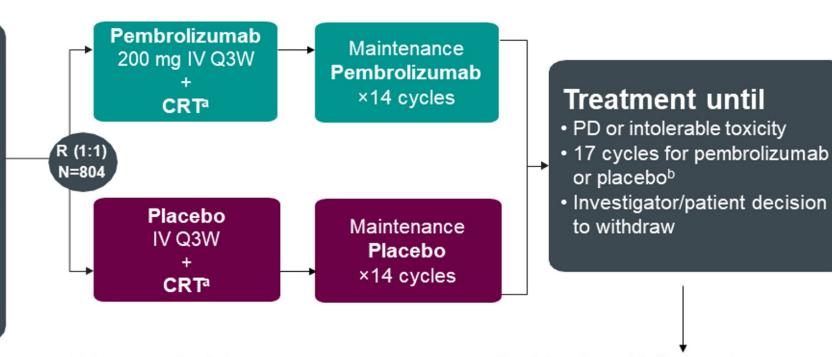
	Camrelizumab plus gemcitabine and cisplatin (n=134)	Placebo plus gemcitabine and cisplatin (n=129)		
Best overall response				
Complete response	7 (5%)	4 (3%)		
Partial response	110 (82%)	100 (78%)		
Stable disease	12 (9%)	18 (14%)		
Progressive disease	2 (1%)	4 (3%)		
Not assessable	3 (2%)	3 (2%)		
Objective response	87.3% (80.5–92.4)	80.6% (72.7-87.1)		
Disease control rate	96.3% (91.5–98.8)	94.6% (89.1–97.8)		
Duration of response, months	8.5 (6.9–11.1)	5.6 (5.2–6.9)		
Data are n (%), % (95% CI), or median (95% CI).				

ESMO 2022; Abstract LBA5.

Primary Results of the Phase 3 KEYNOTE-412 Study: Pembrolizumab Plus Chemoradiation Therapy (CRT) vs Placebo Plus CRT for Locally Advanced Head and Neck Squamous Cell Carcinoma

Jean-Pascal Machiels¹, Yungan Tao², Barbara Burtness³, Makoto Tahara⁴, Danny Rischin⁵, Gustavo V. Alves⁶, Iane Pinto Figueiredo Lima⁷, Brett G.M. Hughes⁸, Yoann Pointreau⁹, Sercan Aksoy¹⁰, Simon Laban¹¹, Richard Greil¹², Martin Burian¹³, Marcin Hetnal¹⁴, Lisa Licitra¹⁵, Ramona Swaby¹⁶, Yayan Zhang¹⁷, Burak Gumuscu¹⁷, Behzad Bidadi¹⁷, Lillian L. Siu¹⁸

¹Cliniques universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, Brussels, Belgium; ²Institut Gustave Roussy, Villejuif, France; ³Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA; ⁴National Cancer Center Hospital East, Kashiwa, Japan; ⁵Peter MacCallum Cancer Centre and the University of Melbourne, Melbourne, Australia; ⁶Centro Integrado de Pesquisa em Oncologia, Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil; ⁷CRIO Centro Regional Integrado de Oncologia, Fortaleza-CE, Brazil; ⁸Royal Brisbane and Women's Hospital and University of Queensland, Brisbane, Queensland, Australia; ⁹Centre Jean Bernard, Le Mans, France; ¹⁰Hacettepe University, Cancer Institute, Ankara, Turkey; ¹¹Ulm University Medical Center, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Department of Otorhinolaryngology, Head & Neck Surgery, Ulm, Germany; ¹²Paracelsus Medical University, Salzburg Cancer Research Institute, and Cancer Cluster Salzburg, Salzburg, Austria; ¹³Krankenhaus der Barmherzigen Schwestern Linz, Linz, Austria; ¹⁴Andrzej Frycz Modrzewski Krakow University, Amethyst Radiotherapy Centre, Rydygier Hospital, Krakow, Poland; ¹⁵Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; University of Milan, Milan, Italy; ¹⁶Merck & Co., Inc., Rahway, NJ, USA; ¹⁸Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada.


KEYNOTE-412 Phase III Study Design

Patients

- Newly diagnosed, pathologically proven, treatment-naive unresected LA HNSCC
- T3-T4 [N0-N3] or any N2a-3 [T1-T4]
 larynx/hypopharynx/oral cavity/
 p16-negative oropharynx cancers
- T4 or N3 p16-positive oropharynx cancer
- Evaluable tumor burden per RECIST v1.1
- ECOG PS 0 or 1
- Candidates for definitive high-dose cisplatin-based CRT

Stratification Factors

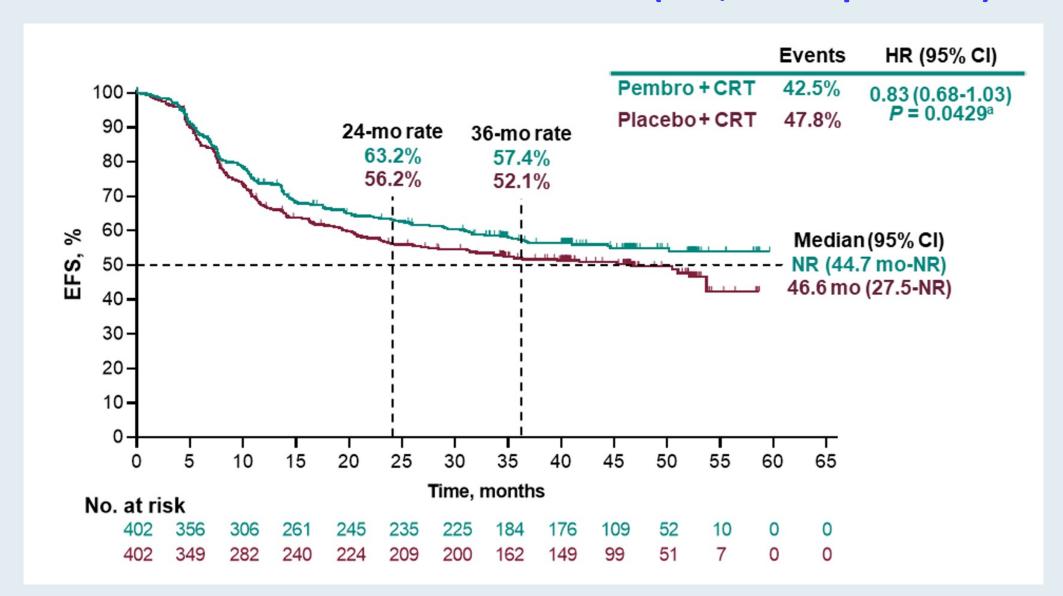
- Radiotherapy regimen (AFX vs SFX)
- Tumor site/p16 status (oropharynx [p16+ vs p16-] or larynx/hypopharynx/oral cavity)
- · Disease stage (III vs IV)

Primary endpoint

· Event-free survival (EFS)

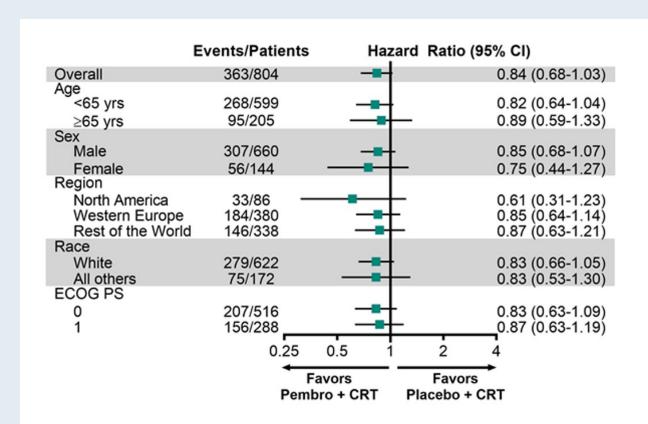
Secondary endpoints included:

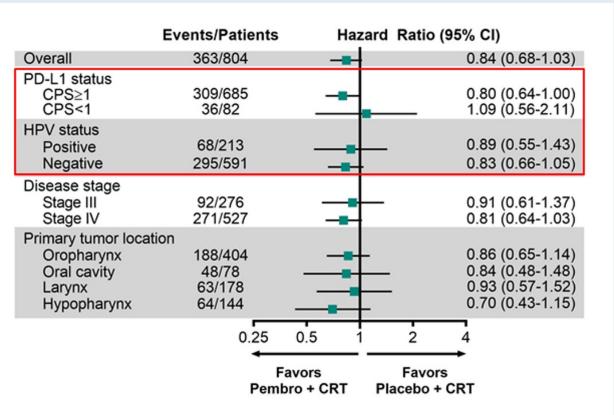
- OS
- · Safety/tolerability

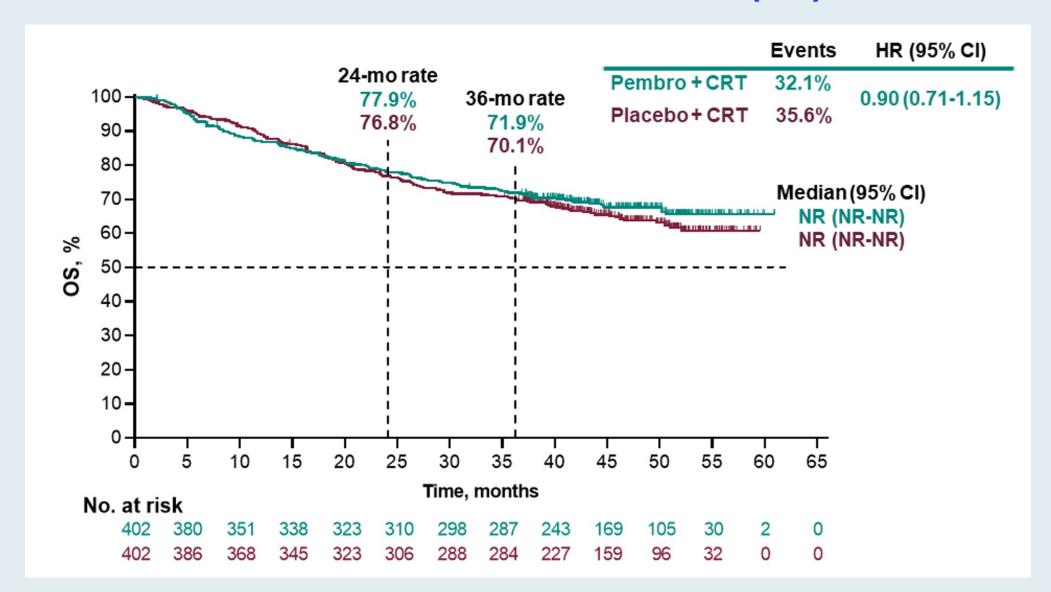

Post-treatment follow-up to assess

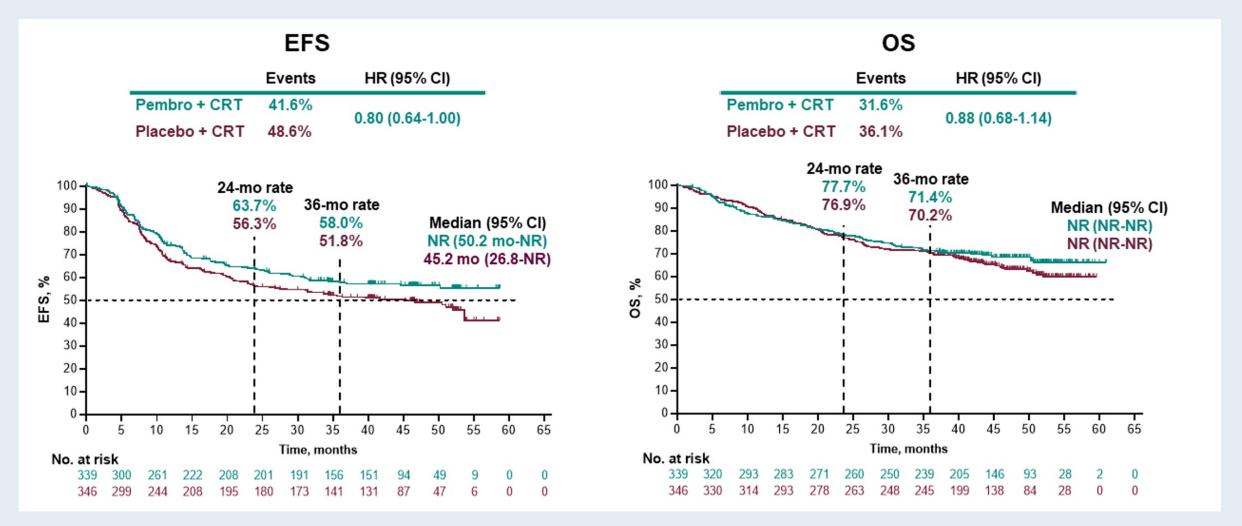
- Safety
- Disease status
- Survival

LA HNSCC = locally advanced head and neck squamous cell carcinoma

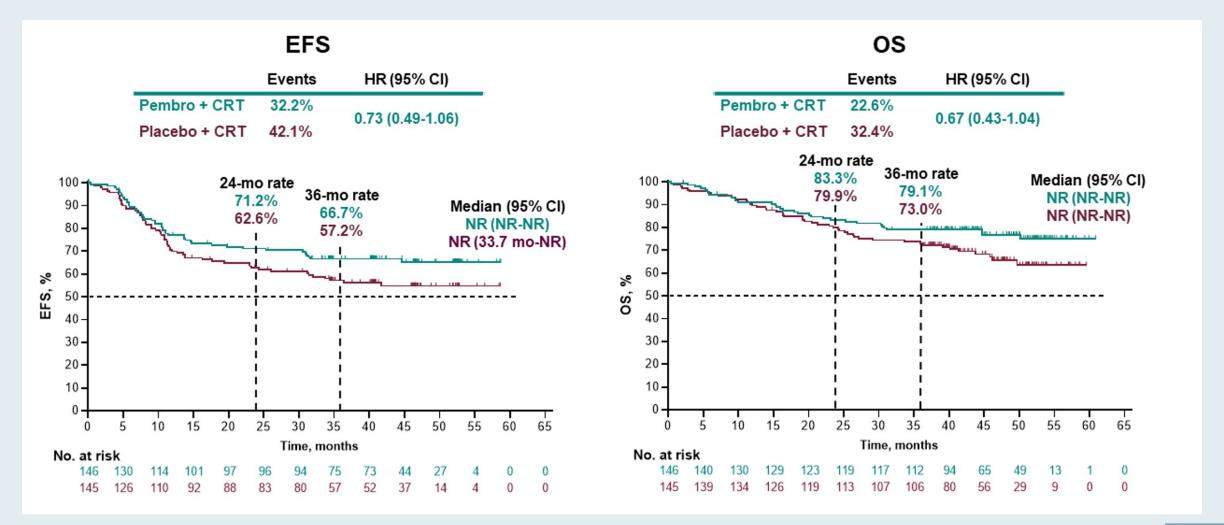



KEYNOTE-412: Event-Free Survival (EFS; ITT Population)

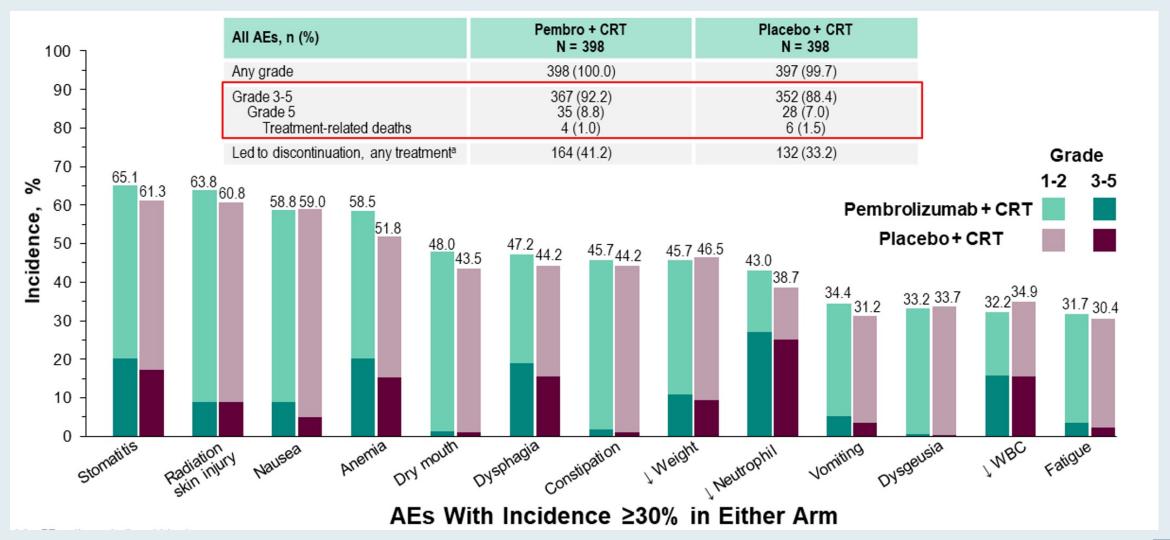

KEYNOTE-412: EFS in Prespecified Subgroups (ITT)



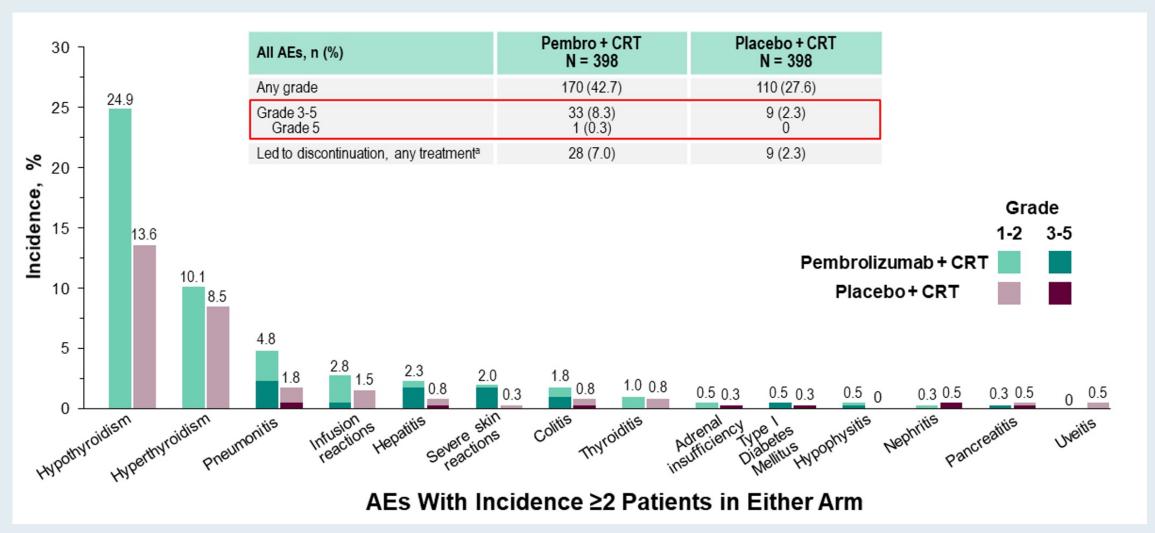
KEYNOTE-412: Overall Survival (ITT)



KEYNOTE-412: EFS and OS in Patients with PD-L1 CPS ≥1 (Prespecified Subgroup Analysis)



KEYNOTE-412: EFS and OS in Patients with PD-L1 CPS ≥20 (Post Hoc Analysis)



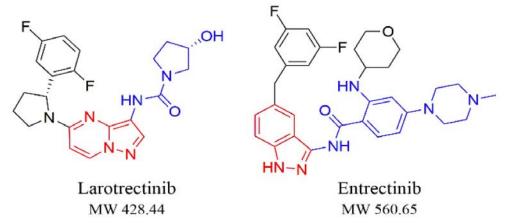
KEYNOTE-412: All-Cause Adverse Events (AEs) Across Both Treatment Phases, as Treated

KEYNOTE-412: Immune-Mediated AEs and Infusion Reactions, as Treated

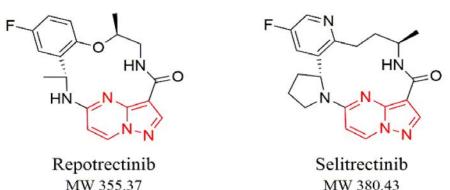
KEYNOTE-412: Summary and Conclusions

- Pembrolizumab plus CRT was associated with a favorable trend toward improved EFS vs placebo plus CRT in patients with LA HNSCC (HR, 0.83; P = 0.0429)
 - The difference did not reach statistical significance (superiority threshold, one-sided P = 0.0242)
 - 24-mo EFS rate: 63.2% vs 56.2%
- PD-L1 expression may be an informative predictive biomarker
 - CPS ≥1: 24-mo EFS rate, 63.7% vs 56.3%; 36-mo OS rate, 71.4% vs 70.2%
 - CPS ≥20: 24-mo EFS rate, 71.2% vs 62.6%; 36-mo OS rate, 79.1% vs 73.0% (post hoc analysis)
- No new safety signals with the combination of pembrolizumab plus CRT
- LA HNSCC remains a challenging disease to treat

Incorporation of Targeted Therapy for Advanced Head and Neck Cancer


Frequent Genomic Alterations Across Different Subtypes of Salivary Gland Cancers

Subtype	Frequent genomic alterations Gene (%)	Overexpression on IHC Protein (%)	
Adenoid cystic carcinoma	MYB-NFIB/MYBL1-NFIB/5'-NFIB (65-88), NOTCH1 (11-29)	c-KIT (65-90), NICD (49-98), EGFR (24-85), VEGF (76)	
Mucoepidermoid carcinoma	CRTC1-MAML2/CTRC3-MAML2 (38-82), PIK3CA (20), BRCA2 (17), ERBB2 (13)	EGFR (46-100), HER2 (0-38)	
Salivary duct carcinoma	ERBB2 (32), PIK3CA (18-27), HRAS (16-23)	AR (78-96), HER2 (16-83), EGFR (53)	
Mammary analogue secretory carcinoma	ETV6-NTRK3 (95-98), ETV6-nonNTRK3 (2-5)	NA	
Acinic cell carcinoma	HTN3-MSANTD3 (4-16)	NA	
Polymorphous adenocarcinoma	PRKD1/2/3 (50-80), FGFR1 (20)	NA	
Adenocarcinoma NOS	PIK3CA (20-24), ERBB2 (17), CDKN2A/B (12-17), HRAS (14)	NA	
Carcinoma ex pleomorphic adenoma	FGFR1-PLAG (9-86), HMGA2 (29)	NA	
Epithelial-myoepithelial carcinoma	HRAS (33), KRAS (18), MYB (18)	FGFR1 (86), c-KIT (69-83),	
Myoepithelial carcinoma	EWSR1 (39), PIK3CA (15)	NA	
Intraductal carcinoma	RET (47)	NA	
Poorly differentiated carcinoma	PIK3CA (20), ERBB2 (15)	NA	



FDA Approved and Investigational TRK Inhibitors for Patients with Solid Tumors with NTRK Gene Fusions

FDA-approved first-generation NTRK gene fusion inhibitors

Second-generation investigational NTRK gene fusion inhibitors

Larotrectinib: FDA approval 11/26/2018

 Based on LOXO-TRK-14001, SCOUT and NAVIGATE

Entrectinib: FDA approval 8/15/2019

Based on ALKA, STARTRK-1 and STARTRK-2

Repotrectinib* and selitrectinib

 Next-generation TRK tyrosine kinase inhibitors with a compact macrocyclic structure that binds completely inside the ATP binding pocket even in the presence of mutations

Besse B et al. AACR-NCI-EORTIC Virtual International Conference 2021; Abstract LB6546.

Larotrectinib PI, rev 3/2021; Entrectinib PI, rev 7/2022; https://www.tptherapeutics.com/news-releases/news-release-details/turning-point-therapeutics-granted-breakthrough-therapy

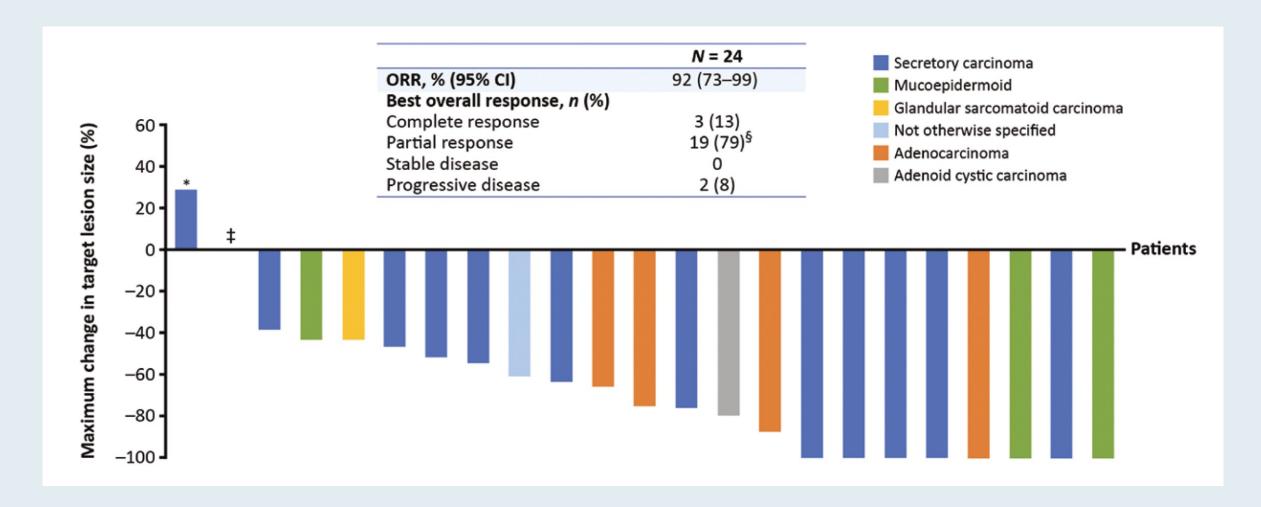
^{*} Breakthrough therapy designation: 10/6/2021

TRK Inhibitor Activity in Solid Tumors with NTRK Gene Fusions – Data from the Registrational Studies

	Larotrectinib (LOXO-TRK-14001, SCOUT, NAVIGATE) (N = 244)	Entrectinib (ALKA, STARTRK-1, STARTRK-2) (N = 150)
Median age	38	58.5
NTRK fusion NTRK1 NTRK2 NTRK3	46% 3% 51%	Not reported
Prior lines of systemic therapy 0 1 ≥2	27% 28% 44%	34% 29% 37%
ORR (CR)	69% (21%)	61% (17%)
Median DoR	33 mo	20 mo
Median PFS	29 mo	14 mo
Median OS	Not reached	37 mo

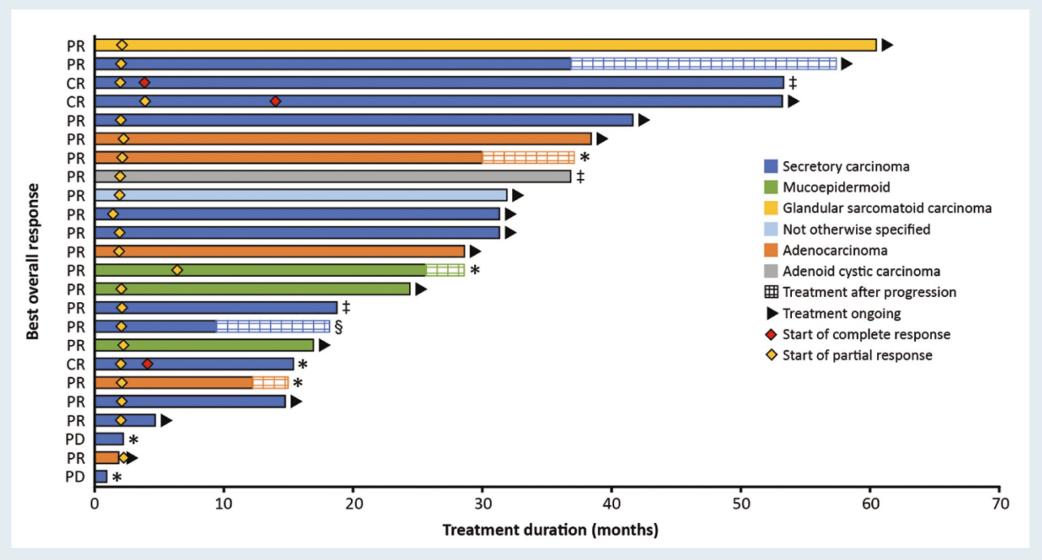
Oncologist 2022 May 10; [Online ahead of print].

Original Article



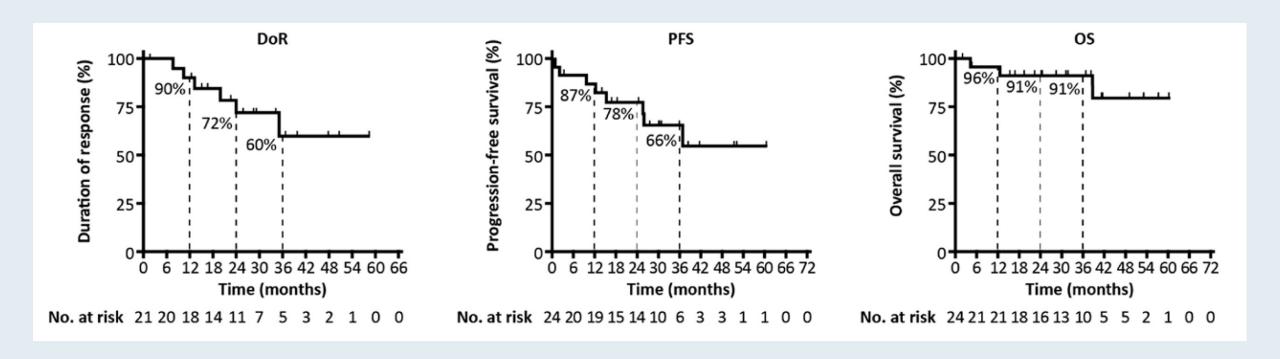
Larotrectinib Treatment for Patients With TRK Fusion-Positive Salivary Gland Cancers

Xiuning Le^{1,*}, Christina Baik², Jessica Bauman³, Jill Gilbert⁴, Marcia S. Brose⁵, Juneko E. Grilley-Olson⁶, Tejas Patil⁷, Ray McDermott^{8,9}, Luis E. Raez¹⁰, Jennifer M. Johnson⁵, Lin Shen¹¹, Makoto Tahara^{12,10}, Alan L. Ho^{13,14}, Ricarda Norenberg¹⁵, Laura Dima¹⁶, Nicoletta Brega¹⁷, Alexander Drilon^{13,14,10}, David S. Hong¹



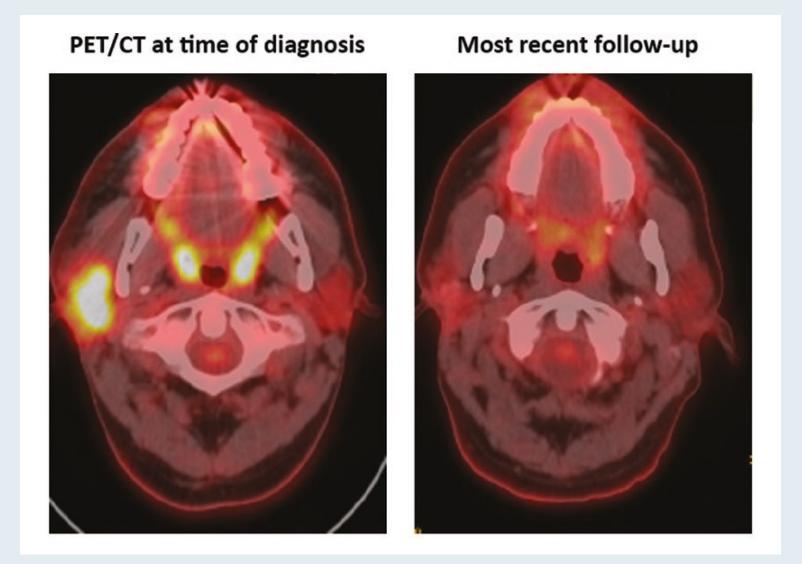
Maximum Change in Target Lesion Size and Response After Treatment with Larotrectinib

Treatment Duration with Larotectinib for Patients with Salivary Gland Cancer with NTRK Fusions



Larotrectinib Treatment-Related Adverse Events (TRAEs) in ≥20% of Patients

TRAE	Any grade	Grade ≥3
ALT increased	42%	13%
Dizziness	38%	4%
Constipation	25%	0
AST increased	38%	8%
Fatigue	33%	0
Myalgia	21%	0
Nausea	25%	0



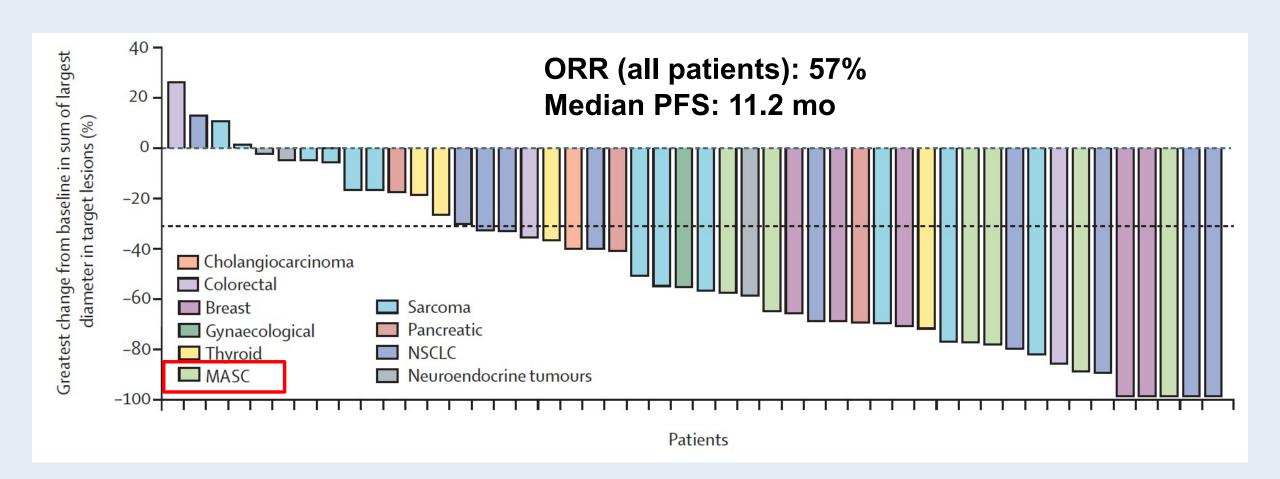
Duration of Response, PFS and OS with Larotrectinib

Response to Larotrectinib in a Patient with Secretory Carcinoma of the Salivary Gland with ETV6-NTRK3 Fusion

Lancet Oncol 2020;21(2):271-82.

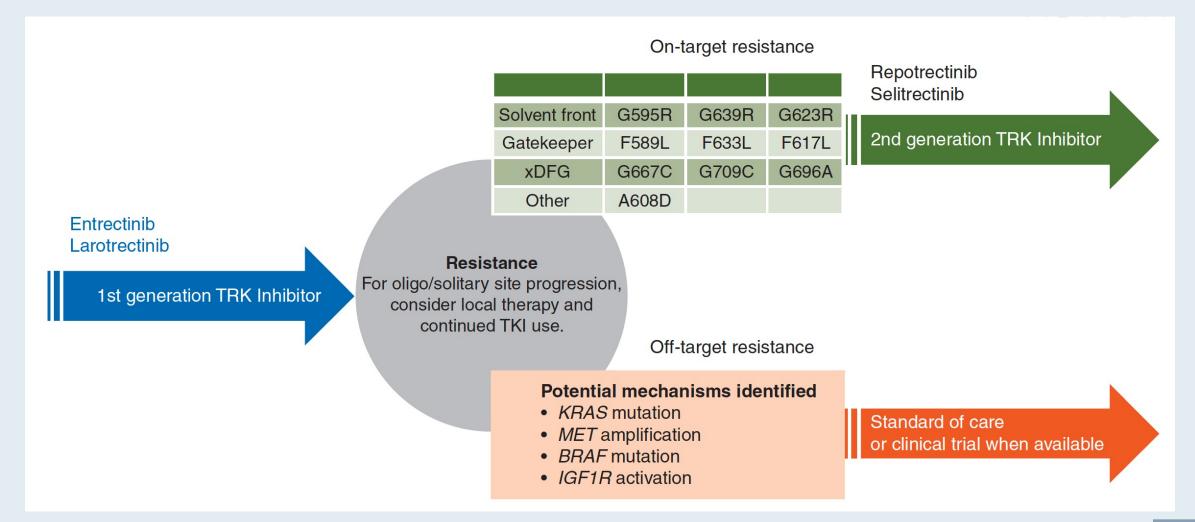
Entrectinib in patients with advanced or metastatic *NTRK* fusion-positive solid tumours: integrated analysis of three phase 1–2 trials

Robert C Doebele*, Alexander Drilon*, Luis Paz-Ares, Salvatore Siena, Alice T Shaw, Anna F Farago, Collin M Blakely, Takashi Seto, Byung Chul Cho, Diego Tosi, Benjamin Besse, Sant P Chawla, Lyudmila Bazhenova, John C Krauss, Young Kwang Chae, Minal Barve, Ignacio Garrido-Laguna, Stephen V Liu, Paul Conkling, Thomas John, Marwan Fakih, Darren Sigal, Herbert H Loong, Gary L Buchschacher Jr, Pilar Garrido, Jorge Nieva, Conor Steuer, Tobias R Overbeck, Daniel W Bowles, Elizabeth Fox, Todd Riehl, Edna Chow-Maneval, Brian Simmons, Na Cui, Ann Johnson, Susan Eng, Timothy R Wilson, George D Demetri, on behalf of the trial investigators



Entrectinib for Advanced or Metastatic Solid Tumors with NTRK Fusions (ALKA, STARTRK-1, STARTRK-2)

	All patients in NTRK gene fusion-positive efficacy-evaluable population (n=54)
Age, years	58 (48–67)
Tumour type	
Sarcoma‡	13 (24%)
NSCLC	10 (19%)
Mammary analogue secretory carcinoma (salivary)	7 (13%)
Breast	6 (11%)
Thyroid	5 (9%)
Colorectal	4 (7%)
Neuroendocrine	3 (6%)
Pancreatic	3 (6%)
Gynaecological	2 (4%)
Ovarian	1 (2%)
Endometrial	1 (2%)
Cholangiocarcinoma	1 (2%)



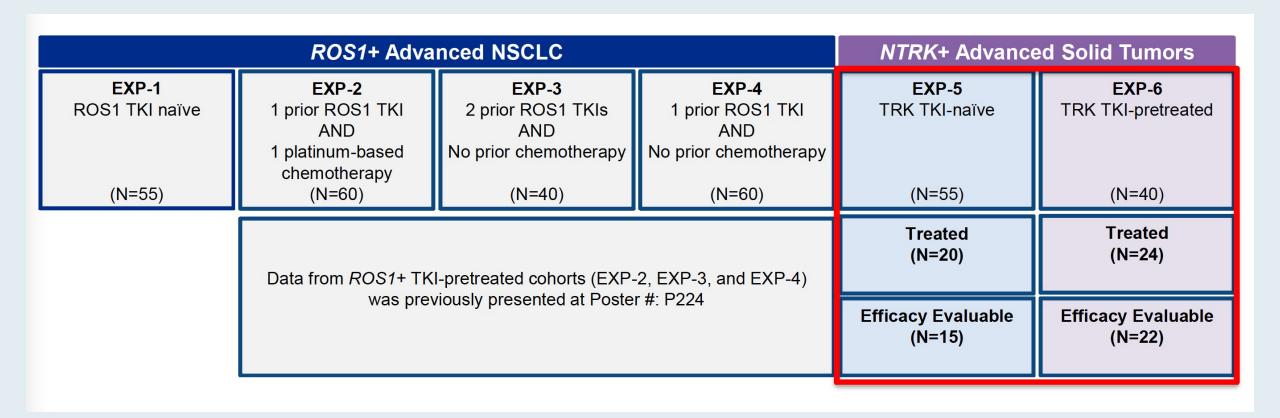
Entrectinib for Advanced or Metastatic Solid Tumors with NTRK Fusions (ALKA, STARTRK-1, STARTRK-2)

Mechanisms of Resistance to NTRK Inhibitors and Sequential Therapy

AACR-NCI-EORTC Virtual International Conference on

MOLECULAR TARGETS AND CANCER THERAPEUTICS

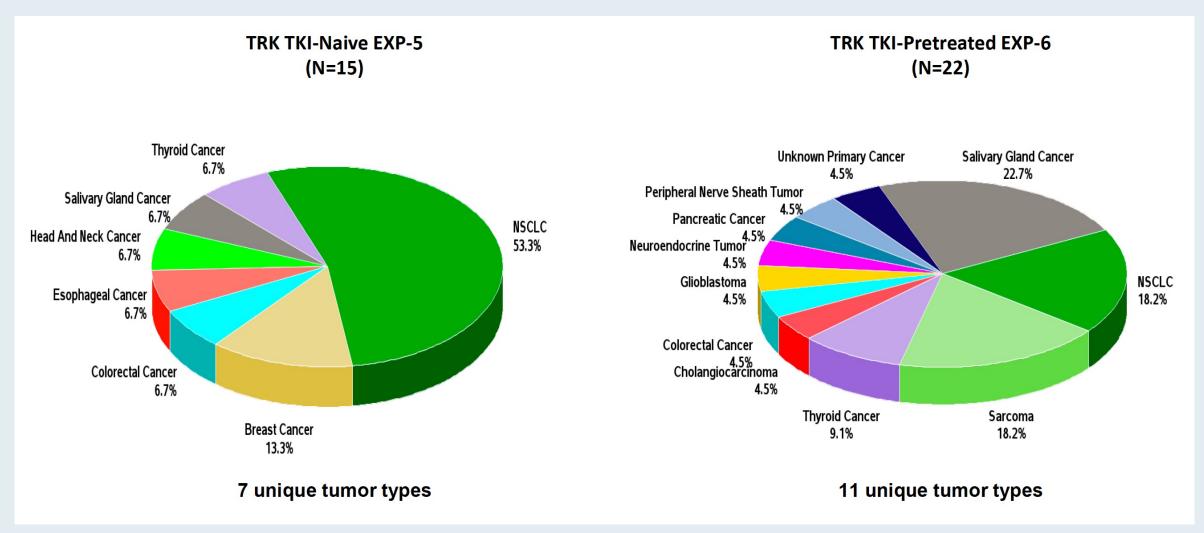
LB #6546


October 7-10, 2021

Repotrectinib in patients with *NTRK* fusion-positive advanced solid tumors: update from the registrational phase 2 TRIDENT-1 trial

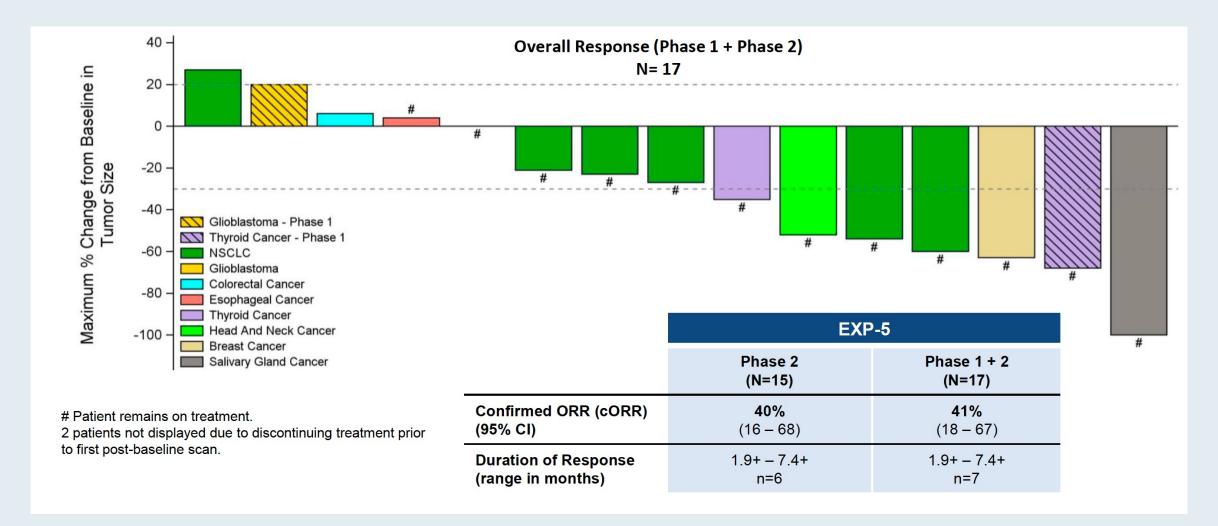
Benjamin Besse,¹ Christina Baik,² Christoph Springfeld,³ Alice Hervieu,⁴ Victor Moreno,⁵ Lyudmila Bazhenova,⁶ Jessica J. Lin,⁷ D. Ross Camidge,⁸ Benjamin Solomon,⁹ Vamsidhar Velcheti,¹⁰ Young-Chul Kim,¹¹ Anthonie J. van der Wekken,¹² Enriqueta Felip,¹³ Dipesh Uprety,¹⁴ Denise Trone,¹⁵ Shanna Stopatschinskaja,¹⁵ Byoung Chul Cho,¹⁶ Alexander Drilon¹⁷

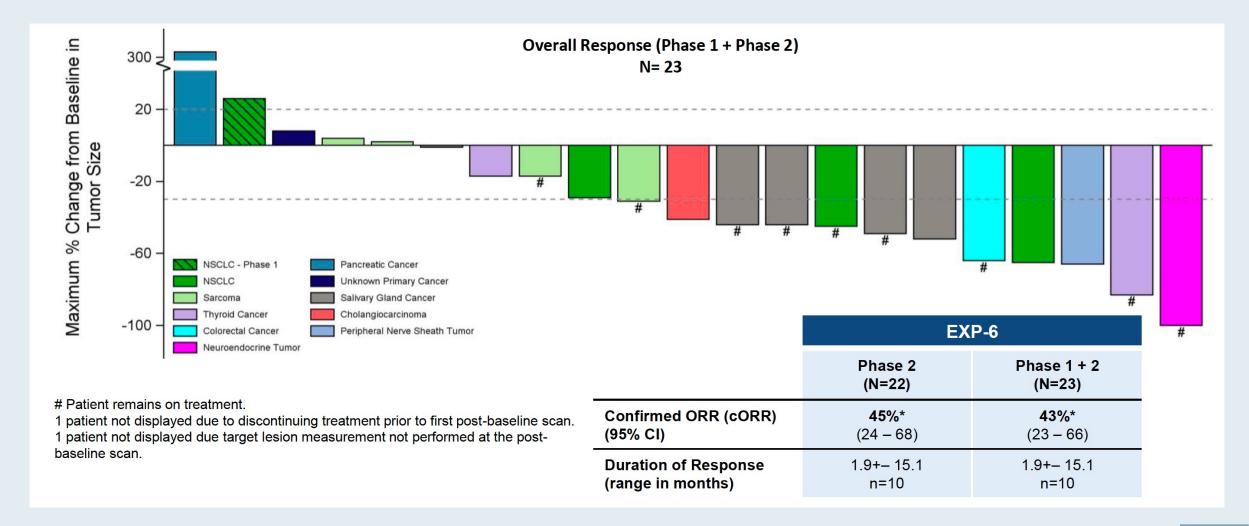
TRIDENT-1 Phase II Study Design



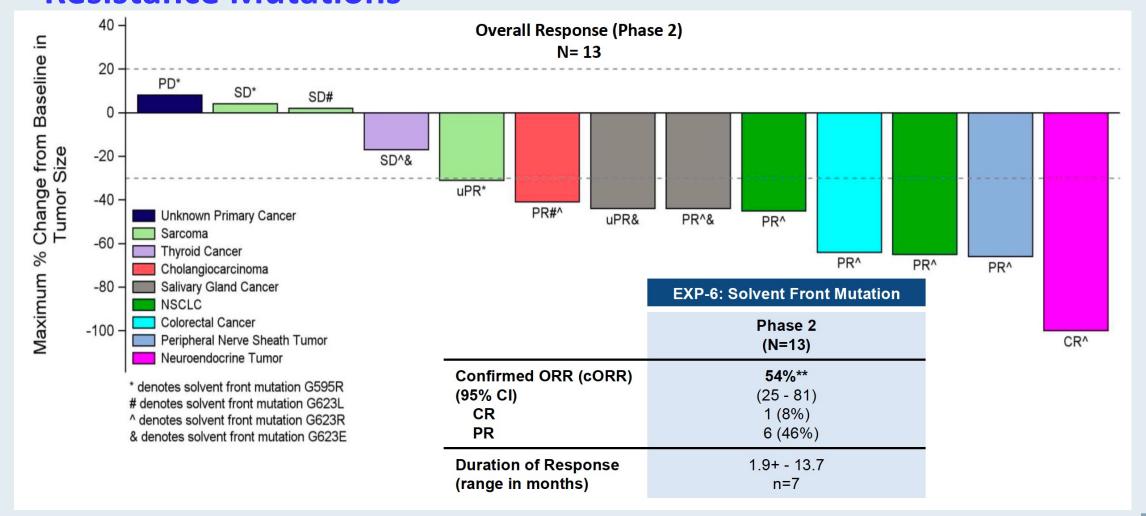
TRIDENT-1: Demographics and Baseline Characteristics

	EXP-5	EXP-6
Age (veers)	(N=15)	(N=22)
Age (years)	60.0 (22 90)	54.5 (22 O1)
Median (range)	60.0 (33 – 80)	54.5 (23 – 81)
Age Group, n (%)	40 (00.7)	44 (00.0)
≥ 18 to < 65	10 (66.7)	14 (63.6)
≥ 65	5 (33.3)	8 (36.4)
Sex, n (%)		
Male	9 (60.0)	10 (45.5)
ECOG Performance Status, n (%)		
0	8 (53.3)	11 (50.0)
1	7 (46.7)	11 (50.0)
CNS Metastasis, n (%)		
Yes	3 (20.0)	4 (18.2)
No	12 (80.0)	18 (81.8)
NTRK Resistance Mutation, n (%)		
Solvent Front	0	13 (59.1)
Other	0	0
None	15 (100.0)	9 (40.9)
# Prior Systemic Therapies		
Median (range)	1 (0, 4)	2 (1, 5)
# Prior TKIs	Not Applicable	
1		19 (86.4)
2		3 (13.6)
Prior TKIs, n (%)	Not Applicable	
Entrectinib	, p	11 (50.0)
Larotrectinib		11 (50.0)
Selitrectinib		2 (9.1)
Cabozantinib		1 (4.5)
Carcantino		T (T.O)


TRIDENT-1: Tumor Types



TRIDENT-1: Preliminary Efficacy with Repotrectinib for TKI-Naïve Advanced Solid Tumors with NTRK Fusions



TRIDENT-1: Preliminary Efficacy with Repotrectinib for TKI-Pretreated Advanced Solid Tumors with NTRK Fusions

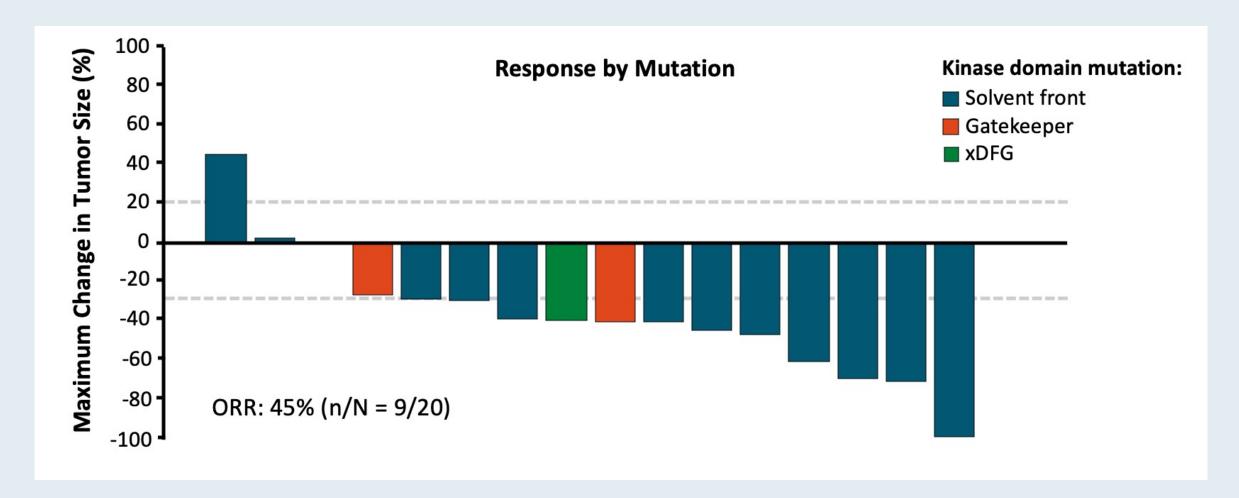
TRIDENT-1: Preliminary Efficacy with Repotrectinib for Patients with TKI-Pretreated Advanced Solid Tumors and NTRK Resistance Mutations

TRIDENT-1 Safety Summary with Repotrectinib for All Treated Patients

All Treated Patients (N=301)					
	TEAEs (≥15% of patients)			TRAEs	
Adverse Events	All Grades n (%)	Grade 3 n (%)	Grade 4 n (%)	Grade 3 n (%)	Grade 4 n (%)
Dizziness	181 (60.1)	7 (2.3)	0	7 (2.3)	0
Dysgeusia	132 (43.9)	1 (0.3)	0	1 (0.3)	0
Constipation	101 (33.6)	1 (0.3)	0	0	0
Paraesthesia	87 (28.9)	3 (1.0)	0	3 (1.0)	0
Dyspnea	84 (27.9)	18 (6.0)	3 (1.0)	1 (0.3)	0
Anaemia	82 (27.2)	24 (8.0)	1 (0.3)	10 (3.3)	0
Fatigue	73 (24.3)	5 (1.7)	0	2 (0.7)	0
Nausea	62 (20.6)	3 (1.0)	0	0	0
Muscular weakness	57 (18.9)	5 (1.7)	0	3 (1.0)	0
Ataxia	51 (16.9)	0	0	0	0

- Repotrectinib was generally well tolerated
- Most TRAEs were Grade 1 or 2
- The most commonly-reported TEAE remains low-grade dizziness (60%)
 - 76% (138/181) were Grade 1
 - 11 (4%) patients reported ataxia in the absence of dizziness
 - No events of dizziness or ataxia led to treatment discontinuation
- Dose modifications due to TEAEs
 - 27% with TEAEs that led to dose reduction
 - 11% with TEAEs that led to drug discontinuation

TEAEs = treatment-emergent adverse events; TRAEs = treatment-related adverse events

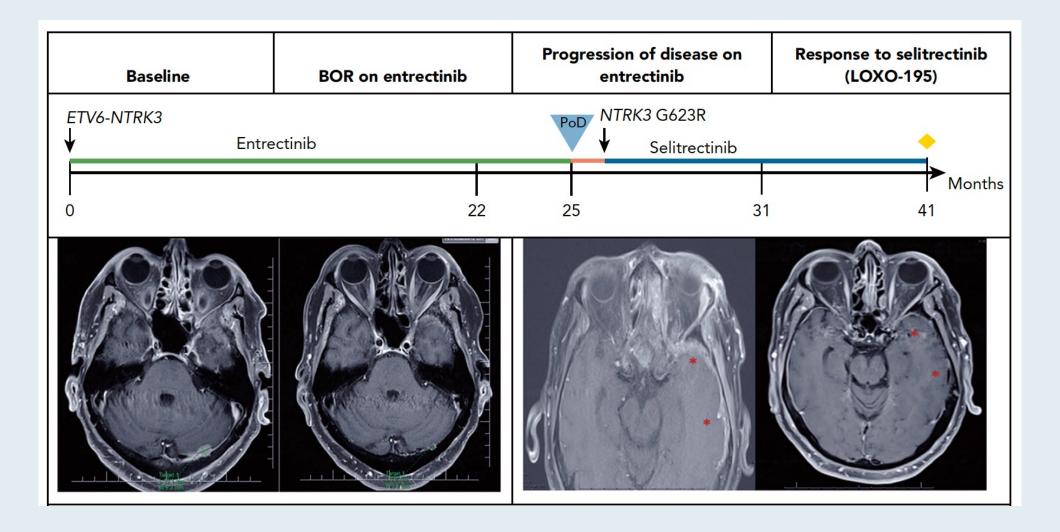

Phase I and Expanded Access Experience of LOXO-195 (BAY 2731954), a Selective Next-Generation TRK Inhibitor (TRKi)

Hyman D et al.

AACR 2019; Abstract CT127.

Activity of Selitrectinib (LOXO-195) in a Phase I/Expanded Access Study for Adults and Children with Progressive Disease or Intolerance to a Prior TRK Inhibitor

MOLECULAR INSIGHTS IN PATIENT CARE


Clinical Activity of Selitrectinib in a Patient With Mammary Analogue Secretory Carcinoma of the Parotid Gland With Secondary Resistance to Entrectinib

Vaia Florou, MD¹; Christopher Nevala-Plagemann, MD¹; Jonathan Whisenant, MD¹; Patricia Maeda, MD²; Glynn W. Gilcrease, MD¹; and Ignacio Garrido-Laguna, MD, PhD¹

J Natl Compr Canc Netw 2021;19(5):478-82.

Most Characteristic Imaging Studies Showing Response to Selitrectinib After Disease Progression on Entrectinib

Integration of Biomarker-Targeted Strategies for Advanced Thyroid Cancer

Genetic Alterations Associated with Different Histotypes of Thyroid Cancer

	PTC	FTC	PDTC	ATC	мтс
AKT	1%	1%-2.6%	-	0%-3%	-
BRAF	61.7%	1.7%	19%-33%	19%-45%	
DICER1	2.7%	5.1%		1.1%	1.0
EIF1AX	1.5%	5.1%	10%	9%	0.6%
HRAS	2%	7%	5%	6%	9.3%-15.8%
KRAS	1.3%	4%	2%	0%-5%	3.0%-6.2%
NRAS	6%	17%-57%	21%	18%	0.6%-1%
$PAX8-PPAR\gamma$	0.8%	12%-53%	4%	0	+
PI3KCA	-	5.5%	2%	18%	-
PTEN	1%	7.1%	4%	15%	1%
RET	-	-	-	-	55.8%
RET/PTC	6.8%	0	14%	0	Very rare
SWI/SNF	-	-	6%	18%-36%	•
TERT promoter	9.4%	-	33%-40%	43%-73%	-
TP53	6%	5.1%-9.7%	0%-8%	43%-78%	1.2%
NTRK-Fusion	2-19%				
TSHR	2%	10.3%	2%	6%	0.6%

Considerations for RET and TRK Fusion Testing Methodologies

FISH

- Current standard for detection of gene fusions; break-apart probes preferred to fusion probes
- Difficulties in FISH interpretation: pericentric fusions, close proximity of several possible partner genes to fusion gene (RET or TRK)
- Limitation: not optimal for extensive and multiplex screening, or when recognition of fusion partner influences clinical decisions

RT-PCR

- Can detect fusion transcripts and identify fusion partner if primer for specific partner is present
- Limitation: imbalance assay for unknown fusion partner is highly dependent on expression of partner and may not be reliable

DNA NGS

- NGS panel sequencing can identify fusions if specifically designed to examine introns
- Limitations: limited sensitivity for detection of fusion genes and no information on effective transcription of rearranged *RET or TRK* genes

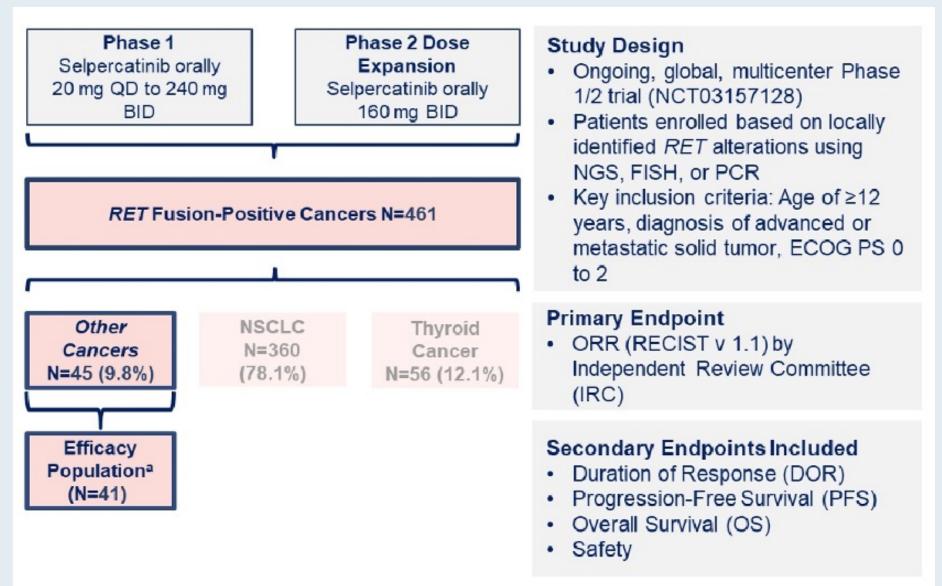
RNA NGS

- Targeted RNA-based assays are method of choice for *RET* and TRK fusion screening; allows detection of gene fusions with complex rearrangements
- Limitation: assessment of RNA quality is crucial to ensure accuracy; poor preanalytical conditions may affect assay

Targeting RET Fusions in Advanced Medullary Thyroid Cancer

N Engl J Med 2020;383(9):825-35.

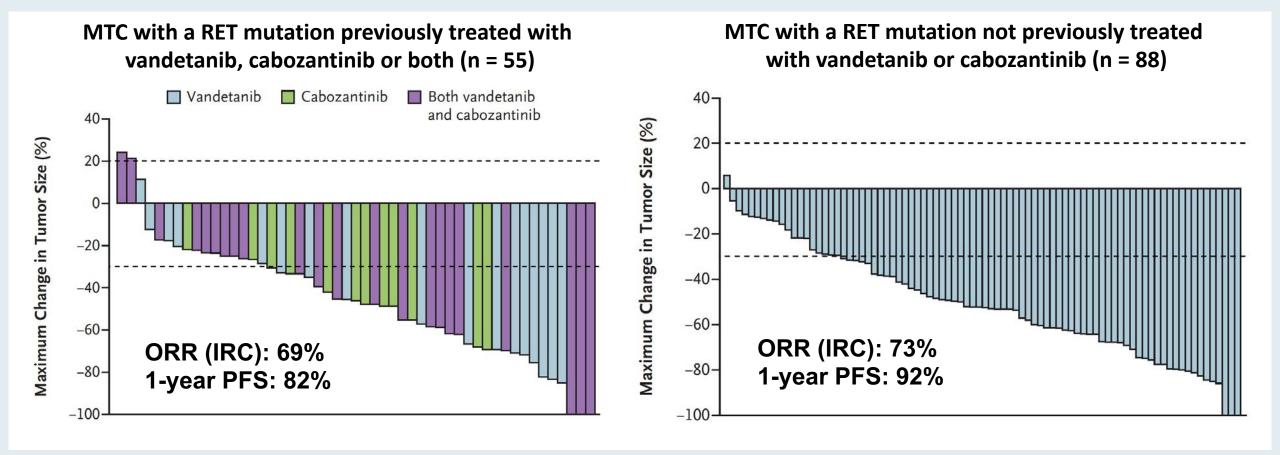
The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Efficacy of Selpercatinib in RET-Altered Thyroid Cancers

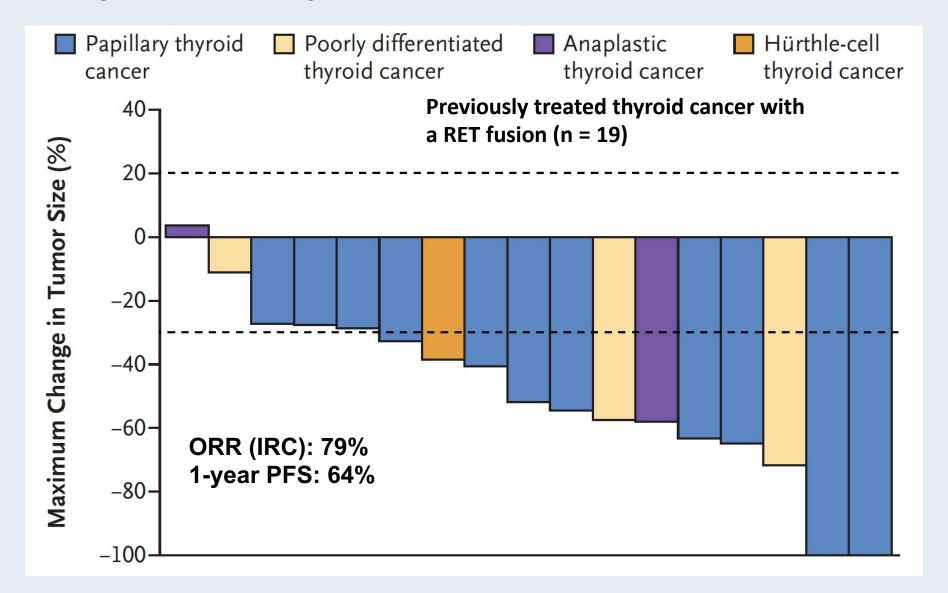
L.J. Wirth, E. Sherman, B. Robinson, B. Solomon, H. Kang, J. Lorch, F. Worden, M. Brose, J. Patel, S. Leboulleux, Y. Godbert, F. Barlesi, J.C. Morris, T.K. Owonikoko, D.S.W. Tan, O. Gautschi, J. Weiss, C. de la Fouchardière, M.E. Burkard, J. Laskin, M.H. Taylor, M. Kroiss, J. Medioni, J.W. Goldman, T.M. Bauer, B. Levy, V.W. Zhu, N. Lakhani, V. Moreno, K. Ebata, M. Nguyen, D. Heirich, E.Y. Zhu, X. Huang, L. Yang, J. Kherani, S.M. Rothenberg, A. Drilon, V. Subbiah, M.H. Shah, and M.E. Cabanillas

LIBRETTO-001 Phase I/II Study Design

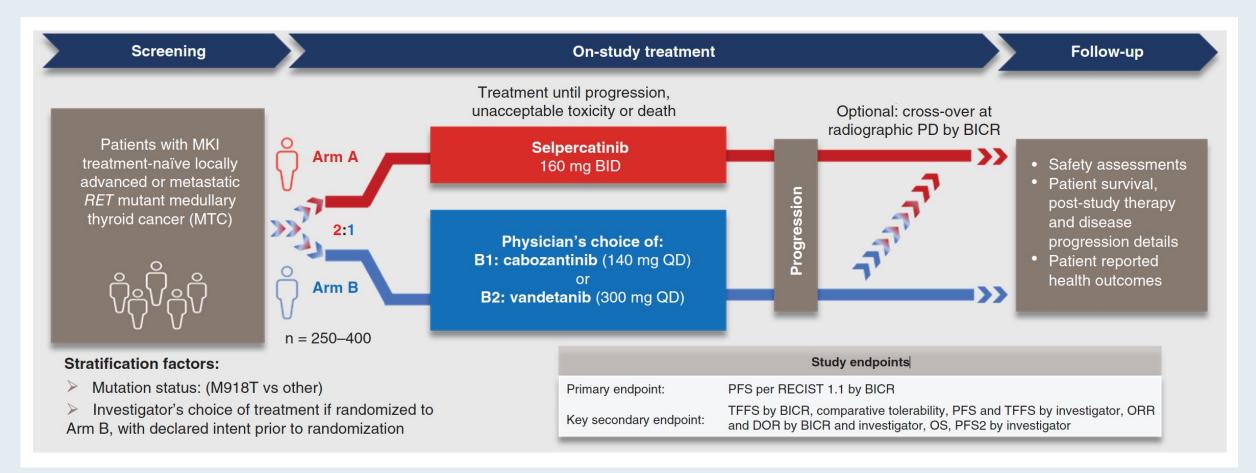


LIBRETTO-001: Clinical Characteristics of Patients with Thyroid Cancer

Characteristic	RET-Mutant MTC Previously Treated (N=55)	RET-Mutant MTC Not Previously Treated (N=88)	Previously Treated RET Fusion—Positive Thyroid Cancer (N = 19)
Median age (range) — yr	57 (17–84)	58 (15–82)	54 (25–88)
Histologic type of thyroid cancer			
Medullary	55 (100)	88 (100)	_
Papillary		_	13 (68)
Poorly differentiated		_	3 (16)
Hürthle cell	_	_	1 (5)
Anaplastic	<u></u>)	_	2 (11)
Median no. of previous systemic regimens (range)	2 (1-8)	0 (0–2)	4 (1-7)
Previous regimen — no. (%)			
Cabozantinib, vandetanib, or both	55 (100)	0	
Vandetanib only	18 (33)	0	_
Cabozantinib only	13 (24)	0	_
Cabozantinib and vandetanib	24 (44)	0	—
Radioiodine		_	16 (84)
Sorafenib, lenvatinib, or both	_	_	13 (68)
Multitargeted kinase inhibitor therapy	55 (100)	7 (8)	15 (79)
1	26 (47)	6 (7)	7 (37)
≥2	29 (53)	1 (1)	8 (42)
Therapy other than multitargeted kinase inhibitor therapy	17 (31)	9 (10)	14 (74)
Brain metastases — no. (%)	4 (7)	2 (2)	6 (32)


LIBRETTO-001: Response and PFS with Selpercatinib for Previously TKI-Treated and Untreated Medullary Thyroid Cancer (MTC) with a RET Mutation

ORR = objective response rate



LIBRETTO-001: Response with Selpercatinib for Subtypes of Previously Treated Thyroid Cancer with a RET Fusion

LIBRETTO-531: Phase III Trial of Selpercatinib for Multikinase Inhibitor (MKI) Treatment-Naïve MTC with a RET Mutation

Lancet Diabetes Endocrinol 2021;9(8):491-501.

Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): a multi-cohort, open-label, registrational, phase 1/2 study

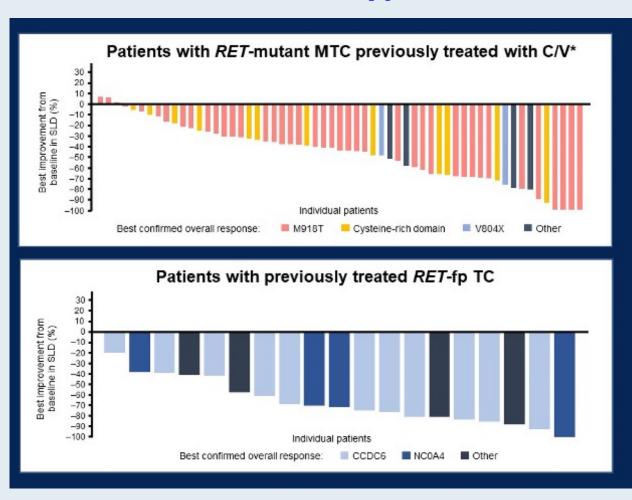
Vivek Subbiah*, Mimi I Hu*, Lori J Wirth, Martin Schuler, Aaron S Mansfield, Giuseppe Curigliano, Marcia S Brose, Viola W Zhu, Sophie Leboulleux, Daniel W Bowles, Christina S Baik, Douglas Adkins, Bhumsuk Keam, Ignacio Matos, Elena Garralda, Justin F Gainor, Gilberto Lopes, Chia-Chi Lin, Yann Godbert, Debashis Sarker, Stephen G Miller, Corinne Clifford, Hui Zhang, Christopher D Turner, Matthew H Taylor

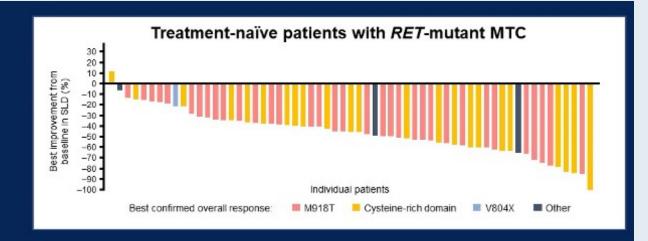
PRALSETINIB IN PATIENTS WITH ADVANCED OR METASTATIC RET-ALTERED THYROID CANCER: UPDATED DATA FROM THE ARROW TRIAL

Aaron S. Mansfield¹, Vivek Subbiah², Martin Schuler³, Viola W. Zhu⁴, Julien Hadoux⁵, Marcia S. Brose^{6*}, Giuseppe Curigliano⁷, Lori Wirth⁸, Elena Garralda⁹, Douglas Adkins¹⁰, Yann Godbert¹¹, Myung-Ju Ahn¹², Philippe Cassier¹³, Byoung Chul Cho¹⁴, Chia-Chi Lin¹⁵, Hui Zhang¹⁶, Alena Zalutskaya¹⁶, Teresa Barata¹⁷, Astrid Scalori¹⁸, Matthew Taylor¹⁹

1Mayo Clinic, Rochester, MN, USA; 2University of Texas MD Anderson Cancer Center, Houston, TX, USA; 3West German Cancer Center, University Hospital Essen, Essen, Germany; ⁴University of California Irvine, Orange, CA, USA; ⁴Gustave Roussy, Villejuif, France; ⁵Abramson Cancer Center at the University of Pennsylvania, Philadelphia, PA, USA; ⁷European Institute of Oncology, IRCCS, and University of Milano, Milan, Italy; 8 Massachusetts General Hospital, Boston, MA, USA; 8 Vall d' Hebron Institute of Oncology, Barcelona, Spain; 10Washington University School of Medicine, St. Louis, MO, USA; 11Bergonië Institute Cancer Center, Bordeaux, France; 12Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; 13Centre Léon Bérard, Lyon, France; 14Yonsei Cancer Center, Seoul, Republic of Korea; 15National Taiwan University Hospital, Taiwan; 16Blueprint Medicines Corporation, Cambridge, MA, USA; 1/F, Hoffmann-La Roche Ltd. Basel, Switzerland; 18F, Hoffmann-La Roche Ltd. Welwyn Garden City, UK; 19Earle A, Chiles Research Institute, Providence Portland Medical Center, Portland, OR, USA, *Currently at Sidney Kimmel Cancer Center, Jefferson University, Philadelphia, PA, USA

PRESENTED BY Aaron S. Mansfield M.D. Content of this presentation is the property of the author, licensed by ASCO, Permission required for reuse.




ARROW: Patient Demographics

	RET-mutant medullary	RET fusion-positive thyroid cancer	
	Previous cabozantinib or vandetanib, or both, treatment group (n=61)	No previous systemic treatment group (n=23)	All (n=11)
Median age (rIQR), years	58 (49-64)	61 (54–70)	61 (54–70)
Age ≥65 years	15 (25%)	10 (43%)	4 (36%)
Number of previous therapies	2 (1–2)	0 (0-0)	2 (2-3)
Any previous systemic therapy	61 (100%)	0	11 (100%)
Radioactive iodine		Tan.	11 (100%)
Multikinase inhibitor	61 (100%)	0	6 (55%)
Cabozantinib only	13 (21%)	0	0
Vandetanib only	26 (43%)	0	1 (9%)
Cabozantinib and vandetanib	22 (36%)	0	1 (9%)
Lenvatinib or sorafenib, or both	5 (8%)	0	6 (55%)
Chemotherapy	6 (10%)	0	0
Immunotherapy	3 (5%)	0	0
Other anticancer therapy	6 (10%)	0	11 (100%)
Primary RET mutation	61 (100%)	23 (100)	

ARROW: Responses to Pralsetinib Observed Across All RET Mutation Genotypes and RET Fusion Partners

Median PFS:

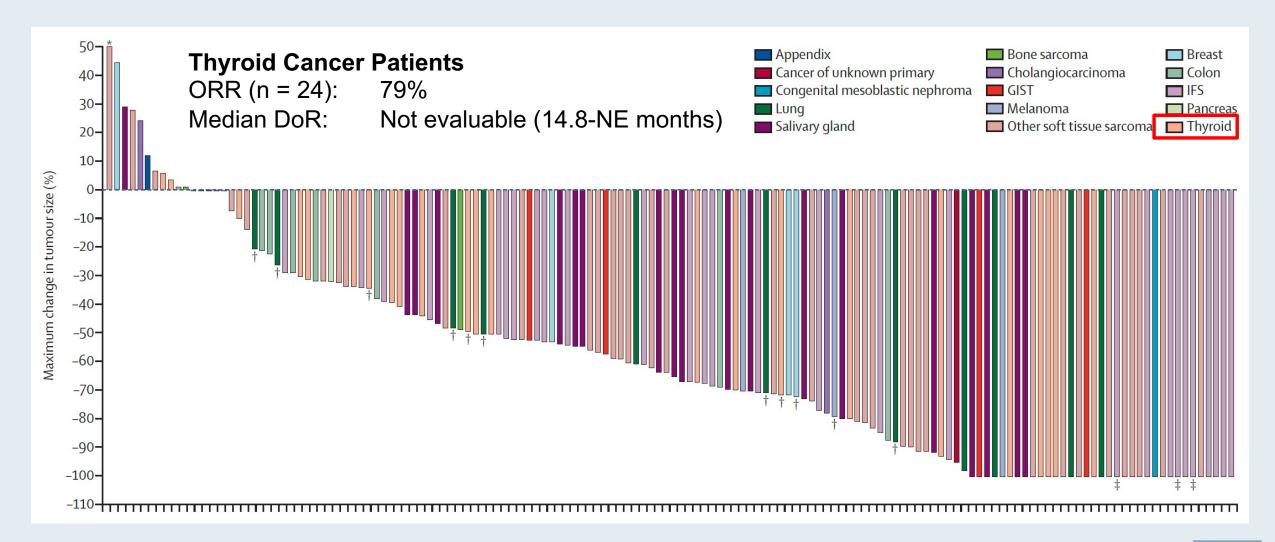
- 24.9 months (95% CI 19.7–31.2) in patients with RET-mutant MTC who had received prior C/V
- Not reached (95% CI 27.5–NE) in treatment-naïve patients with RET-mutant MTC
- 19.4 months (95% CI 13.0–NE) in patients with previously treated RET-fp TC

Targeting TRK Fusions for Advanced Thyroid Cancer

Lancet Oncol 2020;21(4):531-40.

Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials

David S Hong, Steven G DuBois, Shivaani Kummar, Anna F Farago, Catherine M Albert, Kristoffer S Rohrberg, Cornelis M van Tilburg, Ramamoorthy Nagasubramanian, Jordan D Berlin, Noah Federman, Leo Mascarenhas, Birgit Geoerger, Afshin Dowlati, Alberto S Pappo, Stefan Bielack, François Doz, Ray McDermott, Jyoti D Patel, Russell J Schilder, Makoto Tahara, Stefan M Pfister, Olaf Witt, Marc Ladanyi, Erin R Rudzinski, Shivani Nanda, Barrett H Childs, Theodore W Laetsch, David M Hyman*, Alexander Drilon*


Clinical Characteristics of Patients in 3 Pooled Phase I/II Studies

	All patients (n=159)
Study*	
Adult phase 1	12 (8%)
Paediatric phase 1/2	50 (31%)
Adolescents and adult phase 2 basket study	97 (61%)
Sex	
Male	77 (48%)
Female	82 (52%)
Age	
Median, years	43.0 (6.5-61)
Range	<1 month to 84 years
Age group distribution, years	
<1	24 (15%)
1 to <18	28 (18%)
18 to <65	77 (48%)
≥65	30 (19%)

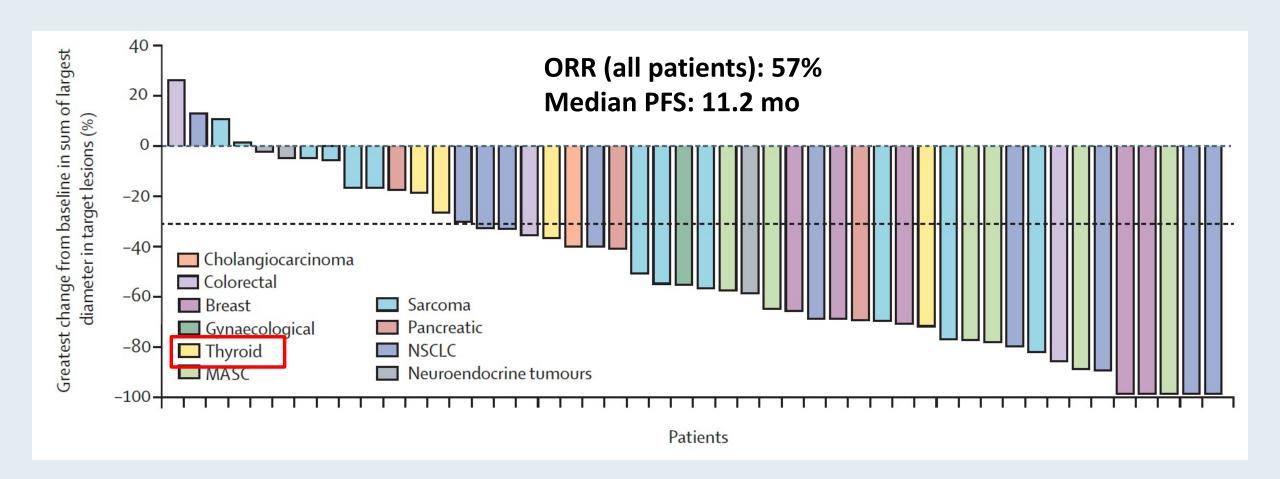
Tumour type	
Soft tissue sarcoma	
Infantile fibrosarcoma	29 (18%)
Gastrointestinal stromal tumour	4 (3%)
Other	36 (23%)
Thyroid	26 (16%)
Salivary gland	21 (13%)
Lung	12 (8%)
Colon	8 (5%)
Melanoma	7 (4%)
Breast	5 (3%)
Bone sarcoma	2 (1%)
Cholangiocarcinoma	2 (1%)
Pancreas	2 (1%)
Appendix	1 (<1%)
Congenital mesoblastic nephroma	1 (<1%)
Hepatocellular	1 (<1%)
Prostate	1 (<1%)
Unknown primary	1 (<1%)

Waterfall Plot of Maximum Percent Change in Tumor Size with Larotrectinib in Patients with Solid Cancers with TRK Fusions

Lancet Oncol 2020;21(2):271-82.

Entrectinib in patients with advanced or metastatic *NTRK* fusion-positive solid tumours: integrated analysis of three phase 1–2 trials

Robert C Doebele*, Alexander Drilon*, Luis Paz-Ares, Salvatore Siena, Alice T Shaw, Anna F Farago, Collin M Blakely, Takashi Seto, Byung Chul Cho, Diego Tosi, Benjamin Besse, Sant P Chawla, Lyudmila Bazhenova, John C Krauss, Young Kwang Chae, Minal Barve, Ignacio Garrido-Laguna, Stephen V Liu, Paul Conkling, Thomas John, Marwan Fakih, Darren Sigal, Herbert H Loong, Gary L Buchschacher Jr, Pilar Garrido, Jorge Nieva, Conor Steuer, Tobias R Overbeck, Daniel W Bowles, Elizabeth Fox, Todd Riehl, Edna Chow-Maneval, Brian Simmons, Na Cui, Ann Johnson, Susan Eng, Timothy R Wilson, George D Demetri, on behalf of the trial investigators



Entrectinib for Advanced or Metastatic Solid Tumors with NTRK Fusions (ALKA, STARTRK-1, STARTRK-2)

58 (48–67)
13 (24%)
10 (19%)
7 (13%)
6 (11%)
5 (9%)
4 (7%)
3 (6%)
3 (6%)
2 (4%)
1 (2%)
1 (2%)
1 (2%)

Entrectinib for Advanced or Metastatic Solid Tumors with NTRK Fusions (ALKA, STARTRK-1, STARTRK-2)

Optimal Selection and Sequencing of Multikinase Inhibitors for Thyroid Cancer

Summary of FDA-Approved Multitargeted TKIs in Differentiated and Medullary Thyroid Cancer

Pivotal study — Agent	Study phase (N)	FDA approval year	Primary endpoint – PFS hazard ratio	Overall response rate		
Medullary thyroid cancer	Medullary thyroid cancer					
ZETA¹ — vandetanib	Phase III (331)	2011	0.46	45% vs 13%		
EXAM ² — cabozantinib	Phase III (330)	2012	0.28	28% vs 0		
Differentiated thyroid cancer						
DECISION ³ — sorafenib	Phase III (417)	2013	0.59	12.2% vs 0.5%		
SELECT ⁴ — lenvatinib	Phase III (261)	2015	0.21	64.8% vs 1.5%		

Common Grade ≥3 Adverse Events with Approved Multitargeted TKIs for Differentiated and Medullary Thyroid Cancer

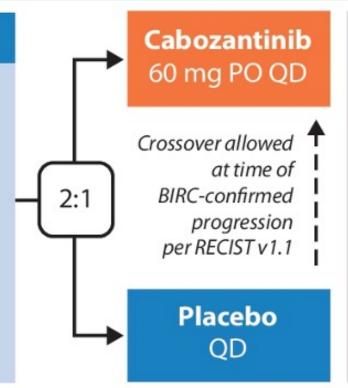
	Medullary thyroid cancer Differentiated thy			yroid cancer	
Grade ≥3 adverse events	Vandetanib vs placebo ZETA¹ (N = 331)	Cabozantinib vs placebo EXAM² (N = 330)	Sorafenib vs placebo DECISION ³ (N = 417)	Lenvantinib vs placebo SELECT ⁴ (N = 261)	
Hypertension	9% vs 0	8% vs 1%	10% vs 2%	42% vs 2%	
Diarrhea	11% vs 2%	16% vs 2%	6% vs 1%	8% vs 0	
Fatigue	6% vs 1%	9% vs 3%	6% vs 1%	9% vs 2%	
Decreased appetite	4% vs 0	5% vs 1%	Not reported	5% vs 0	
Stomatitis/mucositis	Not reported	2% vs 0	1% vs 0	4% vs 0	
Hand-foot syndrome	Not reported	13% vs 0	20% vs 0	3% vs 0	
Rash/pruritus	4% vs 0	1% vs 0	5% vs 0	<1% vs 0	

¹ Wells Jr SA et al. *J Clin Oncol* 2012;30(2):134-41. ² Elisei R et al. *J Clin Oncol* 2013;31(29):3639-46. ³ Brose MS et al. *Lancet* 2014;384(9940):319-28. ⁴ Schlumberger M et al. *N Engl J Med* 2015;372(7):621-30.

Lancet Oncol 2021 August; 22(8):1126-38.

Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebo-controlled, phase 3 trial

Marcia S Brose, Bruce Robinson, Steven I Sherman, Jolanta Krajewska, Chia-Chi Lin, Fernanda Vaisman, Ana O Hoff, Erika Hitre, Daniel W Bowles, Jorge Hernando, Leonardo Faoro, Kamalika Banerjee, Jennifer W Oliver, Bhumsuk Keam, Jaume Capdevila



COSMIC-311 Phase III Study Design

Patient population (N=258)

Locally Advanced or Metastatic DTC

- RAI-refractory or -ineligible
- Radiographic progression during or after treatment with up to 2 prior VEGFR TKIs
- Prior TKI must include lenvatinib or sorafenib
- ECOG performance status 0–1
- Age ≥16 years

Tumor assessment every 8 weeks for 12 months, then every 12 weeks per RECIST v1.1

Treatment until clinical benefit no longer experienced or intolerable toxicity

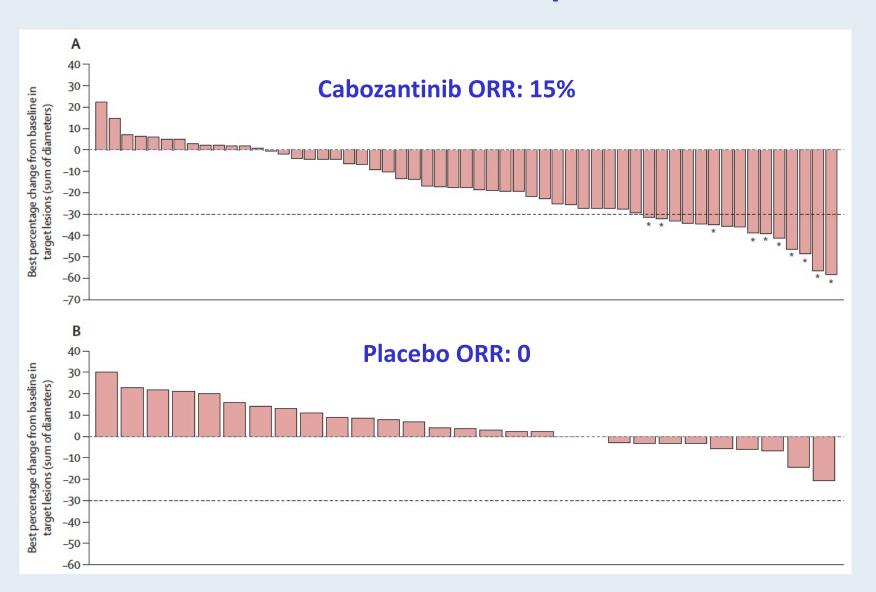
Stratification factors

- Prior lenvatinib (yes/no)
- Age (≤65 vs >65 years)

Primary endpoints

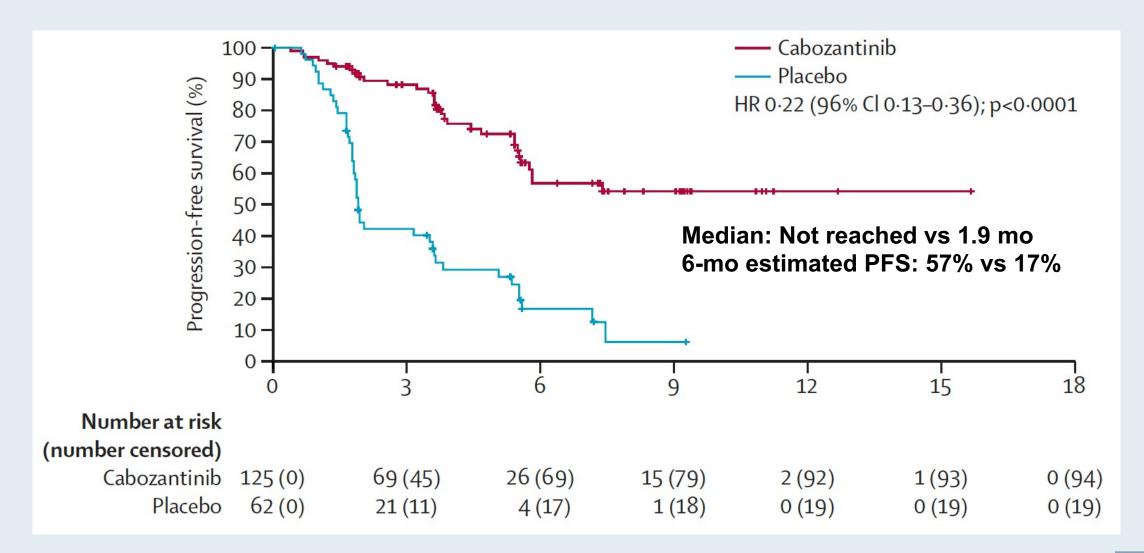
- ORR per RECIST v1.1 by BIRC (first 100 randomized pts)
- PFS per RECIST v1.1 by BIRC (ITT, all randomized pts)

DTC = Differentiated thyroid cancer; RAI = radioactive iodine; TKI = tyrosine kinase inhibitor; ORR = objective response rate; BIRC = blinded independent central review; PFS = progression-free survival

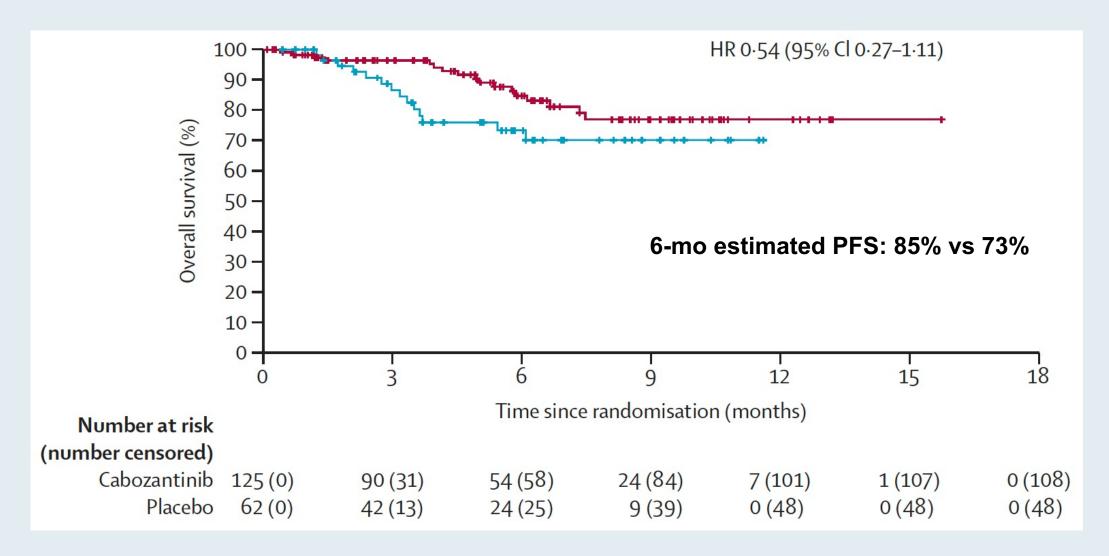


COSMIC-311: Baseline Clinical Characteristics

	Objective response rate intention-to-treat population		Intention-to-treat population	
	Cabozantinib group (n=67)	Placebo group (n=33)	Cabozantinib group (n=125)	Placebo group (n=62)
Age, years	62 (56-71)	63 (55-71)	65 (56–72)	66 (56-72)
≥65 years	32 (48%)	16 (48%)	63 (50%)	33 (53%)
Radioiodine therapy status†				
Refractory	65 (97%)	33 (100%)	121 (97%)	62 (100%)
Ineligible	3 (4%)	0	5 (4%)	0
Previous sorafenib or lenvatinib				
Sorafenib but no lenvatinib	26 (39%)	12 (36%)	46 (37%)	23 (37%)
Lenvatinib but no sorafenib	22 (33%)	13 (39%)	48 (38%)	26 (42%)
Sorafenib and lenvatinib	19 (28%)	8 (24%)	31 (25%)	13 (21%)
Number of previous vascular endothelial growth factor receptor tyrosine kinase inhibitors				
1	46 (69%)	24 (73%)	91 (73%)	48 (77%)
2	21 (31%)	9 (27%)	34 (27%)	14 (23%)
Thyroid stimulating hormone level, mIU/L	0·025 (0·01–0·06)	0·020 (0·01–0·06)	0·023 (0·01–0·06)	0·019 (0·01–0·04)
Histological subtype‡				
Papillary	39 (58%)	20 (61%)	67 (54%)	35 (56%)
Follicular	30 (45%)	13 (39%)	62 (50%)	28 (45%)
	3- (.3-)	3 (33-)	(5)	(.5-)



COSMIC-311: Response



COSMIC-311: Progression-Free Survival (ITT, BIRC)

COSMIC-311: Overall Survival (ITT, BIRC)

Meet The Professor Optimizing the Management of Small Cell Lung Cancer

Wednesday, September 21, 2022 5:00 PM - 6:00 PM ET

Faculty
Carl M Gay, MD, PhD

Moderator Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

