Meet The Professor Optimizing the Management of HER2-Positive Breast Cancer

> Tuesday, October 4, 2022 5:00 PM – 6:00 PM ET

> > Faculty Nancy U Lin, MD

Commercial Support

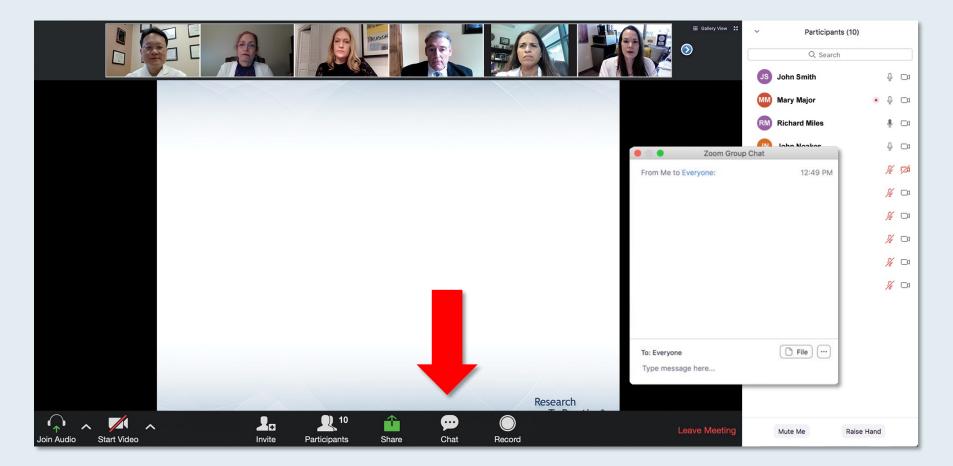
This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, and Seagen Inc.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

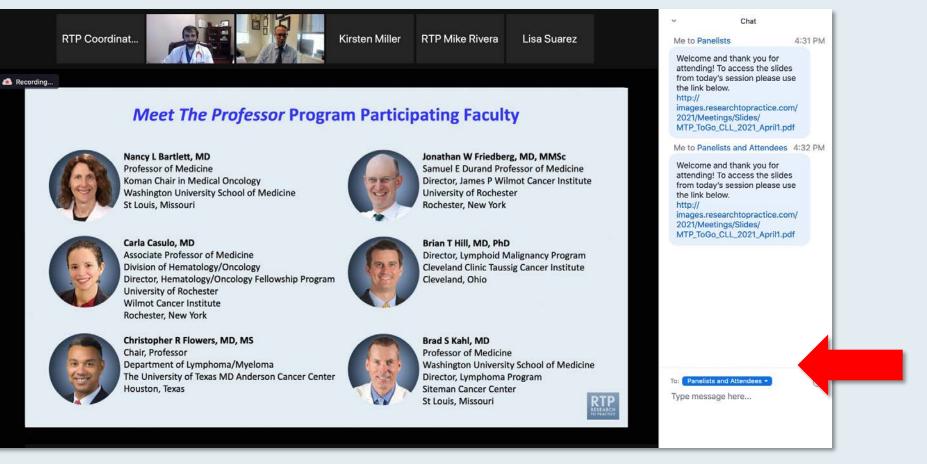
Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



Dr Lin — Disclosures

Consulting Agreements	Affinia Therapeutics, Aleta Biotherapeutics, AstraZeneca Pharmaceuticals LP, Blueprint Medicines, Daiichi Sankyo Inc, Denali Therapeutics, Janssen Biotech Inc, Olema Oncology, Prelude Therapeutics, Puma Biotechnology Inc, Seagen Inc, Voyager Therapeutics
Contracted Research	AstraZeneca Pharmaceuticals LP, Genentech, a member of the Roche Group, Merck, Olema Oncology, Pfizer Inc, Seagen Inc, Zion Pharmaceuticals

We Encourage Clinicians in Practice to Submit Questions



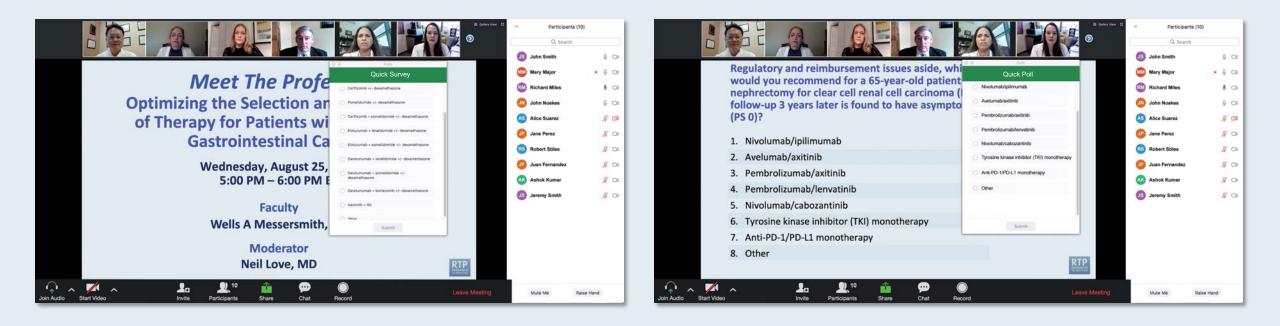
Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box

Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface


Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY WITH DR NEIL LOVE

Management of HER2-Low Breast Cancer

DR SHANU MODI

MEMORIAL SLOAN KETTERING CANCER CENTER

Dr Shanu Modi – The Use of T-DXd in Oncology Today with Dr Neil Love —

Meet The Professor Optimizing the Management of Multiple Myeloma

> Wednesday, October 5, 2022 5:00 PM – 6:00 PM ET

> > Faculty Sagar Lonial, MD

Meet The Professor Current and Future Management of Non-Small Cell Lung Cancer with an EGFR Mutation

Monday, October 10, 2022 5:00 PM – 6:00 PM ET

Faculty Pasi A Jänne, MD, PhD

Challenging Cases from Junior Investigators — The Application of Available and Emerging Clinical Research in the Care of Patients with Chronic Lymphocytic Leukemia

> Wednesday, October 12, 2022 5:00 PM – 6:30 PM ET

> > Faculty

Danielle Brander, MD Matthew S Davids, MD, MMSc Anthony R Mato, MD, MSCE William G Wierda, MD, PhD

The Clinical Implications of Key Recent Data Sets in Oncology: **A Daylong Multitumor Educational Symposium in Partnership** with Florida Cancer Specialists Saturday, October 22, 2022 7:30 AM – 5:30 PM ET JW Marriott Orlando | Orlando, Florida Faculty Ghassan Abou-Alfa, MD, MBA Alicia K Morgans, MD, MPH **David M O'Malley, MD** Matthew P Goetz, MD Ian E Krop, MD, PhD **Thomas Powles, MBBS, MRCP, MD** Ann S LaCasce, MD, MMSc Mitchell R Smith, MD, PhD John Strickler, MD **Corey J Langer, MD** Prof Georgina Long, AO, BSc, PhD, MBBS Shannon N Westin, MD, MPH **Christine M Lovly, MD, PhD** Evan Y Yu, MD Wells A Messersmith, MD Saad Zafar Usmani, MD, MBA

Lung Cancer 7:30 AM – 8:30 AM ET

Faculty

Corey J Langer, MD Christine M Lovly, MD, PhD CLL and Lymphomas 8:30 AM – 9:30 AM ET

Faculty

Ann S LaCasce, MD, MMSc Mitchell R Smith, MD, PhD

Moderator

Neil Love, MD

Prostate and Bladder Cancers 10:00 AM – 11:00 AM ET Faculty

Alicia K Morgans, MD, MPH Evan Y Yu, MD Renal Cell Carcinoma 11:00 AM – 11:20 AM ET Faculty Thomas Powles, MBBS, MRCP, MD

CAR-T and Bispecific Therapy for Multiple Myeloma 11:20 AM – 11:40 AM ET

Faculty Saad Zafar Usmani, MD, MBA Hepatobiliary Cancer 11:40 AM – 12:00 PM ET

Faculty Ghassan Abou-Alfa, MD, MBA

Breast Cancer 2:00 PM – 3:00 PM ET Faculty Matthew P Goetz, MD Ian E Krop, MD, PhD

Endometrial Cancer 3:00 PM – 3:20 PM ET Faculty Shannon N Westin, MD, MPH

Ovarian Cancer and PARP Inhibitors 3:50 PM – 4:10 PM ET

Faculty David M O'Malley, MD Gastrointestinal Cancers 4:10 PM – 5:10 PM ET Faculty

Wells A Messersmith, MD John Strickler, MD

> Melanoma 5:10 PM – 5:30 PM ET Faculty Prof Georgina Long, AO, BSc, PhD, MBBS

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Optimizing the Management of HER2-Positive Breast Cancer

Nancy U Lin, MD Associate Chief, Division of Breast Oncology Dana-Farber Cancer Institute Associate Professor of Medicine Harvard Medical School Boston, Massachusetts

Meet The Professor Program Participating Faculty

Adam M Brufsky, MD, PhD

Professor of Medicine Co-Director, Comprehensive Breast Cancer Center UPMC Hillman Cancer Center Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania

Professor Giuseppe Curigliano, MD, PhD
Clinical Director
Division of Early Drug Development for
Innovative Therapy
Co-Chair, Cancer Experimental Therapeutics Program
Department of Oncology and Hemato-Oncology
University of Milano
European Institute of Oncology
Milano, Italy

Lisa A Carey, MD, ScM

L Richardson and Marilyn Jacobs Preyer Distinguished Professor for Breast Cancer Research Deputy Director for Clinical Sciences Lineberger Comprehensive Cancer Center University of North Carolina Chapel Hill, North Carolina

Nancy U Lin, MD Associate Chief, Division of Breast Oncology Dana-Farber Cancer Institute Associate Professor of Medicine Harvard Medical School Boston, Massachusetts

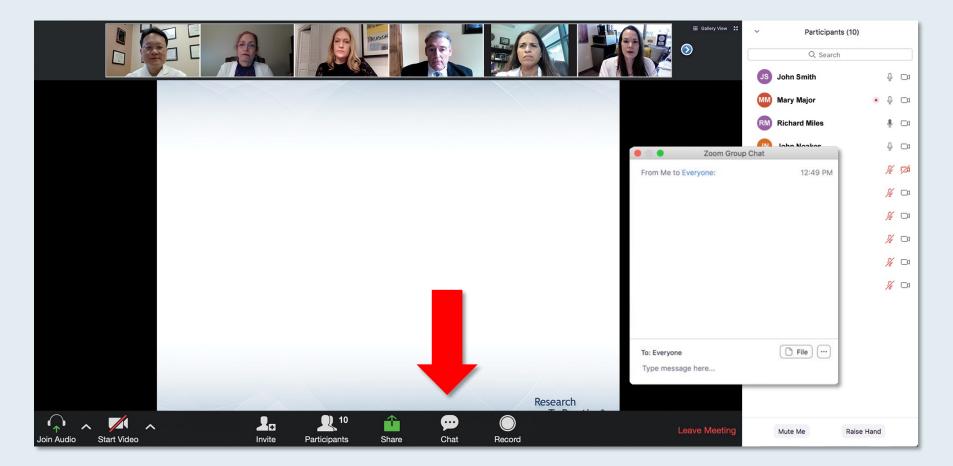
Meet The Professor Program Participating Faculty

Joyce O'Shaughnessy, MD

Celebrating Women Chair in Breast Cancer Research Baylor University Medical Center Director, Breast Cancer Research Program Texas Oncology US Oncology Dallas, Texas

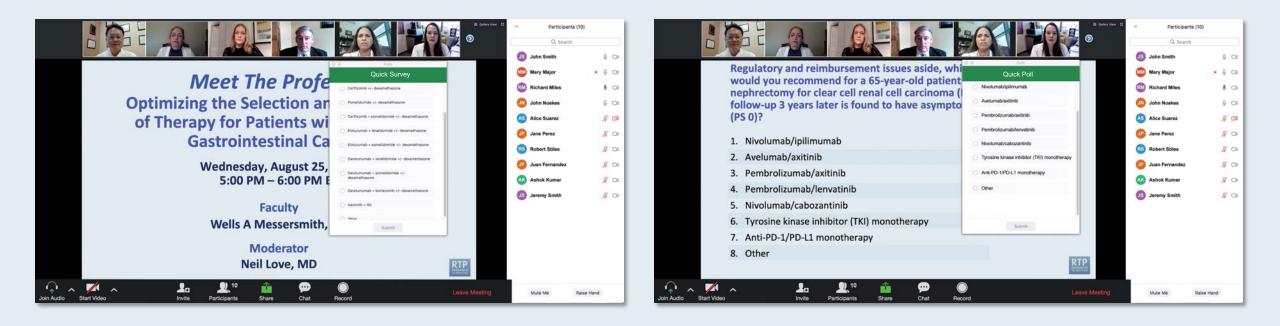
MODERATOR

Neil Love, MD Research To Practice



Mark D Pegram, MD

Susy Yuan-Huey Hung Endowed Professor of Oncology Director, Clinical and Translational Research Unit Associate Dean for Clinical Research Quality Stanford University School of Medicine Associate Director for Clinical Research Stanford Comprehensive Cancer Institute Stanford, California


We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY WITH DR NEIL LOVE

Management of HER2-Low Breast Cancer

DR SHANU MODI

MEMORIAL SLOAN KETTERING CANCER CENTER

Dr Shanu Modi – The Use of T-DXd in Oncology Today with Dr Neil Love —

Meet The Professor Optimizing the Management of Multiple Myeloma

> Wednesday, October 5, 2022 5:00 PM – 6:00 PM ET

> > Faculty Sagar Lonial, MD

Meet The Professor Current and Future Management of Non-Small Cell Lung Cancer with an EGFR Mutation

Monday, October 10, 2022 5:00 PM – 6:00 PM ET

Faculty Pasi A Jänne, MD, PhD

Challenging Cases from Junior Investigators — The Application of Available and Emerging Clinical Research in the Care of Patients with Chronic Lymphocytic Leukemia

> Wednesday, October 12, 2022 5:00 PM – 6:30 PM ET

> > Faculty

Danielle Brander, MD Matthew S Davids, MD, MMSc Anthony R Mato, MD, MSCE William G Wierda, MD, PhD

The Clinical Implications of Key Recent Data Sets in Oncology: **A Daylong Multitumor Educational Symposium in Partnership** with Florida Cancer Specialists Saturday, October 22, 2022 7:30 AM – 5:30 PM ET JW Marriott Orlando | Orlando, Florida Faculty Ghassan Abou-Alfa, MD, MBA Alicia K Morgans, MD, MPH **David M O'Malley, MD** Matthew P Goetz, MD Ian E Krop, MD, PhD **Thomas Powles, MBBS, MRCP, MD** Ann S LaCasce, MD, MMSc Mitchell R Smith, MD, PhD John Strickler, MD **Corey J Langer, MD** Prof Georgina Long, AO, BSc, PhD, MBBS Shannon N Westin, MD, MPH **Christine M Lovly, MD, PhD** Evan Y Yu, MD Wells A Messersmith, MD Saad Zafar Usmani, MD, MBA

Lung Cancer 7:30 AM – 8:30 AM ET

Faculty

Corey J Langer, MD Christine M Lovly, MD, PhD CLL and Lymphomas 8:30 AM – 9:30 AM ET

Faculty

Ann S LaCasce, MD, MMSc Mitchell R Smith, MD, PhD

Moderator

Neil Love, MD

Prostate and Bladder Cancers 10:00 AM – 11:00 AM ET Faculty

Alicia K Morgans, MD, MPH Evan Y Yu, MD Renal Cell Carcinoma 11:00 AM – 11:20 AM ET Faculty Thomas Powles, MBBS, MRCP, MD

CAR-T and Bispecific Therapy for Multiple Myeloma 11:20 AM – 11:40 AM ET

Faculty Saad Zafar Usmani, MD, MBA Hepatobiliary Cancer 11:40 AM – 12:00 PM ET

Faculty Ghassan Abou-Alfa, MD, MBA

Breast Cancer 2:00 PM – 3:00 PM ET Faculty Matthew P Goetz, MD Ian E Krop, MD, PhD

Endometrial Cancer 3:00 PM – 3:20 PM ET Faculty Shannon N Westin, MD, MPH

Ovarian Cancer and PARP Inhibitors 3:50 PM – 4:10 PM ET

Faculty David M O'Malley, MD Gastrointestinal Cancers 4:10 PM – 5:10 PM ET Faculty

Wells A Messersmith, MD John Strickler, MD

Join Us In Person or Virtually The Clinical Implications of Key Recent Data Sets in Oncology A Daylong Multitumor Educational Symposium in Partnership with Florida Cancer Specialists Saturday, October 22, 2022

> Melanoma 5:10 PM – 5:30 PM ET Faculty Prof Georgina Long, AO, BSc, PhD, MBBS

> > **Moderator** Neil Love, MD

Meet The Professor Optimizing the Management of HER2-Positive Breast Cancer

Nancy U Lin, MD Associate Chief, Division of Breast Oncology Dana-Farber Cancer Institute Associate Professor of Medicine Harvard Medical School Boston, Massachusetts

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, and Seagen Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Lin — Disclosures

Consulting Agreements	Affinia Therapeutics, Aleta Biotherapeutics, AstraZeneca Pharmaceuticals LP, Blueprint Medicines, Daiichi Sankyo Inc, Denali Therapeutics, Janssen Biotech Inc, Olema Oncology, Prelude Therapeutics, Puma Biotechnology Inc, Seagen Inc, Voyager Therapeutics
Contracted Research	AstraZeneca Pharmaceuticals LP, Genentech, a member of the Roche Group, Merck, Olema Oncology, Pfizer Inc, Seagen Inc, Zion Pharmaceuticals

Susmitha Apuri, MD Florida Cancer Specialists Lutz, Florida

Joseph Martins, MD UT Health Science Center Tyler, Texas

Justin Peter Favaro, MD, PhD Oncology Specialists of Charlotte Charlotte, North Carolina

Shaachi Gupta, MD, MPH Florida Cancer Specialists Lake Worth, Florida

Laurie Matt-Amaral, MD, MPH Cleveland Clinic Akron General Akron, Ohio

Vignesh Narayanan, MD Colorado Permanente Medical Group (CPMG) Lone Tree, Colorado

Zanetta S Lamar, MD Florida Cancer Specialists Naples, Florida

Namrata I Peswani, MD UT Southwestern Medical Center Harold C Simmons Comprehensive Cancer Center Richardson, Texas

Meet The Professor with Dr Lin

Introduction: Journal Club with Dr Lin – Part 1

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Lin – Part 2

MODULE 4: Appendix

Meet The Professor with Dr Lin

Introduction: Journal Club with Dr Lin – Part 1

MODULE 1: Case Presentations

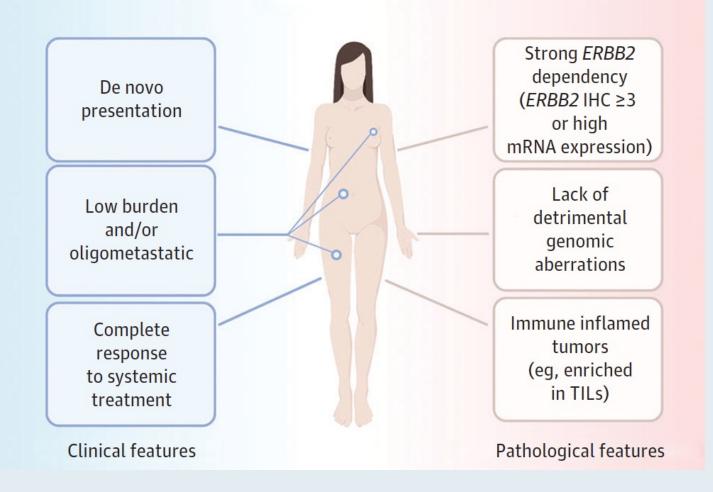
MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Lin – Part 2

MODULE 4: Appendix

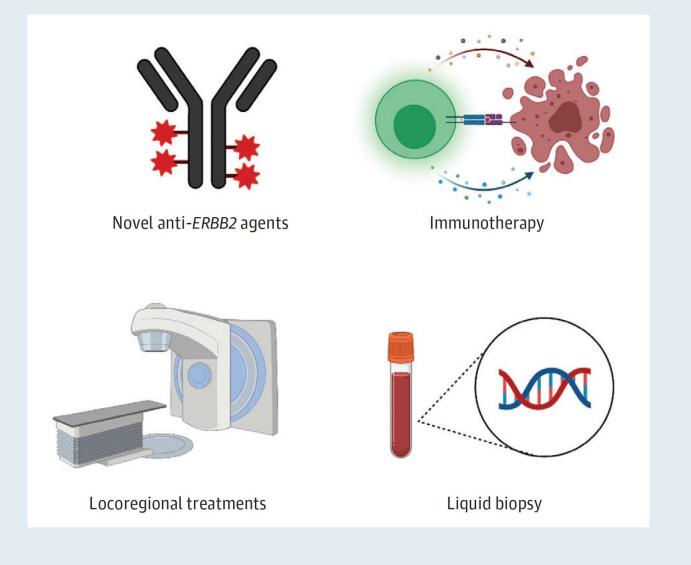
Clinical Review & Education

JAMA Oncology | Review

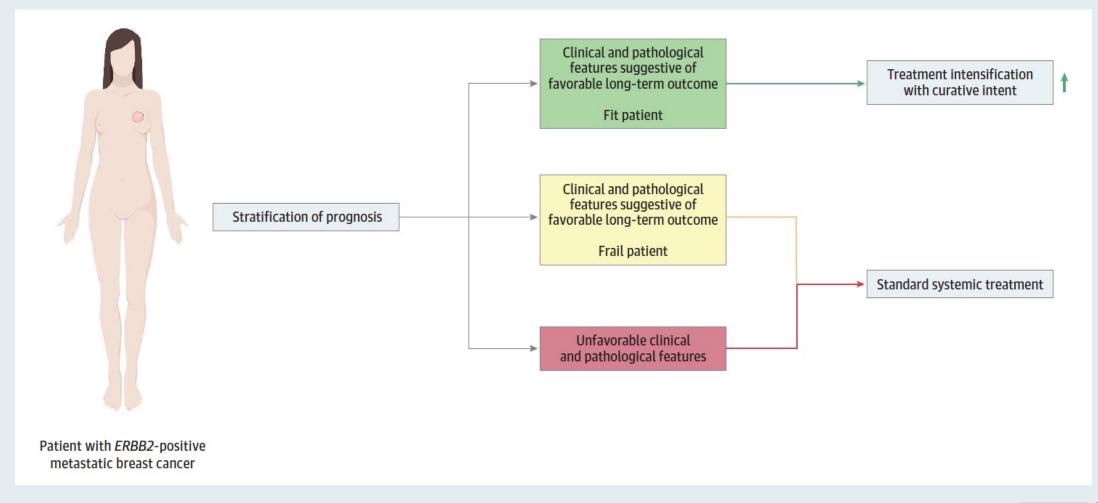

Aiming at a Tailored Cure for *ERBB2*-Positive Metastatic Breast Cancer A Review

Paolo Tarantino, MD; Giuseppe Curigliano, MD, PhD; Heather A. Parsons, MD, MPH; Nancy U. Lin, MD; Ian Krop, MD, PhD; Elizabeth A. Mittendorf, MD, PhD; Adrienne Waks, MD; Eric P. Winer, MD; Sara M. Tolaney, MD, MPH

JAMA Oncol 2022 April 1;8(4):629-35.


Features Associated with Favorable Long-Term Outcomes in Patients with ERBB2-Positive mBC Treated with Anti-ERBB2 Agents

Tarantino P et al. JAMA Oncol 2022;8(4):629-35.


Toolkit of Established and Experimental Strategies to Cure ERBB2-Positive mBC

Tarantino P et al. JAMA Oncol 2022;8(4):629-35.

Potential Research Strategy to Tailor Treatment Intensity for ERBB2-Positive mBC According to Tumor and Patient Characteristics

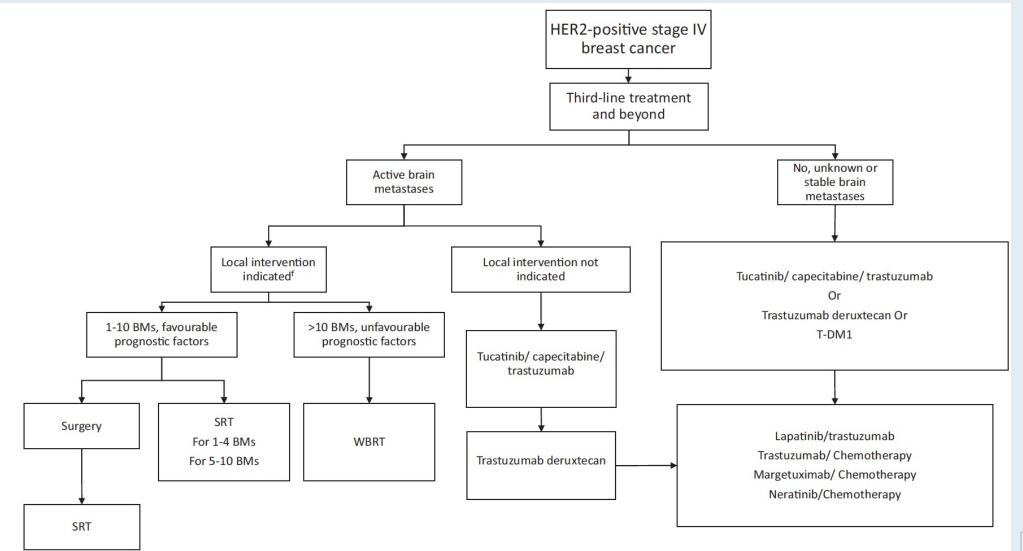
Tarantino P et al. JAMA Oncol 2022;8(4):629-35.

ASCO 2022 Education Session


BREAST CANCER

Systemic Therapy for HER2-Positive Metastatic Breast Cancer: Moving Into a New Era

Maria Gion, MD^{1,2}; Dario Trapani, MD^{3,4}; Alfonso Cortés, MD^{1,2}; Carmine Valenza, MD^{3,4}; Nancy Lin, MD, PhD^{5,6}; Javier Cortés, PhD, MD^{7,8,9}; and Giuseppe Curigliano, MD, PhD^{3,4}


First- and Second-Line Treatments for HER2-Positive mBC

Gion M et al. Am Soc Clin Oncol Educ Book 2022.

Third-Line Treatment and Beyond for HER2-Positive mBC

Gion M et al. Am Soc Clin Oncol Educ Book 2022.

J Clin Oncol 2022 August 10;40(23):2612-35.

Systemic Therapy for Advanced Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer: ASCO Guideline Update

Sharon H. Giordano, MD, MPH¹; Maria Alice B. Franzoi, MD²; Sarah Temin, MSPH³; Carey K. Anders, MD⁴; Sarat Chandarlapaty, MD, PhD⁵; Jennie R. Crews, MD⁶; Jeffrey J. Kirshner, MD⁷; Ian E. Krop, MD, PhD⁸; Nancy U. Lin, MD⁸; Aki Morikawa, MD, PhD⁹; Debra A. Patt, MD, MPH, MBA¹⁰; Jane Perlmutter, PhD¹¹; Naren Ramakrishna, MD, PhD¹²; and Nancy E. Davidson, MD¹³

Factors Associated with Short- and Long-Term Survival in Metastatic HER2+ Breast Cancer

Leone JP et al. ASCO 2022;Abstract 1047.

Select Ongoing Trials HER2-Positive Localized Breast Cancer

Trial identifier	Phase (N)	Setting	Regimens	Estimated completion date
CompassHER2 pCR (NCT04266249)	II (N = 2,156)	Neoadjuvant and adjuvant	 Preoperative chemotherapy + trastuzumab/pertuzumab <u>If pCR</u> → postoperative trastuzumab/pertuzumab <u>If residual disease</u> → postoperative T-DM1 	2023
			or T-DM1 + tucatinib	
DESTINY-Breast05 (NCT04622319)	 (N = 1,600)	High risk, residual disease after neoadjuvant chemotherapy	 Trastuzumab deruxtecan (T-DXd) T-DM1 	2027
DESTINY-Breast11 (NCT05113251)	III (N = 624)	Neoadjuvant, high risk	• T-DXd • T-DXd \rightarrow THP • AC \rightarrow THP	2024

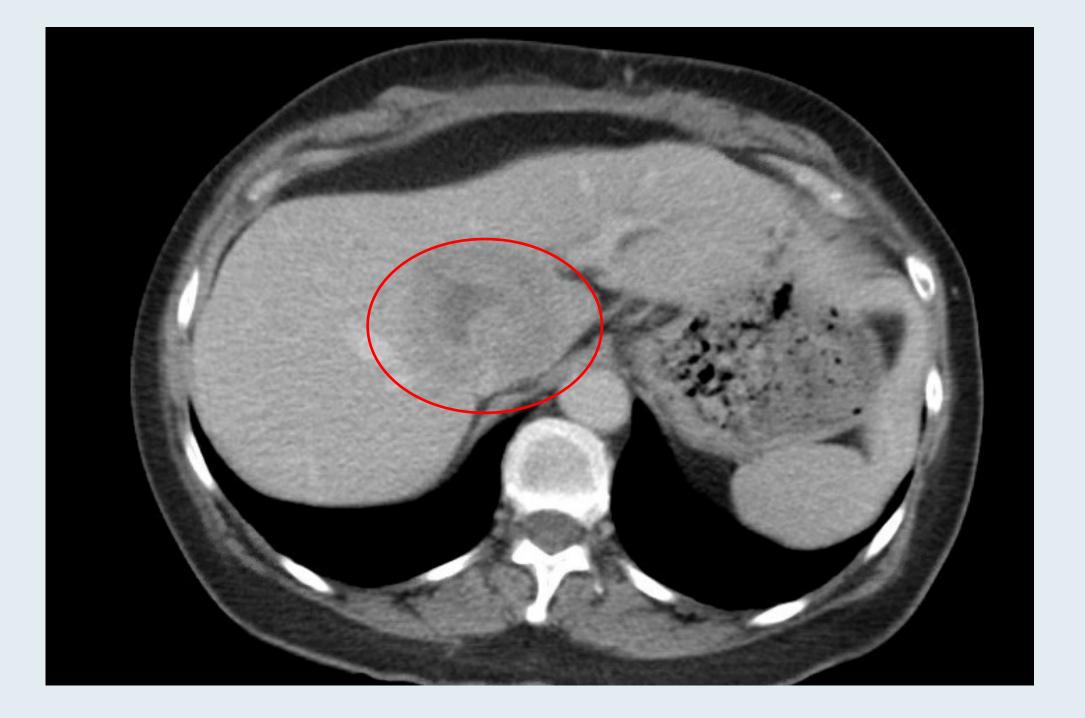
THP = paclitaxel, trastuzumab and pertuzumab

www.clinicaltrials.gov. Accessed August 2022.

Meet The Professor with Dr Lin

MODULE 1: Case Presentations

- Dr Matt-Amaral: 69-year-old woman with ER-positive, HER2-positive breast cancer s/p adjuvant TCH, with significant neuropathy, who develops liver metastases
- Dr Lamar: 88-year-old woman with weakly ER-positive, PR-negative, HER2-positive, gBRCA2 mutation-positive T2N1M0 breast cancer s/p neoadjuvant paclitaxel/trastuzumab
- Dr Favaro: 52-year-old woman with ER/PR-negative, HER2-positive mBC with progressive brain metastases s/p T-DM1 and WBRT
- Dr Gupta: 47-year-old woman with triple-positive breast cancer, s/p resection of brain metastasis
- Dr Narayanan: 65-year-old woman with ER/PR-positive, HER2-low mBC s/p ET-based therapies, capecitabine
- Dr Peswani: 50-year-old woman with triple-positive, BRCA2-mutant breast cancer, s/p bilateral mastectomies and adjuvant TH, now with locally recurrent ER/PR-positive, HER2-negative disease
- Dr Apuri: 72-year-old woman with triple-positive mBC who has CKD and significant neuropathy s/p 3 prior lines of therapy
- Dr Martins: 60-year-old woman with progressive triple-positive mBC receiving T-DXd



Case Presentation: 69-year-old woman with ER-positive, HER2-positive breast cancer s/p adjuvant TCH, with significant neuropathy, who develops liver metastases

Dr Laurie Matt-Amaral (Akron, Ohio)

Case Presentation: 88-year-old woman with weakly ER-positive, PR-negative, HER2-positive, gBRCA2 mutation-positive T2N1M0 breast cancer s/p neoadjuvant paclitaxel/trastuzumab

Dr Zanetta Lamar (Naples, Florida)

Effects of Diarrheal Prophylaxis or Dose Escalation on Neratinib-Associated Diarrhea and Tolerability in Patients with HER2+ Early-Stage Breast Cancer: Final Findings from the CONTROL Trial

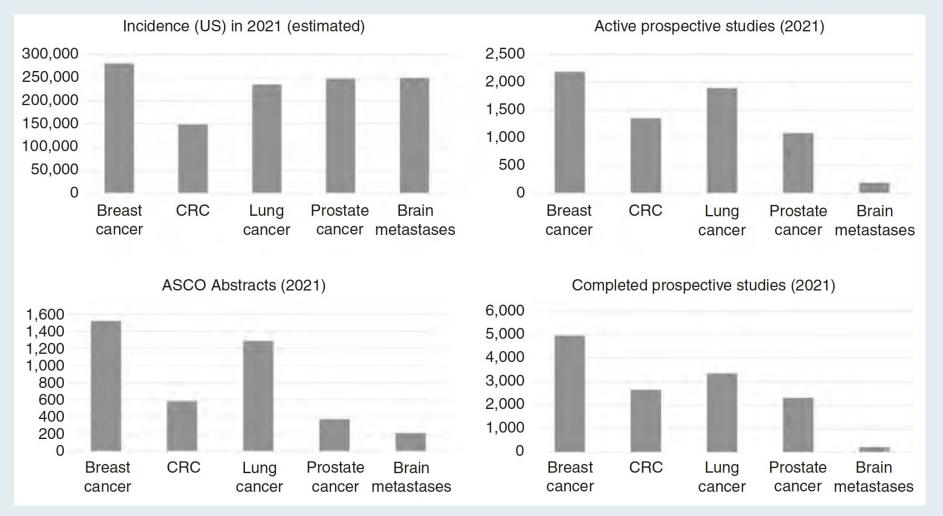
Chan A et al. ESMO Breast 2022;Abstract P73.

Case Presentation: 52-year-old woman with ER/PR-negative, HER2-positive mBC with progressive brain metastases s/p T-DM1 and WBRT

Dr Justin Favaro (Charlotte, North Carolina)

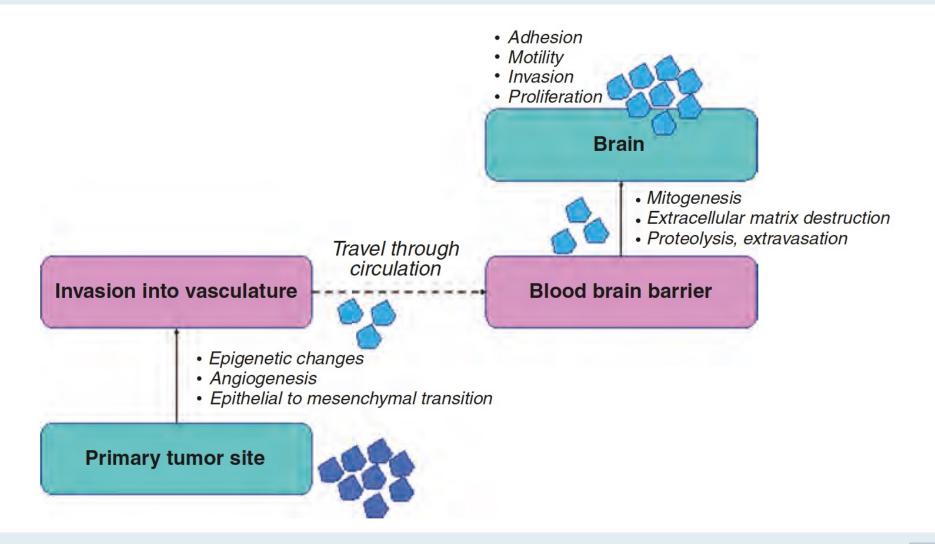
Case Presentation: 47-year-old woman with triple-positive breast cancer, s/p resection of brain metastasis

Dr Shaachi Gupta (Lake Worth, Florida)

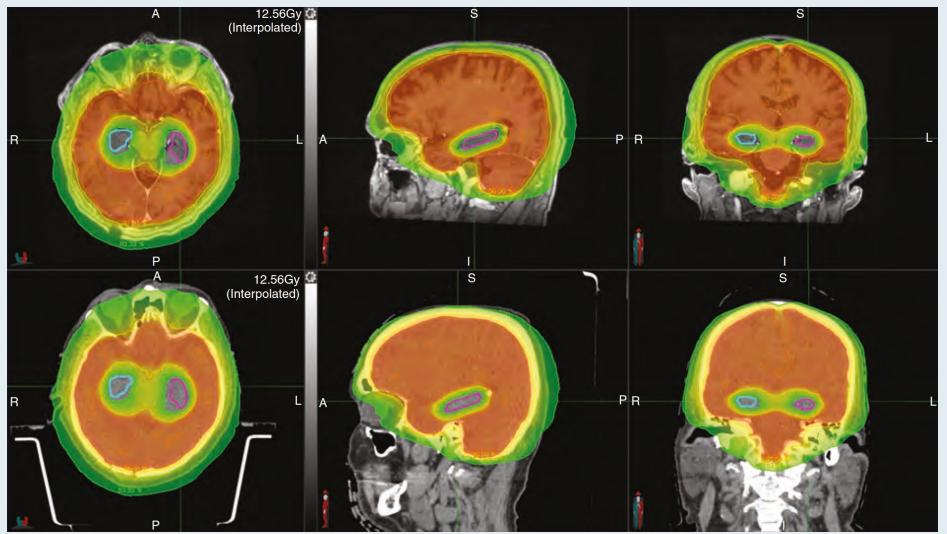

Neuro Oncol 2022 June 28;[Online ahead of print]. Neuro-Oncology

Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions

Ayal A. Aizer[†], Nayan Lamba[†], Manmeet S. Ahluwalia, Kenneth Aldape, Adrienne Boire^o, Priscilla K. Brastianos, Paul D. Brown, D. Ross Camidge, Veronica L. Chiang, Michael A. Davies, Leland S. Hu, Raymond Y. Huang, Timothy Kaufmann, Priya Kumthekar^o, Keng Lam, Eudocia Q. Lee, Nancy U. Lin, Minesh Mehta, Michael Parsons^o, David A. Reardon, Jason Sheehan, Riccardo Soffietti^o, Hussein Tawbi^o, Michael Weller^o, and Patrick Y. Wen



Incidence of Brain Metastases versus Other Oncologic Entities of Similar Incidence and Research Output Measured by ASCO Abstracts and Active or Completed Prospective Trials



Pathogenesis of Brain Metastases

Hippocampal-Sparing Whole-Brain Radiation in a Patient with Brain Metastases

Incidence Proportion of Brain Metastases in the United States at Diagnosis of Breast Cancer

Sub-Site	Incidence Proportion Amo Cohort ^a	ong Entire Incidence Proportion Among Subset with Metastatic Disease ^b
HR+/HER2-	0.22	5.46
HR+/HER2+	0.61	7.98
HR-/HER2+	1.09	11.45
Triple negative	0.68	11.37

Prognosis of Brain Metastases Associated with Breast Cancer in the United States as Derived from SEER, SEER-Medicare and GPA-based Data

Sub-Site	Median Survival (Months) Based on SEER data	Median Survival (Months) in Older Pa- tients Based on SEER-Medicare Data	Median Survival (Months) Based on GPA Data
		2.1-4.5	16
HR+/HER2-	14.0	2.0–4.9	
HR+/HER2+	21.0	2.5–6.4	
HR-/HER2+	10.0		
Triple negative	6.0	2.3–3.4	

GPA = graded prognostic assessment

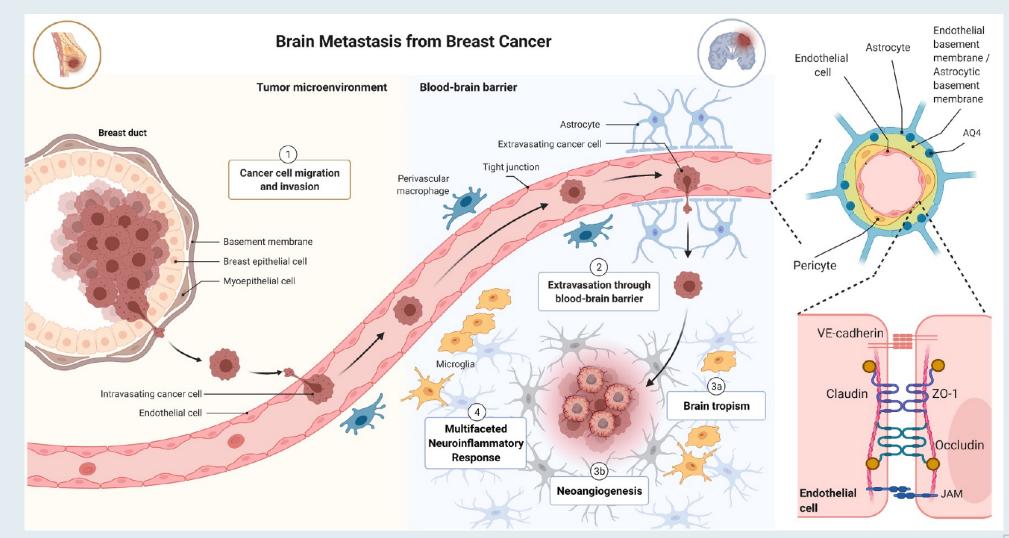
Cancer Treatment Reviews 103 (2022) 102324

Contents lists available at ScienceDirect

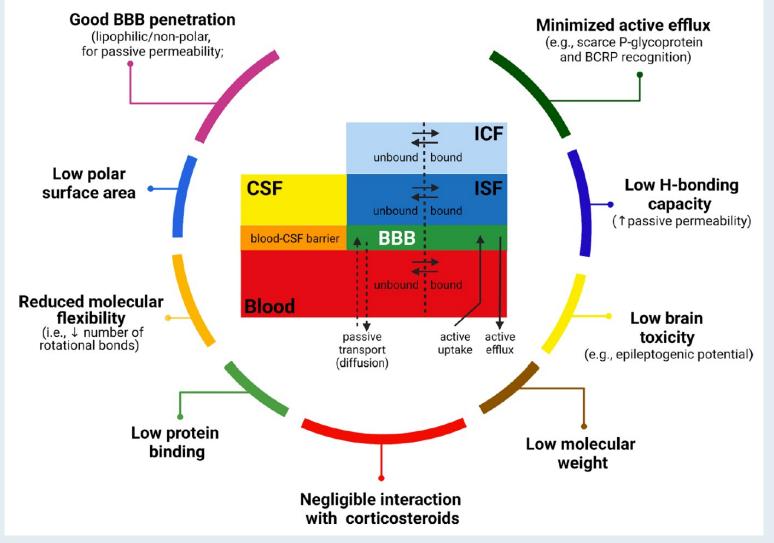
Cancer Treatment Reviews

journal homepage: www.elsevier.com/locate/ctrv

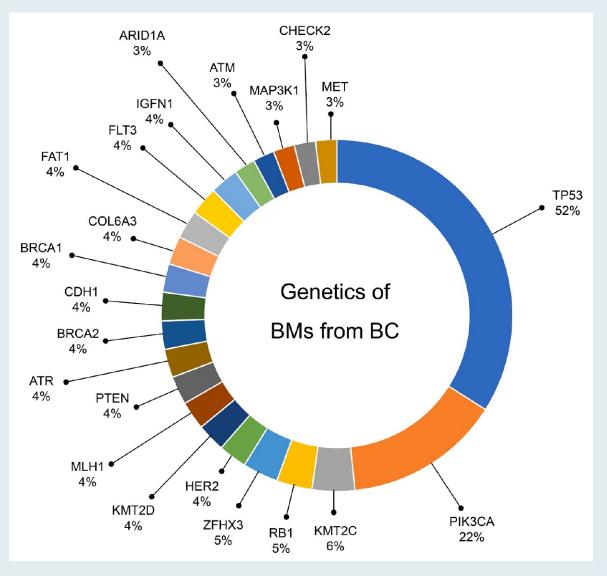
Anti-tumour Treatment


Targeting brain metastases in breast cancer

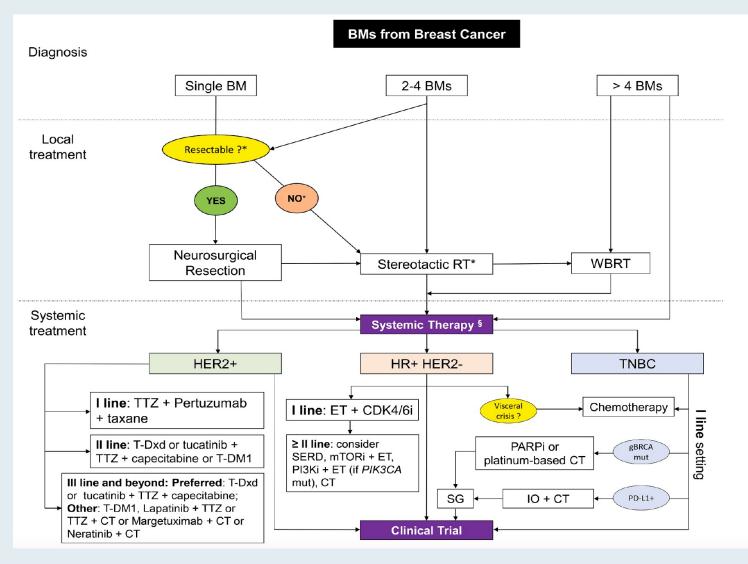
Chiara Corti ^{a, b, *}, Gabriele Antonarelli ^{a, b}, Carmen Criscitiello ^{a, b}, Nancy U. Lin ^c, Lisa A. Carey ^d, Javier Cortés ^{e, f, g, h, i}, Philip Poortmans ^j, Giuseppe Curigliano ^{a, b}


-

Hypothesized Mechanism of Spread of Breast Cancer Cells to the Central Nervous System


Pharmacological Aspects to Consider in Drug Design for Targeting Brain Metastases

BBB = blood-brain barrier; ICF = intracellular fluid; CSF = cerebrospinal fluid; ISF = interstitial fluid

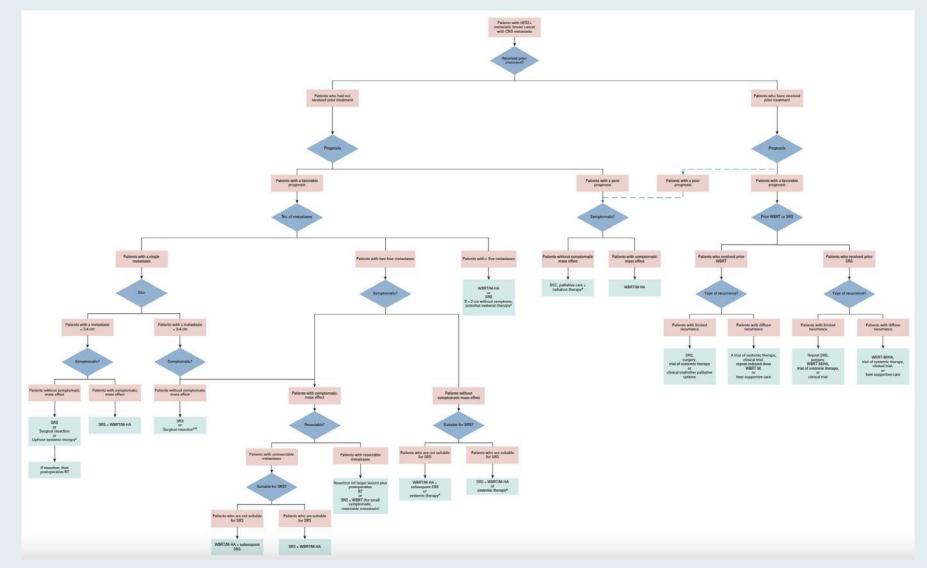


Commonly Mutated Genes in Brain Metastases (BMs) from Breast Cancer

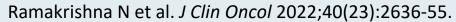
Treatment Algorithm for Patients with Brain Metastases from Brain Cancer

JOURNAL CLUB RTP RESEARCH TO PRACTICE

J Clin Oncol 2022 August 10;40(23):2636-55.


Management of Advanced Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer and Brain Metastases: ASCO Guideline Update

S


Naren Ramakrishna, MD, PhD¹; Carey K. Anders, MD²; Nancy U. Lin, MD³; Aki Morikawa, MD, PhD⁴; Sarah Temin, MSPH⁵;
 Sarat Chandarlapaty, MD, PhD⁶; Jennie R. Crews, MD⁷; Nancy E. Davidson, MD⁸; Maria Alice B. Franzoi, MD⁹; Jeffrey J. Kirshner, MD¹⁰;
 Ian E. Krop, MD, PhD³; Debra A. Patt, MD, MPH, MBA¹¹; Jane Perlmutter, PhD¹²; and Sharon H. Giordano, MD, MPH¹³

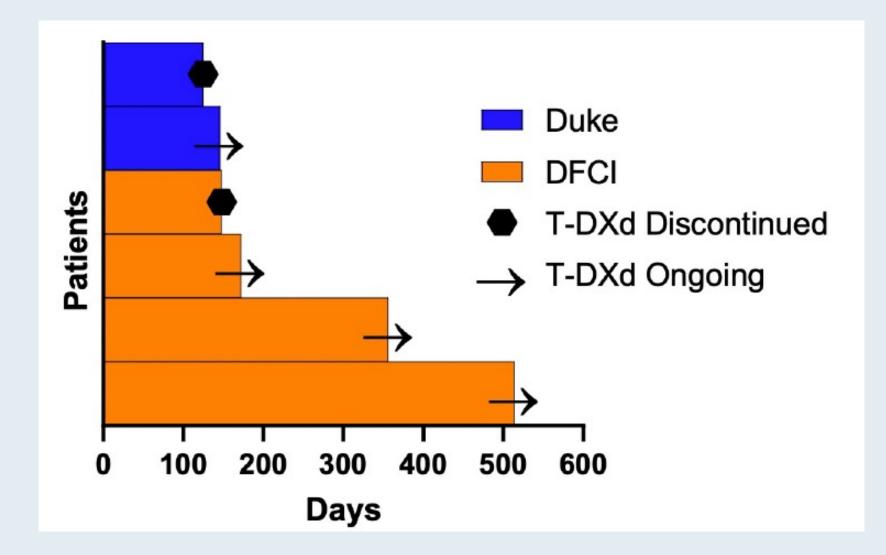
Treatment Algorithm for Patients with Brain Metastases from Brain Cancer

JOURNAL CLU

Clin Cancer Res 2022 September 8:CCR-22-1138.

Preclinical and clinical efficacy of trastuzumab deruxtecan in breast cancer brain metastases

Sheheryar Kabraji^{*1}, Jing Ni^{*1}, Sarah Sammons², Tianyu Li¹, Amanda E.D. Van Swearingen², Yanzhi Wang¹, Alyssa Pereslete¹, Liangge Hsu³, Pamela J. DiPiro³, Chris Lascola², Heather Moore², Melissa Hughes¹, Akshara S. Raghavendra⁴, Maria Gule-Monroe⁴, Rashmi K. Murthy⁴, Eric P. Winer¹, Carey K. Anders², Jean J. Zhao^{1*}, Nancy U. Lin^{1*}



Durable Clinical and Radiographic Responses in a Series of Patients with HER2+ Breast Cancer (BC) Leptomeningeal Disease (LMD) Treated with Trastuzumab Deruxtecan (T-DXd)

Alder L et al. AACR 2022;Abstract 5257.

Duration of T-DXd

Clinical Outcomes

Clinical Outcomes	# (%) or median (range)		
Response on first MRI post-C1D1 T-DXd			
Yes	5 (83.3%)		
Νο	1 (16.6%)		
Clinical Benefit			
Yes	6 (100%)		
Alive	5 (83.3%)		
Remains on T-DXd	4 (66.7%)		
Median # cycles T-DXd	6.5 (5-23)		
Median duration T-DXd (days)	160 (125 - 514)		
Median Survival since C1D1 T- DXd (days)	264 (146 - 514)		
Median survival since LMD diagnosis (days)	379 (208 – 626)		

Nat Commun 2021 October 12;12(1):5954.

ARTICLE

https://doi.org/10.1038/s41467-021-25859-y

OPEN

Phase II study of ipilimumab and nivolumab in leptomeningeal carcinomatosis

Priscilla K. Brastianos^{1,3 M}, Matthew R. Strickland^{1,2,3}, Eudocia Quant Lee², Nancy Wang¹, Justine V. Cohen¹, Ugonma Chukwueke², Deborah Anne Forst¹, April Eichler¹, Beth Overmoyer², Nancy U. Lin², Wendy Y. Chen², Aditya Bardia ¹, Dejan Juric ¹, Ibiayi Dagogo-Jack¹, Michael D. White ¹, Jorg Dietrich¹, Naema Nayyar ¹, Albert E. Kim ¹, Christopher Alvarez-Breckenridge¹, Maura Mahar¹, Joana L. Mora ¹, Brian V. Nahed¹, Pamela S. Jones¹, Helen A. Shih¹, Elizabeth R. Gerstner¹, Anita Giobbie-Hurder², Scott L. Carter ², Kevin Oh¹, Daniel P. Cahill^{1,4} & Ryan J. Sullivan ^{1,4}

Neuro Oncol 2022 August 10;[Online ahead of print]. Neuro-Oncology

XX(XX), 1–9, 2022 | https://doi.org/10.1093/neuonc/noac195 | Advance Access date 10 August 2022

A phase I/II study of intrathecal trastuzumab in human epidermal growth factor receptor 2-positive (HER2-positive) cancer with leptomeningeal metastases: Safety, efficacy, and cerebrospinal fluid pharmacokinetics

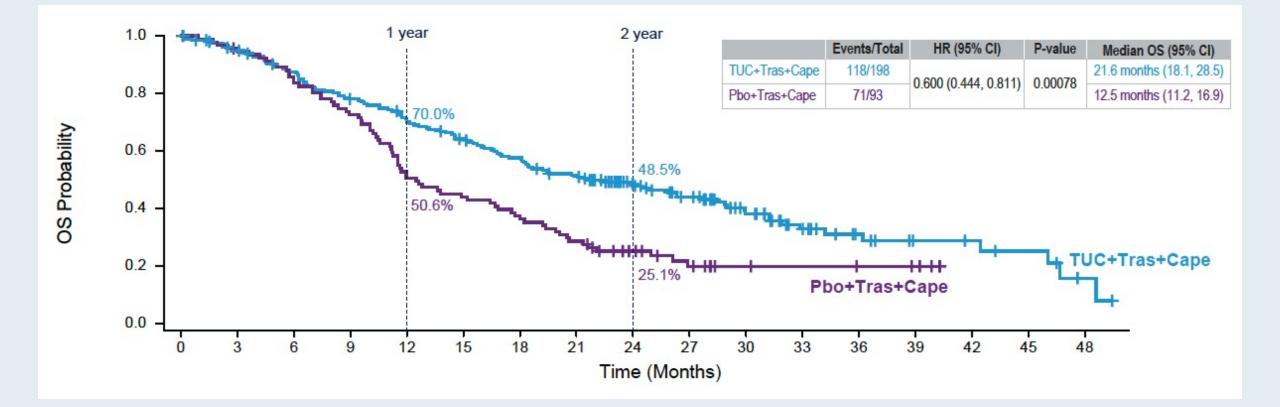
Priya U. Kumthekar[®], Michael J. Avram, Andrew B. Lassman, Nancy U. Lin, Eudocia Lee, Sean A. Grimm, Margaret Schwartz, Kirsten L. Bell Burdett, Rimas V. Lukas, Karan Dixit, Isabella Perron, Hui Zhang, William J. Gradishar, Elena I. Pentsova, Suriya Jeyapalan, Morris D. Groves, Michelle Melisko, and Jeffrey J. Raizer

Author

Rashmi K Murthy¹, Barbara O'Brien¹, Donald A Berry¹, Akshara Singareeka-Raghavendra¹, Maria Gule Monroe¹, Jason Johnson¹, Jason White¹, Jennifer Childress¹, Justin Sanford¹, Jill Schwartz-Gomez¹, Michelle Melisko², Aki Morikawa³, Sherise Ferguson¹, John F de Groot¹, Ian Krop⁴, Vicente Valero¹, Mothaffar Rimawi⁵, Antonio Wolff⁶, Debu Tripathy¹, Nancy U Lin⁷ and Erica Stringer-Reasor⁸. ¹University of Texas MD Anderson Cancer Center, Houston, TX;²University of California San Francisco, San Francisco, CA;³University of Michigan, Ann Arbor, MI;⁴Dana-Farber Cancer Center, Boston, MA;⁵Baylor College of Medicine, Houston, TX;⁶Johns Hopkins University, Baltimore, MD;⁷Dana-Farber Cancer Institute, Boston, MA;⁸University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, AL

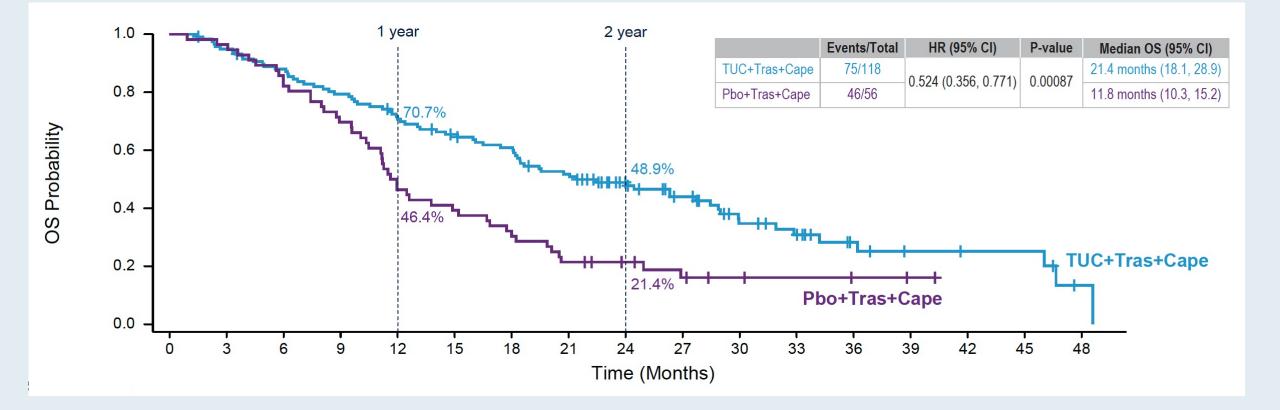
Author

Nancy U Lin¹, Diana Lueftner², Adam M Brufsky³, Sara M Tolaney¹, Michelle E Melisko⁴, Frankie Ann Holmes⁵ and Ahmad Awada⁶. ¹Dana-Farber Cancer Institute, Boston, MA;²University Hospital Charité, Berlin, Germany³Magee-Womens Hospital of University of Pittsburgh Medical Center, Pittsburgh, PA;⁴University of California San Francisco, San Francisco, CA;⁵Texas Oncology, US Oncology, Houston, TX;⁶Jules Bordet Institute, Brussels, Belgium

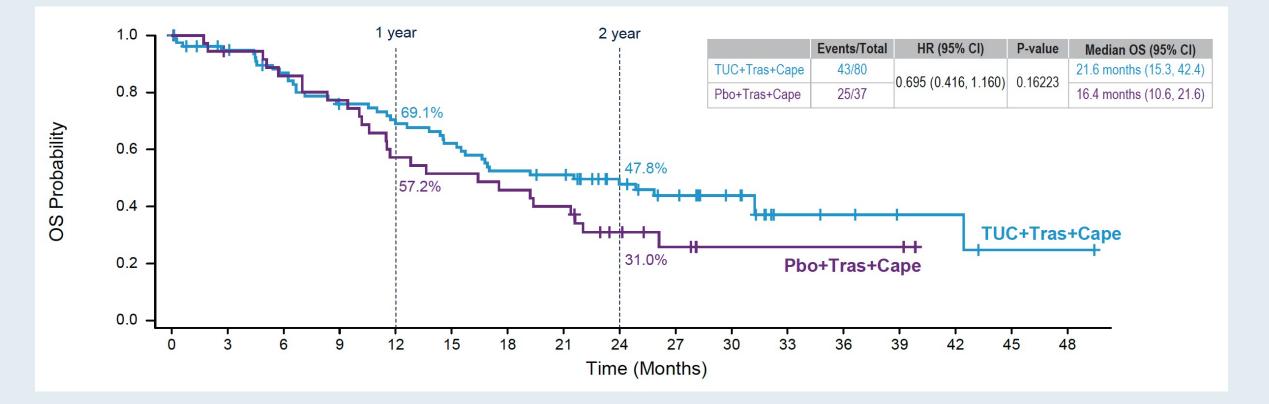


Updated Results of Tucatinib vs Placebo Added to Trastuzumab and Capecitabine for Patients with Previously Treated HER2-Positive Metastatic Breast Cancer with Brain Metastases (HER2CLIMB)

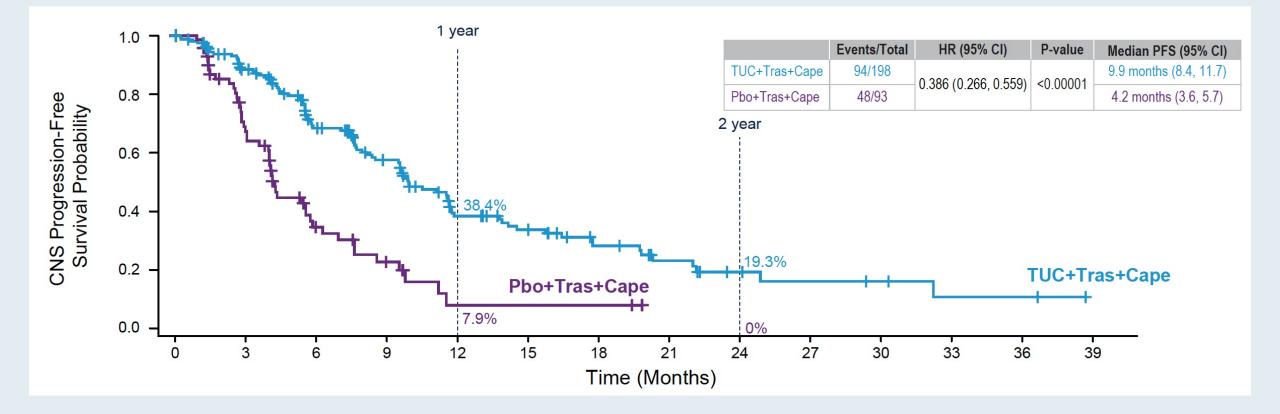
Lin NU et al. ASCO 2021;Abstract PD4-04.


HER2CLIMB: Overall Survival (OS) for All Patients with Brain Metastases

Lin NU et al. ASCO 2021;Abstract PD4-04.


HER2CLIMB: OS for Patients with Active Brain Metastases

Lin NU et al. ASCO 2021;Abstract PD4-04.


HER2CLIMB: OS for Patients with Treated Stable Brain Metastases

Lin NU et al. ASCO 2021; Abstract PD4-04.

HER2CLIMB: CNS-PFS for All Patients with Brain Metastases

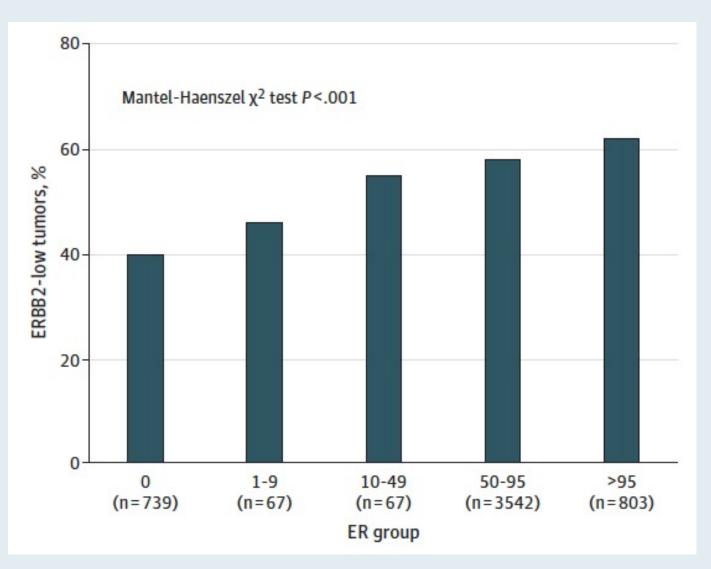
Lin NU et al. ASCO 2021;Abstract PD4-04.

Case Presentation: 65-year-old woman with ER/PR-positive, HER2-low mBC s/p ET-based therapies, capecitabine

Dr Vignesh Narayanan (Lone Tree, Colorado)

Research

JAMA Oncology | Original Investigation


Prognostic and Biologic Significance of ERBB2-Low Expression in Early-Stage Breast Cancer

Paolo Tarantino, MD; Qingchun Jin, MPH; Nabihah Tayob, PhD; Rinath M. Jeselsohn, MD; Stuart J. Schnitt, MD; Julie Vincuilla, BS; Tonia Parker, BS; Svitlana Tyekucheva, PhD; Tianyu Li, MS; Nancy U. Lin, MD; Melissa E. Hughes, MSc; Anna C. Weiss, MD; Tari A. King, MD; Elizabeth A. Mittendorf, MD, PhD; Giuseppe Curigliano, MD, PhD; Sara M. Tolaney, MD, MPH

JAMA Oncol 2022 August 1;8(8):1177-83.

Proportion of ERBB2-Low Tumors by Estrogen Receptor (ER) Expression Threshold

Tarantino P et al. JAMA Oncol 2022 August 1;8(8):1177-83.

Trastuzumab Deruxtecan Granted FDA Approval for HER2-Low Breast Cancer Press Release – August 5, 2022

"Today, the US Food and Drug Administration approved fam-trastuzumab-deruxtecannxki, an IV infusion for the treatment of patients with unresectable (unable to be removed) or metastatic (spread to other parts of the body) HER2-low breast cancer. This is the first approved therapy targeted to patients with the HER2-low breast cancer subtype, which is a newly defined subset of HER2-negative breast cancer.

Patients with HER2-low breast cancer are eligible for fam-trastuzumab-deruxtecan-nxki if they have received a prior chemotherapy in the metastatic setting, or their cancer returned during, or within 6 months of completing, adjuvant chemotherapy.

This approval is based on DESTINY-Breast04, a randomized, multicenter, open label clinical trial that enrolled 557 adult patients with unresectable or metastatic HER2-low breast cancer."

https://www.fda.gov/news-events/press-announcements/fda-approves-first-targeted-therapy-her2-low-breast-cancer

2022 ASCO 2022 ASCO ANNUAL MEETING Abstract LBA3 DESTINY-Breast04

Trastuzumab deruxtecan (T-DXd) vs treatment of physician's choice in patients with HER2-low unresectable and/or metastatic breast cancer:

Results of DESTINY-Breast04, a randomized, phase 3 study

Shanu Modi Memorial Sloan Kettering Cancer Center, Memorial Hospital, New York, NY, USA

June 5, 2022

Additional authors: William Jacot, Toshinari Yamashita, Joo Hyuk Sohn, Maria Vidal, Eriko Tokunaga, Junji Tsurutani, Naoto Ueno, Yee Soo Chae, Keun Seok Lee, Naoki Niikura, Yeon Hee Park, Xiaojia Wang, Binghe Xu, Dhiraj Gambhire, Lotus Yung, Gerold Meinhardt, Yibin Wang, Nadia Harbeck, David Cameron

On behalf of the DESTINY-Breast04 investigators

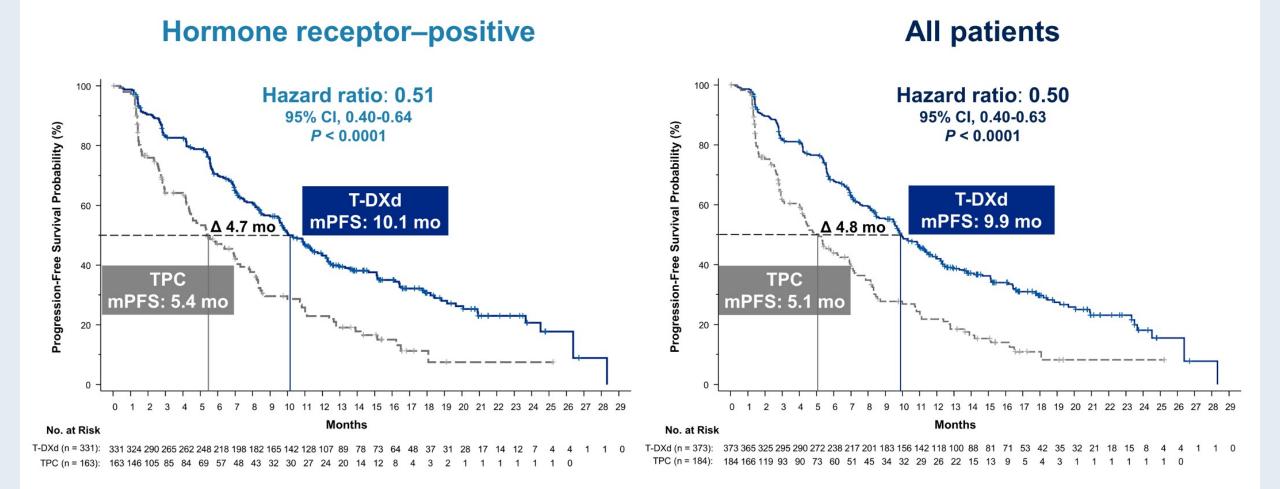
The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

ASCO AMERICAN SOCIETY OF CLINICAL ONCOLOGY

nor, licensed by ASCO. Permission required for re-

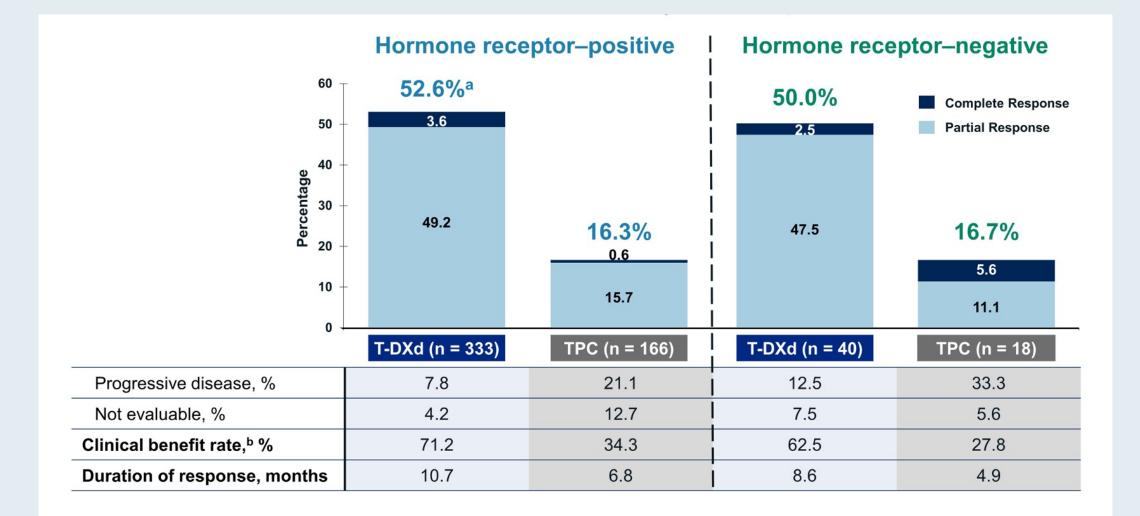
JULY 7, 2022


VOL. 387 NO. 1

Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer

S. Modi, W. Jacot, T. Yamashita, J. Sohn, M. Vidal, E. Tokunaga, J. Tsurutani, N.T. Ueno, A. Prat, Y.S. Chae, K.S. Lee, N. Niikura, Y.H. Park, B. Xu, X. Wang, M. Gil-Gil, W. Li, J.-Y. Pierga, S.-A. Im, H.C.F. Moore, H.S. Rugo, R. Yerushalmi, F. Zagouri, A. Gombos, S.-B. Kim, Q. Liu, T. Luo, C. Saura, P. Schmid, T. Sun, D. Gambhire, L. Yung, Y. Wang, J. Singh, P. Vitazka, G. Meinhardt, N. Harbeck, and D.A. Cameron, for the DESTINY-Breast04 Trial Investigators*

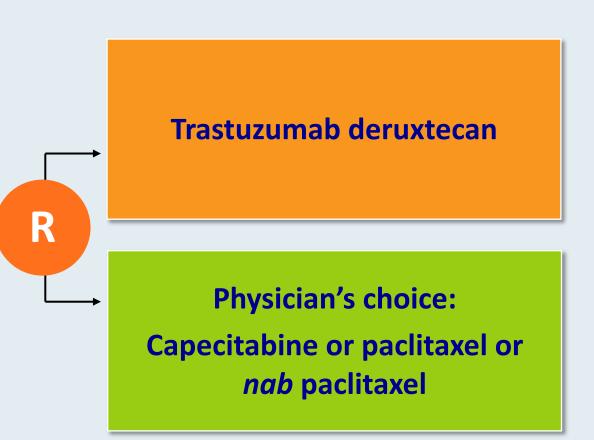
DESTINY-Breast04: PFS for HR-Positive (Primary Endpoint) and All Patients



mPFS = median progression-free survival

Modi S et al. ASCO 2022; Abstract LBA3. Modi S et al. N Engl J Med 2022 July 7; 387(1): 9-20.

DESTINY-Breast04: Confirmed Objective Response Rate

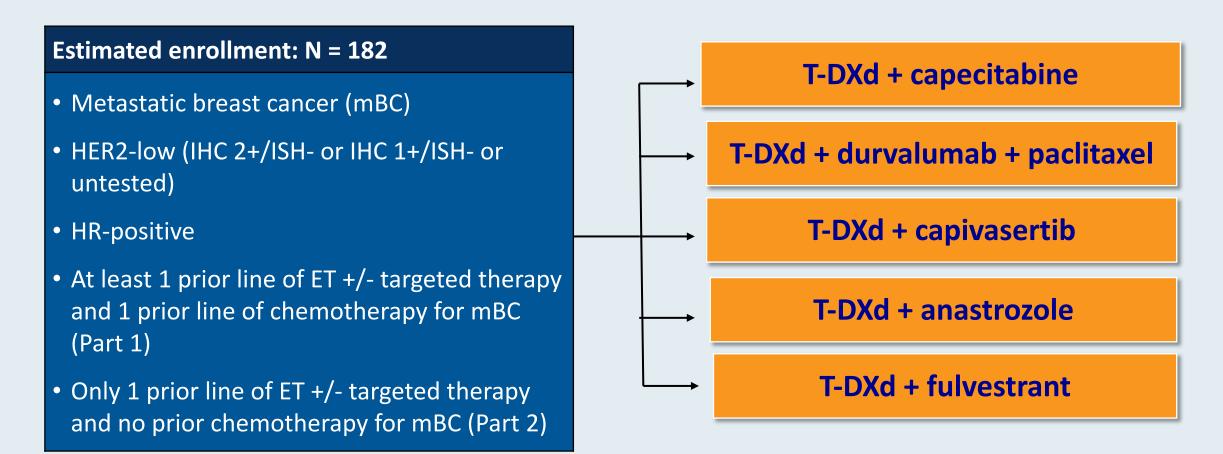


Modi S et al. ASCO 2022; Abstract LBA3. Modi S et al. N Engl J Med 2022 July 7; 387(1):9-20.

DESTINY-Breast06 Phase III Trial Design

Estimated enrollment: N = 850

- Metastatic breast cancer
- HER2-low or negative by local test IHC 2+/ISH- or IHC 1/ISH- or IHC 0/ISH-
- HER2-low or HER2 IHC >0 <1 by central lab
- HR-positive
- No prior chemotherapy for advanced or metastatic disease
- PD within 6 months of starting first-line therapy with ET/CDK4/6 OR PD on at least 2 prior line of ET +/- targeted therapy



Primary endpoint: PFS in HR-positive, HER2-low population

DESTINY-Breast08 Phase I Trial Design

Primary endpoints: Adverse events, serious adverse events

Secondary endpoints: Objective response rate, progression-free survival, duration of response, overall response

www.clinicaltrials.gov. NCT04538742. Accessed August 2022.

Case Presentation: 50-year-old woman with triple-positive, BRCA2-mutant breast cancer, s/p bilateral mastectomies and adjuvant TH, now with locally recurrent ER/PR-positive, HER2negative disease

Dr Namrata Peswani (Richardson, Texas)

Case Presentation: 72-year-old woman with triple-positive mBC who has CKD and significant neuropathy s/p 3 prior lines of therapy

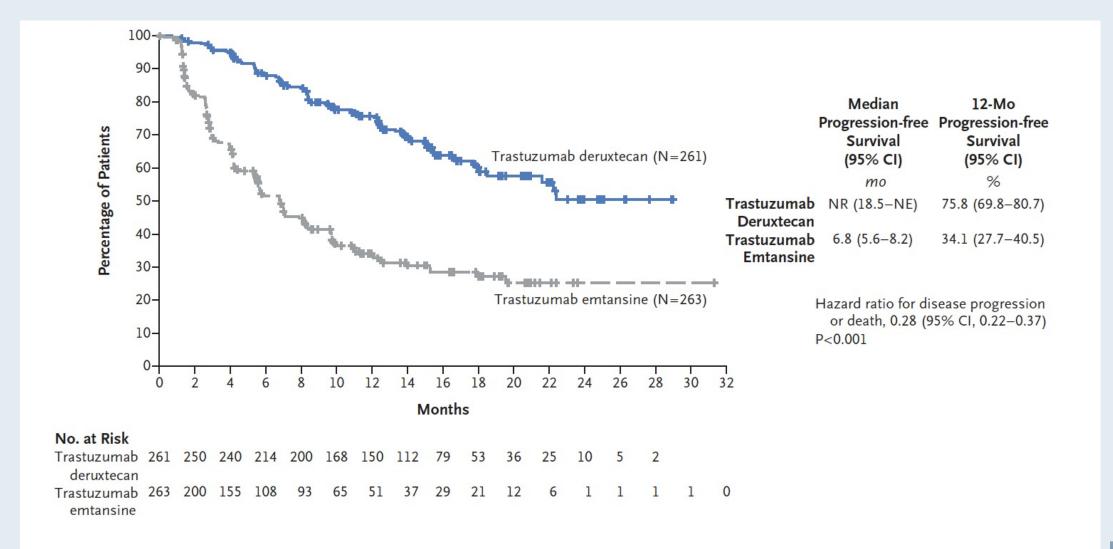
Dr Susmitha Apuri (Lutz, Florida)

Case Presentation: 60-year-old woman with progressive triple-positive mBC receiving T-DXd

Dr Joseph Martins (Tyler, Texas)

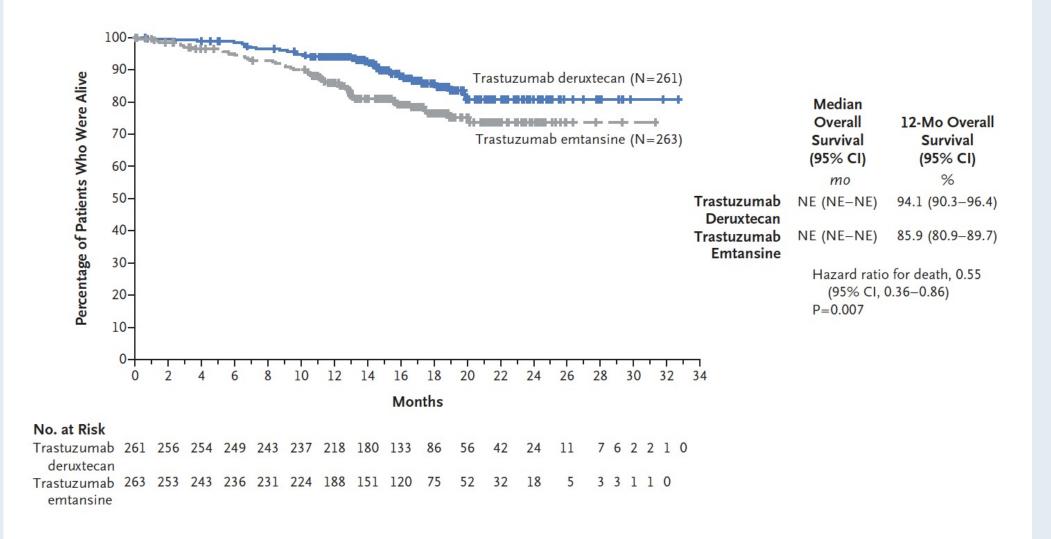
N Engl J Med 2022 March 24;386:1143-54.

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

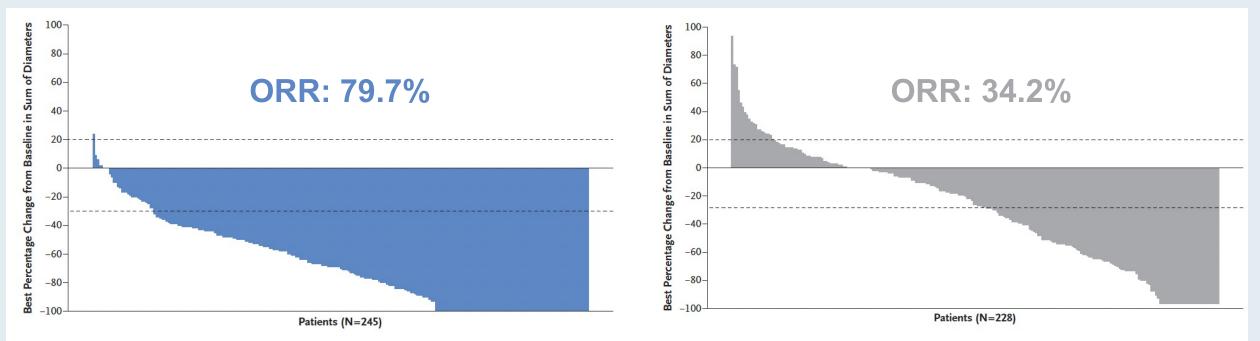
Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer

J. Cortés, S.-B. Kim, W.-P. Chung, S.-A. Im, Y.H. Park, R. Hegg, M.H. Kim, L.-M. Tseng, V. Petry, C.-F. Chung, H. Iwata, E. Hamilton, G. Curigliano, B. Xu, C.-S. Huang, J.H. Kim, J.W.Y. Chiu, J.L. Pedrini, C. Lee, Y. Liu, J. Cathcart, E. Bako, S. Verma, and S.A. Hurvitz, for the DESTINY-Breast03 Trial Investigators*


DESTINY-Breast03: Progression-Free Survival

Cortés J et al. N Engl J Med 2022;386(12):1143-54.

DESTINY-Breast03: First Interim Analysis of Overall Survival



Cortés J et al. N Engl J Med 2022;386(12):1143-54.

DESTINY-Breast03: Antitumor Activity

Trastuzumab deruxtecan

Trastuzumab emtansine

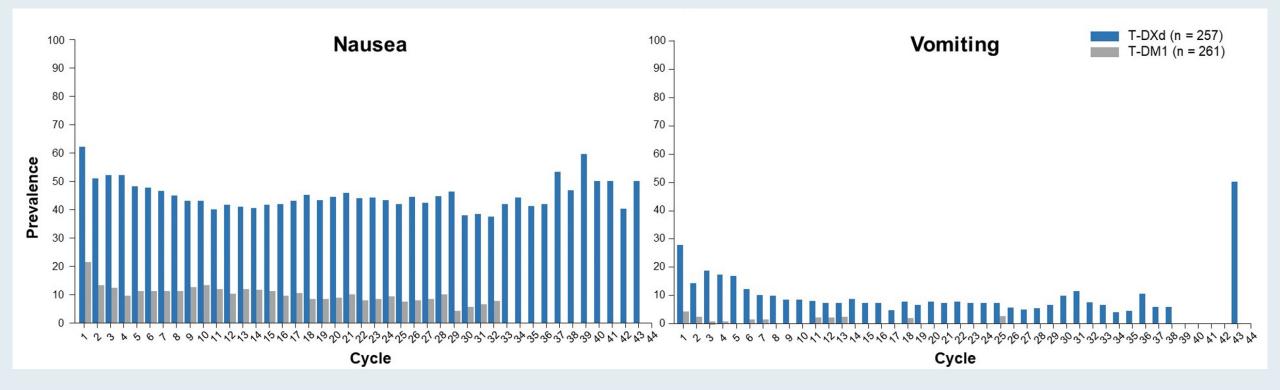
ORR = overall response rate

2022 ASCO[®] ANNUAL MEETING Abstract 1000

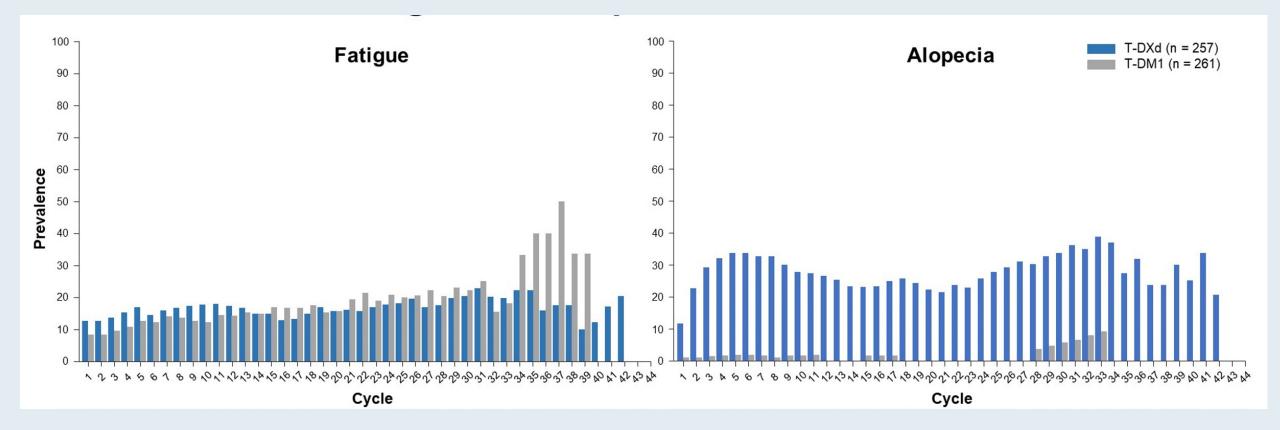
Trastuzumab Deruxtecan vs Trastuzumab Emtansine in Patients With HER2-Positive Unresectable and/or Metastatic Breast Cancer: Safety Follow-up of the Randomized, Phase 3 Study DESTINY-Breast03

Erika Hamilton, MD,^a Vanessa Petry, Winnie Yeo, Sung-Bae Kim, Giampaolo Bianchini, Toshinari Yamashita, Kan Yonemori, Kenichi Inoue, Giuseppe Curigliano, Sara A. Hurvitz, Javier Cortés, Hiroji Iwata, Jillian Cathcart, Yali Liu, Caleb Lee, Emarjola Bako, Rachel Kim, Seock-Ah Im On behalf of the DESTINY-Breast03 investigators

^aSarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA



Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.


DESTINY-Breast03: Prevalence of Nausea and Vomiting

Hamilton E et al. ASCO 2022; Abstract 1000.

DESTINY-Breast03: Prevalence of Fatigue and Alopecia

Hamilton E et al. ASCO 2022; Abstract 1000.

Meet The Professor with Dr Lin

Introduction: Journal Club with Dr Lin – Part 1

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Lin – Part 2

MODULE 4: Appendix

Regulatory and reimbursement issues aside, would you offer trastuzumab deruxtecan to a patient with HER2 IHC 0 metastatic breast cancer (mBC) with a HER2 mutation?

Regulatory and reimbursement issues aside, how are you most likely to approach the use of trastuzumab deruxtecan for HER2 IHC 1+ versus HER2 IHC 2+ mBC?

Dr Brufsky	Equally likely to use for IHC 2+ and IHC 1+ disease	Dr Lin	Equally likely to use for IHC 2+ and IHC 1+ disease
Dr Carey	Equally likely to use for IHC 2+ and IHC 1+ disease	Dr O'Shaughnessy	Equally likely to use for IHC 2+ and IHC 1+ disease
Prof Curigliano	Equally likely to use for IHC 2+ and IHC 1+ disease	Dr Pegram	Equally likely to use for IHC 2+ and IHC 1+ disease

A woman who has completed 5 years of an adjuvant aromatase inhibitor for ER-positive, HER2 IHC 2+, FISH-negative breast cancer develops <u>symptomatic liver</u> metastases 3 years later. Regulatory and reimbursement issues aside, when would you most likely offer trastuzumab deruxtecan?

A woman undergoes neoadjuvant chemotherapy and surgery for BRCA wild-type, ER-negative, HER2 IHC 2+, FISH-negative breast cancer and develops <u>symptomatic liver</u> metastases while receiving adjuvant capecitabine. Regulatory and reimbursement issues aside, when would you most likely offer trastuzumab deruxtecan?

On the basis of your personal experience and available clinical trial data, how would you characterize the degree of alopecia observed with trastuzumab deruxtecan?

Dr Brufsky	Dr Brufsky Dr Brufsky platinum agents		Moderate alopecia as observed with platinum agents	
Dr Carey	Moderate alopecia as observed with platinum agents	Dr O'Shaughnessy	Moderate alopecia as observed with platinum agents	
Prof Curigliano	Moderate alopecia as observed with platinum agents	Dr Pegram	Moderate alopecia as observed with platinum agents	

On the basis of your personal experience and available clinical trial data, how would you describe the "chemotherapy-like" side-effect profile (fatigue, GI symptoms) of trastuzumab deruxtecan?

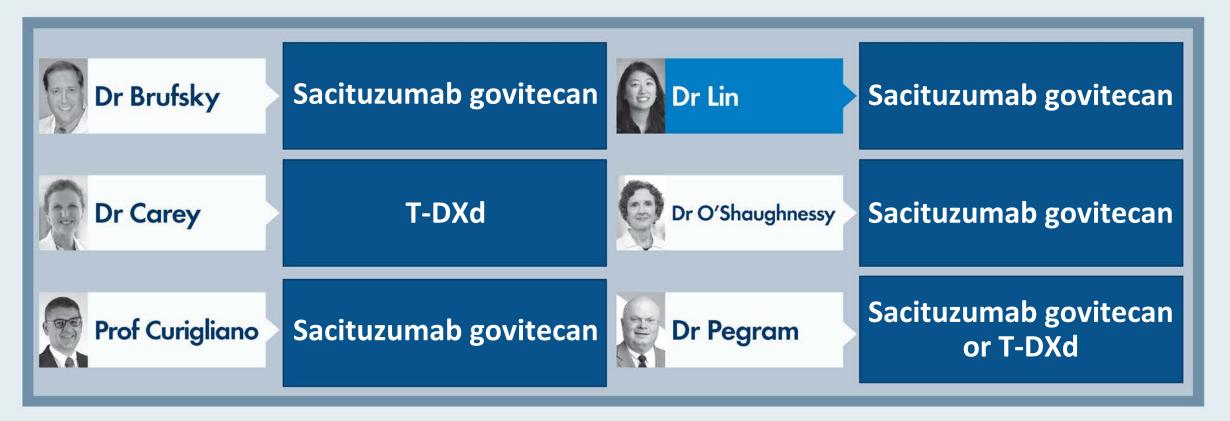
Dr Brufsky	Similar to but less concerning than anthracycline/platinum agents	Dr Lin	Similar to the profile of anthracycline/platinum agents
Dr Carey	Similar to but less concerning than anthracycline/platinum agents	Dr O'Shaughnessy	Similar to but less concerning than anthracycline/platinum agents
Prof Curigliano	Similar to but less concerning than anthracycline/platinum agents	Dr Pegram	Similar to the profile of anthracycline/platinum agents

What grade of interstitial lung disease (ILD) would lead you to permanently discontinue treatment with trastuzumab deruxtecan?

Have you re-administered trastuzumab deruxtecan to a patient who developed Grade 1 ILD and recovered from it?

Do you use chest imaging to monitor a patient receiving trastuzumab deruxtecan who otherwise does not require chest imaging? How often would you perform chest imaging if the patient remained asymptomatic?

NA = not applicable



Do you evaluate pulmonary function, either clinically or by specific PFTs?

Regulatory and reimbursement issues aside, which next line of therapy would you recommend to a patient with hormone receptornegative, HER2 IHC 1+ or 2+, BRCA wild-type breast cancer who receives neoadjuvant chemoimmunotherapy and develops metastatic disease while receiving adjuvant immunotherapy?

Meet The Professor with Dr Lin

Introduction: Journal Club with Dr Lin – Part 1

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Lin – Part 2

MODULE 4: Appendix

CLINICAL CANCER RESEARCH | CLINICAL TRIALS: TARGETED THERAPY

The Phase II MutHER Study of Neratinib Alone and in Combination with Fulvestrant in HER2-Mutated, Non-amplified Metastatic Breast Cancer

Cynthia X. Ma^{1,2}, Jingqin Luo^{2,3}, Rachel A. Freedman⁴, Timothy J. Pluard⁵, Julie R. Nangia⁶, Janice Lu⁷, Frances Valdez-Albini⁸, Melody Cobleigh⁹, Jason M. Jones¹⁰, Nancy U. Lin⁴, Eric P. Winer⁴, P. Kelly Marcom¹¹, Shana Thomas¹, Jill Anderson¹, Brittney Haas¹, Leslie Bucheit¹², Richard Bryce¹³, Alshad S. Lalani¹³, Lisa A. Carey¹⁴, Matthew P. Goetz¹⁵, Feng Gao^{2,3}, Gretchen Kimmick¹¹, Mark D. Pegram¹⁶, Matthew J. Ellis¹⁷, and Ron Bose^{1,2}

Breast Cancer Research and Treatment (2021) 188:561–569 https://doi.org/10.1007/s10549-021-06174-y

EPIDEMIOLOGY

Management and outcomes of men diagnosed with primary breast cancer

And rew E. Johnson¹ · Suzanne B. Coopey² · Laura M. Spring³ · Nora K. Horick⁴ · Jose Pablo Leone⁵ · Nancy U. Lin⁵ · Laura S. Dominici⁶ · Kevin S. Hughes² · Rachel B. Jimenez¹

Cancer 2022 September 7;[Online ahead of print].

Original Article

Efficacy of neoadjuvant chemotherapy in male breast cancer compared with female breast cancer

José Pablo Leone, MD ^(D); Michael J. Hassett, MD¹; Julieta Leone, MD²; Sara M. Tolaney, MD, MPH¹; Carlos T. Vallejo, MD²; Bernardo A. Leone, MD; Eric P. Winer, MD¹; and Nancy U. Lin, MD¹

Breast Cancer Research and Treatment (2021) 188:695–702 https://doi.org/10.1007/s10549-021-06182-y

EPIDEMIOLOGY

Tumor subtypes and survival in male breast cancer

Julieta Leone¹ · Rachel A. Freedman^{2,3} · Nancy U. Lin^{2,3} · Sara M. Tolaney^{2,3} · Carlos T. Vallejo¹ · Bernardo A. Leone¹ · Eric P. Winer^{2,3} · José Pablo Leone^{2,3}

Meet The Professor with Dr Lin

Introduction: Journal Club with Dr Lin – Part 1

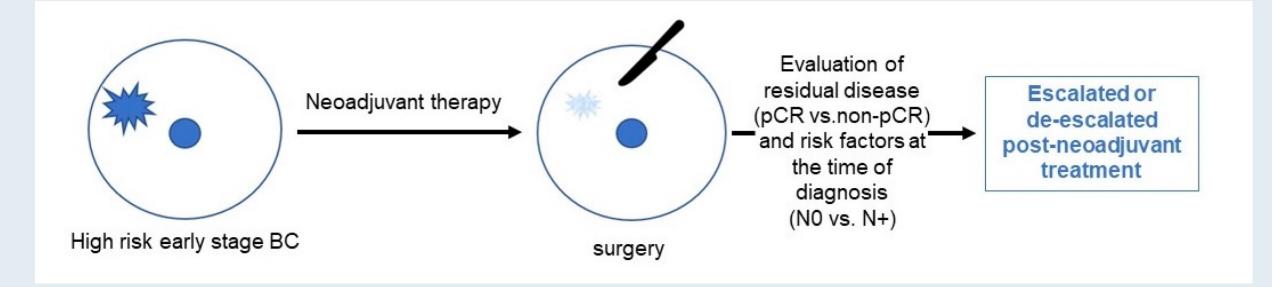
MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Lin – Part 2

MODULE 4: Appendix

Optimal Management of Patients with HER2-Positive Localized Breast Cancer (BC)


FDA-Approved Agents for HER2-Positive Localized Breast Cancer

Agent	Setting	Pivotal trial(s)	Regimens	Year approved	
		NSABP-31	AC-T-placebo vs AC-T-H		
Trastuzumab	Adjuvant HER2+ LBC,	N9831	AC-T vs AC-H vs AC-T-H	2006	
	first line	BCIRG 006	AC-T vs ACT-H vs TC-H		
		HERA	Observation vs trastuzumab		
Pertuzumab	Neoadjuvant HER2+ LBC	NeoSphere	TD vs PTD vs PT vs PD	2013	
Dortuguesch	Adiument		Chemotherapy + trastuzumab	2017	
Pertuzumab	Adjuvant HER2+ LBC	APHINITY	+ pertuzumab vs placebo	2017	
Noratinih	Extended adjuvant		Dlacaba ve naratinih	2017	
Neratinib	HER2+ LBC	ExteNET	Placebo vs neratinib	2017	
T-DM1	Adjuvant HER2+ LBC with residual disease after neoadjuvant taxane and trastuzumab-based treatment	KATHERINE	Trastuzumab vs T-DM1	2019	

LBC = localized breast. cancer; AC = doxorubicin and cyclophosphamide; T = paclitaxel; H = trastuzumab; TC = docetaxel and cyclophosphamide; TD = trastuzumab and docetaxel; PTD = pertuzumab, trastuzumab, trastuzumab and docetaxel; PT = pertuzumab and trastuzumab; PD = pertuzumab and docetaxel

Choong GM et al. CA Cancer J Clin 2020;70:355-74.

Flow of Neoadjuvant and Adjuvant Therapy in Breast Cancer

Krawczyk N et al. Cancers 2022 Jun 18;14(12):3002.

ORIGINAL ARTICLE

Ann Oncol 2017;28:2768-72.

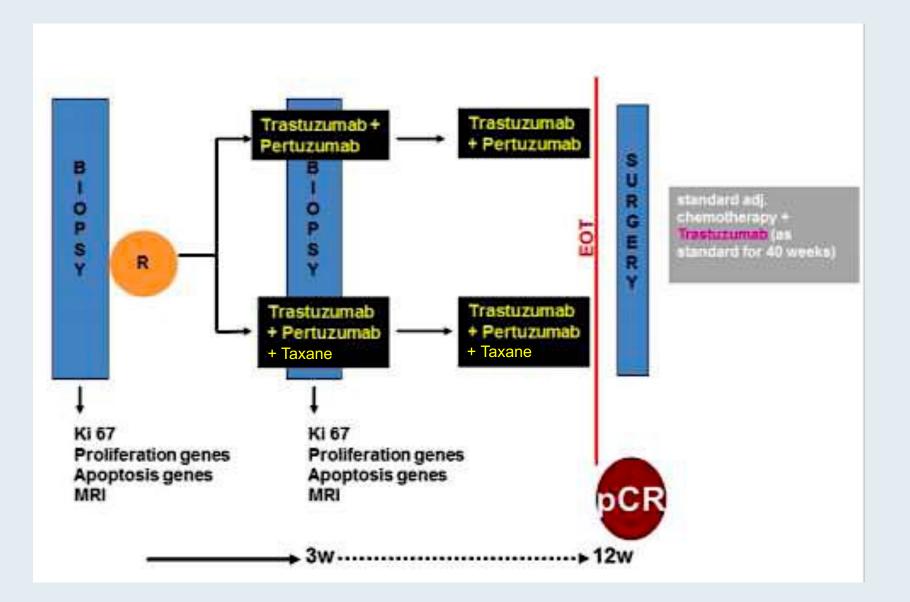
De-escalation strategies in HER2-positive early breast cancer (EBC): final analysis of the WSG-ADAPT HER2+/ HR— phase II trial: efficacy, safety, and predictive markers for 12 weeks of neoadjuvant dual blockade with trastuzumab and pertuzumab ± weekly paclitaxel

U. A. Nitz^{1,2}, O. Gluz^{1,2,3*}, M. Christgen⁴, E.-M. Grischke⁵, D. Augustin⁶, S. Kuemmel⁷, M. Braun⁸, J. Potenberg⁹, A. Kohls¹⁰, K. Krauss¹¹, A. Stefek¹², C. Schumacher¹³, H. Forstbauer¹⁴, T. Reimer¹⁵, H. Fischer¹⁶, C. Liedtke^{17,18}, R. Wuerstlein¹⁹, J. Schumacher²⁰, R. Kates¹, H. Kreipe³ & N. Harbeck^{1,19}, on behalf of the West-German Study Group (WSG)-ADAPT Investigators

Lancet Oncol 2022;23:625-35.

De-escalated neoadjuvant pertuzumab plus trastuzumab therapy with or without weekly paclitaxel in HER2-positive, hormone receptor-negative, early breast cancer (WSG-ADAPT-HER2+/HR-): survival outcomes from a multicentre, open-label, randomised, phase 2 trial

Ulrike Nitz*, Oleg Gluz*, Monika Graeser, Matthias Christgen, Sherko Kuemmel, Eva-Maria Grischke, Michael Braun, Doris Augustin, Jochem Potenberg, Katja Krauss, Claudia Schumacher, Helmut Forstbauer, Toralf Reimer, Andrea Stefek, Hans Holger Fischer, Enrico Pelz, Christine zu Eulenburg, Ronald Kates, Rachel Wuerstlein, Hans Heinrich Kreipe, Nadia Harbeck, on behalf of the WSG-ADAPT investigators



Adjuvant Dynamic Marker-Adjusted Personalized Therapy (ADAPT) Trial: Umbrella Trial Design

Diagnostic biopsy	Subtype classification	Induction therapy	Biopsy/ surgery	ADAPT Sub-trials
Prognostic estimation		Induction therapy (three weeks)	Efficacy estimation	
в	HR+/HER2-		B	→ ADAPT HR + / HER2-
I O	HER2+/HR+		O P	→ ADAPT HER2+ / HR+
P S	HER2+/HR- o approx. 7.5%*		S Y	→ ADAPT HER2+ / HR-
Y	HER2-/HR-		or Surgery	– → ADAPT Triple Negative
 Hormone receptors HER2 Ki-67 Proliferation genes Apoptosis genes RS (HR+) 	o approx. 15%*	ry breast cancer	 Hormone receptors HER2 Ki-67 Proliferation genes Apoptosis genes RS (HR+) 	

ADAPT HER2-Positive Schema

Nitz U et al. Lancet Oncol 2022;23:625-35.

WSG ADAPT Neoadjuvant Studies for HER2-Positive Disease

Study	N and setting	Treatment arms	pCR rate*	Survival
WSG-ADAPT HER2+/HR-	134 ER/PR-negative cT1-4c	 Trastuzumab + pertuzumab Trastuzumab + pertuzumab + paclitaxel 	34.4% vs 90.5%	5-year iDFS 87% vs 98% 5-year dDFS 92% vs 98% 5-year OS 94% vs 98%
WSG-ADAPT-TP HER2+/HR+	375 ER and/or PR- positive cT1-4c	 T-DM1 T-DM1 + ET Trastuzumab + ET 	41% vs 41.5% vs 15%	5-year DFS 88.9% vs 85.3% vs 84.6% 5-year OS 97.2% vs 96.4% vs 96.3

pCR = pathologic complete response; iDFS = invasive disease-free survival; dDFS = distant disease-free survival; OS = overall survival; ET = endocrine therapy

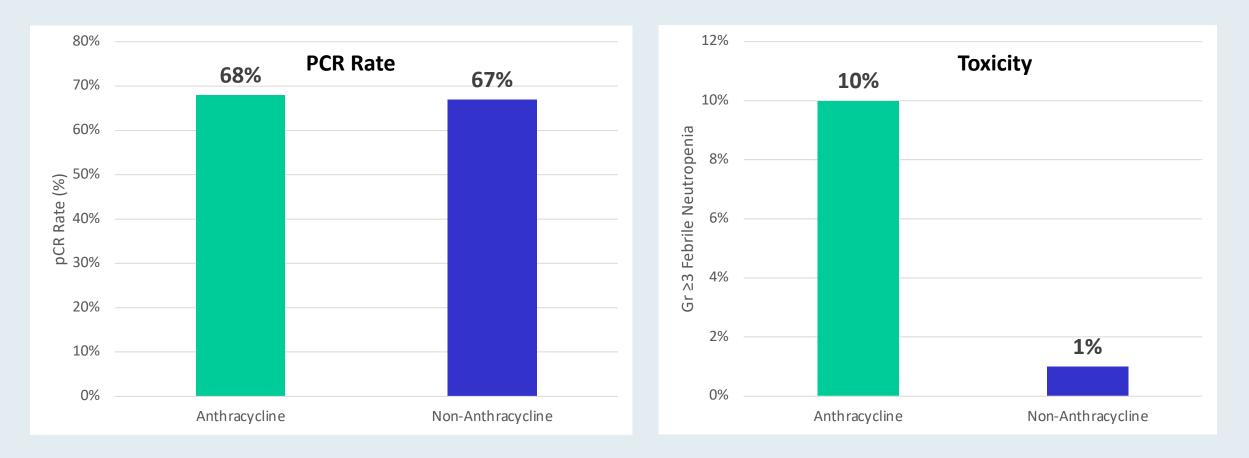
Lancet Oncol 2018;9(12):1630-40.

Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): a multicentre, open-label, randomised, phase 3 trial

Mette S van Ramshorst, Anna van der Voort, Erik D van Werkhoven, Ingrid A Mandjes, Inge Kemper, Vincent O Dezentjé, Irma M Oving, Aafke H Honkoop, Lidwine W Tick, Agnes J van de Wouw, Caroline M Mandigers, Laurence J van Warmerdam, Jelle Wesseling, Marie-Jeanne T Vrancken Peeters, Sabine C Linn, Gabe S Sonke, on behalf of the Dutch Breast Cancer Research Group (BOOG)

Research

JAMA Oncol 2021;7(7):978-84.


JAMA Oncology | Original Investigation

Three-Year Follow-up of Neoadjuvant Chemotherapy With or Without Anthracyclines in the Presence of Dual *ERBB2* Blockade in Patients With *ERBB2*-Positive Breast Cancer A Secondary Analysis of the TRAIN-2 Randomized, Phase 3 Trial

Anna van der Voort, MD; Mette S. van Ramshorst, MD, PhD; Erik D. van Werkhoven, MSc; Ingrid A. Mandjes, MSc; Inge Kemper, MANP; Annelie J. Vulink, MD; Irma M. Oving, MD, PhD; Aafke H. Honkoop, MD, PhD; Lidwine W. Tick, MD, PhD; Agnes J. van de Wouw, MD, PhD; Caroline M. Mandigers, MD, PhD; Laurence J. van Warmerdam, MD, PhD; Jelle Wesseling, MD, PhD; Marie-Jeanne T. Vrancken Peeters, MD, PhD; Sabine C. Linn, MD, PhD; Gabe S. Sonke, MD, PhD

TRAIN-2: pCR Rates and Key Toxicity Differences with Anthracycline- and Non-Anthracycline-Containing Regimens

van Ramshorst MS et al. Lancet Oncol 2018;9(12):1630-40.

TRAIN-2: Three-Year Follow-Up Summary

• TRAIN-2 is not powered to detect differences for event-free survival (EFS) and OS secondary endpoints, and results are for descriptive purposes

Endpoint	Anthracycline group (n = 219)	Nonanthracycline group (N = 219)	HR				
3-y EFS rate	92.7%	93.6%	0.90				
3-y OS rate	97.7%	98.2%	0.91				
Resu	Results were irrespective of hormone receptor and nodal status						

- pCR in the breast and axillary lymph nodes was associated with DFS (HR 0.42; *p* = 0.006)
- A decline in LVEF ≥10% from baseline to less than 50% was more common in patients who received anthracyclines than in those who did not (7.7% vs 3.2%; p = 0.04)

Adjuvant Trastuzumab Emtansine Versus Paclitaxel in Combination With Trastuzumab for Stage I HER2-Positive Breast Cancer (ATEMPT): A **Randomized Clinical Trial**

Sara M. Tolaney, MD, MPH^{1,2}; Nabihah Tayob, PhD¹; Chau Dang, MD³; Denise A. Yardley, MD⁴; Steven J. Isakoff, MD, PhD⁵; Vicente Valero, MD⁶; Meredith Faggen, MD¹; Therese Mulvey, MD⁵; Ron Bose, MD, PhD⁷; Jiani Hu, MSc¹; Douglas Weckstein, MD¹; Antonio C. Wolff, MD⁸; Katherine Reeder-Hayes, MD, MBA, MSc⁹; Hope S. Rugo, MD¹⁰; Bhuvaneswari Ramaswamy, MD¹¹; Dan Zuckerman, MD¹²; Lowell Hart, MD¹³; Vijayakrishna K. Gadi, MD, PhD¹⁴; Michael Constantine, MD¹; Kit Cheng, MD¹⁵; Frederick Briccetti, MD¹; Bryan Schneider, MD¹⁶; Audrey Merrill Garrett, MD¹⁷; Kelly Marcom, MD¹⁸; Kathy Albain, MD¹⁹; Patricia DeFusco, MD²⁰; Nadine Tung, MD^{2,21}; Blair Ardman, MD²²; Rita Nanda, MD²³; Rachel C. Jankowitz, MD²⁴; Mothaffar Rimawi, MD²⁵; Vandana Abramson, MD²⁶; Paula R. Pohlmann, MD, PhD, MSc²⁷; Catherine Van Poznak, MD²⁸; Andres Forero-Torres, MD²⁹; Minetta Liu, MD³⁰; Kathryn Ruddy, MD³⁰; Yue Zheng, MSc¹; Shoshana M. Rosenberg, ScD, MPH^{1,2}; Richard D. Gelber, PhD^{1,2}; Lorenzo Trippa, PhD^{1,2}; William Barry, PhD¹; Michelle DeMeo, BS¹; Harold Burstein, MD, PhD^{1,2}; Ann Partridge, MD, MPH^{1,2}; Eric P. Winer, MD^{1,2}; and Ian Krop, MD, PhD^{1,2}

J Clin Oncol 2021 July 20;39(21):2375-85.

ATEMPT: Invasive Disease-Free Survival (iDFS) and Recurrence-Free Interval (RFI)

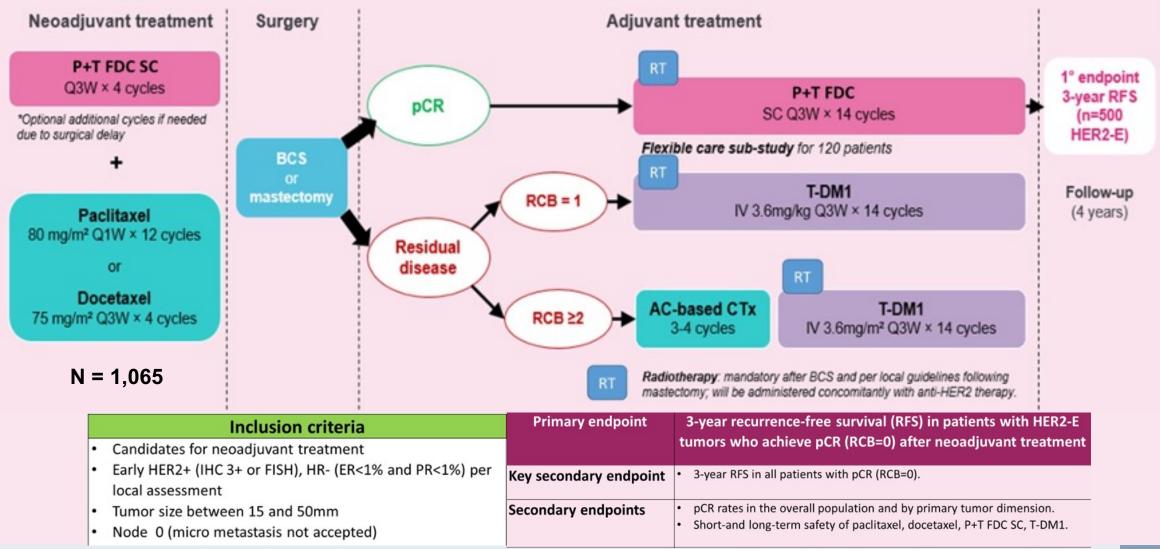
Outcome	T-DM1 (n = 383)	Paclitaxel/trastuzumab (n = 114)
Three-year iDFS	97.8%	93.4%
Three-year RFI	99.2%	94.3%

Tolaney SM et al. J Clin Oncol 2021;39(21):2375-85.

ATEMPT: Clinically Relevant Toxicity

Clinically Relevant Toxicity	T-DM1 (n = 383)	TH (n = 114)
Grade ≥3 nonhematologic toxicity	9%	11%
Grade ≥2 neurotoxicity	11%	23%
Grade ≥4 hematologic toxicity	1%	0%
Febrile neutropenia	0%	2%
Any toxicity requiring dose delay	28%	26%
Any toxicity requiring early discontinuation	17%	6%
Total	46%	47%

Select Ongoing Trials HER2-Positive Localized Breast Cancer


Trial identifier	Phase (N)	Setting	Regimens	Estimated completion date
CompassHER2 pCR (NCT04266249)	ll (N = 2,156)	Neoadjuvant and adjuvant	 Preoperative chemotherapy + trastuzumab/pertuzumab <u>If pCR</u> → postoperative trastuzumab/pertuzumab If residual disease → postoperative T-DM1 	2023
			or T-DM1 + tucatinib	
DESTINY-Breast05 (NCT04622319)	 (N = 1,600)	High risk, residual disease after neoadjuvant chemotherapy	 Trastuzumab deruxtecan (T-DXd) T-DM1 	2027
DESTINY-Breast11 (NCT05113251)	III (N = 624)	Neoadjuvant, high risk	• T-DXd • T-DXd \rightarrow THP • AC \rightarrow THP	2024

THP = paclitaxel, trastuzumab and pertuzumab

www.clinicaltrials.gov. Accessed August 2022.

DECRESCENDO Phase II De-escalation Study Design

Debien V et al. ASCO 2022; Abstract TPS621.

Lancet Oncol 2017;18:1688-700.

Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial

Miguel Martin, Frankie A Holmes, Bent Ejlertsen, Suzette Delaloge, Beverly Moy, Hiroji Iwata, Gunter von Minckwitz, Stephen K L Chia, Janine Mansi, Carlos H Barrios, Michael Gnant, Zorica Tomašević, Neelima Denduluri, Robert Šeparović, Erhan Gokmen, Anna Bashford, Manuel Ruiz Borrego, Sung-Bae Kim, Erik Hugger Jakobsen, Audrone Ciceniene, Kenichi Inoue, Friedrich Overkamp, Joan B Heijns, Anne C Armstrong, John S Link, Anil Abraham Joy, Richard Bryce, Alvin Wong, Susan Moran, Bin Yao, Feng Xu, Alan Auerbach, Marc Buyse, Arlene Chan, for the ExteNET Study Group*

ExteNET: 5-Year Analysis of Invasive Disease-Free Survival

	Events (n)	/patients (N)				Hazard ratio (95% CI)	Test of interaction p value (two-sided)
	Neratinib	Placebo					
	group	group					
Nodal status*							
Negative	14/335	19/336		2	.	0.83 (0.41-1.65)	0.844
1–3 positive nodes	55/664	74/664		<u></u>	⊢ ∔	0.75 (0.53-1.06)	
≥4 positive nodes	47/421	70/420				0.67 (0.46-0.96)	
Hormone receptor status*							
Positive	59/816	100/815		-	-	0.60 (0.43-0.83)	0.063
Negative	57/604	63/605				0.95 (0.66-1.35)	
Completion of prior trastuzumab							
≤1year	99/1152	145/1145			_	0.70 (0.54-0.90)	0.406
>1year	17/268	18/275		<u> </u>		1.00 (0.51-1.94)	
All patients					—	0.73 (0.57-0.92)	
		0.1	0.25	0.5 0.7	75 1 1.25 1.75 2.25		
			Favours ne	ratinib	Favours placebo		

Martin M et al. *Lancet Oncol* 2017;18:1688-700.

Continued Efficacy of Neratinib in Patients with HER2-Positive Early-Stage Breast Cancer: Final Overall Survival Analysis from the Randomized Phase 3 ExteNET Trial

Holmes FA et al. SABCS 2020;Abstract PD3-03.

ExteNET: Final Overall Survival Analysis (8-Year Follow-Up)

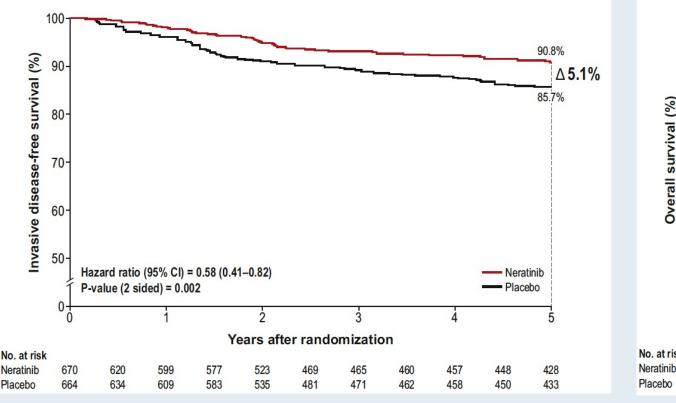
All patients (n=2840)	pulation		_	н	azard ratio (95% Cl) 0.95 (0.75-1.21)
Nodal status					
Negative (n=671)					0.78 (0.40-1.48)
Positive (n=2169)					0.98 (0.76-1.28)
Hormone receptor s	tatus				
Positive (n=1631)					0.80 (0.58-1.11)
Negative (n=1209)			•		1.18 (0.83–1.69)
Prior trastuzumab					
Concurrent (n=1770)					0.99 (0.72-1.35)
Sequential (n=1070)					0.91 (0.62-1.33)
Completion of prior	trastuzumab				
≤1 year (n=2297)		i			0.99 (0.76-1.28)
≥1 year (n=543)					0.78 (0.40-1.50)
Prior neoadjuvant th	erapy				
Yes (n=721)					0.76 (0.50-1.13)
No (n=2119)					1.12 (0.83-1.53)
pCR status					
No pCR (n=556)					0.87 (0.55-1.35)
Yes pCR (n=126)					0.25 (0.04-1.01)
	6	0.5 1.0	1.5	2.0	
		← Favors neratinib Fav	rors placebo →		

Holmes FA et al. SABCS 2020; Abstract PD3-03.

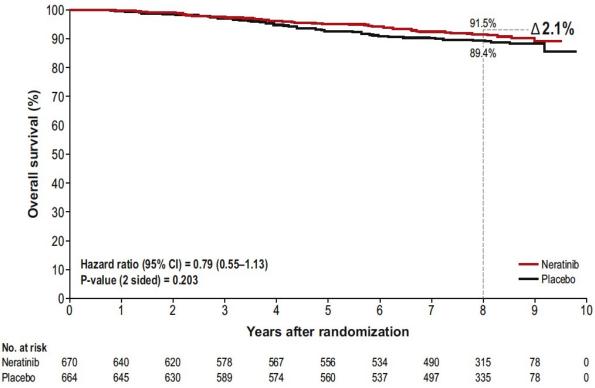
ExteNET Final Overall Survival Analysis: Conclusions

- In the final protocol-defined analysis, there were fewer deaths in the neratinib arm, but no significant improvement in OS (HR 0.95; 95% CI 0.75–1.21) in the ExteNET ITT population after 8 years of follow-up:
 - The data suggest an association between neratinib and improved OS in patients with HR+ disease (HR 0.80; 95% CI 0.58–1.12) when compared with patients with HR– tumors (HR 1.18; 95% CI 0.83–1.69), which is consistent with the primary 2-year and 5-year analyses of iDFS and DDFS.
- Descriptive analyses also suggest that neratinib may be associated with longer OS in subgroups of clinical interest including the HR+/≤1-year population (HR 0.79; 95% CI 0.55–1.13), and in the high-risk patient subgroup with residual disease after neoadjuvant therapy (HR 0.47; 95% CI 0.23–0.92):
 - Clinically meaningful improvements were consistently observed across the endpoints (iDFS, DDFS, OS).
- Neratinib is the first HER2-directed agent to show a trend towards improved CNS outcomes in early-stage HER2+ breast cancer:
 - In all groups (ITT, HR+/≤1-year, and no pCR), consistently fewer CNS events were observed in the neratinib arm compared with placebo.

Final Efficacy Results of Neratinib in HER2-positive Hormone Receptor-positive Early-stage Breast Cancer From the Phase III ExteNET Trial

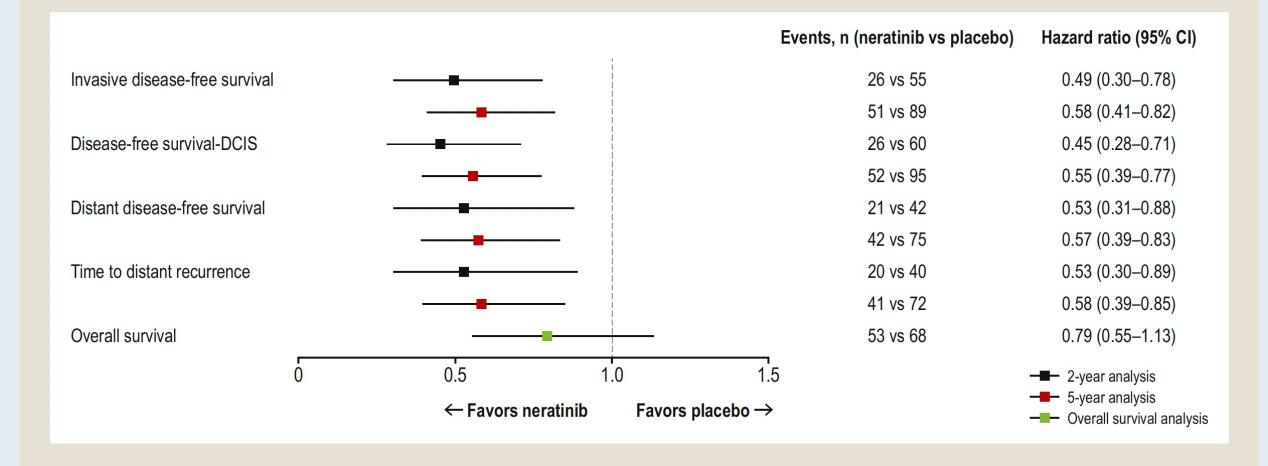

Arlene Chan,¹ Beverly Moy,² Janine Mansi,³ Bent Ejlertsen,⁴ Frankie Ann Holmes,⁵
Stephen Chia,⁶ Hiroji Iwata,⁷ Michael Gnant,⁸ Sibylle Loibl,⁹ Carlos H. Barrios,¹⁰
Isil Somali,¹¹ Snezhana Smichkoska,¹² Noelia Martinez,¹³ Mirta Garcia Alonso,¹⁴
John S. Link,¹⁵ Ingrid A. Mayer,¹⁶ Søren Cold,¹⁷ Serafin Morales Murillo,¹⁸
Francis Senecal,¹⁹ Kenichi Inoue,²⁰ Manuel Ruiz-Borrego,²¹ Rina Hui,²²
Neelima Denduluri,²³ Debra Patt,²⁴ Hope S. Rugo,²⁵ Stephen R.D. Johnston,²⁶
Richard Bryce,²⁷ Bo Zhang,²⁷ Feng Xu,²⁷ Alvin Wong,²⁷ Miguel Martin,²⁸ for the ExteNET Study Group

Clin Breast Cancer 2021;21(1):80-91.

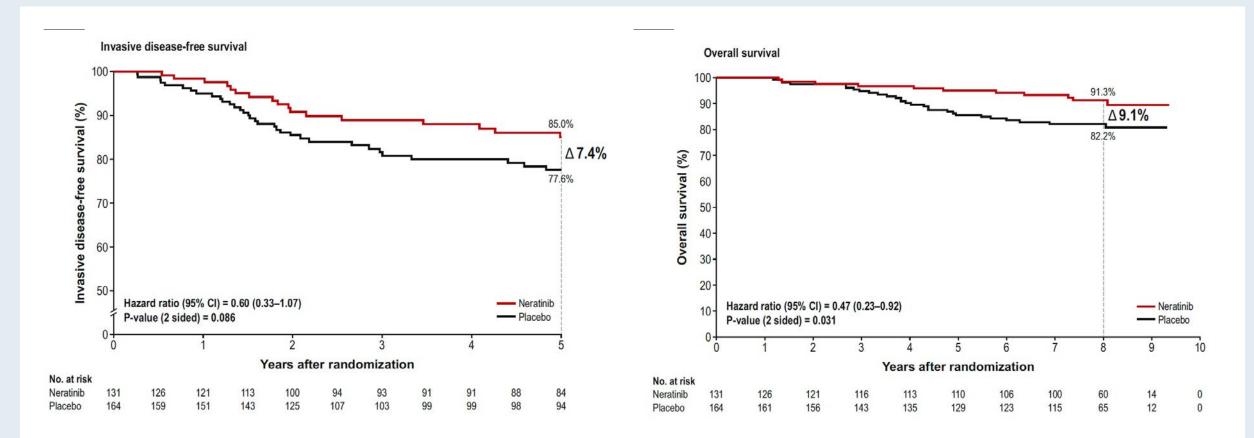


ExteNET: Final Analysis with Neratinib for HER2-Positive Localized Breast Cancer (HR+/≤ 1-Year population)

Invasive disease-free survival at 5 years


Overall survival at 8 years

Chan A et al. Clin Breast Cancer 2021;21(1):80-91.


ExteNET: 2-Year, 5-Year and Overall Survival in HR+/≤1-Year Population (N = 1,334)

Chan A et al. Clin Breast Cancer 2021;21(1):80-91.

ExteNET: Invasive Disease-Free and Overall Survival at 5 Years in the HR+/≤1-Year Population with No pCR After Neoadjuvant Therapy (N = 295)

Chan A et al. Clin Breast Cancer 2021;21(1):80-91.

ExteNET: Cumulative Incidence of CNS Recurrence

	Events, n		Cumulative incidence of CNS recurrence		
Population or subgroup	Neratinib	Placebo	Neratinib	Placebo	
Intention-to-treat population (n = 2,840)	16	23	1.3%	1.8%	
HR-positive/≤1-year population (EU indication) (n = 1,334)	4	12	0.7%	2.1%	
Adjuvant or neoadjuvant therapy (n = 1,334) Adjuvant (n = 980) Neoadjuvant (n = 354)	3 1	6 6	0.7% 0.7%	1.5% 3.7%	
pCR status (n = 354) No (n = 295) Yes (n = 38)	1 0	5 1	0.8% 0	3.6% 5.0%	

ExteNET: Adverse Events (AEs)

Summary of AEs

	Neratinib $(n = 662)$	Placebo $(n = 657)$
Any TEAE	649 (98)	567 (86)
Grade 3 or 4 TEAE	327 (49)	76 (12)
Fatal TEAE	1 (<1)	0 (0)
Serious TEAE	45 (7)	36 (6)
Treatment-related TEAE	630 (95)	360 (55)
Serious treatment-related TEAE	19 (3)	5 (<1)
TEAE leading to		
Treatment discontinuation	178 (27)	30 (5)
Study withdrawal	11 (2)	2 (<1)
Dose reduction	203 (31)	13 (2)
Hospitalization	41 (6)	35 (5)
Dose interruption	280 (42)	75 (11)

Frequent Treatment-Emergent AEs (TEAEs)

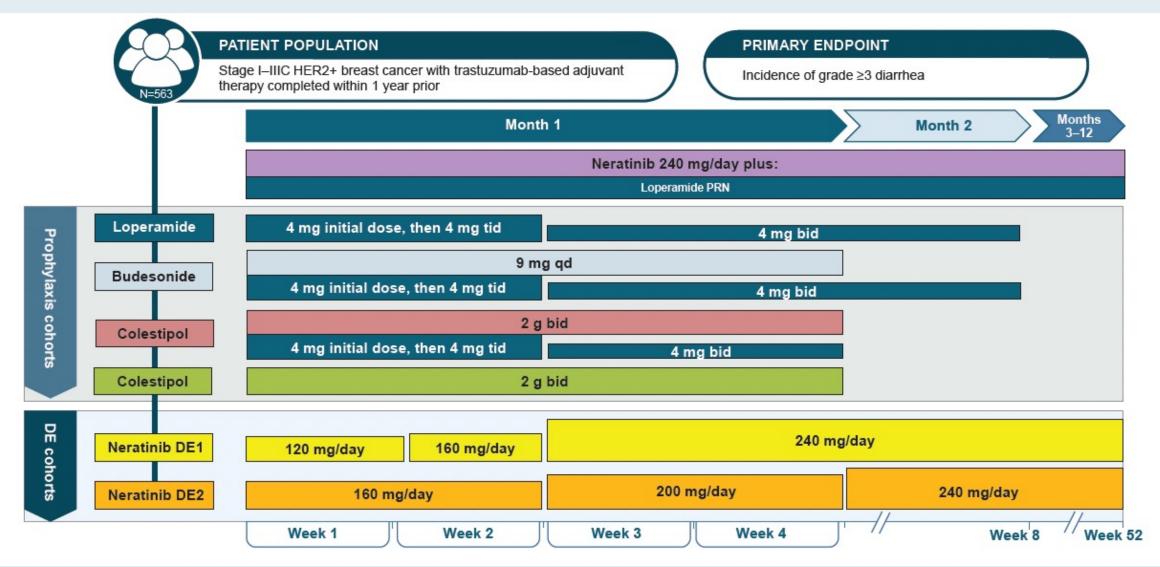
	Neratinib	(n = 662)	Placebo (n $=$ 657)		
	Grade 1-2	Grade 3	Grade 1-2	Grade 3	
Diarrhea	365 (55)	261 (39)	213 (32)	7 (1)	
Nausea	280 (42)	9 (1)	135 (21)	2 (<1)	
Fatigue	177 (27)	13 (2)	129 (20)	2 (<1)	
Vomiting	150 (23)	24 (4)	41 (6)	2 (<1)	
Abdominal pain	145 <mark>(</mark> 22)	11 (2)	58 <mark>(</mark> 9)	1 (<1)	
Headache	119 (18)	6 (<1)	125 (19)	1 (<1)	
Upper abdominal pain	90 (14)	6 (<1)	35 (5)	3 (<1)	
Rash	90 (14)	3 (<1)	40 (6)	0 (0)	
Decreased appetite	79 (12)	1 (<1)	13 (2)	0 (0)	
Muscle spasms	81 (12)	0 (0)	21 (3)	1 (<1)	

Association Between Treatment Duration and Overall Survival in Early-Stage HER2+ Breast Cancer Patients Receiving Extended Adjuvant Therapy with Neratinib in the ExteNET Trial

Moy B et al. ASCO 2021;Abstract 540.

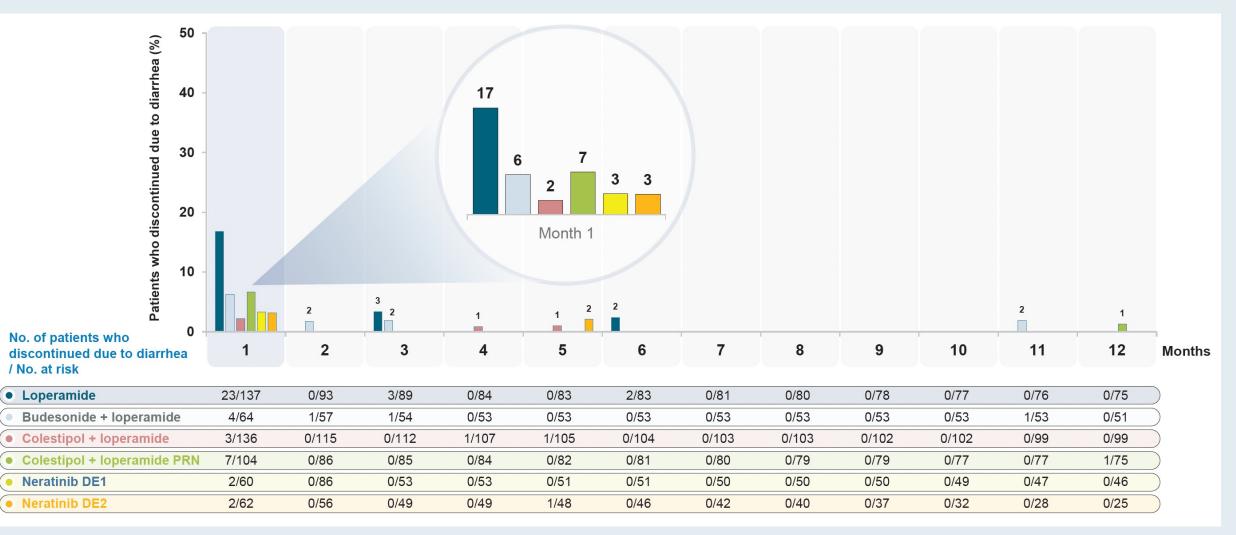
ExteNET: Survival Summary for Patients Who Completed Planned Neratinib Therapy

			5-year analysis			OS analysis		
	٩	J	iDFS	rate	DDFS rate		OS rate ^a	
Population or subgroup	Neratinib	Placebo	Difference, % ^b	HR (95% CI)	Difference, % ^{b,8,9}	HR (95% CI)	Difference, % ^b	HR (95% CI)
ITT population	1420	1420	+2.5	0.73 (0.57–0.92)°	+1.7	0.78 (0.60–1.01)°	-0.1	0.95 (0.75−1.21)°
Completed therapy ^d	872	1420	+3.3	0.68 (0.52–0.90)	+2.0	0.76 (0.56–1.02)	+2.0	0.78 (0.58–1.04)
HR+/≤1 year ^e (EU indication)	670	664	+5.1	0.58 (0.41–0.82)	+4.7	0.57 (0.39–0.83)	+2.1	0.79 (0.55–1.13)
Completed therapy ^d	402	664	+7.4	0.44 (0.28–0.68)	+5.9	0.49 (0.30–0.76)	+5.8	0.49 (0.29–0.78)
HR+/≤1 year no pCR ^f	131	164	+7.4	0.60 (0.33–1.07)	+7.0 ^g	0.61 (0.32–1.11)	+9.1	0.47 (0.23–0.92)
Completed therapy ^d	92	164	+11.9	0.42 (0.19–0.83)	+10.9 ^h	0.42 (0.18–0.88)	+13.2	0.29 (0.10–0.68)



Effects of Diarrheal Prophylaxis or Dose Escalation on Neratinib-Associated Diarrhea and Tolerability in Patients with HER2+ Early-Stage Breast Cancer: Final Findings from the CONTROL Trial

Chan A et al. ESMO Breast 2022;Abstract P73.


CONTROL Trial Cohorts: Study Schema

Chan A et al. ESMO Breast 2022; Abstract P73.

CONTROL: All Strategies Reduced the Rate of Discontinuation Due to Diarrhea

CONTROL: Diarrhea Profile

Outcome	L (n=137)	BL (n=64)	CL (n=136)	CL-PRN (n=104)	DE1 (n=60)	DE2 (n=62)
Any grade diarrhea, n (%)	109 (80)	55 (86)	113 (83)	99 (95)	59 (98)	61 (98)
Grade 1	33 (24)	15 (23)	38 (28)	34 (33)	24 (40)	23 (37)
Grade 2	34 (25)	22 (34)	47 (35)	31 (30)	27 (45)	21 (34)
Grade 3	42 (31)	18 (28)	28 (21)	34 (33)	8 (13)	17 (27)
Grade 4	0	0	0	0	0	0
Median episodes of grade 3 diarrhea, n	1	1	1	1	2	1
Median time to first onset of grade 3 diarrhea, days	7.0	19.0	41.0	19.0	45.0	19.0
Median cumulative duration of grade 3 diarrhea per patient, days	3.0	3.0	3.5	2.0	2.5	2.0
Dose holds due to diarrhea, n (%)	20 (15)	12 (19)	22 (16)	15 (14)	7 (12)	8 (13)
Discontinuations due to diarrhea , n (%)	28 (20)	7 (11)	5 (4)	8 (8)	2 (3)	4 (6)
Hospitalizations due to diarrhea, n (%)	2 (2)	0	0	0	0	0

CONTROL: Conclusions

- These final findings from the CONTROL study show improved tolerability of neratinib with all diarrhea prophylaxis and DE schedules. These results demonstrate that neratinib is well tolerated as extended-adjuvant treatment for patients with HER2+ breast cancer after 1 year of trastuzumab.
- Adoption of neratinib DE with loperamide PRN during the first 2 weeks of treatment (DE1 cohort)
 was associated with a lower rate of Grade 3 diarrhea compared to the CONTROL prophylaxis
 strategies, the DE2 strategy and the neratinib arm in the ExteNET trial.
- The DE1 cohort also had the lowest rate of diarrhea-related discontinuations (3%) and dose holds (12%) compared to the other strategies investigated in the CONTROL trial and the neratinib arm in the ExteNET trial.
- These findings suggest that several modalities, most notably neratinib DE1 with loperamide PRN, allow patients to stay on treatment longer and receive the full benefit of neratinib therapy.
- The US package label for neratinib now includes both the mandatory loperamide prophylaxis regimen and the DE1 strategy from CONTROL as diarrhea-mitigation strategies.

Chan A et al. ESMO Breast 2022; Abstract P73.

Evolving Treatment Paradigms for Patients with Metastatic HER2-Positive BC

Systemic Therapy for Advanced Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer: ASCO Guideline Update

Sharon H. Giordano, MD, MPH¹; Maria Alice B. Franzoi, MD²; Sarah Temin, MSPH³; Carey K. Anders, MD⁴; Sarat Chandarlapaty, MD, PhD⁵; Jennie R. Crews, MD⁶; Jeffrey J. Kirshner, MD⁷; Ian E. Krop, MD, PhD⁸; Nancy U. Lin, MD⁸; Aki Morikawa, MD, PhD⁹; Debra A. Patt, MD, MPH, MBA¹⁰; Jane Perlmutter, PhD¹¹; Naren Ramakrishna, MD, PhD¹²; and Nancy E. Davidson, MD¹³

J Clin Oncol 2022 August;40:2612-35.

Trastuzumab Deruxtecan (T-DXd) and DESTINY-Breast Studies

Trastuzumab Deruxtecan Significantly Delayed Disease Progression in Comparison to Physician's Choice of Treatment for HER2-Positive Metastatic Breast Cancer in the DESTINY-Breast02 Phase III Trial Press Release – August 15, 2022

Positive high-level results from the DESTINY-Breast02 Phase III trial of trastuzumab deruxtecan versus physician's choice of treatment showed the trial met the primary endpoint, demonstrating a statistically significant and clinically meaningful improvement in progression-free survival in patients with HER2-positive unresectable and/or metastatic breast cancer previously treated with trastuzumab emtansine. The trial also met the key secondary endpoint of improved overall survival.

The trial evaluated a similar later-line patient population as the single-arm DESTINY-Breast01 Phase II trial, which was the basis for initial approvals in advanced HER2-positive metastatic breast cancer. The safety profile of trastuzumab deruxtecan in DESTINY-Breast02 was consistent with previous Phase III clinical trials with no new safety concerns identified. Interstitial lung disease (ILD) rates and severity were consistent with those observed in other metastatic breast cancer trials of trastuzumab deruxtecan, with a low rate of Grade 5 ILD events observed as determined by an independent adjudication committee.

Fam-Trastuzumab Deruxtecan-Nxki Approved in the United States for HER2-Positive Metastatic Breast Cancer Treated with a Prior Anti-HER2 Regimen Press Release – May 5, 2022

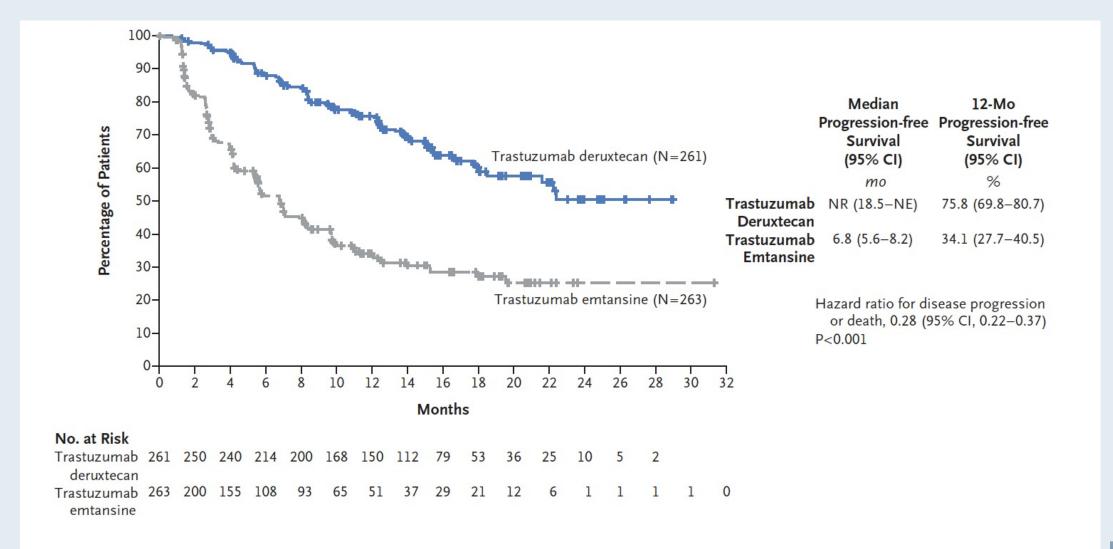
"Fam-trastuzumab deruxtecan-nxki has been approved in the US for the treatment of adult patients with unresectable or metastatic HER2-positive breast cancer who have received a prior anti-HER2-based regimen either in the metastatic setting, or in the neoadjuvant or adjuvant setting and have developed disease recurrence during or within six months of completing therapy.

The approval by the Food and Drug Administration (FDA) was based on positive results from the DESTINY-Breast03 Phase III trial that showed fam-trastuzumab deruxtecan-nxki reduced the risk of disease progression or death by 72% versus trastuzumab emtansine (T-DM1) (hazard ratio [HR] 0.28; 95% confidence interval [CI]: 0.22-0.37; p<0.0001) in patients with HER2-positive unresectable and/or metastatic breast cancer previously treated with trastuzumab and a taxane.

The approval was granted under the FDA's Real-Time Oncology Review (RTOR) program and converts the accelerated approval of fam-trastuzumab deruxtecan-nxki in later line HER2-positive metastatic breast cancer to standard approval, broadening fam-trastuzumab deruxtecan-nxki's breast cancer indication in the US to earlier lines of use in patients with HER2-positive metastatic breast cancer."

N Engl J Med 2022 March 24;386:1143-54.

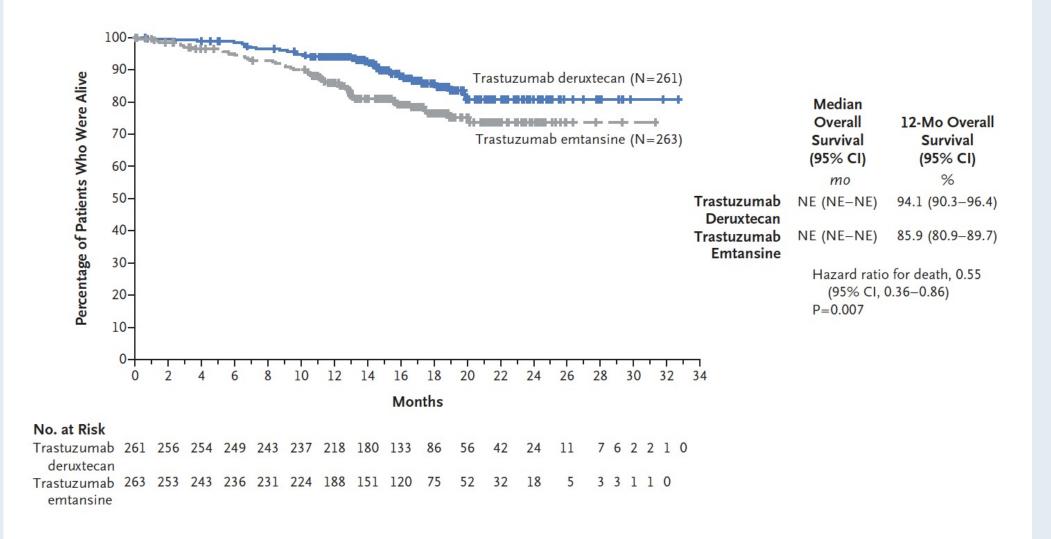
The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer

J. Cortés, S.-B. Kim, W.-P. Chung, S.-A. Im, Y.H. Park, R. Hegg, M.H. Kim, L.-M. Tseng, V. Petry, C.-F. Chung, H. Iwata, E. Hamilton, G. Curigliano, B. Xu, C.-S. Huang, J.H. Kim, J.W.Y. Chiu, J.L. Pedrini, C. Lee, Y. Liu, J. Cathcart, E. Bako, S. Verma, and S.A. Hurvitz, for the DESTINY-Breast03 Trial Investigators*

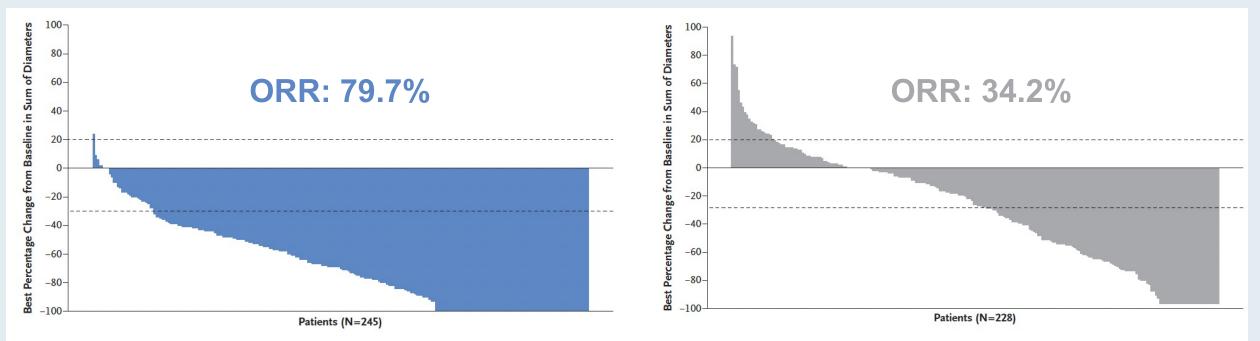
DESTINY-Breast03: Progression-Free Survival


Cortés J et al. N Engl J Med 2022;386(12):1143-54.

DESTINY-Breast03: Progression-Free Survival in Prespecified Subgroups

Subgroup	No. of Patients	No. of Events/	No. of Patients		gression-free (95% CI)		Disease Progression h (95% CI)
		Trastuzumab deruxtecan	Trastuzumab emtansine	Trastuzumab deruxtecan	Trastuzumab emtansine		
All patients		87/261	158/263	NE (18.5-NE)	6.8 (5.6-8.2)	H	0.28 (0.22-0.37)
Hormone-receptor status							
Positive	272	46/133	84/139	22.4 (17.7-NE)	6.9 (4.2-9.8)	Here	0.32 (0.22-0.46)
Negative	248	41/126	73/122	NE (18.0-NE)	6.8 (5.4-8.3)	HO-H	0.30 (0.20-0.44)
Previous pertuzumab treatment							
Yes	320	57/162	98/158	NE (18.5-NE)	6.8 (5.4-8.3)	HH-I	0.30 (0.22-0.43)
No	204	30/99	60/105	NE (16.5-NE)	7.0 (4.2-9.7)	HeH	0.30 (0.19-0.47)
Visceral disease						I	
Yes	384	72/195	123/189	22.2 (16.5-NE)	5.7 (4.2-7.0)	He I	0.28 (0.21-0.38)
No	140	15/66	35/74	NE (NE-NE)	11.3 (6.8–NE)	H H 1	0.32 (0.17-0.58)
Lines of previous therapy							
0 or 1	258	46/132	75/126	22.4 (17.9-NE)	8.0 (5.7-9.7)	HeH	0.33 (0.23-0.48)
≥2	266	41/129	83/137	NE (16.8-NE)	5.6 (4.2-7.1)	HO-I	0.28 (0.19-0.41)
Stable brain metastases						I	
Yes	114	31/62	31/52	15.0 (12.6-22.2)	5.7 (2.9-7.1)	H	0.38 (0.23-0.64)
No	410	56/199	127/211	NE (22.4–NE)	7.0 (5.5–9.7)	0.0 0.5 1.0	0.27 (0.19–0.37)
						Deruxtecan Emt	tuzumab tansine etter

DESTINY-Breast03: First Interim Analysis of Overall Survival



Cortés J et al. N Engl J Med 2022;386(12):1143-54.

DESTINY-Breast03: Antitumor Activity

Trastuzumab deruxtecan

Trastuzumab emtansine

ORR = overall response rate

2022 ASCO[®] ANNUAL MEETING Abstract 1000

Trastuzumab Deruxtecan vs Trastuzumab Emtansine in Patients With HER2-Positive Unresectable and/or Metastatic Breast Cancer: Safety Follow-up of the Randomized, Phase 3 Study DESTINY-Breast03

Erika Hamilton, MD,^a Vanessa Petry, Winnie Yeo, Sung-Bae Kim, Giampaolo Bianchini, Toshinari Yamashita, Kan Yonemori, Kenichi Inoue, Giuseppe Curigliano, Sara A. Hurvitz, Javier Cortés, Hiroji Iwata, Jillian Cathcart, Yali Liu, Caleb Lee, Emarjola Bako, Rachel Kim, Seock-Ah Im On behalf of the DESTINY-Breast03 investigators

^aSarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

DESTINY-Breast03: Safety Update Overview

n (%)	T-DXd n = 257	T-DM1 n = 261
Patients discontinued from study treatment	141 (54.9)	222 (85.1)
Any grade TEAE	256 (99.6)	249 (95.4)
Grade ≥3 TEAE	137 (53.3)	130 (49.8)
Any grade serious TEAE	54 (21.0)	50 (19.2)
Grade ≥3 serious TEAE	39 (15.2)	38 (14.6)
TEAE associated with drug discontinuation	38 (14.8)	19 (7.3)
TEAE associated with dose reduction	59 (23.0)	36 (13.8)

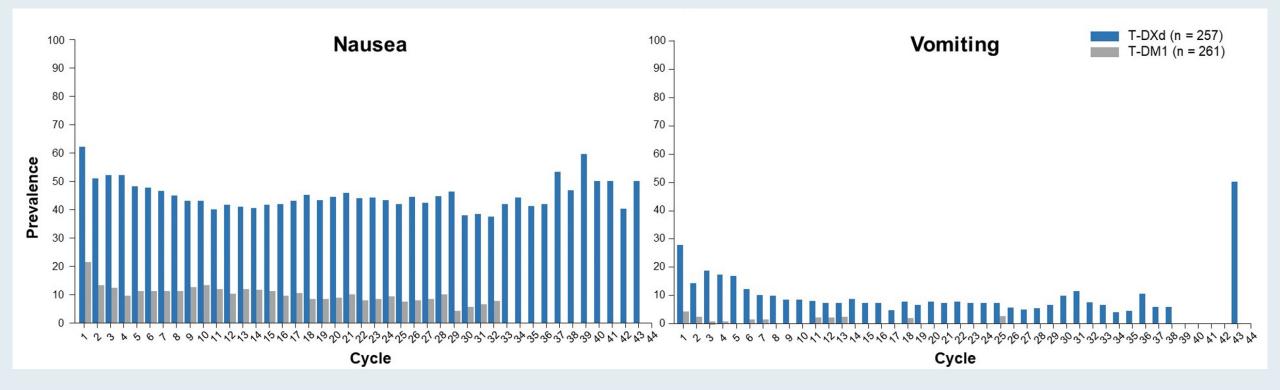
- Rates of TEAEs (any grade and grade ≥3) and serious TEAEs were similar between the T-DXd and T-DM1 arms
- TEAEs associated with drug discontinuation occurred in 38 patients (14.8%) in the T-DXd arm and 19 patients (7.3%) in the T-DM1 arm

TEAE = treatment-emergent adverse event

DESTINY-Breast03: Drug-Related TEAEs in ≥20% of Patients

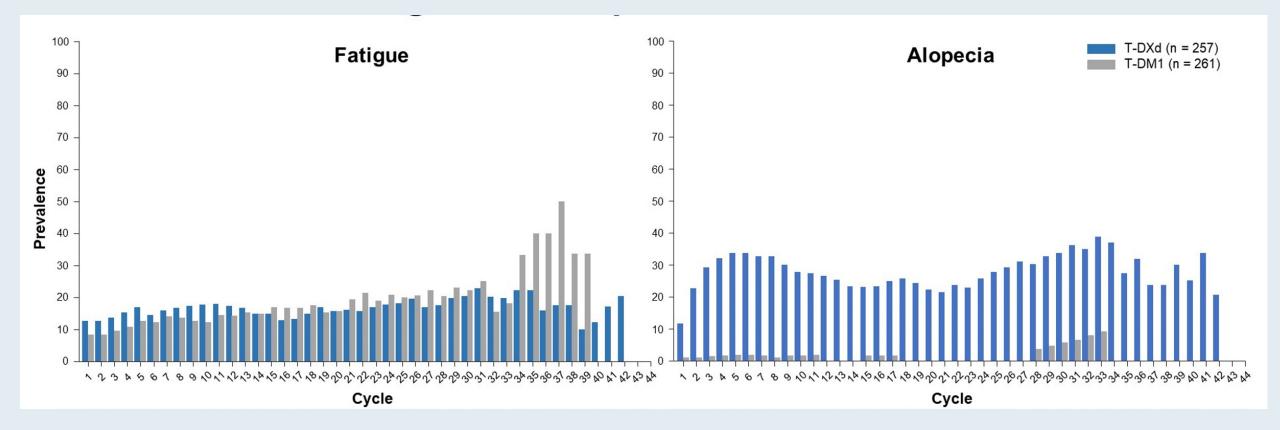
		T-DXd n = 257		M1 261
n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Nausea	189 (73.5)	17 (6.6)	72 (27.6)	1 (0.4)
Fatigue	118 (45.9)	16 (6.2)	76 (29.1)	2 (0.8)
Vomiting	114 (44.4)	4 (1.6)	15 (5.7)	1 (0.4)
Neutropenia	111 (43.2)	51 (19.8)	30 (11.5)	8 (3.1)
Alopecia	97 (37.7)	1 (0.4)	7 (2.7)	0
Anemia	82 (31.9)	16 (6.2)	37 (14.2)	11 (4.2)
Leukopenia	79 (30.7)	17 (6.6)	21 (8.0)	2 (0.8)
Decreased appetite	68 (26.5)	3 (1.2)	34 (13.0)	0
Thrombocytopenia	65 (25.3)	19 (7.4)	137 (52.5)	65 (24.9)
Diarrhea	61 (23.7)	1 (0.4)	11 (4.2)	2 (0.8)
Constipation	60 (23.3)	0	25 (9.6)	0

DESTINY-Breast03: Time to First Onset of TEAEs


Median time to event, days	T-DXd n = 257	T-DM1 n = 261
TEAE associated with treatment discontinuation	224	147
TEAE associated with first dose reduction	96	19
Selected TEAEs		
Anemia	70.0	42.0
Lymphopenia	196.0	168.0
Thrombocytopenia	132.0	8.0
Fatigue	22.0	24.0
Leukopenia	74.5	92.0
Neutropeniaª	64.0	105.0
Nausea	2.0	3.0
Vomiting	10.0	6.0
Alopecia	27.0	43.0

- TEAEs associated with first drug discontinuation or first dose reduction occurred later with T-DXd treatment than with T-DM1 treatment
- Median time to any TEAE associated with first dose reduction was longer in the T-DXd arm at 96 days compared with the T-DM1 arm at 19 days

ILD = interstitial lung disease



DESTINY-Breast03: Prevalence of Nausea and Vomiting

DESTINY-Breast03: Prevalence of Fatigue and Alopecia

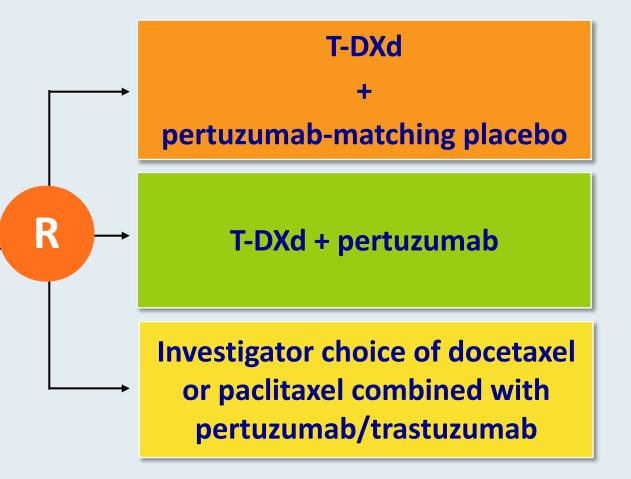
DESTINY-Breast03: Adjudicated Drug-Related ILD/Pneumonitis

	T-DXd n = 257	T-DM1 n = 261
Any grade, n (%) Grade 1 Grade 2 Grade 3 Grade 4 Grade 5	28 (10.9) 7 (2.7) 19 (7.4) 2 (0.8) 0 0	5 (1.9) 4 (1.5) 1 (0.4) 0 0 0
Time to first onset, median (range), days	181 (33-507)	289 (80-499)
Outcome of worst event, n (%) Fatal Not recovered/not resolved Ongoing Recovering/resolving Recovered/resolved with sequelae Recovered/resolved	0 8 (28.6) 0 2 (7.1) 2 (7.1) 16 (57.1)	1 (20.0)ª 0 0 0 4 (80.0)

For this safety update:

- Majority of adjudicated ILD/pneumonitis cases were low grade and no new grade 4 or 5 events occurred in either treatment arm
- One additional grade 2 adjudicated drug-related ILD/pneumonitis occurred
- The majority of events resolved with ongoing follow-up

DESTINY-Breast09 Phase III Trial Design


Estimated enrollment: N = 1,134

Pathologically documented breast cancer:

- Advanced or metastatic
- Locally assessed and prospectively centrally confirmed as IHC 3+ or ISH+
- Documented by local testing as HR-positive or negative in the metastatic setting

No prior chemotherapy or HER2-targeted therapy for advanced or metastatic disease or only 1 previous line of ET in the metastatic setting

Prior (neo)adjuvant chemotherapy or HER2targeted therapy allowed if >6 months from treatment to diagnosis of metastasis

www.clinicaltrials.gov. NCT04784715. Accessed August 2022.

HER2-Low Metastatic Breast Cancer

Trastuzumab Deruxtecan Granted FDA Approval for HER2-Low Breast Cancer Press Release – August 5, 2022

"Today, the US Food and Drug Administration approved fam-trastuzumab-deruxtecannxki, an IV infusion for the treatment of patients with unresectable (unable to be removed) or metastatic (spread to other parts of the body) HER2-low breast cancer. This is the first approved therapy targeted to patients with the HER2-low breast cancer subtype, which is a newly defined subset of HER2-negative breast cancer.

Patients with HER2-low breast cancer are eligible for fam-trastuzumab-deruxtecan-nxki if they have received a prior chemotherapy in the metastatic setting, or their cancer returned during, or within 6 months of completing, adjuvant chemotherapy.

This approval is based on DESTINY-Breast04, a randomized, multicenter, open label clinical trial that enrolled 557 adult patients with unresectable or metastatic HER2-low breast cancer."

https://www.fda.gov/news-events/press-announcements/fda-approves-first-targeted-therapy-her2-low-breast-cancer

2022 ASCO ANNUAL MEETING Abstract LBA3 DESTINY-Breast04

Trastuzumab deruxtecan (T-DXd) vs treatment of physician's choice in patients with HER2-low unresectable and/or metastatic breast cancer:

Results of DESTINY-Breast04, a randomized, phase 3 study

Shanu Modi Memorial Sloan Kettering Cancer Center, Memorial Hospital, New York, NY, USA

June 5, 2022

Additional authors: William Jacot, Toshinari Yamashita, Joo Hyuk Sohn, Maria Vidal, Eriko Tokunaga, Junji Tsurutani, Naoto Ueno, Yee Soo Chae, Keun Seok Lee, Naoki Niikura, Yeon Hee Park, Xiaojia Wang, Binghe Xu, Dhiraj Gambhire, Lotus Yung, Gerold Meinhardt, Yibin Wang, Nadia Harbeck, David Cameron

On behalf of the DESTINY-Breast04 investigators

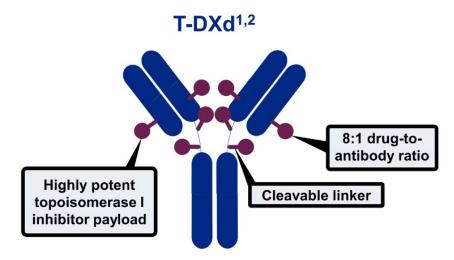
The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

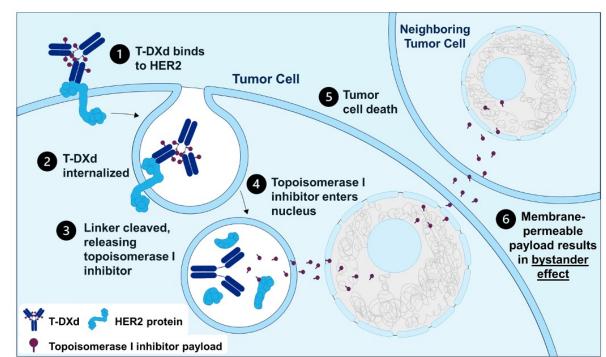
ASCO AMERICAN SOCIETY OF CLINICAL ONCOLOGY

nor, licensed by ASCO. Permission required for re-

JULY 7, 2022

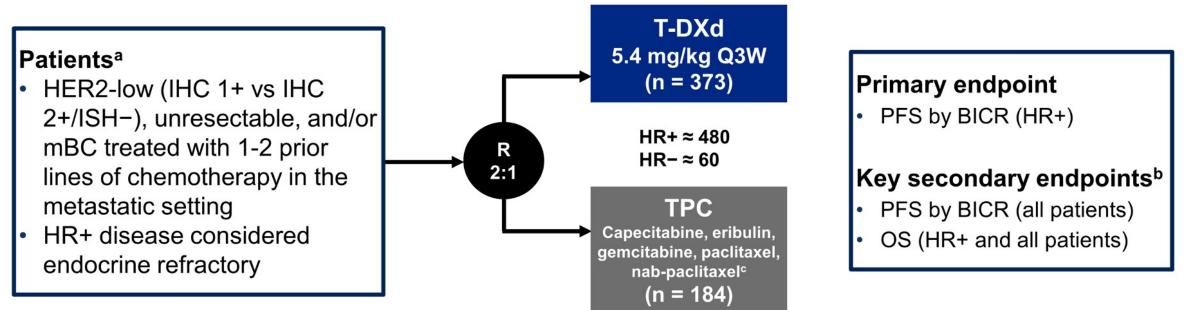

VOL. 387 NO. 1

Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer


S. Modi, W. Jacot, T. Yamashita, J. Sohn, M. Vidal, E. Tokunaga, J. Tsurutani, N.T. Ueno, A. Prat, Y.S. Chae, K.S. Lee, N. Niikura, Y.H. Park, B. Xu, X. Wang, M. Gil-Gil, W. Li, J.-Y. Pierga, S.-A. Im, H.C.F. Moore, H.S. Rugo, R. Yerushalmi, F. Zagouri, A. Gombos, S.-B. Kim, Q. Liu, T. Luo, C. Saura, P. Schmid, T. Sun, D. Gambhire, L. Yung, Y. Wang, J. Singh, P. Vitazka, G. Meinhardt, N. Harbeck, and D.A. Cameron, for the DESTINY-Breast04 Trial Investigators*

T-DXd Mechanism of Action, Bystander Effect and Rationale for Targeting HER2-Low Breast Cancer

Internalization of T-DXd leads to release of the DXd payload and subsequent cell death in the target tumor cell and neighboring tumor cells through the bystander effect^{1,2}

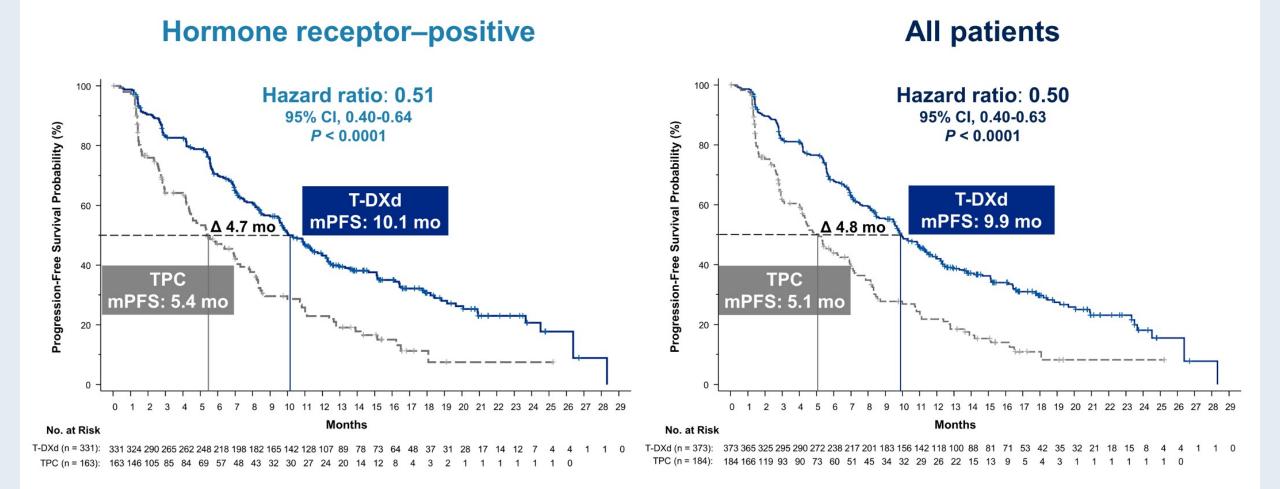

Adapted with permission from Modi S, et al. J Clin Oncol 2020;38:1887-96. CC BY ND 4.0.

 Results from a phase 1b study have reported efficacy of T-DXd in heavily pretreated patients (N = 54) with HER2-low mBC, with a mPFS of 11.1 months and an ORR of 37.0%³

Modi S et al. ASCO 2022; Abstract LBA3. Modi S et al. N Engl J Med 2022 July 7; 387(1):9-20.

DESTINY-Breast04 Phase III Trial Schema

Stratification factors

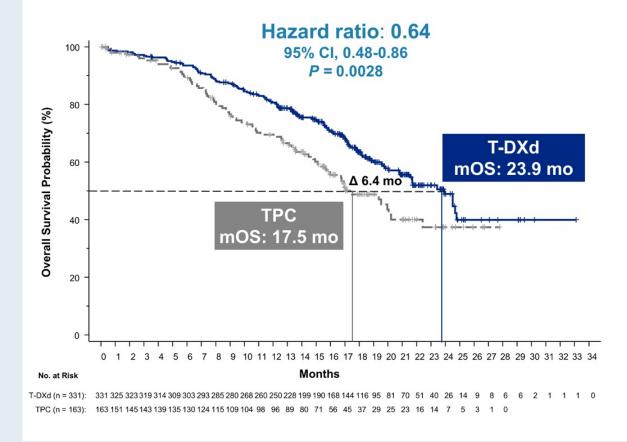

- Centrally assessed HER2 status^d (IHC 1+ vs IHC 2+/ISH-)
- 1 versus 2 prior lines of chemotherapy
- HR+ (with vs without prior treatment with CDK4/6 inhibitor) versus HR-

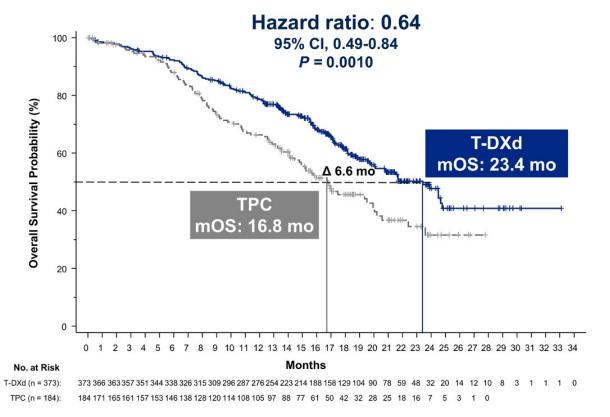
TPC = treatment of physician's choice; PFS = progression-free survival; BICR = blinded independent central review; OS = overall survival

Modi S et al. ASCO 2022; Abstract LBA3. Modi S et al. N Engl J Med 2022 July 7; 387(1):9-20.

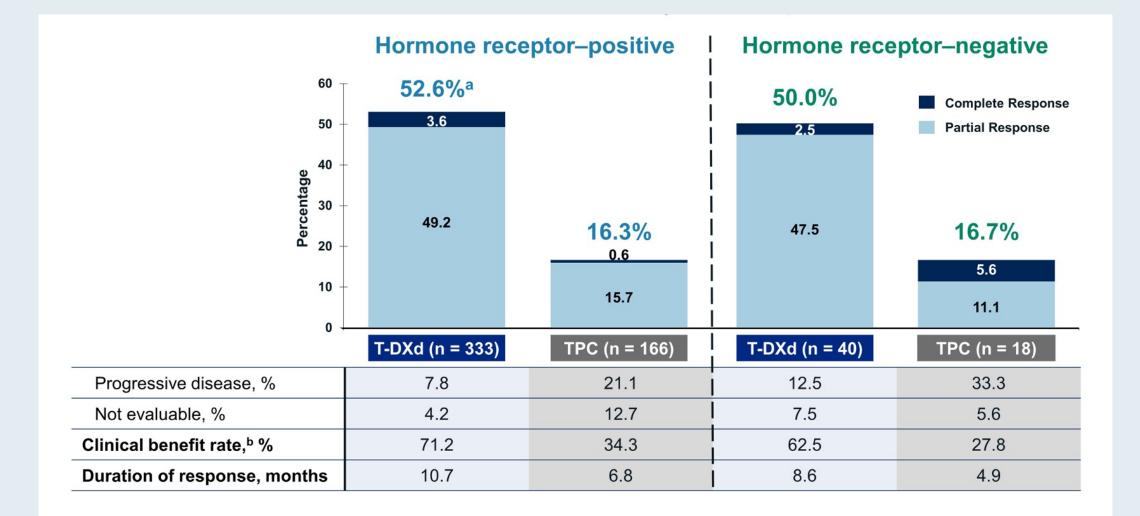
DESTINY-Breast04: PFS for HR-Positive (Primary Endpoint) and All Patients

mPFS = median progression-free survival

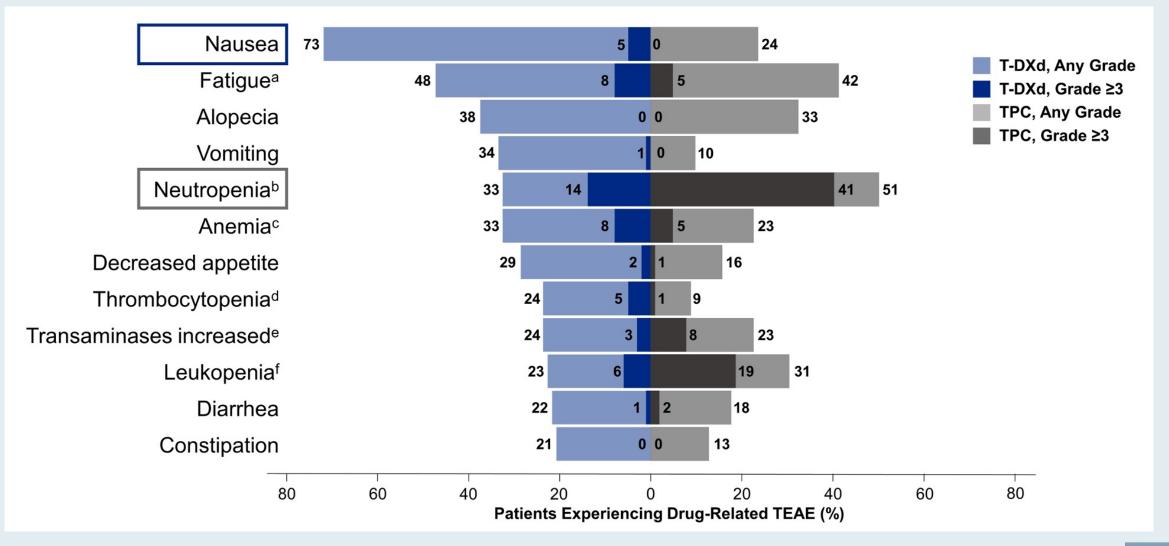

Modi S et al. ASCO 2022; Abstract LBA3. Modi S et al. N Engl J Med 2022 July 7; 387(1): 9-20.



DESTINY-Breast04: OS for HR-Positive and All Patients



mOS = median overall survival



DESTINY-Breast04: Confirmed Objective Response Rate

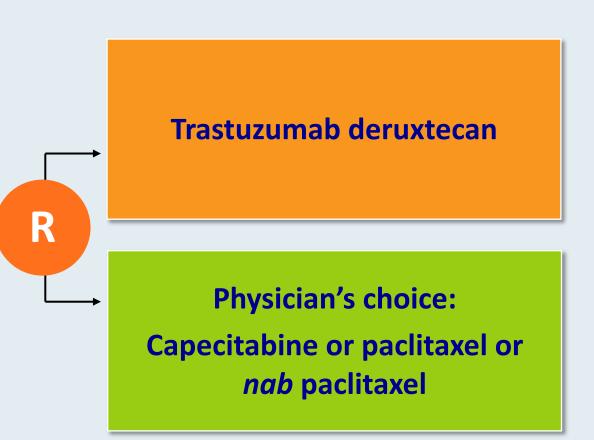
DESTINY-Breast04: Common Drug-Related TEAEs

DESTINY-Breast04: Adverse Events of Special Interest

Adjudicated as drug-related ILD/pneumonitis^a

n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade
T-DXd (n = 371)	13 (3.5)	24 (6.5)	5 (1.3)	0	3 (0.8)	45 (12.1)
TPC (n = 172)	1 (0.6)	0	0	0	0	1 (0.6)

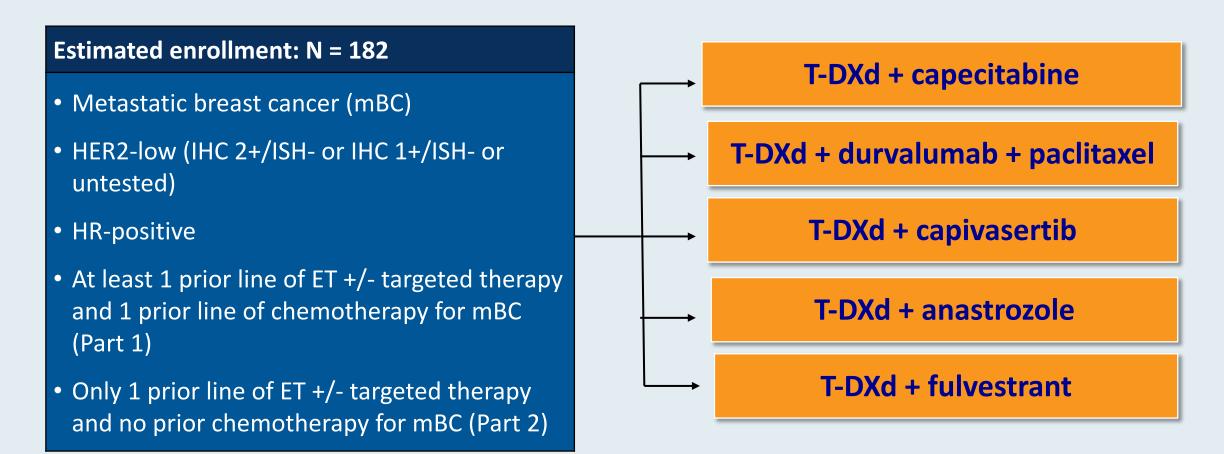
Left ventricular dysfunction^b


n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade
Ejection fraction d	ecreased					
T-DXd (n = 371)	1 (0.3)	14 (3.8)	1 (0.3)	0	0	16 (4.3)
TPC (n = 172)	0	0	0	0	0	0
Cardiac failure ^c						
T-DXd (n = 371)	0	1 (0.3)	1 (0.3)	0	0	2 (0.5)
TPC (n = 172)	0	0	0	0	0	0

DESTINY-Breast06 Phase III Trial Design

Estimated enrollment: N = 850

- Metastatic breast cancer
- HER2-low or negative by local test IHC 2+/ISH- or IHC 1/ISH- or IHC 0/ISH-
- HER2-low or HER2 IHC >0 <1 by central lab
- HR-positive
- No prior chemotherapy for advanced or metastatic disease
- PD within 6 months of starting first-line therapy with ET/CDK4/6 OR PD on at least 2 prior line of ET +/- targeted therapy



Primary endpoint: PFS in HR-positive, HER2-low population

DESTINY-Breast08 Phase I Trial Design

Primary endpoints: Adverse events, serious adverse events

Secondary endpoints: Objective response rate, progression-free survival, duration of response, overall response

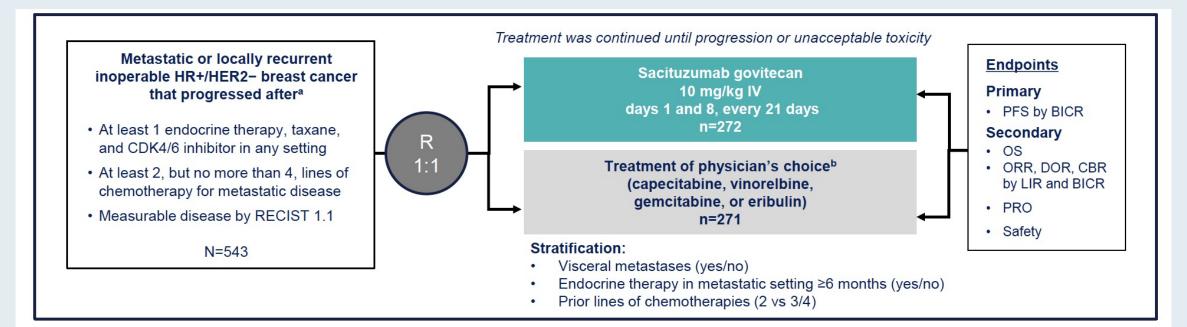
RTP RESEARCH TO PRACTICE

www.clinicaltrials.gov. NCT04538742. Accessed August 2022.

Sacituzumab govitecan efficacy in HR+/HER2– metastatic breast cancer by HER2 immunohistochemistry status in the phase 3 TROPiCS-02 study

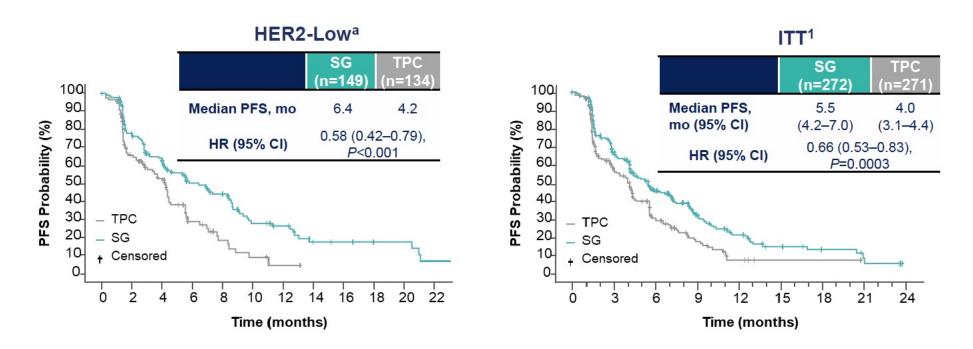
Peter Schmid,¹ Javier Cortes,² Frederik Marmé,³ Hope S. Rugo,⁴ Sara M. Tolaney,⁵ Mafalda Oliveira,⁶ Delphine Loirat,⁷ Komal Jhaveri,⁸ Oh Kyu Yoon,⁹ Monica Motwani,⁹ Hao Wang,⁹ Rosemary Delaney,¹⁰ Aditya Bardia¹¹

¹Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; ²International Breast Cancer Center (IBCC), Quiron Group, Madrid & Barcelona, Spain; ³Heidelberg University, University Hospital Mannheim, Heidelberg, Germany; ⁴University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; ⁵Dana-Farber Cancer Institute, Boston, MA, USA; ⁶Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain; ⁷Institut Curie, Paris, France; ⁸Memorial Sloan-Kettering Cancer Center, New York, NY, USA; ⁹Gilead Sciences, Inc, Foster City, CA, USA; ¹⁰Gilead Sciences, Inc, Morris Plains, NJ, USA; ¹¹Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA


Presenter: Dr. Frederik Marmé

Saturday, September 10, 15:40 - 15:45 FPN 214MO

Phase III TROPiCS-02 Trial Schema and Post Hoc Analysis



- For this post hoc subgroup analysis, local IHC and ISH results for the ITT population of TROPiCS-02 were analyzed retrospectively to determine SG efficacy by HER2 IHC status:
 - 52% were HER2-Low (IHC1+, IHC2+ [ISH-negative/unverified^c]): N=283 (SG, n=149; TPC, n=134)
 - 40% were HER2 IHC0: N=217 (SG, n=101; TPC, n=116)
 - 8% were excluded from the analysis due to missing HER2 IHC status: N=43 (SG, n=22; TPC, n=21)

^aDisease histology based on the ASCO/CAP criteria. ^bSingle-agent standard-of-care treatment of physician's choice was specified prior to randomization by the investigator. ^c39 patients with HER2 IHC2+ did not have ISH data documentation available for verification and were presumed to be HER2-Low, consistent with the trial eligibility criteria to enroll HER2-negative patients. A separate sensitivity analysis excluding the 39 ISH-unverified patients was also performed, with consistent results. HER2, human epidermal growth factor receptor 2; HR, hormone receptor; IHC, immunohistochemistry; ISH, in situ hybridization; ITT, intention-to-treat; SG, sacituzumab govitecan; Trop-2, trophoblast cell surface antigen 2. 1. Rugo HS, et al. *J Clin Oncol.* 2022. doi: 10.1200/JCO.22.01002. (epub ahead of print).

TROPiCS-02: Post Hoc Analysis of PFS with Sacituzumab Govitecan in HER2-Low Subgroup

- Within the HER2-Low population, median PFS with SG vs TPC for the IHC1+ and IHC2+ subgroups was 7.0 vs 4.3 (HR, 0.57) and 5.6 vs 4.0 (HR, 0.58) months, respectively
- The hazard ratio for median PFS in a sensitivity analysis of the HER2-Low subgroup (excluding ISH-unverified^b) was similar (HR, 0.53)

^aHER2-Low defined as IHC1+, or IHC2+ and ISH-negative/unverified

^b39 patients with HER2 IHC2+ did not have ISH data documentation available for verification and were presumed to be HER2-low, consistent with the trial eligibility criteria to enroll HER2-negative patients.

HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry, ISH, in situ hybridization; PFS, progression-free survival; SG, sacituzumab govitecan; TPC, treatment of physician's choice.

1. Rugo HS, et al. J Clin Oncol. 2022. doi: 10.1200/JCO.22.01002. (epub ahead of print). Adapted from Rugo HS, et al. Sacituzumab govitecan in hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2022. doi: 10.1200/JCO.22.01002. Reprinted with permission from American Society of Clinical Oncology.

TROPiCS-02: Post Hoc Analysis of Overall Response with Sacituzumab Govitecan by HER2 Status

	HER2-Low ^a		HER2 IHC0		ITT ¹	
	SG (n=149)	TPC (n=134)	SG (n=101)	TPC (n=116)	SG (n=272)	TPC (n=271)
ORR, n (%)	38 (26)	16 (12)	16 (16)	17 (15)	57 (21)	38 (14)
Odds ratio (95% CI)	2.52 (1.	33-4.78)	1.10 (0.	52-2.30)	1.63 (1.	04-2.55)
Best overall response, n (%)						
CR	2 (1)	0	0	0	2 (1)	0
PR	36 (24)	16 (12)	16 (16)	17 (15)	55 (20)	38 (14)
SD	73 (49)	61 (46)	56 (55)	39 (34)	142 (52)	106 (39)
SD ≥6 mo	18 (12)	10 (7)	15 (15)	8 (7)	35 (13)	21 (8)
PD	29 (19)	36 (27)	23 (23)	38 (33)	58 (21)	76 (28)
NE	9 (6)	21 (16)	6 (6)	22 (19)	15 (6)	51 (19)
CBR, n (%)	56 (38)	26 (19)	31 (31)	25 (22)	92 (34)	59 (22)
Odds ratio (95% CI)	Odds ratio (95% CI) 2.50 (1.46-4.30)		1.61 (0.87-2.97)		1.84 (1.25-2.69)	
Median DOR, mo (95% Cl)	7.4 (5.8-8.9)	4.1 (2.8-6.1)	8.1 (4.1-NE)	6.1 (2.8-8.3)	7.4 (6.5-8.6)	5.6 (3.8-7.9)

^aHER2-Low defined as IHC1+, or IHC2+ and ISH-negative/unverified.

CBR, clinical benefit rate; CR, complete response; DOR, duration of response; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; ITT, intention-to-treat; NE, not evaluable; ORR, objective response rate; PR, partial response; SD, stable disease; SG, sacituzumab govitecan; TPC, treatment of physician's choice.

1. Rugo HS, et al. J Clin Oncol. 2022. doi: 10.1200/JCO.22.01002. (epub ahead of print).

TROPiCS-02: Safety Summary with Sacituzumab Govitecan by HER2 Status

	HER2-Low ^a		HER2 IHC0		Overall Safety Population ¹	
	SG (n=147)	TPC (n=124)	SG (n=99)	TPC (n=107)	SG (n=268)	TPC (n=249)
Grade ≥3 TEAE	109 (74)	73 (59)	70 (71)	66 (62)	198 (74)	149 (60)
TEAEs leading to treatment discontinuation	9 (6)	2 (2)	7 (7)	8 (7)	17 (6)	11 (4)
TEAEs leading to dose delay	98 (67)	44 (35)	61 (62)	56 (52)	178 (66)	109 (44)
TEAEs leading to dose reductions	54 (37)	37 (30)	26 (26)	37 (35)	89 (33)	82 (33)
TE SAEs	38 (26)	25 (20)	33 (33)	15 (14)	74 (28)	47 (19)
TEAEs leading to death ^b	3 (2)	0	3 (3)	0	6 (2)	0
Treatment-related	1 (1)	0	0	0	1 (<1)	0

 The safety profile of SG in the HER2-Low and HER2 IHC0 groups were generally consistent with that of the overall TROPiCS-02 safety population

Treatment-emergent adverse events are defined as any AEs that started on or after the first dose date and up to 30 days after the last dose date. Assessed in the safety population of patients who received ≥1 dose of study treatment. Patients may report more than one event per preferred term.

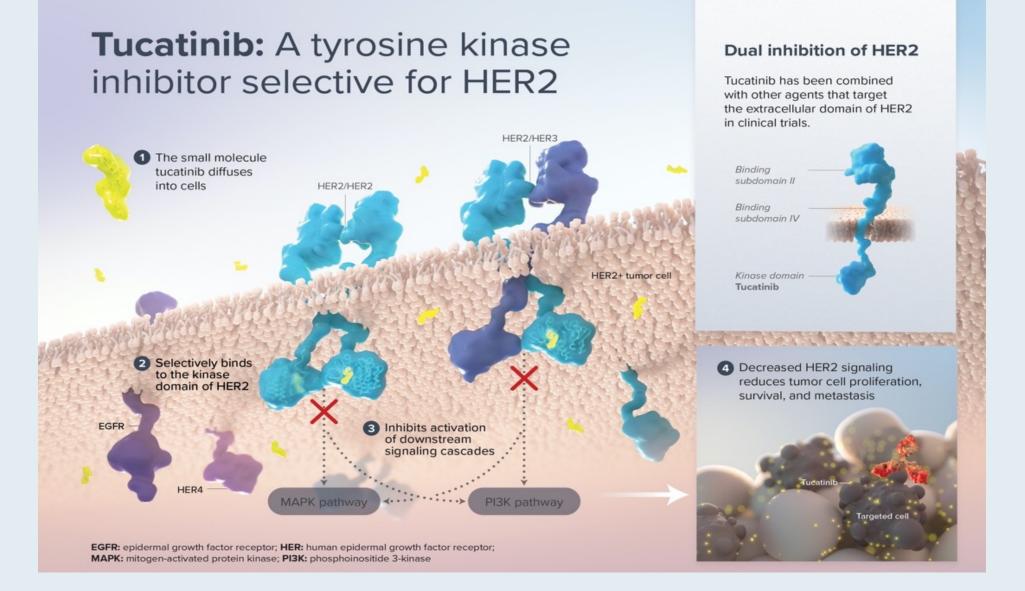
^aHER2-Low defined as IHC1+, or IHC2+ and ISH-negative/unverified. ^bOf 6 TEAEs leading to death, only 1 was considered by the investigator as treatment-related (septic shock due to neutropenic colitis). The other 5 were: COVID-19 pneumonia, pulmonary embolism, pulmonary sepsis, nervous system disorder, and arrhythmia. Upon detailed review of the TEAEs leading to death, no patterns were identified.

AE, adverse event; HER2, human epidemal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; ITT, intention-to-treat; TE, treatment-emergent; TEAE, treatment-emergent adverse event; SAE, serious adverse event; SG, sacituzumab govitecan; TPC, treatment of physician's choice.

1. Rugo HS, et al. J Clin Oncol. 2022. doi: 10.1200/JCO.22.01002. (epub ahead of print).

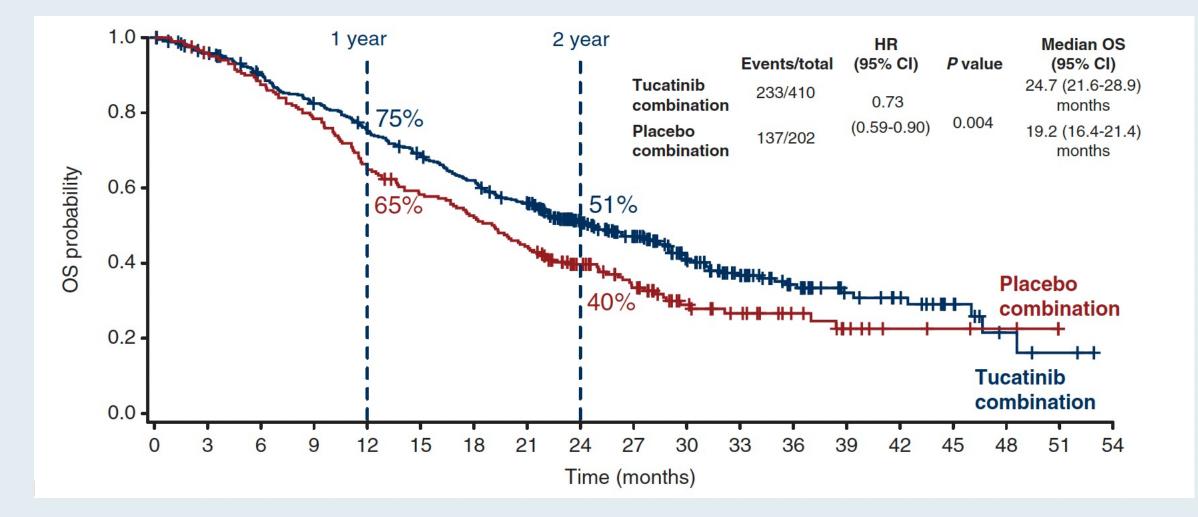
Tucatinib and HER2CLIMB Studies

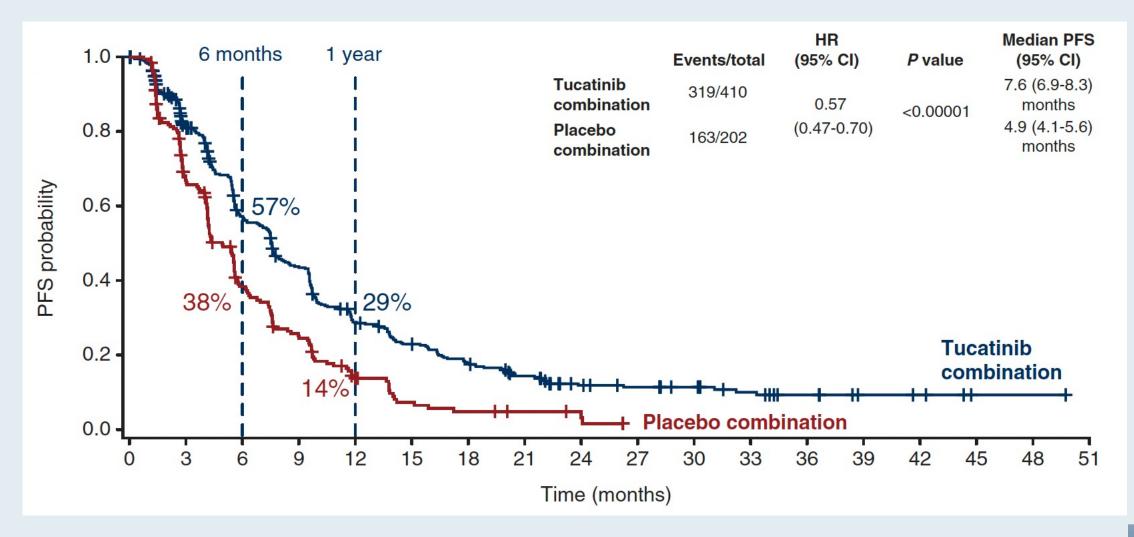
Ann Oncol 2022 March;33(3):321-9.


ORIGINAL ARTICLE

Tucatinib versus placebo added to trastuzumab and capecitabine for patients with pretreated HER2 + metastatic breast cancer with and without brain metastases (HER2CLIMB): final overall survival analysis

G. Curigliano^{1*}, V. Mueller², V. Borges³, E. Hamilton⁴, S. Hurvitz⁵, S. Loi⁶, R. Murthy⁷, A. Okines⁸, E. Paplomata^{9†}, D. Cameron¹⁰, L. A. Carey¹¹, K. Gelmon¹², G. N. Hortobagyi⁷, I. Krop¹³, S. Loibl¹⁴, M. Pegram¹⁵, D. Slamon⁵, J. Ramos¹⁶, W. Feng¹⁶ & E. Winer¹³


Tucatinib Mechanism of Action


www.seagen.com/science/pipeline/tucatinib

HER2CLIMB: Overall Survival

HER2CLIMB: Progression-Free Survival

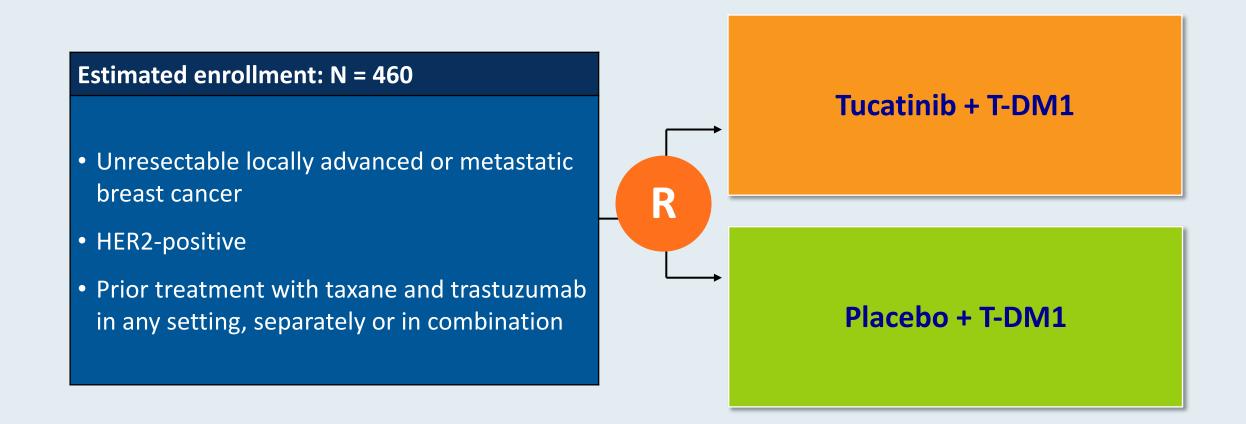
HER2CLIMB: Forest Plot of Overall Survival

Subgroups	Event/N			HR (95% CI)
All patients	370/612	H		0.73 (0.59-0.90)
Age				
≥65 years	76/116	⊢_ ∎		0.64 (0.38-1.06)
<65 years	294/496	H=-1		0.76 (0.60-0.96)
Race				
White	268/444	H=-1		0.75 (0.58-0.96)
Non-White	102/168	⊢ - –		0.57 (0.37-0.89)
Hormone receptor sta	itus			
Positive	226/370			0.81 (0.61-1.06)
Not positive	144/242	H		0.61 (0.43-0.87)
Baseline brain metast	ases			
Yes	189/291	H		0.60 (0.44-0.81)
No	180/319	H=H		0.85 (0.63-1.16)
ECOG performance s	tatus			
0	155/298	H		0.60 (0.43-0.83)
1	215/314	H=H		0.85 (0.64-1.13)
Region				
North America	240/369	H		0.78 (0.60-1.02)
Rest of world	130/243	H		0.63 (0.44-0.91)
	0.01	0.1 1	10	ող 100
	←	Favors tucatinib	Favors placebo	\rightarrow

Curigliano G et al. Ann Oncol 2022 March;33(3):321-9.

HER2CLIMB: Summary of Adverse Events

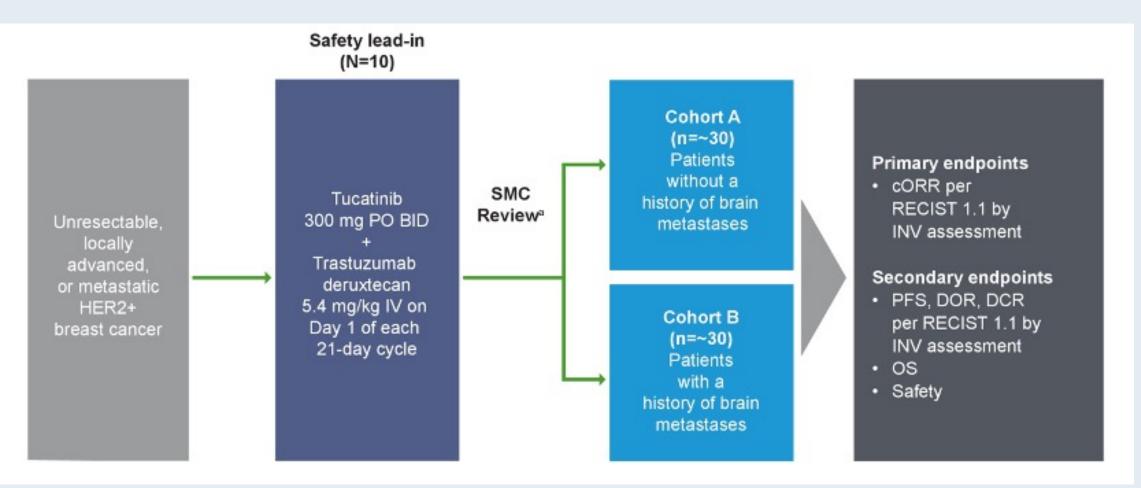
TEAEs	Tucatinib combination (N = 404) n (%)	placebo combination (N = 197) n (%)
Any TEAE	401 (99.3)	191 (97.0)
Grade \geq 3 TEAE	245 (60.6)	101 (51.3)
Any serious TEAE	123 (30.4)	58 (29.4)
Death due to TEAE	6 (1.5)	5 (2.5)
Discontinued any study treatment due to TEAE	52 (12.9)	23 (11.7)
Discontinued tucatinib/placebo due to TEAE	24 (5.9)	8 (4.1)
Discontinued capecitabine due to TEAE	47 (11.6)	22 (11.2)
Discontinued trastuzumab due to TEAE	17 (4.2)	7 (3.6)



HER2CLIMB: Adverse Events

		nation (<i>N</i> = 404) (%)	Placebo combination (N = 197) n (%)	
Adverse event	Any grade	Grade \geq 3	Any grade	Grade \geq 3
Any adverse event	401 (99.3)	245 (60.6)	191 (97.0)	101 (51.3)
Diarrhea	331 (81.9)	53 (13.1)	106 (53.8)	17 (8.6)
Palmar-plantar erythrodysesthesia syndrome	264 (65.3)	57 (14.1)	105 (53.3)	18 (9.1)
Nausea	243 (60.1)	16 (4.0)	88 (44.7)	7 (3.6)
Fatigue	193 (47.8)	22 (5.4)	87 (44.2)	8 (4.1)
Vomiting	152 (37.6)	13 (3.2)	51 (25.9)	8 (4.1)
Decreased appetite	105 (26.0)	3 (0.7)	41 (20.8)	0
Stomatitis	105 (26.0)	10 (2.5)	28 (14.2)	1 (0.5)
Headache	96 (23.8)	3 (0.7)	40 (20.3)	3 (1.5)
Aspartate aminotransferase increased	89 (22.0)	19 (4.7)	22 (11.2)	1 (0.5)
Anemia	88 (21.8)	17 (4.2)	24 (12.2)	5 (2.5)
Alanine aminotransferase increased	85 (21.0)	23 (5.7)	13 (6.6)	1 (0.5)
Blood bilirubin increased	81 (20.0)	4 (1.0)	21 (10.7)	5 (2.5)

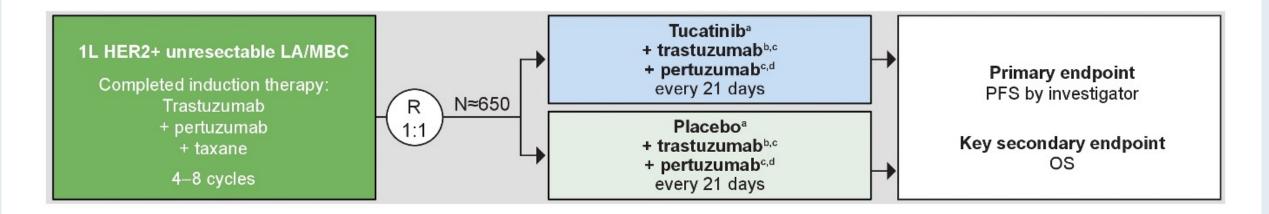
HER2CLIMB-02 Phase III Trial Design



Primary endpoint: PFS by investigator assessment

www.clinicaltrials.gov. NCT03975647. Accessed August 2022.

HER2CLIMB-04 Phase II Study Schema


Eligibility

cORR = confirmed objective response rate

- HER2-positive locally advanced or metastatic breast cancer
- Prior treatment with taxane and trastuzumab (+/- pertuzumab) in the locally advanced or metastatic setting or disease progression within 6 months of (neo)adjuvant therapy with taxane and trastuzumab (+/- pertuzumab)

Krop I et al. ASCO 2022; Abstract TPS1111.

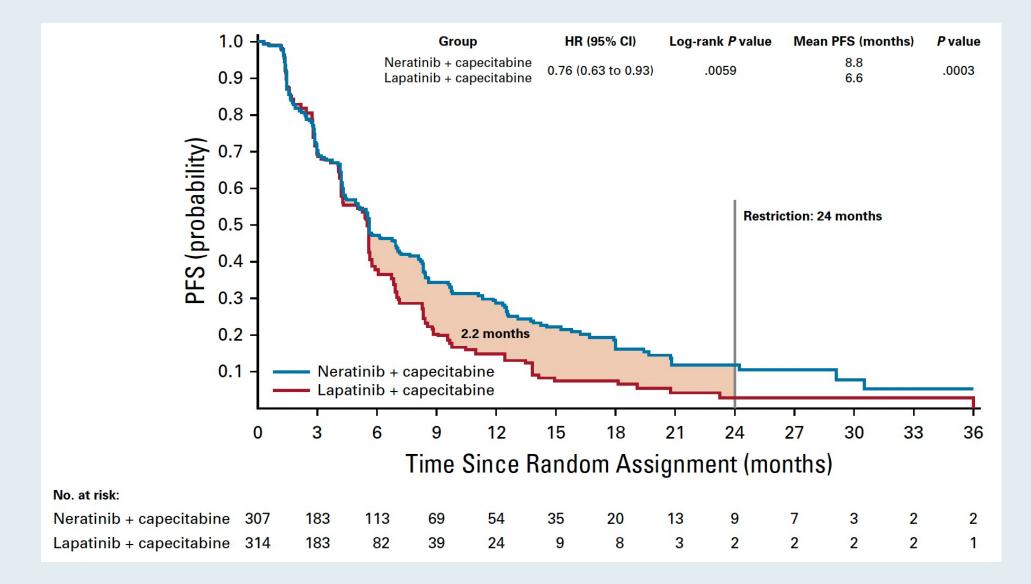
HER2CLIMB-05 Phase III Study Schema

Cycle 1			Cycle 2	
D1	D8	D15	D22	D29
Tucatinib 300 mg/placebo PO BID				
Trastuzumab + pertuzumab				

Hamilton E et al. ASCO 2022; Abstract TPS1108.

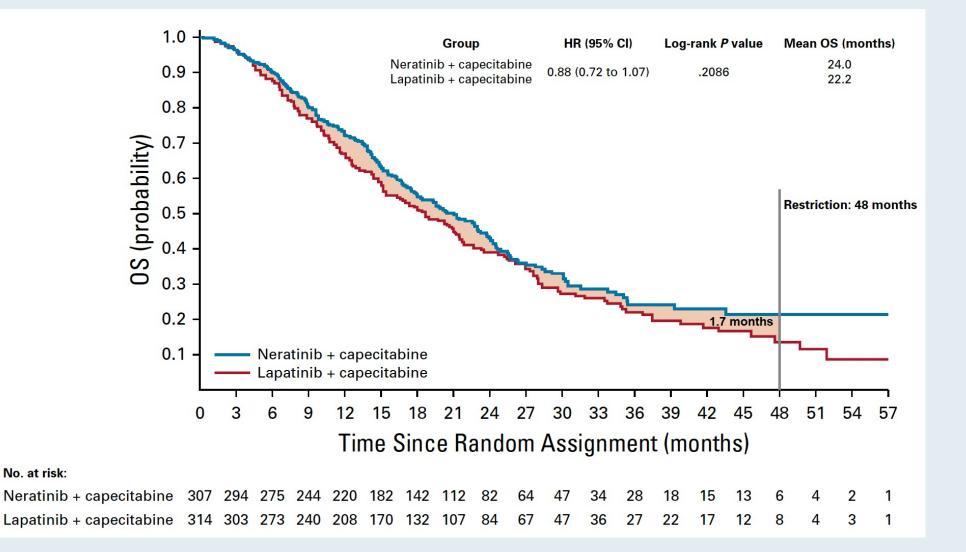
Neratinib and the NALA Study

origina re port


Neratinib Plus Capecitabine Versus Lapatinib **Plus Capecitabine in HER2-Positive Metastatic Breast Cancer Previously Treated With \geq 2 HER2-Directed Regimens: Phase III NALA Trial**

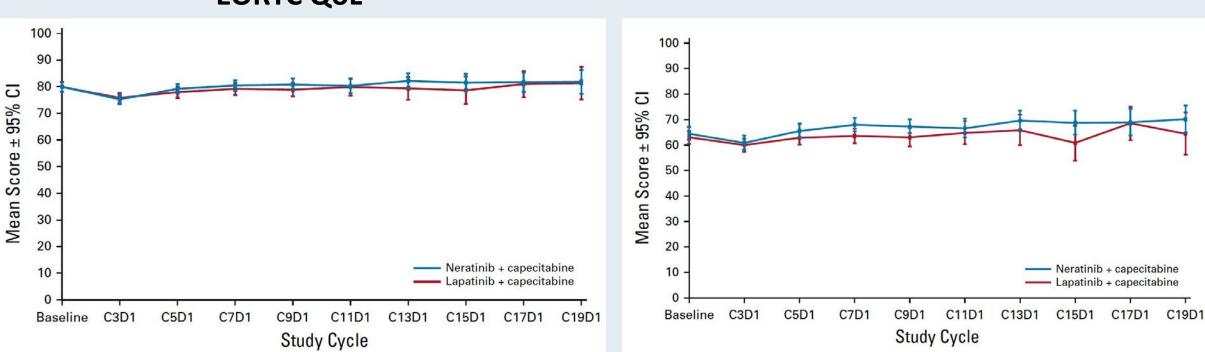
Cristina Saura, MD¹; Mafalda Oliveira, MD, PhD¹; Yin-Hsun Feng, MD, PhD²; Ming-Shen Dai, MD, PhD²; Shang-Wen Chen, MD²; Sara A. Hurvitz, MD³; Sung-Bae Kim, MD, PhD⁴; Beverly Moy, MD, PhD⁵; Suzette Delaloge, MD, MSc⁶; William Gradishar, MD⁷; Norikazu Masuda, MD, PhD⁸; Marketa Palacova, MD⁹; Maureen E. Trudeau, MD¹⁰; Johanna Mattson, MD, PhD¹¹; Yoon Sim Yap, MBBS¹²; Ming-Feng Hou, MD¹³; Michelino De Laurentiis, MD, PhD¹⁴; Yu-Min Yeh, MD¹⁵; Hong-Tai Chang, MD¹⁶; Thomas Yau, MBBS, MD¹⁷; Hans Wildiers, MD, PhD^{18,19}; Barbara Haley, MD²⁰; Daniele Fagnani, MD²¹; Yen-Shen Lu, MD, PhD²²; John Crown, MBBCh, MD²³; Johnson Lin, MD²⁴; Masato Takahashi, MD, PhD²⁵; Toshimi Takano, MD²⁶; Miki Yamaguchi, MD, PhD²⁷; Takaaki Fujii, MD, PhD²⁸; Bin Yao, MS²⁹; Judith Bebchuk, ScD²⁹; Kiana Keyvanjah, PharmD²⁹; Richard Bryce, MBChB²⁹; and Adam Brufsky, MD, PhD³⁰; for the **NALA** Investigators

J Clin Oncol 2020;38:3138-49.



NALA: Centrally Assessed PFS

NALA: Overall Survival (ITT Population)


Saura C et al. J Clin Oncol 2020;38:3138-49.

NALA: Treatment-Emergent AEs in >15% of Patients

	N+C (n	N+C (n = 303)		= 311)
AE	All Grade	Grade 3/4	All Grade	Grade 3/4
Diarrhea	252 (83.2)	74 (24.4)	206 (66.2)	39 (12.5)
Nausea	161 (53.1)	13 (4.3)	132 (42.4)	9 (2.9)
PPE syndrome	139 (45.9)	29 (9.6)	175 (56.3)	35 (11.3)
Vomiting	138 (45.5)	12 (4.0)	97 (31.2)	6 (1.9)
Decreased appetite	107 (35.3)	8 (2.6)	67 (21.5)	7 (2.3)
Fatigue	104 (34.3)	9 (3.0)	97 (31.2)	10 (3.2)
Constipation	94 (31.0)	4 (1.3)	41 (13.2)	1 (0.3)
Stomatitis	62 (20.5)	6 (2.0)	83 (26.7)	8 (2.6)
Weight decreased	60 (19.8)	1 (0.3)	41 (13.2)	2 (0.6)
Rash	30 (9.9)	0	69 (22.2)	2 (0.6)
Anemia	45 (14.9)	6 (2.0)	51 (16.4)	11 (3.5)

NALA: Changes Over Time in Global Quality of Life and Functioning

EORTC QoL

Global Health Status Score

Key Considerations in the Care of Patients with HER2-Positive BC with Brain Metastasis

Incidence and Prognosis of HER2-Positive CNS Metastases

 registHER (N = 1,012) and SystHERs (N = 997) observational studies for patients with HER2-Positive breast cancer treated with trastuzumab and other anti-HER2 therapies

Incidence

Prognosis

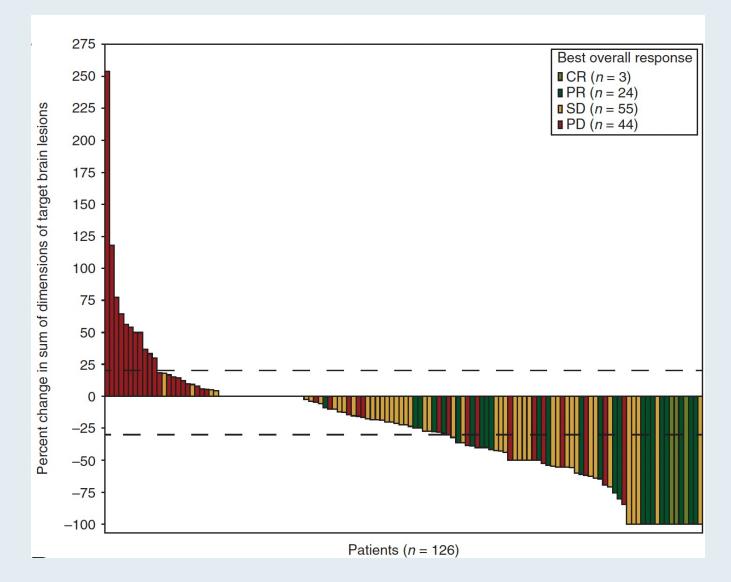
Brufsky AM et al. Clin Cancer Res 2011;17(14):4834-43. Hurvitz SA et al. Clin Cancer Res 2019;25(8): 2433-41.

Management of Advanced Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer and Brain Metastases: ASCO Guideline Update

Naren Ramakrishna, MD, PhD¹; Carey K. Anders, MD²; Nancy U. Lin, MD³; Aki Morikawa, MD, PhD⁴; Sarah Temin, MSPH⁵; Sarat Chandarlapaty, MD, PhD⁶; Jennie R. Crews, MD⁷; Nancy E. Davidson, MD⁸; Maria Alice B. Franzoi, MD⁹; Jeffrey J. Kirshner, MD¹⁰; Ian E. Krop, MD, PhD³; Debra A. Patt, MD, MPH, MBA¹¹; Jane Perlmutter, PhD¹²; and Sharon H. Giordano, MD, MPH¹³

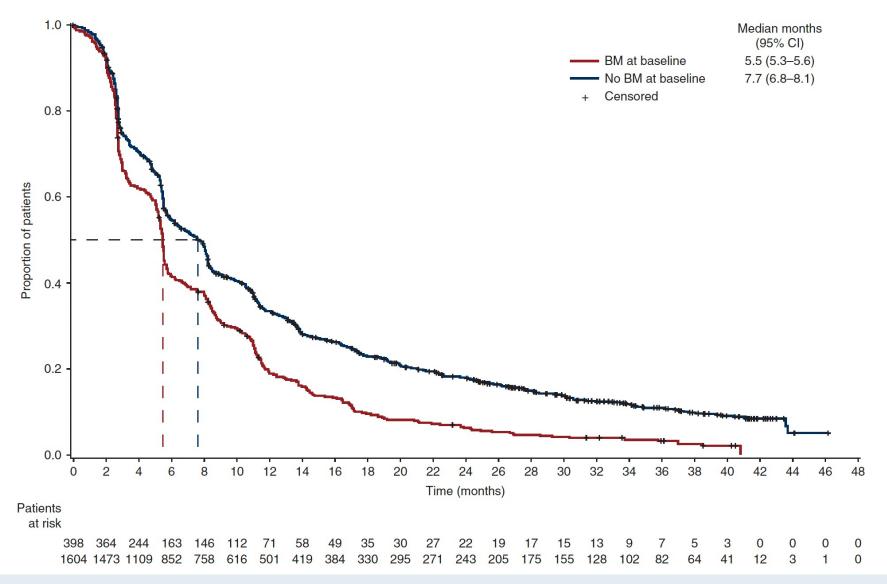
J Clin Oncol 2022 August;40:2636-55.

Ann Oncol 2020 October;31(10):1350-8.


ORIGINAL ARTICLE

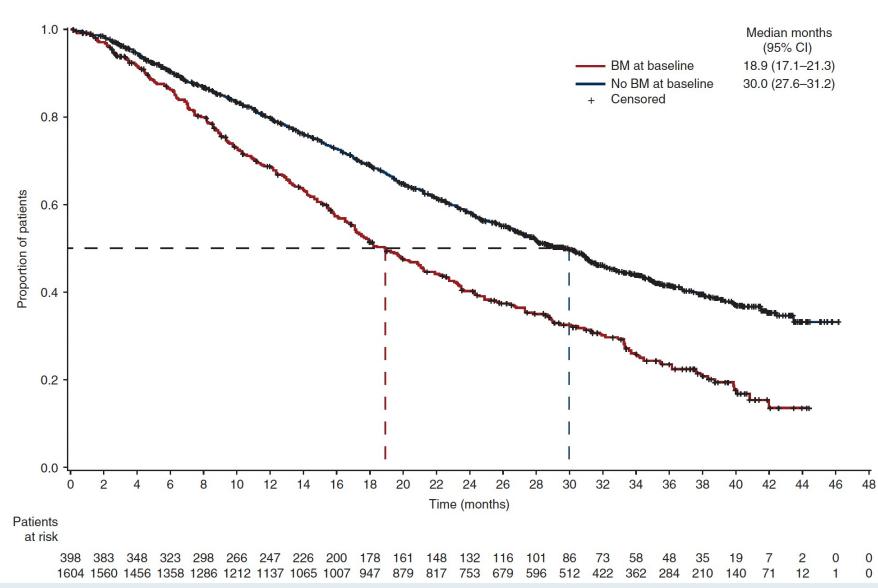
Trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer and brain metastases: exploratory final analysis of cohort 1 from KAMILLA, a single-arm phase IIIb clinical trial $\stackrel{\ensuremath{\sim}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\;}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensuremath{\sim}}}{\overset{\ensur$

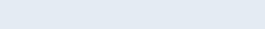
F. Montemurro^{1*}, S. Delaloge², C. H. Barrios³, R. Wuerstlein⁴, A. Anton⁵, E. Brain⁶, T. Hatschek⁷, C. M. Kelly⁸, C. Peña-Murillo⁹, M. Yilmaz¹⁰, M. Donica¹¹ & P. Ellis^{12,13}



KAMILLA: Percent Change in Sum of Dimensions of Target Brain Lesions

KAMILLA: Progression-Free Survival



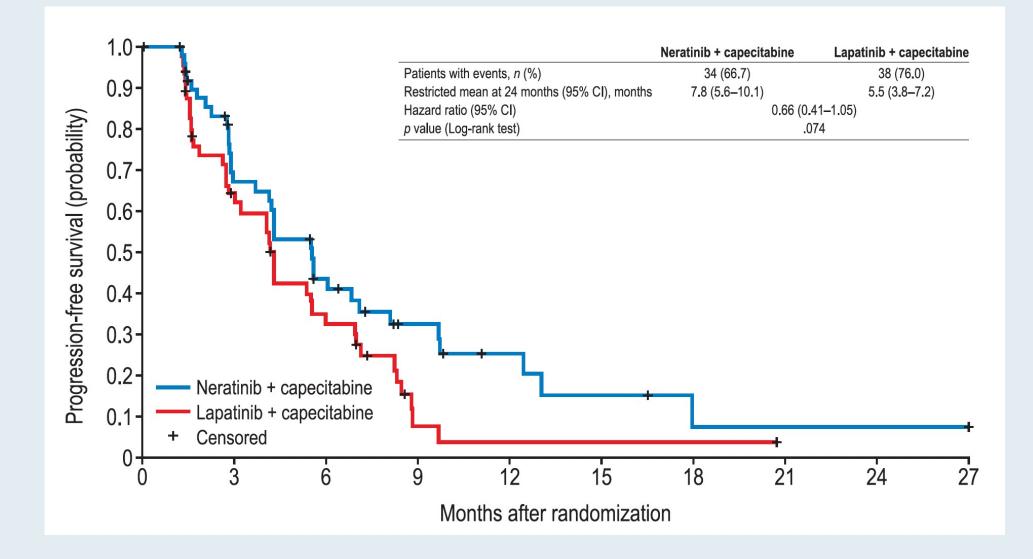

BM = brain metastases

Montemurro F et al. Ann Oncol 2020 October;31(10):1350-8.

KAMILLA: Overall Survival

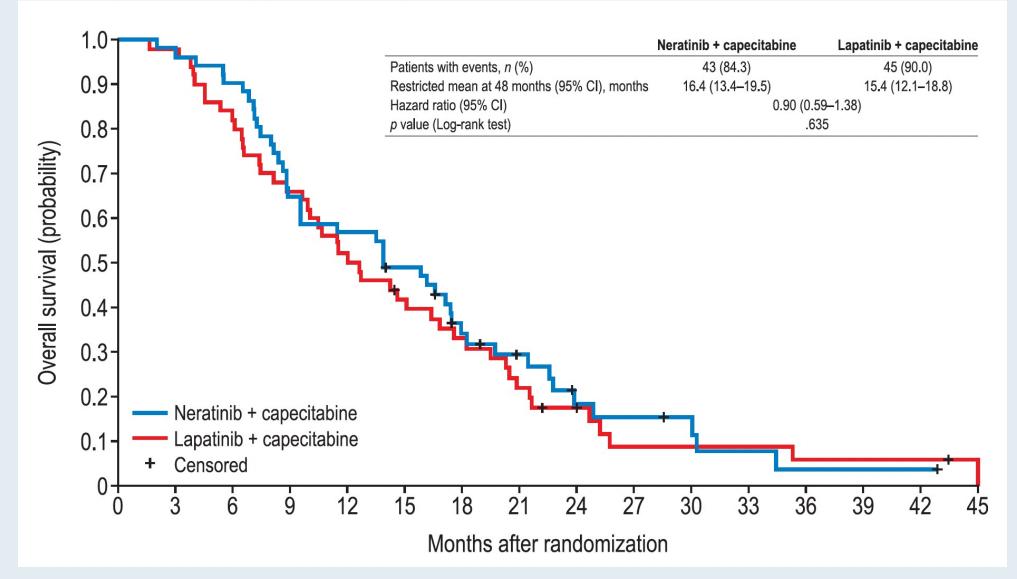
Montemurro F et al. Ann Oncol 2020 October;31(10):1350-8.

Oncologist 2021 August;26(8):e1327-38.


Breast Cancer

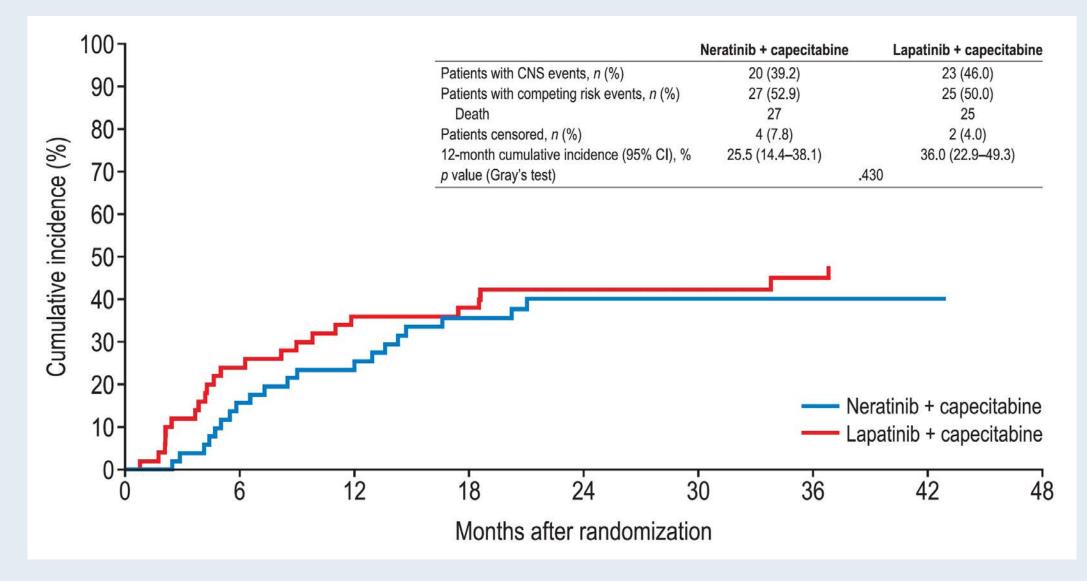
Efficacy of Neratinib Plus Capecitabine in the Subgroup of Patients with Central Nervous System Involvement from the NALA Trial

Sara A. Hurvitz D,^a Cristina Saura,^b Mafalda Oliveira,^b Maureen E. Trudeau,^c Beverly Moy,^d Suzette Delaloge,^e William Gradishar,^f Sung-Bae Kim,^g Barbara Haley,^h Larisa Ryvo,ⁱ Ming-Shen Dai,^j Vladimir Milovanov,^k Jesús Alarcón,^I Sujith Kalmadi,^m Eduardo Cronemberger,ⁿ Cristiano Souza,^o Luciana Landeiro,^p Ron Bose,^q Judith Bebchuk,^r Fairooz Kabbinavar,^r Richard Bryce,^r Kiana Keyvanjah,^r Adam M. Brufsky^s

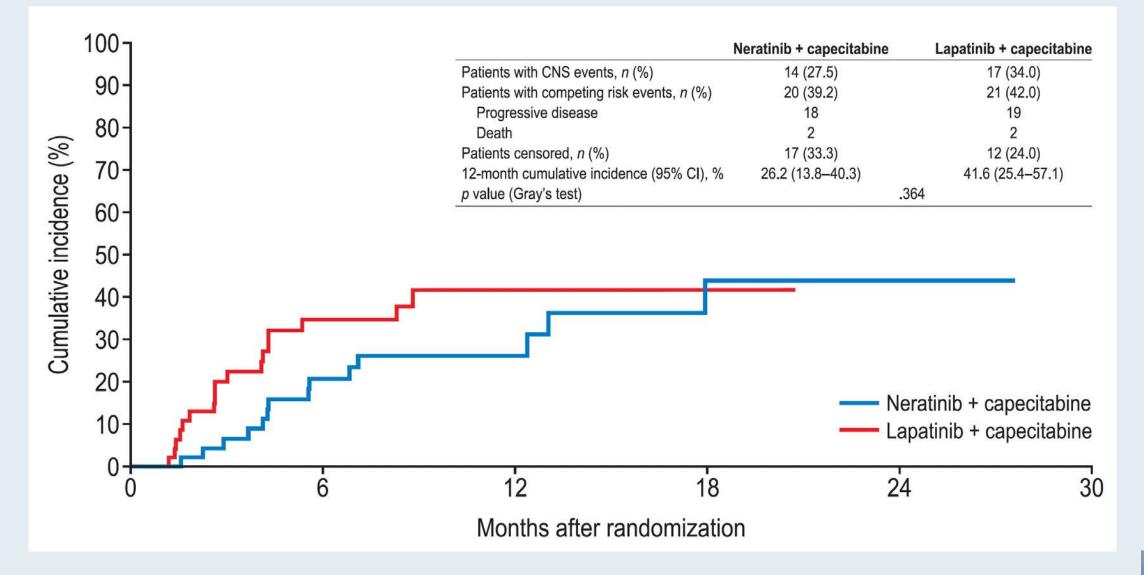


NALA: PFS for Patients with CNS Metastases at Baseline

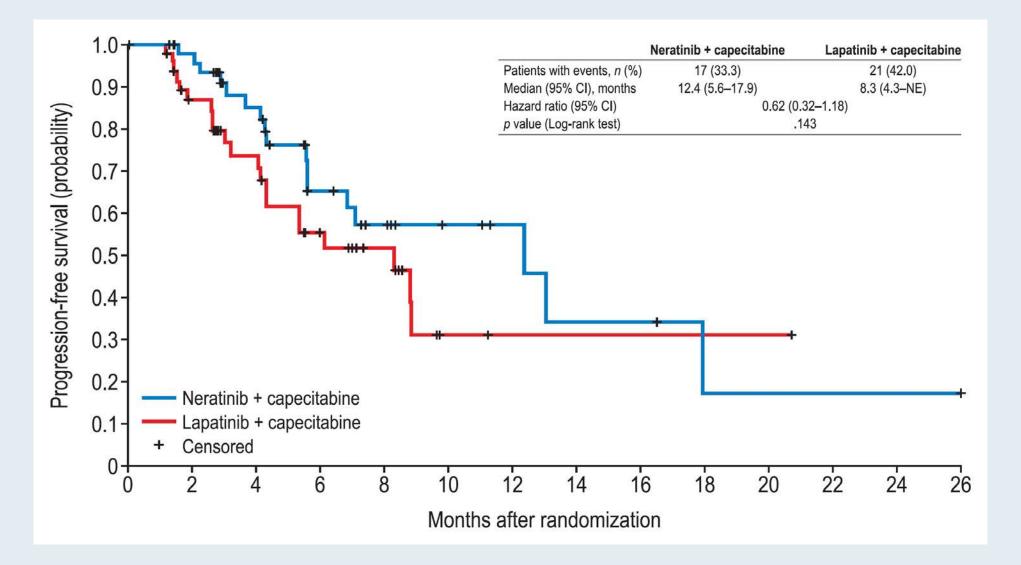
NALA: OS for Patients with CNS Metastases at Baseline



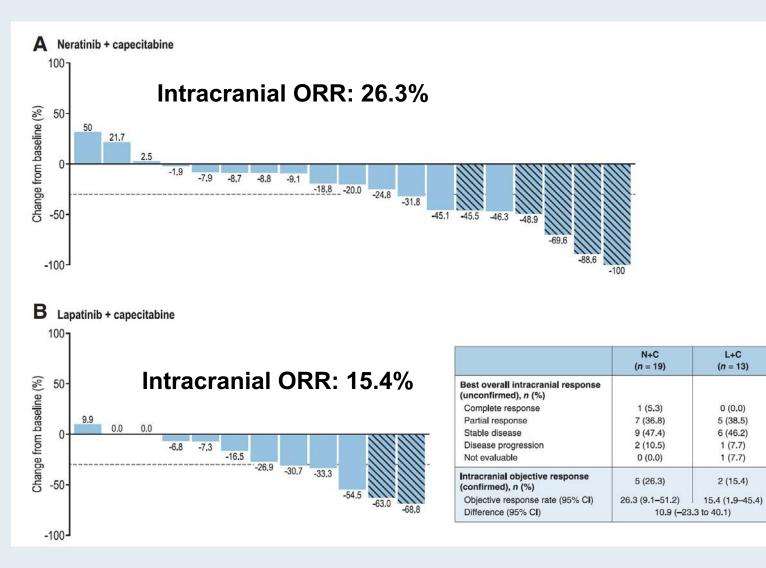
NALA: Efficacy in Patients with CNS Metastases at Baseline


Endpoint	Neratinib + capecitabine (n = 51)	Lapatinib + capecitabine (n = 50)	Hazard ratio	<i>p</i> -value
Median PFS	5.6 mo	4.3 mo	0.66	0.074
Median OS	13.9 mo	12.4 mo	0.90	0.635
Time to intervention for CNS disease (12-month cumulative incidence)	25.5%	36.0%	_	0.430
Progressive CNS disease (12- month cumulative incidence)	26.2%	41.6%	—	0.364
Median CNS PFS	12.4 mo	8.3 mo	0.62	0.143
Objective response rate	28.6%	28.2%	_	0.972
Median duration of response	8.3 mo	5.3 mo	0.47	0.252
Clinical benefit rate	40.0%	30.8%	—	0.410

NALA: Time to Intervention for CNS Disease – Progressive CNS Disease



NALA: Time to Intervention for CNS Disease – CNS PFS



NALA: Time to Intervention for CNS Disease – Patients with CNS Metastases at Baseline

NALA: Best Change in Intracranial Tumor Size from Baseline in Patients with Target CNS Lesions at Screening

N Engl J Med 2022 March 24;386:1143-54.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

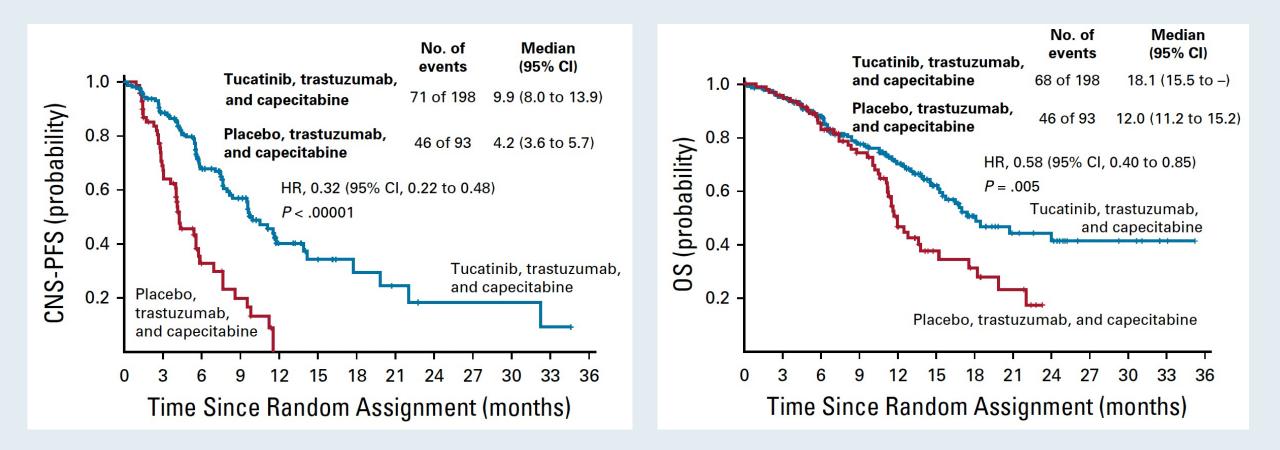
Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer

J. Cortés, S.-B. Kim, W.-P. Chung, S.-A. Im, Y.H. Park, R. Hegg, M.H. Kim, L.-M. Tseng, V. Petry, C.-F. Chung, H. Iwata, E. Hamilton, G. Curigliano, B. Xu, C.-S. Huang, J.H. Kim, J.W.Y. Chiu, J.L. Pedrini, C. Lee, Y. Liu, J. Cathcart, E. Bako, S. Verma, and S.A. Hurvitz, for the DESTINY-Breast03 Trial Investigators*

DESTINY-Breast03: Progression-Free Survival for Patients with Brain Metastases

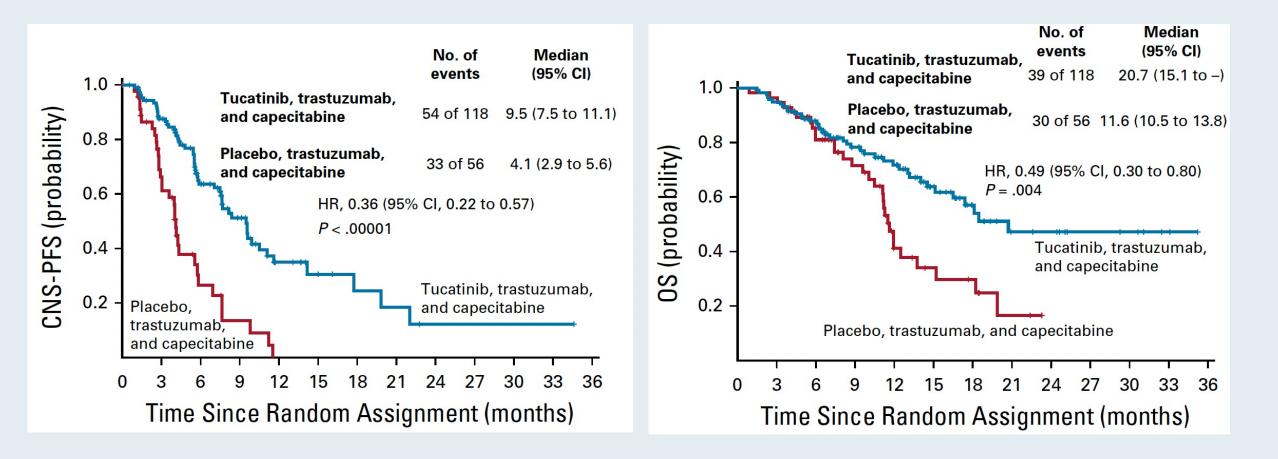
Subgroup	No. of Patients	No. of Events/	No. of Patients	Median Prog Survival			o for Disease Progression Death (95% CI)
				m	10		
		Trastuzumab deruxtecan	Trastuzumab emtansine	Trastuzumab deruxtecan	Trastuzumab emtansine		
All patients		87/261	158/263	NE (18.5–NE)	6.8 (5.6-8.2)	IOI	0.28 (0.22-0.37)
Stable brain metastases						1	
Yes	114	31/62	31/52	15.0 (12.6-22.2)	5.7 (2.9–7.1)	H H	0.38 (0.23–0.64)
No	410	56/199	127/211	NE (22.4–NE)	7.0 (5.5–9.7)	0.0 0.5 1.0 Trastuzumab Deruxtecan Better	0.27 (0.19–0.37) 1.5 2.0 Trastuzumab Emtansine Better

Cortés J et al. *N Engl J Med* 2022;386(12):1143-54.


Intracranial Efficacy and Survival With Tucatinib Plus Trastuzumab and Capecitabine for Previously Treated HER2-Positive Breast Cancer With Brain Metastases in the HER2CLIMB Trial

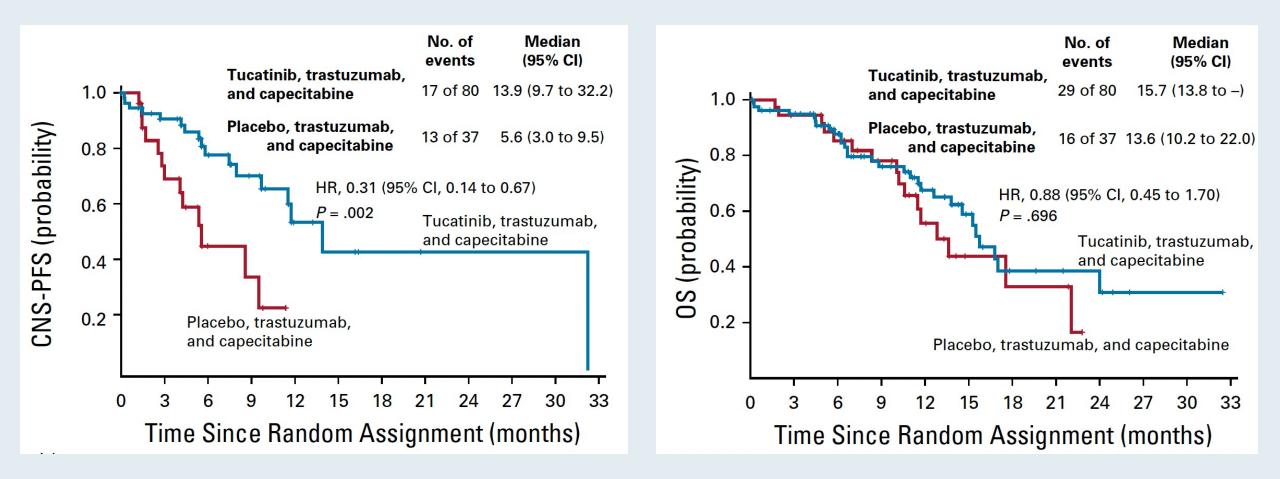
Nancy U. Lin, MD¹; Virginia Borges, MMSc, MD²; Carey Anders, MD³; Rashmi K. Murthy, MD, MBE⁴; Elisavet Paplomata, MD⁵; Erika Hamilton, MD⁶; Sara Hurvitz, MD⁷; Sherene Loi, MD, PhD⁸; Alicia Okines, MBChB, MD⁹; Vandana Abramson, MD¹⁰; Philippe L. Bedard, MD¹¹; Mafalda Oliveira, MD, PhD¹²; Volkmar Mueller, MD¹³; Amelia Zelnak, MD¹⁴; Michael P. DiGiovanna, MD, PhD¹⁵; Thomas Bachelot, MD¹⁶; A. Jo Chien, MD¹⁷; Ruth O'Regan, MD⁵; Andrew Wardley, MBChB, MSc, MD¹⁸; Alison Conlin, MD, MPH¹⁹; David Cameron, MD, MA²⁰; Lisa Carey, MD²¹; Giuseppe Curigliano, MD, PhD²²; Karen Gelmon, MD²³; Sibylle Loibl, MD, PhD²⁴; JoAl Mayor, PharmD²⁵; Suzanne McGoldrick, MD, MPH²⁵; Xuebei An, PhD²⁵; and Eric P. Winer, MD¹

Lin NU et al. *J Clin Oncol* 2020;38:2610-9.



HER2CLIMB: CNS Progression-Free Survival and Overall Survival for Patients with Brain Metastases

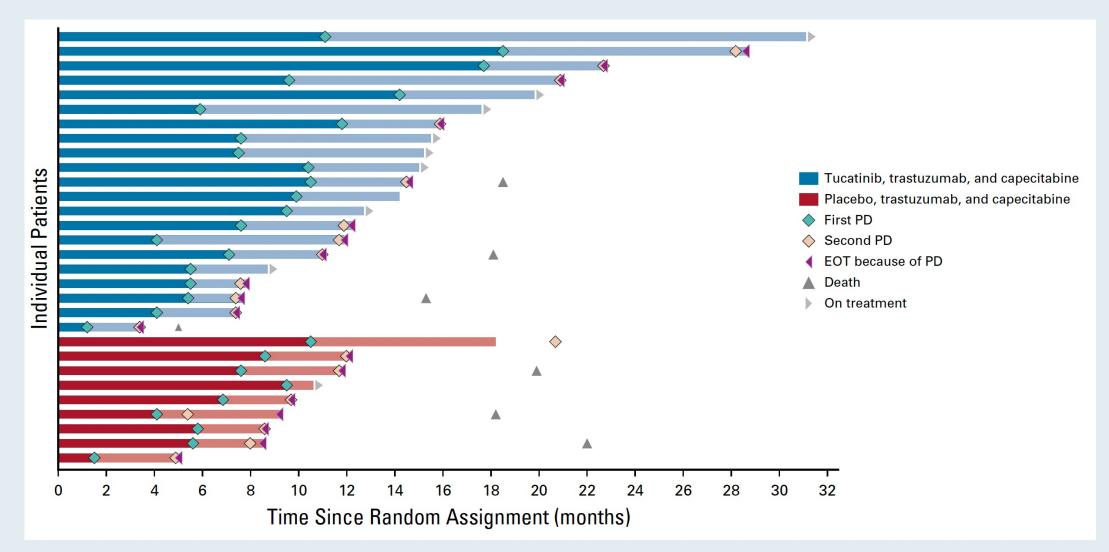
HER2CLIMB: CNS Progression-Free Survival and Overall Survival for Patients with Active Brain Metastases


Lin NU et al. J Clin Oncol 2020;38:2610-9.

HER2CLIMB: Intracranial Confirmed Objective Response Rate for Patients with Active Brain Metastases and Measurable Intracranial Lesions at Baseline

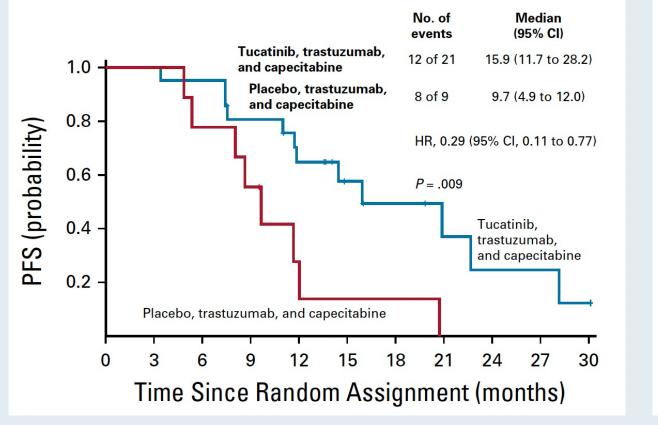
Response	Tucatinib	, trastuzumab and capecitabine (n = 55)	Placebo, trastuzumab and capecitabine (n = 20)			
Best overall intracranial response						
Complete response		5.5%	5%			
Partial response		41.8%	15.0%			
Stable disease		43.6%	80.0%			
Progressive disease		3.6%	0			
Intracranial ORR		47.3%	20.0%			
Intracranial DoR		6.8 mo	3.0 mo			

DoR = duration of response

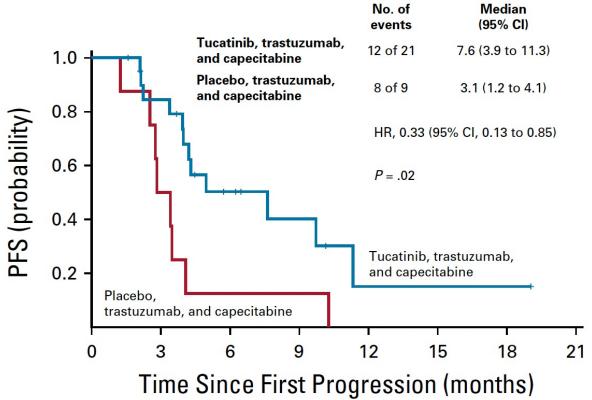

HER2CLIMB: CNS Progression-Free Survival and Overall Survival for Patients with Stable Brain Metastases

Lin NU et al. J Clin Oncol 2020;38:2610-9.

HER2CLIMB: Duration of Treatment for Patients with Isolated Progression in the Brain Who Continued Assigned Study Treatment



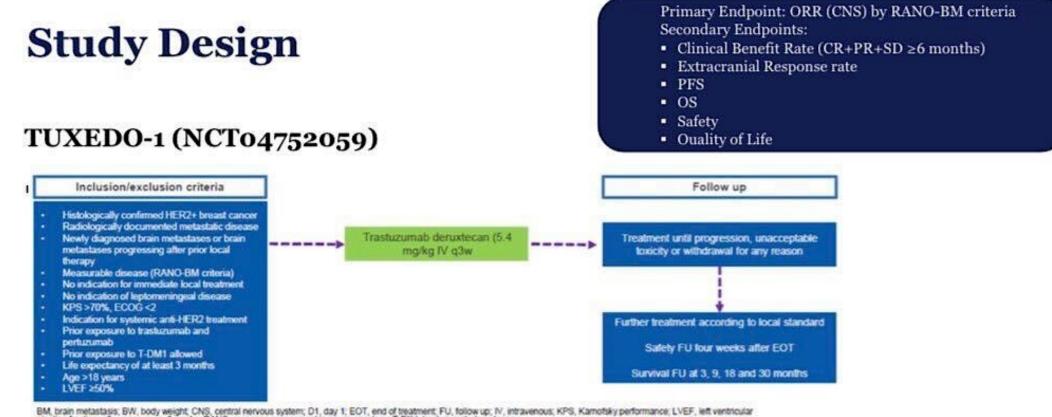
Lin NU et al. J Clin Oncol 2020;38:2610-9.


```
RTP
RESEARCH
TO PRACTICE
```

HER2CLIMB: Time to Second Disease Progression

Time from random assignment to second disease progression

Time from first PD to second disease progression

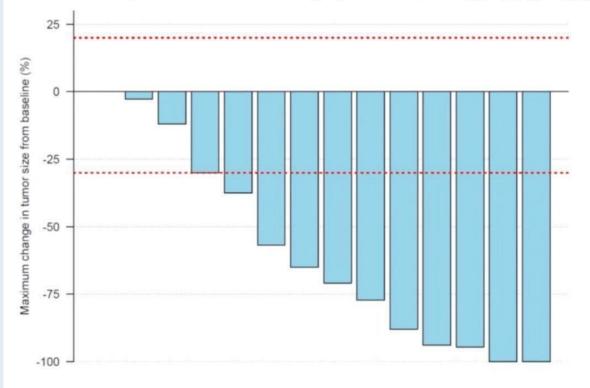


Trastuzumab-Deruxtecan (T-DXd) in HER2-Positive Breast Cancer Patients (Pts) with Active Brain Metastases: Primary Outcome Analysis from the TUXEDO-1 Trial

Bartsch R et al. ESMO Breast 2022;Abstract 165MO.

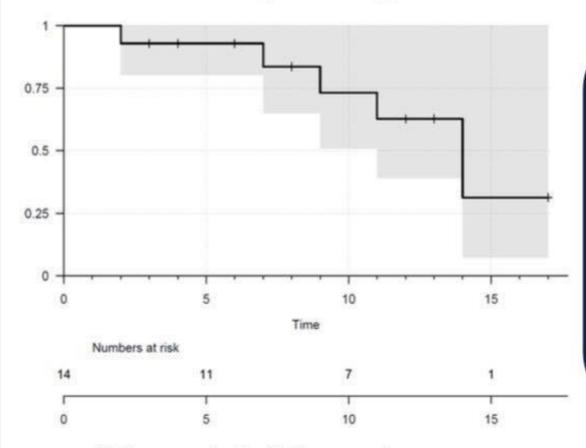
BM, brain metastasis; BW, body weight; CNS, central nervous system; D1, day 1; EOT, end of treatment; FU, follow up; IV, intravenous; KPS, Karnotsky performance; LVEF, left ventricular ejection fraction; g3w, once every 3 weeks; RANO, response assessment in neuro-oncology; T-DXd, trastuzumab derustecan. EudraCT: 2020-000981-41.

Simon Two Stage Design


- RR (CNS) >60% suggests clinically relevant activity
- RR (CNS) <26% suggests no benefit compared to previous systemic treatment options
- Stage 1: 6 pts. (at least three responses); Stage 2: 9 pts; overall 15 pts. (at least 7 responses)
- Type 1 error rate 5%; power 80%

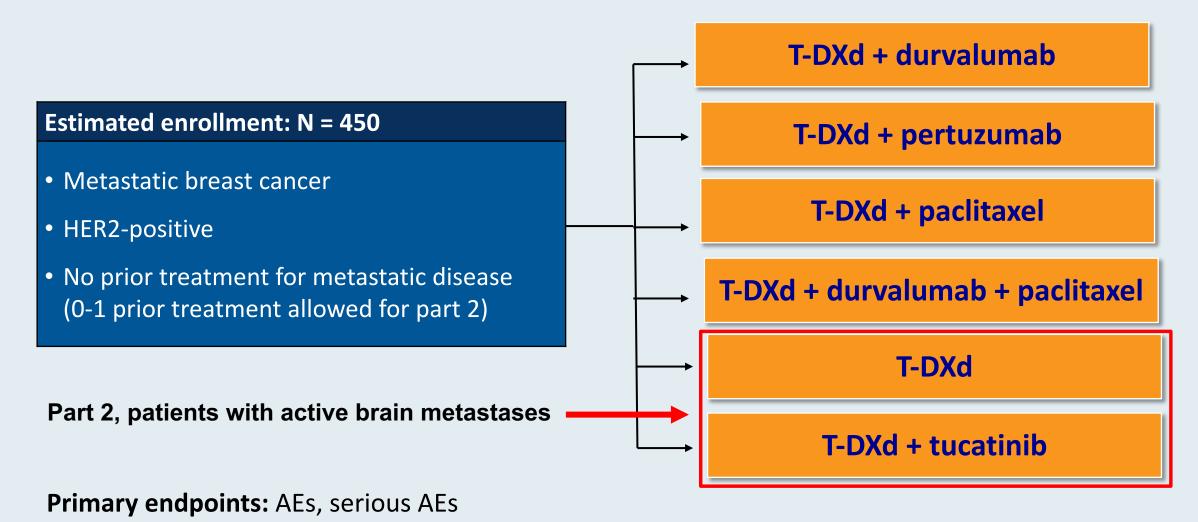
Primary Endpoint

Objective Response Rate (RANO-BM criteria)


ORR (intention-to-treat population; *n*=15): 73.3% (95% CI 48.1-89.1)

One patient with dural metastases RR (per-protocol-population; n=14): 78.6%

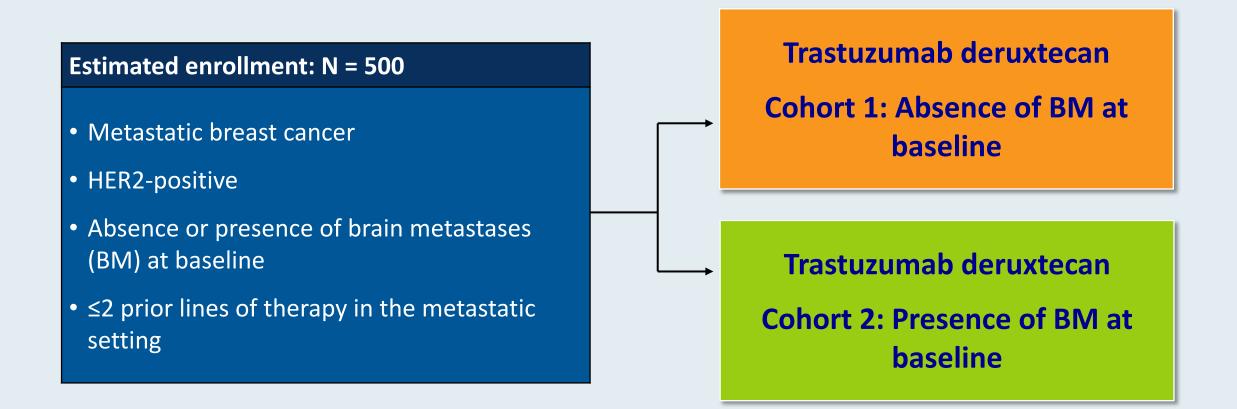
Secondary Endpoints



- PFS: 14 months (95% CI 11.0-n.r.)
- Median follow-up 11 months (range 3 17 months)

- Clinical Benefit Rate (CR+PR+SD ≥6 months): 13/15 (86.7%) in the ITT population and 13/14 (92.9%) in the PP population
- Median OS not reached
- Extracranial Response Rate:
- Pts. with extracranial metastases at baseline (n=13): PR 5/13 (27.8%)
- Pts with measurable extracranial disease at baseline (n=8): PR 5/8 (62.5%)

DESTINY-Breast07 Phase I/II Trial Design



Secondary endpoints: Objective response rate, PFS, PFS2, DoR, OS

www.clinicaltrials.gov. NCT04538742. Accessed August 2022.

DESTINY-Breast12 Phase IIIb/IV Trial Design

Primary endpoints: Objective response rate for patients without BM at baseline (Cohort 1), PFS for patients with BM at baseline (Cohort 2)

www.clinicaltrials.gov. NCT04739761. Accessed August 2022.

Meet The Professor Optimizing the Management of Multiple Myeloma

> Wednesday, October 5, 2022 5:00 PM – 6:00 PM ET

> > Faculty Sagar Lonial, MD

Moderator Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

