Meet The Professor Optimizing the Management of HER2-Positive Breast Cancer

Thursday, September 1, 2022 5:00 PM - 6:00 PM ET

Faculty
Mark D Pegram, MD

Commercial Support

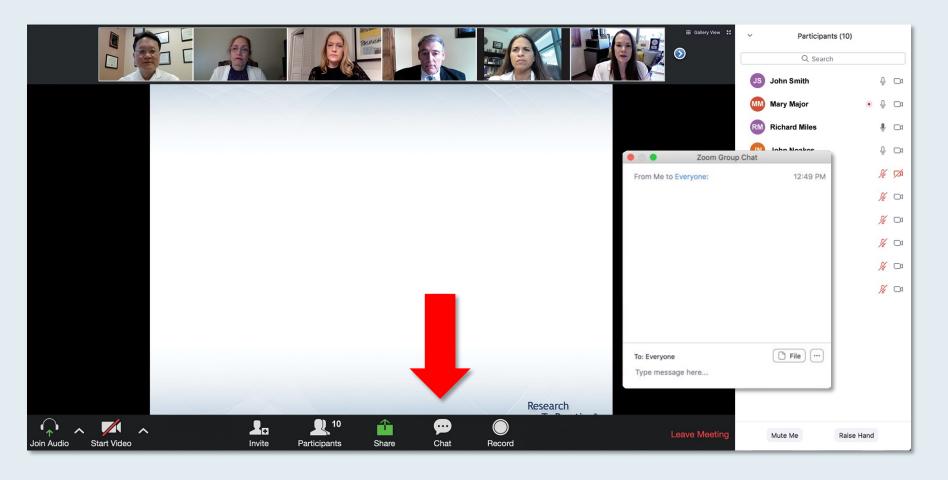
This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, and Seagen Inc.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

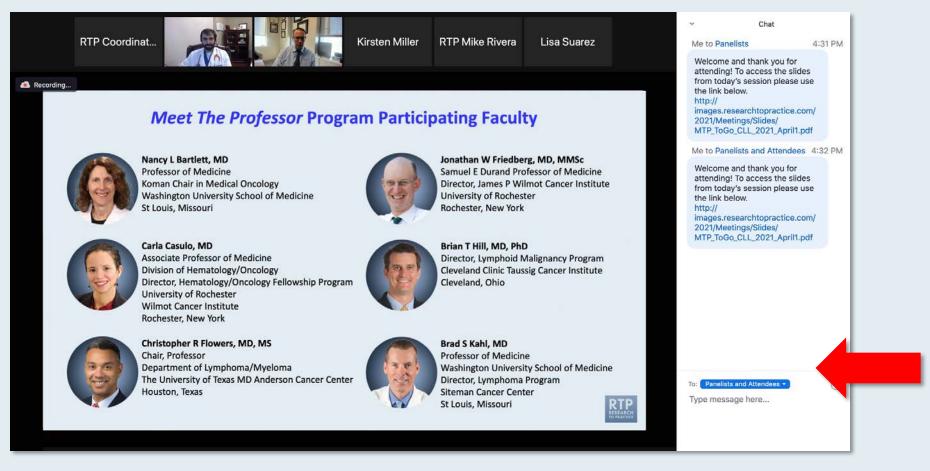
Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.


Dr Pegram — Disclosures

Advisory Committee	AstraZeneca Pharmaceuticals LP, bioTheranostics Inc, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, Pfizer Inc, Sanofi Genzyme, Seagen Inc
Consulting Agreements	AstraZeneca Pharmaceuticals LP, bioTheranostics Inc, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, Novartis, Pfizer Inc
Data and Safety Monitoring Board/Committee	AstraZeneca Pharmaceuticals LP
Nonrelevant Financial Relationship	Spouse employed by Rain Therapeutics Inc

Dr Mark Pegram's contribution to this activity was as a paid consultant and was not part of his Stanford University duties or responsibilities.

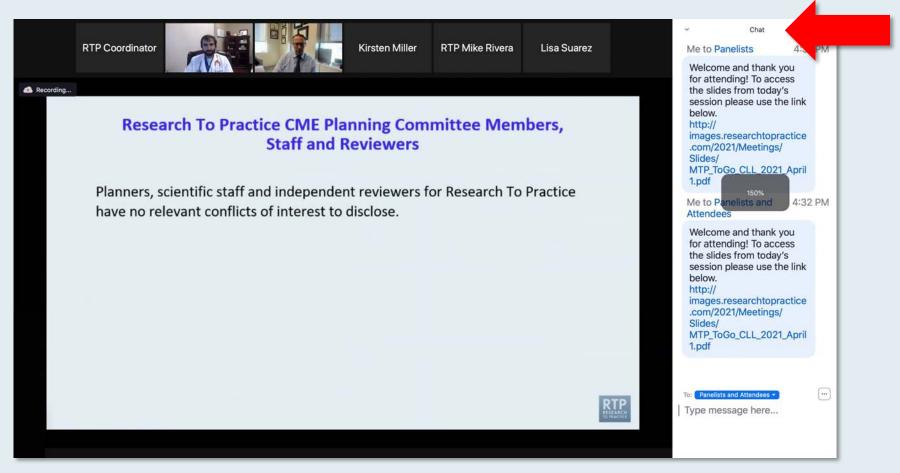
We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box



Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY

WITH DR NEIL LOVE

Management of HER2-Low Breast Cancer



DR SHANU MODI
MEMORIAL SLOAN KETTERING CANCER CENTER

Exploring Current Considerations and Promising Investigational Approaches for Patients with Myelodysplastic Syndromes

A CME/MOC-Accredited Virtual Event

Thursday, September 8, 2022 5:00 PM - 6:00 PM ET

Faculty

Guillermo Garcia-Manero, MD Gail J Roboz, MD David Sallman, MD

Challenging Cases from the Community: Investigators Provide Perspectives on the Optimal Management of Diffuse Large B-Cell Lymphoma

A CME/MOC-Accredited Virtual Event

Tuesday, September 13, 2022 5:00 PM - 6:00 PM ET

Faculty

Jeremy Abramson, MD Sonali M Smith, MD Jason Westin, MD, MS

Oncology Today with Dr Neil Love — Management of Endometrial Cancer

A CME/MOC-Accredited Virtual Event

Wednesday, September 14, 2022 5:00 PM - 6:00 PM ET

Faculty
Michael J Birrer, MD, PhD

Current Paradigm and Future Directions for Immunotherapy in the Treatment of Metastatic Non-Small Cell Lung Cancer

A CME/MOC-Accredited Virtual Event

Tuesday, September 27, 2022 5:00 PM - 6:00 PM ET

Faculty

Faculty to be announced

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Optimizing the Management of HER2-Positive Breast Cancer

Mark D Pegram, MD

Susy Yuan-Huey Hung Endowed Professor of Oncology Director, Clinical and Translational Research Unit Associate Dean for Clinical Research Quality Stanford University School of Medicine Associate Director for Clinical Research Stanford Comprehensive Cancer Institute Stanford, California

Meet The Professor Program Participating Faculty

Adam M Brufsky, MD, PhD
Professor of Medicine
Co-Director, Comprehensive Breast
Cancer Center
UPMC Hillman Cancer Center
Department of Medicine
University of Pittsburgh
Pittsburgh, Pennsylvania

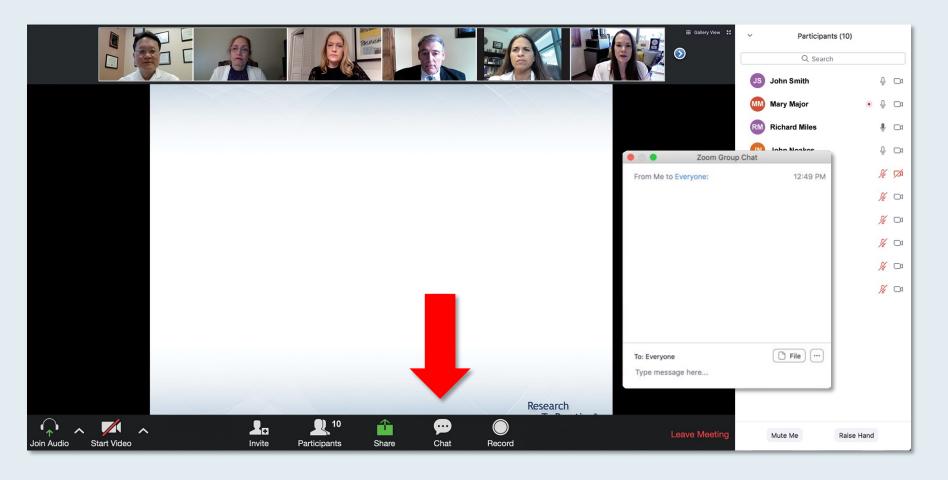
Professor Giuseppe Curigliano, MD, PhD
Clinical Director
Division of Early Drug Development for
Innovative Therapy
Co-Chair, Cancer Experimental Therapeutics Program
Department of Oncology and Hemato-Oncology
University of Milano
European Institute of Oncology
Milano, Italy

Lisa A Carey, MD, ScM
L Richardson and Marilyn Jacobs Preyer
Distinguished Professor for Breast
Cancer Research
Deputy Director for Clinical Sciences
Lineberger Comprehensive Cancer Center
University of North Carolina
Chapel Hill, North Carolina

Nancy U Lin, MD
Associate Chief, Division of Breast Oncology
Dana-Farber Cancer Institute
Associate Professor of Medicine
Harvard Medical School
Boston, Massachusetts

Meet The Professor Program Participating Faculty

Joyce O'Shaughnessy, MD
Celebrating Women Chair in Breast Cancer Research
Baylor University Medical Center
Director, Breast Cancer Research Program
Texas Oncology
US Oncology
Dallas, Texas


MODERATOR
Neil Love, MD
Research To Practice

Mark D Pegram, MD
Susy Yuan-Huey Hung Endowed Professor
of Oncology
Director, Clinical and Translational Research Unit
Associate Dean for Clinical Research Quality
Stanford University School of Medicine
Associate Director for Clinical Research
Stanford Comprehensive Cancer Institute
Stanford, California

We Encourage Clinicians in Practice to Submit Questions

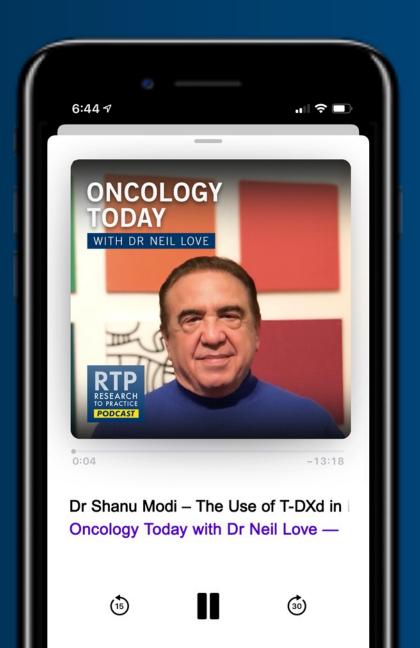
Feel free to submit questions now before the program begins and throughout the program.

Clinicians in the Audience, Please Complete the Pre- and Postmeeting Surveys

ONCOLOGY TODAY

WITH DR NEIL LOVE

Management of HER2-Low Breast Cancer



DR SHANU MODI
MEMORIAL SLOAN KETTERING CANCER CENTER

Exploring Current Considerations and Promising Investigational Approaches for Patients with Myelodysplastic Syndromes

A CME/MOC-Accredited Virtual Event

Thursday, September 8, 2022 5:00 PM - 6:00 PM ET

Faculty

Guillermo Garcia-Manero, MD Gail J Roboz, MD David Sallman, MD

Challenging Cases from the Community: Investigators Provide Perspectives on the Optimal Management of Diffuse Large B-Cell Lymphoma

A CME/MOC-Accredited Virtual Event

Tuesday, September 13, 2022 5:00 PM - 6:00 PM ET

Faculty

Jeremy Abramson, MD Sonali M Smith, MD Jason Westin, MD, MS

Oncology Today with Dr Neil Love — Management of Endometrial Cancer

A CME/MOC-Accredited Virtual Event

Wednesday, September 14, 2022 5:00 PM - 6:00 PM ET

Faculty
Michael J Birrer, MD, PhD

Current Paradigm and Future Directions for Immunotherapy in the Treatment of Metastatic Non-Small Cell Lung Cancer

A CME/MOC-Accredited Virtual Event

Tuesday, September 27, 2022 5:00 PM - 6:00 PM ET

Faculty

Faculty to be announced

Meet The Professor Optimizing the Management of HER2-Positive Breast Cancer

Mark D Pegram, MD

Susy Yuan-Huey Hung Endowed Professor of Oncology Director, Clinical and Translational Research Unit Associate Dean for Clinical Research Quality Stanford University School of Medicine Associate Director for Clinical Research Stanford Comprehensive Cancer Institute Stanford, California

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, and Seagen Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Dr Pegram — Disclosures

Advisory Committee	AstraZeneca Pharmaceuticals LP, bioTheranostics Inc, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, Pfizer Inc, Sanofi Genzyme, Seagen Inc
Consulting Agreements	AstraZeneca Pharmaceuticals LP, bioTheranostics Inc, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Gilead Sciences Inc, Novartis, Pfizer Inc
Data and Safety Monitoring Board/Committee	AstraZeneca Pharmaceuticals LP
Nonrelevant Financial Relationship	Spouse employed by Rain Therapeutics Inc

Dr Mark Pegram's contribution to this activity was as a paid consultant and was not part of his Stanford University duties or responsibilities.

Alan B Astrow, MD
NewYork-Presbyterian Brooklyn
Methodist Hospital
Brooklyn, New York

Shaachi Gupta, MD, MPH Florida Cancer Specialists Lake Worth, Florida

Zanetta S Lamar, MDFlorida Cancer Specialists
Naples, Florida

Joanna Metzner-Sadurski, MD University of South Carolina Greenwood, South Carolina

Niyati A Nathwani, MD Carolina Blood and Cancer Care Associates Charlotte, North Carolina

Chris Prakash, MD
US Oncology Research
Paris, Texas

Raman Sood, MD Brooks Memorial Hospital Dunkirk, New York

Meet The Professor with Dr Pegram

Introduction: Journal Club with Dr Pegram - Part 1

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Pegram – Part 2

MODULE 4: Appendix

Meet The Professor with Dr Pegram

Introduction: Journal Club with Dr Pegram – Part 1

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Pegram – Part 2

MODULE 4: Appendix

npj Breast Cancer NPJ Breast Cancer 2021 October 8;7(1):134. www.nature.com/npjbcancer

REVIEW ARTICLE OPEN

A careful reassessment of anthracycline use in curable breast cancer

Sara Alsterlind Hurvitz (□)^{1 ⋈}, Nicholas P. McAndrew (□)¹, Aditya Bardia², Michael F. Press³, Mark Pegram (□)⁴, John P. Crown⁵, Peter A. Fasching (□)⁶, Bent Ejlertsen (□)⁷, Eric H. Yang (□)¹, John A. Glaspy (□)¹ and Dennis J. Slamon¹

"The following statements are true: as of this writing, there has been no prospective randomized trial that has demonstrated an OS benefit from the addition of anthracyclines to taxane-based chemotherapy in the curative setting ... no randomized study has shown the addition of anthracycline to a taxane/trastuzumab-based regimen improves outcomes for HER2-amplified breast cancer ... Thus, rather than asking which patients can be safely be treated without an anthracycline, we should be asking, does the data clearly exist to warrant the use of an anthracycline, keeping in mind that in many cases we are potentially harming patients more than helping them."

J Clin Oncol 2021 August 20;39(24):2667-75.

Pertuzumab Plus High-Dose Trastuzumab in Patients With Progressive Brain Metastases HER2-Positive Metastatic Breast Cancer: Prin **Patients With Progressive Brain Metastases and HER2-Positive Metastatic Breast Cancer: Primary Analysis of a Phase II Study**

Nancy U. Lin, MD¹; Mark Pegram, MD²; Solmaz Sahebjam, MD³; Nuhad Ibrahim, MD⁴; Anita Fung, PharmD⁵; Anna Cheng, PharmD⁵; Alan Nicholas, PhD5; Whitney Kirschbrown, PharmD, PhD5; and Priya Kumthekar, MD6


Updated Results of Tucatinib vs Placebo Added to Trastuzumab and Capecitabine for Patients with Previously Treated HER2-Positive Metastatic Breast Cancer with Brain Metastases (HER2CLIMB)

Lin NU et al.

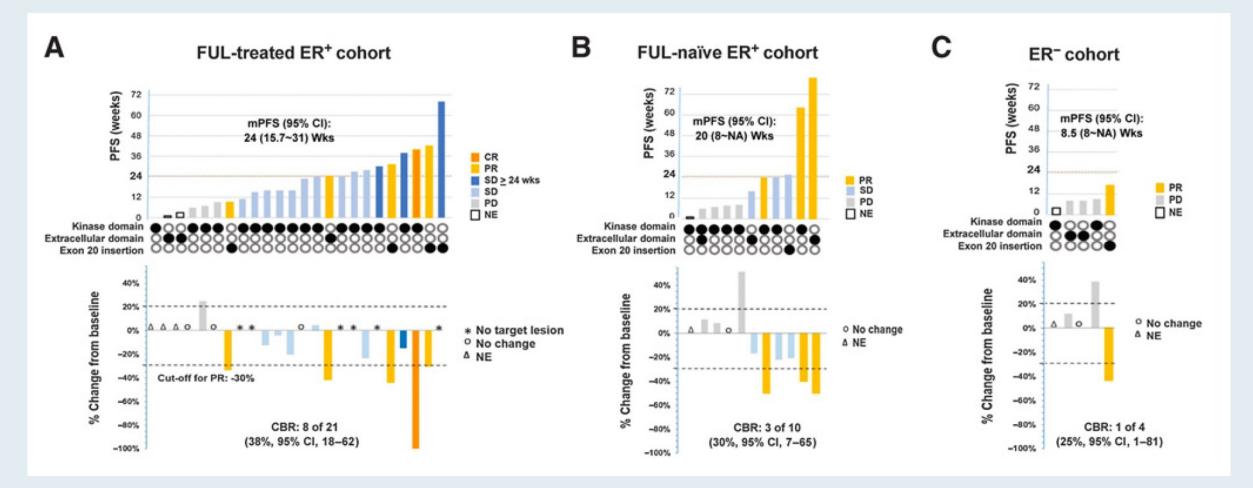
SABCS 2021; Abstract PD4-04.

HER2CLIMB: CNS-PFS for All Patients with Brain Metastases

CNS-PFS benefit with tucatinib was maintained with longer follow-up in all patients with brain metastases.

CNS-PFS = central nervous system progression-free survival

Clin Cancer Res 2022 April 1;28(7):1258-67.


CLINICAL CANCER RESEARCH | CLINICAL TRIALS: TARGETED THERAPY

The Phase II MutHER Study of Neratinib Alone and in Combination with Fulvestrant in HER2-Mutated, Non-amplified Metastatic Breast Cancer

Cynthia X. Ma^{1,2}, Jingqin Luo^{2,3}, Rachel A. Freedman⁴, Timothy J. Pluard⁵, Julie R. Nangia⁶, Janice Lu⁷, Frances Valdez-Albini⁸, Melody Cobleigh⁹, Jason M. Jones¹⁰, Nancy U. Lin⁴, Eric P. Winer⁴, P. Kelly Marcom¹¹, Shana Thomas¹, Jill Anderson¹, Brittney Haas¹, Leslie Bucheit¹², Richard Bryce¹³, Alshad S. Lalani¹³, Lisa A. Carey¹⁴, Matthew P. Goetz¹⁵, Feng Gao^{2,3}, Gretchen Kimmick¹¹, Mark D. Pegram¹⁶, Matthew J. Ellis¹⁷, and Ron Bose^{1,2}

Efficacy of Neratinib with Fulvestrant for ER-Positive Cohorts and Neratinib Monotherapy for ER-Negative Cohort

Meet The Professor with Dr Pegram

MODULE 1: Case Presentations

- Dr Sood: 65-year-old woman with ER/PR-, HER2+ metastatic breast cancer, s/p multiple lines of HER2-directed therapy, now NED after 8 years of pertuzumab/trastuzumab
- Dr Gupta: 63-year-old woman with a 1.8-cm triple-positive IDC s/p partial mastectomy/ALND (9 N+)
 receives adjuvant TCHP x 6
- Dr Prakash: 70-year-old woman with de novo ER+, HER2+ breast cancer who develops asymptomatic, bilateral brain metastases on TCHP
- Dr Nathwani: 44-year-old woman with metastatic ER/PR-, HER2+ breast cancer completes THP with CR but 3 months later has multiple brain metastases
- Dr Lamar: 31-year-old woman with ER/PR+, HER2- breast cancer s/p neoadjuvant dd AC → paclitaxel and bilateral mastectomy, now with HER2+ disease on repeat testing
- Dr Astrow: 45-year-old woman with triple-negative breast cancer at biopsy declines neoadjuvant therapy and at surgery has a 3.2-cm node-negative, HER2+ tumor
- Dr Metzner-Sadurski: 62-year-old woman with ER/PR-, HER2+ breast cancer develops paralysis but recovers functioning after paclitaxel/trastuzumab, now with bone metastases responding to T-DXd

Case Presentation: 65-year-old woman with ER/PR-, HER2+ metastatic breast cancer, s/p multiple lines of HER2-directed therapy, now NED after 8 years of pertuzumab/trastuzumab

Dr Raman Sood (Dunkirk, New York)

A 63-year-old woman with a 1.8-cm ER-positive, HER2-positive IDC goes directly to surgery and is found to have 9 positive nodes. What would be your likely postoperative systemic approach?

Chemotherapy/trastuzumab/pertuzumab

Chemotherapy/trastuzumab/pertuzumab → T-DM1

Chemotherapy/trastuzumab/pertuzumab → T-DM1 → neratinib

Chemotherapy/trastuzumab/pertuzumab → neratinib

Other

I'm not sure

Case Presentation: 63-year-old woman with a 1.8-cm triple-positive IDC s/p partial mastectomy/ALND (9 N+) receives adjuvant TCHP x 6

Dr Shaachi Gupta (Lake Worth, Florida)

A 70-year-old woman with de novo ER-positive, HER2-positive metastatic breast cancer responds to TCHP but then has disease progression, including asymptomatic bilateral brain metastases. Generally, would you use systemic treatment and hold off on radiation therapy?

Yes

No, I would likely use radiation therapy also

I'm not sure

Which systemic treatment would you likely recommend for the patient in the previous scenario?

T-DM1

Tucatinib/trastuzumab/capecitabine

Tucatinib

Trastuzumab deruxtecan (T-DXd)

Other

I'm not sure

Case Presentation: 70-year-old woman with de novo ER+, HER2+ breast cancer who develops asymptomatic, bilateral brain metastases on TCHP

Dr Chris Prakash (Paris, Texas)

Case Presentation: 44-year-old woman with metastatic ER/PR-, HER2+ breast cancer completes THP with CR but 3 months later has multiple brain metastases

Dr Niyati Nathwani (Charlotte, North Carolina)

A 31-year-old patient with T2N2 ER-positive, HER2-negative IDC receives neoadjuvant dose-dense AC-T with minor response at surgery, but the tumor is now HER2-positive and a BRCA2 mutation is found. Which of the following agents would likely be part of your adjuvant systemic strategy?

Trastuzumab, pertuzumab

Trastuzumab, pertuzumab, neratinib

Trastuzumab, pertuzumab, neratinib, olaparib

Trastuzumab, pertuzumab, olaparib

Paclitaxel, trastuzumab, pertuzumab

Paclitaxel, trastuzumab, pertuzumab, neratinib

Paclitaxel, trastuzumab, pertuzumab, neratinib, olaparib

Paclitaxel, trastuzumab, pertuzumab, olaparib

Other

I'm not sure

Case Presentation: 31-year-old woman with ER/PR+, HER2- breast cancer s/p neoadjuvant dd AC → paclitaxel and bilateral mastectomy, now with HER2+ disease on repeat testing

Dr Zanetta Lamar (Naples, Florida)

A 45-year-old patient with a 3.2-cm ER-positive, HER2-positive IDC goes directly to surgery and is found to be node-negative. What would be your likely postoperative systemic approach?

Chemotherapy/trastuzumab/pertuzumab

Chemotherapy/trastuzumab/pertuzumab → neratinib

Chemotherapy/trastuzumab

Chemotherapy/trastuzumab → neratinib

Other

I'm not sure

Case Presentation: 45-year-old woman with triple-negative breast cancer at biopsy declines neoadjuvant therapy and at surgery has a 3.2-cm node-negative, HER2+ tumor

Dr Alan Astrow (Brooklyn, New York)

Case Presentation: 62-year-old woman with ER/PR-, HER2+ breast cancer develops paralysis but recovers functioning after paclitaxel/trastuzumab, now with bone metastases responding to T-DXd

Dr Joanna Metzner-Sadurski (Greenwood, South Carolina)

Meet The Professor with Dr Pegram

Introduction: Journal Club with Dr Pegram - Part 1

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

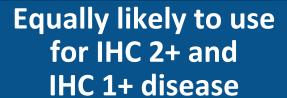
MODULE 3: Journal Club with Dr Pegram – Part 2

MODULE 4: Appendix

Regulatory and reimbursement issues aside, would you offer trastuzumab deruxtecan to a patient with HER2 IHC 0 metastatic breast cancer (mBC) with a HER2 mutation?

Regulatory and reimbursement issues aside, how are you most likely to approach the use of trastuzumab deruxtecan for HER2 IHC 1+ versus HER2 IHC 2+ mBC?

Dr Brufsky



Dr Carey

Prof Curigliano

for IHC 2+ and IHC 1+ disease

for IHC 2+ and IHC 1+ disease

Dr Lin

Dr Pegram

for IHC 2+ and IHC 1+ disease

for IHC 2+ and IHC 1+ disease

February Feb

A woman who has completed 5 years of an adjuvant aromatase inhibitor for ER-positive, HER2 IHC 2+, FISH-negative breast cancer develops <u>symptomatic liver</u> metastases 3 years later. Regulatory and reimbursement issues aside, when would you most likely offer trastuzumab deruxtecan?

A woman undergoes neoadjuvant chemotherapy and surgery for BRCA wild-type, ER-negative, HER2 IHC 2+, FISH-negative breast cancer and develops <u>symptomatic liver</u> metastases while receiving adjuvant capecitabine. Regulatory and reimbursement issues aside, when would you most likely offer trastuzumab deruxtecan?

On the basis of your personal experience and available clinical trial data, how would you characterize the degree of alopecia observed with trastuzumab deruxtecan?

Dr Brufsky

Dr Carey

Prof Curigliano

Less alopecia than that observed with platinum agents

Moderate alopecia as observed with platinum agents

Dr Lin

Dr Pegram

Moderate alopecia as observed with platinum agents

Moderate alopecia as observed with platinum agents

Moderate alopecia as observed with platinum agents

On the basis of your personal experience and available clinical trial data, how would you describe the "chemotherapy-like" side-effect profile (fatigue, GI symptoms) of trastuzumab deruxtecan?

Dr Brufsky

Similar to but less concerning than anthracycline/platinum agents

Dr Lin

Similar to the profile of anthracycline/platinum agents

Dr Carey

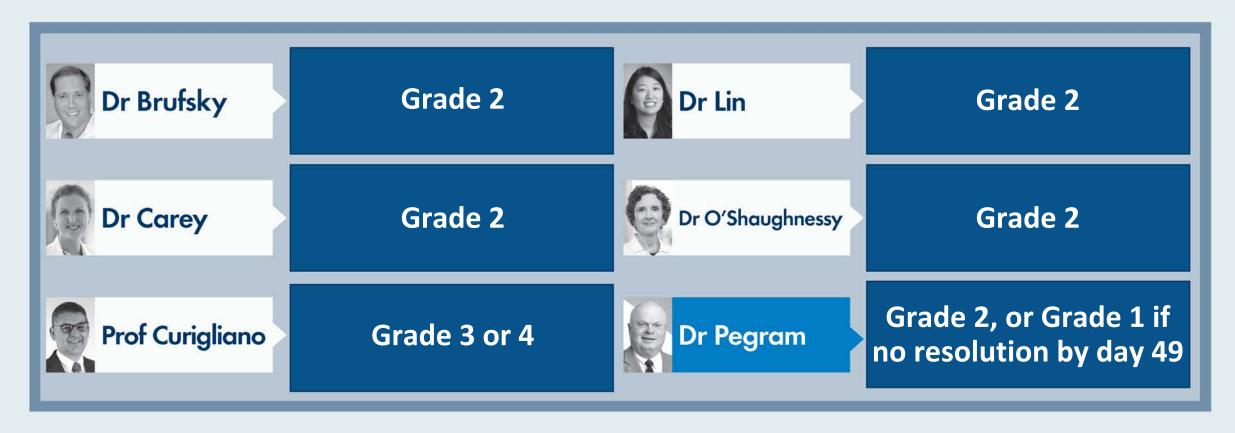
Similar to but less concerning than anthracycline/platinum agents

Dr O'Shaughnessy

Similar to but less concerning than anthracycline/platinum agents

Prof Curigliano

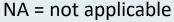
Similar to but less concerning than anthracycline/platinum agents



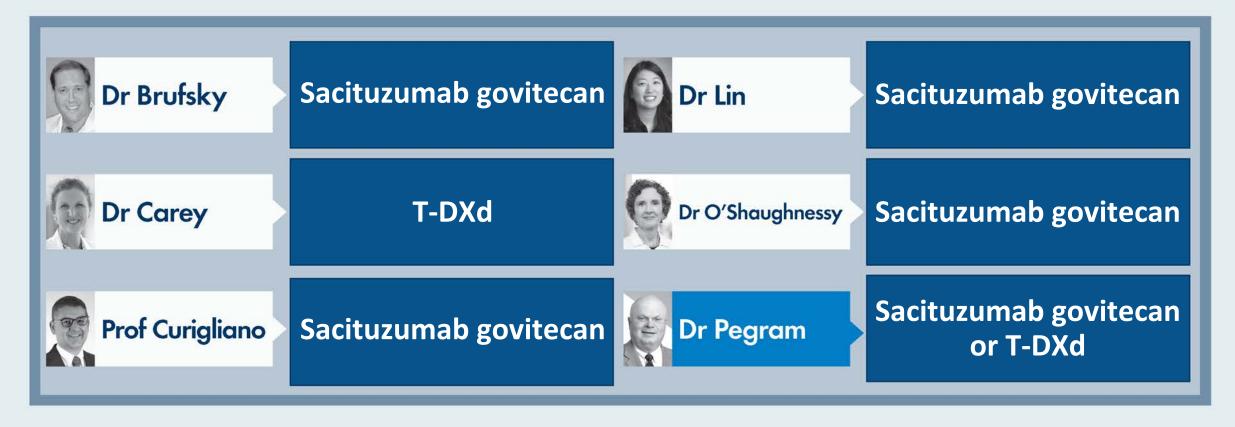
Dr Pegram

Similar to the profile of anthracycline/platinum agents

What grade of interstitial lung disease (ILD) would lead you to permanently discontinue treatment with trastuzumab deruxtecan?


Have you re-administered trastuzumab deruxtecan to a patient who developed Grade 1 ILD and recovered from it?

Do you use chest imaging to monitor a patient receiving trastuzumab deruxtecan who otherwise does not require chest imaging? How often would you perform chest imaging if the patient remained asymptomatic?



Do you evaluate pulmonary function, either clinically or by specific PFTs?

Regulatory and reimbursement issues aside, which next line of therapy would you recommend to a patient with hormone receptornegative, HER2 IHC 1+ or 2+, BRCA wild-type breast cancer who receives neoadjuvant chemoimmunotherapy and develops metastatic disease while receiving adjuvant immunotherapy?

Meet The Professor with Dr Pegram

Introduction: Journal Club with Dr Pegram - Part 1

MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Pegram – Part 2

MODULE 4: Appendix

Front Oncol 2022 April 27;12:890810.

Editorial: Metabolic Abnormalities and Breast Cancer: Challenges From Bench to Bedside

Zheng Wang^{1*}, Pu Li^{2*}, Mark Daniel Pegram^{3*} and Xiaosong Chen^{1*}

Frontiers in Oncology July 2022 Table of Contents

- Long Noncoding RNA MIR210HG Promotes the Warburg Effect and Tumor Growth by Enhancing HIF-1α Translation in Triple-Negative Breast Cancer – Du Y et al
- The Metabolic Mechanisms of Breast Cancer Metastasis Wang L et al
- DNA N6-Methyladenine (6mA) Modification Regulates Drug Resistance in Triple Negative Breast Cancer Sheng Xianneng et al
- The Deubiquitinating Enzyme UCHL1 Induces Resistance to Doxorubicin in HER2+ Breast Cancer by Promoting Free Fatty Acid Synthesis Lu G et al
- Hyperglycemia and Chemoresistance in Breast Cancer: From Cellular Mechanisms to Treatment Response – Qiu J et al
- Hypoxia in Breast Cancer—Scientific Translation to Therapeutic and Diagnostic Clinical Applications
 Zhang Y et al
- Potential Mechanism Underlying the Role of Mitochondria in Breast Cancer Drug Resistance and Its Related Treatment Prospects – Li Y and Li Z

Frontiers in Oncology July 2022 Table of Contents (Continued)

- Metabolic Syndrome and Breast Cancer: Prevalence, Treatment Response, and Prognosis –
 Dong S et al
- Comprehensive Association Analysis of 21-Gene Recurrence Score and Obesity in Chinese Breast
 Cancer Patients Tong Y et al
- The Synergistic Effects of Pyrotinib Combined With Adriamycin on HER2-Positive Breast Cancer –
 Wang C et al
- Enhanced Susceptibility to Breast Cancer in Korean Women With Elevated Serum Gamma-Glutamyltransferase Levels: A Nationwide Population-Based Cohort Study Seol A et al
- The IncRNA ADAMTS9-AS2 Regulates RPL22 to Modulate TNBC Progression via Controlling the TGF-β
 Signaling Pathway Ni K et al
- Lactate Dehydrogenase-A (LDH-A) Preserves Cancer Stemness and Recruitment of Tumor-Associated
 Macrophages to Promote Breast Cancer Progression Wang S et al

Frontiers in Oncology July 2022 Table of Contents (Continued)

- Hormone Receptor Status May Impact the Survival Benefit Between Medullary Breast Carcinoma and Atypical Medullary Carcinoma of the Breast: A Population-Based Study — Qin W et al
- Anticancer Mechanisms of Salinomycin in Breast Cancer and Its Clinical Applications Wang H et al
- Mammary Tumorigenesis and Metabolome in Male Adipose Specific Monocyte Chemotactic Protein-1
 Deficient MMTV-PyMT Mice Fed a High-Fat Diet Yan L et al
- Lipid Changes During Endocrine Therapy in Breast Cancer Patients: The Results of a 5-Year Real-World Retrospective Analysis – He T et al

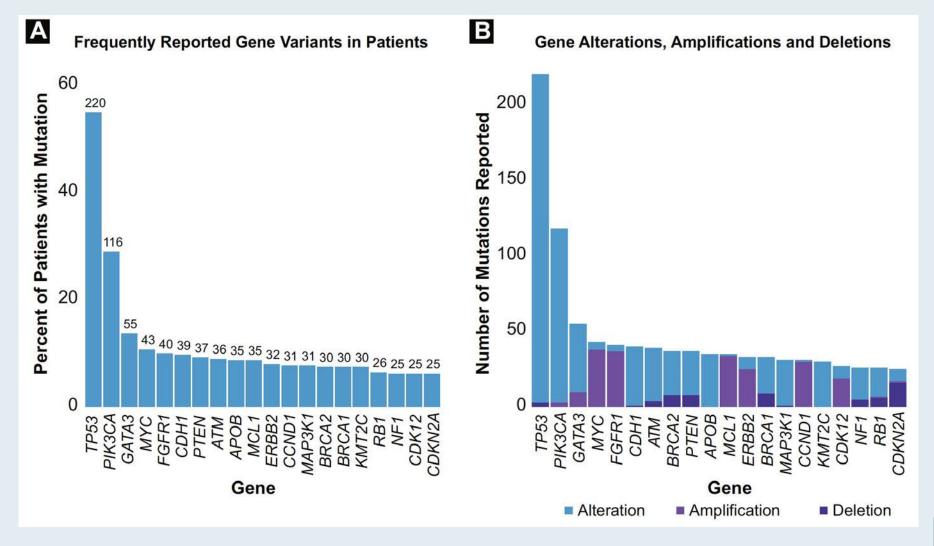
Original Study

Clin Breast Cancer 2021 August;21(4):e340-61.

Real-world Evidence of Diagnostic Testing and Treatment Patterns in US Patients With Breast Cancer With Implications for Treatment Biomarkers From RNA Sequencing Data

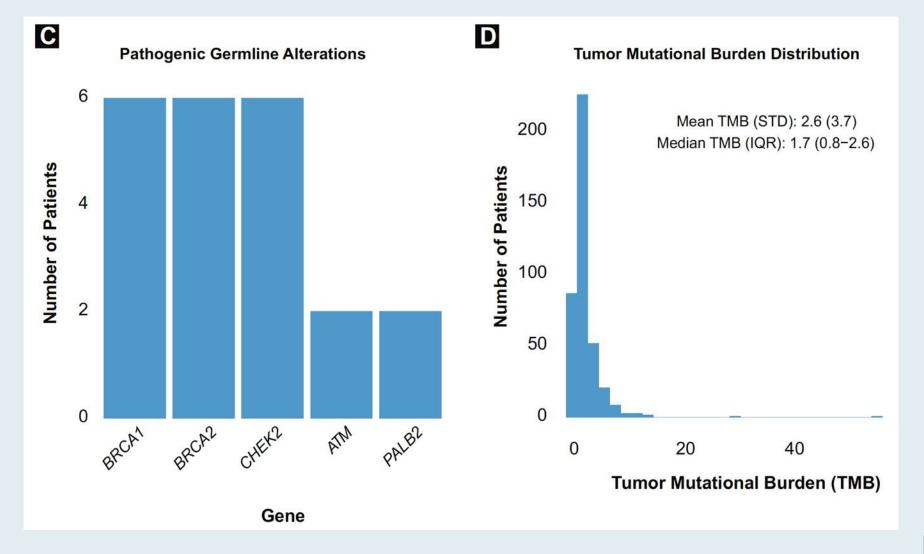
Louis E. Fernandes, ¹ Caroline G. Epstein, ¹ Alexandria M. Bobe, ¹ Joshua S.K. Bell, ¹ Martin C. Stumpe, ¹ Michael E. Salazar, ¹ Ameen A. Salahudeen, ¹ Ruth A. Pe Benito, ¹ Calvin McCarter, ¹ Benjamin D. Leibowitz, ¹ Matthew Kase, ¹ Catherine Igartua, ¹ Robert Huether, ¹ Ashraf Hafez, ¹ Nike Beaubier, ¹ Michael D. Axelson, ¹ Mark D. Pegram, ² Sarah L. Sammons, ³ Joyce A. O'Shaughnessy, ⁴ Gary A. Palmer

Supplementary Table 2


Inter-test Comparison of HER2 Status From IHC and FISH Results Among Patients in the Clinical Abstraction Cohort With Both Tests Conducted at Initial Diagnosis (N=709)

HER2 Status	IHC Positive (n = 82), n (%)	IHC Equivocal (n = 445), n (%)	IHC Negative (n = 182), n (%)
FISH positive	51 (62.2)	51 (11.5)	7 (3.9)
FISH equivocal	5 (6.1)	35 (7.9)	9 (4.9)
FISH negative	26 (31.7)	359 (80.7)	166 (91.2)
Total discordant	31 (37.8)	410 (92.1)	16 (8.8)

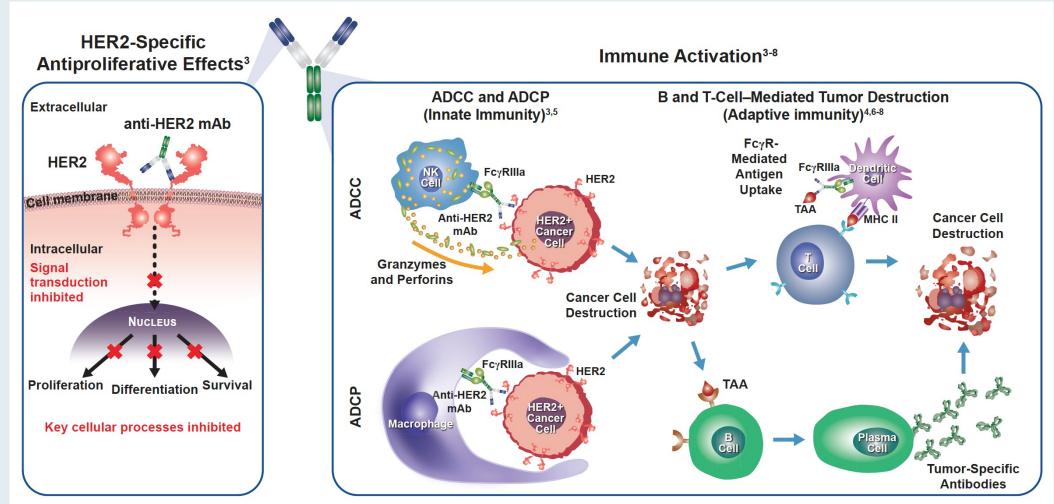
Abbreviations: FISH = Fluorescence in situ hybridization; HER2 = human epidermal growth factor receptor 2; IHC = immunohistochemistry.



Molecular Characteristics of the Tempus Molecular Sequenced Cohort

Molecular Characteristics of the Tempus Molecular Sequenced Cohort (Continued)

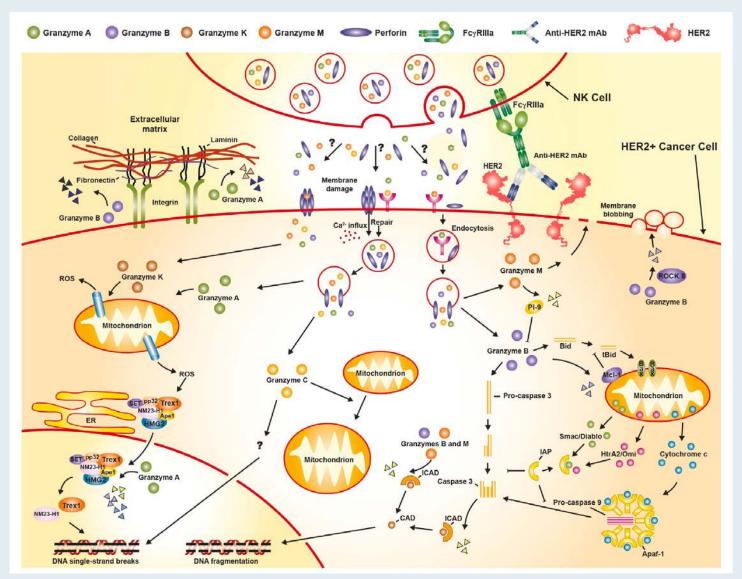
Open access **Review**


Journal for ImmunoTherapy of Cancer Role of Fcy receptors in HER2-targeted breast cancer therapy

Antonino Musolino, William J Gradishar, Hope S Rugo , Jeffrey L Nordstrom, Antonino Musolino, William J Gradishar, Hope S Rugo Edwin P Rock, Fernanda Arnaldez, Mark D Pegram⁵

J Immunother Cancer 2022 January;10(1):e003171.

Mechanism of Action of Anti-HER2 Monoclonal Antibodies: Antiproliferative Effects and Immune Activation



Fcy Receptors Differ in Function, Cell Distribution, Immune Response, Signaling Motifs and Affinity for IgG Molecules

Name	FcγRI CD64	FcγRIIa CD32A	FcγRIIb CD32B	FcγRIIc CD32C	FcγRIIIa CD16A	FcγRIIIb CD16B
Structure ¹¹	Common γ-chain		ITIM			GPI
Function ¹¹	Activating	Activating	Inhibitory	Activating	Activating	Activating
Affinity ¹¹	High	Low	Low	Low	Low	Low
Cell Distribution ^{9,12-26}	Macrophages, monocytes, neutrophils, dendritic cells, mast cells	Macrophages, monocytes, neutrophils, eosinophils basophils, dendritic cells, mast cells	Macrophages, monocytes, eosinophils, basophils, B cells, mast cells, dendritic cells ^b	NK cells, monocytes, neutrophils, macrophages, B cells ^c	NK cells, NKT cells, γδ T cells, dendritic cells, macrophages, monocytes, neutrophils, eosinophils	Neutrophils, eosinophils, basophils
Effect of Antibody Binding ^{9,10,27-33}	ADCP, cytokine release	ADCC, ADCP, vaccinal effect ^a	Inhibits ADCC, ADCP, B cell activation	Enhances ADCC, ADCP, B cell activation	ADCC, ADCP	Decoy receptor that inhibits ADCP ^d

Classical Granzyme/Perforin-Mediated Apoptosis Pathway

Proc Natl Acad Sci U S A 2021 July 20;118(29):e2026849118.

Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance

Rosalynd Upton^a, Allison Banuelos^a, Dongdong Feng^a, Tanuka Biswas^a, Kevin Kao^a, Kelly McKenna^a, Stephen Willingham^a, Po Yi Ho^a, Benyamin Rosental^b, Michal Caspi Tal^a, Tal Raveh^a, Jens-Peter Volkmer^a, Mark D. Pegram^{c,1,2}, and Irving L. Weissman^{a,1,2}

Meet The Professor with Dr Pegram

Introduction: Journal Club with Dr Pegram - Part 1

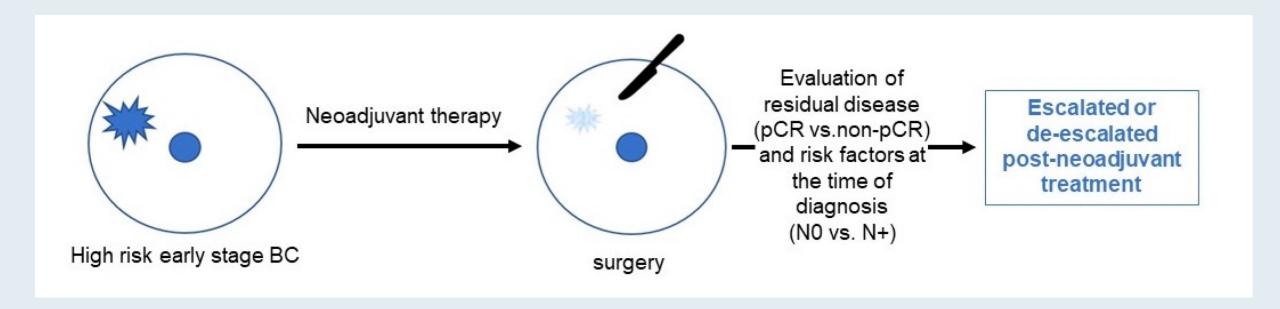
MODULE 1: Case Presentations

MODULE 2: Faculty Survey

MODULE 3: Journal Club with Dr Pegram – Part 2

MODULE 4: Appendix

Optimal Management of Patients with HER2-Positive Localized Breast Cancer (BC)


FDA-Approved Agents for HER2-Positive Localized Breast Cancer

Agent	Setting	Pivotal trial(s)	Regimens	Year approved	
		NSABP-31	AC-T-placebo vs AC-T-H		
Trastuzumab	Adjuvant HER2+ LBC,	N9831	AC-T vs AC-H vs AC-T-H	2006	
ITastuzumab	first line	BCIRG 006	AC-T vs ACT-H vs TC-H	2006	
		HERA	Observation vs trastuzumab		
Pertuzumab	Neoadjuvant HER2+ LBC	NeoSphere	TD vs PTD vs PT vs PD	2013	
Pertuzumab	Adjuvant HER2+ LBC	APHINITY	Chemotherapy + trastuzumab + pertuzumab vs placebo	2017	
Neratinib	Extended adjuvant HER2+ LBC	ExteNET	Placebo vs neratinib	2017	
T-DM1	Adjuvant HER2+ LBC with residual disease after neoadjuvant taxane and trastuzumab-based treatment	KATHERINE	Trastuzumab vs T-DM1	2019	

LBC = localized breast. cancer; AC = doxorubicin and cyclophosphamide; T = paclitaxel; H = trastuzumab; TC = docetaxel and cyclophosphamide; TD = trastuzumab and docetaxel; PTD = pertuzumab, trastuzumab and docetaxel; PT = pertuzumab and trastuzumab; PD = pertuzumab and docetaxel

Flow of Neoadjuvant and Adjuvant Therapy in Breast Cancer

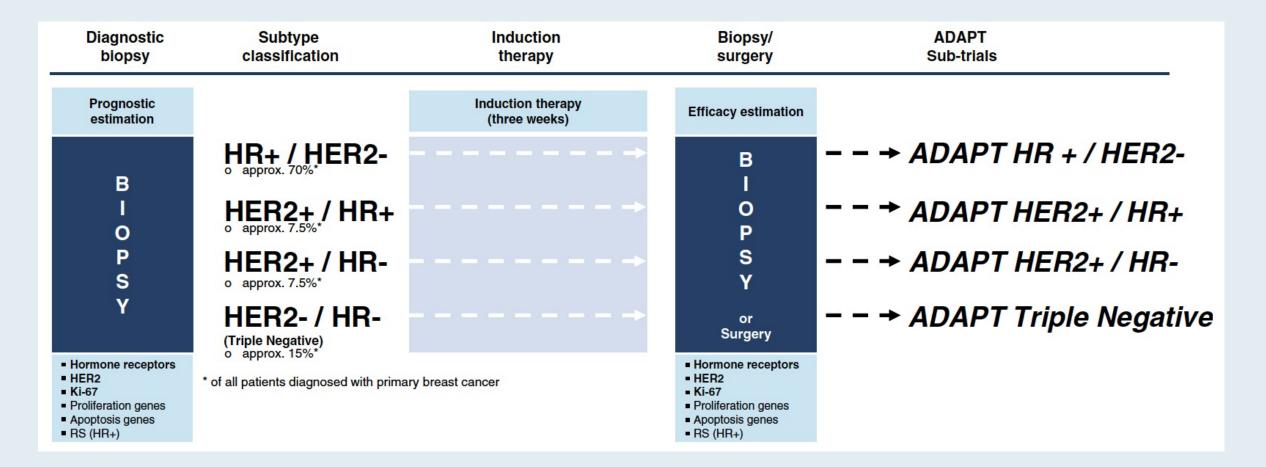
ORIGINAL ARTICLE

Ann Oncol 2017;28:2768-72.

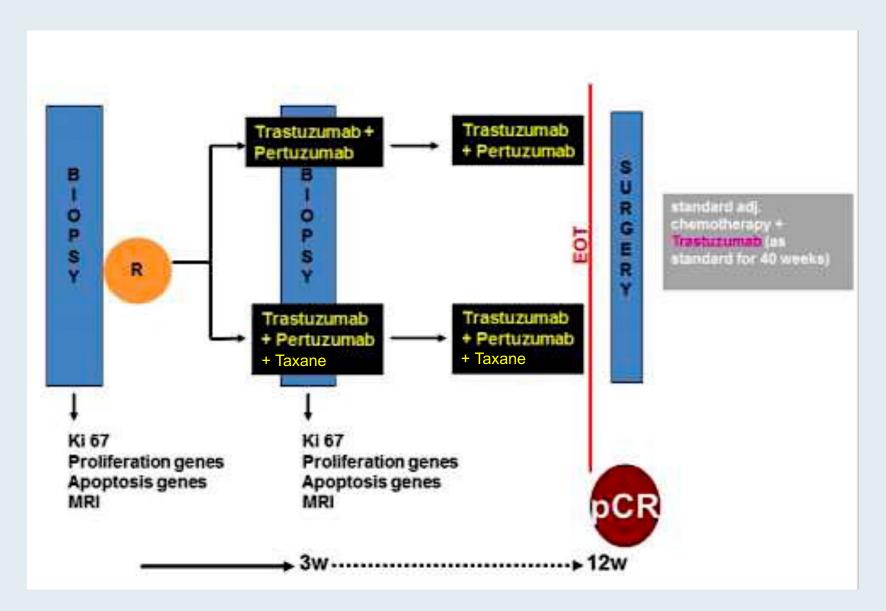
De-escalation strategies in HER2-positive early breast cancer (EBC): final analysis of the WSG-ADAPT HER2+/HR— phase II trial: efficacy, safety, and predictive markers for 12 weeks of neoadjuvant dual blockade with trastuzumab and pertuzumab ± weekly paclitaxel

U. A. Nitz^{1,2}, O. Gluz^{1,2,3*}, M. Christgen⁴, E.-M. Grischke⁵, D. Augustin⁶, S. Kuemmel⁷, M. Braun⁸, J. Potenberg⁹, A. Kohls¹⁰, K. Krauss¹¹, A. Stefek¹², C. Schumacher¹³, H. Forstbauer¹⁴, T. Reimer¹⁵, H. Fischer¹⁶, C. Liedtke^{17,18}, R. Wuerstlein¹⁹, J. Schumacher²⁰, R. Kates¹, H. Kreipe³ & N. Harbeck^{1,19}, on behalf of the West-German Study Group (WSG)-ADAPT Investigators

Lancet Oncol 2022;23:625-35.


De-escalated neoadjuvant pertuzumab plus trastuzumab therapy with or without weekly paclitaxel in HER2-positive, hormone receptor-negative, early breast cancer (WSG-ADAPT-HER2+/HR-): survival outcomes from a multicentre, open-label, randomised, phase 2 trial

Ulrike Nitz*, Oleg Gluz*, Monika Graeser, Matthias Christgen, Sherko Kuemmel, Eva-Maria Grischke, Michael Braun, Doris Augustin, Jochem Potenberg, Katja Krauss, Claudia Schumacher, Helmut Forstbauer, Toralf Reimer, Andrea Stefek, Hans Holger Fischer, Enrico Pelz, Christine zu Eulenburg, Ronald Kates, Rachel Wuerstlein, Hans Heinrich Kreipe, Nadia Harbeck, on behalf of the WSG-ADAPT investigators



Adjuvant Dynamic Marker-Adjusted Personalized Therapy (ADAPT) Trial: Umbrella Trial Design

ADAPT HER2-Positive Schema

WSG ADAPT Neoadjuvant Studies for HER2-Positive Disease

Study	N and setting	Treatment arms	pCR rate*	Survival
WSG-ADAPT HER2+/HR-	134 ER/PR-negative cT1-4c	 Trastuzumab + pertuzumab Trastuzumab + pertuzumab + paclitaxel 	34.4% vs 90.5%	5-year iDFS 87% vs 98% 5-year dDFS 92% vs 98% 5-year OS 94% vs 98%
WSG-ADAPT-TP HER2+/HR+	375 ER and/or PR- positive cT1-4c	T-DM1T-DM1 + ETTrastuzumab + ET	41% vs 41.5% vs 15%	5-year DFS 88.9% vs 85.3% vs 84.6% 5-year OS 97.2% vs 96.4% vs 96.3

pCR = pathologic complete response; iDFS = invasive disease-free survival; dDFS = distant disease-free survival; OS = overall survival; ET = endocrine therapy

^{*}Defined as ypT0/is ypN0

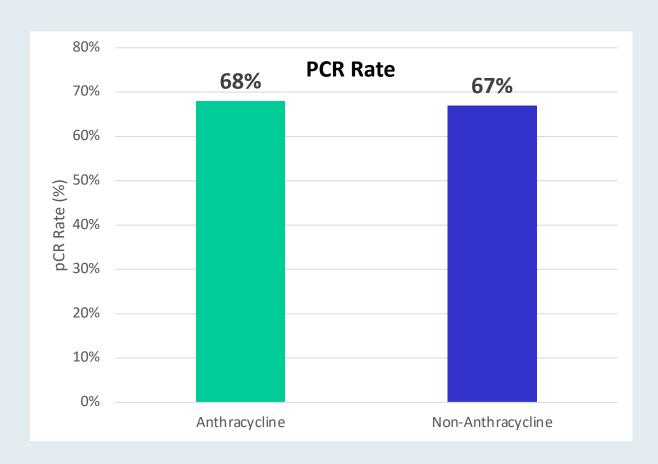
Lancet Oncol 2018;9(12):1630-40.

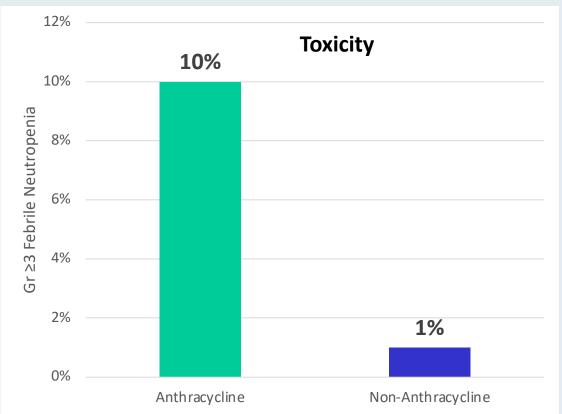
Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): a multicentre, open-label, randomised, phase 3 trial

Mette S van Ramshorst, Anna van der Voort, Erik D van Werkhoven, Ingrid A Mandjes, Inge Kemper, Vincent O Dezentjé, Irma M Oving, Aafke H Honkoop, Lidwine W Tick, Agnes J van de Wouw, Caroline M Mandigers, Laurence J van Warmerdam, Jelle Wesseling, Marie-Jeanne T Vrancken Peeters, Sabine C Linn, Gabe S Sonke, on behalf of the Dutch Breast Cancer Research Group (BOOG)

Research

JAMA Oncol 2021;7(7):978-84.


JAMA Oncology | Original Investigation


Three-Year Follow-up of Neoadjuvant Chemotherapy
With or Without Anthracyclines in the Presence of Dual *ERBB2*Blockade in Patients With *ERBB2*-Positive Breast Cancer
A Secondary Analysis of the TRAIN-2 Randomized, Phase 3 Trial

Anna van der Voort, MD; Mette S. van Ramshorst, MD, PhD; Erik D. van Werkhoven, MSc; Ingrid A. Mandjes, MSc; Inge Kemper, MANP; Annelie J. Vulink, MD; Irma M. Oving, MD, PhD; Aafke H. Honkoop, MD, PhD; Lidwine W. Tick, MD, PhD; Agnes J. van de Wouw, MD, PhD; Caroline M. Mandigers, MD, PhD; Laurence J. van Warmerdam, MD, PhD; Jelle Wesseling, MD, PhD; Marie-Jeanne T. Vrancken Peeters, MD, PhD; Sabine C. Linn, MD, PhD; Gabe S. Sonke, MD, PhD

TRAIN-2: pCR Rates and Key Toxicity Differences with Anthracycline- and Non-Anthracycline-Containing Regimens

TRAIN-2: Three-Year Follow-Up Summary

 TRAIN-2 is not powered to detect differences for event-free survival (EFS) and OS secondary endpoints, and results are for descriptive purposes

Endpoint	Anthracycline group (n = 219)	Nonanthracycline group (N = 219)	HR		
3-y EFS rate	92.7%	93.6%	0.90		
3-y OS rate	97.7%	98.2%	0.91		
Results were irrespective of hormone receptor and nodal status					

- pCR in the breast and axillary lymph nodes was associated with DFS (HR 0.42; p = 0.006)
- A decline in LVEF \geq 10% from baseline to less than 50% was more common in patients who received anthracyclines than in those who did not (7.7% vs 3.2%; p = 0.04)

Adjuvant Trastuzumab Emtansine Versus Paclitaxel in Combination With Trastuzumab for Stage I HER2-Positive Breast Cancer (ATEMPT): A **Randomized Clinical Trial**

Sara M. Tolaney, MD, MPH^{1,2}; Nabihah Tayob, PhD¹; Chau Dang, MD³; Denise A. Yardley, MD⁴; Steven J. Isakoff, MD, PhD⁵; Vicente Valero, MD⁶; Meredith Faggen, MD¹; Therese Mulvey, MD⁵; Ron Bose, MD, PhD⁷; Jiani Hu, MSc¹; Douglas Weckstein, MD¹; Antonio C. Wolff, MD8; Katherine Reeder-Hayes, MD, MBA, MSc9; Hope S. Rugo, MD10; Bhuvaneswari Ramaswamy, MD11; Dan Zuckerman, MD¹²; Lowell Hart, MD¹³; Vijayakrishna K. Gadi, MD, PhD¹⁴; Michael Constantine, MD¹; Kit Cheng, MD¹⁵; Frederick Briccetti, MD1; Bryan Schneider, MD16; Audrey Merrill Garrett, MD17; Kelly Marcom, MD18; Kathy Albain, MD19; Patricia DeFusco, MD²⁰; Nadine Tung, MD^{2,21}; Blair Ardman, MD²²; Rita Nanda, MD²³; Rachel C. Jankowitz, MD²⁴; Mothaffar Rimawi, MD²⁵; Vandana Abramson, MD²⁶; Paula R. Pohlmann, MD, PhD, MSc²⁷; Catherine Van Poznak, MD²⁸; Andres Forero-Torres, MD²⁹; Minetta Liu, MD³⁰; Kathryn Ruddy, MD³⁰; Yue Zheng, MSc¹; Shoshana M. Rosenberg, ScD, MPH^{1,2}; Richard D. Gelber, PhD^{1,2}; Lorenzo Trippa, PhD^{1,2}; William Barry, PhD¹; Michelle DeMeo, BS¹; Harold Burstein, MD, PhD^{1,2}; Ann Partridge, MD, MPH^{1,2}; Eric P. Winer, MD^{1,2}; and Ian Krop, MD, PhD^{1,2}

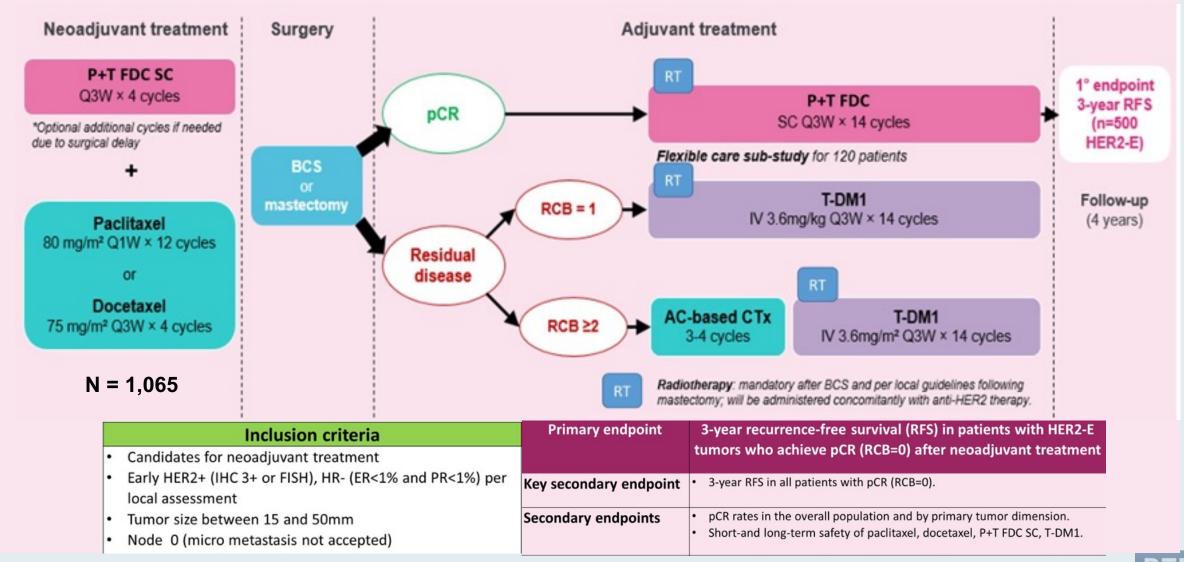
J Clin Oncol 2021 July 20;39(21):2375-85.

ATEMPT: Invasive Disease-Free Survival (iDFS) and Recurrence-Free Interval (RFI)

Outcome	T-DM1 (n = 383)	Paclitaxel/trastuzumab (n = 114)
Three-year iDFS	97.8%	93.4%
Three-year RFI	99.2%	94.3%

ATEMPT: Clinically Relevant Toxicity

Clinically Relevant Toxicity	T-DM1 (n = 383)	TH (n = 114)
Grade ≥3 nonhematologic toxicity	9%	11%
Grade ≥2 neurotoxicity	11%	23%
Grade ≥4 hematologic toxicity	1%	0%
Febrile neutropenia	0%	2%
Any toxicity requiring dose delay	28%	26%
Any toxicity requiring early discontinuation	17%	6%
Total	46%	47%

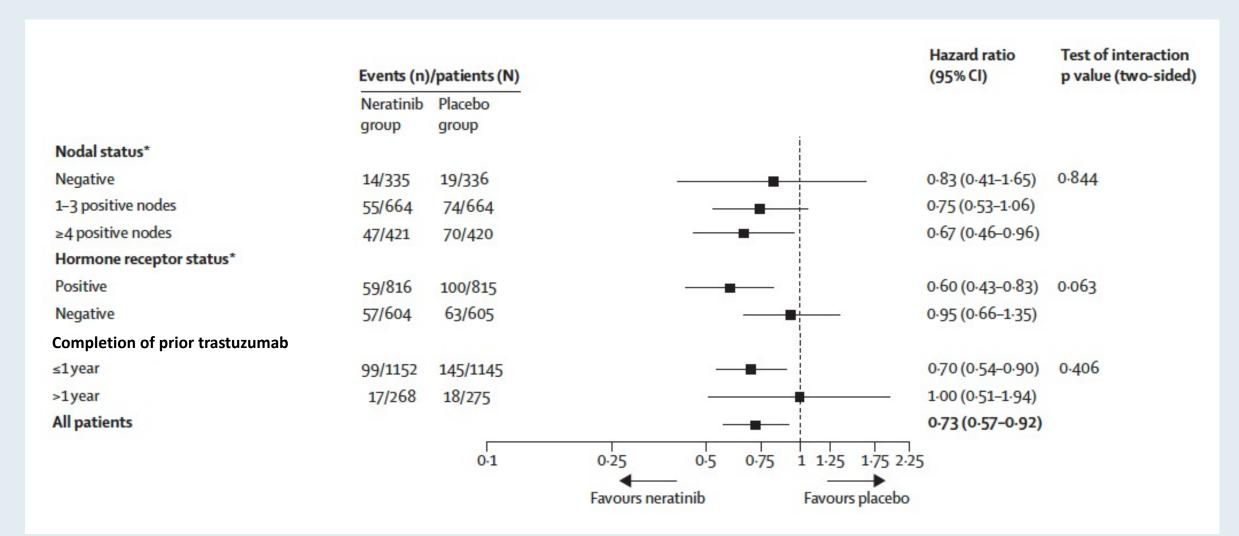

Select Ongoing Trials HER2-Positive Localized Breast Cancer

Trial identifier	Phase (N)	Setting	Regimens	Estimated completion date
CompassHER2 pCR (NCT04266249)	II (N = 2,156)	Neoadjuvant and adjuvant	 Preoperative chemotherapy + trastuzumab/pertuzumab If pCR → postoperative trastuzumab/pertuzumab If residual disease → postoperative T-DM1 or T-DM1 + tucatinib 	2023
DESTINY-Breast05 (NCT04622319)	III (N = 1,600)	High risk, residual disease after neoadjuvant chemotherapy	Trastuzumab deruxtecan (T-DXd)T-DM1	2027
DESTINY-Breast11 (NCT05113251)	III (N = 624)	Neoadjuvant, high risk	 T-DXd T-DXd → THP AC → THP 	2024

THP = paclitaxel, trastuzumab and pertuzumab

DECRESCENDO Phase II De-escalation Study Design

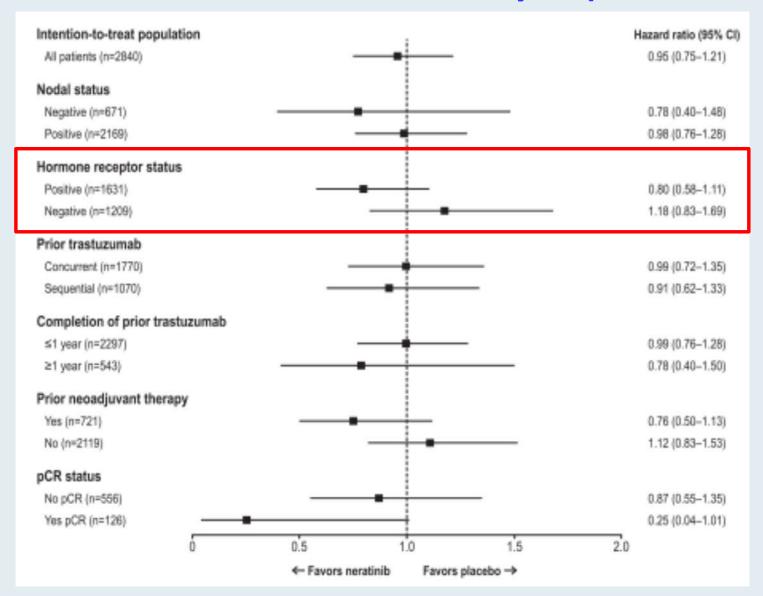
Lancet Oncol 2017;18:1688-700.



Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial

Miguel Martin, Frankie A Holmes, Bent Ejlertsen, Suzette Delaloge, Beverly Moy, Hiroji Iwata, Gunter von Minckwitz, Stephen K L Chia, Janine Mansi, Carlos H Barrios, Michael Gnant, Zorica Tomašević, Neelima Denduluri, Robert Šeparović, Erhan Gokmen, Anna Bashford, Manuel Ruiz Borrego, Sung-Bae Kim, Erik Hugger Jakobsen, Audrone Ciceniene, Kenichi Inoue, Friedrich Overkamp, Joan B Heijns, Anne C Armstrong, John S Link, Anil Abraham Joy, Richard Bryce, Alvin Wong, Susan Moran, Bin Yao, Feng Xu, Alan Auerbach, Marc Buyse, Arlene Chan, for the ExteNET Study Group*

ExteNET: 5-Year Analysis of Invasive Disease-Free Survival


Continued Efficacy of Neratinib in Patients with HER2-Positive Early-Stage Breast Cancer: Final Overall Survival Analysis from the Randomized Phase 3 ExteNET Trial

Holmes FA et al.

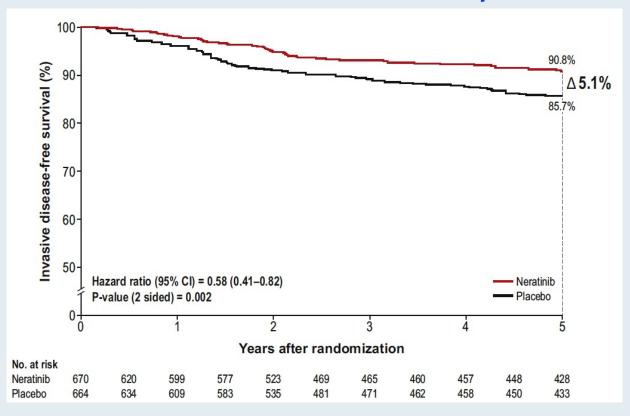
SABCS 2020; Abstract PD3-03.

ExteNET: Final Overall Survival Analysis (8-Year Follow-Up)

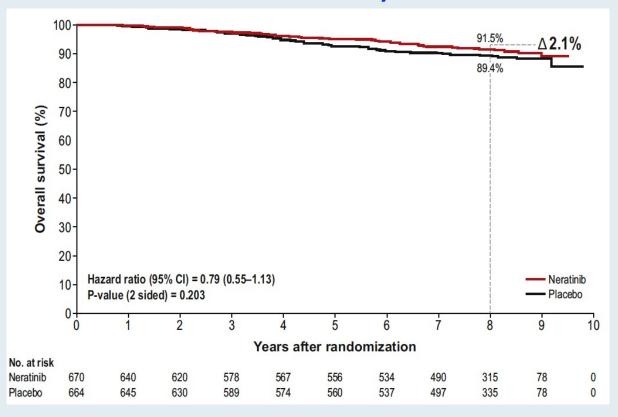
ExteNET Final Overall Survival Analysis: Conclusions

- In the final protocol-defined analysis, there were fewer deaths in the neratinib arm, but no significant improvement in OS (HR 0.95; 95% CI 0.75–1.21) in the ExteNET ITT population after 8 years of follow-up:
 - The data suggest an association between neratinib and improved OS in patients with HR+ disease (HR 0.80; 95% CI 0.58-1.12) when compared with patients with HR- tumors (HR 1.18; 95% CI 0.83-1.69), which is consistent with the primary 2-year and 5-year analyses of iDFS and DDFS.
- Descriptive analyses also suggest that neratinib may be associated with longer OS in subgroups of clinical interest including the HR+/≤1-year population (HR 0.79; 95% Cl 0.55–1.13), and in the high-risk patient subgroup with residual disease after neoadjuvant therapy (HR 0.47; 95% Cl 0.23–0.92):
 - Clinically meaningful improvements were consistently observed across the endpoints (iDFS, DDFS, OS).
- Neratinib is the first HER2-directed agent to show a trend towards improved CNS outcomes in early-stage HER2+ breast cancer:
 - In all groups (ITT, HR+/≤1-year, and no pCR), consistently fewer CNS events were observed in the neratinib arm compared with placebo.

Final Efficacy Results of Neratinib in HER2-positive Hormone Receptor-positive Early-stage Breast Cancer From the Phase III ExteNET Trial

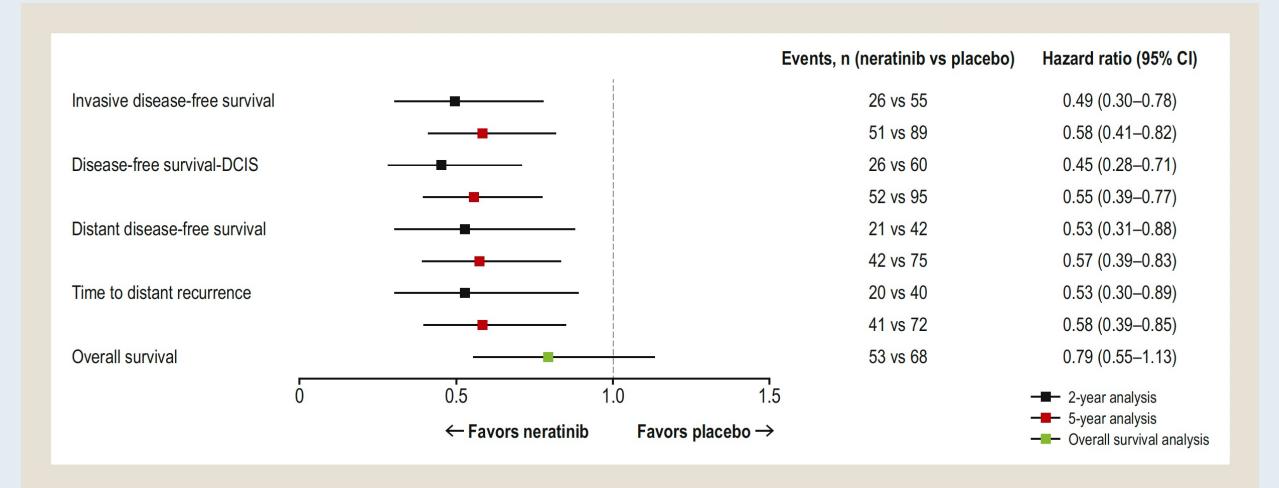

Arlene Chan, Beverly Moy, Janine Mansi, Bent Ejlertsen, Frankie Ann Holmes, Stephen Chia, Hiroji Iwata, Michael Gnant, Sibylle Loibl, Carlos H. Barrios, Isil Somali, Snezhana Smichkoska, Noelia Martinez, Mirta Garcia Alonso, Isil Somali, Ingrid A. Mayer, Søren Cold, Serafin Morales Murillo, Francis Senecal, Kenichi Inoue, Manuel Ruiz-Borrego, Rina Hui, Rina Hui, Pelima Denduluri, Debra Patt, Hope S. Rugo, Stephen R.D. Johnston, Richard Bryce, Bo Zhang, Feng Xu, Alvin Wong, Miguel Martin, Sor the ExteNET Study Group

Clin Breast Cancer 2021;21(1):80-91.

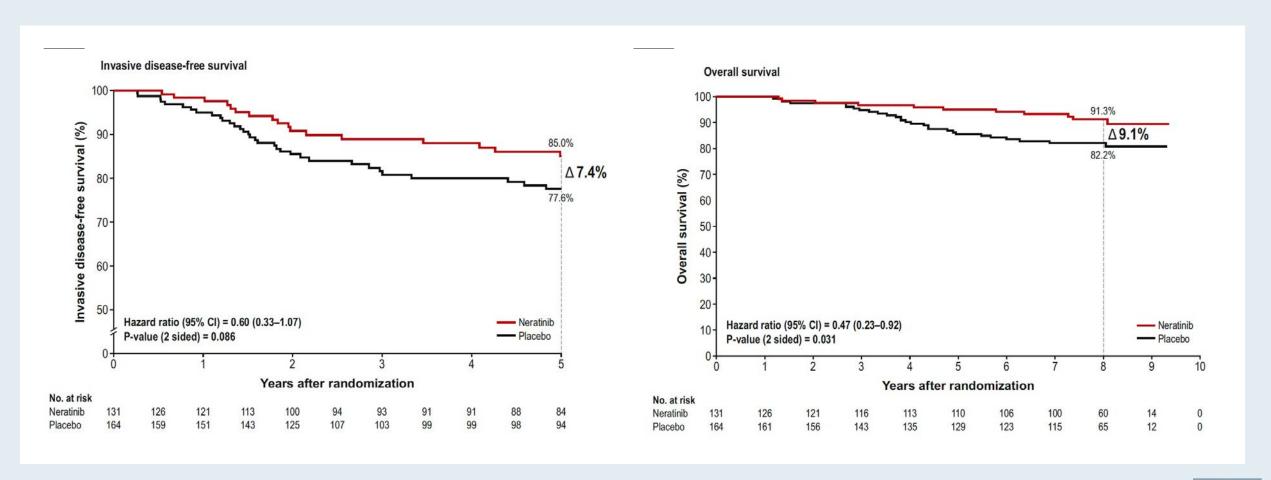


ExteNET: Final Analysis with Neratinib for HER2-Positive Localized Breast Cancer (HR+/≤ 1-Year population)

Invasive disease-free survival at 5 years



Overall survival at 8 years



ExteNET: 2-Year, 5-Year and Overall Survival in HR+/≤1-Year Population (N = 1,334)

ExteNET: Invasive Disease-Free and Overall Survival at 5 Years in the HR+/≤1-Year Population with No pCR After Neoadjuvant Therapy (N = 295)

ExteNET: Cumulative Incidence of CNS Recurrence

	Ev	Cumulative incidence Events, n of CNS recurrence		
Population or subgroup	Neratinib	Placebo	Neratinib	Placebo
Intention-to-treat population (n = 2,840)	16	23	1.3%	1.8%
HR-positive/≤1-year population (EU indication) (n = 1,334)	4	12	0.7%	2.1%
Adjuvant or neoadjuvant therapy (n = 1,334) Adjuvant (n = 980) Neoadjuvant (n = 354)	3 1	6 6	0.7% 0.7%	1.5% 3.7%
pCR status (n = 354) No (n = 295) Yes (n = 38)	1 0	5 1	0.8% 0	3.6% 5.0%

ExteNET: Adverse Events (AEs)

Summary of AEs

	Neratinib (n = 662)	Placebo (n = 657)
Any TEAE	649 (98)	567 (86)
Grade 3 or 4 TEAE	327 (49)	76 (12)
Fatal TEAE	1 (<1)	0 (0)
Serious TEAE	45 (7)	36 (6)
Treatment-related TEAE	630 (95)	360 (55)
Serious treatment-related TEAE	19 (3)	5 (<1)
TEAE leading to		
Treatment discontinuation	178 (27)	30 (5)
Study withdrawal	11 (2)	2 (<1)
Dose reduction	203 (31)	13 (2)
Hospitalization	41 (6)	35 (5)
Dose interruption	280 (42)	75 (11)

Frequent Treatment-Emergent AEs (TEAEs)

	Neratinib	(n = 662)	Placebo (n = 657)
	Grade 1-2	Grade 3	Grade 1-2	Grade 3
Diarrhea	365 (55)	261 (39)	213 (32)	7 (1)
Nausea	280 (42)	9 (1)	135 (21)	2 (<1)
Fatigue	177 (27)	13 (2)	129 (20)	2 (<1)
Vomiting	150 (23)	24 (4)	41 (6)	2 (<1)
Abdominal pain	145 (22)	11 (2)	58 (9)	1 (<1)
Headache	119 (18)	6 (<1)	125 (19)	1 (<1)
Upper abdominal pain	90 (14)	6 (<1)	35 (5)	3 (<1)
Rash	90 (14)	3 (<1)	40 (6)	0 (0)
Decreased appetite	79 (12)	1 (<1)	13 (2)	0 (0)
Muscle spasms	81 (12)	0 (0)	21 (3)	1 (<1)

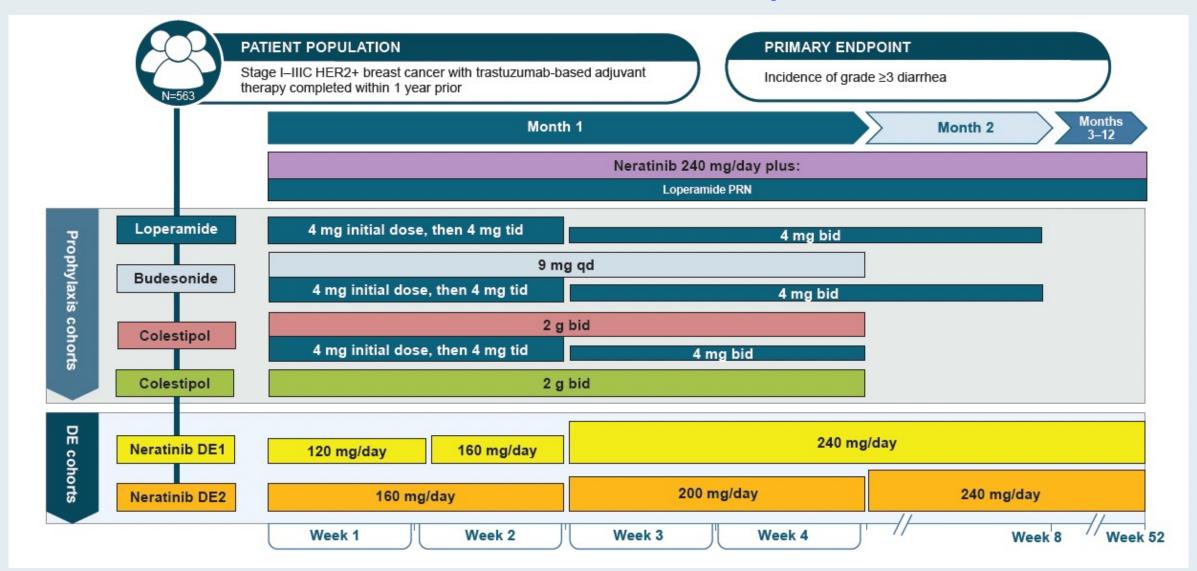
Association Between Treatment Duration and Overall Survival in Early-Stage HER2+ Breast Cancer Patients Receiving Extended Adjuvant Therapy with Neratinib in the ExteNET Trial

Moy B et al.

ASCO 2021; Abstract 540.

ExteNET: Survival Summary for Patients Who Completed Planned Neratinib Therapy

			5-year analysis			OS an	alysis	
	1	l .	iDFS	rate	DDFS rate		OS rate ^a	
Population or subgroup	Neratinib	Placebo	Difference, %b	HR (95% CI)	Difference, %b,8,9	HR (95% CI)	Difference, %b	HR (95% CI)
ITT population	1420	1420	+2.5	0.73 (0.57–0.92)°	+1.7	0.78 (0.60–1.01)°	-0.1	0.95 (0.75–1.21)°
Completed therapy ^d	872	1420	+3.3	0.68 (0.52–0.90)	+2.0	0.76 (0.56–1.02)	+2.0	0.78 (0.58–1.04)
HR+/≤1 year ^e (EU indication)	670	664	+5.1	0.58 (0.41–0.82)	+4.7	0.57 (0.39–0.83)	+2.1	0.79 (0.55–1.13)
Completed therapy ^d	402	664	+7.4	0.44 (0.28–0.68)	+5.9	0.49 (0.30–0.76)	+5.8	0.49 (0.29–0.78)
HR+/≤1 year no pCR ^f	131	164	+7.4	0.60 (0.33–1.07)	+7.0 ^g	0.61 (0.32–1.11)	+9.1	0.47 (0.23–0.92)
Completed therapy ^d	92	164	+11.9	0.42 (0.19–0.83)	+10.9 ^h	0.42 (0.18–0.88)	+13.2	0.29 (0.10–0.68)


Effects of Diarrheal Prophylaxis or Dose Escalation on Neratinib-Associated Diarrhea and Tolerability in Patients with HER2+ Early-Stage Breast Cancer: Final Findings from the CONTROL Trial

Chan A et al.

ESMO Breast 2022; Abstract P73.

CONTROL Trial Cohorts: Study Schema

CONTROL: All Strategies Reduced the Rate of Discontinuation Due to Diarrhea

CONTROL: Diarrhea Profile

Outcome	L (n=137)	BL (n=64)	CL (n=136)	CL-PRN (n=104)	DE1 (n=60)	DE2 (n=62)
Any grade diarrhea, n (%)	109 (80)	55 (86)	113 (83)	99 (95)	59 (98)	61 (98)
Grade 1	33 (24)	15 (23)	38 (28)	34 (33)	24 (40)	23 (37)
Grade 2	34 (25)	22 (34)	47 (35)	31 (30)	27 (45)	21 (34)
Grade 3	42 (31)	18 (28)	28 (21)	34 (33)	8 (13)	17 (27)
Grade 4	0	0	0	0	0	0
Median episodes of grade 3 diarrhea, n	1	1	1	1	2	1
Median time to first onset of grade 3 diarrhea, days	7.0	19.0	41.0	19.0	45.0	19.0
Median cumulative duration of grade 3 diarrhea per patient, days	3.0	3.0	3.5	2.0	2.5	2.0
Dose holds due to diarrhea, n (%)	20 (15)	12 (19)	22 (16)	15 (14)	7 (12)	8 (13)
Discontinuations due to diarrhea, n (%)	28 (20)	7 (11)	5 (4)	8 (8)	2 (3)	4 (6)
Hospitalizations due to diarrhea, n (%)	2 (2)	0	0	0	0	0

CONTROL: Conclusions

- These final findings from the CONTROL study show improved tolerability of neratinib with all
 diarrhea prophylaxis and DE schedules. These results demonstrate that neratinib is well tolerated as
 extended-adjuvant treatment for patients with HER2+ breast cancer after 1 year of trastuzumab.
- Adoption of neratinib DE with loperamide PRN during the first 2 weeks of treatment (DE1 cohort)
 was associated with a lower rate of Grade 3 diarrhea compared to the CONTROL prophylaxis
 strategies, the DE2 strategy and the neratinib arm in the ExteNET trial.
- The DE1 cohort also had the lowest rate of diarrhea-related discontinuations (3%) and dose holds (12%) compared to the other strategies investigated in the CONTROL trial and the neratinib arm in the ExteNET trial.
- These findings suggest that several modalities, most notably neratinib DE1 with loperamide PRN,
 allow patients to stay on treatment longer and receive the full benefit of neratinib therapy.
- The US package label for neratinib now includes both the mandatory loperamide prophylaxis regimen and the DE1 strategy from CONTROL as diarrhea-mitigation strategies.

Evolving Treatment Paradigms for Patientswith Metastatic HER2-Positive BC

Systemic Therapy for Advanced Human Epidermal Growth Factor Receptor 2—Positive Breast Cancer: ASCO Guideline Update

Sharon H. Giordano, MD, MPH¹; Maria Alice B. Franzoi, MD²; Sarah Temin, MSPH³; Carey K. Anders, MD⁴; Sarat Chandarlapaty, MD, PhD⁵; Jennie R. Crews, MD⁶; Jeffrey J. Kirshner, MD⁷; Ian E. Krop, MD, PhD⁸; Nancy U. Lin, MD⁸; Aki Morikawa, MD, PhD⁹; Debra A. Patt, MD, MPH, MBA¹⁰; Jane Perlmutter, PhD¹¹; Naren Ramakrishna, MD, PhD¹²; and Nancy E. Davidson, MD¹³

J Clin Oncol 2022 August; 40:2612-35.

Trastuzumab Deruxtecan (T-DXd) and DESTINY-Breast Studies

Trastuzumab Deruxtecan Significantly Delayed Disease Progression in Comparison to Physician's Choice of Treatment for HER2-Positive Metastatic Breast Cancer in the DESTINY-Breast02 Phase III Trial Press Release – August 15, 2022

Positive high-level results from the DESTINY-Breast02 Phase III trial of trastuzumab deruxtecan versus physician's choice of treatment showed the trial met the primary endpoint, demonstrating a statistically significant and clinically meaningful improvement in progression-free survival in patients with HER2-positive unresectable and/or metastatic breast cancer previously treated with trastuzumab emtansine. The trial also met the key secondary endpoint of improved overall survival.

The trial evaluated a similar later-line patient population as the single-arm DESTINY-Breast01 Phase II trial, which was the basis for initial approvals in advanced HER2-positive metastatic breast cancer. The safety profile of trastuzumab deruxtecan in DESTINY-Breast02 was consistent with previous Phase III clinical trials with no new safety concerns identified. Interstitial lung disease (ILD) rates and severity were consistent with those observed in other metastatic breast cancer trials of trastuzumab deruxtecan, with a low rate of Grade 5 ILD events observed as determined by an independent adjudication committee.

Fam-Trastuzumab Deruxtecan-Nxki Approved in the United States for HER2-Positive Metastatic Breast Cancer Treated with a Prior Anti-HER2 Regimen Press Release – May 5, 2022

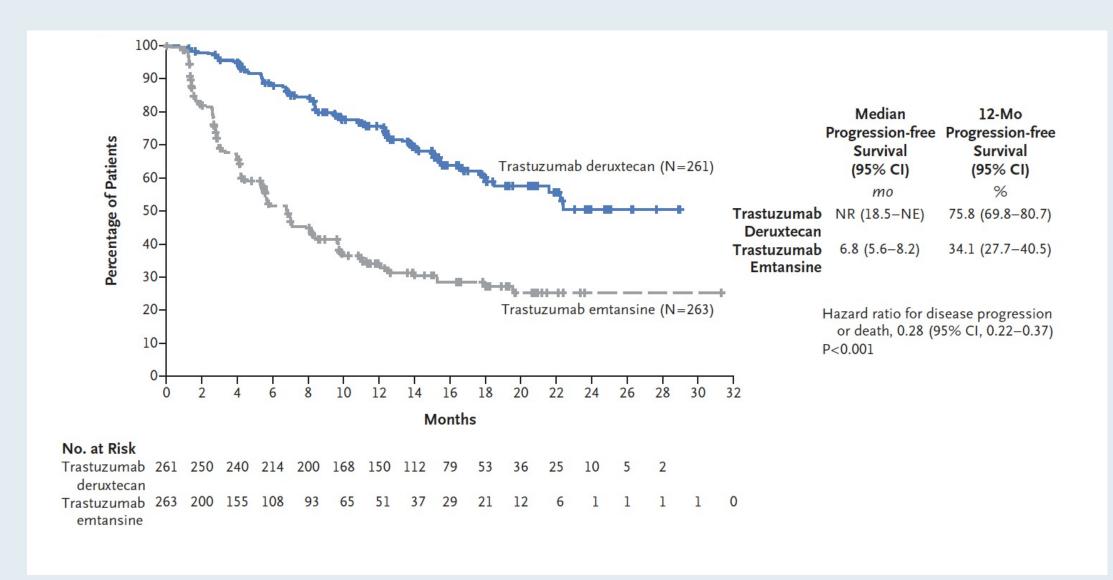
"Fam-trastuzumab deruxtecan-nxki has been approved in the US for the treatment of adult patients with unresectable or metastatic HER2-positive breast cancer who have received a prior anti-HER2-based regimen either in the metastatic setting, or in the neoadjuvant or adjuvant setting and have developed disease recurrence during or within six months of completing therapy.

The approval by the Food and Drug Administration (FDA) was based on positive results from the DESTINY-Breast03 Phase III trial that showed fam-trastuzumab deruxtecan-nxki reduced the risk of disease progression or death by 72% versus trastuzumab emtansine (T-DM1) (hazard ratio [HR] 0.28; 95% confidence interval [CI]: 0.22-0.37; p<0.0001) in patients with HER2-positive unresectable and/or metastatic breast cancer previously treated with trastuzumab and a taxane.

The approval was granted under the FDA's Real-Time Oncology Review (RTOR) program and converts the accelerated approval of fam-trastuzumab deruxtecan-nxki in later line HER2-positive metastatic breast cancer to standard approval, broadening fam-trastuzumab deruxtecan-nxki's breast cancer indication in the US to earlier lines of use in patients with HER2-positive metastatic breast cancer."

N Engl J Med 2022 March 24;386:1143-54.

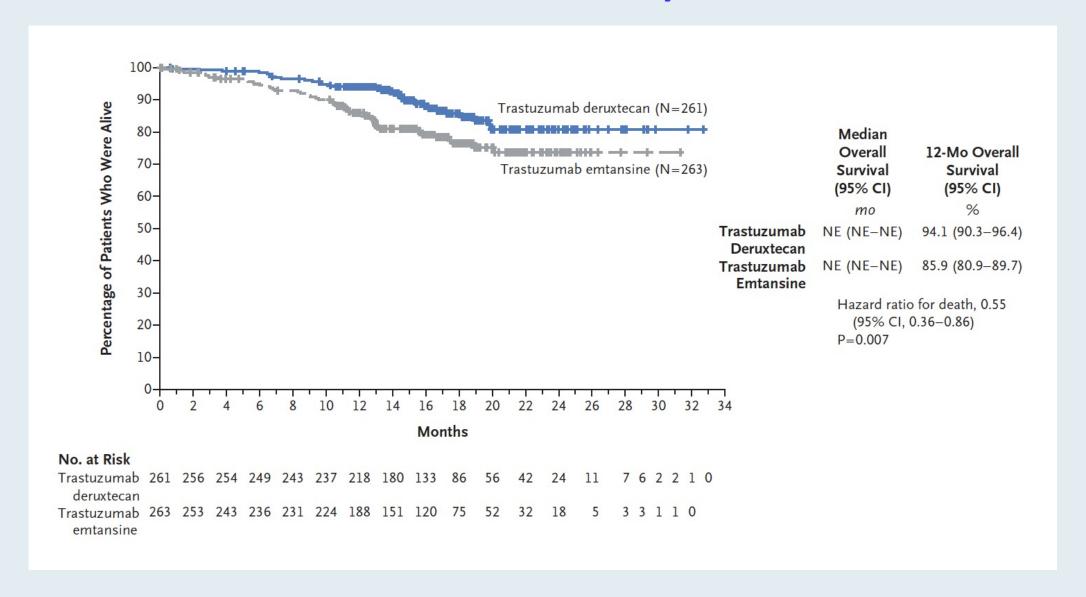
The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer

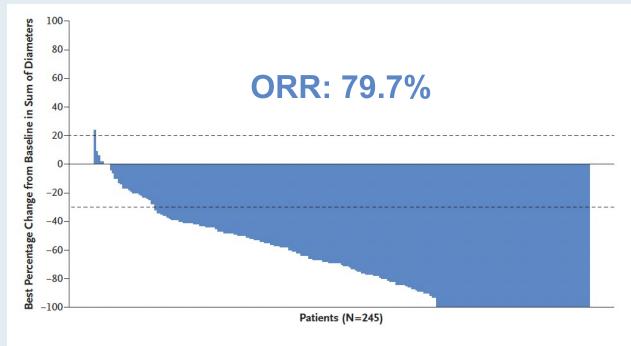
J. Cortés, S.-B. Kim, W.-P. Chung, S.-A. Im, Y.H. Park, R. Hegg, M.H. Kim, L.-M. Tseng, V. Petry, C.-F. Chung, H. Iwata, E. Hamilton, G. Curigliano, B. Xu, C.-S. Huang, J.H. Kim, J.W.Y. Chiu, J.L. Pedrini, C. Lee, Y. Liu, J. Cathcart, E. Bako, S. Verma, and S.A. Hurvitz, for the DESTINY-Breast03 Trial Investigators*

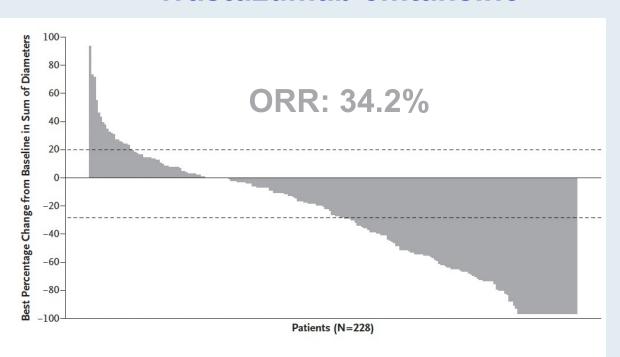
DESTINY-Breast03: Progression-Free Survival



DESTINY-Breast03: Progression-Free Survival in Prespecified Subgroups

Subgroup	No. of Patients	No. of Events/No. of Patients Median Progression-free Survival (95% CI)		Hazard Ratio for Disease Progression or Death (95% CI)			
				n	10		
		Trastuzumab deruxtecan	Trastuzumab emtansine	Trastuzumab deruxtecan	Trastuzumab emtansine		
All patients		87/261	158/263	NE (18.5-NE)	6.8 (5.6-8.2)	IOI	0.28 (0.22-0.37)
Hormone-receptor status						i I	
Positive	272	46/133	84/139	22.4 (17.7-NE)	6.9 (4.2-9.8)	H OH	0.32 (0.22-0.46)
Negative	248	41/126	73/122	NE (18.0-NE)	6.8 (5.4-8.3)	ЮН	0.30 (0.20-0.44)
Previous pertuzumab treatment							
Yes	320	57/162	98/158	NE (18.5-NE)	6.8 (5.4-8.3)	HH-H	0.30 (0.22-0.43)
No	204	30/99	60/105	NE (16.5-NE)	7.0 (4.2-9.7)	H O H	0.30 (0.19-0.47)
Visceral disease						i	
Yes	384	72/195	123/189	22.2 (16.5-NE)	5.7 (4.2-7.0)	I O I	0.28 (0.21-0.38)
No	140	15/66	35/74	NE (NE-NE)	11.3 (6.8-NE)	⊢	0.32 (0.17-0.58)
Lines of previous therapy		n in the second	0)			1	
0 or 1	258	46/132	75/126	22.4 (17.9-NE)	8.0 (5.7-9.7)	H O H	0.33 (0.23-0.48)
≥2	266	41/129	83/137	NE (16.8-NE)	5.6 (4.2-7.1)	H O H	0.28 (0.19-0.41)
Stable brain metastases					a de la companya de	į	
Yes	114	31/62	31/52	15.0 (12.6-22.2)	5.7 (2.9-7.1)	⊢	0.38 (0.23-0.64)
No	410	56/199	127/211	NE (22.4-NE)	7.0 (5.5-9.7)	I O-I	0.27 (0.19-0.37)
						0.0 0.5 1.0	1.5 2.0
						Deruxtecan Em	tuzumab ntansine Better


DESTINY-Breast03: First Interim Analysis of Overall Survival



DESTINY-Breast03: Antitumor Activity

Trastuzumab deruxtecan

Trastuzumab emtansine

ORR = overall response rate

Trastuzumab Deruxtecan vs Trastuzumab Emtansine in Patients With HER2-Positive Unresectable and/or Metastatic Breast Cancer: Safety Follow-up of the Randomized, Phase 3 Study DESTINY-Breast03

Erika Hamilton, MD,^a Vanessa Petry, Winnie Yeo, Sung-Bae Kim, Giampaolo Bianchini, Toshinari Yamashita, Kan Yonemori, Kenichi Inoue, Giuseppe Curigliano, Sara A. Hurvitz, Javier Cortés, Hiroji Iwata, Jillian Cathcart, Yali Liu, Caleb Lee, Emarjola Bako, Rachel Kim, Seock-Ah Im On behalf of the DESTINY-Breast03 investigators

^aSarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA

DESTINY-Breast03: Safety Update Overview

n (%)	T-DXd n = 257	T-DM1 n = 261
Patients discontinued from study treatment	141 (54.9)	222 (85.1)
Any grade TEAE	256 (99.6)	249 (95.4)
Grade ≥3 TEAE	137 (53.3)	130 (49.8)
Any grade serious TEAE	54 (21.0)	50 (19.2)
Grade ≥3 serious TEAE	39 (15.2)	38 (14.6)
TEAE associated with drug discontinuation	38 (14.8)	19 (7.3)
TEAE associated with dose reduction	59 (23.0)	36 (13.8)

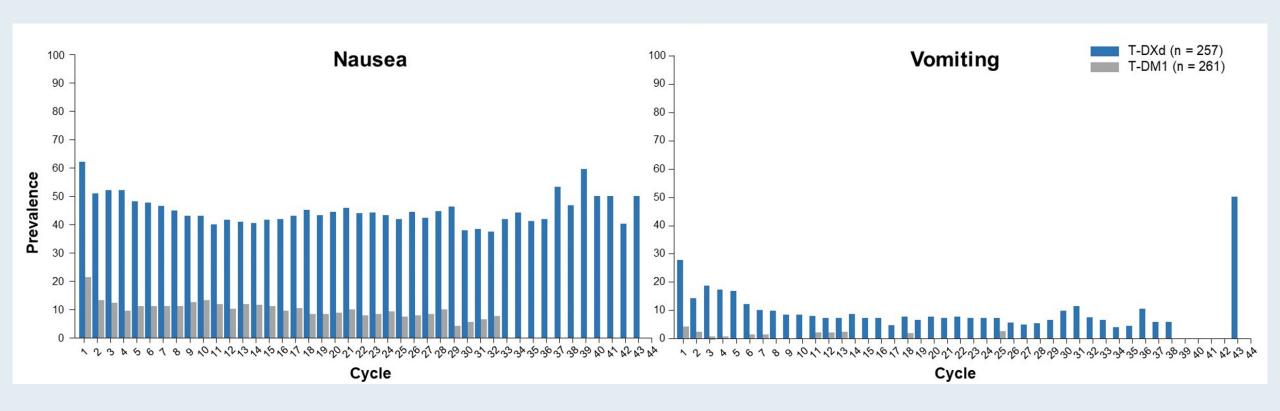
- Rates of TEAEs (any grade and grade ≥3) and serious TEAEs were similar between the T-DXd and T-DM1 arms
- TEAEs associated with drug discontinuation occurred in 38 patients (14.8%) in the T-DXd arm and 19 patients (7.3%) in the T-DM1 arm

TEAE = treatment-emergent adverse event

DESTINY-Breast03: Drug-Related TEAEs in ≥20% of Patients

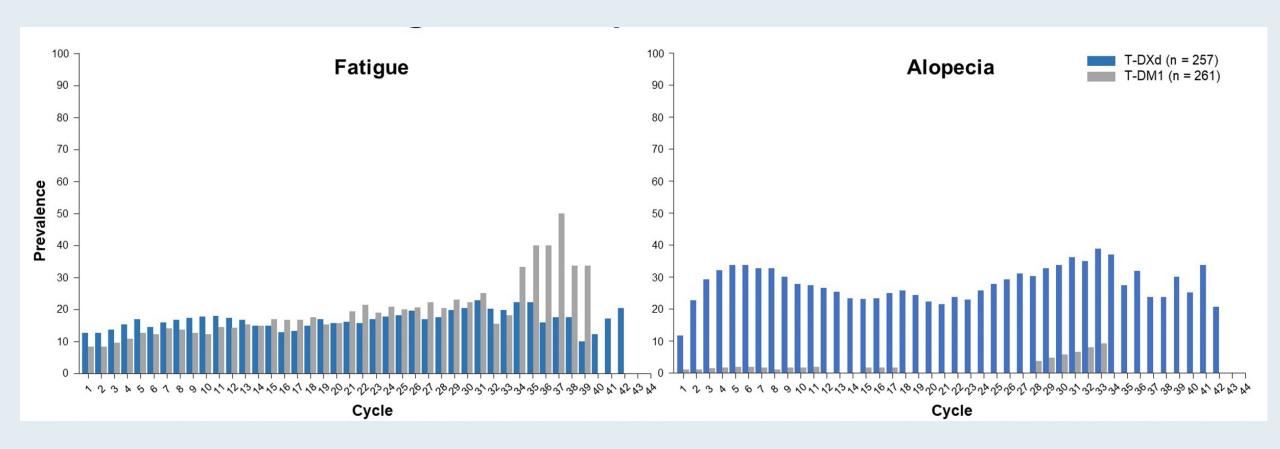
		T-DXd n = 257		M1 261
n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Nausea	189 (73.5)	17 (6.6)	72 (27.6)	1 (0.4)
Fatigue	118 (45.9)	16 (6.2)	76 (29.1)	2 (0.8)
Vomiting	114 (44.4)	4 (1.6)	15 (5.7)	1 (0.4)
Neutropenia	111 (43.2)	51 (19.8)	30 (11.5)	8 (3.1)
Alopecia	97 (37.7)	1 (0.4)	7 (2.7)	0
Anemia	82 (31.9)	16 (6.2)	37 (14.2)	11 (4.2)
Leukopenia	79 (30.7)	17 (6.6)	21 (8.0)	2 (0.8)
Decreased appetite	68 (26.5)	3 (1.2)	34 (13.0)	0
Thrombocytopenia	65 (25.3)	19 (7.4)	137 (52.5)	65 (24.9)
Diarrhea	61 (23.7)	1 (0.4)	11 (4.2)	2 (0.8)
Constipation	60 (23.3)	0	25 (9.6)	0

DESTINY-Breast03: Time to First Onset of TEAEs


Median time to event, days	T-DXd n = 257	T-DM1 n = 261
TEAE associated with treatment discontinuation	224	147
TEAE associated with first dose reduction	96	19
Selected TEAEs		
Anemia	70.0	42.0
Lymphopenia	196.0	168.0
Thrombocytopenia	132.0	8.0
Fatigue	22.0	24.0
Leukopenia	74.5	92.0
Neutropeniaª	64.0	105.0
Nausea	2.0	3.0
Vomiting	10.0	6.0
Alopecia	27.0	43.0

- TEAEs associated with first drug discontinuation or first dose reduction occurred later with T-DXd treatment than with T-DM1 treatment
- Median time to any TEAE
 associated with first dose reduction
 was longer in the T-DXd arm at 96
 days compared with the T-DM1 arm
 at 19 days

ILD = interstitial lung disease



DESTINY-Breast03: Prevalence of Nausea and Vomiting

DESTINY-Breast03: Prevalence of Fatigue and Alopecia

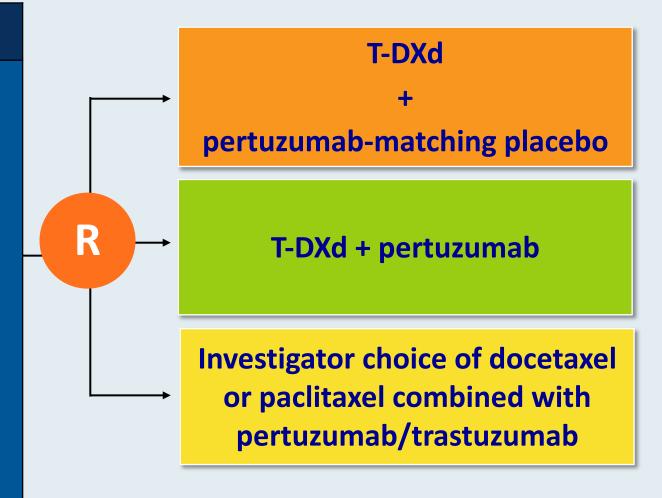
DESTINY-Breast03: Adjudicated Drug-Related ILD/Pneumonitis

	T-DXd n = 257	T-DM1 n = 261
Any grade, n (%) Grade 1 Grade 2	28 (10.9) 7 (2.7) 19 (7.4)	5 (1.9) 4 (1.5) 1 (0.4)
Grade 3 Grade 4 Grade 5	2 (0.8) 0 0	0 0 0
Time to first onset, median (range), days	181 (33-507)	289 (80-499)
Outcome of worst event, n (%) Fatal Not recovered/not resolved	0 8 (28 6)	1 (20.0)ª
Ongoing Recovering/resolving	8 (28.6) 0 2 (7.1)	0
Recovered/resolved with sequelae Recovered/resolved	2 (7.1) 16 (57.1)	4 (80.0)

For this safety update:

- Majority of adjudicated ILD/pneumonitis cases were low grade and no new grade 4 or 5 events occurred in either treatment arm
- One additional grade 2 adjudicated drug-related ILD/pneumonitis occurred
- The majority of events resolved with ongoing follow-up

DESTINY-Breast09 Phase III Trial Design


Estimated enrollment: N = 1,134

Pathologically documented breast cancer:

- Advanced or metastatic
- Locally assessed and prospectively centrally confirmed as IHC 3+ or ISH+
- Documented by local testing as HR-positive or negative in the metastatic setting

No prior chemotherapy or HER2-targeted therapy for advanced or metastatic disease or only 1 previous line of ET in the metastatic setting

Prior (neo)adjuvant chemotherapy or HER2targeted therapy allowed if >6 months from treatment to diagnosis of metastasis

Trastuzumab Deruxtecan Granted FDA Approval for HER2-Low Breast Cancer

Press Release – August 5, 2022

"Today, the US Food and Drug Administration approved fam-trastuzumab-deruxtecannxki, an IV infusion for the treatment of patients with unresectable (unable to be removed) or metastatic (spread to other parts of the body) HER2-low breast cancer. This is the first approved therapy targeted to patients with the HER2-low breast cancer subtype, which is a newly defined subset of HER2-negative breast cancer.

Patients with HER2-low breast cancer are eligible for fam-trastuzumab-deruxtecan-nxki if they have received a prior chemotherapy in the metastatic setting, or their cancer returned during, or within 6 months of completing, adjuvant chemotherapy.

This approval is based on DESTINY-Breast04, a randomized, multicenter, open label clinical trial that enrolled 557 adult patients with unresectable or metastatic HER2-low breast cancer."

Trastuzumab deruxtecan (T-DXd)
vs treatment of physician's choice in patients with
HER2-low unresectable and/or metastatic breast cancer:
Results of DESTINY-Breast04, a randomized, phase 3 study

Shanu Modi Memorial Sloan Kettering Cancer Center, Memorial Hospital, New York, NY, USA June 5, 2022

Additional authors: William Jacot, Toshinari Yamashita, Joo Hyuk Sohn, Maria Vidal, Eriko Tokunaga, Junji Tsurutani, Naoto Ueno, Yee Soo Chae, Keun Seok Lee, Naoki Niikura, Yeon Hee Park, Xiaojia Wang, Binghe Xu, Dhiraj Gambhire, Lotus Yung, Gerold Meinhardt, Yibin Wang, Nadia Harbeck, David Cameron

On behalf of the DESTINY-Breast04 investigators

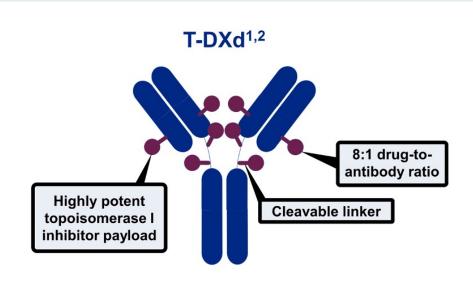
Shanu Modi, MD

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reu

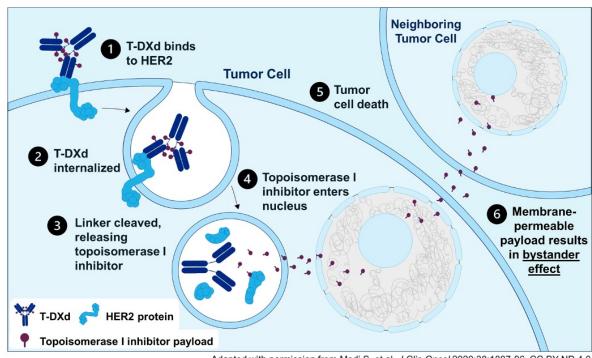
The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 7, 2022


VOL. 387 NO. 1

Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer


S. Modi, W. Jacot, T. Yamashita, J. Sohn, M. Vidal, E. Tokunaga, J. Tsurutani, N.T. Ueno, A. Prat, Y.S. Chae, K.S. Lee, N. Niikura, Y.H. Park, B. Xu, X. Wang, M. Gil-Gil, W. Li, J.-Y. Pierga, S.-A. Im, H.C.F. Moore, H.S. Rugo, R. Yerushalmi, F. Zagouri, A. Gombos, S.-B. Kim, Q. Liu, T. Luo, C. Saura, P. Schmid, T. Sun, D. Gambhire, L. Yung, Y. Wang, J. Singh, P. Vitazka, G. Meinhardt, N. Harbeck, and D.A. Cameron, for the DESTINY-Breast04 Trial Investigators*

T-DXd Mechanism of Action, Bystander Effect and Rationale for Targeting HER2-Low Breast Cancer

Internalization of T-DXd leads to release of the DXd payload and subsequent cell death in the target tumor cell and neighboring tumor cells through the bystander effect^{1,2}

Adapted with permission from Modi S, et al. J Clin Oncol 2020;38:1887-96. CC BY ND 4.0.

• Results from a phase 1b study have reported efficacy of T-DXd in heavily pretreated patients (N = 54) with HER2-low mBC, with a mPFS of 11.1 months and an ORR of 37.0%³

DESTINY-Breast04 Phase III Trial Schema

Patients^a

- HER2-low (IHC 1+ vs IHC 2+/ISH-), unresectable, and/or mBC treated with 1-2 prior lines of chemotherapy in the metastatic setting
- HR+ disease considered endocrine refractory

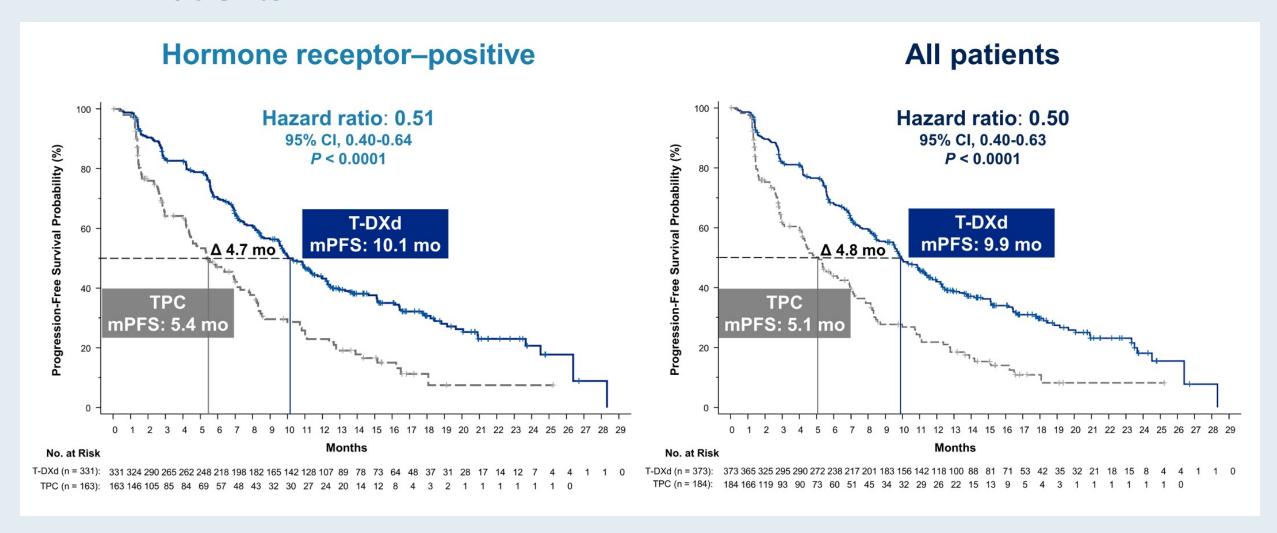
T-DXd 5.4 mg/kg Q3W (n = 373) HR+≈ 480 HR-≈ 60 TPC Capecitabine, eribulin, gemcitabine, paclitaxel, nab-paclitaxel (n = 184)

Primary endpoint

PFS by BICR (HR+)

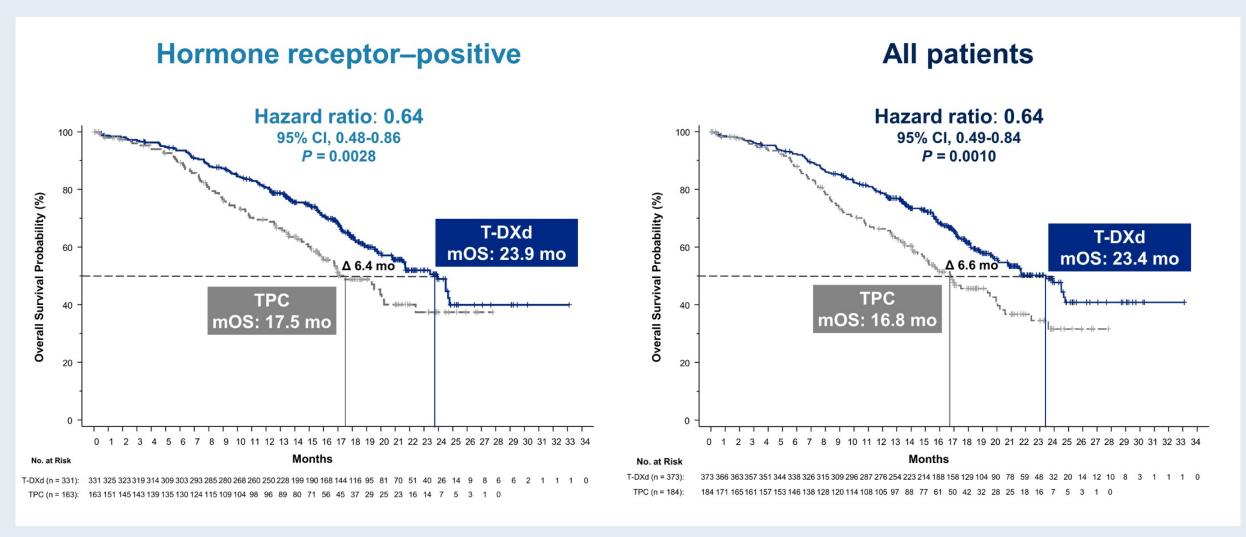
Key secondary endpoints^b

- PFS by BICR (all patients)
- OS (HR+ and all patients)

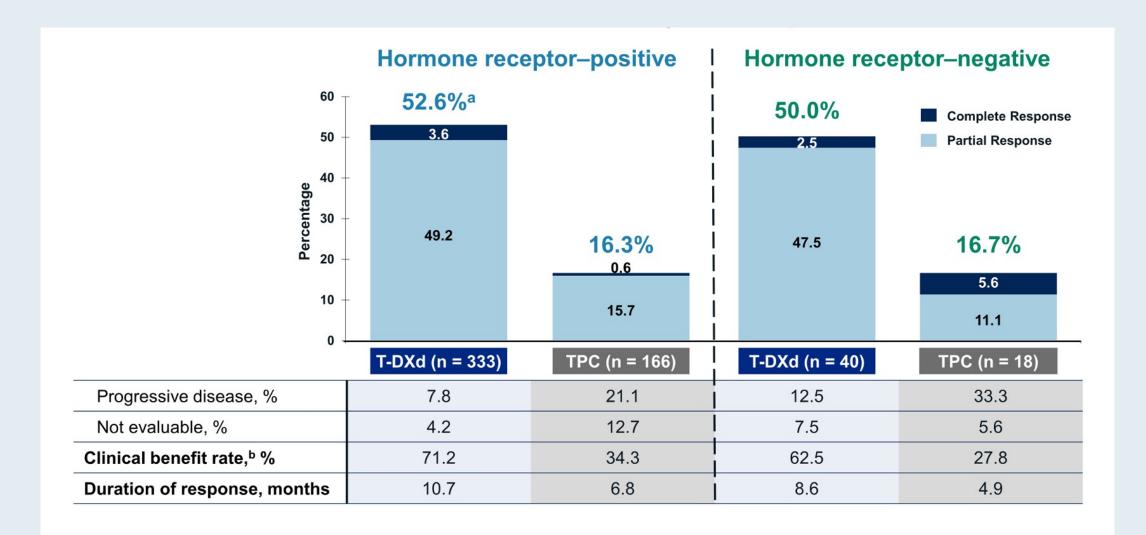

Stratification factors

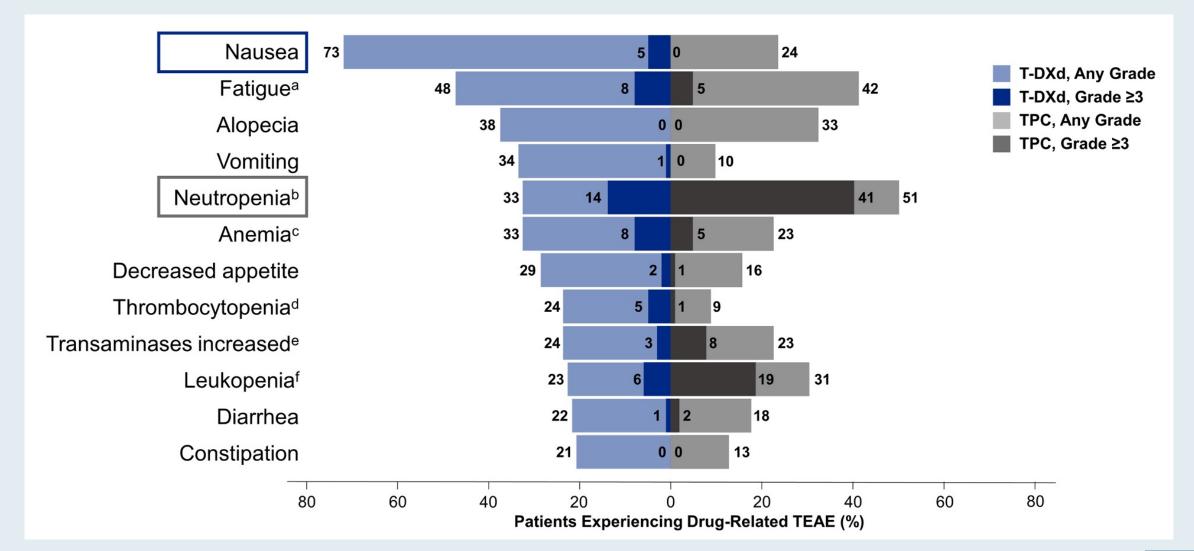
- Centrally assessed HER2 status^d (IHC 1+ vs IHC 2+/ISH-)
- 1 versus 2 prior lines of chemotherapy
- HR+ (with vs without prior treatment with CDK4/6 inhibitor) versus HR-

TPC = treatment of physician's choice; PFS = progression-free survival; BICR = blinded independent central review; OS = overall survival


DESTINY-Breast04: PFS for HR-Positive (Primary Endpoint) and All Patients

mPFS = median progression-free survival


DESTINY-Breast04: OS for HR-Positive and All Patients



DESTINY-Breast04: Confirmed Objective Response Rate

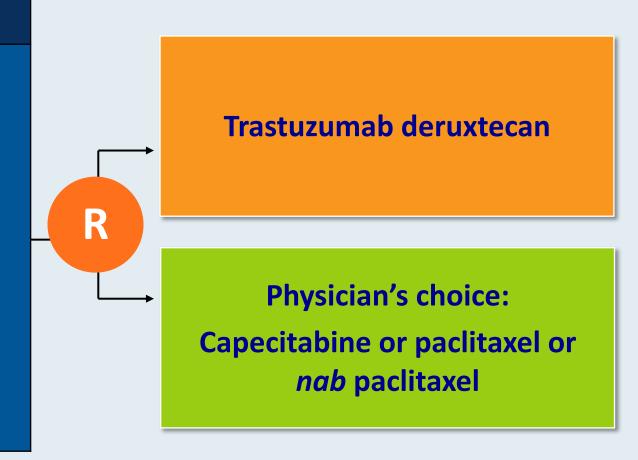
DESTINY-Breast04: Common Drug-Related TEAEs

DESTINY-Breast04: Adverse Events of Special Interest

Adjudicated as drug-related ILD/pneumonitis^a

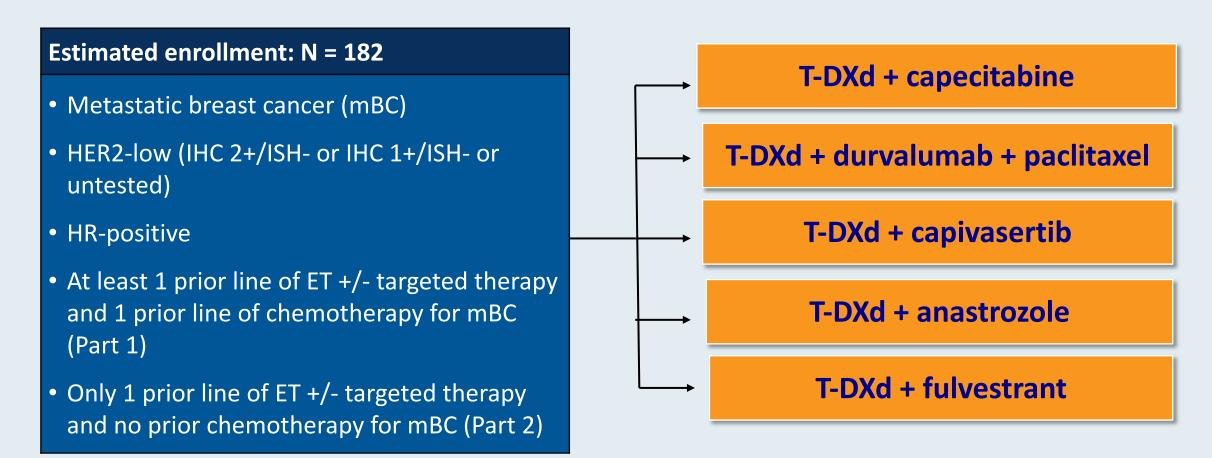
n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade
T-DXd (n = 371)	13 (3.5)	24 (6.5)	5 (1.3)	0	3 (0.8)	45 (12.1)
TPC (n = 172)	1 (0.6)	0	0	0	0	1 (0.6)

Left ventricular dysfunction^b


n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade
Ejection fraction de	ecreased					
T-DXd (n = 371)	1 (0.3)	14 (3.8)	1 (0.3)	0	0	16 (4.3)
TPC (n = 172)	0	0	0	0	0	0
Cardiac failure ^c						
T-DXd (n = 371)	0	1 (0.3)	1 (0.3)	0	0	2 (0.5)
TPC (n = 172)	0	0	0	0	0	0

DESTINY-Breast06 Phase III Trial Design

Estimated enrollment: N = 850


- Metastatic breast cancer
- HER2-low or negative by local test IHC
 2+/ISH- or IHC 1/ISH- or IHC 0/ISH-
- HER2-low or HER2 IHC >0 <1 by central lab
- HR-positive
- No prior chemotherapy for advanced or metastatic disease
- PD within 6 months of starting first-line therapy with ET/CDK4/6 OR PD on at least 2 prior line of ET +/- targeted therapy

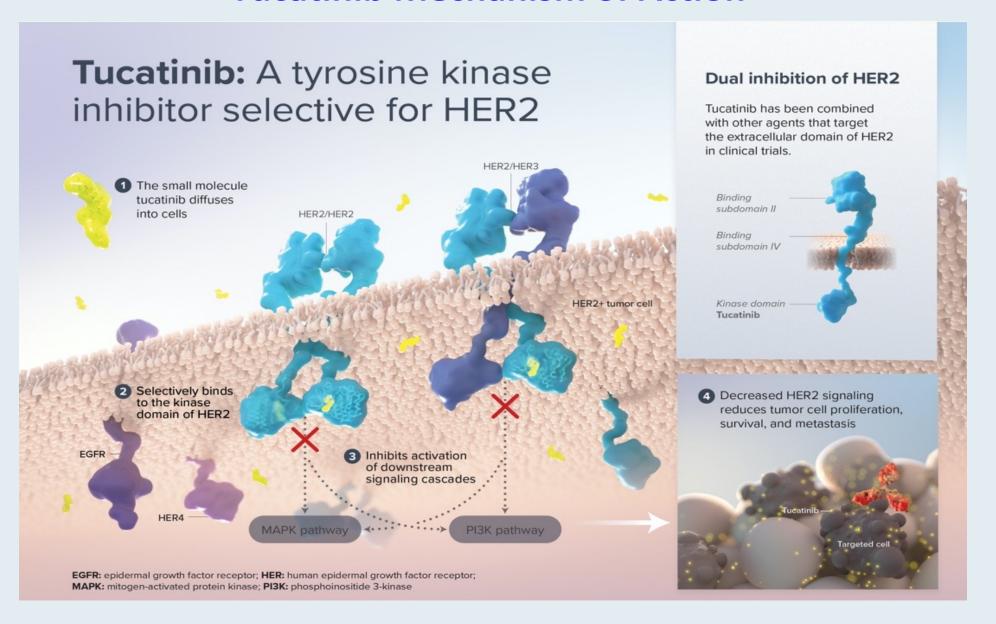
Primary endpoint: PFS in HR-positive, HER2-low population

DESTINY-Breast08 Phase I Trial Design

Primary endpoints: Adverse events, serious adverse events

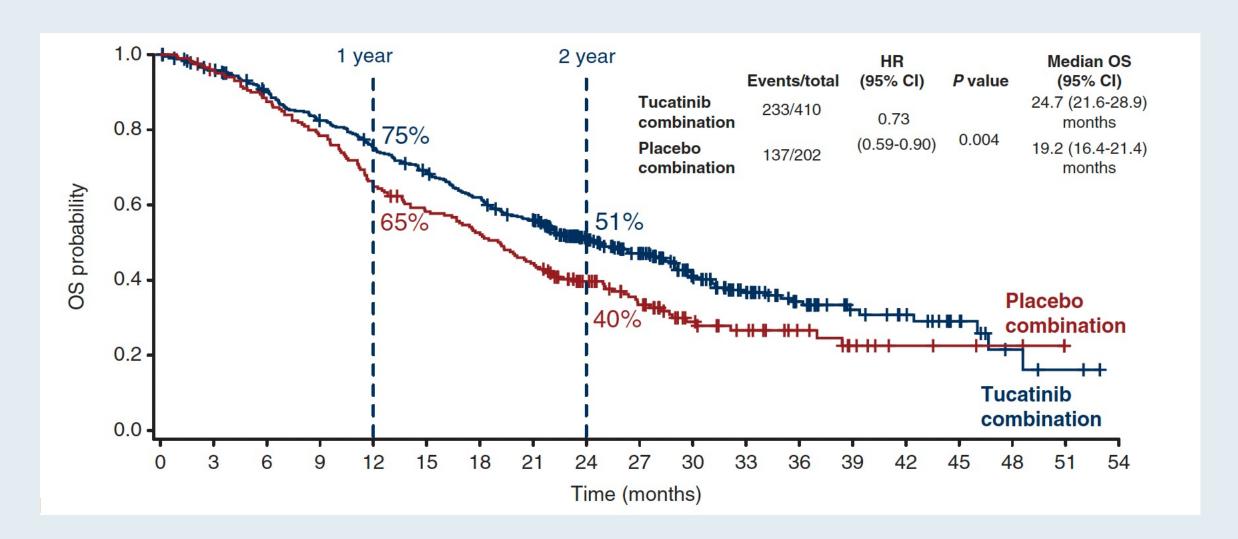
Secondary endpoints: Objective response rate, progression-free survival, duration of response, overall response

Tucatinib and HER2CLIMB Studies

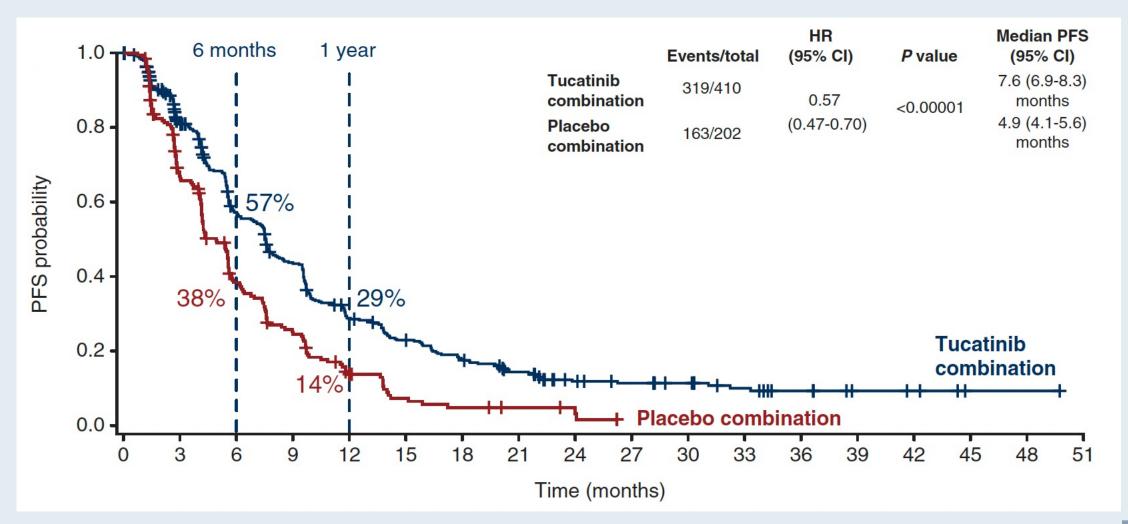

ORIGINAL ARTICLE

Tucatinib versus placebo added to trastuzumab and capecitabine for patients with pretreated HER2 + metastatic breast cancer with and without brain metastases (HER2CLIMB): final overall survival analysis

```
G. Curigliano<sup>1*</sup>, V. Mueller<sup>2</sup>, V. Borges<sup>3</sup>, E. Hamilton<sup>4</sup>, S. Hurvitz<sup>5</sup>, S. Loi<sup>6</sup>, R. Murthy<sup>7</sup>, A. Okines<sup>8</sup>, E. Paplomata<sup>9†</sup>, D. Cameron<sup>10</sup>, L. A. Carey<sup>11</sup>, K. Gelmon<sup>12</sup>, G. N. Hortobagyi<sup>7</sup>, I. Krop<sup>13</sup>, S. Loibl<sup>14</sup>, M. Pegram<sup>15</sup>, D. Slamon<sup>5</sup>, J. Ramos<sup>16</sup>, W. Feng<sup>16</sup> & E. Winer<sup>13</sup>
```



Tucatinib Mechanism of Action



HER2CLIMB: Overall Survival

HER2CLIMB: Progression-Free Survival

HER2CLIMB: Forest Plot of Overall Survival

Subgroups	Event/ <i>N</i>		HR (95% CI)
All patients	370/612	H	0.73 (0.59-0.90)
Age			
≥65 years	76/116	- 	0.64 (0.38-1.06)
<65 years	294/496	H=H	0.76 (0.60-0.96)
Race			
White	268/444	H=H	0.75 (0.58-0.96)
Non-White	102/168	H	0.57 (0.37-0.89)
Hormone receptor sta	tus		
Positive	226/370	H=H	0.81 (0.61-1.06)
Not positive	144/242	H	0.61 (0.43-0.87)
Baseline brain metast	ases		
Yes	189/291	H	0.60 (0.44-0.81)
No	180/319	H=+1	0.85 (0.63-1.16)
ECOG performance s	tatus		
0	155/298	H	0.60 (0.43-0.83)
1	215/314	H=H	0.85 (0.64-1.13)
Region			
North America	240/369	HEH	0.78 (0.60-1.02)
Rest of world	130/243	H	0.63 (0.44-0.91)
	0.01	0.1 1	10 100
	←	Favors tucatinib	Favors placebo

HER2CLIMB: Summary of Adverse Events

TEAEs	Tucatinib combination (N = 404) n (%)	placebo combination (N = 197) n (%)
Any TEAE	401 (99.3)	191 (97.0)
Grade ≥3 TEAE	245 (60.6)	101 (51.3)
Any serious TEAE	123 (30.4)	58 (29.4)
Death due to TEAE	6 (1.5)	5 (2.5)
Discontinued any study treatment due to TEAE	52 (12.9)	23 (11.7)
Discontinued tucatinib/placebo due to TEAE	24 (5.9)	8 (4.1)
Discontinued capecitabine due to TEAE	47 (11.6)	22 (11.2)
Discontinued trastuzumab due to TEAE	17 (4.2)	7 (3.6)

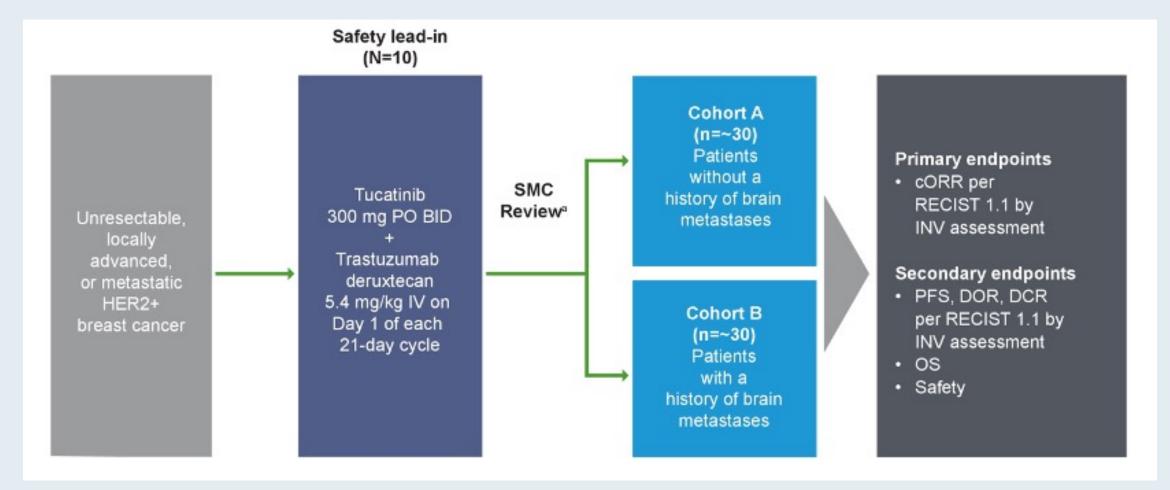
HER2CLIMB: Adverse Events

		nation (<i>N</i> = 404) (%)	Placebo combination ($N = 197$) n (%)	
Adverse event	Any grade	Grade ≥3	Any grade	Grade ≥3
Any adverse event	401 (99.3)	245 (60.6)	191 (97.0)	101 (51.3)
Diarrhea	331 (81.9)	53 (13.1)	106 (53.8)	17 (8.6)
Palmar-plantar erythrodysesthesia syndrome	264 (65.3)	57 (14.1)	105 (53.3)	18 (9.1)
Nausea	243 (60.1)	16 (4.0)	88 (44.7)	7 (3.6)
Fatigue	193 (47.8)	22 (5.4)	87 (44.2)	8 (4.1)
Vomiting	152 (37.6)	13 (3.2)	51 (25.9)	8 (4.1)
Decreased appetite	105 (26.0)	3 (0.7)	41 (20.8)	0
Stomatitis	105 (26.0)	10 (2.5)	28 (14.2)	1 (0.5)
Headache	96 (23.8)	3 (0.7)	40 (20.3)	3 (1.5)
Aspartate aminotransferase increased	89 (22.0)	19 (4.7)	22 (11.2)	1 (0.5)
Anemia	88 (21.8)	17 (4.2)	24 (12.2)	5 (2.5)
Alanine aminotransferase increased	85 (21.0)	23 (5.7)	13 (6.6)	1 (0.5)
Blood bilirubin increased	81 (20.0)	4 (1.0)	21 (10.7)	5 (2.5)

HER2CLIMB-02 Phase III Trial Design

Estimated enrollment: N = 460

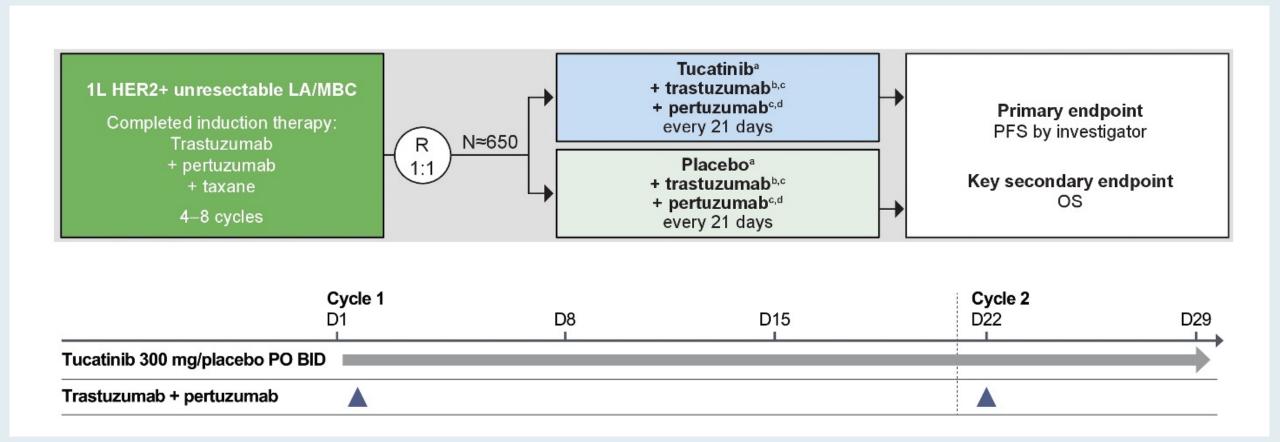
- Unresectable locally advanced or metastatic breast cancer
- HER2-positive
- Prior treatment with taxane and trastuzumab in any setting, separately or in combination


Tucatinib + T-DM1

Placebo + T-DM1

Primary endpoint: PFS by investigator assessment

HER2CLIMB-04 Phase II Study Schema

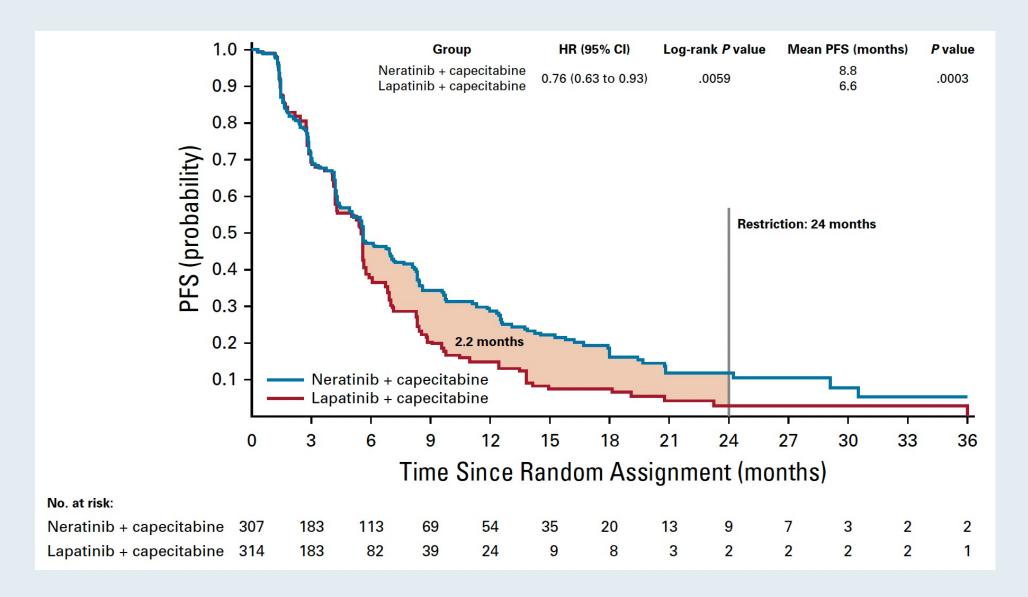

Eligibility

cORR = confirmed objective response rate

- HER2-positive locally advanced or metastatic breast cancer
- Prior treatment with taxane and trastuzumab (+/- pertuzumab) in the locally advanced or metastatic setting or disease progression within 6 months of (neo)adjuvant therapy with taxane and trastuzumab (+/- pertuzumab)

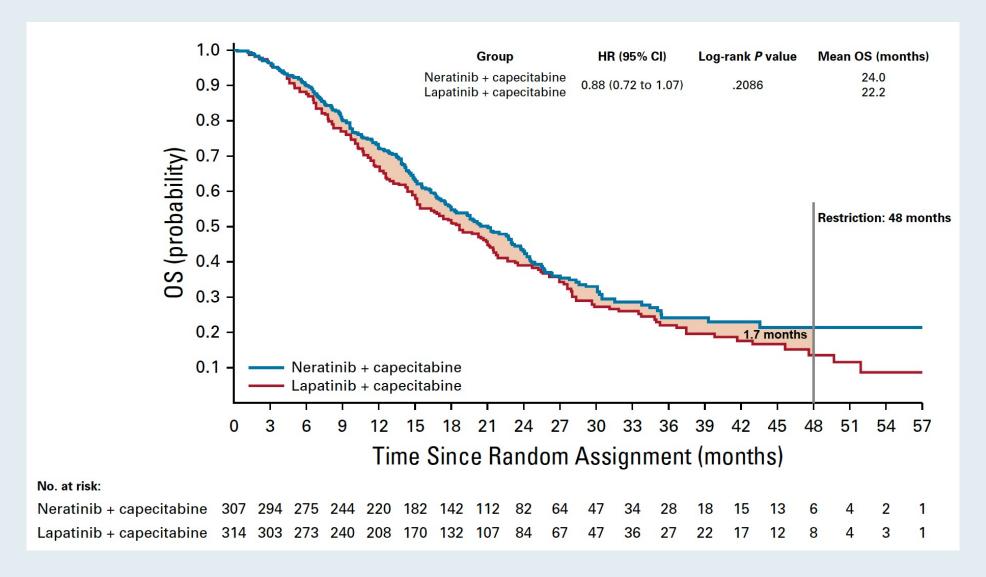
HER2CLIMB-05 Phase III Study Schema

Neratinib and the NALA Study


Neratinib Plus Capecitabine Versus Lapatinib Plus Capecitabine in HER2-Positive Metastatic **Breast Cancer Previously Treated With ≥ 2 HER2-Directed Regimens: Phase III NALA Trial**

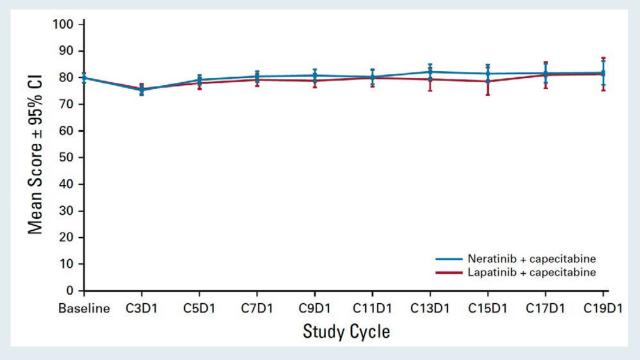
Cristina Saura, MD¹; Mafalda Oliveira, MD, PhD¹; Yin-Hsun Feng, MD, PhD²; Ming-Shen Dai, MD, PhD²; Shang-Wen Chen, MD²; Sara A. Hurvitz, MD³; Sung-Bae Kim, MD, PhD⁴; Beverly Moy, MD, PhD⁵; Suzette Delaloge, MD, MSc⁶; William Gradishar, MD⁷; Norikazu Masuda, MD, PhD⁸; Marketa Palacova, MD⁹; Maureen E. Trudeau, MD¹⁰; Johanna Mattson, MD, PhD¹¹; Yoon Sim Yap, MBBS¹²; Ming-Feng Hou, MD¹³; Michelino De Laurentiis, MD, PhD¹⁴; Yu-Min Yeh, MD¹⁵; Hong-Tai Chang, MD¹⁶; Thomas Yau, MBBS, MD¹⁷; Hans Wildiers, MD, PhD^{18,19}; Barbara Haley, MD²⁰; Daniele Fagnani, MD²¹; Yen-Shen Lu, MD, PhD²²; John Crown, MBBCh, MD²³; Johnson Lin, MD²⁴; Masato Takahashi, MD, PhD²⁵; Toshimi Takano, MD²⁶; Miki Yamaguchi, MD, PhD²⁷; Takaaki Fujii, MD, PhD²⁸; Bin Yao, MS²⁹; Judith Bebchuk, ScD²⁹; Kiana Keyvanjah, PharmD²⁹; Richard Bryce, MBChB²⁹; and Adam Brufsky, MD, PhD³⁰; for the **NALA Investigators**

J Clin Oncol 2020;38:3138-49.

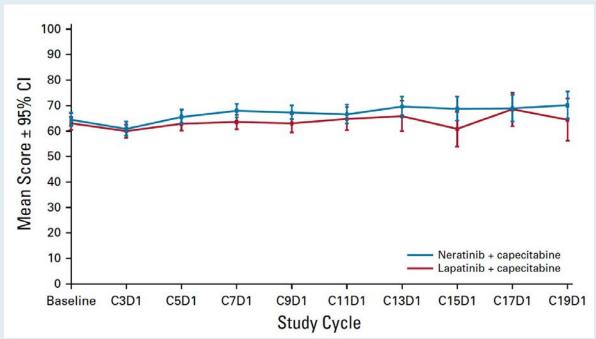


NALA: Centrally Assessed PFS

NALA: Overall Survival (ITT Population)


NALA: Treatment-Emergent AEs in >15% of Patients

	N+C (n = 303)		L+C (n	= 311)
AE	All Grade	Grade 3/4	All Grade	Grade 3/4
Diarrhea	252 (83.2)	74 (24.4)	206 (66.2)	39 (12.5)
Nausea	161 (53.1)	13 (4.3)	132 (42.4)	9 (2.9)
PPE syndrome	139 (45.9)	29 (9.6)	175 (56.3)	35 (11.3)
Vomiting	138 (45.5)	12 (4.0)	97 (31.2)	6 (1.9)
Decreased appetite	107 (35.3)	8 (2.6)	67 (21.5)	7 (2.3)
Fatigue	104 (34.3)	9 (3.0)	97 (31.2)	10 (3.2)
Constipation	94 (31.0)	4 (1.3)	41 (13.2)	1 (0.3)
Stomatitis	62 (20.5)	6 (2.0)	83 (26.7)	8 (2.6)
Weight decreased	60 (19.8)	1 (0.3)	41 (13.2)	2 (0.6)
Rash	30 (9.9)	0	69 (22.2)	2 (0.6)
Anemia	45 (14.9)	6 (2.0)	51 (16.4)	11 (3.5)



NALA: Changes Over Time in Global Quality of Life and Functioning

EORTC QoL

Global Health Status Score

Key Considerations in the Care of Patients with HER2-Positive BC with Brain Metastasis

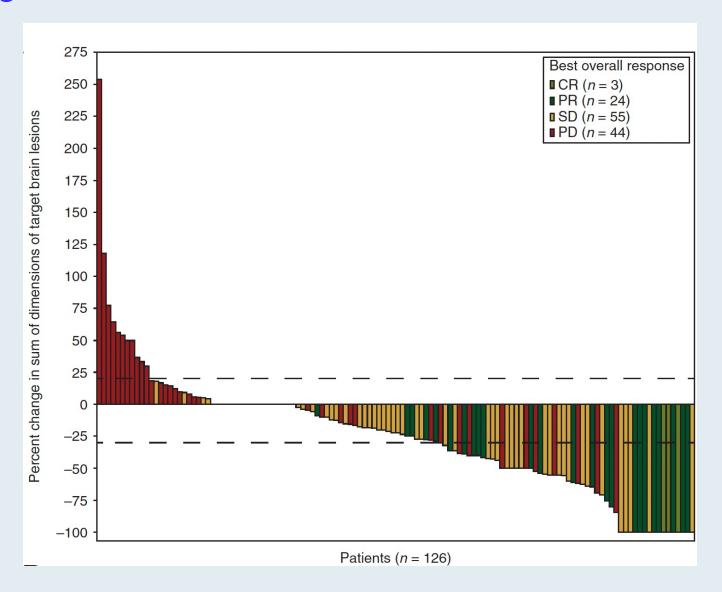
Incidence and Prognosis of HER2-Positive CNS Metastases

registHER (N = 1,012) and SystHERs (N = 997) observational studies for patients with HER2 Positive breast cancer treated with trastuzumab and other anti-HER2 therapies

Management of Advanced Human Epidermal Growth Factor Receptor 2—Positive Breast Cancer and Brain Metastases: ASCO Guideline Update

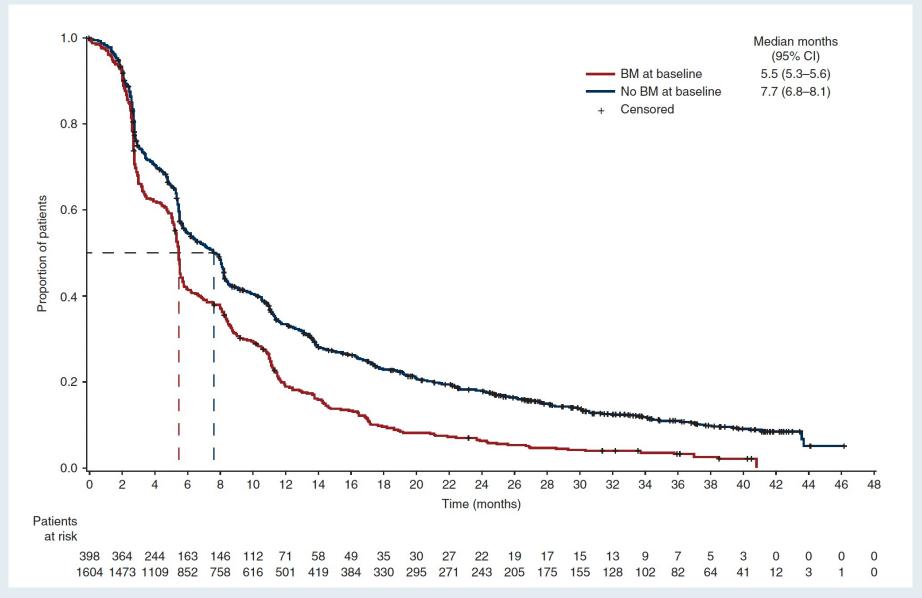
Naren Ramakrishna, MD, PhD¹; Carey K. Anders, MD²; Nancy U. Lin, MD³; Aki Morikawa, MD, PhD⁴; Sarah Temin, MSPH⁵; Sarat Chandarlapaty, MD, PhD⁶; Jennie R. Crews, MDⁿ; Nancy E. Davidson, MD⁰; Maria Alice B. Franzoi, MD⁰; Jeffrey J. Kirshner, MD¹⁰; Ian E. Krop, MD, PhD³; Debra A. Patt, MD, MPH, MBA¹¹; Jane Perlmutter, PhD¹²; and Sharon H. Giordano, MD, MPH¹³

J Clin Oncol 2022 August; 40:2636-55.

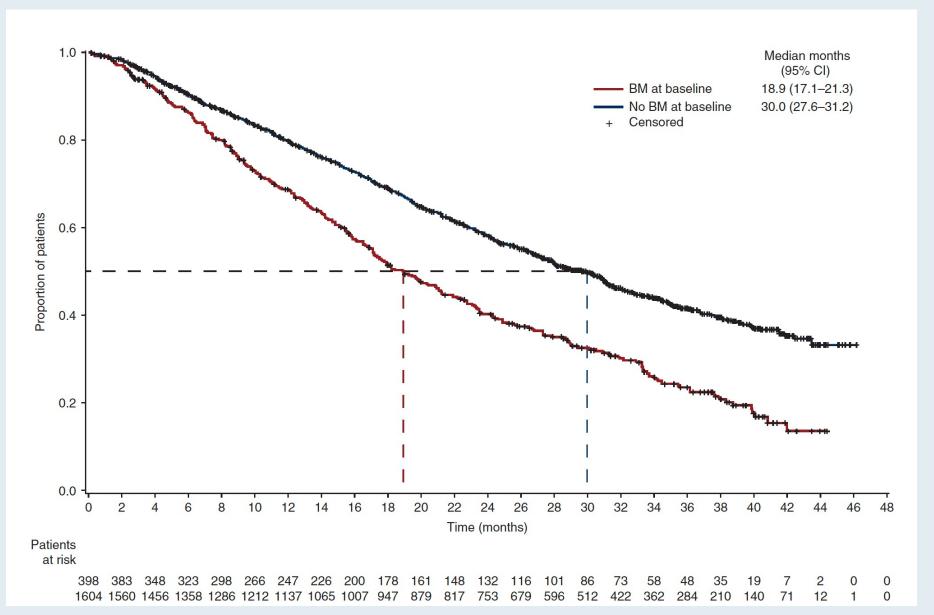

ORIGINAL ARTICLE

Trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer and brain metastases: exploratory final analysis of cohort 1 from KAMILLA, a single-arm phase IIIb clinical trial

F. Montemurro^{1*}, S. Delaloge², C. H. Barrios³, R. Wuerstlein⁴, A. Anton⁵, E. Brain⁶, T. Hatschek⁷, C. M. Kelly⁸, C. Peña-Murillo⁹, M. Yilmaz¹⁰, M. Donica¹¹ & P. Ellis^{12,13}



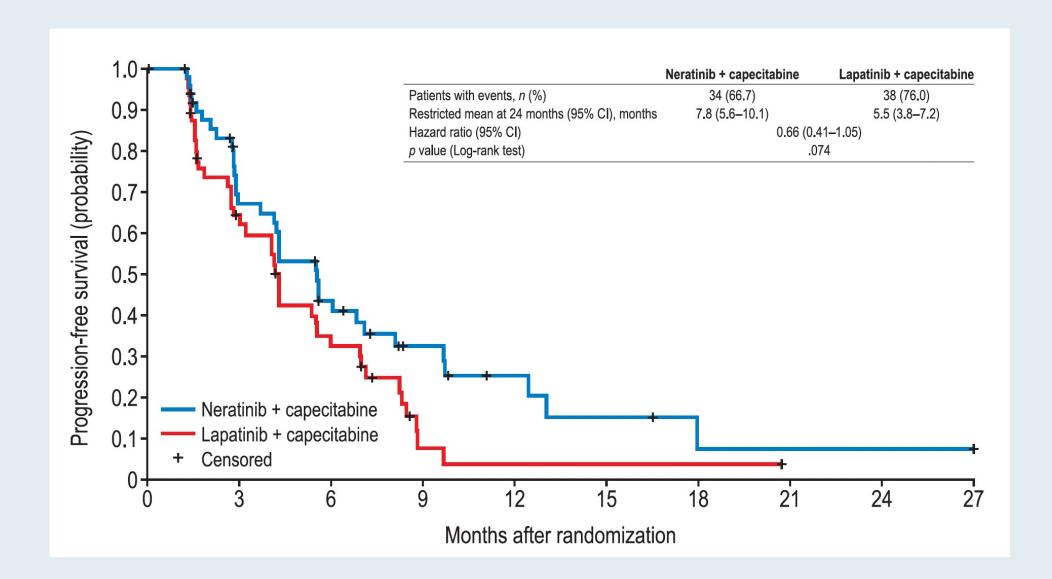
KAMILLA: Percent Change in Sum of Dimensions of Target Brain Lesions


KAMILLA: Progression-Free Survival

KAMILLA: Overall Survival

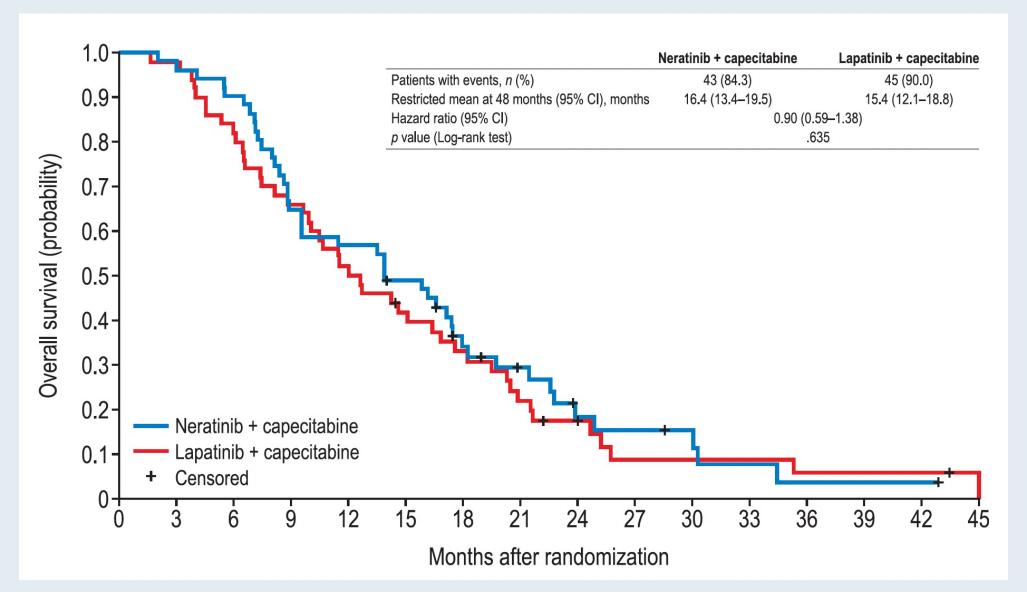
Oncologist 2021 August;26(8):e1327-38.

Breast Cancer


Oncologist®

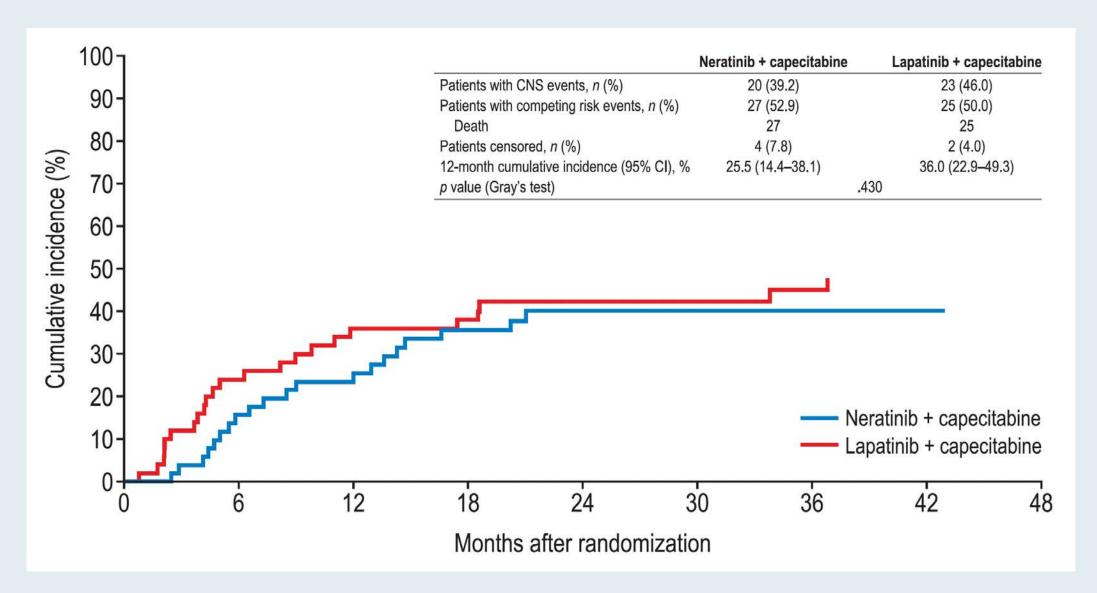
Efficacy of Neratinib Plus Capecitabine in the Subgroup of Patients with Central Nervous System Involvement from the NALA Trial

Sara A. Hurvitz , Cristina Saura, Mafalda Oliveira, Maureen E. Trudeau, Beverly Moy, Suzette Delaloge, William Gradishar, Sung-Bae Kim, Barbara Haley, Larisa Ryvo, Ming-Shen Dai, Vladimir Milovanov, Jesús Alarcón, Sujith Kalmadi, Eduardo Cronemberger, Cristiano Souza, Luciana Landeiro, Ron Bose, Judith Bebchuk, Fairooz Kabbinavar, Richard Bryce, Kiana Keyvanjah, Adam M. Brufsky



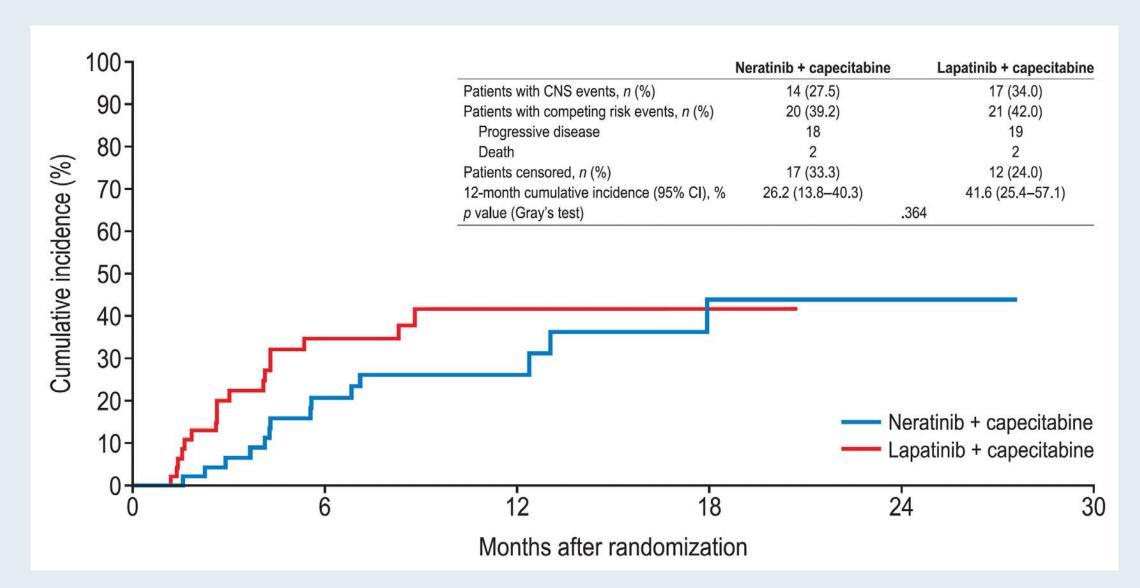
NALA: PFS for Patients with CNS Metastases at Baseline

NALA: OS for Patients with CNS Metastases at Baseline

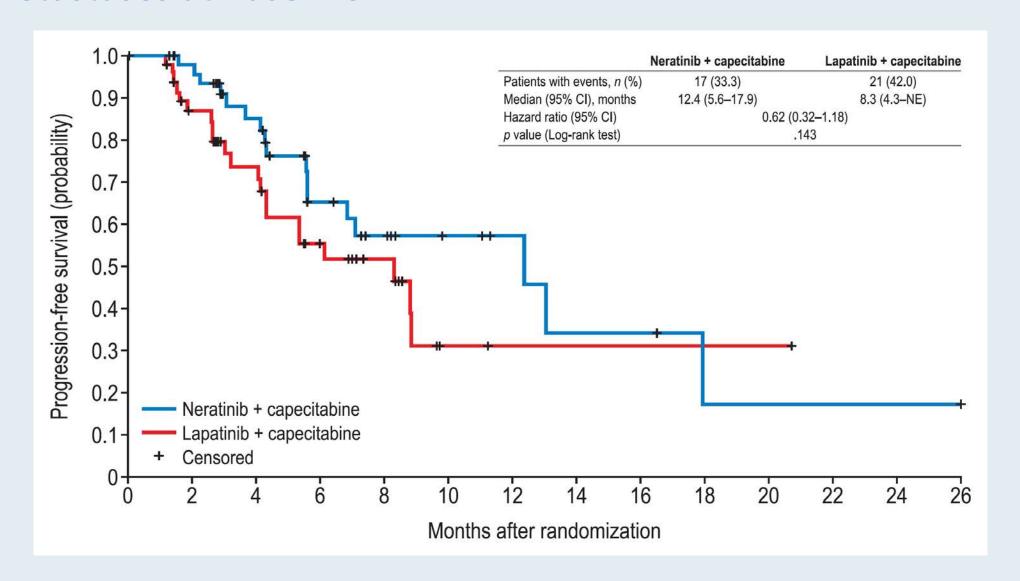


NALA: Efficacy in Patients with CNS Metastases at Baseline

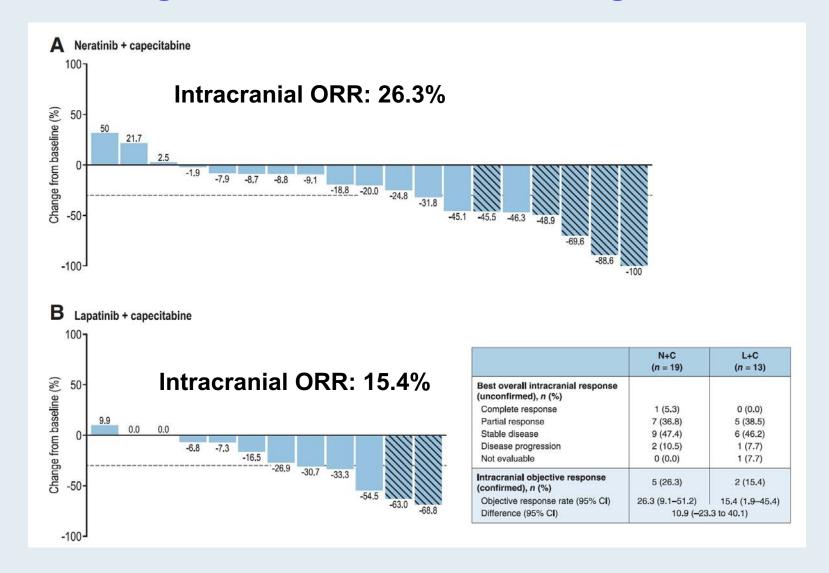
Endpoint	Neratinib + capecitabine (n = 51)	Lapatinib + capecitabine (n = 50)	Hazard ratio	<i>p</i> -value
Median PFS	5.6 mo	4.3 mo	0.66	0.074
Median OS	13.9 mo	12.4 mo	0.90	0.635
Time to intervention for CNS disease (12-month cumulative incidence)	25.5%	36.0%	_	0.430
Progressive CNS disease (12-month cumulative incidence)	26.2%	41.6%	_	0.364
Median CNS PFS	12.4 mo	8.3 mo	0.62	0.143
Objective response rate	28.6%	28.2%	_	0.972
Median duration of response	8.3 mo	5.3 mo	0.47	0.252
Clinical benefit rate 40.0%		30.8%	_	0.410



NALA: Time to Intervention for CNS Disease – Progressive CNS Disease



NALA: Time to Intervention for CNS Disease - CNS PFS



NALA: Time to Intervention for CNS Disease – Patients with CNS Metastases at Baseline

NALA: Best Change in Intracranial Tumor Size from Baseline in Patients with Target CNS Lesions at Screening

N Engl J Med 2022 March 24;386:1143-54.

The NEW ENGLAND JOURNAL of MEDICINE

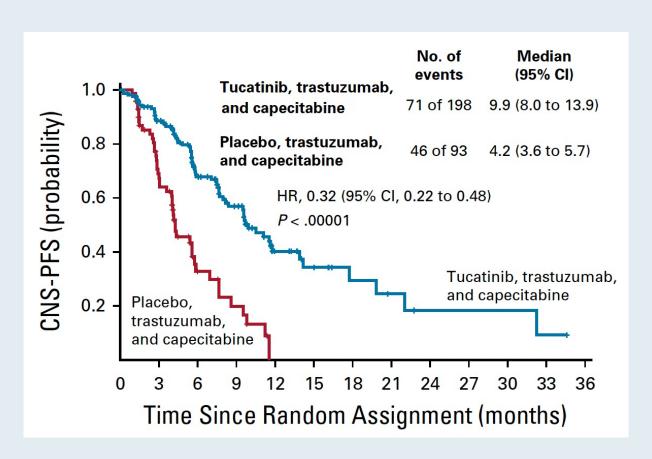
ORIGINAL ARTICLE

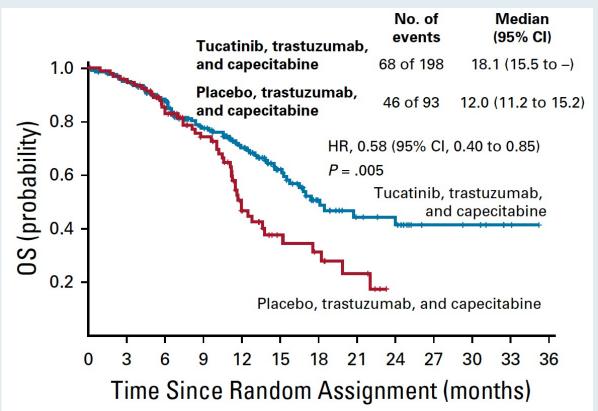
Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer

J. Cortés, S.-B. Kim, W.-P. Chung, S.-A. Im, Y.H. Park, R. Hegg, M.H. Kim, L.-M. Tseng, V. Petry, C.-F. Chung, H. Iwata, E. Hamilton, G. Curigliano, B. Xu, C.-S. Huang, J.H. Kim, J.W.Y. Chiu, J.L. Pedrini, C. Lee, Y. Liu, J. Cathcart, E. Bako, S. Verma, and S.A. Hurvitz, for the DESTINY-Breast03 Trial Investigators*

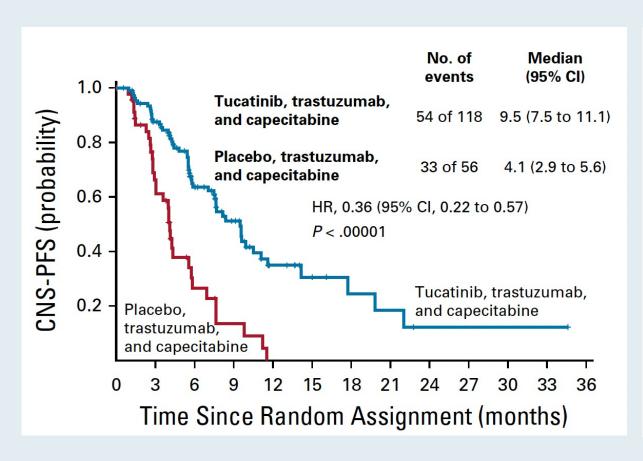
DESTINY-Breast03: Progression-Free Survival for Patients with Brain Metastases

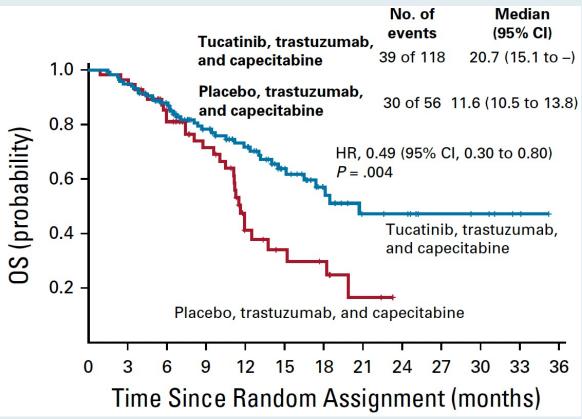
Subgroup	No. of Patients	No. of Events/	No. of Patients	Median Prog Survival			Disease Progression th (95% CI)
				m	0		
		Trastuzumab deruxtecan	Trastuzumab emtansine	Trastuzumab deruxtecan	Trastuzumab emtansine		
All patients		87/261	158/263	NE (18.5-NE)	6.8 (5.6–8.2)	I O I	0.28 (0.22-0.37)
Stable brain metastases						}	
Yes	114	31/62	31/52	15.0 (12.6–22.2)	5.7 (2.9-7.1)	⊢	0.38 (0.23-0.64)
No	410	56/199	127/211	NE (22.4–NE)	7.0 (5.5–9.7)	0.0 0.5 1.0	0.27 (0.19–0.37)
						Deruxtecan En	stuzumab ntansine Better


Intracranial Efficacy and Survival With Tucatinib Plus Trastuzumab and Capecitabine for **Previously Treated HER2-Positive Breast Cancer** With Brain Metastases in the HER2CLIMB Trial

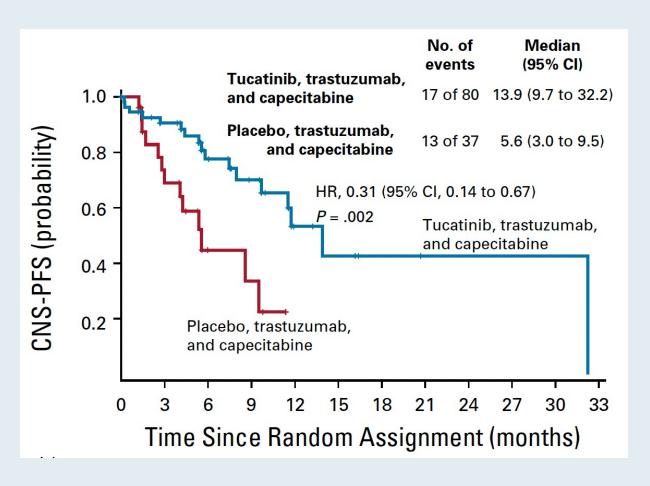

Nancy U. Lin, MD¹; Virginia Borges, MMSc, MD²; Carey Anders, MD³; Rashmi K. Murthy, MD, MBE⁴; Elisavet Paplomata, MD⁵; Erika Hamilton, MD⁶; Sara Hurvitz, MD⁷; Sherene Loi, MD, PhD⁸; Alicia Okines, MBChB, MD⁹; Vandana Abramson, MD¹⁰; Philippe L. Bedard, MD¹¹; Mafalda Oliveira, MD, PhD¹²; Volkmar Mueller, MD¹³; Amelia Zelnak, MD¹⁴; Michael P. DiGiovanna, MD, PhD¹⁵; Thomas Bachelot, MD¹⁶; A. Jo Chien, MD¹⁷; Ruth O'Regan, MD⁵; Andrew Wardley, MBChB, MSc, MD¹⁸; Alison Conlin, MD, MPH¹⁹; David Cameron, MD, MA²⁰; Lisa Carey, MD²¹; Giuseppe Curigliano, MD, PhD²²; Karen Gelmon, MD²³; Sibylle Loibl, MD, PhD²⁴; JoAl Mayor, PharmD²⁵; Suzanne McGoldrick, MD, MPH²⁵; Xuebei An, PhD²⁵; and Eric P. Winer, MD¹

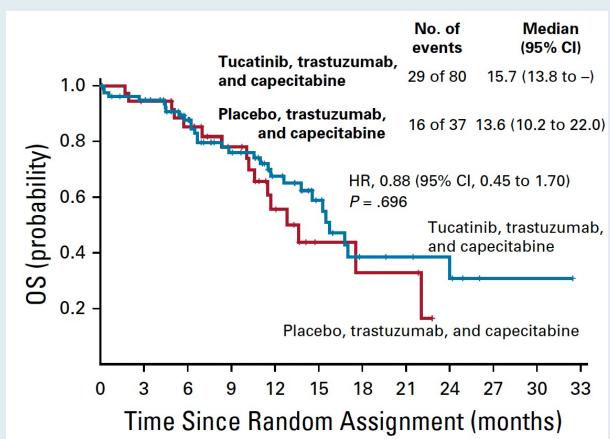
Lin NU et al. *J Clin Oncol* 2020;38:2610-9.


HER2CLIMB: CNS Progression-Free Survival and Overall Survival for Patients with Brain Metastases

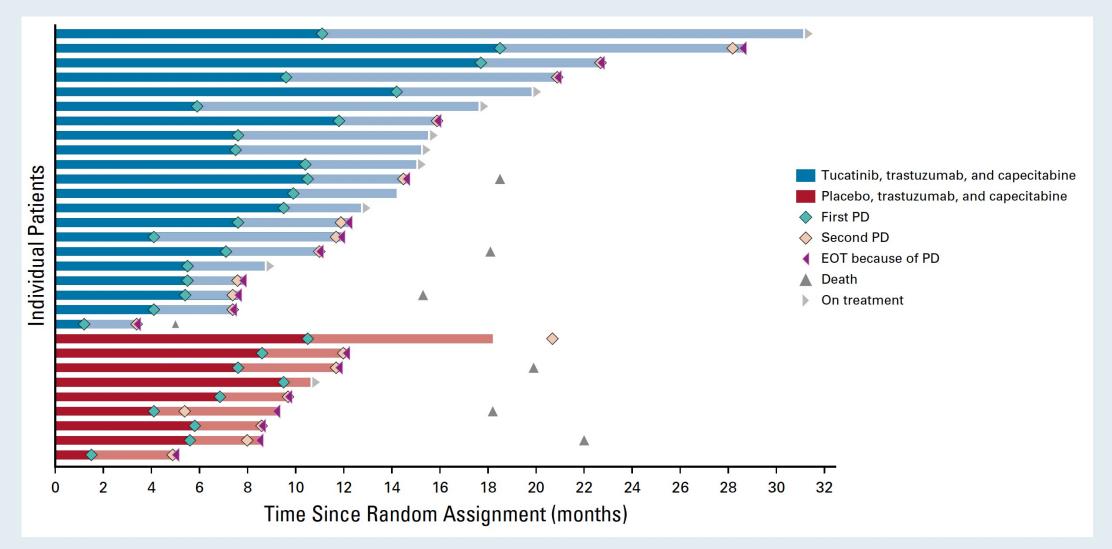


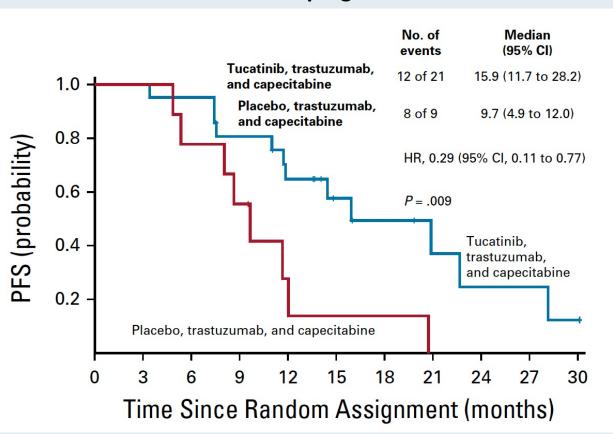
HER2CLIMB: CNS Progression-Free Survival and Overall Survival for Patients with Active Brain Metastases

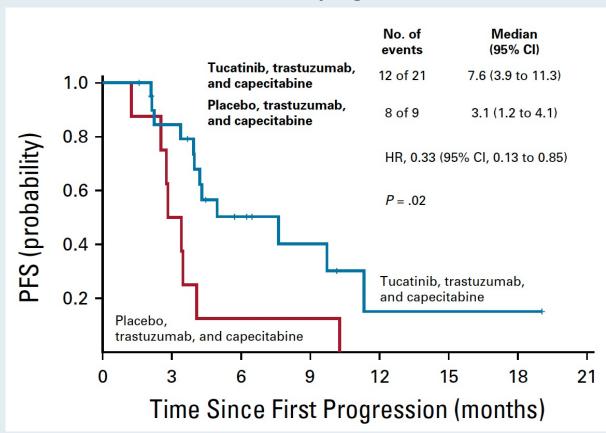

HER2CLIMB: Intracranial Confirmed Objective Response Rate for Patients with Active Brain Metastases and Measurable Intracranial Lesions at Baseline


Response	Tucatinik	o, trastuzumab and capecitabine (n = 55)	Placebo, trastuzumab and capecitabine (n = 20)				
Best overall	Best overall intracranial response						
Complete response		5.5%	5%				
Partial response		41.8%	15.0%				
Stable disease		43.6%	80.0%				
Progressive disease		3.6%	0				
Intracranial ORR		47.3%	20.0%				
Intracranial DoR		6.8 mo	3.0 mo				

DoR = duration of response


HER2CLIMB: CNS Progression-Free Survival and Overall Survival for Patients with Stable Brain Metastases


HER2CLIMB: Duration of Treatment for Patients with Isolated Progression in the Brain Who Continued Assigned Study Treatment



HER2CLIMB: Time to Second Disease Progression

Time from random assignment to second disease progression

Time from first PD to second disease progression

Trastuzumab-Deruxtecan (T-DXd) in HER2-Positive Breast Cancer Patients (Pts) with Active Brain Metastases: Primary Outcome Analysis from the TUXEDO-1 Trial

Bartsch R et al.

ESMO Breast 2022; Abstract 165MO.

Study Design

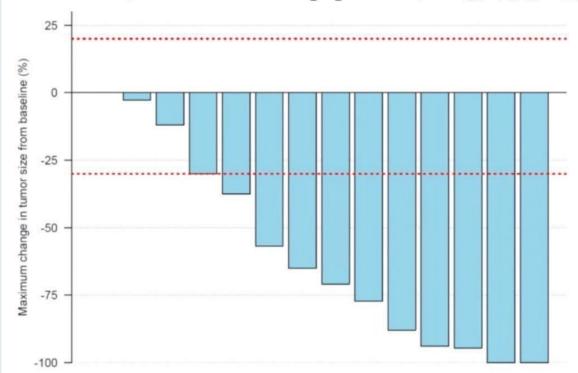
TUXEDO-1 (NCT04752059)

Primary Endpoint: ORR (CNS) by RANO-BM criteria Secondary Endpoints:

- Clinical Benefit Rate (CR+PR+SD ≥6 months)
- · Extracranial Response rate
- PFS
- os
- Safety
- · Ouality of Life

BM, brain metastasis; BW, body weight; CNS, central nervous system; D1, day 1; EOT, end of treatment; FU, follow up; IV, intravenous; KPS, Karnofsky performance; LVEF, left ventricular ejection fraction; q3w, once every 3 weeks; RANO, response assessment in neuro-oncology; T-DXd, trastuzumab deruxtecan.

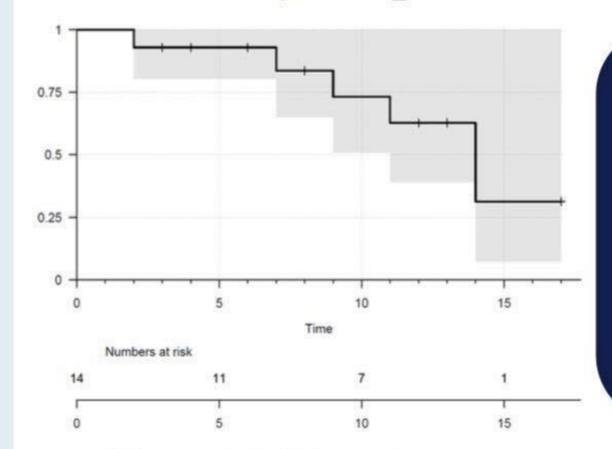
Simon Two Stage Design


- RR (CNS) >60% suggests clinically relevant activity
- RR (CNS) <26% suggests no benefit compared to previous systemic treatment options
- Stage 1: 6 pts. (at least three responses); Stage 2: 9 pts; overall 15 pts. (at least 7 responses)
- Type 1 error rate 5%; power 80%

Primary Endpoint

Objective Response Rate (RANO-BM criteria)

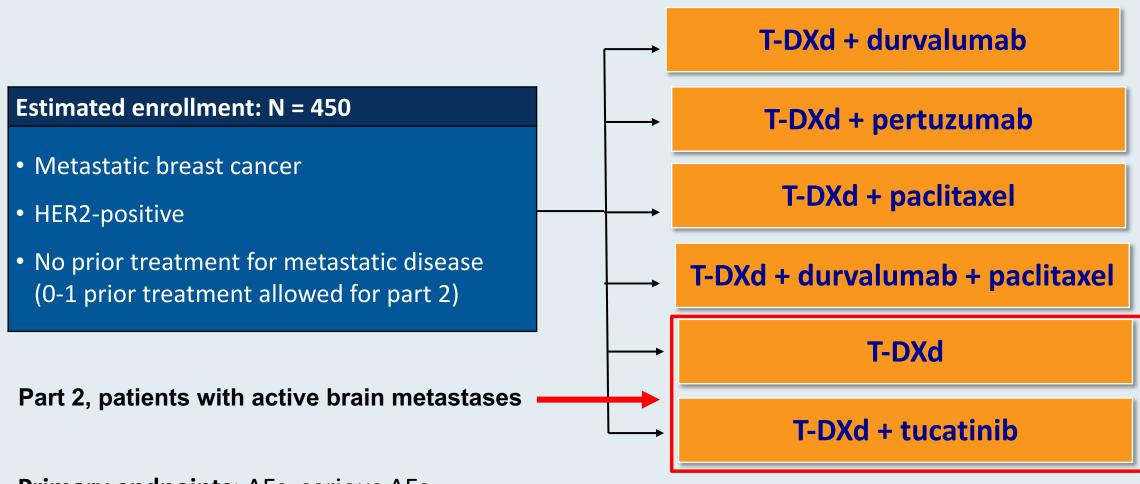
ORR (intention-to-treat population; n=15): 73.3% (95% CI 48.1-89.1)



One patient with dural metastases

RR (per-protocol-population; n=14): 78.6%

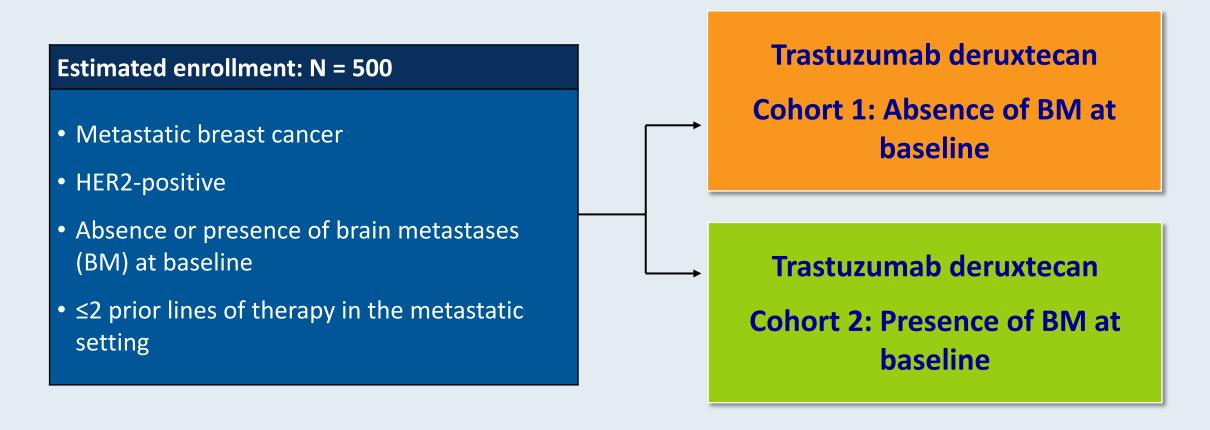
Secondary Endpoints



- PFS: 14 months (95% CI 11.0-n.r.)
- Median follow-up 11 months (range 3 17 months)

- Clinical Benefit Rate (CR+PR+SD ≥6 months):
 13/15 (86.7%) in the ITT population and 13/14 (92.9%) in the PP population
- Median OS not reached
- Extracranial Response Rate:
- Pts. with extracranial metastases at baseline (n=13): PR 5/13 (27.8%)
- Pts with measurable extracranial disease at baseline (n=8): PR 5/8 (62.5%)

DESTINY-Breast07 Phase I/II Trial Design



Primary endpoints: AEs, serious AEs

Secondary endpoints: Objective response rate, PFS, PFS2, DoR, OS

DESTINY-Breast12 Phase IIIb/IV Trial Design

Primary endpoints: Objective response rate for patients without BM at baseline (Cohort 1), PFS for patients with BM at baseline (Cohort 2)

Exploring Current Considerations and Promising Investigational Approaches for Patients with Myelodysplastic Syndromes

A CME/MOC-Accredited Virtual Event

Thursday, September 8, 2022 5:00 PM - 6:00 PM ET

Faculty

Guillermo Garcia-Manero, MD Gail J Roboz, MD David Sallman, MD

Moderator Neil Love, MD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

