Recent Advances and Real-World Implications in Medical Oncology: A Daylong Multitumor Educational Symposium in Partnership with the American Oncology Network A CME/MOC- and NCPD-Accredited Hybrid Event

Saturday, August 6, 2022 9:00 AM – 4:30 PM PT

Welcome AON Members!

Data + Perspectives — Investigators Discuss the Current and Future Roles of Chimeric Antigen Receptor T-Cell Therapy and Bispecific Antibodies in the Care of Patients with Hematologic Cancers

> Tuesday, August 9, 2022 5:00 PM – 6:30 PM ET

Faculty

Ajai Chari, MD Ian W Flinn, MD, PhD Nikhil C Munshi, MD Laurie H Sehn, MD, MPH

> Moderator Neil Love, MD

Meet The Professor Optimizing the Management of Small Cell Lung Cancer

> Thursday, August 11, 2022 5:00 PM – 6:00 PM ET

> > Faculty Jacob Sands, MD

Moderator Neil Love, MD

In-Person and Zoom Audience Clinician Survey

In-person audience

 Please complete the premeeting survey on the iPads. A link to the postmeeting survey will be sent to you after the meeting

Zoom participants

 Please complete the pre- and postmeeting surveys for each module

Agenda

Module 1 — Breast Cancer: *Drs Burstein and O'Shaughnessy*

Module 2 — **Genitourinary Cancers:** *Drs Agarwal and Srinivas*

Module 3 — Multiple Myeloma: Drs Fonseca and Patel

Module 4 — Chronic Lymphocytic Leukemia and Lymphomas: Drs Kahl and Moskowitz

Module 5 — Gastrointestinal Cancers: Drs Mehta and Philip

Module 6 — Lung Cancer: Drs Dagogo-Jack and Ramalingam

Breast Cancer Faculty

Harold J Burstein, MD, PhD Institute Physician, Dana-Farber Cancer Institute Professor of Medicine, Harvard Medical School Boston, Massachusetts

Joyce O'Shaughnessy, MD Celebrating Women Chair in Breast Cancer Research Baylor University Medical Center Director, Breast Cancer Research Program Texas Oncology US Oncology Dallas, Texas

Co-Moderators

Breast Cancer Stephen "Fred" Divers, MD American Oncology Network Hot Springs, Arkansas

CLL and Lymphomas Jeanna L Knoble, MD Zangmeister Cancer Center Columbus, Ohio

Genitourinary Cancers Michael J Castine, MD Hematology Oncology Clinic Baton Rouge, Louisiana

Gastrointestinal Cancers Pavani Ellipeddi, MD Hematology Oncology Clinic Baton Rouge, Louisiana

Multiple Myeloma Taral Patel, MD Zangmeister Cancer Center Columbus, Ohio

Lung Cancer Ram Trehan, MD George Washington University Silver Spring, Maryland

MODULE 1: Breast Cancer

Co-Moderator Stephen "Fred" Divers, MD American Oncology Network Hot Springs, Arkansas

Module 1: HER2-Positive Disease

Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

Module 3: Triple-Negative Disease

Module 1: HER2-Positive Disease

- Use of trastuzumab deruxtecan for HER2-low breast cancer: Impact of ER status, optimal sequencing, management of interstitial lung disease – DESTINY-Breast04 trial
- Sequencing of agents for patients with brain metastases TUXEDO-1, HER2CLIMB trials
- Adjuvant and postadjuvant anti-HER2 treatment APHINTY, ExteNET trial

Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

Module 3: Triple-Negative Disease

Module 1: HER2-Positive Disease

- Use of trastuzumab deruxtecan for HER2-low breast cancer: Impact of ER status, optimal sequencing, management of interstitial lung disease – DESTINY-Breast04 trial
- Sequencing of agents for patients with brain metastases TUXEDO-1, HER2CLIMB trials
- Adjuvant and postadjuvant anti-HER2 treatment APHINTY, ExteNET trial

Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

Module 3: Triple-Negative Disease

Discussion Question

Regulatory and reimbursement issues aside, what next therapy would you recommend for a 60-year-old woman with hormone receptor (HR)-positive, IHC HER2 1+ metastatic breast cancer and worsening liver disease who has experienced disease progression on a CDK4/6 inhibitor/fulvestrant?

T-DXd

Sacituzumab govitecan

Capecitabine

Paclitaxel

Alpelisib/everolimus

Other

Regulatory and reimbursement issues aside, what next therapy would you recommend for a 60-year-old woman with HR-negative, IHC HER2 1+ BRCA wild-type metastatic breast cancer and symptomatic disease progression on first-line chemoimmunotherapy?

T-DXd

Sacituzumab govitecan

Capecitabine

Eribulin

Other

Trastuzumab Deruxtecan Granted FDA Approval for HER2-Low Breast Cancer Press Release: August 5, 2022

"Today, the US Food and Drug Administration approved fam-trastuzumab-deruxtecannxki, an IV infusion for the treatment of patients with unresectable (unable to be removed) or metastatic (spread to other parts of the body) HER2-low breast cancer. This is the first approved therapy targeted to patients with the HER2-low breast cancer subtype, which is a newly defined subset of HER2-negative breast cancer.

Patients with HER2-low breast cancer are eligible for fam-trastuzumab-deruxtecan-nxki if they have received a prior chemotherapy in the metastatic setting, or their cancer returned during, or within 6 months of completing, adjuvant chemotherapy.

This approval is based on DESTINY-Breast04, a randomized, multicenter, open label clinical trial that enrolled 557 adult patients with unresectable or metastatic HER2-low breast cancer."

https://www.fda.gov/news-events/press-announcements/fda-approves-first-targeted-therapy-her2-low-breast-cancer

Trastuzumab deruxtecan (T-DXd) vs treatment of physician's choice in patients with HER2-low unresectable and/or metastatic breast cancer: Results of DESTINY-Breast04, a randomized, phase 3 study

Shanu Modi Memorial Sloan Kettering Cancer Center, Memorial Hospital, New York, NY, USA

June 5, 2022

Additional authors: William Jacot, Toshinari Yamashita, Joo Hyuk Sohn, Maria Vidal, Eriko Tokunaga, Junji Tsurutani, Naoto Ueno, Yee Soo Chae, Keun Seok Lee, Naoki Niikura, Yeon Hee Park, Xiaojia Wang, Binghe Xu, Dhiraj Gambhire, Lotus Yung, Gerold Meinhardt, Yibin Wang, Nadia Harbeck, David Cameron

On behalf of the DESTINY-Breast04 investigators

The NEW ENGLAND JOURNAL of MEDICINE N Engl J Med 2022;387(1):9-20.

ORIGINAL ARTICLE

Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer

S. Modi, W. Jacot, T. Yamashita, J. Sohn, M. Vidal, E. Tokunaga, J. Tsurutani, N.T. Ueno, A. Prat, Y.S. Chae, K.S. Lee, N. Niikura, Y.H. Park, B. Xu, X. Wang, M. Gil-Gil, W. Li, J.-Y. Pierga, S.-A. Im, H.C.F. Moore, H.S. Rugo, R. Yerushalmi, F. Zagouri, A. Gombos, S.-B. Kim, Q. Liu, T. Luo, C. Saura, P. Schmid, T. Sun, D. Gambhire, L. Yung, Y. Wang, J. Singh, P. Vitazka, G. Meinhardt, N. Harbeck, and D.A. Cameron, for the DESTINY-Breast04 Trial Investigators*

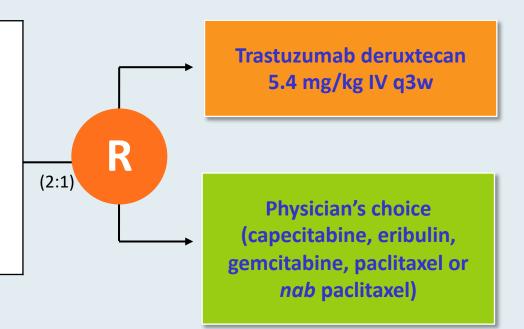
The NEW ENGLAND JOURNAL of MEDICINE

N Engl J Med 2022;387(1):75-6.

EDITORIALS

DESTINY-Changing Results for Advanced Breast Cancer

Sara A. Hurvitz, M.D.


DESTINY-Breast04: Phase III Trial Schema

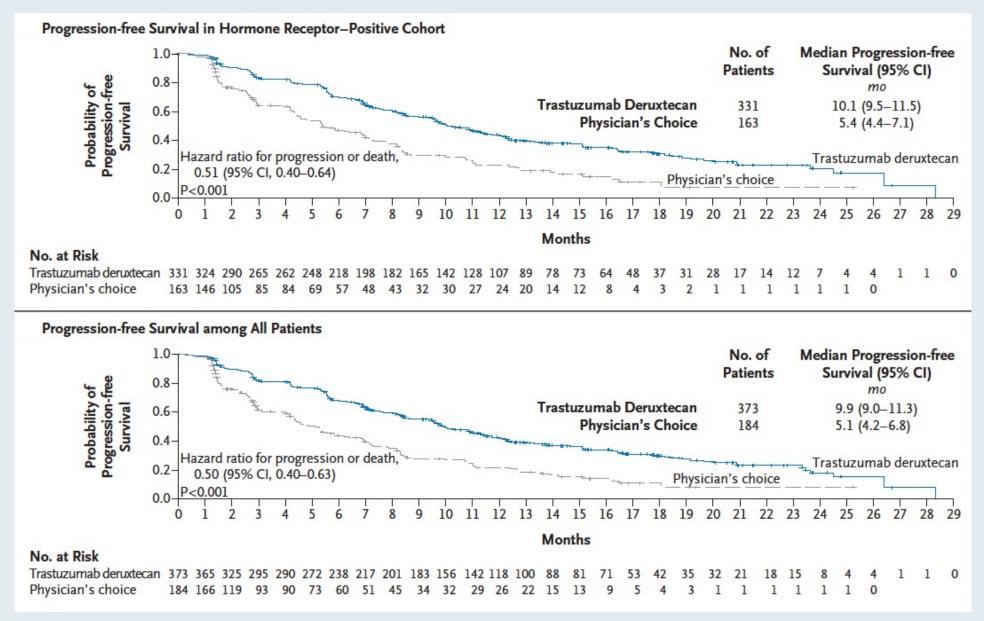
Target Accrual: 557

Unresectable and/or metastatic HER2-low breast cancer (IHC 2+/ISH- or IHC 1+)

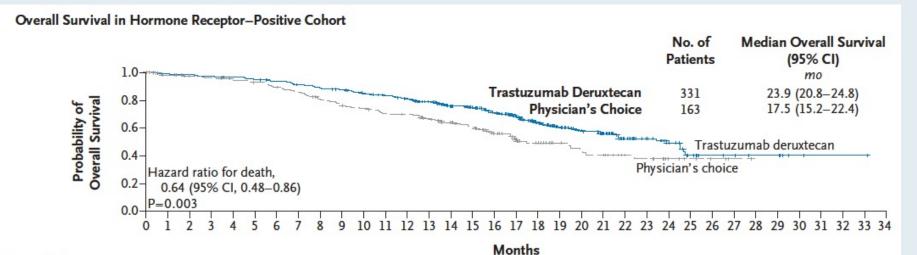
HER2 status is centrally confirmed and is based on ASCO-CAP 2018 guidelines using archival or fresh biopsy tissue samples

If archival tissue is not available, a fresh biopsy is required

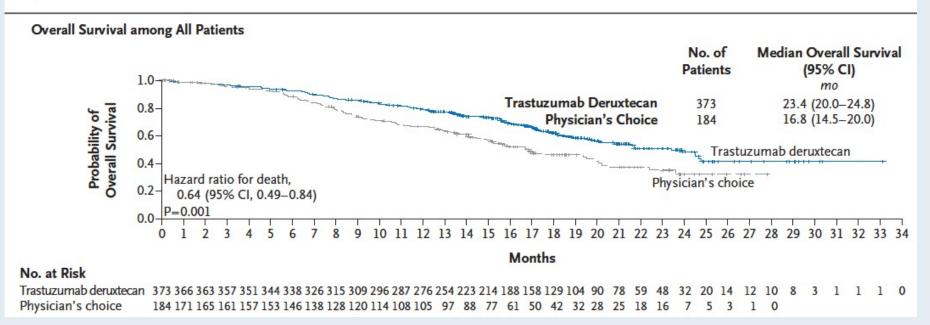
Randomization is stratified by


- HER2 IHC status (HER2 IHC 1+ vs HER2 IHC 2+/ISH-)
- Number of prior lines of chemotherapy (1 vs 2)
- HR/CDK status (HR+ with prior CDK4/6 inhibitor treatment vs HR+ without prior CDK4/6 inhibitor treatment vs HR-)

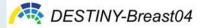
Primary endpoint: Progression-free survival per modified RECIST v1.1 by blinded independent central review


www.clinicaltrials.gov. Accessed August 2022.

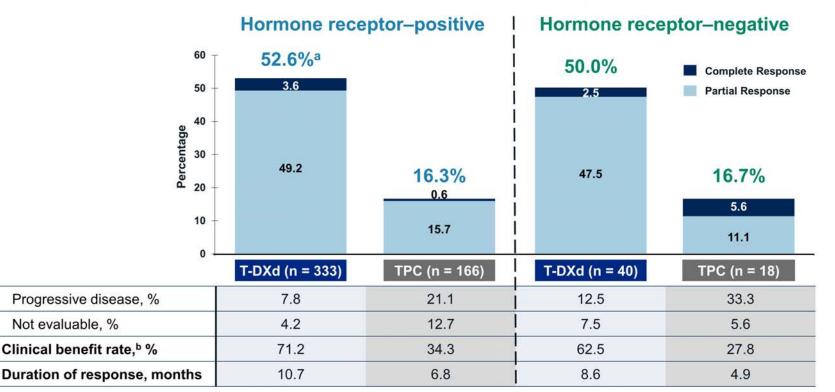
DESTINY-Breast04: Progression-Free Survival


DESTINY-Breast04: Overall Survival

No. at Risk


 Trastuzumab deruxtecan
 331 325 323 319 314 309 303 293 285 280 268 260 250 228 199 190 168 144 116 95 81 70 51 40 26 14 9 8 6 6 2 1 1 1 0

 Physician's choice
 163 151 145 143 139 135 130 124 115 109 104 98 96 89 80 71 56 45 37 29 25 23 16 14 7 5 3 1 0



Modi S et al. N Engl J Med 2022;387(1):9-20; ASCO 2022;Abstract LBA3.

Confirmed ORR

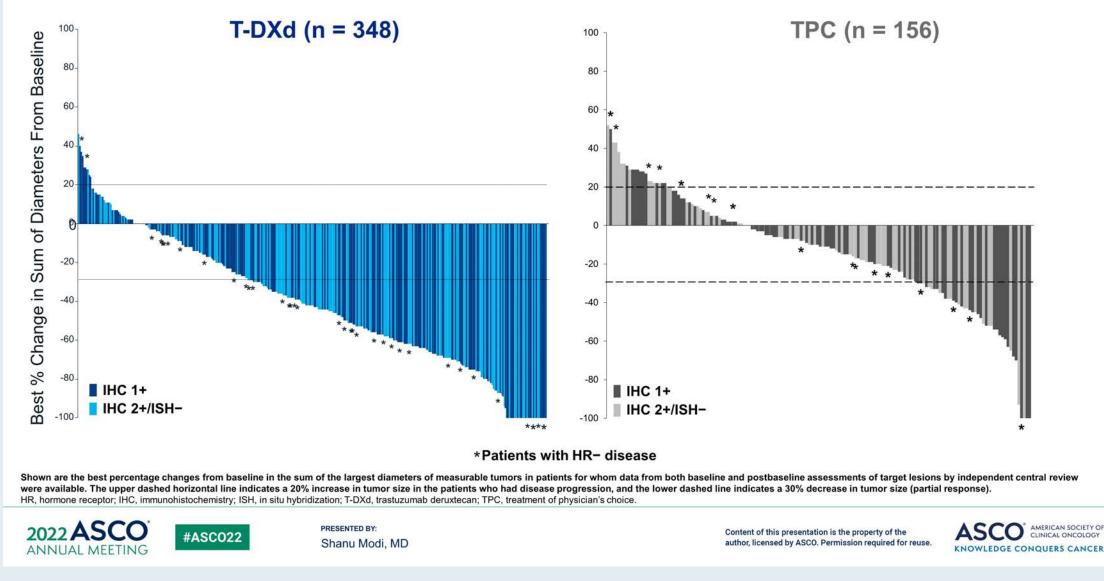
Confirmed Objective Response Rate

Hormone receptor status is based on data from the electronic data capture corrected for misstratification.

ORR, objective response rate; T-DXd, trastuzumab deruxtecan; TPC, treatment of physician's choice.

^aThe response of 1 patient was not confirmed. ^bClinical benefit rate is defined as the sum of complete response rate, partial response rate, and more than 6 months' stable disease rate, based on blinded independent central review.

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.



Modi S et al. ASCO 2022; Abstract LBA3.

A DESTINY-Breast04

Best Change in Target Lesions (All Patients)

Modi S et al. ASCO 2022; Abstract LBA3.

DESTINY-Breast04: Adverse Events of Special Interest

Adjudicated as drug-related ILD/pneumonitis

n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any grade
T-DXd (n = 371)	13 (3.5)	24 (6.5)	5 (1.3)	0	3 (0.8)	45 (12.1)
TPC (n = 172)	1 (0.6)	0	0	0	0	1 (0.6)

Left ventricular dysfuctions

n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any grade	
Ejection fraction decreased							
T-DXd (n = 371)	1 (0.3)	12 (3.8)	1 (0.3)	0	0	16 (4.3)	
TPC (n = 172)	0	0	0	0	0	0	
Cardiac failure							
T-DXd (n = 371)	0	1 (0.3)	1 (0.3)	0	0	2 (0.5)	
TPC (n = 172)	0	0	0	0	0	0	

ILD = interstitial lung disease; TPC = treatment of physician's choice

Modi S et al. ASCO 2022; Abstract LBA3.

Chemotherapy and Targeted Therapy for Human Epidermal Growth Factor Receptor 2–Negative Metastatic Breast Cancer That Is Either Endocrine-Pretreated or Hormone Receptor–Negative: ASCO Guideline Rapid Recommendation Update

Beverly Moy, MD, MPH¹; R. Bryan Rumble, MSc²; and Lisa A. Carey, MD, ScM³; for the Chemotherapy and Targeted Therapy for HER2-Negative Metastatic Breast Cancer that is Either Endocrine-Pretreated or Hormone Receptor–Negative Expert Panel

ASCO Rapid Recommendations Updates highlight revisions to select ASCO guideline recommendations as a response to the emergence of new and practice-changing data. The rapid updates are supported by an evidence review and follow the guideline development processes outlined in the ASCO Guideline Methodology Manual. The goal of these articles is to disseminate updated recommendations, in a timely manner, to better inform health practitioners and the public on the best available cancer care options.

J Clin Oncol 2022; Aug 4; [Online ahead of print].

ASCO Guideline Rapid Recommendation Update for HER2-Negative Metastatic Breast Cancer

Updated Recommendation

Patients with HER2 IHC 1+ or 2+ and ISH-negative metastatic breast cancer who have received at least one prior chemotherapy for metastatic disease, and if hormone receptor—positive are refractory to endocrine therapy, should be offered treatment with trastuzumab deruxtecan

• (Type: evidence based, benefits outweigh harms; Evidence quality: moderate; Strength of recommendation: strong).

Module 1: HER2-Positive Disease

- Use of trastuzumab deruxtecan for HER2-low breast cancer: Impact of ER status, optimal sequencing, management of interstitial lung disease – DESTINY-Breast04 trial
- Sequencing of agents for patients with brain metastases TUXEDO-1, HER2CLIMB trials
- Adjuvant and postadjuvant anti-HER2 treatment APHINTY, ExteNET trial

Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

Module 3: Triple-Negative Disease

Regulatory and reimbursement issues aside, which second-line therapy would you recommend for a patient with HR-negative, HER2-amplified breast cancer with multiple asymptomatic brain metastases?

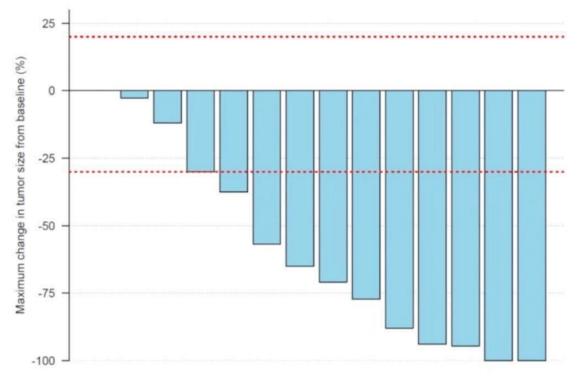
Tucatinib, capecitabine and trastuzumab

T-DXd

Neratinib and capecitabine

Neratinib and lapatinib

Other


Trastuzumab-Deruxtecan (T-DXd) in HER2-Positive Breast Cancer Patients (pts) with Active Brain Metastases: Primary Outcome Analysis from the TUXEDO-1 Trial

Bartsch R et al. ESMO Breast 2022;Abstract 165MO.

TUXEDO-1: Primary Endpoint

Objective Response Rate (RANO-BM criteria)

ORR (intention-to-treat population; *n*=15): 73.3% (95% CI 48.1-89.1)

One patient with dural metastases RR (per-protocol-population; n=14): 78.6%

Tucatinib versus placebo added to trastuzumab and capecitabine for patients with pretreated HER2 + metastatic breast cancer with and without brain metastases (HER2CLIMB): final overall survival analysis

G. Curigliano^{1*}, V. Mueller², V. Borges³, E. Hamilton⁴, S. Hurvitz⁵, S. Loi⁶, R. Murthy⁷, A. Okines⁸, E. Paplomata^{9†}, D. Cameron¹⁰, L. A. Carey¹¹, K. Gelmon¹², G. N. Hortobagyi⁷, I. Krop¹³, S. Loibl¹⁴, M. Pegram¹⁵, D. Slamon⁵, J. Ramos¹⁶, W. Feng¹⁶ & E. Winer¹³

Ann Oncol 2022;33(3):321-29.

Module 1: HER2-Positive Disease

- Use of trastuzumab deruxtecan for HER2-low breast cancer: Impact of ER status, optimal sequencing, management of interstitial lung disease – DESTINY-Breast04 trial
- Sequencing of agents for patients with brain metastases TUXEDO-1, HER2CLIMB trials
- Adjuvant and postadjuvant anti-HER2 treatment APHINTY, ExteNET trial

Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

Module 3: Triple-Negative Disease

Which adjuvant HER2-directed therapy would you recommend for a 60-year-old woman with HR-positive, HER2-amplified breast cancer who receives neoadjuvant TCHP and has 2 positive nodes at the time of surgery?

T-DM1

T-DM1 followed by neratinib

T-DXd

T-DXd followed by neratinib

Other

Final Efficacy Results of Neratinib in HER2-positive Hormone Receptor-positive Early-stage Breast Cancer From the Phase III ExteNET Trial

Arlene Chan,¹ Beverly Moy,² Janine Mansi,³ Bent Ejlertsen,⁴ Frankie Ann Holmes,⁵
Stephen Chia,⁶ Hiroji Iwata,⁷ Michael Gnant,⁸ Sibylle Loibl,⁹ Carlos H. Barrios,¹⁰
Isil Somali,¹¹ Snezhana Smichkoska,¹² Noelia Martinez,¹³ Mirta Garcia Alonso,¹⁴
John S. Link,¹⁵ Ingrid A. Mayer,¹⁶ Søren Cold,¹⁷ Serafin Morales Murillo,¹⁸
Francis Senecal,¹⁹ Kenichi Inoue,²⁰ Manuel Ruiz-Borrego,²¹ Rina Hui,²²
Neelima Denduluri,²³ Debra Patt,²⁴ Hope S. Rugo,²⁵ Stephen R.D. Johnston,²⁶
Richard Bryce,²⁷ Bo Zhang,²⁷ Feng Xu,²⁷ Alvin Wong,²⁷ Miguel Martin,²⁸ for the ExteNET Study Group

Clin Breast Cancer 2021;21(1):80-91.

ExteNET: Cumulative Incidence of CNS Recurrences

	Ev	ents, n	Cumulative incidence of CNS recurrences	
Population or subgroup	Neratinib	Placebo	Neratinib	Placebo
Intention-to-treat population (n = 2,840)	16	23	1.3%	1.8%
HR-positive/≤1-year population (EU indication) (n = 1,334)	4	12	0.7%	2.1%
Adjuvant or neoadjuvant therapy (n = 1,334) Adjuvant (n = 980) Neoadjuvant (n = 354)	3 1	6 6	0.7% 0.7%	1.5% 3.7%
pCR status (n = 354) No (n = 295) Yes (n = 38)	1 0	5 1	0.8% 0	3.6% 5.0%

Chan A et al. *Clin Breast Cancer* 2021;21(1):80-91; Holmes FA et al. SABCS 2020; Abstract PD3-03.

Module 1: HER2-Positive Disease

Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

 PARP inhibitors (eg, olaparib) in the adjuvant/postneoadjuvant setting for localized breast cancer; impact of ER and HER2 status, risk versus treatment benefit, germline versus somatic genomic alterations

Module 3: Triple-Negative Disease

Regulatory and reimbursement issues aside, have you attempted or would you attempt to access olaparib as part of adjuvant therapy for a patient with a germline PALB2 mutation and TNBC who had residual disease after neoadjuvant chemotherapy/immunotherapy?

I have

I haven't but would for the right patient

I haven't and would not

J Clin Oncol 2021;39(26):2959-61.

Adjuvant PARP Inhibitors in Patients With Asco rapio **High-Risk Early-Stage HER2-Negative Breast Cancer and Germline BRCA Mutations: ASCO Hereditary Breast Cancer Guideline Rapid Recommendation Update** Nadine M. Tung, MD¹; Dana Zakalik, MD²; and Mark R. Somerfield, PhD³; for the Hereditary Breast Cancer Guideline Expert Panel

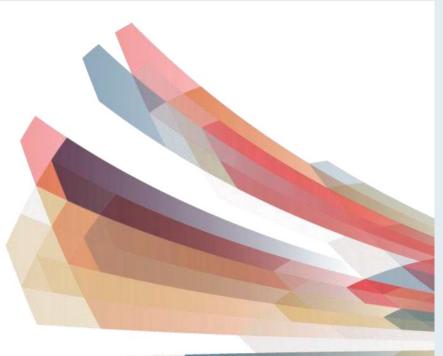
ASCO Rapid Recommendations Updates highlight revisions to select ASCO guideline recommendations as a response to the emergence of new and practice-changing data. The rapid updates are supported by an evidence review and follow the guideline development processes outlined in the ASCO Guideline Methodology Manual. The goal of these articles is to disseminate updated recommendations, in a timely manner, to better inform health practitioners and the public on the best available cancer care options.

FDA Approves Olaparib as Adjuvant Treatment for HER2-Negative High-Risk Localized Breast Cancer with a Germline BRCA Mutation Previously Treated with Neoadjuvant or Adjuvant Chemotherapy Press Release: March 11, 2022

"Olaparib has been approved by the US Food and Drug Administration (FDA) for the adjuvant treatment of adult patients with deleterious or suspected deleterious germline *BRCA*-mutated (g*BRCA*m), human epidermal growth factor receptor 2 (HER2)-negative high-risk early breast cancer who have been treated with neoadjuvant or adjuvant chemotherapy. Patients will be selected for therapy based on an FDA-approved companion diagnostic for olaparib.

The approval was based on results from the Phase 3 OlympiA trial, including data for the trial's primary endpoint of invasive disease-free survival (IDFS), which were presented during the 2021 American Society of Clinical Oncology Annual Meeting and published in *The New England Journal of Medicine*, as well as overall survival (OS) data from a more recent interim analysis."

Abstract VP1-2022 **ESMO VIRTUAL PLENARY**


PRE-SPECIFIED EVENT DRIVEN ANALYSIS OF OVERALL SURVIVAL (OS) IN THE OLYMPIA PHASE III TRIAL OF ADJUVANT OLAPARIB (OL) IN GERMLINE *BRCA1/2* MUTATION (*gBRCAm*) ASSOCIATED BREAST CANCER

Andrew Nicholas James Tutt¹, Judy Garber², Richard D. Gelber², Kelly-Anne Phillips³, Andrea Eisen⁴, Oskar Thor Jóhannsson⁵, Priya Rastogi⁶, Karen Yongzhi Cui⁷, Seock-Ah Im⁸, Rinat Yerushalmi⁹, Adam Matthew Brufsky¹⁰, Maria Taboada¹¹, Giovanna Rossi¹², Greg Yothers¹³, Christian Singer¹⁴, Luis E. Fein¹⁵, Niklas Loman¹⁶, David Cameron¹⁷, Christine Campbell¹⁸, Charles Edward Geyer Jr¹⁹

¹Breast Cancer Now Research Unit, Institute of Cancer Research, London, United Kingdom; ²Dana Farber Cancer Institute, Boston, MA, USA; ³Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, Australia; ⁴Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Canada; ⁵Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland; ⁶Department of Oncology, NSABP Foundation, Pittsburgh, PA, USA; ⁷Global Medicine Development, AstraZeneca US, Gaithersburg, MD, USA; ⁸Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; ⁹Department of Oncology, Clalit Health Services, Petah Tikva, Israel; ¹⁰Department of Hematology-Oncology, Magee-Womens Hospital of UPMC, Pittsburgh, PA, USA; ¹¹AstraZeneca, Royston, United Kingdom; ¹²Department of R&D, Breast International Group (BIG) – AISBL, Brussels, Belgium; ¹³Department of Biostatistics, University of Pittsburgh, PA, USA;

¹⁴Center for Breast Health, Medical University of Vienna, Vienna, Austria; ¹⁵Department of Oncology, Instituto de Oncología de Rosario, Rosario, Santa Fe, Argentina; ¹⁶Skane University Hospital, Lund, Sweden; ¹⁷Department of Oncology, Edinburgh Cancer Centre, Edinburgh, United Kingdom; ¹⁸Frontier Science Scotland, Kincraig, United Kingdom; ¹⁹Department of Clinical Research, Houston Methodist Cancer Center, Houston, TX, USA

Module 1: HER2-Positive Disease

Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

Module 3: Triple-Negative Disease

- Management of localized disease (neoadjuvant and adjuvant IO)
- Sequencing of therapy in metastatic disease
- New agents and strategies under investigation

Module 4: ER/PR-Positive, HER2-Negative Disease

Module 1: HER2-Positive Disease

Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

Module 3: Triple-Negative Disease

- Management of localized disease (neoadjuvant and adjuvant IO)
- Sequencing of therapy in metastatic disease
- New agents and strategies under investigation

Module 4: ER/PR-Positive, HER2-Negative Disease

Regulatory and reimbursement issues aside, what adjuvant therapy would you recommend for a patient with a 3-cm TNBC who receives neoadjuvant chemotherapy/pembrolizumab and is found to have significant residual disease at the time of surgery?

Pembrolizumab

Capecitabine

Both pembrolizumab and capecitabine I'm not sure

N Engl J Med 2022;386(6):556-67.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Event-free Survival with Pembrolizumab in Early Triple-Negative Breast Cancer

 P. Schmid, J. Cortes, R. Dent, L. Pusztai, H. McArthur, S. Kümmel, J. Bergh, C. Denkert, Y.H. Park, R. Hui, N. Harbeck, M. Takahashi, M. Untch, P.A. Fasching, F. Cardoso, J. Andersen, D. Patt, M. Danso, M. Ferreira, M.-A. Mouret-Reynier, S.-A. Im, J.-H. Ahn, M. Gion, S. Baron-Hay, J.-F. Boileau, Y. Ding, K. Tryfonidis, G. Aktan, V. Karantza, and J. O'Shaughnessy, for the KEYNOTE-522 Investigators*

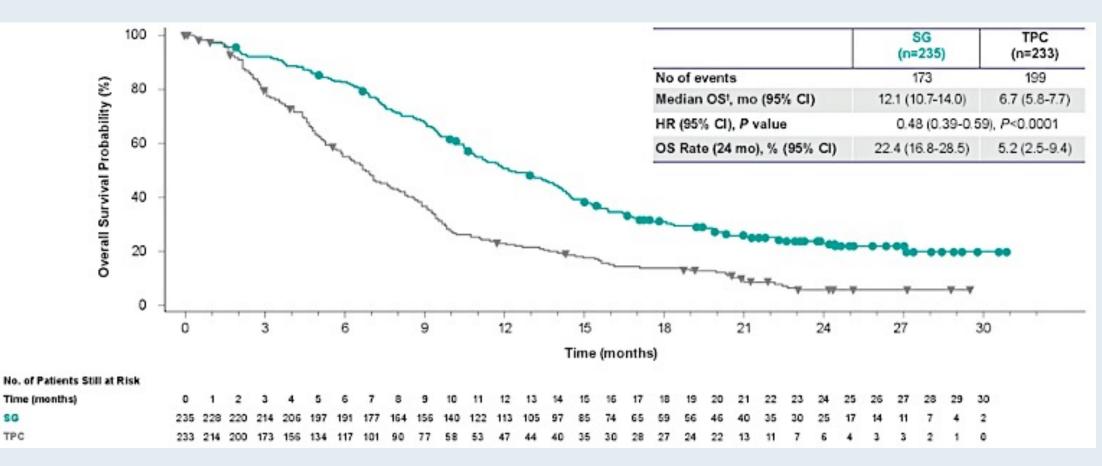
Module 1: HER2-Positive Disease

Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

Module 3: Triple-Negative Disease

- Management of localized disease (neoadjuvant and adjuvant IO)
- Sequencing of therapy in metastatic disease
- New agents and strategies under investigation

Module 4: ER/PR-Positive, HER2-Negative Disease



Sacituzumab Govitecan (SG) versus Treatment of Physician's Choice (TPC) in Patients (pts) with Previously Treated, Metastatic Triple-Negative Breast Cancer (mTNBC): Final Results from the Phase 3 ASCENT Study

Bardia A et al. ASCO 2022;Abstract 1071.

ASCENT: Overall Survival (BMNeg Population)

BMNeg = brain metastases-negative; SG = sacituzumab govitecan; TPC = treatment of physician's choice; OS = overall survival

50 TPC

Module 1: HER2-Positive Disease

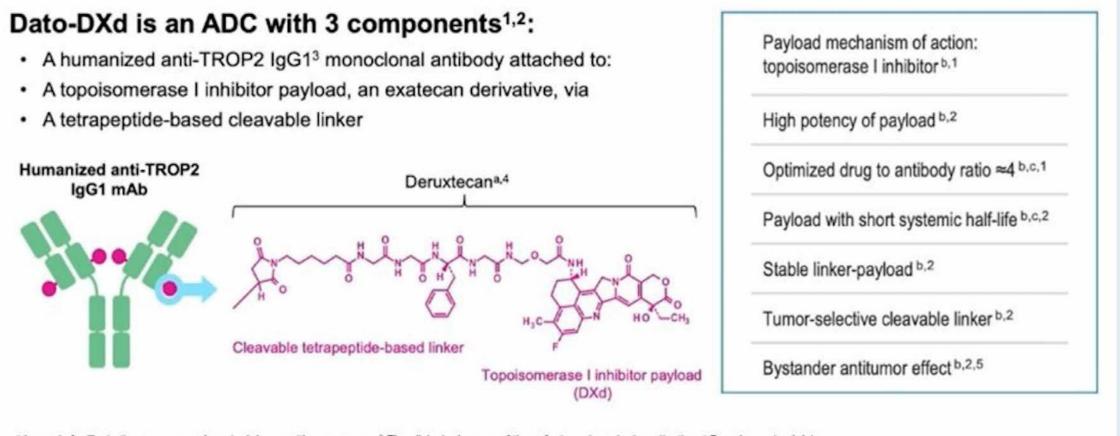
Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

Module 3: Triple-Negative Disease

- Management of localized disease (neoadjuvant and adjuvant IO)
- Sequencing of therapy in metastatic disease
- New agents and strategies under investigation

Module 4: ER/PR-Positive, HER2-Negative Disease

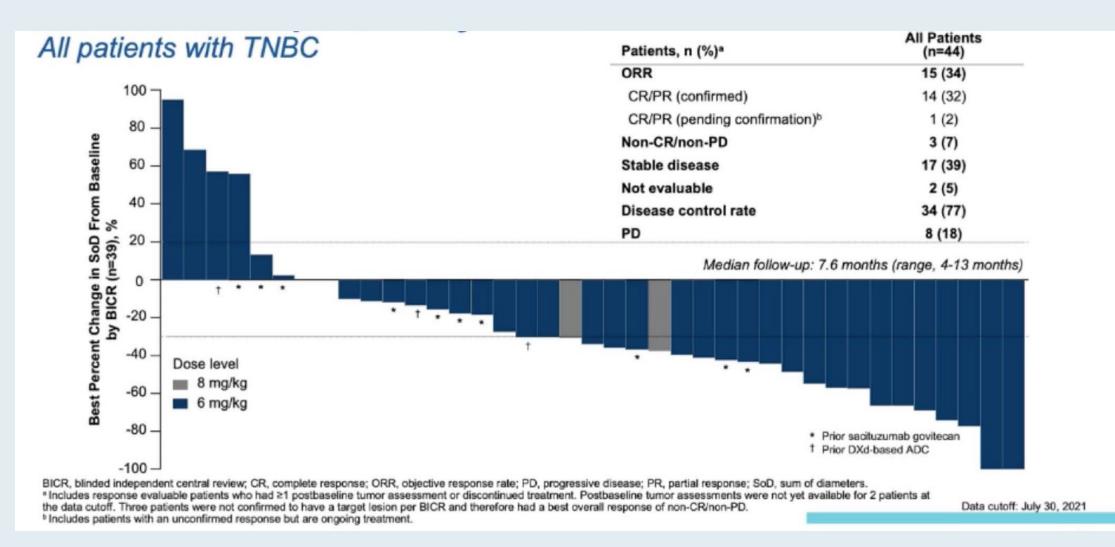
Datopotamab Deruxtecan (Dato-DXd) in Advanced/Metastatic HER2 Negative Breast Cancer: Triple Negative Breast Cancer Results from the Phase 1 TROPION-PanTumor01 Study


<u>Ian Krop</u>,¹ Dejan Juric,² Toshio Shimizu,³ Anthony Tolcher,⁴ Alexander Spira,⁵ Toru Mukohara,⁶ Aaron E. Lisberg,⁷ Takahiro Kogawa,⁸ Kyriakos P. Papadopoulos,⁹ Erika Hamilton,¹⁰ Senthil Damodaran,¹¹ Jonathan Greenberg,¹² Wen Gu,¹² Fumiaki Kobayashi,¹³ Takahiro Jikoh,¹³ Yui Kawasaki,¹³ Funda Meric-Bernstam,¹¹ Aditya Bardia²

¹Dana-Farber Cancer Institute, Boston, MA; ²Department of Hematology/Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA; ³National Cancer Center Hospital, Tokyo, Japan; ⁴NEXT Oncology, San Antonio, TX; ⁵Virginia Cancer Specialists, Fairfax, VA; ⁶Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan; ⁷UCLA Jonsson Comprehensive Cancer Center, Santa Monica, CA; ⁸Advanced Medical Development Center, The Cancer Institute Hospital of JFCR, Tokyo, Japan; ⁹START Center for Cancer Care San Antonio, San Antonio, TX; ¹⁰Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ¹¹The University of Texas MD Anderson Cancer Center, Houston, TX; ¹²Dalichi Sankyo Inc., Basking Ridge, NJ; ¹³Dalichi Sankyo Co, Ltd, Tokyo, Japan

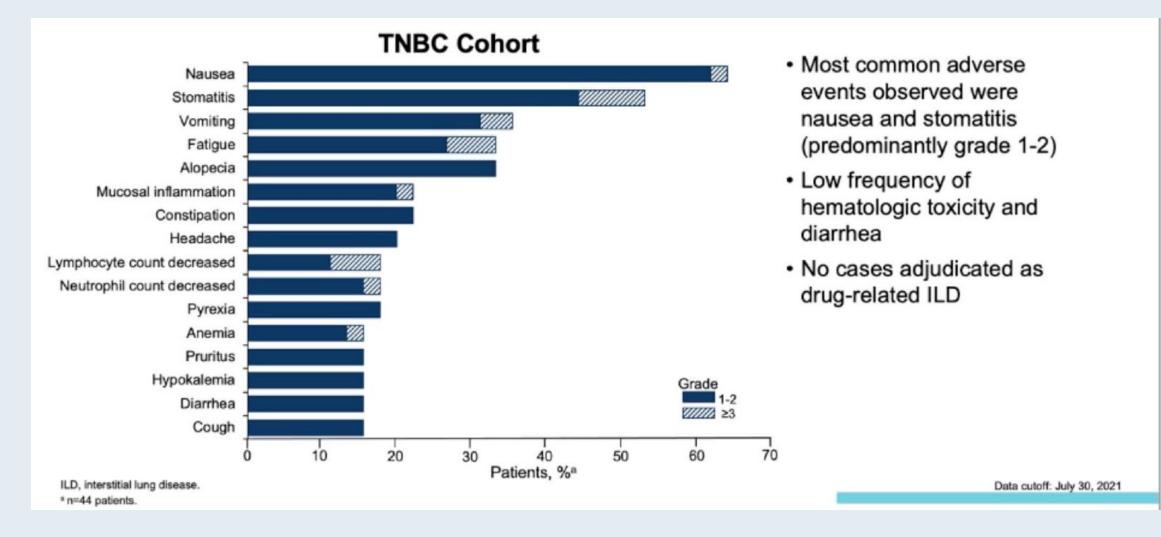
Abstract GS1-05

Datopotamab Deruxtecan (Dato-DXd) Mechanism of Action



* Image is for illustrative purposes only; actual drug positions may vary. ^b The clinical relevance of these features is under investigation. ^c Based on animal data.

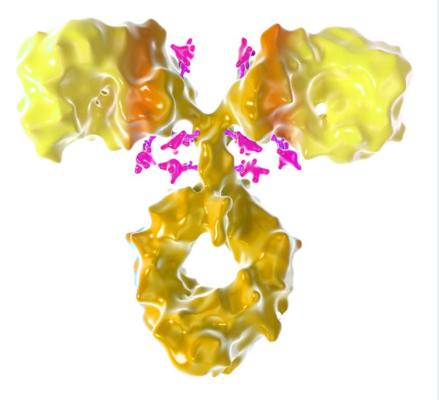
 Okajima D, et al. AACR-NCI-EORTC 2019; [abstract C026]; 2. Nakada T, et al. *Chem Pharm Buil.* 2019;67(3):173-185; 3. Daiichi Sankyo Co. Ltd. DS-1062. Daiichi Sankyo.com. Accessed October 6, 2020. https://www.daiichisankyo.com/media_investors/investor_relations/ir_calendar/files/005438/DS-1062%20Seminar%20Slides_EN.pdf; 4. Krop I, et al. SABCS 2019; [abstract GS1-03]; 5. Ogitani Y, et al. *Cancer Sci.* 2016;107(7):1039-1046.



TROPION-PanTumor01: Antitumor Response in Triple-Negative Breast Cancer (TNBC) Cohort

TROPION-PanTumor01: Treatment-Emergent Adverse Events in ≥15% of Patients in TNBC Cohort

2022 ASCO®


Results From the Phase 1/2 Study of Patritumab Deruxtecan, a HER3-Directed Antibody-Drug Conjugate (ADC), in Patients With HER3-Expressing Metastatic Breast Cancer

June 4, 2022

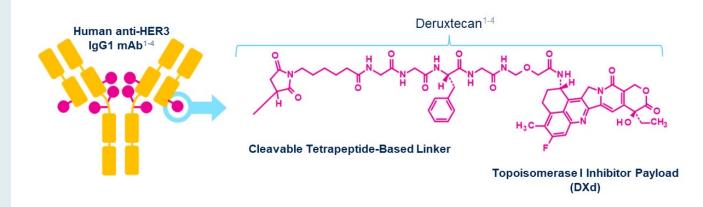
Ian E. Krop,¹ Norikazu Masuda,² Toru Mukohara,³ Shunji Takahashi,⁴ Takahiro Nakayama,⁵ Kenichi Inoue,⁶ Hiroji Iwata,⁷ Tatsuya Toyama,⁸ Yutaka Yamamoto,⁹ Damien Hansra,¹⁰ Masato Takahashi,¹¹ Akihiko Osaki,¹² Kumiko Koyama,¹³ Tatsuya Inoue,¹⁴ Takatoshi Yonekura,¹³ Joseph Mostillo,¹⁵ Shoichi Ohwada,¹³ Yoshimi Tanaka,¹³ David Sternberg,¹⁵ Kan Yonemori¹⁶

¹ Yale Cancer Center, New Haven, CT; ² Nagoya University Graduate School of Medicine, Nagoya, Japan; ³ National Cancer Center Hospital East, Kashiwa, Japan; ⁴ The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan; ⁵ Osaka International Cancer Institute, Osaka, Japan; ⁶ Saitama Cancer Center, Saitama Japan; ⁷ Aichi Cancer Center Hospital, Nagoya, Japan; ⁸ Nagoya City University, Nagoya, Japan; ⁹ Kumamoto University Hospital, Kumamoto, Japan; ¹⁰ Piedmont Physicians Medical Oncology, Fayetteville, GA; ¹¹ National Hospital Organization, Hokkaido Cancer Center, Sapporo, Japan; ¹² Saitama Medical University International Medical Center; Hidaka, Japan; ¹³ Dalichi Sankyo Co., Ltd., Tokyo, Japan; ¹⁴ Dalichi Sankyo RD Novare Co., Ltd., Tokyo, Japan; ¹⁵ Dalichi Sankyo, Inc., Basking Ridge, NJ; ¹⁶ National Cancer Center Hospital, Tokyo, Japan; ¹⁵ Dalichi Sankyo, Inc., Basking Ridge, NJ; ¹⁶ National Cancer Center Hospital, Tokyo, Japan; ¹⁵ Dalichi Sankyo, Inc., Basking Ridge, NJ; ¹⁶ National Cancer Center Hospital, Tokyo, Japan; ¹⁵ Dalichi Sankyo, Inc., Basking Ridge, NJ; ¹⁶ National Cancer Center Hospital, Tokyo, Japan; ¹⁶ Dalichi Sankyo, Inc., Basking Ridge, NJ; ¹⁶ National Cancer Center Hospital, Tokyo, Japan; ¹⁶ Dalichi Sankyo, Inc., Basking Ridge, NJ; ¹⁶ National Cancer Center Hospital, Tokyo, Japan; ¹⁶ Dalichi Sankyo, Inc., Basking Ridge, NJ; ¹⁶ National Cancer Center Hospital, Tokyo, Japan; ¹⁶ National Cancer Center Hospital, Tokyo, Japan

Abstract 1002

PRESENTED BY: Ian E. Krop, MD, PhD

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.



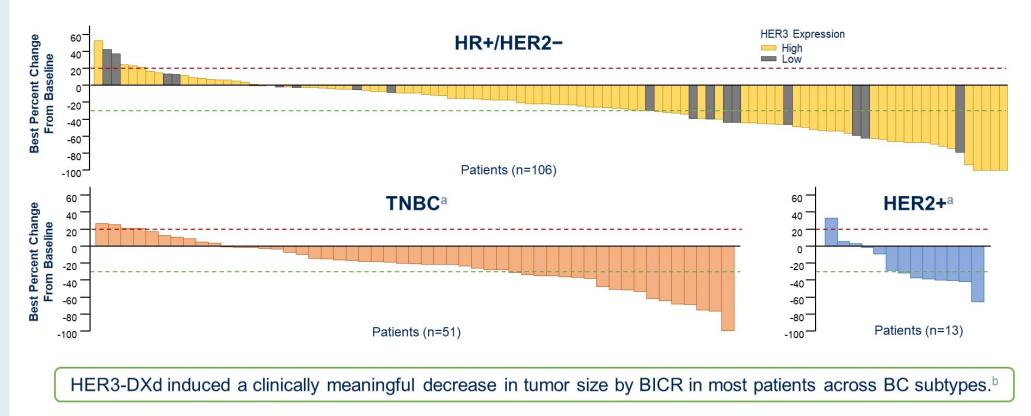
Patritumab Deruxtecan (HER3-DXd)

- A fully human anti-HER3 IgG1 mAb (patritumab), covalently linked to
- A topoisomerase I inhibitor payload, an exatecan derivative, via
- · A tetrapeptide-based cleavable linker

7 Key Attributes of HER3-DXd

Payload mechanism of action: topoisomerase I inhibitor a,1-4
High potency of payload a,1-4
High drug to antibody ratio $\approx 8^{a,1,2}$
Payload with short systemic half-life a,b,2,3
Stable linker-payload a,2-4
Tumor-selective cleavable linker a,1-5
Bystander antitumor effect a,2,6

HER, human epidermal growth factor receptor; IgG1, immunoglobulin G1; mAb, monoclonal antibody.


^a The clinical relevance of these features is under investigation. ^b Based on animal data.

1. Hashimoto Y, et al. *Clin Cancer Res.* 2019;25:7151-7161. 2. Nakada T, et al. *Chem Pharm Bull (Tokyo).* 2019;67(3):173-185. 3. Ogitani Y, et al. *Clin Cancer Res.* 2016;22(20):5097-5108. 4. Koganemaru S, et al. *Mol Cancer Ther.* 2019;18:2043-2050. 5. Haratani K, et al. *J Clin Invest.* 2020;130(1):374-388. 6. Ogitani Y, et al. *Cancer Sci.* 2016;107(7):1039-1046.

Krop I et al. ASCO 2022; Abstract 1002.

Change in Tumor Size from Baseline

^a Patients with TNBC and HER2+ were all HER3-high.

^b Best percentage change from baseline in sum of diameters based on BICR for all target lesions identified is represented by patient. If any lesion measurement is missing at a post-baseline tumor assessment visit, that visit is not taken into consideration for best percent change from baseline in sum of diameters.

Module 1: HER2-Positive Disease

Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

Module 3: Triple-Negative Disease

Module 4: ER/PR-Positive, HER2-Negative Disease

- Genomic assays in node-positive disease
- Adjuvant CDK4/6 inhibitors: monarchE (abemaciclib)
- Selection of CDK4/6 inhibitors in metastatic disease (ribociclib survival); sacituzumab govitecan

Module 1: HER2-Positive Disease

Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

Module 3: Triple-Negative Disease

Module 4: ER/PR-Positive, HER2-Negative Disease

- Genomic assays in node-positive disease
- Adjuvant CDK4/6 inhibitors: monarchE (abemaciclib)
- Selection of CDK4/6 inhibitors in metastatic disease (ribociclib survival); sacituzumab govitecan

For a 65-year-old postmenopausal woman with HR-positive, HER2-negative breast cancer with 2 positive axillary nodes and a Recurrence Score[®] of 24, would you recommend chemotherapy?

Yes		
No		
l'm not sure		

N Engl J Med 2021;385(25):2336-47.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

21-Gene Assay to Inform Chemotherapy Benefit in Node-Positive Breast Cancer

K. Kalinsky, W.E. Barlow, J.R. Gralow, F. Meric-Bernstam, K.S. Albain, D.F. Hayes, N.U. Lin, E.A. Perez, L.J. Goldstein, S.K.L. Chia, S. Dhesy-Thind, P. Rastogi, E. Alba, S. Delaloge, M. Martin, C.M. Kelly, M. Ruiz-Borrego, M. Gil-Gil, C.H. Arce-Salinas, E.G.C. Brain, E.-S. Lee, J.-Y. Pierga, B. Bermejo, M. Ramos-Vazquez, K.-H. Jung, J.-M. Ferrero, A.F. Schott, S. Shak, P. Sharma, D.L. Lew, J. Miao, D. Tripathy, L. Pusztai, and G.N. Hortobagyi

Module 1: HER2-Positive Disease

Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

Module 3: Triple-Negative Disease

Module 4: ER/PR-Positive, HER2-Negative Disease

- Genomic assays in node-positive disease
- Adjuvant CDK4/6 inhibitors: monarchE (abemaciclib)
- Selection of CDK4/6 inhibitors in metastatic disease (ribociclib survival); sacituzumab govitecan

Why do you think abemaciclib, but not palbociclib, has demonstrated positive clinical results in the adjuvant setting?

Better antitumor activity

Schedule of administration

The way the trials were designed

I'm not sure

Other

Ann Oncol 2021;32(12):1571-81.

ORIGINAL ARTICLE

Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: updated efficacy and Ki-67 analysis from the monarchE study

N. Harbeck^{1*†}, P. Rastogi^{2†}, M. Martin³, S. M. Tolaney⁴, Z. M. Shao⁵, P. A. Fasching⁶, C. S. Huang⁷, G. G. Jaliffe⁸, A. Tryakin⁹, M. P. Goetz¹⁰, H. S. Rugo¹¹, E. Senkus¹², L. Testa¹³, M. Andersson¹⁴, K. Tamura¹⁵, L. Del Mastro^{16,17}, G. G. Steger¹⁸, H. Kreipe¹⁹, R. Hegg²⁰, J. Sohn²¹, V. Guarneri^{22,23}, J. Cortés^{24,25}, E. Hamilton²⁶, V. André²⁷, R. Wei²⁷, S. Barriga²⁷, S. Sherwood²⁷, T. Forrester²⁷, M. Munoz²⁷, A. Shahir²⁷, B. San Antonio²⁷, S. C. Nabinger²⁷, M. Toi²⁸, S. R. D. Johnston^{29‡} & J. O'Shaughnessy^{30‡}, On behalf of the monarchE Committee Members

Ann Oncol 2022;33(6):616-27.

ORIGINAL ARTICLE

Adjuvant abemaciclib combined with endocrine therapy for high-risk early breast cancer: safety and patient-reported outcomes from the monarchE study

H. S. Rugo^{1*}, J. O'Shaughnessy², F. Boyle^{3,4}, M. Toi⁵, R. Broom⁶, I. Blancas^{7,8}, M. Gumus⁹, T. Yamashita¹⁰, Y.-H. Im¹¹, P. Rastogi¹², F. Zagouri¹³, C. Song¹⁴, M. Campone¹⁵, B. San Antonio¹⁶, A. Shahir¹⁶, M. Hulstijn¹⁶, J. Brown¹⁶, A. Zimmermann¹⁶, R. Wei¹⁶, S. R. D. Johnston¹⁷, M. Reinisch¹⁸ & S. M. Tolaney¹⁹, on behalf of the monarchE Committee Members[†]

ASCO Rapid Recommendation Update for Abemaciclib for HR-Positive, HER2-Negative, Node-Positive Localized Breast Cancer

- Abemaciclib with endocrine therapy (ET; tamoxifen or an aromatase inhibitor) is FDA approved for adjuvant treatment of HR-positive, HER2-negative, node-positive localized breast cancer with high risk of recurrence and a Ki-67 score ≥20%.
- Based on analyses reported by Harbeck and colleagues, the panel recommends that abemaciclib for 2 years with ET for 5 years or longer may be offered to the broader intent-to-treat population of patients with resected HR-positive, HER2-negative, node-positive localized breast cancer at high risk of recurrence, defined as having >4 positive axillary lymph nodes or as having 1 to 3 positive axillary lymph nodes and 1 or more of the following features: histologic Grade III, tumor size >5 cm or Ki-67 index >20%.
- Despite similar hazard ratios in favor of abemaciclib regardless of Ki-67 status, relatively few low Ki-67 tumors were reported in monarchE. When discussing treatment options with patients, the potential benefits (improved IDFS) should be weighed against the potential harms (treatment toxicity, financial cost).

Harbeck N et al. *Ann Oncol* 2021;32(12):1571-81. https://www.asco.org/practice-patients/guidelines/breast-cancer#/11081

Module 1: HER2-Positive Disease

Module 2: Use of PARP Inhibitors in Localized HER2-Negative Disease (OlympiA/Olaparib)

Module 3: Triple-Negative Disease

Module 4: ER/PR-Positive, HER2-Negative Disease

- Genomic assays in node-positive disease
- Adjuvant CDK4/6 inhibitors: monarchE (abemaciclib)

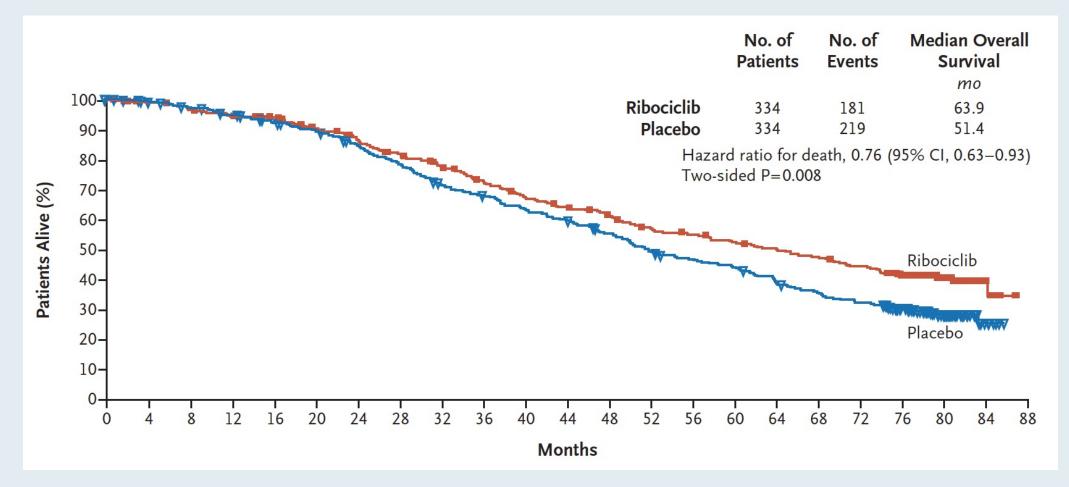
• Selection of CDK4/6 inhibitors in metastatic disease (ribociclib survival); sacituzumab govitecan

Which CDK4/6 inhibitor would you generally recommend in combination with endocrine therapy as first-line treatment for a postmenopausal woman with metastatic HR-positive, HER2-negative breast cancer?

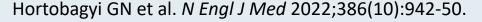
Palbociclib	
Ribociclib	
Abemaciclib	
No preference	

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE


Overall Survival with Ribociclib plus Letrozole in Advanced Breast Cancer

Gabriel N. Hortobagyi, M.D., Salomon M. Stemmer, M.D., Howard A. Burris, M.D., Yoon-Sim Yap, M.D., Gabe S. Sonke, M.D., Ph.D., Lowell Hart, M.D., Mario Campone, M.D., Ph.D., Katarina Petrakova, M.D., Ph.D., Eric P. Winer, M.D., Wolfgang Janni, M.D., Ph.D., Pierfranco Conte, M.D., Ph.D., David A. Cameron, M.D., Fabrice André, M.D., Ph.D., Carlos L. Arteaga, M.D., Juan P. Zarate, M.D., Arunava Chakravartty, Ph.D., Tetiana Taran, M.D., Fabienne Le Gac, Ph.D., Pharm.D., Paolo Serra, M.Sc., and Joyce O'Shaughnessy, M.D.


N Engl J Med 2022;386(10):942-50.

MONALEESA-2: Overall Survival (OS)

• The OS benefit with ribociclib observed in an exploratory subgroup analysis was consistent with the results in the overall population.

RTP RESEARCH TO PRACTICE

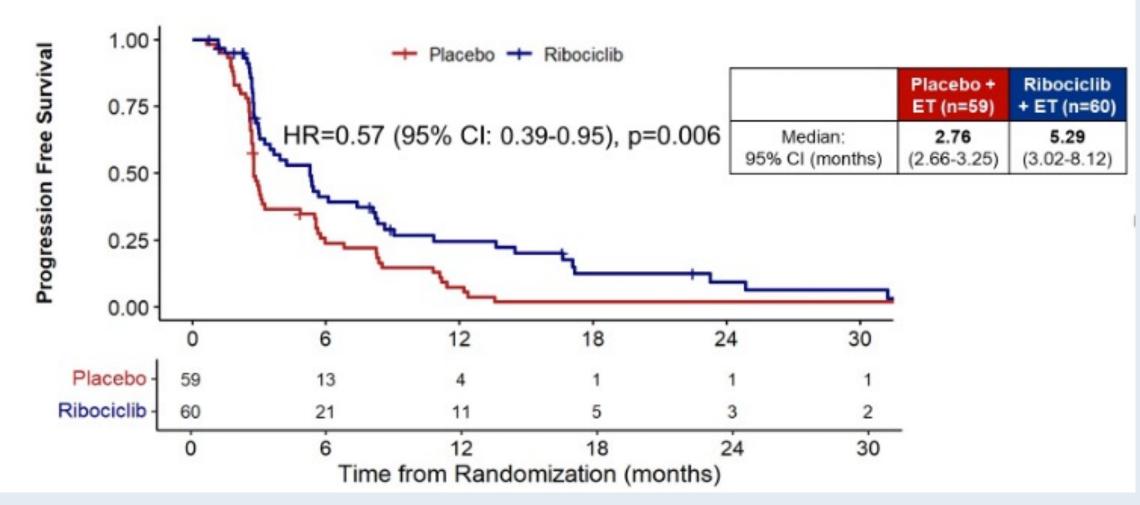
MONALEESA-2: The OS Benefit Increased Over Time

KM-estimated OS rate	Ribociclib + letrozole (n = 334)	Placebo + letrozole (n = 334)	Δ in OS
At 48 months	60.9%	55.2%	5.7%
At 60 months	52.3%	43.9%	8.4%
At 72 months	44.2%	32.0%	12.2%

Abstract LBA1004

A randomized phase II trial of fulvestrant or exemestane with or without ribociclib after progression on anti-estrogen therapy plus cyclindependent kinase 4/6 inhibition in patients with unresectable or metastatic hormone receptor positive, HER2 negative breast cancer: MAINTAIN Trial

Kevin Kalinsky, Melissa K Accordino, Cody Chiuzan, Prabhjot Mundi, Meghna S Trivedi, Yelena Novik, Amy Tiersten, Amelia Zelnak, George Raptis, Lea Baer, Sun Y Oh, Erica Stringer-Reasor, Sonya Reid, Eleni Andreopoulou, William Gradishar, Kari B Wisinski, Anne O'Dea, Ruth O'Regan, Katherine D Crew, Dawn L Hershman

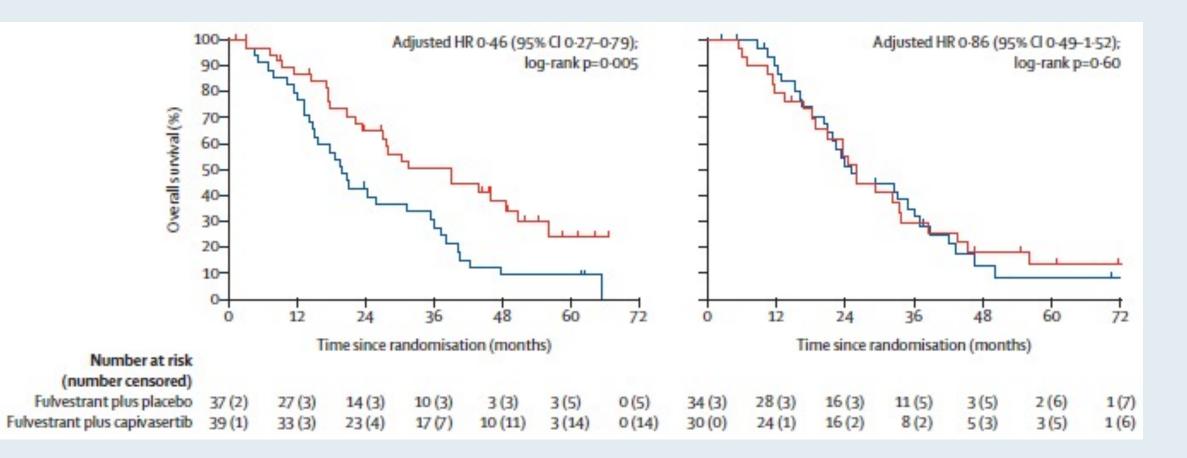


Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

MAINTAIN: Progression-Free Survival (Primary Endpoint)

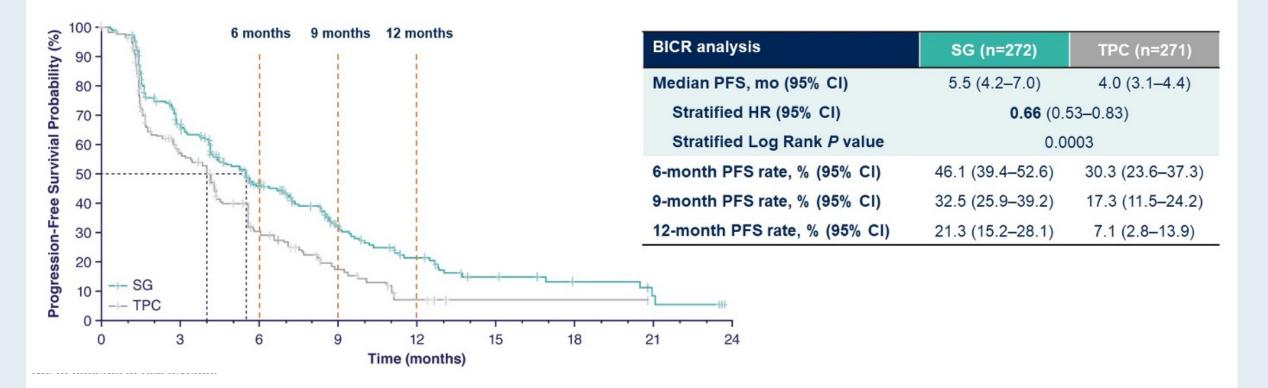
Lancet Oncol 2022;23(7):851-64.

Fulvestrant plus capivasertib versus placebo after relapse or progression on an aromatase inhibitor in metastatic, oestrogen receptor-positive, HER2-negative breast cancer (FAKTION): overall survival, updated progression-free survival, and expanded biomarker analysis from a randomised, phase 2 trial


Sacha J Howell*, Angela Casbard*, Margherita Carucci, Kate Ingarfield, Rachel Butler, Sian Morgan, Magdalena Meissner, Catherine Bale, Pavel Bezecny, Sarah Moon, Chris Twelves, Ramachandran Venkitaraman, Simon Waters, Elza C de Bruin, Gaia Schiavon, Andrew Foxley, Robert H Jones

FAKTION: OS in Expanded PI3K/AKT/PTEN Pathway-Altered and Nonaltered Subgroups

Howell SJ et al. Lancet Oncol 2022;23(7):851-64.



Primary Results From TROPiCS-02: A Randomized Phase 3 Study of Sacituzumab Govitecan Vs Treatment of Physician's Choice in Patients With Hormone Receptor-Positive/HER2-Negative Advanced Breast Cancer

Hope S. Rugo,¹ Aditya Bardia,² Frederik Marmé,³ Javier Cortes,⁴ Peter Schmid,⁵ Delphine Loirat,⁶ Olivier Trédan,⁷ Eva Ciruelos,⁸ Florence Dalenc,⁹ Patricia Gómez Pardo,¹⁰ Komal L. Jhaveri,¹¹ Rosemary Delaney,¹² Olivia Fu,¹² Lanjia Lin,¹² Wendy Verret,¹² Sara M. Tolaney¹³

TROPiCS-02: Progression-Free Survival (Primary Endpoint)

SG demonstrated a statistically significant improvement in PFS vs TPC with a 34% reduction in the risk of disease progression/death; a higher proportion of patients were alive and progression-free at all landmark timepoints

BICR = blinded independent central review; SG = sacituzumab govitecan; TPC = treatment of physician's choice; PFS = progression-free survival

Rugo HS et al. ASCO 2022; Abstract LBA1001.

Thank you for joining us!

CME/MOC and NCPD credit information will be emailed to each participant within 5 business days.

Recent Advances and Real-World Implications in Medical Oncology: A Daylong Multitumor Educational Symposium in Partnership with the American Oncology Network A CME/MOC- and NCPD-Accredited Hybrid Event

Saturday, August 6, 2022 9:00 AM – 4:30 PM PT

Agenda

Module 1 — Breast Cancer: *Drs Burstein and O'Shaughnessy*

Module 2 — **Genitourinary Cancers:** *Drs Agarwal and Srinivas*

Module 3 — Multiple Myeloma: Drs Fonseca and Patel

Module 4 — Chronic Lymphocytic Leukemia and Lymphomas: Drs Kahl and Moskowitz

Module 5 — Gastrointestinal Cancers: Drs Mehta and Philip

Module 6 — Lung Cancer: Drs Dagogo-Jack and Ramalingam

Genitourinary Cancers Faculty

Neeraj Agarwal, MD

Professor of Medicine Senior Director for Clinical Research Innovation Huntsman Cancer Institute Presidential Endowed Chair of Cancer Research Director Center of Investigational Therapeutics Director Genitourinary Oncology Program Huntsman Cancer Institute University of Utah (NCI-CCC) Salt Lake City, Utah

Sandy Srinivas, MD Professor of Oncology Clinical Research Leader, GU Oncology Stanford University Stanford, California

Co-Moderators

Breast Cancer Stephen "Fred" Divers, MD American Oncology Network Hot Springs, Arkansas

CLL and Lymphomas Jeanna L Knoble, MD Zangmeister Cancer Center Columbus, Ohio

Genitourinary Cancers Michael J Castine, MD Hematology Oncology Clinic Baton Rouge, Louisiana

Gastrointestinal Cancers Pavani Ellipeddi, MD Hematology Oncology Clinic Baton Rouge, Louisiana

Multiple Myeloma Taral Patel, MD Zangmeister Cancer Center Columbus, Ohio

Lung Cancer Ram Trehan, MD George Washington University Silver Spring, Maryland

MODULE 2: Genitourinary Cancers

Co-Moderator Michael J Castine, MD Hematology Oncology Clinic Baton Rouge, Louisiana

Module 1: Prostate Cancer

Module 2: Urothelial Bladder Cancer

Module 1: Prostate Cancer

- Optimal use of hormonal therapy/chemotherapy in patients with locally-advanced, PSA-only relapse (M0); Castration-sensitive metastatic prostate cancer (mHSPC); choice of ADT
- Selection of patients and clinical management of ¹⁷⁷Lu-PSMA-617 in the treatment of metastatic CRPC (mCRPC)
- PARP inhibitors in combination with secondary hormonal therapy for patients with mCRPC with or without HRR gene mutations

Module 2: Urothelial Bladder Cancer

Module 1: Prostate Cancer

- Optimal use of hormonal therapy/chemotherapy in patients with locally-advanced, PSA-only relapse (M0); Castration-sensitive metastatic prostate cancer (mHSPC); choice of ADT
- Selection of patients and clinical management of ¹⁷⁷Lu-PSMA-617 in the treatment of metastatic CRPC (mCRPC)
- PARP inhibitors in combination with secondary hormonal therapy for patients with mCRPC with or without HRR gene mutations

Module 2: Urothelial Bladder Cancer

A man with locally advanced PCA is about to receive radiation therapy and leuprolide. Regulatory and reimbursement issues aside, would you prescribe an additional agent?

No
Abiraterone
Enzalutamide
Darolutamide
Apalutamide
Docetaxel
Other

Articles

Lancet 2022;399(10323):447-60.

Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: a meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol

Gerhardt Attard, Laura Murphy, Noel W Clarke, William Cross, Robert J Jones, Christopher C Parker, Silke Gillessen, Adrian Cook, Chris Brawley, Claire L Amos, Nafisah Atako, Cheryl Pugh, Michelle Buckner, Simon Chowdhury, Zafar Malik, J Martin Russell, Clare Gilson, Hannah Rush, Jo Bowen, Anna Lydon, Ian Pedley, Joe M O'Sullivan, Alison Birtle, Joanna Gale, Narayanan Srihari, Carys Thomas, Jacob Tanguay, John Wagstaff, Prantik Das, Emma Gray, Mymoona Alzoueb, Omi Parikh, Angus Robinson, Isabel Syndikus, James Wylie, Anjali Zarkar, George Thalmann, Johann S de Bono, David P Dearnaley*, Malcolm D Mason*, Duncan Gilbert, Ruth E Langley, Robin Millman, David Matheson, Matthew R Sydes†, Louise C Brown†, Mahesh K B Parmar†, Nicholas D James†, on behalf of the Systemic Therapy in Advancing or Metastatic Prostate cancer: Evaluation of Drug Efficacy (STAMPEDE) investigators‡

Discussion Question

A 65-year-old man receiving androgen-deprivation therapy for M0 disease after radical prostatectomy is found to have <u>bone and liver metastases</u>. Genetic testing is negative for HRR mutations. Regulatory and reimbursement issues aside, which systemic treatment would you most likely recommend?

Abiraterone

Enzalutamide

Docetaxel

Sipuleucel-T

Abiraterone + olaparib

Abiraterone + niraparib

Darolutamide

Apalutamide

Other

FDA Approves Darolutamide for Metastatic Hormone-Sensitive Prostate Cancer Press Release: August 5, 2022

The FDA approved darolutamide in combination with docetaxel chemotherapy for patients with metastatic hormone-sensitive prostate cancer (mHSPC).

The approval is based on the results of a large Phase 3 clinical trial called ARASENS. This trial compared outcomes among 1300 patients who received docetaxel + standard ADT + darolutamide vs. patients who received docetaxel + standard ADT + placebo. 86% of the patients were newly diagnosed with prostate cancer that had metastasized to the bones or other organs.

Patients treated with the addition of darolutamide were 32% less likely to die during the study follow-up period compared to patients treated with docetaxel + ADT alone. These patients also had improved time to castration resistance (when the PSA increases and disease worsens, despite hormone therapy), time to pain progression, time to symptomatic skeletal related events (i.e., bone fractures, needing radiation to the bones, etc.), and time to next cancer therapy. Importantly, these improved outcomes of triplet therapy intensification were associated with only a modest increase in adverse events.

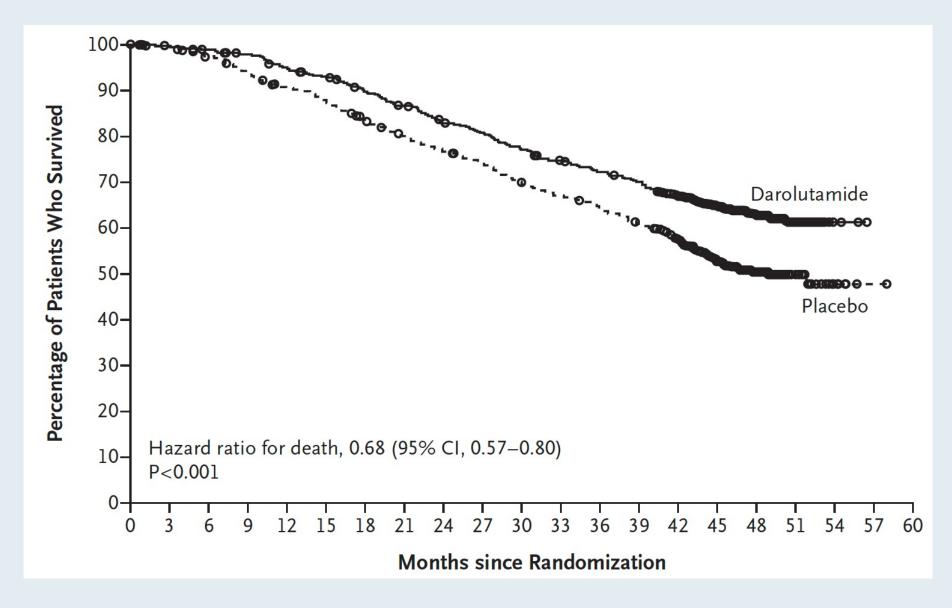
ASCO Genitourinary Cancers Symposium 2022; Abstract 13

Overall survival with darolutamide versus placebo in combination with androgen-deprivation therapy and docetaxel for metastatic hormone-sensitive prostate cancer in the phase 3 ARASENS trial

Matthew R. Smith, MD, PhD,¹ Maha Hussain, MD,² Fred Saad, MD,³ Karim Fizazi, MD, PhD,⁴ Cora N. Sternberg, MD,⁵ E. David Crawford, MD,⁶ Evgeny Kopyltsov, MD,⁷ Chandler H. Park, MD,⁸ Boris Alekseev, MD,⁹ Álvaro Montesa Pino, MD,¹⁰ Dingwei Ye, MD,¹¹ Francis Parnis, MB, BS,¹² Felipe Melo Cruz, MD,¹³ Teuvo L.J. Tammela, MD, PhD,¹⁴ Hiroyoshi Suzuki, MD, PhD,¹⁵ Heikki Joensuu, MD,¹⁶ Silke Thiele, MD,¹⁷ Rui Li, MS,¹⁸ Iris Kuss, MD,¹⁷ Bertrand Tombal, MD, PhD¹⁹

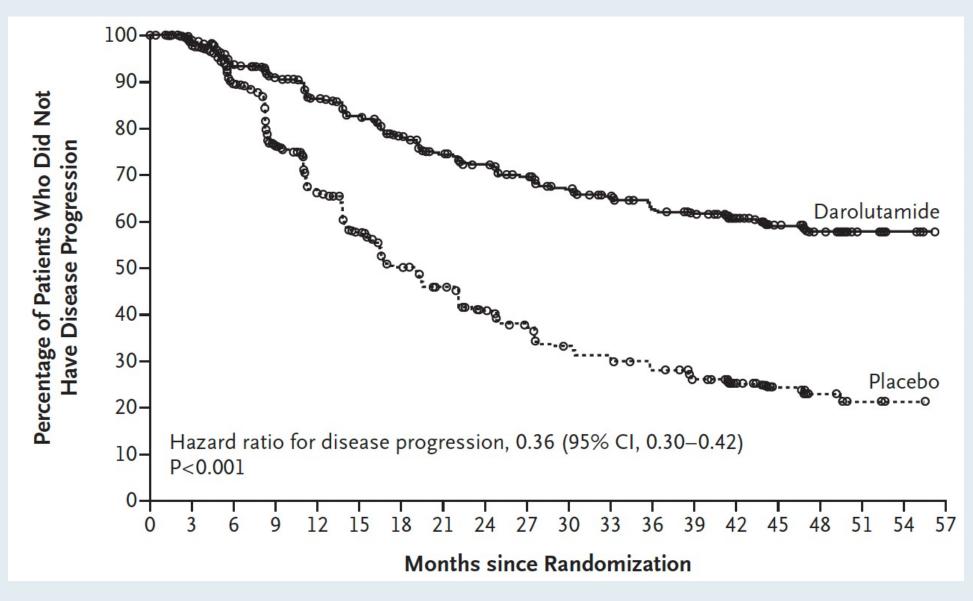
¹Massachusetts General Hospital Cancer Center, Boston, MA: ³Northwestern University, Feinberg School of Medicine, Chicago, IL: ³University of Montreal Hospital Center, Montreal, Ouebec, Canada, ⁴Institut Gustave Roussy, University of Paris-Saclay, Villejuif, France, ⁴Englander Institute for Precision Medicine, Weill Cornell Department of Medicine, Meyer Cancer Center, New York-Presbyferian Hospital, New York, NY, ³UC San Diego School of Medicine, San Diego, CA, ³Clinical Oncological Dispensary of Omsk Region, Omsk, Russian Federation, ³Norto Cancer Institute, Louisville, KY ³P. Hertsen Moscow Oncology Research Institute, Moscow, Russian Federation, ³Worton Cancer Institute, Malaga, Spain, ¹Fuduat University Sanghala, Cancer Center, New York, NY, ³P. Hertsen Moscow Oncology Research Institute, Moscow, Russian Federation, ¹⁰GC Intercentros de Oncologia Médica, Hospitales Universitarios Regional y Vigen Victoria, IBIM, Malaga, Spain, ¹¹Fuduat University, Shanghala Cancer Center, Xuhui District, Shanghai, China, ¹¹Ashford Cancer Center, Centeer, Kurarata Park, SA, Australia, ¹¹Novico de Pesquisa e Ensino da Rede São Camilo, São Paulo, Brazil, ¹¹Tampere University Hospital, Tampere, Finland, ¹¹Toho University Sakura Medical Center, Chiba, Japan, ¹⁰Orion Corporation Orion Pharma, Espoo, Finland, ¹¹Bayer AG, Berlin, Germany, ¹¹Bayer HealthCare Pharmaceuticals Inc., Whippany, NJ, USA, ¹¹Division of Urology, IREC, Cliniques Universitaries Saint Luc, UCLouvain, Brussels, Belgium

N Engl J Med 2022;386(12):1132-42.


ORIGINAL ARTICLE

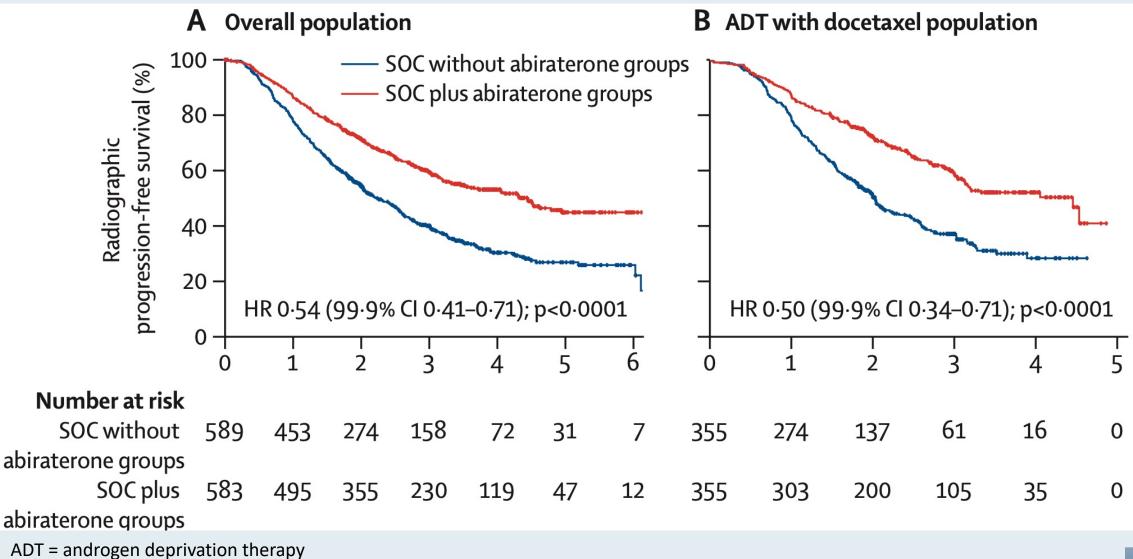
Darolutamide and Survival in Metastatic, Hormone-Sensitive Prostate Cancer

Matthew R. Smith, M.D., Ph.D., Maha Hussain, M.D., Fred Saad, M.D.,
Karim Fizazi, M.D., Ph.D., Cora N. Sternberg, M.D., E. David Crawford, M.D.,
Evgeny Kopyltsov, M.D., Chandler H. Park, M.D., Boris Alekseev, M.D.,
Álvaro Montesa-Pino, M.D., Dingwei Ye, M.D., Francis Parnis, M.B., B.S.,
Felipe Cruz, M.D., Teuvo L.J. Tammela, M.D., Ph.D., Hiroyoshi Suzuki, M.D., Ph.D.,
Tapio Utriainen, M.D., Cheng Fu, M.D., Motohide Uemura, M.D., Ph.D.,
María J. Méndez-Vidal, M.D., Benjamin L. Maughan, M.D., Pharm.D.,
Heikki Joensuu, M.D., Silke Thiele, M.D., Rui Li, M.S., Iris Kuss, M.D.,
and Bertrand Tombal, M.D., Ph.D., for the ARASENS Trial Investigators*



ARASENS: Overall Survival (Primary Endpoint)

ARASENS: Progression-Free Survival


Lancet 2022;399(10336):1695-707.

Abiraterone plus prednisone added to androgen deprivation therapy and docetaxel in de novo metastatic castrationsensitive prostate cancer (PEACE-1): a multicentre, openlabel, randomised, phase 3 study with a 2 × 2 factorial design

Karim Fizazi, Stéphanie Foulon, Joan Carles, Guilhem Roubaud, Ray McDermott, Aude Fléchon, Bertrand Tombal, Stéphane Supiot, Dominik Berthold, Philippe Ronchin, Gabriel Kacso, Gwenaëlle Gravis, Fabio Calabro, Jean-François Berdah, Ali Hasbini, Marlon Silva, Antoine Thiery-Vuillemin, Igor Latorzeff, Loïc Mourey, Brigitte Laguerre, Sophie Abadie-Lacourtoisie, Etienne Martin, Claude El Kouri, Anne Escande, Alvar Rosello, Nicolas Magne, Friederike Schlurmann, Frank Priou, Marie-Eve Chand-Fouche, Salvador Villà Freixa, Muhammad Jamaluddin, Isabelle Rieger, Alberto Bossi, on behalf of the PEACE-1 investigators*

PEACE-1: Radiographic Progression-Free Survival (rPFS)

Fizazi K et al. Lancet 2022;399(10336):1695-707.

PEACE-1: Grade 3-5 Adverse Events

(Androgen Deprivation Therapy with Docetaxel Safety Population)

Toxicity, n (%)	SOC (+/- RXT) + Abiraterone (n=346)	SOC (+/- RXT) (n=350)
Neutropenia	34 (10)	32 (9)
Febrile neutropenia	18 (5)	19 (5)
Liver	20 (6)	2 (1)
Hypertension	76 (22)	45 (13)
Hypokalemia	11 (3)	1 (0)
Cardiac	6 (2)	5 (1)
Fatigue	10 (3)	15 (4)
Gastro-intestinal	14 (4)	18 (5)
Grade 5	7 (2)	3 (1)

Module 1: Prostate Cancer

- Optimal use of hormonal therapy/chemotherapy in patients with locally-advanced, PSA-only relapse (M0); Castration-sensitive metastatic prostate cancer (mHSPC); choice of ADT
- Selection of patients and clinical management of ¹⁷⁷Lu-PSMA-617 in the treatment of metastatic CRPC (mCRPC)
- PARP inhibitors in combination with secondary hormonal therapy for patients with mCRPC with or without HRR gene mutations

Module 2: Urothelial Bladder Cancer

Regulatory and reimbursement issues aside, which is your most likely second-line treatment for a 65-year-old man with asymptomatic low-volume disease who experiences disease progression after receiving an LHRH agonist with darolutamide and docetaxel for hormone-sensitive metastatic disease?

AbirateroneApalutamideCabazitaxelDocetaxel and another secondary hormonal therapyEnzalutamide¹⁷⁷Lu-PSMA-617

Other

FDA Approves ¹⁷⁷Lu-PSMA-617 for the Treatment of mCRPC Press Release: March 23, 2022

"On March 23, 2022, the Food and Drug Administration approved the radio-ligand therapy ¹⁷⁷Lu-PSMA-617 for the treatment of adult patients with prostate-specific membrane antigen (PSMA)-positive metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor (AR) pathway inhibition and taxane-based chemotherapy.

On the same day, the FDA approved gallium Ga 68 gozetotide, a radioactive diagnostic agent for positron emission tomography (PET) of PSMA-positive lesions, including selection of patients with metastatic prostate cancer for whom lutetium Lu 177 vipivotide tetraxetan PSMA-directed therapy is indicated. Gallium Ga 68 gozetotide is the first radioactive diagnostic agent approved for patient selection in the use of a radioligand therapeutic agent.

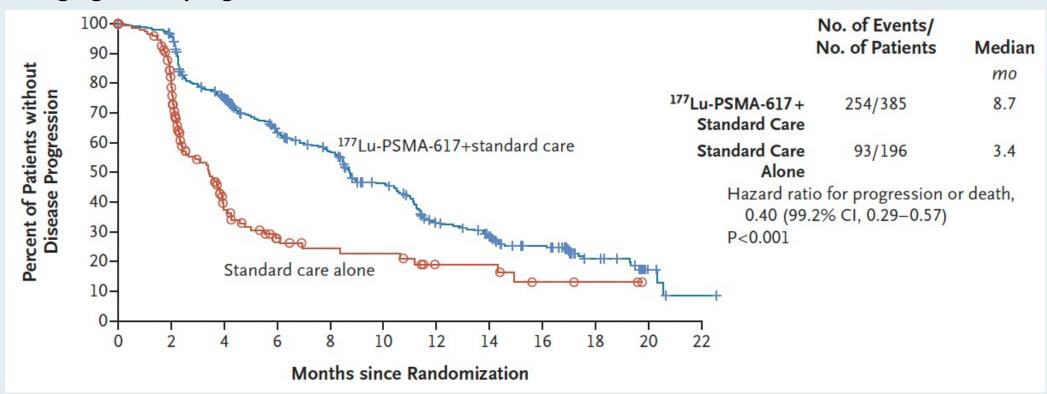
Efficacy was evaluated in the phase 3 VISION trial which demonstrated a statistically significant improvement in the primary endpoints OS and rPFS. Hazard ratio (HR) for OS was 0.62 (95% CI: 0.52, 0.74; p<0.001) for the comparison of ¹⁷⁷Lu-PSMA-617 plus BSoC versus BSoC. Median OS was 15.3 months (95% CI: 14.2, 16.9) in the ¹⁷⁷Lu-PSMA-617 plus BSoC arm and 11.3 months (95% CI: 9.8, 13.5) in the BSoC arm, respectively."

https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pluvicto-metastatic-castration-resistant-prostate-cancer

N Engl J Med 2021;385(12):1091-103.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE


Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer

 O. Sartor, J. de Bono, K.N. Chi, K. Fizazi, K. Herrmann, K. Rahbar, S.T. Tagawa, L.T. Nordquist, N. Vaishampayan, G. El-Haddad, C.H. Park, T.M. Beer, A. Armour, W.J. Pérez-Contreras, M. DeSilvio, E. Kpamegan, G. Gericke, R.A. Messmann, M.J. Morris, and B.J. Krause, for the VISION Investigators*

VISION: Efficacy Summary

Imaging-based progression-free survival

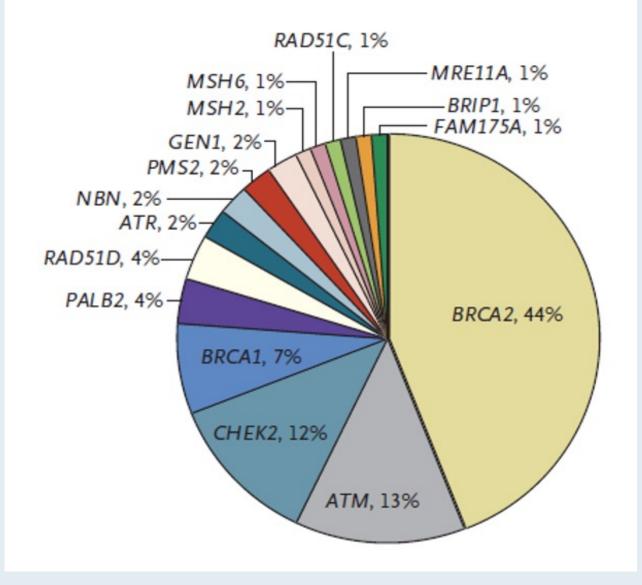
- Median overall survival (¹⁷⁷Lu-PSMA-617 vs standard therapy): 15.3 months vs 11.3 months (HR 0.62, p < 0.001)
- Time to first symptomatic skeletal event OS (¹⁷⁷Lu-PSMA-617 vs standard therapy): 11.5 months vs 6.8 months (HR 0.50, p < 0.001)

Sartor O et al. N Engl J Med 2021;385(12):1091-103.

VISION: Selected Adverse Events

Event	¹⁷⁷ Lu-PSMA-617 plus Standard Care (N = 529)		Standard Care Alone (N=205)		
	All Grades	Grade ≥3	All Grades	Grade ≥3	
	number of patients (percent)				
Any adverse event	519 (98.1)	279 (52.7)	170 (82.9)	78 (38.0)	
Adverse event that occurred in >12% of patients					
Fatigue	228 (43.1)	31 (5.9)	47 (22.9)	3 (1.5)	
Dry mouth	205 (38.8)	0	1 (0.5)	0	
Thrombocytopenia	91 (17.2)	42 (7.9)	9 (4.4)	2 (1.0)	
Lymphopenia	75 (14.2)	41 (7.8)	8 (3.9)	1 (0.5)	
Leukopenia	66 (12.5)	13 (2.5)	4 (2.0)	1 (0.5)	
Adverse event that led to reduction in ¹⁷⁷ Lu-PSMA-617 dose	30 (5.7)	10 (1.9)	NA	NA	
Adverse event that led to interruption of ¹⁷⁷ Lu-PSMA-617†	85 (16.1)	42 (7.9)	NA	NA	
Adverse event that led to discontinuation of ¹⁷⁷ Lu-PSMA-617†	63 (11.9)	37 (7.0)	NA	NA	
Adverse event that led to death‡	19 (3.6)	19 (3.6)	6 (2.9)	6 (2.9)	

Sartor O et al. *N Engl J Med* 2021;385(12):1091-103.


Module 1: Prostate Cancer

- Optimal use of hormonal therapy/chemotherapy in patients with locally-advanced, PSA-only relapse (M0); Castration-sensitive metastatic prostate cancer (mHSPC); choice of ADT
- Selection of patients and clinical management of ¹⁷⁷Lu-PSMA-617 in the treatment of metastatic CRPC (mCRPC)
- PARP inhibitors in combination with secondary hormonal therapy for patients with mCRPC with or without HRR gene mutations

Module 2: Urothelial Bladder Cancer

Inherited DNA Repair Gene Mutations in Men with Metastatic Prostate Cancer

- Multicenter study of 692 men
- Deleterious mutations were found in 82 men (11.8%) in 16 genes
- Observed rate exceeded that associated with localized prostate cancer (4.6%) and general population without cancer (2.7%)

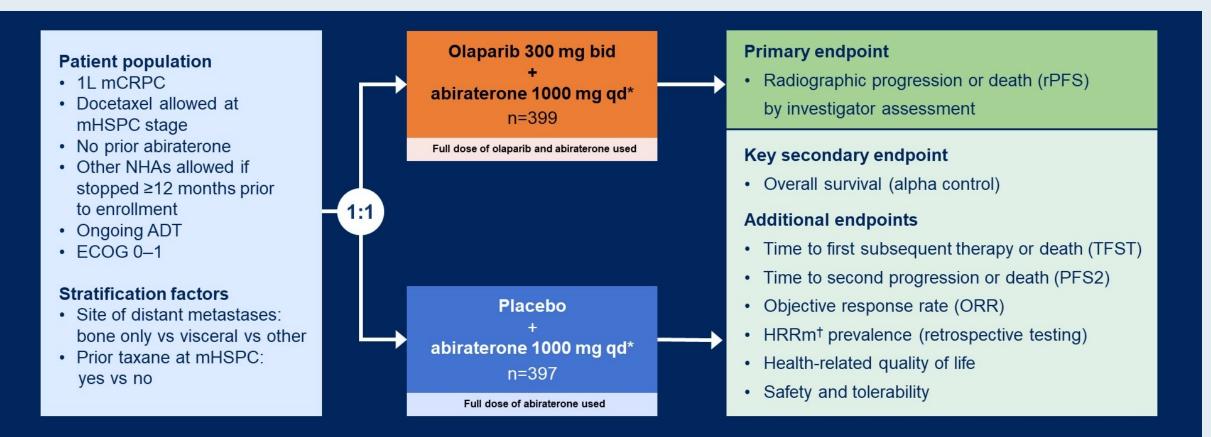
Recent FDA Approvals of PARP Inhibitors for Metastatic Castration-Resistant Prostate Cancer

PARP inhibitor	Approval date	Pivotal study
Olaparib	May 19, 2020	PROfound
Rucaparib	May 15, 2020	TRITON2

https://www.fda.gov/drugs/resources-information-approved-drugs/

ASCO Genitourinary Cancers Symposium

2022; Abstract 11.


PROpel: phase III trial of olaparib and abiraterone versus placebo and abiraterone as first-line therapy for patients with metastatic castration-resistant prostate cancer

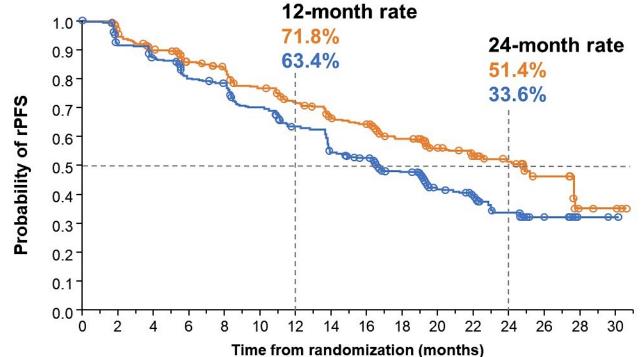
Fred Saad, Andrew J. Armstrong, Antoine Thiery-Vuillemin, Mototsugu Oya, Eugenia Loredo, Giuseppe Procopio, Juliana de Menezes, Gustavo Girotto, Cagatay Arslan, Niven Mehra, Francis Parnis, Emma Brown, Friederike Schlürmann, Jae Young Joung, Mikio Sugimoto, Christian Poehlein, Elizabeth A. Harrington, Chintu Desai, Jinyu Kang, and Noel Clarke

ClinicalTrials.gov identifier: NCT03732820

PROpel: Study Design

First patient randomized: Nov 2018; Last patient randomized: Mar 2020; DCO1: July 30, 2021, for interim analysis of rPFS and OS.

Multiple testing procedure is used in this study: 1-sided alpha of 0.025 fully allocated to rPFS. If the rPFS result is statistically significant, OS to be tested in a hierarchical fashion with alpha passed on to OS. Please access the **Supplement** via the QR code at the end of this presentation for more details.


*In combination with prednisone or prednisolone 5 mg bid. [†]HRRm, homologous recombination repair mutation, including 14 genes panel.

ADT, androgen deprivation therapy; bid, twice daily; ECOG, Eastern Cooperative Oncology Group; mHSPC, metastatic hormone sensitive prostate cancer; qd, daily

PROpel Primary Endpoint: Investigator-Assessed rPFS

34% risk reduction of progression or death with olaparib + abiraterone

	Olaparib + abiraterone (n=399)	Placebo + abiraterone (n=397)		
Events, n (%)	168 (42.1)	226 (56.9)		
Median rPFS (months)	24.8	16.6		
HR (95% CI)	0.66 (0.54–0.81); <i>P</i> <0.0001			
	Dra aposified 2 sided alpha: 0.0224			

Pre-specified 2-sided alpha: 0.0324

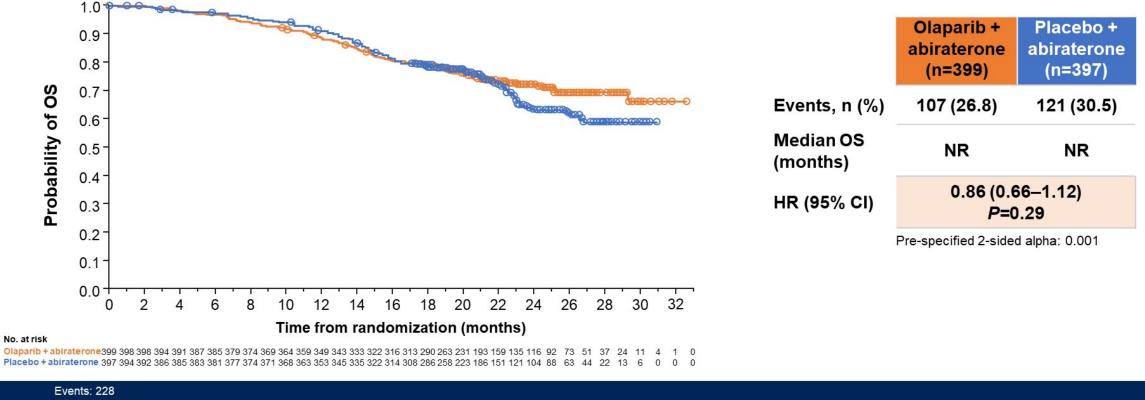
Median rPFS improvement of 8.2 months favors olaparib + abiraterone*

No. at risk

 Olaparib + abiraterone 399 395 367 354 340 337 313 309 301 277 274 265 251 244 277 221 219 170 167 163 104 100 87 59 57 28 26 25 5 4 4 0

 Placebo + abiraterone 397 393 359 356 338 334 306 303 297 266 264 249 232 228 198 190 186 143 141 137 87 84 73 45 43 21 17 16 2 2 1 0

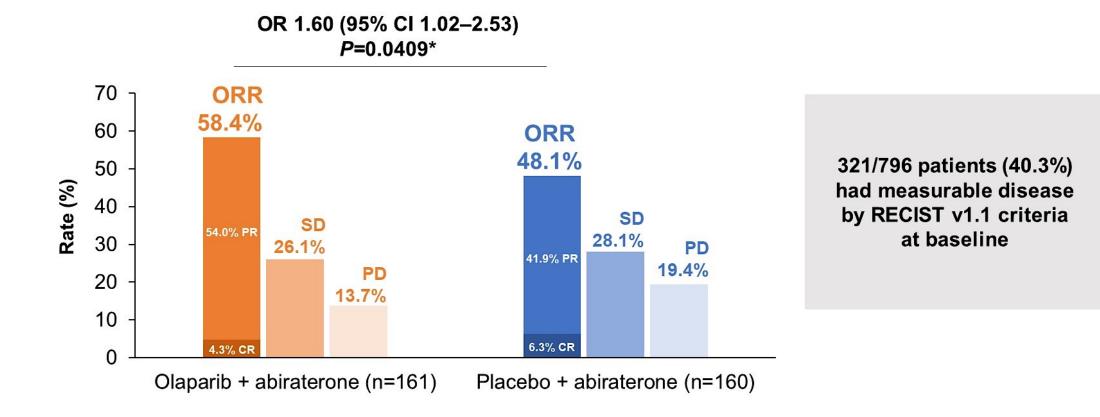
Events: 394; Maturity 49.5% *In combination with prednisone or prednisolone Cl, confidence interval; HR, hazard ratio.


rPFS = radiographic progression-free survival

Saad F et al. Genitourinary Cancers Symposium 2022; Abstract 11.

PROpel: Overall Survival (OS)

28.6% maturity; trend towards improved OS with olaparib + abiraterone



NR, not reached.

Saad F et al. Genitourinary Cancers Symposium 2022; Abstract 11.

PROpel: ORR for Patients with Measurable Disease

10% improvement in ORR with olaparib + abiraterone

*Nominal.

CR, complete response; OR, odds ratio; ORR, overall response rate; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease.

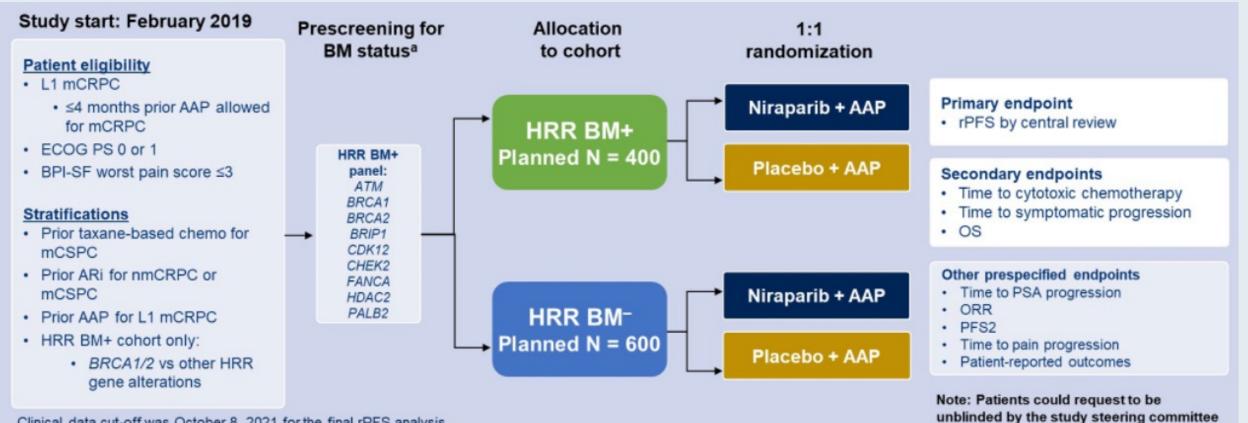
Saad F et al. Genitourinary Cancers Symposium 2022; Abstract 11.

PROpel: Subgroup Analysis of rPFS

	Number of patients, n	Median rPFS, months			HR (95% CI)	
All patients	796	24.8	16.6	⊢●	0.66 (0.54-0.81)	
Age at randomization						
<65	227	NR	16.4	F	0.51 (0.35–0.75)	
≥65	569	22.0	16.7		0.78 (0.62–0.98)	
ECOG performance status at baseline						
0	558	24.9	16.8	⊢	0.67 (0.52-0.85)	
1	236	17.5	14.6	F • •	0.75 (0.53–1.06)	
Site of distant metastases Bone only	434	27.6	22.2		0.73 (0.54–0.98)	Global
Visceral	105	13.7	10.9		0.62 (0.39–0.99)	interaction
Other	257	20.5	13.7		0.62 (0.44–0.85)	
Docetaxel treatment at mHSPC stage	201	2010	ion			test not
Yes	189	27.6	13.8	F1	0.61 (0.40-0.92)	significant
No	607	24.8	16.8	 _	0.71 (0.56–0.89)	orginiount
Baseline PSA						
Below median baseline PSA	396	25.2	22.0	⊢ ●	0.75 (0.55–1.02)	
Above or equal to median baseline PSA	397	18.5	13.8	⊢ ●	0.63 (0.48-0.82)	
HRRm status*			125.5577			
HRRm	226	NR	13.9	⊢	0.50 (0.34–0.73)	
Non-HRRm	552	24.1	19.0	⊢ ●1	0.76 (0.60–0.97)	
			0.1 OI	aparib + abiraterone better ¹ Pl	10 lacebo + abiraterone better	

Phase 3 MAGNITUDE study: First results of niraparib (NIRA) with abiraterone acetate and prednisone (AAP) as first-line therapy in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) with and without homologous recombination repair (HRR) gene alterations

<u>Kim N. Chi</u>,¹ Dana E. Rathkopf,² Matthew R. Smith,³ Eleni Efstathiou,⁴ Gerhardt Attard,⁵ David Olmos,⁶ Ji Youl Lee,⁷ Eric J. Small,⁸ Andrea J. Pereira de Santana Gomes,⁹ Guilhem Roubaud,¹⁰ Marniza Saad,¹¹ Bogdan Zurawski,¹² Valerii Sakalo,¹³ Gary E. Mason,¹⁴ Adam del Corral,¹⁵ George Wang,¹⁴ Daphne Wu,¹⁶ Brooke Diorio,¹⁷ Angela Lopez-Gitlitz,¹⁶ Shahneen Sandhu¹⁸


¹University of British Columbia, BC Cancer – Vancouver Center, Vancouver, BC, Canada; ²Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA; ³Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA; ⁴Houston Methodist Cancer Center, Houston, TX, USA; ⁵University College London, London, UK; ⁶Department of Medical Oncology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; ⁷Department of Urology Cancer Center, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea; ⁸Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; ⁹Liga Norte Riograndense Contra o Câncer, Natal, Brazil; ¹⁰Department of Medical Oncology, Institut Bergonié, Bordeaux, France; ¹¹Department of Clinical Oncology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; ¹²Department of Outpatient Chemotherapy, Professor Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland; ¹³Institute of Urology named after Academician OF Vozianov of NAMS of Ukraine, Kyiv, Ukraine; ¹⁴Janssen Research & Development, Spring House, PA, USA; ¹⁵Janssen Research & Development, Bridgewater, NJ, USA; ¹⁶Janssen Research & Development, Los Angeles, CA, USA; ¹⁷Janssen Research & Development, Titusville, NJ, USA; ¹⁸Peter MacCallum Cancer Center and the University of Melbourne, Melbourne, Australia

MAGNITUDE: Randomized, Double-Blind, Placebo-Controlled Study

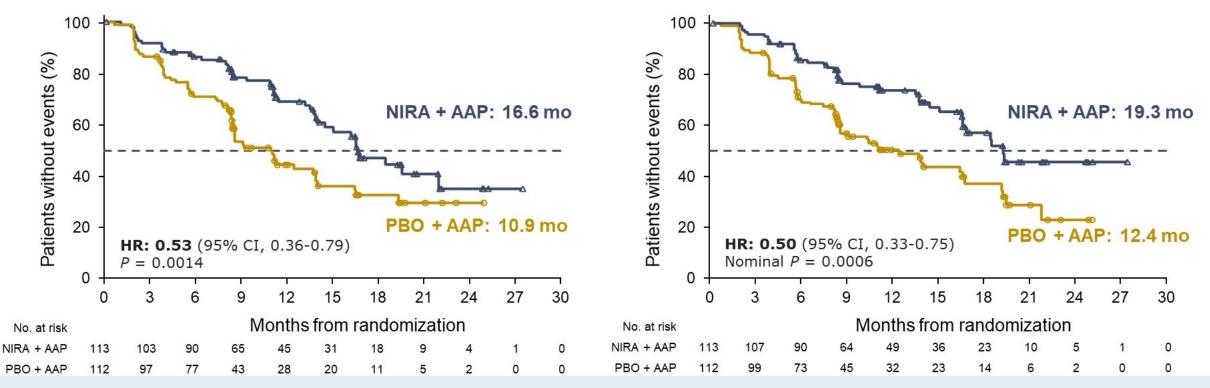
Prospectively Selected Biomarker (BM) Cohorts Designed to Test HRR BM+ and HRR BM-

and go on to subsequent therapy of the

investigator's choice.

Clinical data cut-off was October 8, 2021 for the final rPFS analysis.

Patients were prospectively tested by plasma, tissue and/or saliva/whole blood. Patients negative by plasma only were required to test by tissue to confirm HRR BM- status.


HRR = homologous recombination repair; BM = biomarker; mCRPC = metastatic castration-resistant prostate cancer; mCSPC = metastatic castration-sensitive prostate cancer; nmCRPC = nonmetastatic castration-resistant prostate cancer; AAP = abiraterone acetate and prednisone; rPFS = radiographic progression-free survival; OS = overall survival; PSA = prostate-specific antigen; ORR = objective response rate

Chi KN et al. Genitourinary Cancers Symposium 2022; Abstract 12.

MAGNITUDE: BRCA1/2 Mutations — Primary Endpoint NIRA + AAP Significantly Reduced the Risk of Disease Progression or Death by 47%

rPFS assessed by central review

rPFS assessed by investigator

NIRA = niraparib; AAP = abiraterone acetate and prednisone; rPFS = radiographic progression-free survival; PBO = placebo

Chi KN et al. Genitourinary Cancers Symposium 2022; Abstract 12.

Module 1: Prostate Cancer

Module 2: Urothelial Bladder Cancer

- Selection of patients with non-muscle-invasive urothelial bladder cancer for IO (pembrolizumab) therapy; use of adjuvant IO after cystectomy for muscle-invasive disease; intravesicle drug delivery system TAR-200
- Optimal integration of ADC's (enfortumab vedotin, sacituzumab govetecan) into the treatment algorithm for patients with metastatic UBC; disitamab vedotin for HER2overexpressing disease
- Selection of patients to receive erdafitinib; prevention and management of toxicity

Module 1: Prostate Cancer

Module 2: Urothelial Bladder Cancer

- Selection of patients with non-muscle-invasive urothelial bladder cancer for IO (pembrolizumab) therapy; use of adjuvant IO after cystectomy for muscle-invasive disease; intravesicle drug delivery system TAR-200
- Optimal integration of ADC's (enfortumab vedotin, sacituzumab govetecan) into the treatment algorithm for patients with metastatic UBC; disitamab vedotin for HER2overexpressing disease
- Selection of patients to receive erdafitinib; prevention and management of toxicity

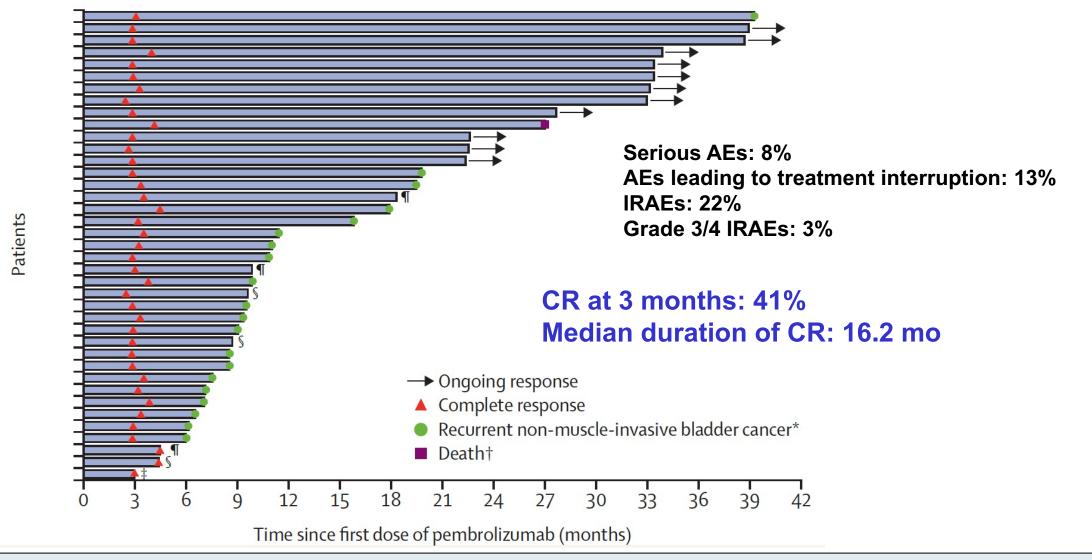
Would you generally recommend pembrolizumab to a young, cystectomy-eligible patient with BCG-unresponsive non-muscleinvasive urothelial bladder cancer who refused cystectomy?

Yes

Yes, for select patients

No

I'm not sure


Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): an open-label, single-arm, multicentre, phase 2 study

Arjun V Balar, Ashish M Kamat, Girish S Kulkarni, Edward M Uchio, Joost L Boormans, Mathieu Roumiguié, Laurence E M Krieger, Eric A Singer, Dean F Bajorin, Petros Grivas, Ho Kyung Seo, Hiroyuki Nishiyama, Badrinath R Konety, Haojie Li, Kijoeng Nam, Ekta Kapadia, Tara Frenkl, Ronald de Wit

Lancet Oncol 2021;22(7):919-30.

KEYNOTE-057: Response, Duration of Response and Summary of Adverse Events

AEs = adverse events; IRAEs = immune-related AEs; CR = complete response Balar AV et al. *Lancet Oncol* 2021;22(7):919-30.

UROLOGIC ONCOLOGY

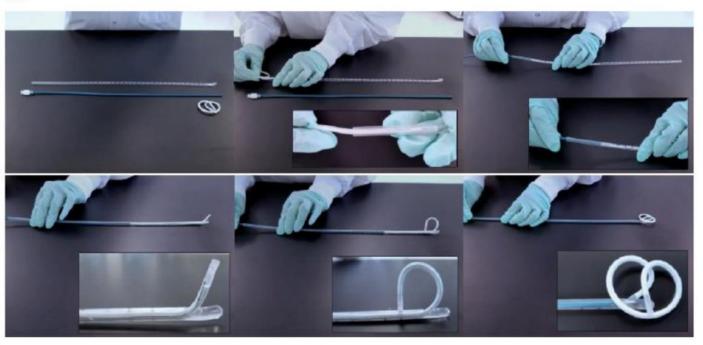
Urologic Oncology: Seminars and Original Investigations 000 (2022) 1-9

Clinical-Bladder cancer

The safety, tolerability, and efficacy of a neoadjuvant gemcitabine intravesical drug delivery system (TAR-200) in muscle-invasive bladder cancer patients: a phase I trial

Siamak Daneshmand, M.D.^{a,*}, Iris S.G. Brummelhuis, M.D.^b, Kamal S. Pohar, M.D.^c, Gary D. Steinberg, M.D.^d, Manju Aron, M.D.^e, Christopher J. Cutie, M.D.^f, Kirk A. Keegan, M.D.^f, John C. Maffeo, M.S.H.S.^f, Donald L. Reynolds, Ph.D.^f, Bradley Raybold, M.S.^g, Albert Chau, M.Sc.^h, J. Alfred Witjes, M.D., Ph.D.^b

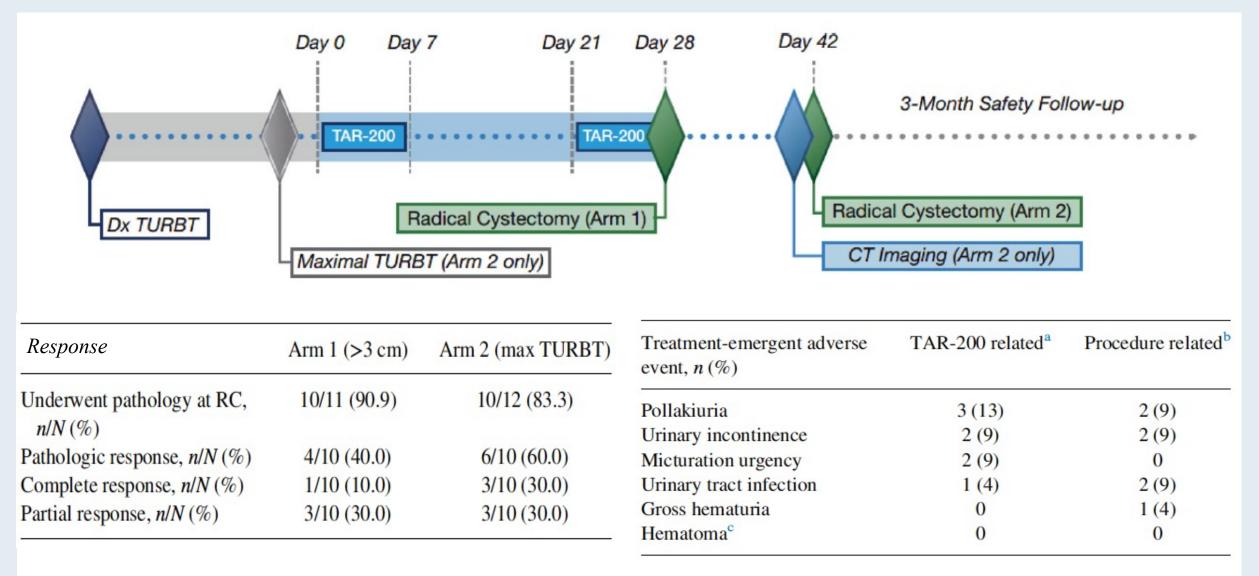
Urol Oncol 2022;[Online ahead of print].


Components of TAR-200

A.

C.

TAR-200, a gemcitabine-releasing intravesical system, is formed into a pretzel-like configuration within the bladder.


TAR-200

- Consists of a small, flexible silicone tube filled with gemcitabine (A)
- Is designed to release drug directly inside the bladder over the indwelling period (B)
- Is inserted using a TARIS urinary placement catheter (C)

Daneshmand S et al. Urol Oncol 2022;[Online ahead of print].

TAR-200-101: Study Design and Outcomes

Module 1: Prostate Cancer

Module 2: Urothelial Bladder Cancer

- Selection of patients with non-muscle-invasive urothelial bladder cancer for IO (pembrolizumab) therapy; use of adjuvant IO after cystectomy for muscle-invasive disease; intravesicle drug delivery system TAR-200
- Optimal integration of ADC's (enfortumab vedotin, sacituzumab govetecan) into the treatment algorithm for patients with metastatic UBC; disitamab vedotin for HER2overexpressing disease
- Selection of patients to receive erdafitinib; prevention and management of toxicity

Discussion Question

Use of which of the following agents requires tumor biomarker positivity?

Enfortumab vedotin

Sacituzumab govitecan

Neither

Both

I'm not sure

Positive Topline Results Announced from EV-103 Cohort K Evaluating Enfortumab Vedotin Alone or in Combination with Pembrolizumab as First-Line Therapy for Cisplatin-Ineligible Advanced UBC Press Release: July 26, 2022

Positive topline results were announced from the Phase Ib/II EV-103 clinical trial (KEYNOTE-869) Cohort K evaluating enfortumab vedotin-ejfv in combination with pembrolizumab as first-line treatment for patients with unresectable locally advanced or metastatic urothelial cancer (la/mUC) who are not eligible to receive cisplatin-based chemotherapy.

For patients who received enfortumab vedotin and pembrolizumab, results demonstrated a 64.5% confirmed objective response rate (ORR) per blinded independent central review (BICR), the primary endpoint of Cohort K. The median duration of response (DOR) per BICR was not reached... Overall, the results are generally consistent with previously reported efficacy and safety results of the EV-103 dose-escalation cohort and expansion Cohort A. Additional Cohort K results will be reported at an upcoming scientific congress.

EV-103 Cohort K is a randomized cohort investigating enfortumab vedotin alone or in combination with pembrolizumab as first-line treatment for patients with unresectable la/mUC who are not eligible to receive cisplatin-based chemotherapy. Secondary endpoints include ORR per investigator assessment; DOR, disease control rate, and progression-free survival per BICR and investigator assessment; overall survival; and assessment of safety.

https://www.businesswire.com/news/home/20220726005377/en/

2022 ASCO Abstract 4516

Long-Term Outcomes in EV-301: 24-Month Findings From the Phase 3 Trial of Enfortumab Vedotin vs Chemotherapy in Patients With Previously Treated Advanced Urothelial Carcinoma

Jonathan E. Rosenberg, MD¹; Thomas Powles, MD²; Guru P. Sonpavde, MD³; Yohann Loriot, MD, PhD⁴; Ignacio Duran, MD, PhD⁵; Jae-Lyun Lee, MD, PhD⁶; Nobuaki Matsubara, MD⁷; Christof Vulsteke, MD, PhD⁸; Daniel Castellano, MD⁹; Ronac Mamtani, MD¹⁰; Chunzhang Wu, PhD¹¹; Maria Matsangou, MD¹¹; Mary Campbell, MD¹²; Daniel P. Petrylak, MD¹³

¹Department of Medicine, Division of Solid Tumor Oncology, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY; ²Barts Cancer Institute, CRUK Experimental Cancer Medicine Centre, London, UK; ³Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; ⁴Gustave Roussy, Université Paris-Saclay, Villejuif, France; ⁵Hospital Universitario Marques de Valdecilla, IDIVAL, Cantabria, Spain; ⁶Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea; ⁷National Cancer Center Hospital East, Chiba, Japan; ⁸Center for Oncological Research (CORE), University of Antwerp, Integrated Cancer Center Ghent, Ghent, Belgium; ⁹Hospital Universitario 12 de Octubre, Madrid, Spain; ¹⁰Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; ¹¹Astellas Pharma, Inc., Northbrook, IL; ¹²Seagen Inc., Bothell, WA; ¹³Yale Cancer Center, New Haven, CT

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

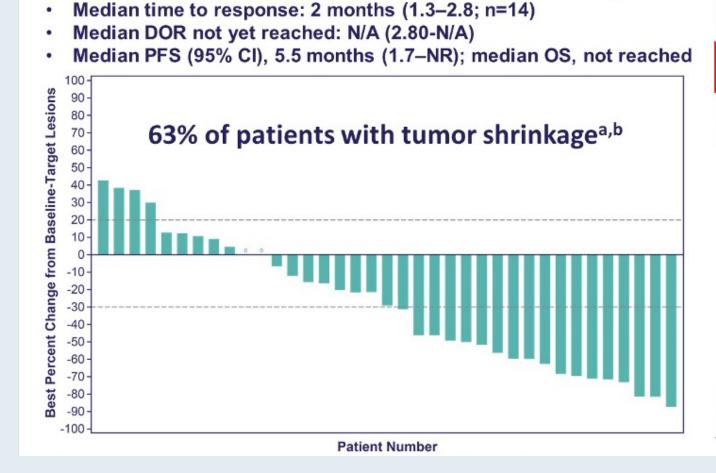
EV-301: Overall Survival

ASCO Genitourinary Cancers Symposium 2022; Abstract 434.

TROPHY-U-01 Cohort 3: Sacituzumab Govitecan (SG) in Combination With Pembrolizumab (Pembro) in Patients (pts) With Metastatic Urothelial Cancer (mUC) Who Progressed After Platinum (PLT)-Based Regimens

Petros Grivas,¹ Damien Pouessel,² Chandler H. Park,³ Philippe Barthelemy,⁴ Manojkumar Bupathi,⁵ Daniel P. Petrylak,⁶ Neeraj Agarwal,⁷ Aude Fléchon,⁸ Chethan Ramamurthy,⁹ Nancy B. Davis,¹⁰ Alejandro Recio-Boiles,¹¹ Scott T. Tagawa,¹² Cora N. Sternberg,¹² Astha Bhatia,¹³ Cabilia Pichardo,¹³ Trishna Goswami,¹³ and Yohann Loriot¹⁴

¹University of Washington, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; ²Department of Medical Oncology & Clinical Research Unit, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse (IUCT-Oncopôle), Toulouse, France; ³Norton Cancer Institute, Louisville, KY, USA; ⁴Institut de Cancérologie Strasbourg Europe, Strasbourg, France; ⁶Rocky Mountain Cancer Centers, Littleton, CO, USA; ⁶Yale School of Medicine, New Haven, CT, USA; ⁷Huntsman Cancer Institute, Salt Lake City, UT, USA; ⁸Centre Léon Bérard, Lyon, France; ⁹University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; ¹⁰Vanderbilt-Ingram Cancer Center, Nashville, TN, USA; ¹¹University of Arizona Cancer Center, Tucson, AZ, USA; ¹²Weill Cornell Medical College of Cornell University, New York, NY, USA; ¹³Gilead Sciences, Inc, Morris Plains, NJ, USA; and ¹⁴Institut de Cancérologie Gustave Roussy, Université Paris-Saclay, Villejuif, France

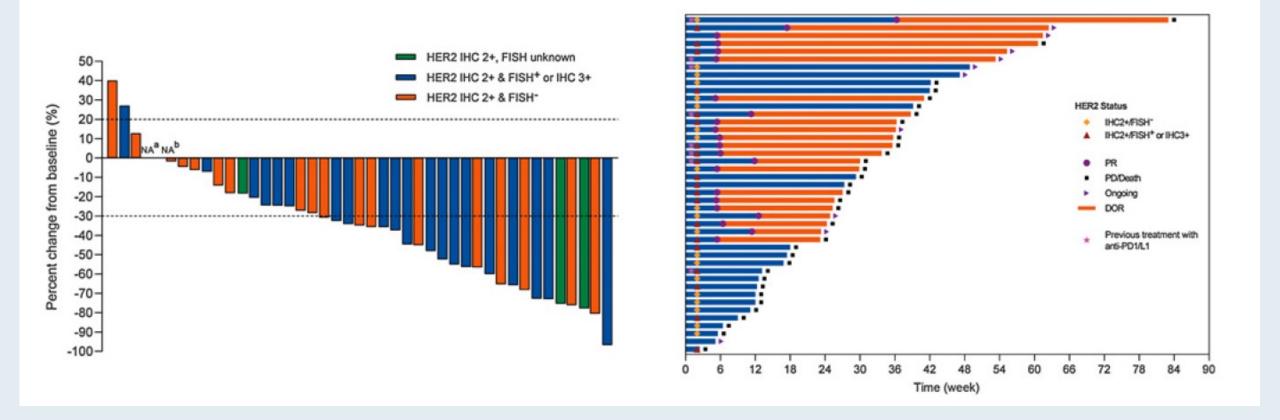

Abstract # 434 ClinicalTrials.gov Number: NCT03547973. @PGrivasMDPhD

TROPHY U-01: Overall Response and Best Change from Baseline in Tumor Size

Median follow-up: 5.8 months (data cutoff date: 2021-09-24)

	Cohort 3ª (N=41)
Objective response rate (CR + PR), n (%) [95%Cl]	14 (34) [20.1-50.6]
Objective response rate (CR + PR), evaluable patients, n (%)	14 (38)
Best overall response, n (%)	
CR	1 (2)
PR	13 (32)
SD	11 (27)
$SD \ge 6$ months	4 (10)
PD	12 (29)
Not assessed	4 (10)
Clinical Benefit Rate (CR + PR + SD), n (%) [95%Cl]	25 (61) [44.5-75.8]

CLINICAL CANCER RESEARCH | CLINICAL TRIALS: TARGETED THERAPY


Open-label, Multicenter, Phase II Study of RC48-ADC, a HER2-Targeting Antibody–Drug Conjugate, in Patients with Locally Advanced or Metastatic Urothelial Carcinoma

Xinan Sheng¹, Xieqiao Yan¹, Lin Wang², Yanxia Shi³, Xin Yao⁴, Hong Luo⁵, Benkang Shi⁶, Jiyan Liu⁷, Zhisong He⁸, Guohua Yu⁹, Jianming Ying¹⁰, Weiqing Han¹¹, Changlu Hu¹², Yun Ling¹⁰, Zhihong Chi¹, Chuanliang Cui¹, Lu Si¹, Jianmin Fang^{13,14}, Aiping Zhou², and Jun Guo¹

Clin Cancer Res 2021;27(1):43-51.

Phase II Study of Disitamab Vedotin (RC48) for HER2-Positive Locally Advanced or Metastatic Urothelial Carcinoma

Sheng X et al. Clin Cancer Res 2021;27(1):43-51.

Module 1: Prostate Cancer

Module 2: Urothelial Bladder Cancer

- Selection of patients with non-muscle-invasive urothelial bladder cancer for IO (pembrolizumab) therapy; use of adjuvant IO after cystectomy for muscle-invasive disease; intravesicle drug delivery system TAR-200
- Optimal integration of ADC's (enfortumab vedotin, sacituzumab govetecan) into the treatment algorithm for patients with metastatic UBC; disitamab vedotin for HER2overexpressing disease
- Selection of patients to receive erdafitinib; prevention and management of toxicity

Discussion Question

Which of the following is a side effect of erdafitinib?

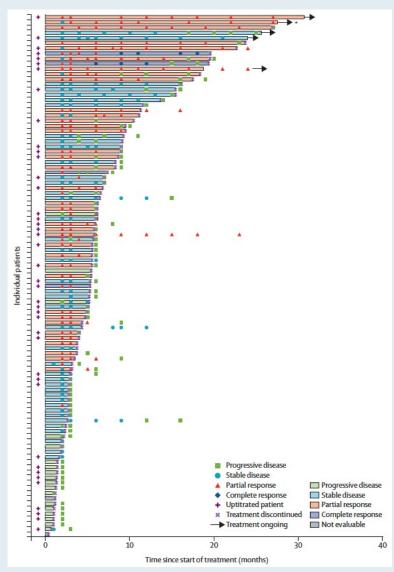
LFT abnormalities

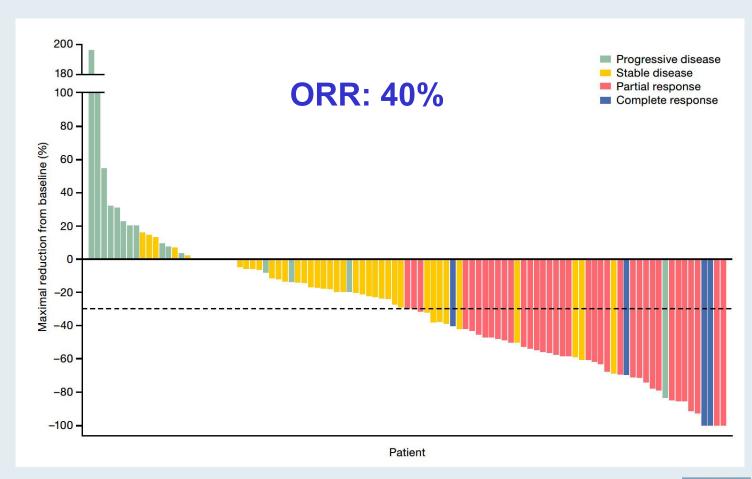
Hyperphosphatemia

Pneumonitis

Hand-foot syndrome

I'm not sure


Lancet Oncol 2022;23(2):248-58.



Efficacy and safety of erdafitinib in patients with locally advanced or metastatic urothelial carcinoma: long-term follow-up of a phase 2 study

Arlene O Siefker-Radtke, Andrea Necchi, Se Hoon Park, Jesús García-Donas, Robert A Huddart, Earle F Burgess, Mark T Fleming, Arash Rezazadeh Kalebasty, Begoña Mellado, Sergei Varlamov, Monika Joshi, Ignacio Duran, Scott T Tagawa, Yousef Zakharia, Sydney Akapame, Ademi E Santiago-Walker, Manish Monga, Anne O'Hagan, Yohann Loriot, on behalf of the BLC2001 Study Group*

BLC2001: Responses in Patients Receiving the Selected 8 mg/day Erdafitinib UpT Regimen

Siefker-Radtke A et al. Lancet Oncol 2022;23(2):248-58.

Module 1: Prostate Cancer

Module 2: Urothelial Bladder Cancer

- Selection of patients with high-risk renal cell carcinoma (RCC) to receive pembrolizumab in the adjuvant setting
- Optimal first-line therapy for patients with metastatic RCC
- Current and future role of belzutifan in RCC

Module 1: Prostate Cancer

Module 2: Urothelial Bladder Cancer

- Selection of patients with high-risk renal cell carcinoma (RCC) to receive pembrolizumab in the adjuvant setting
- Optimal first-line therapy for patients with metastatic RCC
- Current and future role of belzutifan in RCC

What is known about the efficacy of adjuvant ipilimumab/ nivolumab for renal cell carcinoma?

Improved PFS

No impact on PFS

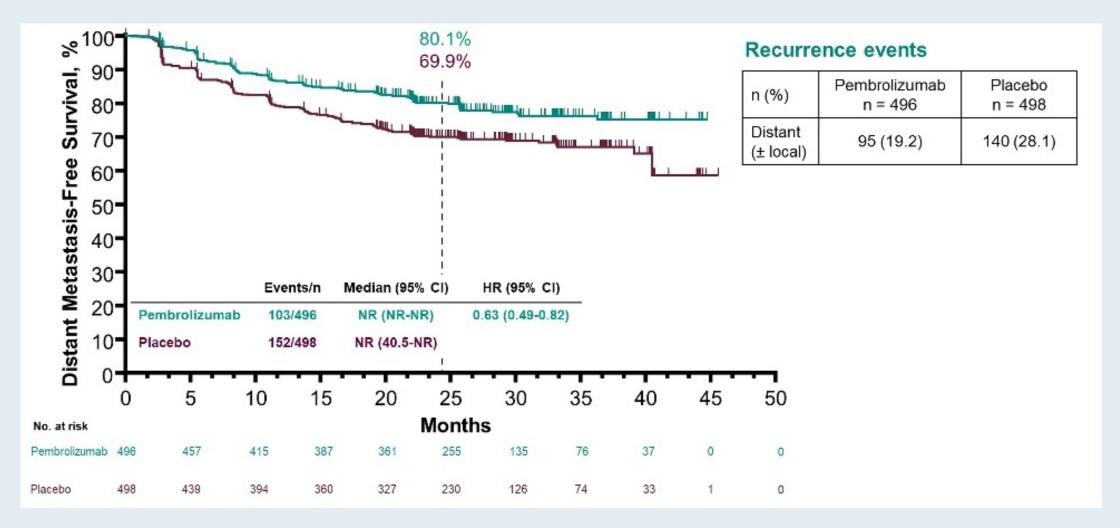
I'm not sure

It has not been studied

Update on the CheckMate 914 Trial Evaluating Nivolumab with Ipilimumab as Adjuvant Treatment for Localized Renal Cell Carcinoma Press Release: July 29, 2022

"Part A of the Phase 3 CheckMate-914 trial, evaluating nivolumab plus ipilimumab as an adjuvant treatment for patients with localized renal cell carcinoma (RCC) who have undergone full or partial removal of the kidney and who are at moderate or high risk of relapse, *did not meet* the primary endpoint of disease-free survival (DFS) as assessed by Blinded Independent Central Review (BICR). The safety profile was consistent with previously reported studies of the nivolumab plus ipilimumab combination in solid tumors."

Adjuvant pembrolizumab for postnephrectomy renal cell carcinoma: Expanded efficacy analyses from KEYNOTE-564


T. K. Choueiri¹; P. Tomczak²; S. H. Park³; B. Venugopal⁴; T. Ferguson⁵;
S. N. Symeonides⁶; J. Hajek⁷; Y.-H. Chang⁸; J.-L. Lee⁹; N. Sarwar¹⁰;
A. Thiery-Vuillemin¹¹; M. Gross-Goupil¹²; M. Mahave¹³; N. B. Haas¹⁴;
P. Sawrycki¹⁵; H. Gurney¹⁶; L. Xu¹⁷; K. Imai¹⁷; J. Burgents¹⁷; T. Powles¹⁸

¹Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; ²Poznan University of Medical Sciences, Poznan, Poland; ³Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea; ⁴Beatson West of Scotland Cancer Centre and University of Glasgow, Glasgow, United Kingdom; ⁵Fiona Stanley Hospital, Perth, WA, Australia; ⁶Edinburgh Cancer Centre and University of Edinburgh, Edinburgh, United Kingdom; ⁷Fakultni Nemocnice Ostrava, Ostrava, Czech Republic; ⁸Taipei Veterans General Hospital, Taipei, Taiwan; ⁹Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea; ¹⁰Imperial College Healthcare NHS Trust, London, United Kingdom; ¹¹University Hospital Jean Minjoz, Besançon, France; ¹²University Hospital of Bordeaux, Bordeaux, France; ¹³Fundacion Arturo Lopez Perez FALP, Santiago, Chile; ¹⁴Abramson Cancer Center, Penn Medicine, Philadelphia, PA, USA; ¹⁵Provincial Hospital in Torun, Torun, Poland; ¹⁶Macquarie University, Sydney, NSW, Australia; ¹⁷Merck & Co., Inc., Rahway, NJ, USA; ¹⁸Barts Health NHS Trust and the Royal Free NHS Foundation Trust, Barts Cancer Institute, and Queen Mary University of London, London, United Kingdom

ASCO 2022; Abstract 4512

KEYNOTE-564: Pembrolizumab as Adjuvant Therapy for Patients with Renal Cell Carcinoma (RCC) – Disease-Free Survival

Choueiri TK et al. ASCO 2022; Abstract 4512.

Module 1: Prostate Cancer

Module 2: Urothelial Bladder Cancer

- Selection of patients with high-risk renal cell carcinoma (RCC) to receive pembrolizumab in the adjuvant setting
- Optimal first-line therapy for patients with metastatic RCC
- Current and future role of belzutifan in RCC

Discussion Question

In general, what is your preferred first-line therapy for a symptomatic patient with metastatic renal cell carcinoma and high tumor burden?

Pembrolizumab/lenvatinib

Ipilimumab/nivolumab

Pembrolizumab/axitinib

Nivolumab/cabozantinib

Avelumab/axitinib

Other

Original Article

Conditional survival and long-term efficacy with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma

Robert J. Motzer, MD ^(D); David F. McDermott, MD²; Bernard Escudier, MD³; Mauricio Burotto, MD⁴; Toni K. Choueiri, MD ^(D); Hans J. Hammers, MD, PhD⁶; Philippe Barthélémy, MD, PhD⁷; Elizabeth R. Plimack, MD⁸; Camillo Porta, MD⁹; Saby George, MD¹⁰; Thomas Powles, MD¹¹; Frede Donskov, MD, PhD¹²; Howard Gurney, MD¹³; Christian K. Kollmannsberger, MD¹⁴; Marc-Oliver Grimm, MD¹⁵; Carlos Barrios, MD¹⁶; Yoshihiko Tomita, MD, PhD¹⁷; Daniel Castellano, MD¹⁸; Viktor Grünwald, MD, PhD¹⁹; Brian I. Rini, MD²⁰; M. Brent McHenry, PhD²¹; Chung-Wei Lee, MD, PhD²²; Jennifer McCarthy, MA²³; Flavia Ejzykowicz, PhD²⁴; and Nizar M. Tannir, MD²⁵

Cancer 2022;128(11):2085-97.

Pembrolizumab (pembro) plus Axitinib (axi) versus Sunitinib as First-Line therapy for Advanced Clear Cell Renal Cell Carcinoma (ccRCC): Analysis of Progression After First Subsequent Therapy in KEYNOTE-426

Powles T et al. ASCO 2022;Abstract 4513.

Lancet Oncol 2022;23(7):888-98.

Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (CheckMate 9ER): long-term follow-up results from an open-label, randomised, phase 3 trial

Robert J Motzer, Thomas Powles, Mauricio Burotto, Bernard Escudier, Maria T Bourlon, Amishi Y Shah, Cristina Suárez, Alketa Hamzaj, Camillo Porta, Christopher M Hocking, Elizabeth R Kessler, Howard Gurney, Yoshihiko Tomita, Jens Bedke, Joshua Zhang, Burcin Simsek, Christian Scheffold, Andrea B Apolo, Toni K Choueiri

Module 1: Prostate Cancer

Module 2: Urothelial Bladder Cancer

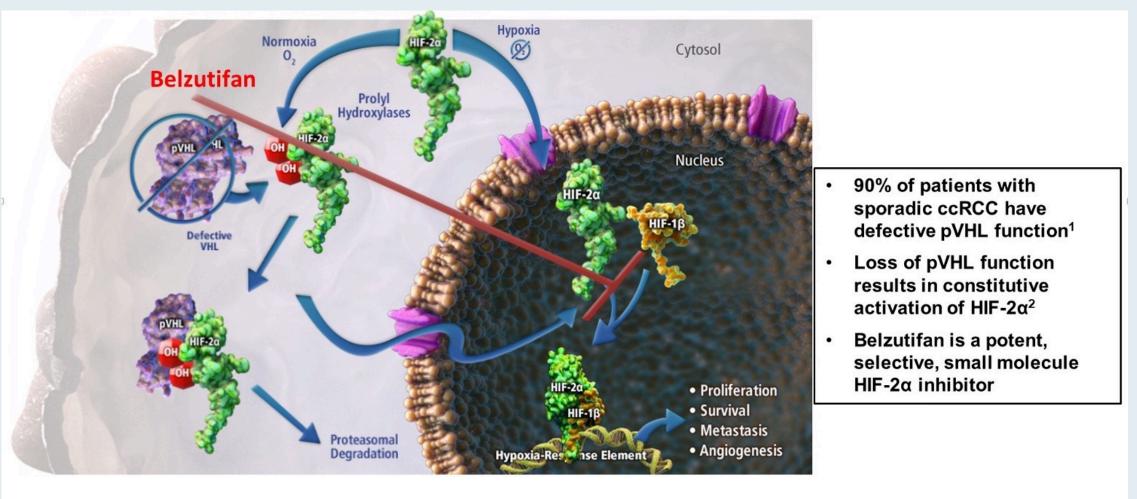
- Selection of patients with high-risk renal cell carcinoma (RCC) to receive pembrolizumab in the adjuvant setting
- Optimal first-line therapy for patients with metastatic RCC
- Current and future role of belzutifan in RCC

Discussion Question

A Phase II clinical trial is currently evaluating belzutifan in combination with pembrolizumab and lenvatinib for which of the following cancer types?

Endometrial cancer

Urothelial bladder cancer


GI Cancers

Lung cancer

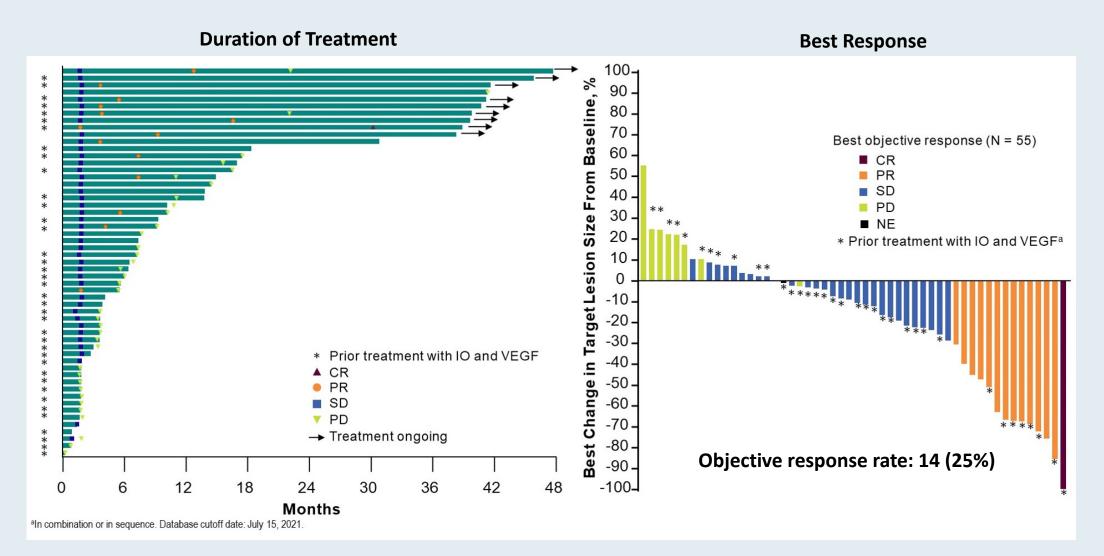
I'm not sure

Von Hippel Lindau Tumor Suppressor (pVHL) Deficiency Results in HIF-2-alpha Activation

1. Linehan WM, Rickets CJ. Nat Rev Urol. 2019;16:539-552. 2. Couvé S et al. Cancer Res. 2014;74:6554-6564.

Bauer TD et al. GU Cancers Symposium 2021; Abstract 273.

Phase 1 LITESPARK-001 (MK-6482-001) study of belzutifan in advanced solid tumors: Update of the clear cell renal cell carcinoma cohort with more than 3 years of total follow-up


E. Jonasch¹; T. M. Bauer²; K. P. Papadopoulos³; E. R. Plimack⁴; J. R. Merchan⁵; D. F. McDermott⁶; M. D. Michaelson⁷; L. J. Appleman⁸; A. Roy⁹; R. F. Perini⁹; Y. Liu⁹; T. K. Choueiri¹⁰

¹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN, USA; ³South Texas Accelerated Research Therapeutics (START), San Antonio, TX, USA; ⁴Fox Chase Cancer Center, Philadelphia, PA, USA; ⁵University of Miami Health System, Miami, FL, USA; ⁶Beth Israel Deaconess Medical Center, Boston, MA, USA; ⁷Massachusetts General Hospital, Boston, MA, USA; ⁸University of Pittsburgh Medical Center, Pittsburgh, PA; ⁹Merck & Co., Inc., Rahway, NJ, USA; ¹⁰Dana-Farber Cancer Institute, Boston, MA, USA

ASCO 2022; Abstract 4509.

LITESPARK-001: Updated Efficacy with Belzutifan in the Clear Cell RCC Cohort

Jonasch E et al. ASCO 2022; Abstract 4509.

Thank you for joining us!

CME/MOC and NCPD credit information will be emailed to each participant within 5 business days.

We are taking a short break!

The program will resume at 11:25 AM PT (2:25 PM ET)

Up Next...

Drs Rafael Fonseca and Krina Patel discuss the management of multiple myeloma

Recent Advances and Real-World Implications in Medical Oncology: A Daylong Multitumor Educational Symposium in Partnership with the American Oncology Network A CME/MOC- and NCPD-Accredited Hybrid Event

Saturday, August 6, 2022 9:00 AM – 4:30 PM PT

Agenda

Module 1 — Breast Cancer: *Drs Burstein and O'Shaughnessy*

Module 2 — **Genitourinary Cancers:** *Drs Agarwal and Srinivas*

Module 3 — Multiple Myeloma: Drs Fonseca and Patel

Module 4 — Chronic Lymphocytic Leukemia and Lymphomas: Drs Kahl and Moskowitz

Module 5 — Gastrointestinal Cancers: Drs Mehta and Philip

Module 6 — Lung Cancer: Drs Dagogo-Jack and Ramalingam

Multiple Myeloma Faculty

Rafael Fonseca, MD

Chief Innovation Officer Getz Family Professor of Cancer Distinguished Mayo Investigator Mayo Clinic in Arizona Phoenix, Arizona

Krina Patel, MD, MSc Associate Professor Department of Lymphoma/Myeloma The University of Texas MD Anderson Cancer Center Houston, Texas

Co-Moderators

Breast Cancer Stephen "Fred" Divers, MD American Oncology Network Hot Springs, Arkansas

CLL and Lymphomas Jeanna L Knoble, MD Zangmeister Cancer Center Columbus, Ohio

Genitourinary Cancers Michael J Castine, MD Hematology Oncology Clinic Baton Rouge, Louisiana

Gastrointestinal Cancers Pavani Ellipeddi, MD Hematology Oncology Clinic Baton Rouge, Louisiana

Multiple Myeloma Taral Patel, MD Zangmeister Cancer Center Columbus, Ohio

Lung Cancer Ram Trehan, MD George Washington University Silver Spring, Maryland

MODULE 3: Multiple Myeloma

Co-Moderator Taral Patel, MD Zangmeister Cancer Center Columbus, Ohio

Module 1: Up-Front Treatment of Multiple Myeloma (MM)

- Current role of stem cell transplant
- Quadruplet regimens
- Use of maintenance therapy after transplant; clinical role of MRD
- Treatment of MM in transplant-ineligible patients

Module 2: Management of Relapsed/Refractory MM

Module 1: Up-Front Treatment of Multiple Myeloma (MM)

- Current role of stem cell transplant
- Quadruplet regimens
- Use of maintenance therapy after transplant; clinical role of MRD
- Treatment of MM in transplant-ineligible patients

Module 2: Management of Relapsed/Refractory MM

Regulatory and reimbursement issues aside, what would be your preferred induction treatment for a younger transplanteligible patient with standard-risk multiple myeloma (MM)?

RVd

D-RVd (daratumumab with RVd)

KRd

D-KRd

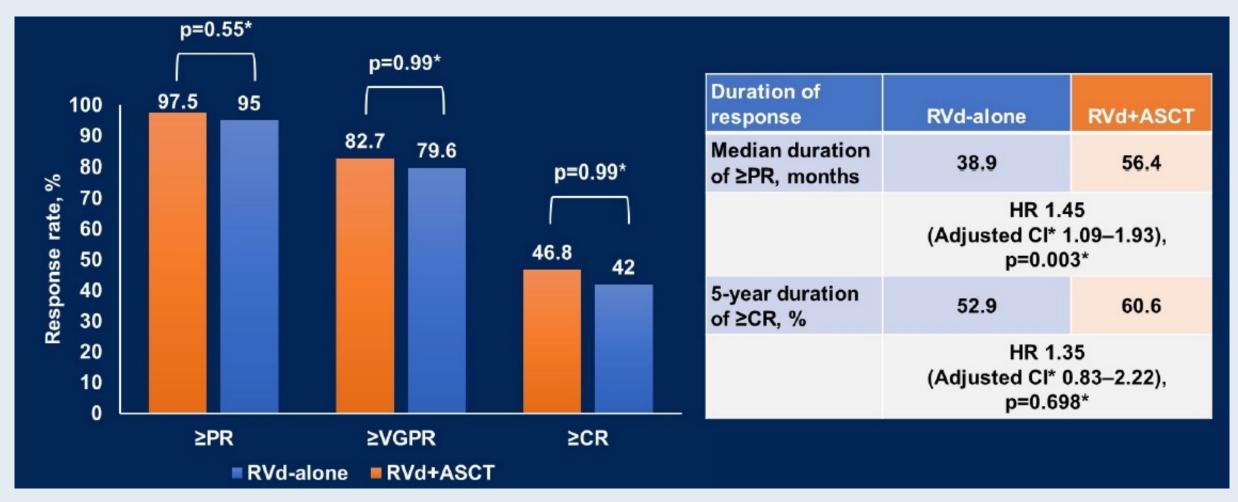
Other

Abstract LBA4

RVd ± ASCT and Lenalidomide Maintenance to Progression for NDMM

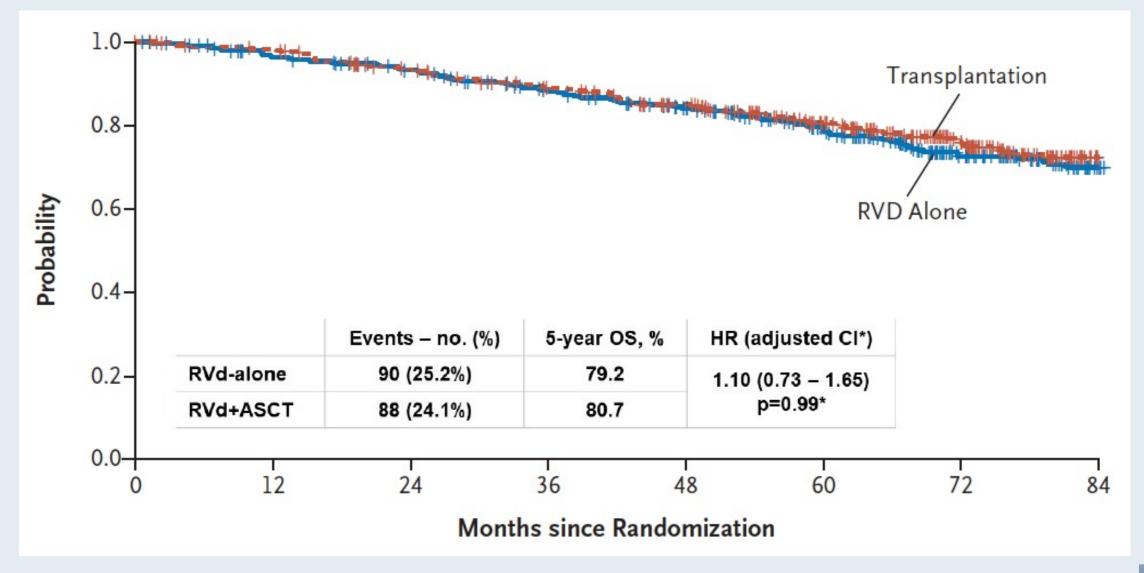
The Phase 3 DETERMINATION Trial

Paul G. Richardson, MD, RJ Corman Professor of Medicine, Harvard Medical School Clinical Program Leader, Director of Clinical Research, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA The NEW ENGLAND JOURNAL of MEDICINE N Engl J Med 2022 Jul 14;387(2):132-47.


ORIGINAL ARTICLE

Triplet Therapy, Transplantation, and Maintenance until Progression in Myeloma

P.G. Richardson, S.J. Jacobus, E.A. Weller, H. Hassoun, S. Lonial, N.S. Raje, E. Medvedova, P.L. McCarthy, E.N. Libby, P.M. Voorhees, R.Z. Orlowski,
L.D. Anderson, Jr., J.A. Zonder, C.P. Milner, C. Gasparetto, M.E. Agha, A.M. Khan, D.D. Hurd, K. Gowin, R.T. Kamble, S. Jagannath, N. Nathwani, M. Alsina, R.F. Cornell, H. Hashmi, E.L. Campagnaro, A.C. Andreescu, T. Gentile,
M. Liedtke, K.N. Godby, A.D. Cohen, T.H. Openshaw, M.C. Pasquini, S.A. Giralt, J.L. Kaufman, A.J. Yee, E. Scott, P. Torka, A. Foley, M. Fulciniti, K. Hebert, M.K. Samur, K. Masone, M.E. Maglio, A.A. Zeytoonjian, O. Nadeem, R.L. Schlossman, J.P. Laubach, C. Paba-Prada, I.M. Ghobrial, A. Perrot, P. Moreau, H. Avet-Loiseau, M. Attal, K.C. Anderson, and N.C. Munshi, for the DETERMINATION Investigators*


DETERMINATION: Best Response to Treatment and Duration of Response

Richardson PG et al. N Engl J Med 2022;387(2):132-47; ASCO 2022; Abstract LBA4.

DETERMINATION: Overall Survival (Key Secondary Endpoint)

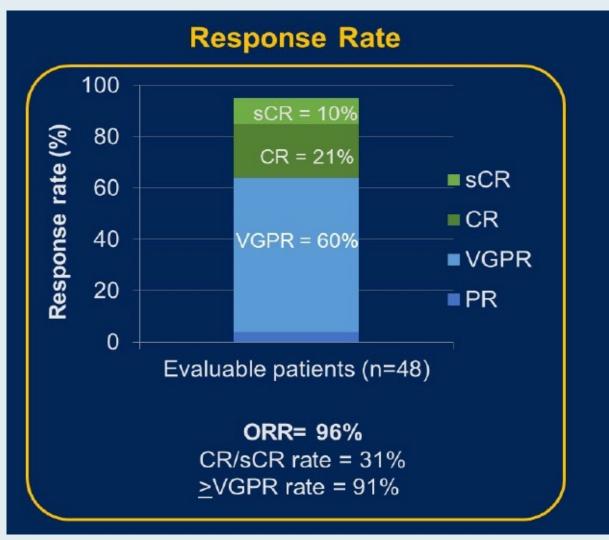
Richardson PG et al. N Engl J Med 2022;387(2):132-47; ASCO 2022; Abstract LBA4.

Module 1: Up-Front Treatment of Multiple Myeloma (MM)

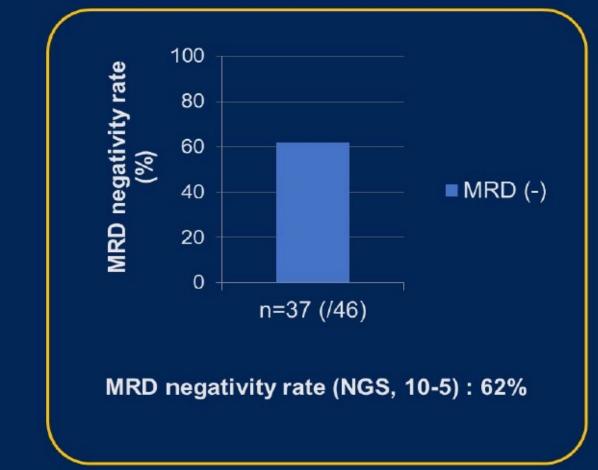
- Current role of stem cell transplant
- Quadruplet regimens
- Use of maintenance therapy after transplant; clinical role of MRD
- Treatment of MM in transplant-ineligible patients

Module 2: Management of Relapsed/Refractory MM

2022 ASCO®


Abstract 8002

Daratumumab Carfilzomib Lenalidomide and Dexamethasone as induction therapy in high-risk transplant eligible newly diagnosed myeloma patients: results of the phase 2 study IFM 2018-04


Cyrille Touzeau¹, Aurore Perrot², Cyrille Hulin³, Salomon Manier⁴, Margaret Macro⁵, Marie-Lorraine Chretien⁶, Lionel Karlin⁷, Martine Escoffre⁸, Caroline Jacquet⁹, Mourad Tiab¹⁰, Xavier Leleu¹¹, Lucie Planche¹², Hervé Avet-Loiseau², Philippe Moreau¹

IFM 2018-04: Response Rates and MRD with Dara-KRd Induction

MRD negativity (NGS, 10-5)

MRD = minimal residual disease; NGS = next-generation sequencing; ORR = overall response rate; sCR = stringent complete response; VGPR = very good partial response

Touzeau C et al. ASCO 2022; Abstract 8002.

Module 1: Up-Front Treatment of Multiple Myeloma (MM)

- Current role of stem cell transplant
- Quadruplet regimens
- Use of maintenance therapy after transplant; clinical role of MRD
- Treatment of MM in transplant-ineligible patients

Module 2: Management of Relapsed/Refractory MM

Discussion Question

In general, would you offer lenalidomide maintenance therapy to a patient who is MRD-negative after induction and autologous transplant?

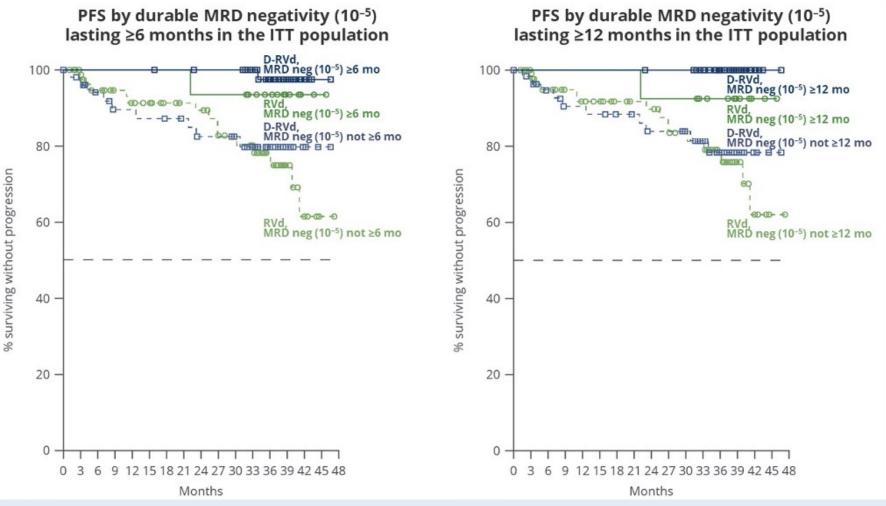
Yes

Yes, for select patients

No

I'm not sure

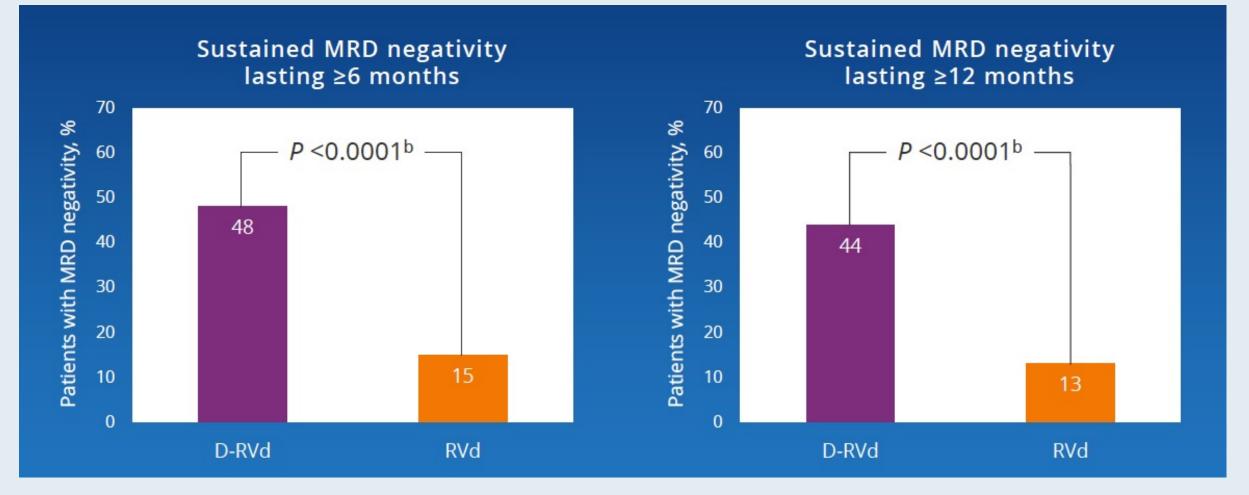
Daratumumab (DARA) plus Lenalidomide, Bortezomib, and Dexamethasone (RVd) in Patients (Pts) with Transplant-Eligible Newly Diagnosed Multiple Myeloma (NDMM): Updated Analysis of Griffin After 24 Months of Maintenance¹


Daratumumab (DARA) + Lenalidomide, Bortezomib, and Dexamethasone (RVd) in Transplant-Eligible Newly Diagnosed Multiple Myeloma (NDMM): A Post Hoc Analysis of Sustained Minimal Residual Disease (MRD) Negativity from GRIFFIN²

¹ Laubach JP et al. ASH 2021; Abstract 79.

² Rodriguez C et al. ASCO 2022; Abstract 8011.

GRIFFIN: PFS by Sustained MRD Negativity


- PFS was better in the D-RVd group versus the RVd group among patients who achieved durable MRD negativity at the 10⁻⁵ threshold
- PFS was better for patients who reached durable MRD negativity ≥6 or ≥12 months versus those who did not reach durable MRD negativity

PFS = progression-free survival; MRD = minimum residual disease; ITT = intent to treat; D-RVd = daratumumab with lenalidomide, bortezomib and dexamethasone

Rodriguez C et al. ASCO 2022; Abstract 8011.

GRIFFIN: D-RVd Improved Rates of Durable MRD Negativity (10⁻⁵) Lasting ≥6 Months or ≥12 Months versus RVd

2022 ASCO®

Abstract 8001

ATLAS: A Phase 3 Randomized Trial of Carfilzomib, Lenalidomide, and Dexamethasone Versus Lenalidomide Alone After Stem-cell Transplant for Multiple Myeloma

Dominik Dytfeld, Tomasz Wrobel, Krzysztof Jamroziak, Tadeusz Kubicki, Pawel Robak, Jaroslaw Czyz, Agata Tyczyńska, Agnieszka Druzd-Sitek, Krzysztof Giannopoulos, Adam Nowicki, Anna Łojko-Dankowska, Magdalena Matuszak, Lidia Gil, Bartosz Puła, Justyna Rybka, Lidia Usnarska-Zubkiewicz, Olga Czabak, Andrew T Stefka, Benjamin A Derman, Andrzej J Jakubowiak

Module 1: Up-Front Treatment of Multiple Myeloma (MM)

- Current role of stem cell transplant
- Quadruplet regimens
- Use of maintenance therapy after transplant; clinical role of MRD
- Treatment of MM in transplant-ineligible patients

Module 2: Management of Relapsed/Refractory MM

Discussion Question

In general, what is your preferred induction regimen for an 80-year-old patient with MM who is transplant ineligible with normal renal function and no high-risk features?

Rd

RVd or RVd lite

KRd

MPV/daratumumab

Rd/daratumumab

VTd

MPV, MPR or MPT

Other


Daratumumab, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone alone in newly diagnosed multiple myeloma (MAIA): overall survival results from a randomised, open-label, phase 3 trial

Thierry Facon, Shaji K Kumar, Torben Plesner, Robert Z Orlowski, Philippe Moreau, Nizar Bahlis, Supratik Basu, Hareth Nahi, Cyrille Hulin, Hang Quach, Hartmut Goldschmidt, Michael O'Dwyer, Aurore Perrot, Christopher P Venner, Katja Weisel, Joseph R Mace, Noopur Raje, Mourad Tiab, Margaret Macro, Laurent Frenzel, Xavier Leleu, Tahamtan Ahmadi, Jianping Wang, Rian Van Rampelbergh, Clarissa M Uhlar, Brenda Tromp, Maria Delioukina, Jessica Vermeulen, Saad Z Usmani

Lancet Oncol 2021;22(11):1582-96.

MAIA: Overall Survival

D-Rd demonstrated a significant benefit in OS, with a 32% reduction in the risk of death, for patients with NDMM who are transplant ineligible

Facon T et al. Lancet Oncol 2021;22(11):1582-96; EHA 2021;Abstract LB1901.

Module 1: Up-Front Treatment of Multiple Myeloma (MM)

Module 2: Management of Relapsed/Refractory MM

- Belantamab mafodotin: Mechanism of action (MOA), sequencing for younger and older patients, toxicity
- CAR T-cell therapy: Idecabtegene vicleucel, ciltacabtagene autoleucel Similarities and differences in efficacy and toxicity
- Bispecific antibodies (teclistamab, talquetamab): Similarities and differences in MOA; efficacy, toxicity, future clinical role

Module 1: Up-Front Treatment of Multiple Myeloma (MM)

Module 2: Management of Relapsed/Refractory MM

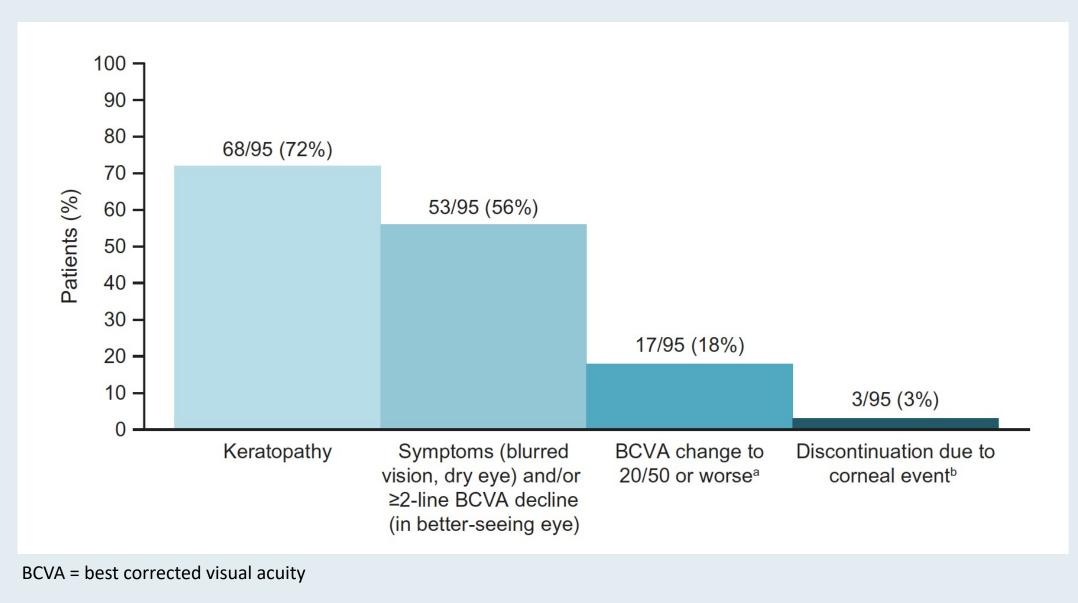
- Belantamab mafodotin: Mechanism of action (MOA), sequencing for younger and older patients, toxicity
- CAR T-cell therapy: Idecabtegene vicleucel, ciltacabtagene autoleucel Similarities and differences in efficacy and toxicity
- Bispecific antibodies (teclistamab, talquetamab): Similarities and differences in MOA; efficacy, toxicity, future clinical role

Longer Term Outcomes With Single-Agent Belantamab Mafodotin in Patients With Relapsed or Refractory Multiple Myeloma: 13-Month Follow-Up From the Pivotal DREAMM-2 Study

Sagar Lonial, MD D¹; Hans C. Lee, MD²; Ashraf Badros, MD D³; Suzanne Trudel, MD⁴; Ajay K. Nooka, MD D¹; Ajai Chari, MD D⁵; Al-Ola Abdallah, MD⁶; Natalie Callander, MD⁷; Douglas Sborov, MD⁸; Attaya Suvannasankha, MD⁹; Katja Weisel, MD¹⁰; Peter M. Voorhees, MD¹¹; Lynsey Womersley, MSc¹²; January Baron, MS¹³; Trisha Piontek, BSN¹³; Eric Lewis, MD¹⁴; Joanna Opalinska, MD¹³; Ira Gupta, MD¹³; and Adam D. Cohen, MD¹⁵

Cancer 2021;127(22):4198-212.

DREAMM-2: Longitudinal Outcomes


Progression-Free Survival Overall Survival 1.0 .0 - Overall population Proportion alive and progression free Overall population 0.8 0.8 **Overall** survival 0.6 0.6 50% probability 50% probability -----0.4 0.4 -0.2 0.2 Median (95% CI), mo. Median (95% CI), mo. 13.7 (9.9-NR) 2.8(1.6 - 3.6)0.0 10 11 12 13 14 15 16 17 18 3 12 13 14 15 16 17 0 2 3 6 8 9 0 2 5 6 8 9 10 11 Δ 5 Time from randomization (months) Time from randomization (months) Number at risk (Number of events) Number at risk (Number of events) 97 91 81 77 71 67 66 64 62 59 55 55 49 43 31 22 13 6 0 97 64 54 34 29 27 25 23 21 20 17 16 14 12 0 8 4 2 (0) (5) (13) (16) (21) (25) (26) (28) (30) (33) (37) (37) (39) (42) (45) (46) (46) (47) (47) (0) (26) (36) (51) (55) (57) (59) (60) (62) (63) (65) (65) (66) (67) (69) (69) (68) (69)

Expected median OS in triple-class refractory myeloma: 8.6 months

Lonial S et al. Cancer 2021;127(22):4198-212.

DREAMM-2: Frequency of Corneal and Vision-Related Events

Lonial S et al. *Cancer* 2021;127(22):4198-212.

Module 1: Up-Front Treatment of Multiple Myeloma (MM)

Module 2: Management of Relapsed/Refractory MM

- Belantamab mafodotin: Mechanism of action (MOA), sequencing for younger and older patients, toxicity
- CAR T-cell therapy: Idecabtegene vicleucel, ciltacabtagene autoleucel Similarities and differences in efficacy and toxicity
- Bispecific antibodies (teclistamab, talquetamab): Similarities and differences in MOA; efficacy, toxicity, future clinical role

Discussion Question

Based on your knowledge of available data and personal clinical experience, how would you compare the efficacy of idecabtagene vicleucel to that of ciltacabtagene autoleucel for patients with relapsed/refractory MM?

Ide-cel is more efficacious

Cilta-cel is more efficacious

Efficacy is similar with both agents

I'm not sure

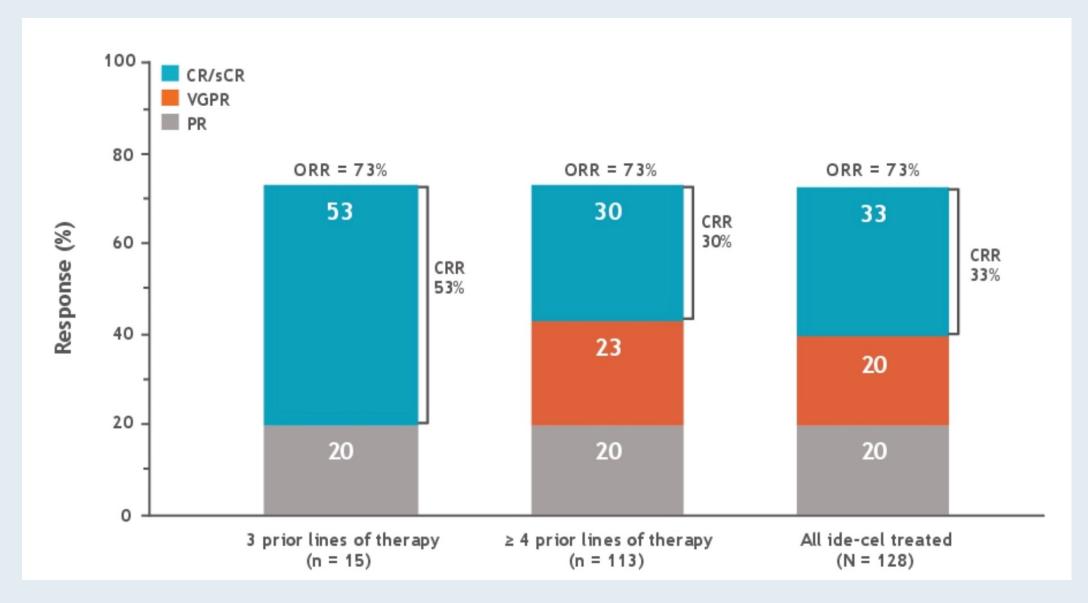
Based on your knowledge of available data and personal clinical experience, how would you compare the tolerability of ciltacabtagene autoleucel to that of idecabtagene vicleucel for patients with relapsed/refractory MM?

Ciltacabtagene autoleucel is more tolerable

Idecabtagene vicleucel is more tolerable

Tolerability is similar with both agents

I'm not sure



Idecabtagene Vicleucel (Ide-Cel, bb2121), a BCMA CAR T Cell Therapy, in Relapsed and Refractory Multiple Myeloma: Updated KarMMa Results

Anderson LD et al. ASCO 2021;Abstract 8016.

KarMMa: Best Overall Response

Anderson LD et al. ASCO 2021; Abstract 8016.

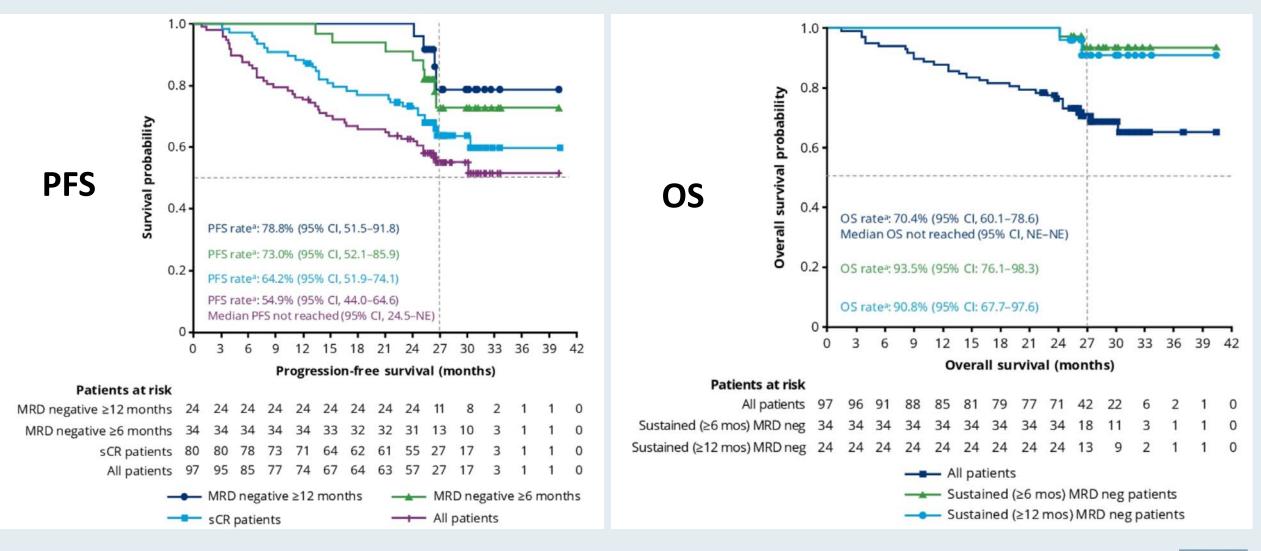
FDA Approves Cilta-Cel for Relapsed/Refractory MM Press Release: February 28, 2022

The FDA has approved the use of ciltacabtagene autoleucel for the treatment of relapsed/refractory MM after 4 or more lines of therapy, including a proteasome inhibitor, an immunomodulatory agent and an anti-CD38 monoclonal antibody.

The approval was based on findings from the Phase Ib/II CARTITUDE-1 trial (NCT03548207), in which one-time treatment with cilta-cel resulted in an overall response rate of 98% (95% CI, 92.7%-99.7%). Investigators also reported a stringent complete response rate of 78% (95% CI, 68.8%-86.1%). The median duration of response was 21.8 months after a median follow-up of 18 months.

The CARTITUDE trial enrolled 97 patients, with a median turnaround time for cilta-cel therapy of 29 days. Patients had received a median of 6.0 lines of prior therapy. Of the 97 patients, 87.6% (n = 85) were triple-class refractory and 42.3% (n = 41) were penta-drug refractory. Nearly all patients (99%; n = 96) were refractory to their last line of therapy.

www.cancernetwork.com/view/fda-approves-cilta-cel-for-relapsed-refractory-multiple-myeloma?utm_source=sfmc&utm_medium=email&utm_campaign=3.01.22_CN_Breaking_A&eKey=cmthZGVybWFuQHJlc2VhcmNodG9wcmFjdGljZS5jb20=



Phase 1b/2 Study of Ciltacabtagene Autoleucel, a BCMA-Directed CAR-T Cell Therapy, in Patients with Relapsed/Refractory Multiple Myeloma (CARTITUDE-1): 2 Years Post LPI

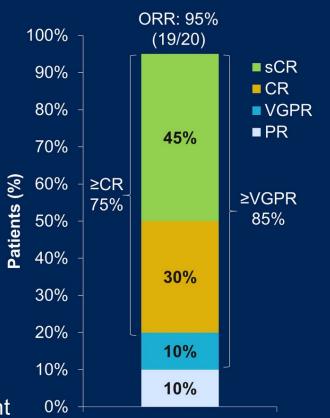
Usmani SZ et al. ASCO 2022;Abstract 8028.

CARTITUDE-1: PFS and OS at 27.7 Months Follow-Up by MRD Status

Usmani SZ et al. ASCO 2022; Abstract 8028.

CARTITUDE-2: Efficacy and Safety of Ciltacabtagene Autoleucel (Cilta-Cel), a BCMA-Directed CAR T-Cell Therapy, in Patients with Progressive Multiple Myeloma (MM) After One to Three Prior Lines of Therapy

Agha ME et al. ASCO 2021;Abstract 8013.


CARTITUDE-2: Ciltacabtagene Autoleucel After 1 to 3 Prior Lines of Therapy

Efficacy

- Median time to first response:
 1.0 month
- Median time to best response:
 1.9 months
- Median duration of response: not reached
- All patients (n=4) with MRDevaluable samples at the 10⁻⁵ threshold were MRD negative at data cut-off

Safety

- Cilta-cel safety profile was manageable, including in the patient treated in an outpatient setting
- No movement and neurocognitive treatment-emergent AEs were observed in patients of Cohort A

Patient who did not respond had stable disease. CR, complete response; ORR, overall response rate; PR, partial response; sCR, stringent complete response; VGPR, very good partial response.

Multiple Myeloma Agenda

Module 1: Up-Front Treatment of Multiple Myeloma (MM)

Module 2: Management of Relapsed/Refractory MM

- Belantamab mafodotin: Mechanism of action (MOA), sequencing for younger and older patients, toxicity
- CAR T-cell therapy: Idecabtegene vicleucel, ciltacabtagene autoleucel Similarities and differences in efficacy and toxicity
- Bispecific antibodies (teclistamab, talquetamab): Similarities and differences in MOA; efficacy, toxicity, future clinical role

Module 3: Other Novel Agents and Strategies

Discussion Question

In general, would you use another BCMA-directed therapy prior to a patient receiving CAR T-cell therapy?

Yes

No

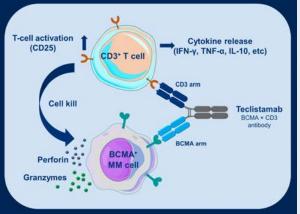
I'm not sure

Discussion Question

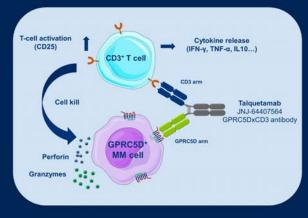
The first dose of teclistamab and of talquetamab require inpatient administration.

Agree

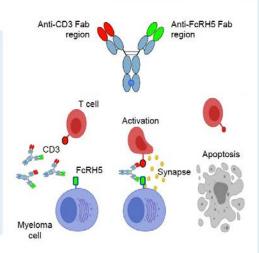
Disagree


I'm not sure

Bispecific Antibodies for R/R MM


BCMA × CD3 Bispecific Antibody

- Standard treatments and newly approved therapies for RRMM have limitations¹⁻³
- Agents with new MOAs, including BCMA-targeted immunotherapies, offer considerable promise for RRMM
- Teclistamab (JNJ-64007957) is an off-the-shelf, full-size, BCMA × CD3, T-cell redirecting, bispecific antibody
- In the phase 1, first-in-human study in patients with RRMM (MajesTEC-1; NCT03145181), teclistamab was administered IV or SC in different dosing cohorts⁴
- The RP2D was identified as a QW SC dose of teclistamab 1500 μg/kg with step-up doses of 60 μg/kg and 300 μg/kg
- We present updated RP2D results with additional patients and longer follow-up


GPRC5D × CD3 Bispecific Antibody

- GPRC5D is a highly expressed receptor in MM, with limited expression in healthy human tissue¹⁻²
- Talquetamab is a first-in-class antibody that binds to CD3 and GPRC5D to redirect T cells to kill MM cells²⁻³
- In the ongoing, phase 1, first-in-human study of talquetamab in patients with RRMM, the RP2D was identified as a QW SC dose of 400 μg/kg^a (MonumenTAL-1; NCT03399799)⁴
- Here we present updated results of safety and efficacy of talquetamab at the RP2D, with additional patients and longer follow-up

Cevostamab: FcRH5xCD3 bispecific antibody

- Fc receptor-homolog 5 (FcRH5)
- Expressed on myeloma cells with near 100% prevalence1
- Expression on myeloma and plasma cells > normal B cells¹
- Cevostamab
 - Humanized IgG-based T-cell-engaging bispecific antibody¹
- Targets FcRH5 on myeloma cells and CD3 on T cells¹
- Ongoing Phase I dose-escalation and expansion trial (NCT03275103) is evaluating the safety and activity of cevostamab monotherapy in patients with RRMM²

Krishnan AY et al. ASCO 2021;Abstract 8007; Berdeja JG et al. ASCO 2021;Abstract 8008; Cohen AD et al. ASH 2020;Abstract 292.

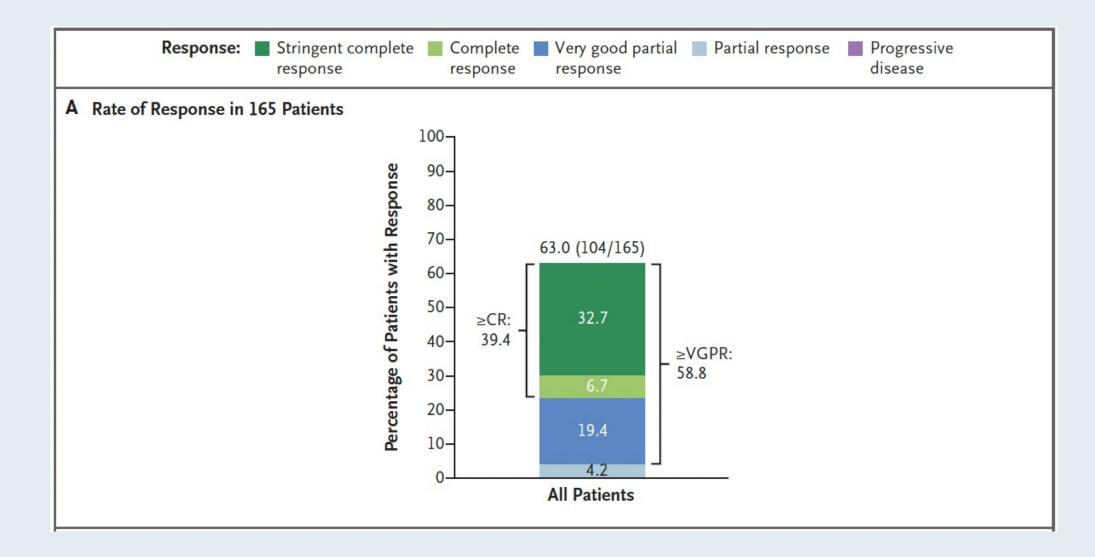
ASCO 2022; Abstract 8007.

Teclistamab, a B-Cell Maturation Antigen (BCMA) x CD3 Bispecific Antibody, in Patients With Relapsed/Refractory Multiple Myeloma (RRMM): Updated Efficacy and Safety Results From MajesTEC-1

Ajay K Nooka (anooka@emory.edu)¹, Philippe Moreau², Saad Z Usmani³, Alfred L Garfall⁴, Niels WCJ van de Donk⁵, Jesús San-Miguel⁶, Albert Oriol⁷, Ajai Chari⁸, Lionel Karlin⁹, Maria-Victoria Mateos¹⁰, Rakesh Popat¹¹, Joaquín Martínez-López¹², Surbhi Sidana¹³, Danielle Trancucci¹⁴, Raluca Verona¹⁵, Suzette Girgis¹⁵, Clarissa Uhlar¹⁵, Tara Stephenson¹⁵, Arnob Banerjee¹⁵, Amrita Krishnan¹⁶

N Engl J Med 2022;[Online ahead of print].

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

Teclistamab in Relapsed or Refractory Multiple Myeloma

P. Moreau, A.L. Garfall, N.W.C.J. van de Donk, H. Nahi, J.F. San-Miguel, A. Oriol, A.K. Nooka, T. Martin, L. Rosinol, A. Chari, L. Karlin, L. Benboubker,
M.-V. Mateos, N. Bahlis, R. Popat, B. Besemer, J. Martínez-López, S. Sidana,
M. Delforge, L. Pei, D. Trancucci, R. Verona, S. Girgis, S.X.W. Lin, Y. Olyslager,
M. Jaffe, C. Uhlar, T. Stephenson, R. Van Rampelbergh, A. Banerjee,
J.D. Goldberg, R. Kobos, A. Krishnan, and S.Z. Usmani

MajesTEC-1: Response to Teclistamab in Patients with R/R MM

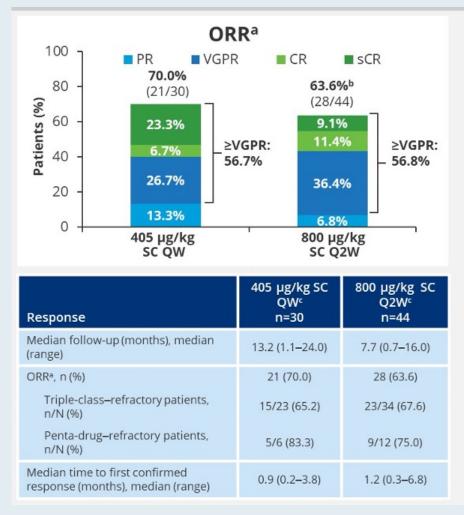
FDA Grants Breakthrough Therapy Designation to Talquetamab for Relapsed/Refractory Multiple Myeloma Press Release: July 1, 2022

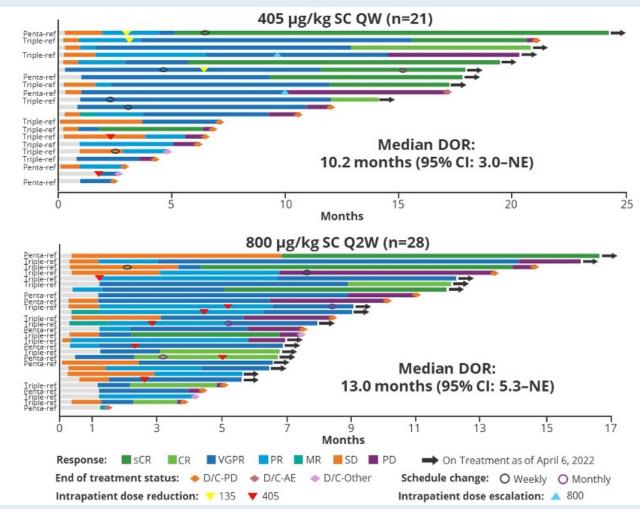
"Talquetamab was granted breakthrough therapy designation by the FDA for the treatment of patients with relapsed/refractory multiple myeloma who were treated with a minimum of 4 previous lines of therapy, including a proteasome inhibitor, an immunomodulatory drug, and an anti-CD38 antibody.

The designation is supported by findings from the phase 1/2 MonumenTAL-1 trial (NCT03399799; NCT04634552), which assessed the agent in patients with relapsed/refractory disease. Data from the study, which were presented at the 2022 American Society of Clinical Oncology Annual Meeting, indicated that patients who were treated with 405 µg/kg of talquetamab (n = 30) experienced an overall response rate (ORR) of 70.0%, including a very good partial response (VGPR) rate or better of 56.7%. Additionally, the ORR among patients treated at the 800 µg/kg dose was 63.6%, including a VGPR or better of 56.8%. Moreover, the stringent complete response (CR) rates were 23.3% and 9.1%, CR rates were 6.7% and 11.4%, the VGPR rates were 26.7% and 36.4%, and PR rates were 13.3% and 6.8% in each respective arm.

Talquetamab is an off-the-shelf T-cell–redirecting bispecific antibody that targets GPRC5D on myeloma cells and CD3 on T cells."

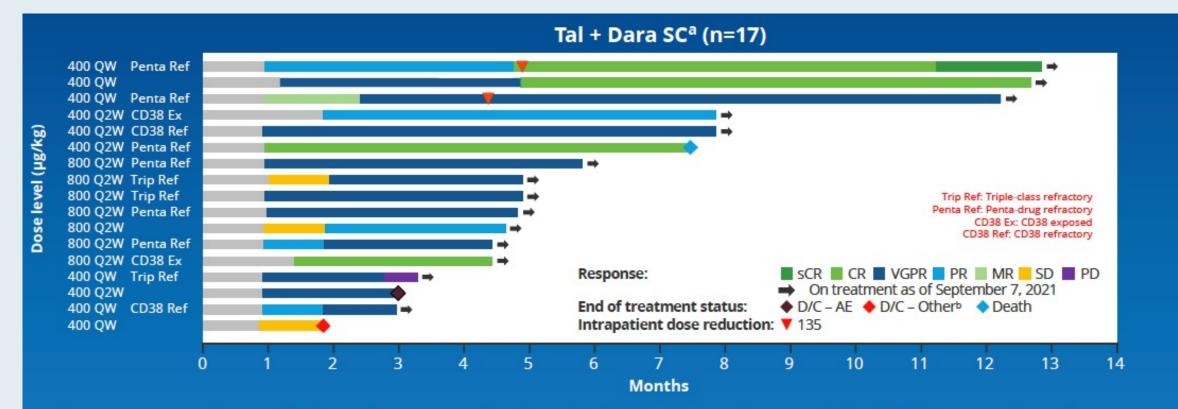
https://www.cancernetwork.com/view/fda-grants-breakthrough-therapy-designation-to-talquentamab-for-relapsed-refractory-multiple-myeloma


Efficacy and Safety of Talquetamab, a G Protein-Coupled Receptor Family C Group 5 Member D x CD3 Bispecific Antibody, in Patients With Relapsed/ Refractory Multiple Myeloma: Updated Results From MonumenTAL-1


Monique C Minnema¹, Amrita Krishnan², Jesus G. Berdeja³, Albert Oriol⁴, Niels WCJ van de Donk⁵, Paula Rodríguez-Otero⁶, Daniel Morillo⁷, María-Victoria Mateos⁸, Luciano J. Costa⁹, Jo Caers¹⁰, Deeksha Vishwamitra¹¹, Joanne Ma¹¹, Shiyi Yang¹¹, Brandi W Hilder¹¹, Jaszianne Tolbert¹¹, Jenna D Goldberg¹², Ajai Chari¹³

ASCO 2022; Abstract 8015.

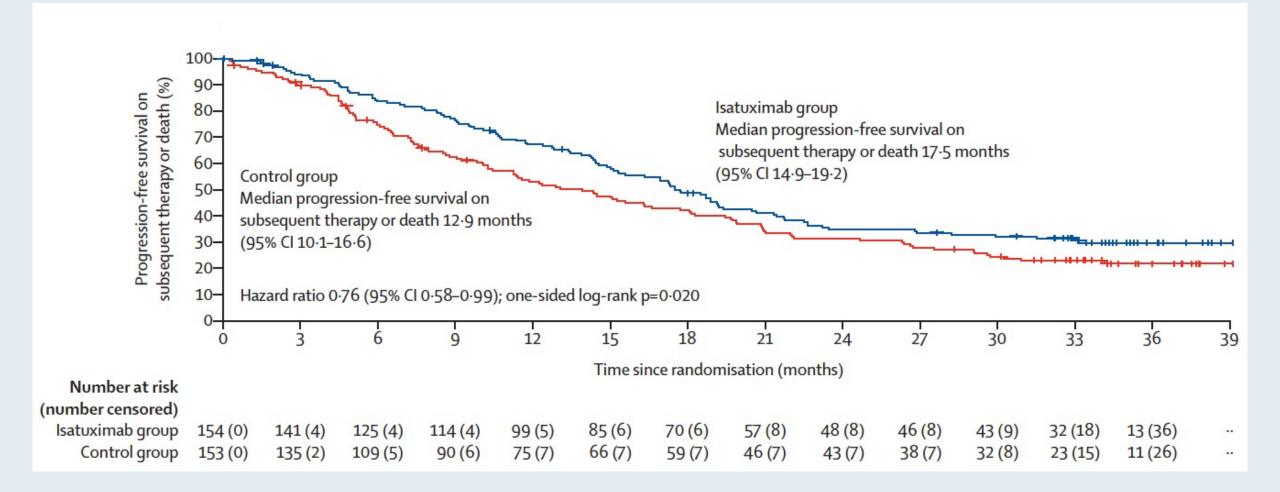
MonumenTAL-1: Duration of Response with Talquetamab for R/R MM



Phase 1b Results for Subcutaneous Talquetamab Plus Daratumumab in Patients With Relapsed/Refractory Multiple Myeloma

Ajai Chari^{1*}, Parameswaran Hari², Nizar Bahlis³, Maria-Victoria Mateos⁴, Niels WCJ van de Donk⁵, Bhagirathbhai Dholaria⁶, Alfred L Garfall⁷, Hartmut Goldschmidt⁸, K Martin Kortüm⁹, Amrita Krishnan¹⁰, Thomas Martin¹¹, Daniel Morillo¹², Albert Oriol¹³, Donna Reece¹⁴, Cesar Rodriguez¹⁵, Paula Rodríguez-Otero¹⁶, Jesús F San-Miguel¹⁶, Saad Z Usmani¹⁷, Raluca Verona¹⁸, Shun Xin Wang Lin¹⁸, Thomas J Prior¹⁸, Mark Wade¹⁸, Brendan Weiss¹⁸, Jenna D Goldberg¹⁹, Elham Askari¹²

TRIMM-2: Duration of Response


• Responses were observed in heavily pretreated patients, including those who were either CD38 exposed or refractory

- Responses were durable and deepened over time
- At a median follow-up of 4.7 months (range 1.8–12.6) for responders, 15/17 responders (88%) were continuing on treatment

Chari A et al. ASH 2021; Abstract 161.

ICARIA-MM: Median PFS on Subsequent Therapy or Death

Richardson PD et al. Lancet Oncol 2022;23(3):416-27.

Multiple Myeloma Agenda

Module 1: Up-Front Treatment of Multiple Myeloma (MM)

Module 2: Management of Relapsed/Refractory MM

Module 3: Other Novel Agents and Strategies

- Available data and ongoing trials evaluating venetoclax for patients with t(11;14) MM or Bcl-2 overexpression
- Sequencing of agents (eg, selinexor, isatuximab) alone or in combination for patients with relapsed/refractory MM
- Mechanism of action and potential clinical role of the CELMoDs (cereblon E3 ligase inhibitors) iberdomide and CC-92480

Multiple Myeloma Agenda

Module 1: Up-Front Treatment of Multiple Myeloma (MM)

Module 2: Management of Relapsed/Refractory MM

Module 3: Other Novel Agents and Strategies

- Available data and ongoing trials evaluating venetoclax for patients with t(11;14) MM or Bcl-2 overexpression
- Sequencing of agents (eg, selinexor, isatuximab) alone or in combination for patients with relapsed/refractory MM
- Mechanism of action and potential clinical role of the CELMoDs (cereblon E3 ligase inhibitors) iberdomide and CC-92480

Venetoclax is efficacious in patients with MM and which of the following biomarkers?

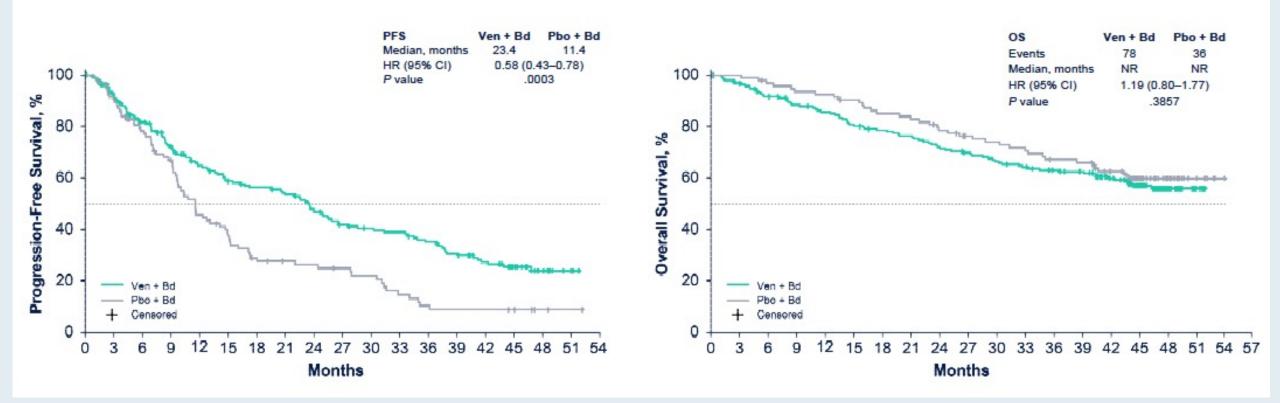
t(11;14)

Bcl-2 overexpression

Efficacy is similar for both

I'm not sure

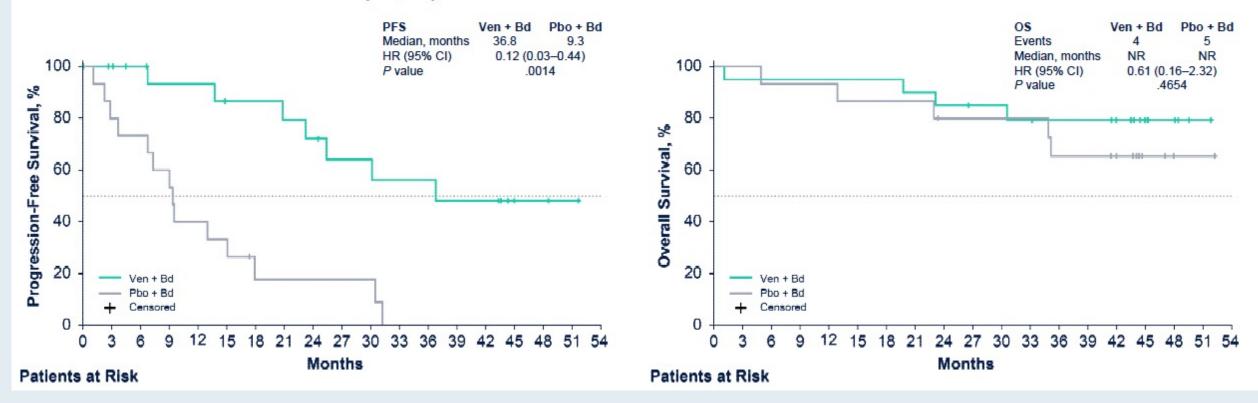
Final Overall Survival Results from BELLINI, a Phase 3 Study of Venetoclax or Placebo in Combination With Bortezomib and Dexamethasone in Relapsed/Refractory Multiple Myeloma


Shaji K. Kumar,¹ Simon J. Harrison,² Michele Cavo,³ Javier de la Rubia,⁴ Rakesh Popat,⁵ Cristina Gasparetto,⁶ Vania Hungria,⁷ Hans Salwender,⁸ Kenshi Suzuki,⁹ Inho Kim,¹⁰ Maika Onishi,¹¹ Grace Ku,¹¹ Rajvineeth Pothacamury,¹² Vasudha Sehgal,¹² Abdullah Masud,¹² Jeremy A. Ross,¹² Edyta Dobkowska,¹³ and Philippe Moreau¹⁴

BELLINI: Updated Survival Results

Investigator-Assessed PFS in All Patients

OS in All Patients



Kumar SK et al. ASH 2021; Abstract 84.

BELLINI: Updated Survival Results for Patients with t(11;14)

Investigator-Assessed PFS in Patients With t(11;14)

OS in Patients With t(11;14)

Kumar SK et al. ASH 2021; Abstract 84.

BELLINI: Updated Survival Results for Patients with High Bcl-2 Expression

Patients With BCL2^{high} OS Ven + Bd PFS Pbo + Bd Ven + Bd Pbo + Bd Median, months 30.1 9.9 Events 17 12 HR (95% CI) 0.37 (0.21-0.64) Median, months NR NR 100 100 P value .0005 HR (95% CI) 0.70 (0.32-1.51) P value .3624 % Progression-Free Survival, 80 80 **Overall Survival, %** 60 60 40 40 20 20 en + Bd Ven + Bd Pbo + Bd Pbo + Bd Censored Censored 0 0 12 15 18 21 24 27 30 33 36 39 42 45 12 15 18 21 24 27 30 33 36 39 42 45 48 9 48 51 54 51 6 0 3 6 9 0 Months Months

OS in Patients With BCL2^{high}

Kumar SK et al. ASH 2021; Abstract 84.

Investigator-Assessed PFS in

Multiple Myeloma Agenda

Module 1: Up-Front Treatment of Multiple Myeloma (MM)

Module 2: Management of Relapsed/Refractory MM

Module 3: Other Novel Agents and Strategies

- Available data and ongoing trials evaluating venetoclax for patients with t(11;14) MM or Bcl-2 overexpression
- Sequencing of agents (eg, selinexor, isatuximab) alone or in combination for patients with relapsed/refractory MM
- Mechanism of action and potential clinical role of the CELMoDs (cereblon E3 ligase inhibitors) iberdomide and CC-92480

In general, how would you prefer to use selinexor in the treatment of relapsed/refractory MM?

Twice a week in combination with dexamethasone

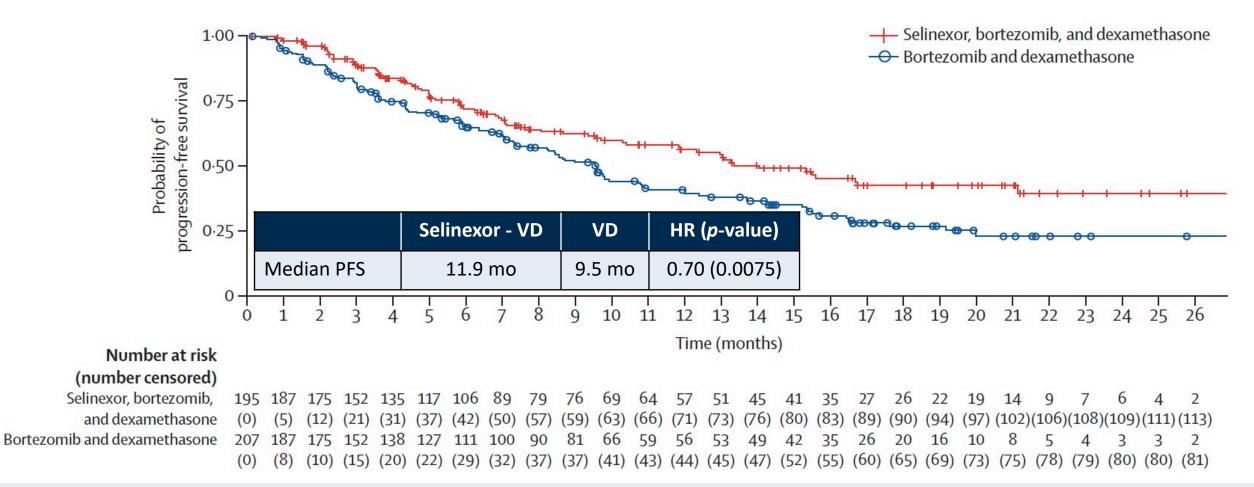
Once a week in combination with dexamethasone

Once a week in combination with bortezomib and dexamethasone

I do not use selinexor

Other

Lancet 2020;396:1563-73


Articles

Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): a randomised, open-label, phase 3 trial

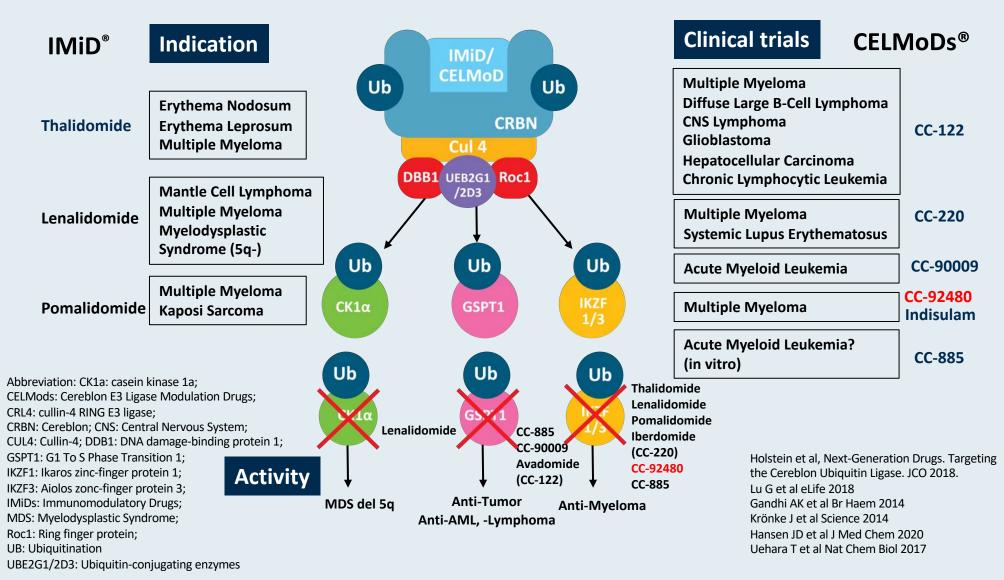
Sebastian Grosicki, Maryana Simonova, Ivan Spicka, Ludek Pour, Iryrna Kriachok, Maria Gavriatopoulou, Halyna Pylypenko, Holger W Auner, Xavier Leleu, Vadim Doronin, Ganna Usenko, Nizar J Bahlis, Roman Hajek, Reuben Benjamin, Tuphan K Dolai, Dinesh K Sinha, Christopher P Venner, Mamta Garg, Mercedes Gironella, Artur Jurczyszyn, Pawel Robak, Monica Galli, Craig Wallington-Beddoe, Atanas Radinoff, Galina Salogub, Don A Stevens, Supratik Basu, Anna M Liberati, Hang Quach, Vesselina S Goranova-Marinova, Jelena Bila, Eirini Katodritou, Hanna Oliynyk, Sybiryna Korenkova, Jeevan Kumar, Sundar Jagannath, Phillipe Moreau, Moshe Levy, Darrell White, Moshe E Gatt, Thierry Facon, Maria V Mateos, Michele Cavo, Donna Reece, Larry D Anderson Jr, Jean-Richard Saint-Martin, Jacqueline Jeha, Anita A Joshi, Yi Chai, Lingling Li, Vishnuvardhan Peddagali, Melina Arazy, Jatin Shah, Sharon Shacham, Michael G Kauffman, Meletios A Dimopoulos, Paul G Richardson*, Sosana Delimpasi*

BOSTON: Progression-Free Survival (ITT Population)

Grosicki S et al. *Lancet* 2020;396(10262):1563-73.

Multiple Myeloma Agenda

Module 1: Up-Front Treatment of Multiple Myeloma (MM)


Module 2: Management of Relapsed/Refractory MM

Module 3: Other Novel Agents and Strategies

- Available data and ongoing trials evaluating venetoclax for patients with t(11;14) MM or Bcl-2 overexpression
- Sequencing of agents (eg, selinexor, isatuximab) alone or in combination for patients with relapsed/refractory MM
- Mechanism of action and potential clinical role of the CELMoDs (cereblon E3 ligase inhibitors) iberdomide and CC-92480

CC-92480/Dexamethasone Combined with Bortezomib or Daratumumab or Carfilzomib

McCarthy P. ASCO 2020 Discussant

Iberdomide (IBER) in Combination with Dexamethasone (DEX) in Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Results from the Dose-Expansion Phase of the CC-220-MM-001 Trial

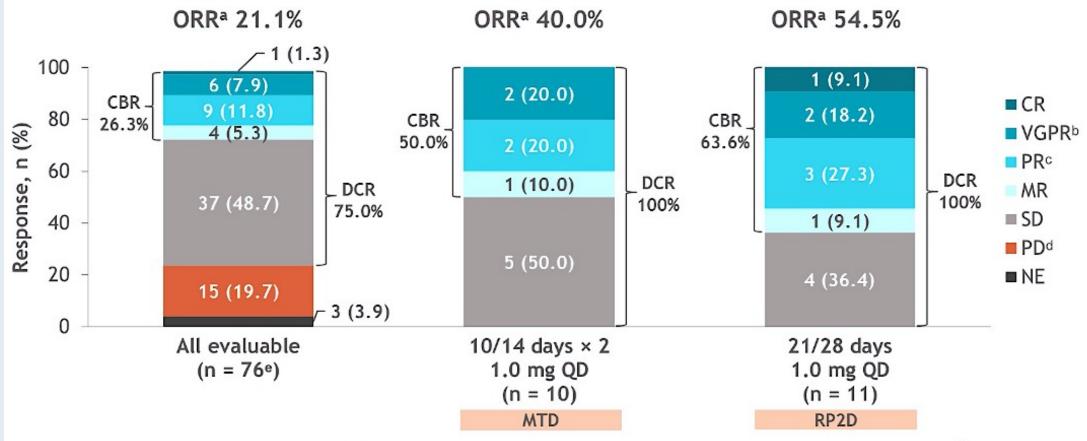
Lonial S et al. ASH 2021;Abstract 162.

CC-220-MM-001: Responses with IBER + DEX for R/R MM

	IBER + DEX (N = 107)	IBER + DEX post anti- BCMA therapy (N = 24)
Response, n (%)		
ORRª	28 (26.2)	6 (25.0)
sCR	1 (0.9)	0
CR	0	1 (4.2)
VGPR	8 (7.5)	1 (4.2)
PR	19 (17.8)	4 (16.7)
MR	11 (10.3)	4 (16.7)
SD	46 (43.0)	8 (33.3)
PD	15 (14.0)	4 (16.7)
NE	7 (6.5)	2 (8.3)
Median DoR (95% CI), months	7.0 (4.5–11.3)	NA

^aDefined as PR or better.

BCMA, B-cell maturation antigen; CI, confidence interval; CR, complete response; DEX, dexamethasone; DoR, duration of response; IBER, iberdomide; MR, minimal response; NA not available; NE, not evaluable; ORR, overall response rate; PD, progressive disease; PR, partial response; sCR, stringent complete response; SD, stable disease; VGPR, very good partial response.



First-in-Human Phase I Study of the Novel CELMoD Agent CC-92480 Combined with Dexamethasone (DEX) in Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM)

Richardson PG et al. ASCO 2020;Abstract 8500.

CC-92480 with Dexamethasone: Response

At the RP2D 1.0 mg QD 21/28 days, 7 out of 11 patients were triple-class-refractory^f

 1 patient had CR, 1 VGPR, 2 PR, and 1 MR

MTD = maximum tolerated dose; RP2D = recommended Phase II dose

Richardson PG et al. ASCO 2020; Abstract 8500.

Thank you for joining us!

CME/MOC and NCPD credit information will be emailed to each participant within 5 business days.

We are taking a short break!

The program will resume at 1:05 PM PT (4:05 PM ET)

Up Next...

Drs Brad Kahl and Craig Moskowitz discuss the management of chronic lymphocytic leukemia and lymphomas

