# What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of ER-Positive Breast Cancer

#### Part 2 of a 2-Part CME Satellite Symposium Series Held in Conjunction with the 2022 San Antonio Breast Cancer Symposium<sup>®</sup>

Thursday, December 8, 2022 7:15 PM – 9:15 PM CT

#### Faculty

Aditya Bardia, MD, MPH Matthew P Goetz, MD Virginia Kaklamani, MD, DSc Kevin Kalinsky, MD, MS Hope S Rugo, MD

Moderator Neil Love, MD



#### Faculty



Aditya Bardia, MD, MPH Director, Breast Cancer Research Program Associate Professor Harvard Medical School Attending Physician Massachusetts General Hospital Boston, Massachusetts



#### Matthew P Goetz, MD

Erivan K Haub Family Professor of Cancer Research Honoring Richard F Emslander, MD Professor of Oncology and Pharmacology Enterprise Deputy Director, Translational Research Director, Mayo Clinic Breast Cancer SPORE Mayo Clinic Rochester, Minnesota



Virginia Kaklamani, MD, DSc Professor of Medicine Ruth McLean Bowman Bowers Chair in Breast Cancer Research and Treatment AB Alexander Distinguished Chair in Oncology Associate Director for Clinical Research Leader of the Breast Cancer Program UT Health San Antonio The University of Texas MD Anderson Cancer Center San Antonio, Texas







#### Kevin Kalinsky, MD, MS

Associate Professor Department of Hematology and Medical Oncology Emory University School of Medicine Director, Glenn Family Breast Center Director, Breast Medical Oncology Winship Cancer Institute of Emory University Atlanta, Georgia

Hope S Rugo, MD Professor of Medicine Director, Breast Oncology and Clinical Trials Education University of California, San Francisco Helen Diller Family Comprehensive Cancer Center San Francisco, California



**Neil Love, MD** Research To Practice



#### **Clinicians in the Meeting Room**

#### Networked iPads are available.



Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.



Answer Survey Questions: Complete the pre- and postmeeting surveys. Survey results will be presented and discussed throughout the meeting.



Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.



Complete Your Evaluation: Tap the CME Evaluation button to complete your evaluation electronically to receive credit for your participation.

For assistance, please raise your hand. Devices will be collected at the conclusion of the activity.



#### **Clinicians Attending via Zoom**

|--|

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.



Answer Survey Questions: Complete the pre- and postmeeting surveys. Survey results will be presented and discussed throughout the meeting.



Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.



Get CME Credit: A CME credit link will be provided in the chat room at the conclusion of the program.



#### **About the Enduring Program**

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.



An email will be sent to all attendees when the activity is available.

• To learn more about our education programs, visit our website, <u>www.ResearchToPractice.com</u>



# Addressing Current Questions and Controversies in the Management of Chronic Lymphocytic Leukemia — What Clinicians Want to Know

Part 1 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64<sup>th</sup> ASH Annual Meeting

### Friday, December 9, 2022 11:30 AM – 1:30 PM CT (12:30 PM – 2:30 PM ET)

#### Faculty

Alexey V Danilov, MD, PhD Matthew S Davids, MD, MMSc Professor Dr Arnon P Kater, MD, PhD

> **Moderator** Neil Love, MD

Lindsey Roeker, MD Philip A Thompson, MB, BS



# Addressing Current Questions and Controversies in the Management of Hodgkin and Non-Hodgkin Lymphoma — What Clinicians Want to Know

Part 2 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64<sup>th</sup> ASH Annual Meeting

#### Friday, December 9, 2022 3:15 PM – 5:15 PM CT (4:15 PM – 6:15 PM ET)

#### Faculty

Jonathan W Friedberg, MD, MMSc Brad S Kahl, MD David G Maloney, MD, PhD Loretta J Nastoupil, MD Sonali M Smith, MD

Moderator Neil Love, MD



# Addressing Current Questions and Controversies in the Management of Multiple Myeloma — What Clinicians Want to Know

Part 3 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64<sup>th</sup> ASH Annual Meeting

### Friday, December 9, 2022 7:00 PM – 9:00 PM CT (8:00 PM – 10:00 PM ET)

#### Faculty

Jesús G Berdeja, MD Rafael Fonseca, MD Sagar Lonial, MD Robert Z Orlowski, MD, PhD Noopur Raje, MD

Moderator Neil Love, MD





Laila Agrawal, MD Norton Cancer Institute Louisville, Kentucky



Jennifer L Dallas, MD Oncology Specialists of Charlotte Charlotte, North Carolina



**Susmitha Apuri, MD** Florida Cancer Specialists Lutz, Florida



**Kapisthalam (KS) Kumar, MD** Florida Cancer Specialists Trinity, Florida



Alan B Astrow, MD Weill Cornell Medicine Brooklyn, New York



#### **Commercial Support**

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Exact Sciences Corporation, Lilly, Novartis, Sanofi, and TerSera Therapeutics LLC.

#### Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



#### **Dr Love — Disclosures**

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.



#### **Dr Bardia — Disclosures**

| Consulting Agreements | AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Foundation Medicine, Genentech, a member of the<br>Roche Group, Gilead Sciences Inc, Lilly, Merck, Novartis, Pfizer Inc, Phillips HealthCare Services Ltd, Radius<br>Health Inc, Sanofi |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contracted Research   | AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Genentech, a member of the Roche Group, Gilead<br>Sciences Inc, Lilly, Merck, Novartis, Pfizer Inc, Radius Health Inc, Sanofi                                                           |



#### **Dr Goetz — Disclosures**

| Advisory Committee                                               | ARC Therapeutics, Biotheranostics Inc, Blueprint Medicines, Sanofi                                                   |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Consulting Agreements                                            | AstraZeneca Pharmaceuticals LP, Biovica, Context Therapeutics, Eagle Pharmaceuticals, Lilly, Novartis,<br>Pfizer Inc |
| Contracted Research                                              | Lilly, Pfizer Inc, Sermonix Pharmaceuticals                                                                          |
| Nonrelevant Financial<br>Relationship (CME<br>Presentation Fees) | Clinical Education Alliance, Medscape, MJH Life Sciences                                                             |
| Nonrelevant Financial<br>Relationship (Panelist)                 | Total Health Conferencing                                                                                            |



#### Dr Kaklamani — Disclosures

| Advisory Committee and<br>Consulting Agreements  | AstraZeneca Pharmaceuticals LP, Athenex, Gilead Sciences Inc, Puma Biotechnology Inc                                                                                          |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contracted Research                              | Eisai Inc                                                                                                                                                                     |
| Data and Safety<br>Monitoring<br>Board/Committee | Sanofi                                                                                                                                                                        |
| Speakers Bureau                                  | AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Exact Sciences Corporation, Genentech, a member of the Roche Group, Gilead Sciences Inc, Novartis, Pfizer Inc, Seagen Inc |



### Dr Kalinsky — Disclosures

| Advisory Committee                               | D Pharma PLC, AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Gilead Sciences Inc, Lilly, Menarini<br>Silicon Biosystems, Merck, Mersana Therapeutics Inc, Myovant Sciences, Novartis, OncoSec Medical, Pfizer<br>Inc, Puma Biotechnology Inc, Seagen Inc, Takeda Phamraceuticals USA Inc |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contracted Research                              | Ascentage Pharma, AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Genentech, a member of the<br>Roche Group, Lilly, Novartis                                                                                                                                                              |
| Data and Safety<br>Monitoring<br>Board/Committee | Merck                                                                                                                                                                                                                                                                                         |



#### **Dr Rugo — Disclosures**

| Consultancy/Advisory<br>Support        | Blueprint Medicines, Napo Pharmaceuticals Inc, Puma Biotechnology Inc                                                                                                                                                                                                                                      |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contracted Research                    | Ambrx, Astellas, AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc, Genentech, a member of the Roche<br>Group, Gilead Sciences Inc, GlaxoSmithKline, Lilly, Merck, Novartis, OBI Pharma Inc, Pfizer Inc, Pionyr<br>Immunotherapeutics, Seagen Inc, Sermonix Pharmaceuticals, Taiho Oncology Inc, Veru Inc |
| Travel Support to<br>Academic Meetings | AstraZeneca Pharmaceuticals LP, Gilead Sciences Inc, Merck.                                                                                                                                                                                                                                                |



# What Clinicians Want to Know: Addressing Current Questions and Controversies in the Management of ER-Positive Breast Cancer

#### Part 2 of a 2-Part CME Satellite Symposium Series Held in Conjunction with the 2022 San Antonio Breast Cancer Symposium<sup>®</sup>

Thursday, December 8, 2022 7:15 PM – 9:15 PM CT

#### Faculty

Aditya Bardia, MD, MPH Matthew P Goetz, MD Virginia Kaklamani, MD, DSc Kevin Kalinsky, MD, MS Hope S Rugo, MD

Moderator Neil Love, MD



#### Agenda

**Module 1:** Current Role of Genomic Assays for Hormone Receptor (HR)-Positive Localized Breast Cancer — Dr Goetz

Module 2: Optimizing the Management of Localized ER-Positive Breast Cancer — Dr Kaklamani

**Module 3:** Selection and Sequencing of Therapy for Patients with ER-Positive Metastatic Breast Cancer (mBC) — Dr Kalinsky

Module 4: Recent Appreciation of HER2 Low as a Unique Subset of HR-Positive Breast Cancer — Dr Bardia

Module 5: Novel Strategies Under Investigation for Patients with HR-Positive mBC — Dr Rugo



#### Agenda

**Module 1:** Current Role of Genomic Assays for Hormone Receptor (HR)-Positive Localized Breast Cancer — Dr Goetz

Real World Cases and Questions

Module 2: Optimizing the Management of Localized ER-Positive Breast Cancer — Dr Kaklamani

Real World Cases and Questions

**Module 3:** Selection and Sequencing of Therapy for Patients with ER-Positive Metastatic Breast Cancer (mBC) — Dr Kalinsky

Real World Cases and Questions

Module 4: Recent Appreciation of HER2 Low as a Unique Subset of HR-Positive Breast Cancer — Dr Bardia

Real World Cases and Questions

Module 5: Novel Strategies Under Investigation for Patients with HR-Positive mBC — Dr Rugo

Real World Cases and Questions



### MODULE 1: Current Role of Genomic Assays for Hormone Receptor (HR)-Positive Localized Breast Cancer — Dr Goetz



Case Presentation: 42-year-old premenopausal woman with 9-mm, Grade III, ER/PR-positive, HER2-negative, nodenegative IDC – 21-gene RS: 22



Dr Alan Astrow (Brooklyn, New York)



Case Presentation: 35-year-old premenopausal woman with 3.6-cm, ER/PR-positive, HER2-low (IHC 1+), sentinel node-positive (4/4) multifocal IDC, s/p bilateral mastectomies, adjuvant T  $\rightarrow$  AC and OFS/AI — Ki67: 50%



Dr Laila Agrawal (Louisville, Kentucky)



# Current Role of Genomic Assays for Hormone Receptor (HR)-Positive Localized Breast Cancer

Matthew Goetz, M.D. Erivan K. Haub Family Professor of Cancer Research Honoring Richard F. Emslander, M.D. Professor of Oncology and Pharmacology Division of Medical Oncology, Department of Oncology Mayo Clinic in Rochester, MN

## **Outline**

- Phase III RxPONDER trial evaluating the role of chemotherapy for patients with ER-positive, HER2-negative localized breast cancer with 1 to 3 positive lymph nodes and a 21-gene Recurrence Score (RS) of ≤25
- Updated findings, including 12-year event rates, from the Phase III TAILORx study
- 21-gene RS and neoadjuvant chemotherapy decision making
- Insight regarding poor correlation between the RS and chemotherapy response in premenopausal patients

# Biomarkers for Adjuvant Endocrine and Chemotherapy in Early-Stage Breast Cancer: ASCO Guideline Update

Fabrice Andre, MD<sup>1</sup>; Nofisat Ismaila, MD, MSc<sup>2</sup>; Kimberly H. Allison, PhD<sup>3</sup>; William E. Barlow, PhD<sup>4</sup>; Deborah E. Collyar, BSc<sup>5</sup>; Senthil Damodaran, MD, PhD<sup>6</sup>; N. Lynn Henry, MD, PhD<sup>7</sup>; Komal Jhaveri, MD<sup>8,9</sup>; Kevin Kalinsky, MD, MS<sup>10</sup>; Nicole M. Kuderer, MD<sup>11</sup>; Anya Litvak, MD<sup>12</sup>; Erica L. Mayer, MD, MPH<sup>13</sup>; Lajos Pusztai, MD<sup>14</sup>; Rachel Raab, MD<sup>15</sup>; Antonio C. Wolff, MD<sup>16</sup>; and Vered Stearns, MD<sup>16</sup>

RTP RESEARCH TO PRACTICE

#### **Biomarkers for Adjuvant Endocrine and Chemotherapy in Localized Breast Cancer: ASCO Guideline Update**







Andre F et al. J Clin Oncol 2022;40(16):1816-37.

#### RxPONDER: A Clinical Trial <u>Rx</u> for <u>Positive Node</u>, <u>Endocrine</u> <u>R</u>esponsive Breast Cancer

Updated results from a phase 3 randomized clinical trial in participants (pts) with 1-3 positive lymph nodes, hormone receptor-positive (HR+) and HER2-negative breast cancer with recurrence score of 25 or less: SWOG S1007

Kevin Kalinsky, William E Barlow, Julie R Gralow, Funda Meric-Bernstam, Kathy S Albain, Daniel F Hayes, Nancy U Lin, Edith A Perez, Lori J Goldstein, Stephen K Chia, Sukhbinder Dhesy-Thind, Priya Rastogi, Emilio Alba, Suzette Delaloge, Miguel Martin, Catherine M Kelly, Manuel Ruiz-Borrego, Miguel Gil Gil, Claudia Arce-Salinas, Etienne
G.C. Brain, Eun Sook Lee, Jean-Yves Pierga, Begoña Bermejo, Manuel Ramos-Vazquez, Kyung Hae Jung, Jean-Marc Ferrero, Anne F. Schott, Steven Shak, Priyanka Sharma, Danika L. Lew, Jieling Miao, Debasish Tripathy, Lajos Pusztai, Gabriel N. Hortobagyi

On Behalf of the RxPonder Investigators

SWOG MERCE





#### **RxPONDER Trial Schema**



\* After randomization of 2,493 pts, the protocol was amended to exclude enrollment of pts with pN1mic as only nodal disease.

+ Approved chemotherapy regimens included TC, FAC (or FEC), AC/T (or EC/T), FAC/T (or FEC/T). AC alone or CMF not allowed.

LN = lymph node; SLNB = sentinel lymph node biopsy; ALND = axillary lymph node dissection; pts = patients

Kalinsky K et al. SABCS 2020; Abstract GS3-00.

#### **RxPONDER Updated Analysis: IDFS Stratified by Menopausal Status**

Premenopausal

Postmenopausal



IDFS = invasive disease-free survival



Kalinsky K et al. SABCS 2021; Abstract GS2-07.

#### **RxPONDER Updated Analysis: DRFS Stratified by Menopausal Status**



#### Premenopausal

DRFS = distant recurrence-free survival



Kalinsky K et al. SABCS 2021; Abstract GS2-07.

#### **RxPONDER New Analysis: DRFI Stratified by Menopausal Status**

#### Postmenopausal

Premenopausal



Time from randomization assignment to date of first invasive recurrence (distant) or death from breast cancer

In multivariate analysis, higher RS (continuous) and larger tumor size remained independently prognostic in both treatment arms

DRFI = distant recurrence-free interval



Kalinsky K et al. SABCS 2021; Abstract GS2-07.

#### <u>Trial Assigning IndividuaLized Options for TReatment (TAILORx)</u>: An Update Including 12-Year Event Rates

Joseph A. Sparano, Robert J. Gray, Della F. Makower, Kathy S. Albain, Daniel F. Hayes, Charles E. Geyer, Elizabeth Claire Dees, Matthew P. Goetz, John A. Olson, Jr., Tracy G. Lively, Sunil Badve, Thomas J. Saphner, Timothy J. Whelan, Virginia Kaklamani, & George W. Sledge, Jr.

on behalf of the TAILORx Investigators



Funding: U.S. NIH/NCI U10CA180820, U10CA180794, UG1CA189859, UG1CA190140, UG1CA233160, UG1CA23337, UG1CA189869; U.S. Postal Service Breast Cancer Stamp Fund; Canadian Cancer Society Research Institute grants 015469, 021039; Breast Cancer Research Foundation, Komen Foundation.

# **TAILORx Study Design: Treatment Assignment & Randomization**

Accrued Between April 2006 – October 2010



### TAILORx: Updated Analysis - Kaplan-Meier Curves in RS 11-25 Arms (ITT population)



### **TAILORx: Updated Analysis- Kaplan-Meier Curves** in All Arms (ITT population)



# **TAILORx:** Updated Analysis – Event Rates in RS 11-25 Arms and < 50 Years (ITT Population)


#### TAILORx: Updated Analysis - Effect of Age, RS, and Clinical Risk on Chemotherapy Benefit (ITT Population)



## Conclusion

- Adjuvant chemotherapy provides no benefit in postmenopausal ER+/HER2- node negative patients (RS 11-25) and postmenopausal ER+/HER2-, 1-3 + LN (RS 0-25).
- Why did chemotherapy provide benefit in TailoRx and RxPonder premenopausal patients?
  - Endocrine Hypothesis:
    - Endocrine only arm: Inadequate endocrine therapy delivered (mostly tamoxifen and without OFS)
    - Chemotherapy treatment resulted in ovarian suppression not measured adequately
  - Cytotoxic hypothesis: chemotherapy eliminates micro-metastatic disease, independent of endocrine effects<sup>1</sup>

#### SOFT and TEXT

#### **TEXT and SOFT Designs**



Pagani et al. NEJM 2014; Francis et al. NEJM 2014, Regan SABCS 2021

### AI Question: SOFT+TEXT Overall Populations 13 years median follow-up



E+OFS vs T+OFS: absolute reduction in distant recurrence, 1.8% at 12 years absolute reduction in death, 1.0% at 12 years

pyfu=person-years follow-up

Regan SABCS 2021 and J Clin Oncol (in press)

### Polychemotherapy versus not, by entry age <50 or 50-69 years and ER status (Oxford Overview)



Early Breast Cancer Trialists' Collaborative Group (EBCTCG)<sup>:</sup> Lancet 2005

#### **BR009: Schema (slide courtesy of Terry Mamounas)**







# Outline

- Phase III RxPONDER trial evaluating the role of chemotherapy for patients with ER-positive, HER2-negative localized breast cancer with 1 to 3 positive lymph nodes and a 21-gene Recurrence Score (RS) of ≤25
- Updated findings, including 12-year event rates, from the Phase III TAILORx study
- 21-gene RS and neoadjuvant chemotherapy decision making
- Insight regarding poor correlation between the RS and chemotherapy response in premenopausal patients

#### Meta-analysis: pCR rates in Breast Cancer Patients Receiving Neoadjuvant Chemotherapy stratified based on 21-gene expression assay at diagnosis. Is pCR the best endpoint to determine chemotherapy benefit?

|                                                       | pCR                                                                     |                                                   |           |                    |                                                       |
|-------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|-----------|--------------------|-------------------------------------------------------|
| Reference                                             | High<br>recurrence score                                                | Low–intermediate<br>recurrence score              | Weight(%) | Risk difference    | Risk difference                                       |
| High recurrence sco                                   | ore >25                                                                 |                                                   |           |                    |                                                       |
| Zelnak <i>et al.</i> 25                               | 3 of 17                                                                 | 0 of 11                                           | 5.9       | 0.18 (-0.04, 0.39) |                                                       |
| Bear <i>et al.</i> <sup>29</sup>                      | 2 of 14                                                                 | 0 of 14                                           | 6.2       | 0.14 (-0.07, 0.35) |                                                       |
| Kantor <i>et al.</i> <sup>26</sup>                    | 47 of 605                                                               | 15 of 772                                         | 30.9      | 0.06 (0.03, 0.08)  | •                                                     |
| Thekkekara et al.23                                   | 11 of 70                                                                | 0 of 40                                           | 17.8      | 0.16 (0.07, 0.25)  |                                                       |
| Subtotal                                              | 63 of 706                                                               | 15 of 837                                         | 60.9      | 0.11 (0.03, 0.18)  | •                                                     |
| Heterogeneity: $\tau^2 = 0$<br>Test for overall effec | $0.00 \chi^2 = 5.75, 3 \text{ d.f.}, \lambda$<br>t: Z = 2.91, P = 0.004 | <i>P</i> = 0.12; <i>I</i> <sup>2</sup> = 48%      |           |                    |                                                       |
| Divot et el 27                                        | 7 of 04                                                                 |                                                   | <u> </u>  | 0.00 (0.01.0.10)   |                                                       |
| Pivol <i>et al.</i> -'                                | 7 01 24                                                                 | 50157<br>0 of 90                                  | 6.9       | 0.20(0.01,0.40)    |                                                       |
| Seren et al.28                                        | 4 01 24<br>0 of 22                                                      | 0 01 30<br>0 of 27                                | 9.7       | 0.17(0.01, 0.32)   | +                                                     |
| Subtatel                                              | 0 01 23                                                                 | 0 01 37<br>E of 120                               | 22.5      | 0.00(-0.07, 0.07)  |                                                       |
| Subiotal                                              |                                                                         | 501130                                            | 39.1      | 0.11 (-0.10, 0.33) |                                                       |
| Heterogeneity: $\tau^2 = 0$<br>Test for overall effec | 0.03 χ <sup>z</sup> = 14.66, 2 d.t.,<br>t: Z= 1.06, P=0.29              | <i>P</i> = 0.001; <i>I</i> <sup>∠</sup> = 86%     |           |                    |                                                       |
| Total                                                 | 74 of 777                                                               | 20 of 967                                         | 100.0     | 0.10 (0.04, 0.15)  | •                                                     |
|                                                       |                                                                         |                                                   |           |                    | ⊢                                                     |
| Heterogeneity: $\tau^2 = 0$                           | 0.00 χ <sup>2</sup> = 14.00, 6 d.f.,                                    | <i>P</i> = 0.03; <i>I</i> <sup>2</sup> = 57%      |           |                    | -1 -0.5 0 0.5 1                                       |
| Test for overall effec<br>Test for subgroup di        | t: $Z$ = 3.24, $P$ = 0.001<br>fferences: $\chi^2$ = 0.01, 1             | d.f., <i>P</i> = 0.94; <i>I</i> <sup>2</sup> = 0% |           | Favours low-in     | intermediate recurrence score Favours high recurrence |

#### ER+/HER2- Breast Cancer Treated with Neoadjvuant Chemotherapy: Total pCR vs nodal pCR

NCDB: 2010-2018, 20,084 cN+ ER+/HER2- BC pts treated with NAC.

• 7.4% had total pCR



Nodal pCR is highly prognostic for survival in ER+/HER2- Breast Cancer



#### NCDB: Nodal pCR more likely in a) premenopausal pts and b) high Ki-67.

RxPONDER inclusion criteria (cT1-3, N1, Grade I or II, ER+/PR+/Her2-)

- Nodal pCR varied by age: 17.5% in age < 50 vs 13.6% in age ≥ 50, p<0.001
- Nodal pCR also varied by Ki-67: 16.8% in Ki-67 ≥ 20% vs 7.9% in Ki-67 < 20%, p<0.001

Moldovenau et al. SABCS 2022

#### Molecular Drivers of Oncotype DX, A TransATAC Study: The RS is mainly driven by the Estrogen Module

60

60

40

60

60

82 <sup>40</sup> 20

High

Int

Grade

Low

RS

SH 20

RS



The estrogen module explained more than half of RS's variance (59.1%), while the proliferation module accounted for approximately a fifth of RS's information (19.4%)

Buus et al. J Clin Oncol 2021

# Conclusion

- TAILORx and RxPONDER have provided prospective evidence for lack of adjuvant chemotherapy benefit in postmenopausal patients with RS <25</li>
- In contrast, the RS may not be predictive of chemotherapy benefit in age <50 patients</li>
  - NRG BR009 will provide the definitive answer to this question
- The RS is poorly correlated with the proliferation module but highly correlated with ER
- Additional clinical and pathological biomarkers may provide additional insight into those patients that derive benefit from chemotherapy.

## MODULE 2: Optimizing the Management of Localized ER-Positive Breast Cancer — Dr Kaklamani



Case Presentation: 40-year-old woman with 5.5-cm, ER/ PR-positive, HER2-negative, node-positive (20/21) IDC, s/p bilateral mastectomies, BSO, adjuvant AC-T and initiation of letrozole/abemaciclib – Ki-67: 3%



Dr Susmitha Apuri (Lutz, Florida)



Case Presentation: 56-year-old woman with de novo ER-positive, PR-negative, HER2-negative ulcerated BC with pulmonary and extensive spinal metastases



#### Dr Jennifer Dallas (Charlotte, North Carolina)











# Optimizing the Management of Localized ER-Positive Breast Cancer

## Virginia Kaklamani, MD DSc

Professor of Medicine Leader, Breast Oncology Program



UT Health MDAnderson San Antonio MDAnderson

- Optimal duration of ET
- Role of OFS in preserving oncofertility and

improving outcomes

- CDK4/6 inhibition in EBC
- PARPi in EBC



#### EBCTCG Meta-analysis of 62,923 women with ER+ BC







| No. | at I | Risk |
|-----|------|------|
|-----|------|------|

| N4-9 | 12,333 | 8,116  | 2165 | 259  | 52  |
|------|--------|--------|------|------|-----|
| N1-3 | 31,936 | 23,576 | 7250 | 949  | 183 |
| N0   | 29,925 | 24,081 | 8571 | 1982 | 414 |

#### No. of Events —

annual rate (%)

| N4–9 | 2568 (4.8) | 969 (4.0)  | 121 (3.1) | 13 (2.2) |
|------|------------|------------|-----------|----------|
| N1-3 | 3126 (2.2) | 1421 (1.9) | 241 (1.7) | 39 (1.8) |
| N0   | 1646 (1.2) | 835 (1.1)  | 272 (1.3) | 68 (1.4) |

Factors associated with risk of late recurrence:

- LN status
- Tumor size
- Tumor grade
- PR and HER2 not predictive

#### **Lowest-stage (T1N0) disease: Risk of ANY breast cancer event** 21% risk, years 5-20 (14% DISTANT recurrence + 7% only local or contralateral)



Annual event rate (and no. of events), by 5-year time period T1N0 (n=16K): 1.4% (807) 1.7% (309) 1.8% (54)



N Engl J Med 2017; 377:1836-1846

#### Clinical trials of Extended Endocrine Therapy

| Trial    | Therapy                    | n    | Absolute Benefit<br>in DFS |
|----------|----------------------------|------|----------------------------|
| ATLAS    | Tam x 5 yr                 | 6846 | 3%*                        |
| aTTom    | Tam x 5 yr                 | 6953 | 3%*                        |
| MA.17    | AI x 5 yr                  | 5187 | 4.6%*                      |
| MA.17R   | AI x 5 yr                  | 1918 | 4%*                        |
| B14      | Tam x 5 yr                 | 1172 | 6%*                        |
| B33      | AI x 5 yr                  | 1598 | 2%                         |
| B42      | AI x 5 yr                  | 3966 | 3%                         |
| DATA     | AI x 3 yr                  | 1912 | 4%                         |
| IDEAL    | AI x 2.5 yr                | 1824 | 3%                         |
| ABCSG-6a | AI x 3 yr                  | 856  | 4.7%                       |
| ABCSG16  | AI x 3 yr                  | 3484 | -0.8%                      |
| SOLE     | AI cont vs<br>intermittent | 4884 | 1.7%                       |



#### Prediction of Late Disease Recurrence and Extended Adjuvant Letrozole Benefit by the HOXB13/IL17BR Biomarker

Dennis C. Sgroi, Erin Carney, Elizabeth Zarrella, Lauren Steffel, Shemeica N. Binns, Dianne M. Finkelstein, Jackie Szymonifka, Atul K. Bhan, Lois E. Shepherd, Yi Zhang, Catherine A. Schnabel, Mark G. Erlander, James N. Ingle, Peggy Porter, Hyman B. Muss, Katherine I. Pritchard, Dongsheng Tu, David L. Rimm, Paul E. Goss



Lancet Oncol. 2013,14:1067-76.

#### **aTTom:** Predictive performance by BCI (H/I) groups based on RFI in HR+ N+ patients (n = 583).

51% of patients

identified as low

UNIVERSITY PRESS

Mays Cancer Center

**MDAnderson** 

**Cancer** Center



Annals of Oncology, mdz289, <u>https://doi.org/10.1093/annonc/mdz289</u> The content of this slide may be subject to copyright: please see the slide notes for details. Factors Affecting Late Recurrence and Benefit from Extended Endocrine Therapy

# Tolerability

- LN status
- Tumor Size
- Tumor Grade
- Prior Chemotherapy
- Switching from TAM to AI
- Genomic Assays

- Bone Fractures
- Osteoporosis
- Bone Pain
- Uterine ca
- VTEs



#### Forest Plot of the Rate of Spontaneous Pregnancy Achieved with GnRHa and Chemotherapy versus Chemotherapy Alone: All Patients

|                                                                | GnRł      | la    | Contr         | ol    |        | Odds Ratio         |      | Odds             | Ratio          |  |
|----------------------------------------------------------------|-----------|-------|---------------|-------|--------|--------------------|------|------------------|----------------|--|
| Study or Subgroup                                              | Events    | Total | <b>Events</b> | Total | Weight | M-H, Fixed, 95% C  |      | M-H, Fixe        | ed, 95% Cl     |  |
| Bernd Gerber et al.                                            | 1         | 30    | 1             | 30    | 5.0%   | 1.00 [0.06, 16.76] |      | ÷                |                |  |
| Eman A. Elgindy et al.(A)                                      | 1         | 25    | 0             | 25    | 2.4%   | 3.12 [0.12, 80.39] |      | -                | · ·            |  |
| Eman A. Elgindy et al.(B)                                      | 1         | 25    | 1             | 25    | 5.0%   | 1.00 [0.06, 16.93] |      |                  |                |  |
| Halle C. F. Moore et al.                                       | 22        | 105   | 12            | 113   | 47.2%  | 2.23 [1.04, 4.77]  |      |                  |                |  |
| Pamela N. Munster et al.                                       | 0         | 26    | 2             | 21    | 14.0%  | 0.15 [0.01, 3.24]  | ←    | •                |                |  |
| R. C. F. Leonard et al.                                        | 9         | 106   | 6             | 121   | 26.5%  | 1.78 [0.61, 5.17]  |      | _                |                |  |
| Total (95% CI)                                                 |           | 317   |               | 335   | 100.0% | 1.72 [0.99, 2.99]  |      |                  | •              |  |
| Total events                                                   | 34        |       | 22            |       |        |                    | 1.57 |                  |                |  |
| Heterogeneity: $Chi^2 = 3.29$ , df = 5 (P = 0.65); $I^2 = 0\%$ |           |       |               |       |        |                    | 0.1  | 1 10             | 100            |  |
| Test for overall effect: Z = 1.                                | 92 (P = 0 | .06)  |               |       |        |                    | 0.01 | Favors [Control] | Favors [GnRHa] |  |

#### STAY TUNED FOR POSITIVE TRIAL

Li Z-Y et al. Menopause 2022;29(9):1093-100.



#### Forest Plot of the Rate of Spontaneous Pregnancy Achieved with GnRHa and Chemotherapy versus Chemotherapy Alone: HR-Negative Disease

|                                                                                | GnRł   | la    | Contr         | ol    |        | Odds Ratio         |      | Odds             | Ratio       |         |     |
|--------------------------------------------------------------------------------|--------|-------|---------------|-------|--------|--------------------|------|------------------|-------------|---------|-----|
| Study or Subgroup                                                              | Events | Total | <b>Events</b> | Total | Weight | M-H, Fixed, 95% C  |      | M-H, Fix         | ed, 95% (   | CI      |     |
| Bernd Gerber et al.                                                            | 1      | 30    | 1             | 30    | 8.4%   | 1.00 [0.06, 16.76] |      |                  | +           |         |     |
| Eman A. Elgindy et al.(A)                                                      | 1      | 25    | 0             | 25    | 4.1%   | 3.12 [0.12, 80.39] |      | -                |             |         |     |
| Eman A. Elgindy et al.(B)                                                      | 1      | 25    | 1             | 25    | 8.3%   | 1.00 [0.06, 16.93] |      |                  | <u>+ _ </u> |         |     |
| Halle C. F. Moore et al.                                                       | 22     | 105   | 12            | 113   | 79.2%  | 2.23 [1.04, 4.77]  |      |                  |             |         |     |
| Total (95% CI)                                                                 |        | 185   |               | 193   | 100.0% | 2.06 [1.03, 4.11]  |      |                  |             |         |     |
| Total events                                                                   | 25     |       | 14            |       |        |                    |      |                  |             |         |     |
| Heterogeneity: Chi <sup>2</sup> = 0.61, df = 3 (P = 0.89); l <sup>2</sup> = 0% |        |       |               |       |        |                    | 01   | 1                | 10          | 100     |     |
| Test for overall effect: $Z = 2.06$ (P = 0.04)                                 |        |       |               |       |        |                    | 0.01 | Favors [Control] | Favors      | [GnRHa] | 100 |



### **TEXT and SOFT Trial Designs**



RTP RESEARCH TO PRACTICE

#### **OFS Question: SOFT Overall Population**

35% LN+; 12 years median follow-up



T+OFS vs T: absolute reductions in distant recurrence and death 1.4% and 2.3% at 12 years E+OFS vs T: absolute reductions in distant recurrence and death 3.0% and 2.6% at 12 years



### **AI Question: SOFT and TEXT Overall Populations**

42% LN+; 13 years median follow-up



E+OFS vs T+OFS: absolute reduction in distant recurrence, 1.8% at 12 years absolute reduction in death, 1.0% at 12 years



Regan MM et al. SABCS 2021; Abstract GS2-05.

## **SOFT+TEXT Chemotherapy Cohorts**

57% & 66% LN+; 13 years median follow-up



E+OFS vs T+OFS: reductions in distant recurrence 1.9% SOFT and 2.4% TEXT at 12 years overall survival, -0.7% SOFT and +2.6% TEXT at 12 years



### BCI (H/I) Predictive Results for BCFI – Overall HR+ Cohort



- 58% of cancers were BCI (H/I)-Low and 42% were BCI (H/I)-High
- Significant treatment by biomarker interaction for EXE+OFS vs TAM (P<0.01 in adjusted analysis); less so for TAM+OFS vs TAM (P=0.16)



# Guidelines for OFS

- ASCO:
  - Offer in women receiving chemotherapy
  - Offer to higher risk women: larger tumors, younger age, higher grade, pos LN
- St Gallen:
  - Offer in women who are less than 35yo, received chemotherapy, have 4+LN

#### monarchE Study Design (NCT03155997) (4y efficacy)



#### **IDFS Benefit in ITT Persists Beyond Completion of Abemaciclib**



33.6% reduction in the risk of developing an IDFS event with an increase in absolute benefit in IDFS 4-year rates (6.4%) compared to 2-and 3-year IDFS rates (2.8% and 4.8% respectively)

This presentation is the intellectual property of the author/presenter. Contact them at stephen.johnston@rmh.nhs.uk for permission to reprint and/or distribute.

#### **Ki-67 is Prognostic, but Not Predictive of Abemaciclib Benefit**



Within Cohort 1, similar abemaciclib treatment effects were observed regardless of Ki-67 index

This presentation is the intellectual property of the author/presenter. Contact them at stephen.johnston@rmh.nhs.uk for permission to reprint and/or distribute.

## Adjuvant CDK4/6i Reported Trials

|                             | PALLAS                    | PENELOPE-B               | MONARCH-E                                   |
|-----------------------------|---------------------------|--------------------------|---------------------------------------------|
| Ν                           | 5600                      | 1250                     | 5637                                        |
| Length of CDK4/6i           | 2 year                    | 1 year                   | 2 year                                      |
| Prior chemotherapy          | 82%                       | 100%                     | 95%                                         |
| Tamoxifen use               | 32%                       | 50%                      | 30%                                         |
| Grade 3                     | 29%                       | 47%                      | 38%                                         |
| Node negative               | 13%                       | Unknown                  | 0.2%                                        |
| N1                          | 49%                       | Unknown                  | 40%                                         |
| <u>≥</u> N2                 | 37%                       | 50% (after NAC)          | 60%                                         |
| Discontinued IP prematurely | 42%                       | 19.5%                    | 28% (at 19 mos f/u)                         |
| Still on therapy            | 26%                       | 0                        | 10%                                         |
| Median follow up            | 24 mos                    | 42.8 mos                 | 27.1 mos                                    |
| 2-year iDFS                 |                           | 88.3% vs 84%<br>∆4.3%    | 92.7% vs 90.0%<br>∆2.7%                     |
| 3-year iDFS                 | 88.2% vs. 88.5%<br>∆-0.3% | 81.2% vs. 77.7%<br>∆3.5% | 88.8% vs 83.4%<br>∆5.4%, HR 0.696, P<0.0001 |

## **OLYMPIA: TRIAL SCHEMA**



<sup>1</sup>Hudis CA, J Clin Oncol 2007
# **Comments on study population**

•Very young (median 42-43, 25% > 50)

- •72.3% gBRCA1m
- •82.2% TNBC, no HER2+ (by design)
- •74.7% treated with mastectomy (46.5% bilateral) •RRSO in ~60%
- •CPS+EG score unfamiliar to many
  - •http://www3.mdanderson.org/app/medcalc/index.cfm?pagename=bcnt
  - •Remember to use <u>nuclear</u> grade, not histologic or overall

# ANALYSIS OF IDFS (ITT) AT OS IA2



## **SECOND OVERALL SURVIVAL INTERIM ANALYSIS - OS IA 2 (ITT)**



## **SUBGROUP ANALYSIS OF OS**



All subgroup hazard ratio point estimates are < 1 and confidence intervals include the hazard ratio for olaparib treatment effect in the overall ITT population



# Conclusions

- EET benefits few and adds to AEs
- OFS during chemo can preserve ovarian function
- OFS to high risk women. Can it replace chemo?
- CDK4/6i for high risk. Do we trust Ki67?
- PARPi for high risk. Do we perform CPS?



## MODULE 3: Selection and Sequencing of Therapy for Patients with ER-Positive Metastatic Breast Cancer (mBC) — Dr Kalinsky



Case Presentation: 53-year-old woman with ER/PR-positive, HER2-low, PI3KCA-mutated mBC who experiences a dramatic response to rechallenge with fulvestrant and a CDK4/6i (abemaciclib); now with progression and cytopenias



#### **Dr KS Kumar (Trinity, Florida)**



#### Before abemaciclib/fulvestrant



#### After abemaciclib/fulvestrant





# Selection and Sequencing of Therapy for Patients with ER-Positive Metastatic Breast Cancer

Kevin Kalinsky, MD, MS Associate Professor of Medicine Director, Glenn Family Breast Center Director, Breast Medical Oncology Louisa and Rand Glenn Family Chair in Breast Cancer Research

#### **Results for Pivotal CDK 4/6 Inhibitor Trials**

| Trial                       | CDK Inhibitor | Line of Therapy<br>(Endocrine Rx)          | Menopausal<br>Status | PFS<br>HR     | PFS Statistical<br>HR Significance |      | Statistical<br>Significance |
|-----------------------------|---------------|--------------------------------------------|----------------------|---------------|------------------------------------|------|-----------------------------|
| PALOMA-2 <sup>[1]</sup>     | Palbociclib   | 1 <sup>st</sup> Line/Al                    | Post                 | 0.56          | Yes                                | 0.96 | No                          |
| MONALEESA-2 <sup>[2]</sup>  | Ribociclib    | 1 <sup>st</sup> Line/Al                    | Post                 | 0.57          | Yes                                | 0.76 | Yes                         |
| MONALEESA-7 <sup>[3a]</sup> | Ribociclib    | 1 <sup>st</sup> Line/AI or Tam             | Pre/Peri             | 0.55          | Yes                                | 0.70 | Yes                         |
| MONARCH-3 <sup>[4]</sup>    | Abemaciclib   | 1 <sup>st</sup> Line/Al                    | Post                 | 0.54          | Yes                                | 0.75 | No (@IA2)                   |
| PALOMA-3 <sup>[5]</sup>     | Palbociclib   | 2 <sup>nd</sup> Line/Fulv                  | Pre/Post             | Pre/Post 0.46 |                                    | 0.81 | No                          |
| MONARCH-2 <sup>[6]</sup>    | Abemaciclib   | 2 <sup>nd</sup> Line/Fulv                  | Pre/Post             | 0.55          | Yes                                | 0.78 | Yes                         |
| MONALEESA-3 <sup>[7]</sup>  | Ribociclib    | 1 <sup>st</sup> /2 <sup>nd</sup> Line/Fulv | Pre/Post             | 0.59          | Yes                                | 0.72 | Yes                         |

a. Missing survival data (ie, pts who withdrew consent or were lost to follow-up) and were censored (assumed to be alive) at time of analysis: 13% in palbo+AI arm vs 21% in control arm.
b. 27% of patients in control arm went on to receive a CDK4/6i (24% received palbociclib).

c. PFS/OS data reported for approved AI subset.

Al indicates aromatase inhibitor; Fulv, fulvestrant; IA2, interim analysis 2; NR, not reported; Rx, therapy.

PALOMA-2: Finn R, et al. N Engl J Med. 2016;375:1925-1936; Rugo H, et al. Breast Cancer Res Treat. 2019;174:719-729. Finn R, et al. ASCO 2022. LBA1003.
MONALEESA-2: Hortobagyi G, et al. N Engl J Med. 2016;375:1738-1748; Hortobagyi G, et al. Ann Oncol. 2018;29:1541-1547; Hortobagyi G. et al. ESMO 2021. Abstract LBA17\_PR.
MONALEESA-7: Tripathy D, et al. Lancet Oncol. 2018;19:904-915; Im S-A, et al. New Engl J Med. 2019;381:307-316.
MONARCH-3: Goetz M, et al. J Clin Oncol. 2017;35:3638-3646; Johnson S, et al. NPJ Breast Cancer. 2019;5:5. Goetz MP, et al. ESMO 2022. Abstract LBA 15.
PALOMA-3: Turner NC, et al. New Engl J Med. 2015;373:209-219; Cristofanilli M, et al. Lancet Oncol. 2016;17:425-439; Turner NC, et al. New Engl J Med. 2015;373:1672-1673.
MONARCH-2: Sledge G, et al. J Clin Oncol. 2020;6:116-124.
MONALEESA-3: Slamon D, et al. J Clin Oncol. 2018;36:2465-2472; Slamon D, et al. New Engl J Med. 2020;382:514-524.

#### **MONALEESA-7: Overall Survival**



Protocol-specified key secondary end point. Im S-A, et al. *New Engl J Med*. 2019;381:307-316.

#### MONALEESA-2: Letrozole ± Ribociclib – Overall Survival

Final Analysis at 400 death events: Improvement in median OS of 12.5 mo



Key secondary end point. Hortobagyi G. et al. ESMO 2021. Abstract LBA17\_PR.

## Why are there OS differences between the studies?

| Randomized P3<br>Trials | PALOMA-2 *<br>Palbociclib | MONALEESA-2<br>Ribociclib | MONALEESA-7<br>Ribociclib | MONALEESA-3<br>Ribociclib<br>1L Cohort |  |  |
|-------------------------|---------------------------|---------------------------|---------------------------|----------------------------------------|--|--|
| De novo mBC             | 38%                       | 34%                       | 41%                       | 20%                                    |  |  |
| Disease-free interval   |                           |                           |                           |                                        |  |  |
| DFI <u>&lt;</u> 12 mos  | 22%                       | 1%                        | 7%                        | 0%                                     |  |  |
| DFI > 12 mos            | 40%                       | NR                        | 53%                       | 80%                                    |  |  |
| DFI > 24 mos            | NR                        | 60%                       | NR                        | NR PA                                  |  |  |

No substantial differences in prior therapy, visceral disease, use of subsequent CDK46i in placebo arm, other variables

Limitations:

- Post hoc analyses
- Definition of "missing survival data"
- Paloma-2: Missing survival data and were censored at time of analysis: 13% in palbo+AI arm vs 21% in control arm. 27% of pts in control arm went on to receive a CDK4/6i (24% received palbo).

- DFI < 12 mos in Paloma 1 ~ 35%
- Combined OS analysis with PALOMA-1 planned
- Analysis by DFI subgroup unplanned

#### PALOMA-1 and PALOMA-2 Combined OS Analysis: Subgroup DFI >12 months



Finn et al NEJM 2016; Hortobagyi et al. NEJM 2016; Tripathy et al Lancet Oncol 2018; Slamon et al. NEJM 2020

#### MONARCH-3: NSAI ± Abemaciclib – Overall Survival



At this interim analysis, statistical significance was not reached but data are maturing favorably (HR 0.754, 95% CI: 0.584-0.974) and follow up continues. The observed difference in median OS was 12.6 months.



Key secondary end point. Goetz M. et al. ESMO 2022. Abstract LBA15

## Schema



• Fulvestrant as endocrine therapy in pts with progression on a prior aromatase inhibitor for MBC and no prior fulvestrant; Protocol amended to allow exemestane as endocrine therapy if progression on prior fulvestrant (September 2018); Ribociclib 600 mg administered 3 weeks on/1 week off



#ASC022

Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.



## **Patient Characteristics and Prior Treatment**

|                                       | Placebo<br>(n=59) | Ribociclib<br>(n=60) |
|---------------------------------------|-------------------|----------------------|
| Female - no. (%)                      | 58 (99%)          | 60 (100%)            |
| Median age – years (IQR)              | 59 (52-65)        | 55 (48-67)           |
| Race or ethnic group – no. (%)        |                   |                      |
| White                                 | 42 (71%)          | 46 (77%)             |
| Black                                 | 8 (14%)           | 5 (8%)               |
| Asian                                 | 2 (3%)            | 5 (8%)               |
| Other or not specified                | 7 (12%)           | 4 (7%)               |
| ECOG PS – no. (%)                     |                   |                      |
| 0                                     | 38 (64%)          | 40 (67%)             |
| 1                                     | 21 (36%)          | 20 (33%)             |
| De Novo Metastasis at Dx - no. (%)*** | 32 (54%)          | 21 (35%)             |
| Visceral Metastasis – no. (%)         | 35 (59%)          | 36 (60%)             |
| Bone-Only Disease – no. (%)           | 9 (15%)           | 13 (22%)             |
| ≥ 2 prior ET for MBC – no. (%)        | 11 (19%)          | 11 (18%)             |
| Chemotherapy for MBC – no. (%)        | 7 (12%)           | 4 (7%)               |

|                                                                                 | Placebo<br>(n=59) | Ribociclib<br>(n=60) |
|---------------------------------------------------------------------------------|-------------------|----------------------|
| Prior CDK 4/6 inhibitor – no. (%)                                               |                   |                      |
| Palbociclib*                                                                    | 51 (86%)          | 52 (87%)             |
| Ribociclib**                                                                    | 8 (14%)           | 6 (10%)              |
| Abemaciclib                                                                     | 0 (0%)            | 2 (3%)               |
| Median duration of prior CDK 4/6 inhibitor - months (IQR)                       | 17 (11-23.5)      | 15.5 (12-21)         |
| Prior CDK 4/6 inhibitor duration- no. (%)*                                      | ***               |                      |
| $\leq$ 12 months                                                                | 21 (36%)          | 18 (30%)             |
| > 12 months                                                                     | 38 (64%)          | 42 (70%)             |
| Prior CDK 4/6 inhibitor in metastatic setting - no. (%)                         | 59 (100%)         | 60 (100%)            |
| Intervening treatment after progression<br>on prior CDK 4/6 inhibitor - no. (%) | 6 (10%)           | 1 (2%)               |

\* Includes 1 pt who did not tolerate prior abemaciclib and 2 pts with insurance issues with ribociclib; \*\* Includes 1 pt who did not tolerate prior palbociclib; \*\*\*p=0.035; \*\*\*\* 10 pts (17%) in placebo arm and 7 pts (12%) in ribociclib arm on prior CDK4/6 inhibitor  $\leq$  6 months; IQR = interquartile range



#ASC022



## **Progression Free Survival**





#ASC022



# **Progression Free Survival by Subgroup**

| Subgroup                         | Ν          |              | Haza  | ard Ratio [95% Cl] |
|----------------------------------|------------|--------------|-------|--------------------|
| Age <= 65                        | 87         | _ <b>•</b>   |       | 0.68 [0.43, 1.06]  |
| Age > 65                         | 32         | _ <b>e</b>   |       | 0.31 0.12, 0.80    |
| Race White                       | 88         | <b>●</b>     |       | 0.58 0.36, 0.92    |
| Race Non-White                   | 31         |              |       | 0.63 [0.30, 1.33]  |
| ECOG 0                           | 78         |              |       | 0.66 [0.40, 1.07]  |
| ECOG 1                           | 41         | _ <b>—</b> — |       | 0 43 0 21 0 87     |
| Prior Palbociclib                | 103        | <b></b>      |       | 0.58 [0.38, 0.90]  |
| Prior Ribociclib                 | 14         |              |       | 0.50 [0.15, 1.70]  |
| Duration Prior CDK 4/6 <= 12     | 39         | _ <b>—</b> — |       | 0.36 [0.17, 0.74]  |
| Duration Prior CDK 4/6 > 12      | 80         |              | _     | 0.76 [0.47, 1.24]  |
| Visceral Disease Yes             | 71         |              |       | 0.49 [0.29, 0.83]  |
| Visceral Disease No              | 48         |              |       | 0.69 [0.37, 1.29]  |
| Bone Disease Yes                 | 22         |              |       | 0.54 [0.20, 1.49]  |
| Bone Disease No                  | 97         |              |       | 0.58 [0.38, 0.90]  |
| Prior Endocrines Mets Setting <  | 297        |              |       | 0.62 [0.40, 0.96]  |
| Prior Endocrines Mets Setting >= | 2 22       | -            |       | 0.39 [0.14, 1.12]  |
|                                  |            | r i          |       |                    |
|                                  |            | 0 0.5 1      | 1.5 2 |                    |
| <-F                              | Favors Pla | acebo + ET-> |       |                    |



#ASC022





#### PACE Trial: Schema



Primary objective: To compare PFS (RECIST-confirmed) for fulvestrant+palbociclib vs. fulvestrant alone

**Secondary objectives:** To compare PFS for fulvestrant+palbociclib+avelumab vs fulvestrant alone, response endpoints, safety, outcomes in predefined molecular subgroups including ESR1, PIK3CA, and Rb.

## PACE Trial: Patient Demographics

|                                          | Fulvestrant<br>(n=55) |                         | Fulvestrant +<br>Palbociclib<br>(N=111) |                            | Fulves<br>Palbociclib<br>(N= | trant +<br>+ Avelumab<br>=54) | Overall<br>(n = 220) |                           |  |
|------------------------------------------|-----------------------|-------------------------|-----------------------------------------|----------------------------|------------------------------|-------------------------------|----------------------|---------------------------|--|
|                                          | N                     | %                       | N                                       | %                          | N                            | %                             | N                    | %                         |  |
| Female                                   | 55                    | 100.0                   | 109                                     | 98.2                       | 54                           | 100.0                         | 218                  | 99.0                      |  |
| Age (median, range)                      | 58 (3                 | 6-77)                   | 55 (28-77)                              |                            | 58 (25-83)                   |                               | 57 (25-83)           |                           |  |
| Race<br>White<br>Black<br>Asian<br>Other | 47<br>3<br>0<br>5     | 85.5<br>5.5<br>0<br>9.1 | 88<br>13<br>4<br>6                      | 79.3<br>11.7<br>3.6<br>5.4 | 44<br>4<br>3<br>3            | 81.5<br>7.4<br>5.6<br>5.6     | 179<br>20<br>7<br>14 | 81.4<br>9.1<br>3.2<br>6.4 |  |
| Post-menopausal                          | 47                    | 85.5                    | 87                                      | 78.4                       | 44                           | 81.5                          | 178                  | 80.9                      |  |
| De novo MBC                              | 28                    | 50.9                    | 40                                      | 36.0                       | 20                           | 37.0                          | 88                   | 40.0                      |  |
| Visceral disease                         | 29                    | 52.7                    | 70                                      | 63.1                       | 33                           | 61.1                          | 132                  | 60.0                      |  |
| Bone only disease                        | 4                     | 7.3                     | 18                                      | 16.2                       | 8                            | 14.8                          | 30                   | 13.6                      |  |
| Measurable disease                       | 37                    | 67.3                    | 73                                      | 65.8                       | 39                           | 72.2                          | 149                  | 67.7                      |  |

Unknown values are omitted from the table.

#### **PACE:** Prior Treatment Characteristics

|                                                                 | Fulvestrant<br>(n=55) |      | Fulvestrant +<br>Palbociclib<br>(N=111) |      | Fulves<br>Palbo<br>Aveluma | trant +<br>ciclib +<br>ib (N=54) | Overall<br>(n = 220) |      |  |
|-----------------------------------------------------------------|-----------------------|------|-----------------------------------------|------|----------------------------|----------------------------------|----------------------|------|--|
|                                                                 | N                     | %    | N                                       | %    | N                          | %                                | N                    | %    |  |
| Prior adjuvant endocrine exposure*                              |                       |      |                                         |      |                            |                                  |                      |      |  |
| Endocrine resistant                                             | 10                    | 18.2 | 32                                      | 28.8 | 16                         | 29.6                             | 58                   | 26.4 |  |
| Endocrine sensitive                                             | 45                    | 81.8 | 78                                      | 70.3 | 37                         | 68.5                             | 160                  | 72.7 |  |
| Prior CDK4/6i                                                   |                       |      |                                         |      |                            |                                  |                      |      |  |
| Palbociclib                                                     | 52                    | 94.5 | 102                                     | 91.9 | 46                         | 85.2                             | 200                  | 90.9 |  |
| Ribociclib                                                      | 1                     | 1.8  | 5                                       | 4.5  | 4                          | 7.4                              | 10                   | 4.5  |  |
| Abemaciclib                                                     | 2                     | 3.6  | 3                                       | 2.7  | 4                          | 7.4                              | 9                    | 4.1  |  |
| Duration of prior CDK4/6i + ET                                  |                       |      |                                         |      |                            |                                  |                      |      |  |
| 6-12 months                                                     | 10                    | 18.2 | 26                                      | 23.4 | 16                         | 29.6                             | 52                   | 23.6 |  |
| > 12 months                                                     | 45                    | 81.8 | 84                                      | 75.7 | 38                         | 70.4                             | 167                  | 75.9 |  |
| Prior chemotherapy for MBC                                      | 11                    | 20.0 | 16                                      | 14.4 | 9                          | 16.7                             | 36                   | 16.4 |  |
| Line of MBC therapy initiated in PACE                           |                       |      |                                         |      |                            |                                  |                      |      |  |
| First Line                                                      | 3                     | 5.5  | 5                                       | 4.5  | 2                          | 3.7                              | 10                   | 4.5  |  |
| Second Line                                                     | 42                    | 76.4 | 83                                      | 74.8 | 44                         | 81.5                             | 169                  | 76.8 |  |
| > Second Line                                                   | 10                    | 18.2 | 21                                      | 18.9 | 7                          | 13.0                             | 38                   | 17.3 |  |
| Any systemic therapy between prior<br>CDK4/6i and randomization | 5                     | 9.1  | 16                                      | 14.4 | 5                          | 9.3                              | 26                   | 11.8 |  |

Unknown values are omitted from the table.

\*Endocrine resistant: recur <1y of adj ET. Endocrine sensitive: de novo MBC, or no adj ET, or recur >1y after adj ET. Adapted from ESO-ESMO guidelines, Ann Oncol 2020

#### PACE: Progression Free Survival ITT



#### PACE: Progression Free Survival ITT



#### BYLieve: A Phase 2, Open-Label, 3-Cohort, Noncomparative Trial



Goal: In the post-CDKi setting, assess the efficacy and safety of alpelisib + ET (fulvestrant or letrozole) in patients with *PIK3CA*-mutated HR+, HER2– ABC

#### Men or pre-/postmenopausal<sup>a</sup> women with HR+, HER2– ABC with a *PIK3CA* mutation

- Last line of prior therapy: CDKi + ET, systemic chemotherapy or ET
- ECOG PS ≤2
- Measurable disease (per RECIST v1.1) or ≥1 predominantly lytic bone lesion

Patients who received CDKi + AI as immediate prior treatment (N=112)<sup>b</sup> (Cohort A)

Alpelisib 300 mg oral QD + fulvestrant 500 mgc

Patients who received CDKi + fulvestrant as immediate prior treatment (N=112) (Cohort B)

Alpelisib 300 mg oral QD + letrozole 2.5 mg<sup>d</sup>

Patients who progressed on/after AI and received chemotherapy or ET as immediate prior treatment (N=112) (Cohort C)

Alpelisib 300 mg oral QD + fulvestrant 500 mgc

Treatment crossover between cohorts is not permitted

#### Primary endpoint

- Proportion of patients alive without PD at 6 months (RECIST v1.1) in each cohort
- Secondary endpoints include (assessed in each cohort)
- PFS
- PFS2
- ORR, CBR, DOR
- OS
- Safety

• Rugo HS, et al. Lancet Oncol. 2021;22:489-498; Rugo HS, et al. ASCO 2020. Abstract 1006.

## **BYLieve Study of Alpelisib After CDK4/6i: Efficacy**

|                     | BYLieve Trial <sup>a,b</sup>      |                                     |  |  |  |  |  |
|---------------------|-----------------------------------|-------------------------------------|--|--|--|--|--|
| Endpoint            | Cohort A <sup>a</sup><br>Prior Al | Cohort B <sup>b</sup><br>Prior FULV |  |  |  |  |  |
| Ν                   | 121                               | 115                                 |  |  |  |  |  |
| Alive, no PD @ 6 mo | 50.4%<br>met<br>endpoint          | 46.1%<br>met<br>endpoint            |  |  |  |  |  |
| Median PFS (mo)     | 7.3 mo                            | 5.7 mo                              |  |  |  |  |  |
| ORR                 | 21.0%                             | 17.8%                               |  |  |  |  |  |
| CBR                 | 42.0%                             | 31.7%                               |  |  |  |  |  |

a. Rugo HR, et al. ASCO 2020. Abstract 1040; b. Rugo HR, et al. SABCS 2020. Abstract PD2-07.



#### **Summary of Selected Outcomes: BYLieve And SOLAR-1**

|                     | SOLAR-1 Tria  | al Prior CDKi <sup>a</sup> | BYLieve Trial <sup>b,c</sup> |                       |  |  |  |
|---------------------|---------------|----------------------------|------------------------------|-----------------------|--|--|--|
| Endpoint            | FULV<br>+ PBO | FULV +<br>Alpelisib        | Cohort A <sup>b</sup>        | Cohort B <sup>c</sup> |  |  |  |
| Ν                   | 11            | 9                          | 121                          | 115                   |  |  |  |
| Alive, no PD @ 6 mo | ≈ 20%         | 44.4%                      | 50.4%                        | 46.1%                 |  |  |  |
| Median PFS (mo)     | 1.8 mo        | 5.5 mo                     | 7.3 mo                       | 5.7 mo                |  |  |  |
| ORR                 | NR            | NR                         | 21.0%                        | 17.8%                 |  |  |  |
| CBR                 | NR            | NR                         | 42.0%                        | 31.7%                 |  |  |  |

a. André F, et al. N Engl J Med. 2019;380:1929-1940; b. Rugo HR, et al. ASCO 2020. Abstract 1040; c. Rugo HR, et al. SABCS 2020. Abstract PD2-07.

### **PARP Inhibitors**

OlympiAD

EMBRACA



Phase 3, international, open-label study randomized 431 patients in 16 countries and 145 sites

Litton JK, et al. N Engl J Med 2018;379:753-763. Robson M, et al. N Engl J Med 2017;377:523-533.

#### **Progression-Free Survival**

OlympiAD



• EMBRACA



| TALA | 287 (0/0) | 229 (50/50) | 148 (53/103) | 91 (34/137) | 55 (17/154) | 42 (9/163) | 29 (9/172) | 23 (2/174) | 16 (5/179) | 12 (4/183) | 5 (2/185) | 3 (0/185) | 1 (0/185) | 0 (1/186) | 0 (0/186) |
|------|-----------|-------------|--------------|-------------|-------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|
| PCT  | 144 (0/0) | 68 (41/41)  | 34 (20/61)   | 22 (8/69)   | 9 (7/76)    | 8 (0/76)   | 4 (3/79)   | 2 (2/81)   | 2 (0/81)   | 1 (1/82)   | 0 (1/83)  | 0 (0/83)  | 0 (0/83)  | 0 (0/83)  | 0 (0/83)  |

#### **EMBRACA:** Final OS



\*ITT population

## **OlympiAD: Extended OS Follow-Up**

No statistically significant differences in survival curves in tissue receptor subtype

No new safety signal –No AML/MDS



Robson M, et al. SABCS 2019. PD4-03.

#### **Current Approach: Treatment of HR+/HER2- mBC**



## MODULE 4: Recent Appreciation of HER2 Low as a Unique Subset of HR-Positive Breast Cancer — Dr Bardia



Case Presentation: 39-year-old premenopausal woman with ER/PR-positive, HER2-low (IHC 1+) IDC, s/p adjuvant tamoxifen and OFS x 5 years, now with bone and liver metastases



Dr Laila Agrawal (Louisville, Kentucky)



Case Presentation: 39-year-old premenopausal woman with ER/PR-positive, HER2-low (IHC 1+) IDC, s/p adjuvant tamoxifen and OFS x 5 years, now with bone and liver metastases (continued)



Dr Laila Agrawal (Louisville, Kentucky)



## **HER2 low Breast Cancer**

#### Aditya Bardia, MD, MPH

Director, Breast Cancer Research, Attending Physician, Mass General Hospital, Associate Professor, Harvard Medical School






- Understand rationale of ADCs for HER2 low breast cancer
- Gain knowledge related to HER2 ADC, trastuzumab deruxtecan, including efficacy and toxicity
- Review upcoming therapies for HER2 low breast cancer

#### HER2-Low Breast Cancer: Current Definition



#### Trastuzumab Deruxtecan (T-DXd): Selective delivery of toxic payload



Topoisomerase I inhibitor payload

payload and subsequent cell death in the target tumor cell and neighboring tumor cells through the bystander effect<sup>1,2</sup>

Adapted with permission from Modi S, et al. J Clin Oncol 2020;38:1887-96. CC BY ND 4.0.

Nagayama, A, et al. Target Oncol. 2017

Modi S, et al. ASCO 2022.

## Trastuzumab Deruxtecan (T-DXd): HER2 Low Tumors



Datted lines denote 30% decrease and 20% increase in tumor size outoffs for partial response and progressive disease, respectively IHC, immunitidechemistry

|                                 | Confirmed ORR | mDoR  | mPFS  |
|---------------------------------|---------------|-------|-------|
| All (N = 51)                    | 44.2% (N=43)  | 9.4m  | 7.6m  |
| IHC 2+ (n = 24)                 | 54.5% (N=22)  | 11.0m | 13.6m |
| IHC 1+ (n = 27)                 | 33.3% (N=21)  | 7.9m  | 5.7m  |
| HR+ (n = 45)                    | 47.4% (N=38)  | 11.0m | 7.9m  |
| Prior CDK4/6 inhibitor (n = 15) | 33.3% (N=12)  | NR    | 7.1m  |

## Trastuzumab Deruxtecan vs TPC: Study Design (DESTINY-B04)

#### A DESTINY-Breast04

# DESTINY-Breast04: First Randomized Phase 3 Study of T-DXd for HER2-low mBC

An open-label, multicenter study (NCT03734029)



#### **Stratification factors**

- Centrally assessed HER2 status<sup>d</sup> (IHC 1+ vs IHC 2+/ISH-)
- 1 versus 2 prior lines of chemotherapy
- · HR+ (with vs without prior treatment with CDK4/6 inhibitor) versus HR-

ASCO/CAP, American Society of Clinical Oncology/College of American Pathologists; BICR, blinded independent central review; CDK, cyclin-dependent kinase; DOR, duration of response; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; IHC, immunohistochemistry; ISH, in situ hybridization; mBC, metastatic breast cancer; OS, overall survival; PFS, progression-free survival; Q3W, every 3 weeks; R, randomization; T-DXd, trastuzumab deruxtecan; TPC, treatment of physician's choice.

alf patients had HR+ mBC, prior endocrine therapy was required. <sup>b</sup>Other secondary endpoints included ORR (BICR and investigator), DOR (BICR), PFS (investigator), and safety; efficacy in the HR- cohort was an exploratory endpoint. <sup>c</sup>TPC was administered accordingly to the label. <sup>d</sup>Performed on adequate archived or recent tumor biopsy per ASCO/CAP guidelines using the VENTANA HER2/neu (4B5) investigational use only [IUO] Assay system.







5

### Trastuzumab Deruxtecan vs TPC: PFS (HR+/HER2 Low BC)

lide 10

#### **Progression-Free Survival**

#### Hormone receptor-positive

**Overall Survival** 

#### Hormone receptor-positive



TPC (n = 163): 163 146 105 85 84 69 57 48 43 32 30 27 24 20 14 12 8 4 3 2 1 1 1 1 1 1 0



n = 163): 163 151 145 143 139 135 130 124 115 109 104 98 96 89 80 71 56 45 37 29 25 23 16 14 7 5 3 1 0

#### PFS by blinded independent central review.

HR, hormone receptor; mPFS, median progression-free survival; PFS, progression-free survival; T-DXd\_trastuzumah derustecan



## Trastuzumab Deruxtecan: Efficacy in HER2-low mTNBC

#### **Exploratory Endpoint**



|                              | T-DXd<br>(n=40)   | TPC (n=18)        |
|------------------------------|-------------------|-------------------|
| Median OS (95% CI)           | 18.2<br>(13.6-NE) | 8.3<br>(5.6-20.6) |
| HR (95% CI), <i>P</i> -value | <b>0.48</b> (0.2  | 24-0.95)          |

|                              | T-DXd<br>(n=40)   | TPC (n=18)       |
|------------------------------|-------------------|------------------|
| Median PFS (95% CI)          | 8.5<br>(4.3-11.7) | 2.9<br>(1.4-5.1) |
| HR (95% CI), <i>P</i> -value | <b>0.46</b> (0.2  | 24-0.89)         |

# What about activity of other ADCs for HER2 low MBC?

#### Trop2 ADC for HR+ MBC: Sacituzumab Govitecan



#### Sacituzumab Govitecan vs TPC: Efficacy by HER2 status (TROPiCS-02)



- Within the HER2-Low population, median PFS with SG vs TPC for the IHC1+ and IHC2+ subgroups was 7.0 vs 4.3 (HR, 0.57) and 5.6 vs 4.0 (HR, 0.58) months, respectively
- The hazard ratio for median PFS in a sensitivity analysis of the HER2-Low subgroup (excluding ISH-unverified<sup>b</sup>) was similar (HR, 0.53)

<sup>a</sup>HER2-Low defined as IHC1+, or IHC2+ and ISH-negative/unverified.

<sup>b</sup>39 patients with HER2 IHC2+ did not have ISH data documentation available for verification and were presumed to be HER2-low, consistent with the trial eligibility criteria to enroll HER2-negative patients

HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; PFS, progression-free survival; SG, sacituzumab govitecan; TPC, treatment of physician's choice.

1. Rugo HS, et al. J Clin Oncol. 2022. doi: 10.1200/JCO.22.01002. (epub ahead of print). Adapted from Rugo HS, et al. Sacituzumab govitecan in hormone receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2022. doi: 10.1200/JCO.22.01002. Reprinted with permission from American Society of Clinical Oncology.



Presented by: Dr. Frederik Marmé

#### Phase III Study of Sacituzumab Govitecan vs TPC: ASCENT



## ASCENT was halted early due to compelling evidence of efficacy per unanimous DSMC recommendation.

\*TPC: eribulin, vinorelbine, gemcitabine, or capecitabine. <sup>†</sup>PFS measured by an independent, centralized, and blinded group of radiology experts who assessed tumor response using RECIST 1.1 criteria in patients without brain metastasis. <sup>‡</sup>The full population includes all randomized patients (with and without brain metastases). Baseline brain MRI only required for patients with known brain metastasis.

ASCO/CAP, American Society of Clinical Oncology/College of American Pathologists; DOR, duration of response; DSMC, Data Safety Monitoring Committee; IV, intravenous; mTNBC, metastatic triple-negative breast cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; R, randomization; RECIST, Response Evaluation Criteria in Solid Tumors; TTR, time to response. National Institutes of Health. <a href="https://clinicaltrials.gov/ct2/show/NCT02574455">https://clinicaltrials.gov/ct2/show/NCT02574455</a>.

#### Sacituzumab Govitecan vs TPC: Efficacy in HER2 low mTNBC (ASCENT)



\*HER2-Low defined as IHC1+ or ICH2+ and ISH-negative. HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; ISH, in situ hybridization; OS, overall survival; SG, sacituzumab govitecan; TPC, treatment of physician's choice.

#### How to sequence the different ADCs?

#### Mechanism Governing Resistance: Trastuzumab Deruxtecan (DAISY)

- 20 frozen tumor biopsies at progression analyzed by WES
- 10 samples with matched biopsy at baseline



- SLX4 encodes a DNA repair protein that regulates endonucleases, whose role in camptothecin resistance remains unclear
- 4/20 (20%) SLX4 mutation biopsies at progression
- 2 SLX4 mutations were not detectable in baseline samples
- 2 SLX4 mutations there was no matched baseline sample

#### Mechanism Governing Resistance: Antibody vs Payload



# Implications of resistance mechanisms for ADC sequencing



#### ADCs to target MBC: Multiple Agents in Development

| Antibody Drug Conjugate           | Target | Payload               |
|-----------------------------------|--------|-----------------------|
| Trastuzumab deruxtecan (DS-8201a) | HER2   | Topo-1 inhibitor      |
| Sacituzumab govitecan (IMMU-132)  | Trop-2 | Topo-1 inhibitor      |
| Datopotamab deruxtecan (DS-1062)  | Trop-2 | Topo-1 inhibitor      |
| Ladiratuzumab vedotin (SGN-LIV1a) | LIV-1  | Microtubule inhibitor |
| Patritumab deruxtecan (U3-1402)   | HER3   | Topo-1 inhibitor      |
| Trastuzumab duocarmazine          | HER2   | Alkylating agent      |
| Disitamab vedotin                 | HER2   | Microtubule inhibitor |

Both target and payload important considerations for efficacy/toxicity profile and ADC sequencing

### How about Early Breast Cancer?

### TRIO-US B-12 (TALENT): Study Design



All tissue collected for study: pathology centrally reviewed HER2 and Ki67

\* Originally, 6 cycles of treatment were given but in 02/2022, an amendment increased the number of treatment cycles from 6 to 8 for newly enrolled participants, or those who had not yet had surgery. EOT 21-28 days after last dose of T-DXd.

# Objective Response Rate with T-DXd (based on imaging)



Waterfall plot with bars representing change in tumor size after treatment with T-DXd, compared to baseline, as per RECIST v1.1. Intention to treat population for ORR includes all who received at least 1 cycle of protocol therapy, data cutoff 11/25/2022.

• 4 patients still on treatment; 3 patients did have imaging (treatment discontinued prematurely), but included in intention to treat (ITT) denominator for ORR analysis per protocol

\* 5 patients still on treatment

### HER2 IHC Change from Baseline to Surgery with T-DXd (central review)



# Residual Cancer Burden after T-DXd (by arm, cycles and stage)

| Cycles   | Stage at   |        | Arm A<br>N= | (T-DXd)<br>22* |         | Arm B (T-DXd+Anastrozole)<br>N=20** |        |         |         |  |  |  |  |  |
|----------|------------|--------|-------------|----------------|---------|-------------------------------------|--------|---------|---------|--|--|--|--|--|
|          | Baseline   | RCB-0  | RCB-I       | RCB-II         | RCB-III | RCB-0                               | RCB-I  | RCB-II  | RCB-III |  |  |  |  |  |
|          | Stage IIA  | 0      | 1 (5%)      | 2 (9%)         | 0       | 0                                   | 1 (5%) | 6 (30%) | 0       |  |  |  |  |  |
| 6 Cycles | Stage IIB  | 0      | 1 (5%)      | 4 (18%)        | 2 (9%)  | 0                                   | 0      | 3 (15%) | 1 (5%)  |  |  |  |  |  |
| 6 Cycles | Stage IIIA | 0      | 0           | 1 (5%)         | 2 (9%)  | 0                                   | 0      | 1 (5%)  | 1 (5%)  |  |  |  |  |  |
|          | Stage IIIB | 0      | 0           | 1 (5%)         | 0       | 0                                   | 0      | 0       | 0       |  |  |  |  |  |
|          | Stage IIA  | 0      | 0           | 2 (9%)         | 0       | 0                                   | 1 (5%) | 1 (5%)  | 0       |  |  |  |  |  |
| 8 Cycles | Stage IIB  | 0      | 0           | 1 (5%)         | 1 (5%)  | 0                                   | 0      | 2 (10%) | 0       |  |  |  |  |  |
|          | Stage IIIA | 1 (5%) | 0           | 0              | 0       | 0                                   | 1 (5%) | 0       | 0       |  |  |  |  |  |
|          | Stage IIIB | 0      | 0           | 0              | 0       | 0                                   | 0      | 0       | 0       |  |  |  |  |  |

As of data cutoff 11/25/2022: surgical outcomes pending for 24% (7/29) patients being treated in Arm A and 31% (9/29) in Arm B.

- \*4 pts discontinued early Arm A \*\*3 pts discontinued early (included in denominator for intention to treat analysis) Arm B
- RCBi = Residual cancer burden index; RCB 0 = pCR; Histology or IHC Status did not appear to be associated with RCB response

# Adverse Effects (T-DXd Related, ≥ 10%)

# Arm A (T-DXD; N=29) Arm B (T-DXd+Anastrozole; N=29)



As of data cutoff 11/25/2022, includes all participants who received at least 1 dose of study treatment; AEs in 3 or more patients. 3 patients discontinued due to AEs. 1 death due to myocardial infarction after severe GI toxicity, possibly related.

## Summary

- Trastuzumab deruxtecan has demonstrated impressive activity in HER2 low metastatic breast cancer, both HR+ and HR-, and approved in 2<sup>nd</sup> line (and plus) MBC setting.
- Sacituzumab govitecan approved for mTNBC, regardless of HER2 expression (not surprising). Activity also seen in HR+ metastatic breast cancer.
- There are multiple ADCs in development to target antigens overexpressed in MBC.
- Understanding mechanism of resistance, antibody vs payload, could help guide therapeutic sequencing of ADCs.
- Additional studies evaluating different ADCs targeting different antigens could redefine the current receptor-based classification of breast cancer.

#### MODULE 5: Novel Strategies Under Investigation for Patients with HR-Positive mBC — Dr Rugo



Case Presentation: 90-year-old woman with ER/PR-positive, HER2-low (IHC 1+) mBC and PD on multiple lines of endocrine and chemotherapy receives T-DXd



Dr Alan Astrow (Brooklyn, New York)



Case Presentation: 45-year-old woman with ER/PR-positive, HER2-low (IHC 2+) mBC, s/p fulvestrant/abemaciclib and now receiving exemestane/everolimus – ESR1 and PIK3CA mutations



#### Dr Jennifer Dallas (Charlotte, North Carolina)









Comprehensive Cancer Center



# Novel Strategies Under Investigation for Patients with HR-Positive Metastatic Breast Cancer

Hope S. Rugo, MD

**Professor of Medicine** 

Director, Breast Oncology and Clinical Trials Education

University of California San Francisco Comprehensive Cancer Center

#### **Resistance to ET + CDK4/6i: Now a High Unmet Need**



Major Mechanisms of Resistance to CDK4/6 Inhibitors

## **Inhibiting AKT**

- AKT pathway activation occurs in many HR+/HER2– ABC through alterations in *PIK3CA, AKT1 and PTEN* 
  - May also occur in cancers without these genetic alterations
  - AKT signalling implicated in development of ET resistance
- Capivasertib is a potent, selective inhibitor of all three AKT isoforms (AKT1/2/3)

Turner et al, SABCS 2022; Jones RH, et al. Lancet Oncol 2020; Howell et al, Lancet Oncology 2022

#### **Phase II FAKTION Trial**

 Adding Capi to Fulv in PM women with AI resistant HR+ MBC (no prior CDKi) improved PFS and OS, with most benefit in altered population



# CAPItello-291: Phase III, randomized, double-blind, placebo-controlled study

#### Patients with HR+/HER2– ABC

- Men and pre-/post-menopausal women
- Recurrence or progression while on or <12 months from end of adjuvant AI, or progression while on prior AI for ABC
- ≤2 lines of prior endocrine therapy for ABC
- ≤1 line of chemotherapy for ABC
- Prior CDK4/6 inhibitors allowed (at least 51% required)
- No prior SERD, mTOR inhibitor, PI3K inhibitor, or AKT inhibitor
- HbA1c <8.0% (63.9 mmol/mol) and diabetes not requiring insulin allowed
- FFPE tumor sample from the primary/recurrent cancer available for retrospective central molecular testing



#### **Dual primary endpoints**

PFS by investigator assessment

- Overall
- AKT pathway-altered tumors (≥1 qualifying *PIK3CA*, *AKT1*, or *PTEN* alteration)

#### **Overall survival**

- Overall
- · AKT pathway-altered tumors

#### **Objective response rate**

- Overall
- AKT pathway-altered tumors

#### **Summary of Demographics**

- Median age ~59
- Asian 26%, Black 1%
- Primary ET resistance ~38%
- Visceral mets ~68%

- One line of prior ET for MBC ~75%
- Prior CDK4/6i for MBC ~70%
- Chemotherapy for ABC ~18%

## **AKT Pathway Alterations**

Alteration; n (%)

| Any AKT pathway                                                         | alteration                                                                                  | 155 (43.7)                                                  | 134 (38.0)                                                 |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|--|--|
| PIK3CA                                                                  | Any<br><i>PIK3CA</i> only<br><i>PIK3CA</i> and <i>AKT1</i><br><i>PIK3CA</i> and <i>PTEN</i> | 116 (32.7)<br>110 (31.0)<br>2 (0.6)<br>4 (1.1)              | 103 (29.2)<br>92 (26.1)<br>2 (0.6)<br>9 (2.5)              |  |  |
| AKT1 only                                                               |                                                                                             | 18 (5.1)                                                    | 15 (4.2)                                                   |  |  |
| PTEN only                                                               |                                                                                             | 21 (5.9)                                                    | 16 (4.5)                                                   |  |  |
| Non-altered                                                             |                                                                                             | 200 (56.3)                                                  | 219 (62.0)                                                 |  |  |
| AKT pathway a<br>Unknown<br>No sample a<br>Preanalytica<br>Post analyti | Iteration not detected<br>available<br>al failure<br>cal failure                            | 142 (40.0)<br>58 (16.3)<br>10 (2.8)<br>39 (11.0)<br>9 (2.5) | 171 (48.4)<br>48 (13.6)<br>4 (1.1)<br>34 (9.6)<br>10 (2.8) |  |  |

AKT pathway alteration status was determined centrally using next-generation sequencing in tumor tissue with the FoundationOne<sup>®</sup>CDx assay (and Burning Rock assay in China)

Turner et al, SABCS 2022

## Dual-primary endpoint: Investigator-assessed PFS in the overall population



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Time from randomization (months)

| Capivasertib + fulvestrant | 155 | 150 | 127 | 121 | 99 | 97 | 80 | 76 | 65 | 62 | 54 | 49 | 38 | 31 | 26 | 22 | 21 | 12 | 12 | 9 | 3 | 3 | 2 | 1 | 1 | 0 | 0 |
|----------------------------|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|---|---|---|---|---|---|
| Placebo + fulvestrant      | 134 | 124 | 77  | 64  | 48 | 47 | 37 | 35 | 28 | 27 | 24 | 20 | 17 | 14 | 11 | 6  | 6  | 2  | 2  | 2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |

0

Number of patients at risk

Turner et al, SABCS 2022

## **Additional Analyses**

Exploratory analysis: Investigator-assessed PFS in the non-altered population (including unknown<sup>†</sup>)



|                            |           | Number of<br>patients |    |                                       | н    | R (95%CI)      |
|----------------------------|-----------|-----------------------|----|---------------------------------------|------|----------------|
| All patients               |           | 708                   |    | <b>—</b>                              | 0.60 | ) (0.51, 0.71) |
| Ago.                       | <65 years | 491                   |    | <b>⊢</b>                              | 0.65 | 5 (0.53, 0.79) |
| Age                        | ≥65 years | 217                   |    | <b>⊢</b>                              | 0.65 | 5 (0.47, 0.90) |
|                            | Asian     | 189                   |    | ►I                                    | 0.62 | 2 (0.44, 0.86) |
| Race                       | White     | 407                   |    | ·                                     | 0.65 | 5 (0.52, 0.80) |
|                            | Other     | 112                   |    | ·                                     | 0.63 | 3 (0.42, 0.96) |
|                            | 1         | 395                   |    | · • ·                                 | 0.60 | ) (0.48, 0.75) |
| Region                     | 2         | 136                   |    | • • •                                 | 0.77 | 7 (0.51, 1.16) |
|                            | 3         | 177                   |    | <b>⊢</b>                              | 0.60 | ) (0.42, 0.85) |
| Menopausal status          | Pre/peri  | 154                   |    | • • • • • • • • • • • • • • • • • • • | 0.86 | 3 (0.60, 1.20) |
| (females only)             | Post      | 547                   |    | <b>⊢</b>                              | 0.59 | ) (0.48, 0.71) |
| Liver metastases           | Yes       | 306                   |    | <b>⊢</b> →                            | 0.61 | (0.48, 0.78)   |
| Liver melasiases           | No        | 402                   |    | ▶ <b>──</b> ●                         | 0.62 | 2 (0.49, 0.79) |
| Viscoral motastasas        | Yes       | 478                   |    | <b></b>                               | 0.69 | 9 (0.56, 0.84) |
| VISCEI di Melasiases       | No        | 230                   |    | • • • • • • • • • • • • • • • • • • • | 0.54 | 4 (0.39, 0.74) |
| Endooring registered       | Primary   | 262                   |    | ▶ <b>──</b> →                         | 0.66 | 3 (0.50, 0.86) |
| Endocrine resistance       | Secondary | 446                   |    | <b></b>                               | 0.64 | 4 (0.51, 0.79) |
| Prior use of CDK4/6        | Yes       | 496                   |    | ·•                                    | 0.62 | 2 (0.51, 0.75) |
| inhibitors                 | No        | 212                   |    | · · · · · · · · · · · · · · · · · · · | 0.65 | 5 (0.47, 0.91) |
| Drier chamatharapy for ABC | Yes       | 129                   |    | ·                                     | 0.6  | (0.41, 0.91)   |
| Phot chemotherapy for ABC  | No        | 579                   |    | <b>⊢</b>                              | 0.65 | 5 (0.54, 0.78) |
|                            |           |                       | 03 | 0.5 1.0                               | 20   |                |

Favors capivasertib + fulvestrant

Number of patients at risk

pivasertib + fulvestrant 200 180 139 131 108 102 92 90 73 71 61 49 40 33 29 22 22 13 13 12 5 5 3 1 1 Placebo + fulvestrant 219 205 130 118 94 89 69 65 55 54 42 39 34 27 22 18 17 10 9 8 3 3 2 1 1

|                                | Capivasertib +<br>fulvestrant (N=200) | Placebo +<br>fulvestrant (N=219) |  |  |  |  |  |
|--------------------------------|---------------------------------------|----------------------------------|--|--|--|--|--|
| PFS events                     | 137                                   | 178                              |  |  |  |  |  |
| Median PFS<br>(95% CI); months | <b>7.2</b> (4.5–7.4)                  | <b>3.7</b> (3.0–5.0)             |  |  |  |  |  |
| HR (95% CI):                   | 0.70 (0.56, 0.88)                     |                                  |  |  |  |  |  |

#### Excluding unknowns (58 v 48): HR 0.79 (95% CI 0.61, 1.02)

| Response per                                 | Overall p                     | opulation                | AKT pathway-altered population |                          |  |  |  |
|----------------------------------------------|-------------------------------|--------------------------|--------------------------------|--------------------------|--|--|--|
| investigator assessment                      | Capivasertib +<br>fulvestrant | Placebo +<br>fulvestrant | Capivasertib +<br>fulvestrant  | Placebo +<br>fulvestrant |  |  |  |
| Patients with measurable disease at baseline | 310                           | 320                      | 132                            | 124                      |  |  |  |
| Objective response rate; n (%)               | 71 (22.9)                     | 39 (12.2)                | 38 (28.8)                      | 12 (9.7)                 |  |  |  |
| Odds ratio (95% CI)*                         | 2.19 (1.4                     | 2, 3.36)                 | 3.93 (1.9                      | 93, 8.04)                |  |  |  |

Turner et al, SABCS 2022

#### Investigator-assessed PFS by subgroup: Overall population

## **Overall Survival**



- Overall survival immature at just 28% maturity
  - Less events in the Capi arm





#### Adverse events (>10% of patients) – overall population



Adverse events of any grade related to rash (group term including rash, rash macular, macular, macular, and rash pruritic) were reported in 38.0% of the patients in the capivasertib + fulvestrant arm (grade ≥3 in 12.1%) and in 7.1% of those in the placebo + fulvestrant group (grade ≥3 in 0.3%). I all events shown were Grade 3 except one case of Grade 4 hyperglycemia in the capivasertib + fulvestrant arm. This presentation is the intellectual property of the author/presenter. Contact them at nick.tumer@icr.ac.uk for permission to reprint and/or distribute.

AEs leading to:

- Discontinuation capi/pla: 9.3 vs 0.6%
- Interruption capi/pla: 34.9 vs 10.3%
- Dose reduction capi/pla: 19.7 vs 1.7%

Turner et al, SABCS 2022
# **Conclusions and Next Steps**

- Capivasertib/fulvestrant vs Pla/fulvestrant improved PFS in the overall population and in patients with tumor PIK3CA altered population; overall survival immature
- Efficacy in the subset of patients with non-altered tumors uncertain
  - Trial was not powered to look at this subgroup; small group with unknown mutation profile hard to take into account
- Benefit seen across subgroups including those with prior CDK4/6i and with visceral metastases
- Safety: GI toxicity, primarily lower grade resulted in modestly more discontinuations, dose holds and dose reductions of capivasertib
  - All/Grade 3 diarrhea 72/9%, rash 38/12%, hyperglycemia 16/2.3%, nausea 35/0.8%
- Data to be considered for regulatory approval
- Additional studies
  - CAPItello-292 (NCT04862663): Fulvestrant/Palbociclib +/- Capi
  - Additional studies with ipatasertib with similar designs
  - New PIK3CA inhibitors: Inavolisib, LOX783 and more!

## Mechanism of Action of New Endocrine Agents Targeting the ER Domain



1. Hanker AB et al. Cancer Cell. 2020;37:496-513 2. Lloyd MR, et al. Ther Adv Med Oncol 2022, Vol. 14: 1–25

## **Oral SERDS: Randomized Trials in the Post-CDK4/6 Inhibitor Setting**

|                           | EMERALD<br>(NCT03778931)                                                           | AMEERA-3<br>(NCT04059484)                                     | acelERA<br>(NCT04576455)                        | SERENA-2<br>(NCT04214288)                                                                | EMBER-3<br>(NCT04975348)                                                                        |
|---------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| N                         | 477                                                                                | 282                                                           | 303                                             | 288                                                                                      | 830                                                                                             |
| Patient Population        | ER+/HER2- ABC                                                                      | ER+/HER2- ABC<br>(ET sensitivity<br>required)                 | ER+/HER2- ABC<br>Measurable<br>disease          | ER+/HER2- MBC                                                                            | ER+/HER2- MBC                                                                                   |
| Number of Prior Therapies | 1-2                                                                                | 0-2                                                           | 0-2                                             | 0-2                                                                                      | 1 (AI + CDK4/6i)                                                                                |
| Prior Chemotherapy        | 20% had 1 line                                                                     | Allowed (≤1) or CDK                                           | Allowed (≤1)                                    | Allowed (≤1)                                                                             | Not allowed                                                                                     |
| Prior Fulvestrant         | 30%                                                                                | Allowed                                                       | Allowed                                         | Not allowed                                                                              | Not allowed                                                                                     |
| Prior CDK 4/6i            | 100%                                                                               | 80%                                                           | Allowed                                         | Allowed                                                                                  | Allowed                                                                                         |
| Treatment Arms            | Elacestrant<br>vs<br>ET<br>(AI or Fulvestrant)                                     | Amcenestrant<br>vs<br>ET<br>(AI, Tamoxifen or<br>Fulvestrant) | Giredestrant<br>vs<br>ET<br>(AI or Fulvestrant) | Camizestrant<br>(various doses) vs<br>Fulvestrant                                        | Imlunestrant (N~370) vs<br>ET (AI or Fulv) (N=280) vs<br>Imlunestrant +<br>Abemaciclib (N= 180) |
| Primary Endpoint          | PFS in ITT<br>and <i>ESR1</i> mutant                                               | PFS                                                           | PFS                                             | PFS                                                                                      | PFS                                                                                             |
| Results                   | Positive<br>IIT: 2.79 vs 1.891<br>HR 0.7<br><i>ESR1</i> m: 3.78 vs 1.87<br>HR 0.55 | Did not meet<br>primary EP                                    | Did not meet<br>primary EP                      | Positive<br>(SABCS 2022)<br>3.7 vs 7.2 (75mg)<br>HR 0.58<br>3.7 vs 7.7(150mg)<br>HR 0.67 | Not yet reported<br>Modified from Jhaveri                                                       |

# A significant PFS benefit was seen in the *ESR1*-mutated population of EMERALD; a benefit trend was observed in aceIERA BC and AMEERA-3



Giredestrant and elacestrant had comparable PFS hazard ratios vs. PCET in *ESR1*-mutated subpopulations; the HR for amcenestrant was notably higher

It was announced in August 2022 that the amcenestrant clinical development programme will be discontinued.<sup>4</sup>

1° primary; 2°, secondary; BC, breast cancer; EP, endpoint; mo, months; mPFS, median progression-free survival; PCET, physician's choice of endocrine therapy; PFS, progression-free survival; SERD, selective oestrogen receptor degrader.

1. Martin M, et al. ESMO 2022 (Abstract 211MO; mini oral presentation); 2. Tolaney SM, et al. ESMO 2022 (Abstract 212MO; mini oral presentation); 3. Bidard F-C, et al. J Clin Oncol 2022; 4. https://www.sanofi.com/en/media-room/press-releases/2022/2022-08-17-05-30-00-2499668 (accessed August 2022).

# **EMERALD Phase 3 Trial: Elacestrant vs SOC ET**



#### Stratification Factors:

- ESR1-mutation status<sup>f</sup>
- Prior treatment with fulvestrant
  Presence of visceral metastases
- **Demographics**
- ~70% visceral mets
- ~40% 2 lines prior ET for MBC
- ~24% one line of chemotherapy
- 100% prior CDK4/6i

#### **Conclusions**

- Hazard ratios are relatively similar in pts who received >6 months prior CDK4/6i or longer
- Pts with endocrine sensitive disease had remarkable PFS with elacestrant alone
- Benefit was more marked in the ESR1 mutant population
- Next steps: combinations with targeted agents (ELEVATE)

Bardia, Bidard ..... and Kaklamani; SABCS 2022

#### PFS by Duration of CDK4/6i: All Patients

Duration on CDK4/6i in the metastatic setting

|                                   | At least 6 mo                   |                              | At least 12 mo                  |                              | At least 18 mo                  |                              |
|-----------------------------------|---------------------------------|------------------------------|---------------------------------|------------------------------|---------------------------------|------------------------------|
|                                   | Elacestrant<br>(n=202)          | SOC<br>(n=205)               | Elacestrant<br>(n=150)          | SOC<br>(n=160)               | Elacestrant<br>(n=98)           | SOC<br>(n=119)               |
| Median PFS<br>Months<br>(95% CI)  | <b>2.79</b><br>(1.94 - 3.78)    | <b>1.91</b><br>(1.87 - 2.14) | <b>3.78</b><br>(2.33 - 6.51)    | <b>1.91</b><br>(1.87 - 3.58) | <b>5.45</b><br>(2.33 - 8.61)    | <b>3.29</b><br>(1.87 - 3.71) |
| PFS rate at 6 months<br>(95% CI)  | 34.40<br>(26.70 - 42.10)        | 19.88<br>(12.99 - 26.76)     | 41.56<br>(32.30 - 50.81)        | 21.72<br>(13.65 - 29.79)     | 44.72<br>(33.24 - 56.20)        | 25.12<br>(15.13 - 35.10)     |
| PFS rate at 12 months<br>(95% CI) | 21.00<br>(13.57 - 28.43)        | 6.42<br>(0.75 - 12.09)       | 25.64<br>(16.49 - 34.80)        | 7.38<br>(0.82 - 13.94)       | 26.70<br>(15.61 - 37.80)        | 8.23<br>(0.00 - 17.07)       |
| PFS rate at 18 months<br>(95% CI) | 16.24<br>(8.75 - 23.74)         | 3.21<br>(0.00 - 8.48)        | 19.34<br>(9.98 - 28.70)         | 3.69<br>(0.00 - 9.77)        | 21.03<br>(9.82 - 32.23)         | 4.11<br>(0.00 - 11.33)       |
| Hazard ratio (95% CI)             | <b>0.688</b><br>(0.535 - 0.884) |                              | <b>0.613</b><br>(0.453 - 0.828) |                              | <b>0.703</b><br>(0.482 - 1.019) |                              |

### PFS by Duration of CDK4/6i: ESR1 mutant

|                                  | At leas                      | t 6 mo                       | At least 12 mo                |                              | At least 18 mo                |                              |
|----------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|-------------------------------|------------------------------|
|                                  | Elacestrant                  | SOC                          | Elacestrant                   | SOC                          | Elacestrant                   | SOC                          |
|                                  | (n=103)                      | (n=102)                      | (n=78)                        | (n=81)                       | (n=55)                        | (n=56)                       |
| Median PFS<br>Months<br>(95% CI) | <b>4.14</b><br>(2.20 - 7.79) | <b>1.87</b><br>(1.87 - 3.29) | <b>8.61</b><br>(4.14 - 10.84) | <b>1.91</b><br>(1.87 - 3.68) | <b>8.61</b><br>(5.45 - 16.89) | <b>2.10</b><br>(1.87 - 3.75) |
| PFS rate at 6 months             | 42.43                        | 19.15                        | 55.81                         | 22.66                        | 58.57                         | 27.06                        |
| (95% CI)                         | (31.15 - 53.71)              | (9.95 - 28.35)               | (42.69 - 68.94)               | (11.63 - 33.69)              | (43.02 - 74.12)               | (13.05 - 41.07)              |
| PFS rate at 12 months            | 26.02                        | 6.45                         | 35.81                         | 8.39                         | 35.79                         | 7.73                         |
| (95% CI)                         | (15.12 - 36.92)              | (0.00 - 13.65)               | (21.84 - 49.78)               | (0.00 - 17.66)               | (19.54 - 52.05)               | (0.00 - 20.20)               |
| PFS rate at 18 months            | 20.70                        | 0.00                         | 28.49                         | 0.00                         | 30.68                         | 0.00                         |
| (95% CI)                         | (9.77 - 31.63)               | ( )                          | (14.08 - 42.89)               | ( )                          | (13.94 - 47.42)               | ( )                          |
| Hazard ratio (95% CI)            | <b>0.517</b>                 |                              | <b>0.</b>                     | <b>410</b>                   | <b>0.</b> 4                   | <b>466</b>                   |
|                                  | (0.361 - 0.738)              |                              | (0.262                        | - 0.634)                     | (0.270                        | - 0.791)                     |

## SERENA-2 Phase 2 Trial: Camizestrant plus Fulvestrant



73

37

28

22

- Imbalance in liver (not visceral) mets: 31 v 41 vs 48%
- Imbalance in ESR1m: 30 v 36 v 48%
- 77% one line ET, 63% prior AI; 50% prior CDK4/6i ٠
- Prior chemo for MBC: 22 v 12 v 26%

\*Statistically significant; a HRs adjusted for prior use of CDK4/6i and liver/lung metastases

14

8

5

0

|                    |                       | C 75 (n=74) | C 150 (n=73) | F (n=73)  |
|--------------------|-----------------------|-------------|--------------|-----------|
| PFS by BICR:       | Events [n (%)]        | 39 (52.7)   | 33 (45.2)    | 53 (72.6) |
| Significant        | Median PFS,           | 7.4         | 12.7         | 3.7       |
| Significant        | months (90% CI)       | (4.5-10.9)  | (9.3-18.4)   | (2.0-3.8) |
| discordance with   | Adjusted HR           | 0.56        | 0.47         |           |
|                    | (90% CI) <sup>a</sup> | (0.39-0.80) | (0.33-0.68)  | -         |
| inv PFS for 150 mg | P value               | 0.0079*     | 0.0004*      | -         |
|                    |                       |             |              |           |

Oliveira et al, SABCS 2022



#### No prior CDK4/6i



#### ESR1m detectable at baseline



|           | YES                   | C 75 (n=43) | C 150 (n=43) | F 500 (n=43) | NO                    | C 75 (n=31) | C 150 (n=30) | F 500 (n=30) |
|-----------|-----------------------|-------------|--------------|--------------|-----------------------|-------------|--------------|--------------|
| Liver     | Events [n (%)]        | 31 (72.1)   | 32 (74.4)    | 39 (90.7)    | Events [n (%)]        | 19 (61.3)   | 19 (63.3)    | 19 (63.3)    |
| and/or    | Median PFS,           | 7.2         | 5.6          | 2.0          | Median PFS,           | 5.5         | 14.5         | 9.2          |
|           | months (90% CI)       | (3.6-11.1)  | (3.7-9.1)    | (1.9-3.6)    | months (90% CI)       | (3.7-15.0)  | (5.6-17.2)   | (3.7-18.7)   |
| lung mets | Adjusted HR           | 0.43        | 0.55         | _            | Adjusted HR           | 0.99        | 0.91         | _            |
|           | (90% CI) <sup>a</sup> | (0.28-0.65) | (0.37-0.82)  |              | (90% CI) <sup>a</sup> | (0.57-1.69) | (0.53-1.56)  |              |

#### ESR1m not detectable at baseline

#### Biomarkers

 Camizestrant reduced ESR1 ctDNA to near zero by C2D1

### Safety

- Very low rate discontinuation
- Interruption TRAEs ~med 7 days: ~10%
- Very low rate of grade 3 AEs
- All grade AEs (low-high dose):
  - Photopsia: 12-25%
  - Sinus bradycardia: 5-26%
  - More fatigue, arthralgia, AST/ALT elevation at higher dose

#### Conclusion

- Met its primary endpoint
- No comment about dosing or imbalance in specific factors
  - Ph 3 trials ongoing
  - Dose: 75 mg

# Imlunestrant: Phase Ia/b Trial



# **Additional Phase III SERD Trials for MBC: Examples**



Negative

for ESR1m

Positive for

ESR1m

## **ARV-471 (PROTAC ER Degrader): VERITAC Phase II Expansion Trial**

•

- ARV-471 directly binds an E3 ubiquitin ligase and ER to trigger ubiquitination of ER then proteasomal degradation
- $\geq$ 1 ET for MBC, a CDK4/6i
  - 35 pts at 200mg/d; 36 pts at 500 mg/d
  - 58% ESR1 mutations; 79% prior fulvestrant, 45% liver mets

 Primary toxicities: fatigue, nausea, but <grade 2</li>

| PFS  |                                                        |                                                                                    |                                                          |  |
|------|--------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------|--|
|      |                                                        | All Patie                                                                          | nts                                                      |  |
|      |                                                        | 200 mg QD (n=35)                                                                   | Total (N=71)                                             |  |
|      | Events, n (%)                                          | 24 (68.6)                                                                          | 41 (57.7)                                                |  |
|      | mPFS, mo (95% CI)                                      | 3.5 (1.8–7.8)                                                                      | 3.7 (1.9–8.3)                                            |  |
|      |                                                        |                                                                                    |                                                          |  |
|      |                                                        | Mutant E                                                                           | SR1                                                      |  |
|      |                                                        |                                                                                    |                                                          |  |
|      |                                                        | 200 mg QD (n=19)                                                                   | Total (n=41)                                             |  |
|      | Events, n (%)                                          | 200 mg QD (n=19)<br>12 (63.2)                                                      | Total (n=41)<br>22 (53.7)                                |  |
|      | Events, n (%)<br>mPFS, mo (95% CI)                     | <b>200 mg QD (n=19)</b><br>12 (63.2)<br>5.5 (1.8–8.5)                              | Total (n=41)           22 (53.7)           5.7 (3.6–9.4) |  |
|      | Events, n (%)<br>mPFS, mo (95% CI)<br>Median Fl        | 200 mg QD (n=19)<br>12 (63.2)<br>5.5 (1.8–8.5)<br>R degradation w                  | Total (n=41)<br>22 (53.7)<br>5.7 (3.6–9.4)               |  |
| 0.3) | Events, n (%)<br>mPFS, mo (95% CI)<br>Median El<br>(ra | 200 mg QD (n=19)<br>12 (63.2)<br>5.5 (1.8–8.5)<br>R degradation w<br>nge: 28%–95%) | Total (n=41)<br>22 (53.7)<br>5.7 (3.6–9.4)<br>/as 69%    |  |

| al |
|----|
|    |

Fulvestrant vs ARV471 200 mg/d

Hurvitz, Schott et al, SABCS 2022

|                                  | 200 mg QD<br>(n=35) | 500 mg QD<br>(n=36) | Total<br>(N=71)  |
|----------------------------------|---------------------|---------------------|------------------|
| CBR, % (95% CI)                  | 37.1 (21.5–55.1)    | 38.9 (23.1–56.5)    | 38.0 (26.8–50.3) |
| Patients with mutant <i>ESR1</i> | (n=19)              | (n=22)              | (n=41)           |
| CBR, % (95% CI)                  | 47.4 (24.4–71.1)    | 54.5 (32.2–75.6)    | 51.2 (35.1–67.1) |

# **Newer ER Targeted Agents**

- Other agents
  - **SERCA**: serum ER covalent antagonist, H3B-6546 (n=94)
    - ORR 16%, CVR 40%, mPFS 3.8 mo but 7.3 mo with ESR1Y537S in phase I
    - Phase 1 trial of H3B6545 with Palbociclib is ongoing (NCT04288089)
  - **CERAN**: complete ER antagonist, OP-1250 (n=40)
    - ORR 18%, CBR 38%
    - Phase I trial OP-1250 + Palbociclib (NCT05266105)

Hamilton et al, SABCS 2021; Patel MR et al. SABCS 2021; Burke et al, Front Cell Dev Biol; 2022

# And more.....

- More oral SERDS in development
- SARM: selective and rogen receptor modulator
  - Enobosarm: ORR 48%, CBR 80%, and median PFS 5.5 months in AR+++ (n=24); Phase III ARTEST trial in 3<sup>rd</sup> line metastatic setting
  - Fast track designation by FDA
- SERM: Lasofoxifene
  - Elaine 2: n=29 with abemaciclib: CBR 69% at 24 wks (ORR 50%), PFS 13 months
    - DVT 6.9% (n=2), one with risks (knee surgery etc)
  - Elaine 1: Phase II in ESR1 mut v fulvestrant

# **ADCs in HR+ MBC (not including HER2 low)**

### Phase III TROPiCS: Sacituzumab govitecan in HR+/HER2neg MBC



### Phase 1 TROPION-PanTumor01: Datopotomab deruxtecan in HR+/HER2neg MBC

- N=40 •
- Median 2 prior chemo for MBC (1-6)
- Efficacy: ORR (all PR): 27%; CBR: 44%; med PFS 8.3 mo.
- Safety: stomatitis (Gr 3 10%); ILD Gr 2 and 3 (2 pts)





Response assessment: Scan OGW for 48 weeks, then O9W until RECIST1.1 disease progression (as assessed by Investigator), regardless of study intervention discontinuation or start of subseque anticancer therapy. Following disease progression, 1 additional follow-up scan should be performed as per Imaging schedule

#### **Targeting HER3: Patritumab deruxtecan; ORR 30%**

Rugo et al, JCO 2022, ESMO 2022, SABCS 2022

Krop et al, ASCO 2022



-------

## Summary and Conclusions

- Exciting new data with novel approaches to the treatment of HR+ MBC
- Capivasertib
  - Improved PFS added to fulvestrant with better safety profile than existing PIK3CA inhibitors
  - Benefit in pathway non-altered population still unclear
  - Next step in combination with CDK4/6i, early stage?
- Oral SERDs
  - We are finally making progress!
  - Benefit clearer in ESR1m population
  - Multiple phase III trials in metastatic and early stage disease ongoing
- ADCs
  - Very encouraging efficacy in HR+/HER2 negative (and HER2 low disease)
  - Sequencing is the most important next question along with efficacy in earlier lines

# Addressing Current Questions and Controversies in the Management of Chronic Lymphocytic Leukemia — What Clinicians Want to Know

Part 1 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64<sup>th</sup> ASH Annual Meeting

## Friday, December 9, 2022 11:30 AM – 1:30 PM CT (12:30 PM – 2:30 PM ET)

### Faculty

Alexey V Danilov, MD, PhD Matthew S Davids, MD, MMSc Professor Dr Arnon P Kater, MD, PhD

> Moderator Neil Love, MD

Lindsey Roeker, MD Philip A Thompson, MB, BS



# Thank you for attending!

## **CME Credit Information**

### In-person attendees can use the networked iPads<sup>®</sup> to claim CME credit.

CME credit instructions will be emailed to all clinician attendees within 3 to 5 business days.

