# **Addressing Current Questions and Controversies** in the Management of Chronic Lymphocytic Leukemia — What Clinicians Want to Know

Part 1 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64<sup>th</sup> ASH Annual Meeting

> Friday, December 9, 2022 11:30 AM - 1:30 PM CT

> > Faculty

**Alexey V Danilov, MD, PhD** Lindsey Roeker, MD Matthew S Davids, MD, MMSc **Professor Dr Arnon P Kater, MD, PhD Moderator** 

Neil Love, MD





### Faculty



Alexey V Danilov, MD, PhD Professor, Department of Hematology and Transplantation Co-Director, Toni Stephenson Lymphoma Center City of Hope National Medical Center Duarte, California



**Lindsey Roeker, MD** Assistant Attending Physician Memorial Sloan Kettering Cancer Center New York, New York



Matthew S Davids, MD, MMSc Associate Professor of Medicine Harvard Medical School Director of Clinical Research Division of Lymphoma Dana-Farber Cancer Institute Boston, Massachusetts



Philip A Thompson, MB, BS Associate Professor Department of Leukemia Division of Cancer Medicine The University of Texas MD Anderson Cancer Center Houston, Texas



**Professor Dr Arnon P Kater, MD, PhD** Department of Hematology, Cancer Center Amsterdam University Medical Centers University of Amsterdam Amsterdam, Netherlands



Moderator Neil Love, MD Research To Practice



### **Clinicians in the Meeting Room**

### Networked iPads are available.



Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.



Answer Survey Questions: Complete the pre- and postmeeting surveys.



Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.



Complete Your Evaluation: Tap the CME Evaluation button to complete your evaluation electronically to receive credit for your participation.

For assistance, please raise your hand. Devices will be collected at the conclusion of the activity.



### **Clinicians Attending via Zoom**



Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.



Answer Survey Questions: Complete the pre- and postmeeting surveys.



Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.



Get CME Credit: A CME credit link will be provided in the chat room at the conclusion of the program.



### **About the Enduring Program**

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.



An email will be sent to all attendees when the activity is available.

• To learn more about our education programs, visit our website, <u>www.ResearchToPractice.com</u>



# Addressing Current Questions and Controversies in the Management of Hodgkin and Non-Hodgkin Lymphoma — What Clinicians Want to Know

Part 2 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64<sup>th</sup> ASH Annual Meeting

### Friday, December 9, 2022 3:15 PM – 5:15 PM CT (4:15 PM – 6:15 PM ET)

### Faculty

Jonathan W Friedberg, MD, MMSc Brad S Kahl, MD David G Maloney, MD, PhD

Loretta J Nastoupil, MD Sonali M Smith, MD

Moderator Neil Love, MD



# Addressing Current Questions and Controversies in the Management of Multiple Myeloma — What Clinicians Want to Know

Part 3 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64<sup>th</sup> ASH Annual Meeting

### Friday, December 9, 2022 7:00 PM – 9:00 PM CT (8:00 PM – 10:00 PM ET)

### Faculty

Jesús G Berdeja, MD Rafael Fonseca, MD Sagar Lonial, MD Robert Z Orlowski, MD, PhD Noopur Raje, MD

Moderator Neil Love, MD





**Spencer Henick Bachow, MD** Lynn Cancer Institute Boca Raton, Florida



Amany R Keruakous, MD, MS Georgia Cancer Center Augusta University Augusta, Georgia



**Bhavana (Tina) Bhatnagar, DO** WVU Cancer Institute Wheeling, West Virginia



Henna Malik, MD Texas Oncology North Houston, Willowbrook/Cypress Houston, Texas



Jennifer L Dallas, MD Oncology Specialists of Charlotte Charlotte, North Carolina



**Syed Farhan Zafar, MD** Florida Cancer Specialists Fort Myers, Florida



Justin Peter Favaro, MD, PhD Oncology Specialists of Charlotte Charlotte, North Carolina



### **Commercial Support**

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Genentech, a member of the Roche Group, Lilly, and Pharmacyclics LLC, an AbbVie Company and Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC.

### Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



### **Dr Love — Disclosures**

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, BeyondSpring Pharmaceuticals Inc, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, CTI BioPharma Corp, Daiichi Sankyo Inc, Eisai Inc, Elevation Oncology Inc, EMD Serono Inc, Epizyme Inc, Exact Sciences Corporation, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Kronos Bio Inc, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, MEI Pharma Inc, Merck, Mersana Therapeutics Inc, Mirati Therapeutics Inc, Natera Inc, Novartis, Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi, Seagen Inc, Servier Pharmaceuticals LLC, SpringWorks Therapeutics Inc, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, TerSera Therapeutics LLC, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc, Verastem Inc and Zymeworks Inc.



### **Dr Danilov — Disclosures**

| Consulting Agreements | AbbVie Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, BeiGene Ltd,<br>Bristol-Myers Squibb Company, Genentech, a member of the Roche Group, Incyte Corporation, Lilly,<br>MorphoSys, Nurix Therapeutics Inc, Oncovalent Therapeutics, Pharmacyclics LLC, an AbbVie Company,<br>TG Therapeutics Inc |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contracted Research   | AbbVie Inc, AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb<br>Company, Cyclacel Pharmaceuticals Inc, MEI Pharma Inc, Nurix Therapeutics Inc, Takeda Pharmaceuticals<br>USA Inc                                                                                                     |



### **Dr Davids — Disclosures**

| Advisory Committee                                                                                                                                                                                                                                                                                                        | AbbVie Inc, Adaptive Biotechnologies Corporation, AstraZeneca Pharmaceuticals LP, BeiGene Ltd,<br>Bristol-Myers Squibb Company, Genentech, a member of the Roche Group, Janssen Biotech Inc, Lilly,<br>Merck, Takeda Pharmaceuticals USA Inc, TG Therapeutics Inc |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Consulting Agreements</b> AbbVie Inc, Adaptive Biotechnologies Corporation, Ascentage Pharma, AstraZeneca Pharma<br>BeiGene Ltd, Bristol-Myers Squibb Company, Genentech, a member of the Roche Group, Ja<br>Inc, Lilly, Merck, Ono Pharmaceutical Co Ltd, Takeda Pharmaceuticals USA Inc, TG Therapeu<br>Verastem Inc |                                                                                                                                                                                                                                                                   |  |
| Contracted Research                                                                                                                                                                                                                                                                                                       | AbbVie Inc, Ascentage Pharma, AstraZeneca Pharmaceuticals LP, Genentech, a member of the Roche<br>Group, Novartis, TG Therapeutics Inc, Verastem Inc                                                                                                              |  |



### **Prof Kater — Disclosures**

| Advisory Committee and<br>Contracted Research | AbbVie Inc, AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Genentech, a member of the<br>Roche Group, Janssen Biotech Inc, LAVA Therapeutics NV, Roche Laboratories Inc                                 |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Consulting Agreements                         | AbbVie Inc, AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb Company, Genentech, a member of the<br>Roche Group, Janssen Biotech Inc, LAVA Therapeutics NV, Link Immunotherapeutics Inc, Roche<br>Laboratories Inc |
| Speakers Bureau                               | AbbVie Inc                                                                                                                                                                                                             |



### **Dr Roeker — Disclosures**

| Consulting Agreements                                   | AbbVie Inc, Ascentage Pharma, AstraZeneca Pharmaceuticals LP, BeiGene Ltd, Janssen Biotech Inc,<br>Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Pfizer Inc, Pharmacyclics LLC,<br>an AbbVie Company, TG Therapeutics Inc |  |  |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Contracted Research                                     | Aptos Biosciences, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Pfizer Inc,<br>Sound Biologics                                                                                                                           |  |  |  |  |
| Stock Options/ Ownership —<br>Public Ineligible Company | Abbott Laboratories                                                                                                                                                                                                                              |  |  |  |  |
| Speaking Engagements                                    | Curio Bioscience, DAVA Oncology                                                                                                                                                                                                                  |  |  |  |  |
| Travel Support                                          | Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company                                                                                                                                                                              |  |  |  |  |



### **Dr Thompson — Disclosures**

| Consulting Agreements | AbbVie Inc, Adaptive Biotechnologies Corporation, AstraZeneca Pharmaceuticals LP, BeiGene Ltd,<br>Genentech, a member of the Roche Group, Janssen Biotech Inc, Lilly |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contracted Research   | AbbVie Inc, Adaptive Biotechnologies Corporation, AstraZeneca Pharmaceuticals LP, Lilly                                                                              |



# **Addressing Current Questions and Controversies** in the Management of Chronic Lymphocytic Leukemia — What Clinicians Want to Know

Part 1 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64<sup>th</sup> ASH Annual Meeting

> Friday, December 9, 2022 11:30 AM - 1:30 PM CT

> > Faculty

**Alexey V Danilov, MD, PhD** Lindsey Roeker, MD Matthew S Davids, MD, MMSc **Professor Dr Arnon P Kater, MD, PhD Moderator** 

Neil Love, MD





### Agenda

**Module 1:** Front-Line Treatment of Chronic Lymphocytic Leukemia (CLL) — Dr Danilov

**Module 2:** Novel Strategies Combining Bruton Tyrosine Kinase (BTK) and Bcl-2 Inhibitors for CLL — Prof Kater

Module 3: Optimal Management of Adverse Events with BTK and Bcl-2 Inhibitors; Considerations for Special Patient Populations — Dr Davids

Module 4: Selection and Sequencing of Available Therapies for Relapsed/Refractory Disease — Dr Thompson

**Module 5:** Promising Investigational Agents and Strategies — Dr Roeker



### Agenda

**Module 1:** Front-Line Treatment of Chronic Lymphocytic Leukemia (CLL) — Dr Danilov

Real World Cases and Questions

**Module 2:** Novel Strategies Combining Bruton Tyrosine Kinase (BTK) and Bcl-2 Inhibitors for CLL — Prof Kater

Real World Cases and Questions

Module 3: Optimal Management of Adverse Events with BTK and Bcl-2 Inhibitors; Considerations for Special Patient Populations — Dr Davids

Real World Cases and Questions

Module 4: Selection and Sequencing of Available Therapies for Relapsed/Refractory Disease — Dr Thompson

Real World Cases and Questions

**Module 5:** Promising Investigational Agents and Strategies — Dr Roeker

Real World Cases and Questions



# Module 1: Front-Line Treatment of Chronic Lymphocytic Leukemia (CLL) — Dr Danilov





Dr Tina Bhatnagar (Wheeling, West Virginia) Case Presentation: 91-year-old man with Rai Stage 0 CLL underwent surveillance x 5 years and now develops cytopenias and transfusion-dependent anemia



Case Presentation: 67-year-old woman with IGHV-unmutated CLL develops night sweats, rapid doubling time of ALC

Dr Jennifer Dallas (Charlotte, North Carolina)



# Case Presentation: 54-year-old man with relapsed CLL s/p ibrutinib x 5 years now with disease progression



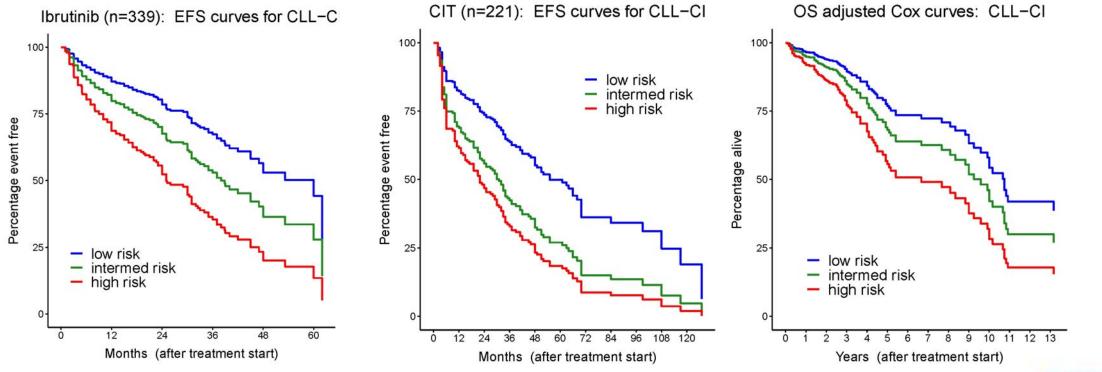
Dr Amany Keruakous (Augusta, Georgia)



# Front-Line Treatment of Chronic Lymphocytic Leukemia

Alexey Danilov, MD, PhD

Co-Director, Toni Stephenson Lymphoma Center


Professor, Department of Hematology & Hematopoietic Cell Transplantation

**City of Hope Comprehensive Cancer Center** 

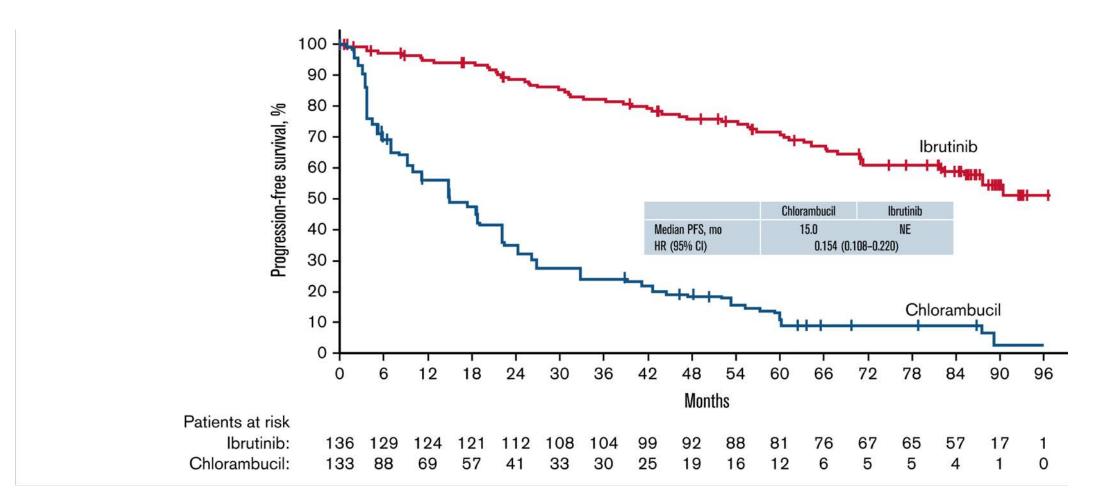


## Factors to Consider when Selecting Treatment for CLL

- IGHV mutation status: once
- del(17p) by FISH and TP53 mutation status: frontline and before each line of therapy
- Patient's age and comorbidities (cardiac, vascular)



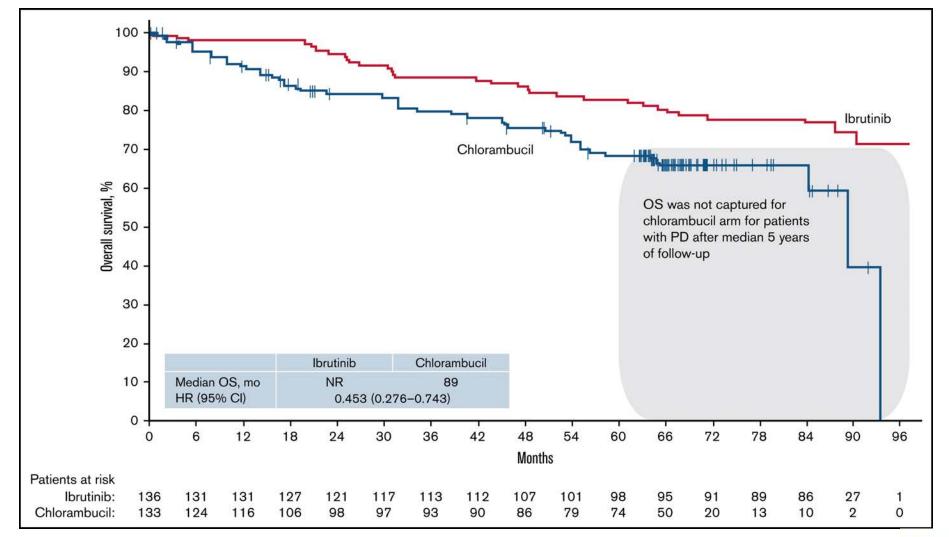



# Frontline Phase III Randomized Trials in CLL

| BTKi                                                                                            | BCL2i                                                                   | Novel-novel                                                                             |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| RESONATE-2 (>65 or comorbidities)<br>Ibrutinib vs. Chlorambucil                                 | CLL14 (CIRS >6; CrCl <70 mL/min)<br>Venetoclax + O vs. Chlorambucil + O | GLOW (>65 or comorbidities)<br>Ibrutinib + Venetoclax vs.                               |
| <b>iLLUMINATE</b> (PCYC-1130) (>65 or comorbidities)                                            |                                                                         | Chlorambucil + O                                                                        |
| Ibrutinib + O vs. Chlorambucil + O<br>ECOG E1912 [<70; non-del(17p)]<br>Ibrutinib + R vs. FCR   |                                                                         | CLL13 (>65yo or ≤65yo with<br>comorbidities)<br>I+V+O vs. Ven+O vs. Ven+R<br>vs. FCR/BR |
| Alliance A041202 (>65)<br>Ibrutinib vs. Ibrutinib + R vs. BR                                    |                                                                         |                                                                                         |
| ELEVATE-TN (>65 or comorbidities)<br>Acala vs. Acala + O vs. Chlorambucil + O                   |                                                                         |                                                                                         |
| <b>SEQUOIA</b> [≥65 OR comorbidities; non-del(17p)]<br><b>Zanubrutinib</b> <i>vs.</i> <b>BR</b> |                                                                         |                                                                                         |
| <b>FLAIR</b> [ $\leq$ 75; non-del(17p)]                                                         |                                                                         | Cityof<br>Hope                                                                          |

Hope.

Ibrutinib + R vs. FCR


## **RESONATE-2: PFS after 8-year follow-up**



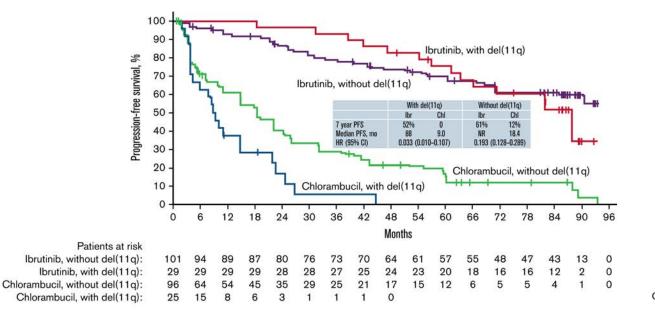


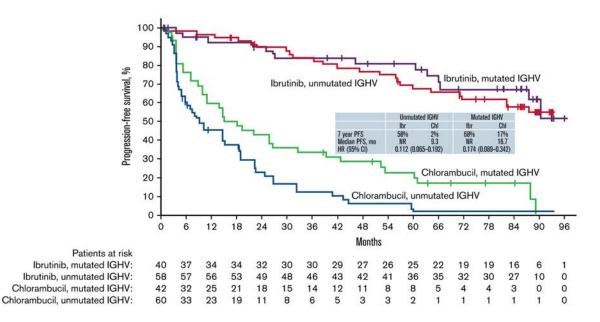
Barr et al 2022

## **RESONATE-2: OS after 8-year follow-up**





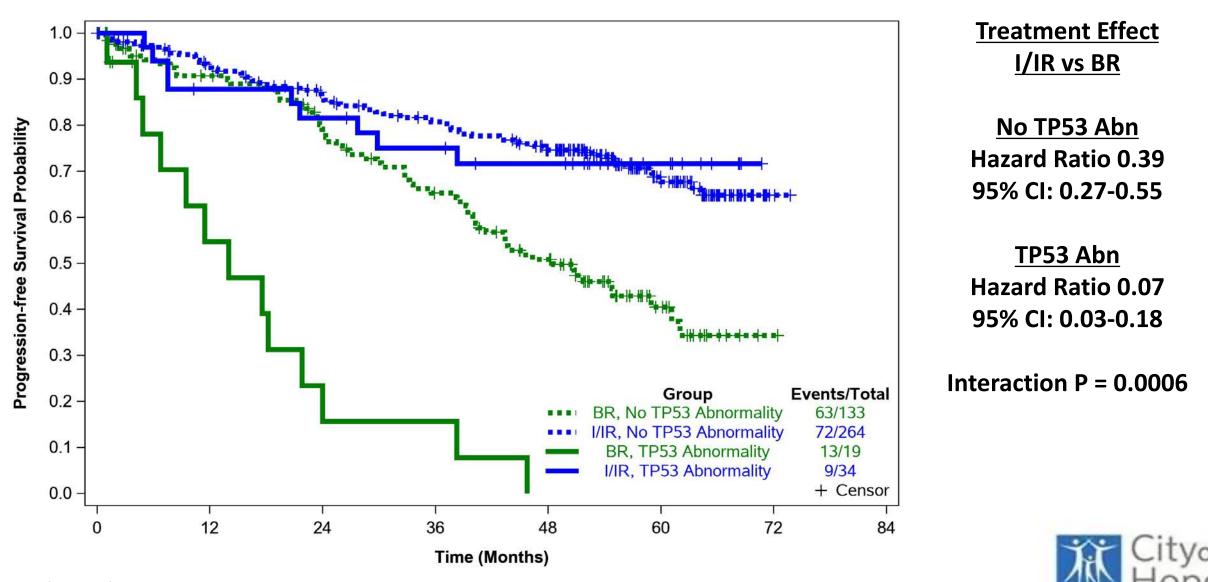

Barr et al 2022


### OS across frontline Phase III ibrutinib vs chemo studies



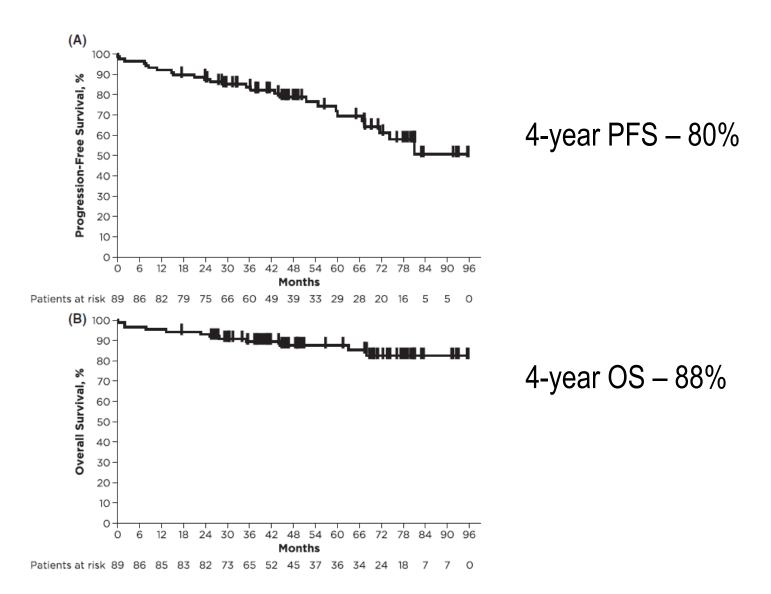


### Ibrutinib Overcomes del(11q) and U-IGHV in RESONATE-2









Barr et al 2022

### Ibrutinib and TP53 abnormalities: Alliance study



Woyach, et al. 2021

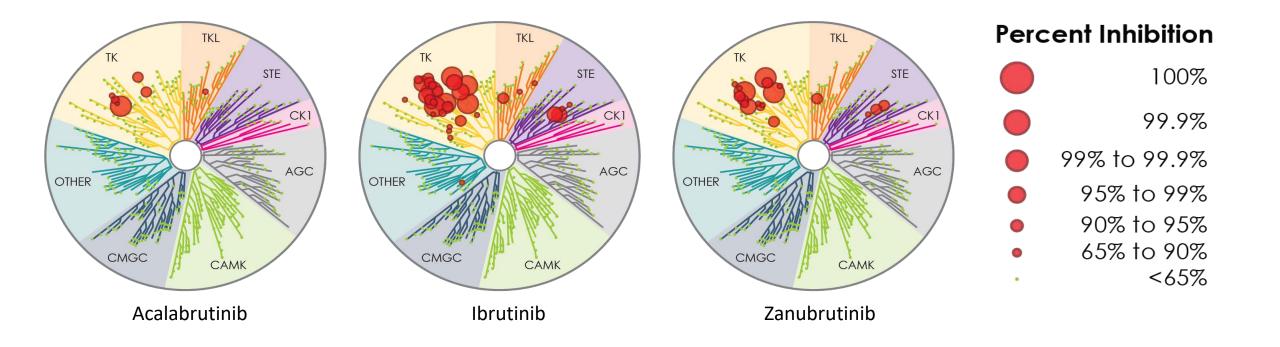
## Pooled analysis of ibrutinib in TN *TP53*<sup>mut</sup> CLL





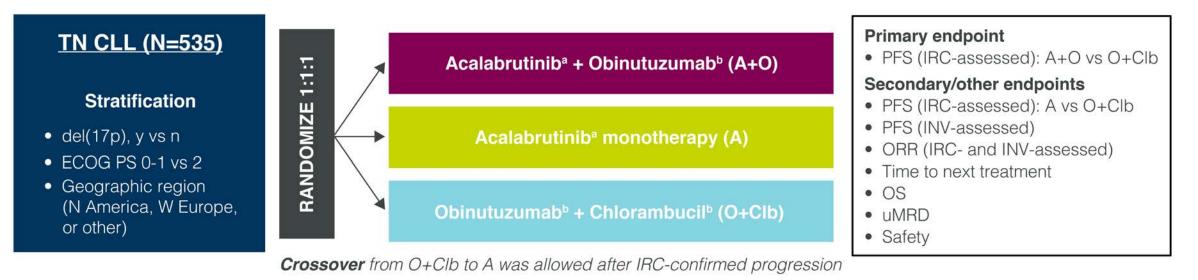
Allan et al., 2022

### Cardiac toxicity with ibrutinib


|                                                                                | FCR<br>Sudden unexplained death<br>or cardiac death |     |     |                                                                | IR    |     |     |       |
|--------------------------------------------------------------------------------|-----------------------------------------------------|-----|-----|----------------------------------------------------------------|-------|-----|-----|-------|
|                                                                                |                                                     |     |     | Sudden unexplained death<br>or cardiac death                   |       |     |     |       |
| Hypertension                                                                   |                                                     | Νο  | Yes | Total                                                          |       | No  | Yes | Total |
| or prior history<br>of cardiac<br>disorder (on<br>treatment at<br>trial entry) | No                                                  | 288 | 2   | 290                                                            | No    | 276 | 1   | 277   |
|                                                                                | Yes                                                 | 88  | 0   | 88                                                             | Yes   | 100 | 7   | 107   |
|                                                                                | Total                                               | 376 | 2   | 378                                                            | Total | 376 | 8   | 384   |
|                                                                                | Relative Risk IE*<br>Fisher's Exact P IE*           |     |     | Relative Risk 18.1, 95%CI (2.3-146)<br>Fisher's Exact P <0.001 |       |     |     |       |

#### Meta-analysis

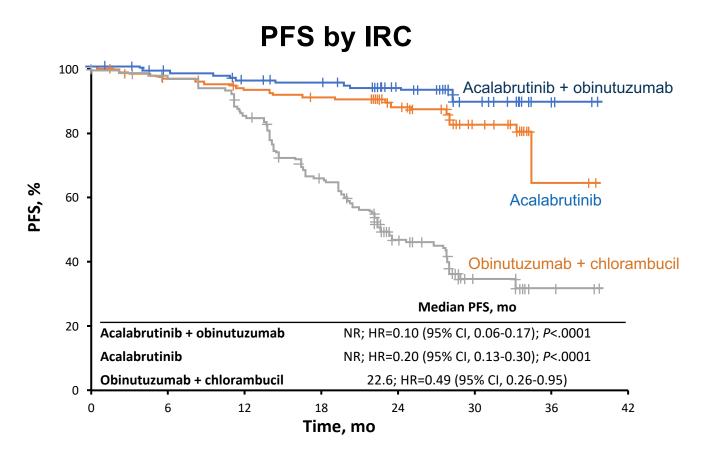
FLAIR is not an outlier for sudden unexplained or cardiac deaths in ibrutinib-containing arms and is consistent with other phase III CLL ibrutinibcontaining trials including ALLIANCE, iLLUMINATE, RESONATE, GENUINE and HELIOS.




### **BTKI's: Kinase Selectivity**






### Acalabrutinib in frontline CLL: ELEVATE-TN

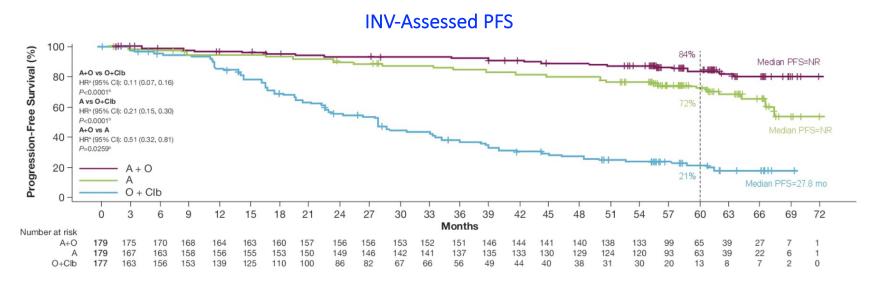


Note: After interim analysis,<sup>7</sup> PFS assessments were by investigator only



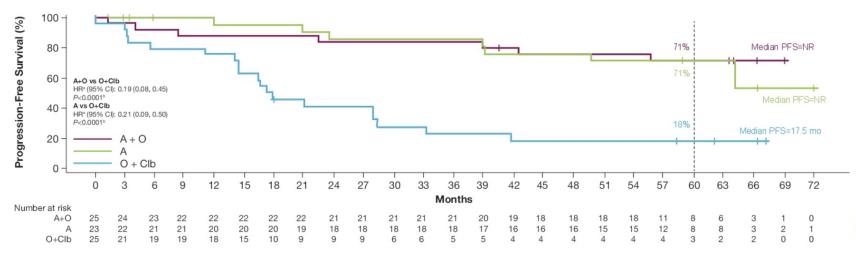
## **ELEVATE-TN: PFS (Primary Endpoint)**




#### **Estimated PFS at 24 months**

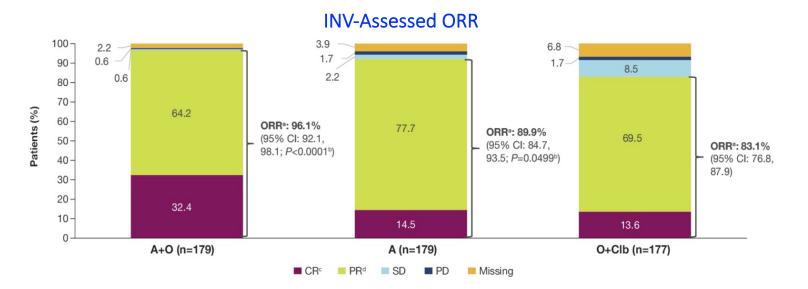
- 93% with acalabrutinib + obinutuzumab (95% CI, 87%-96%)
- 87% with acalabrutinib monotherapy (95% CI, 81%-92%)
- 47% with obinutuzumab + chlorambucil (95% CI, 39%-55%)

**Post-hoc analysis:** HR for PFS between acalabrutinib-obinutuzumab and acalabrutinib monotherapy was 0.49 (95% CI, 0.26-0.95)

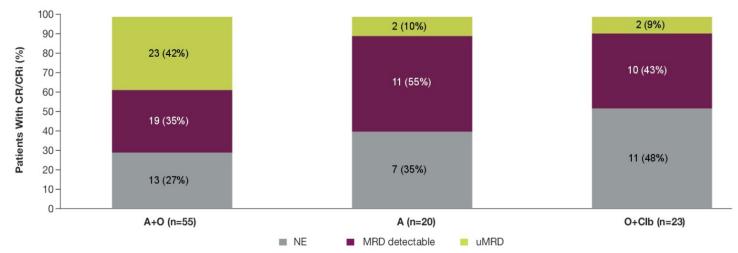



### 5-Year Follow-Up of the ELEVATE-TN Phase 3 Study: PFS




Median follow-up: 58.2 months (range, 0.0-72.0)

#### INV-Assessed PFS in Patients With del(17p) and/or Mutated TP53






### 5-Year Follow-Up of the ELEVATE-TN Phase 3 Study: ORR and uMRD



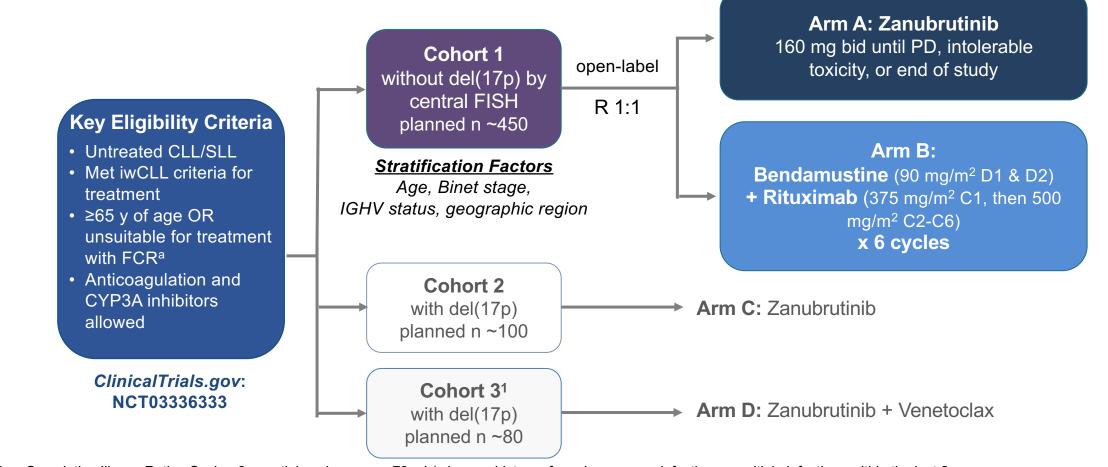
MRD Status in Patients With CR/CRi



### 5-Year Follow-Up of the ELEVATE-TN Phase 3 Study: AEs of Clinical Interest

| AEs of Clinical Interest, n (%)   | A+O (r     | ו=178)    | A (n=      | 179)      | O+Clb (n=169) |          |  |
|-----------------------------------|------------|-----------|------------|-----------|---------------|----------|--|
| AES OF CHINICAL INTEREST, IT (76) | Any Grade  | Grade ≥3  | Any Grade  | Grade ≥3  | Any Grade     | Grade ≥3 |  |
| Cardiac events                    | 43 (24.2)  | 17 (9.6)  | 39 (21.8)  | 18 (10.1) | 13 (7.7)      | 3 (1.8)  |  |
| AFib                              | 11 (6.2)   | 2 (1.1)   | 13 (7.3)   | 2 (1.1)   | 1 (0.6)       | 0        |  |
| Bleeding                          | 88 (49.4)  | 8 (4.5)   | 78 (43.6)  | 6 (3.4)   | 20 (11.8)     | 0        |  |
| Major bleeding                    | 12 (6.7)   | 8 (4.5)   | 8 (4.5)    | 6 (3.4)   | 2 (1.2)       | 0        |  |
| Hypertension                      | 17 (9.6)   | 8 (4.5)   | 16 (8.9)   | 7 (3.9)   | 6 (3.6)       | 5 (3.0)  |  |
| Infections                        | 140 (78.7) | 50 (28.1) | 135 (75.4) | 35 (19.6) | 75 (44.4)     | 14 (8.3) |  |
| SPMs                              | 31 (17.4)  | 14 (7.9)  | 27 (15.1)  | 7 (3.9)   | 7 (4.1)       | 3 (1.8)  |  |
| Excluding non-melanoma skin       | 17 (9.6)   | 12 (6.7)  | 13 (7.3)   | 5 (2.8)   | 3 (1.8)       | 2 (1.2)  |  |

#### **Patient Disposition**


- Treatment still ongoing: A+O 64.8% and A 59.8%
- Discontinuation rates: A+O 35.2%, A 40.2%, O+Clb 22.6%
  - Due to AEs: 17.3%, 15.6%, 14.1%
  - Due to PD: 5.6%, 10.1%, 1.7%

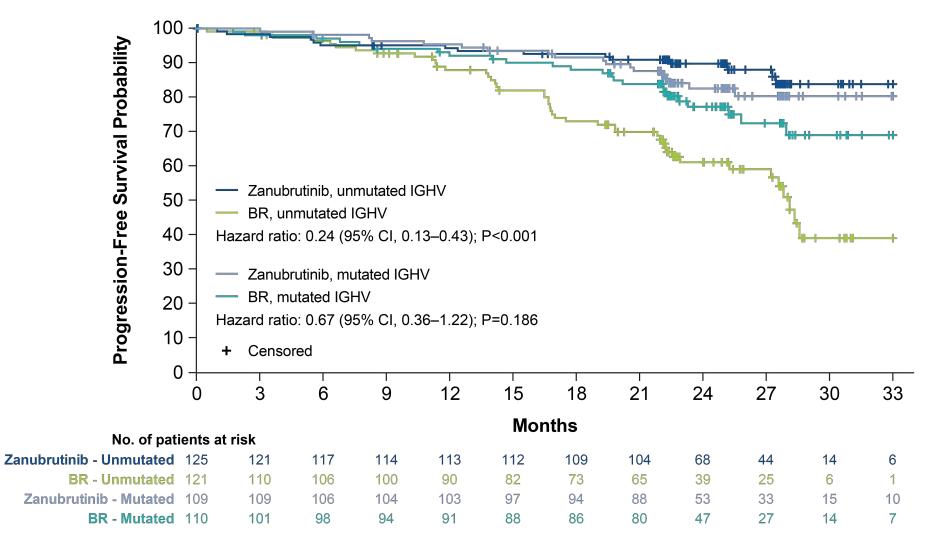
#### Safety

- Most common AEs were similar to prior analyses
- AEs that occurred more frequently in A+O and A vs O+Clb included headache, diarrhea, and arthralgia
- AEs that occurred more frequently with O+Clb included neutropenia, nausea, and IRR



### SEQUOIA (BGB-3111-304) Study Design




<sup>a</sup>Defined as Cumulative Illness Rating Scale >6, creatinine clearance <70 mL/min, or a history of previous severe infection or multiple infections within the last 2 years. C, cycle; CLL/SLL, chronic lymphocytic leukemia/small lymphocytic lymphoma; CYP3A, cytochrome P450, family 3, subfamily A; D, day; del(17p), chromosome 17p deletion; FCR, fludarabine, cyclophosphamide, and rituximab; FISH, fluorescence in-situ hybridization; IRC, independent review committee; IGHV, gene encoding the immunoglobulin heavy chain variable region; iwCLL,

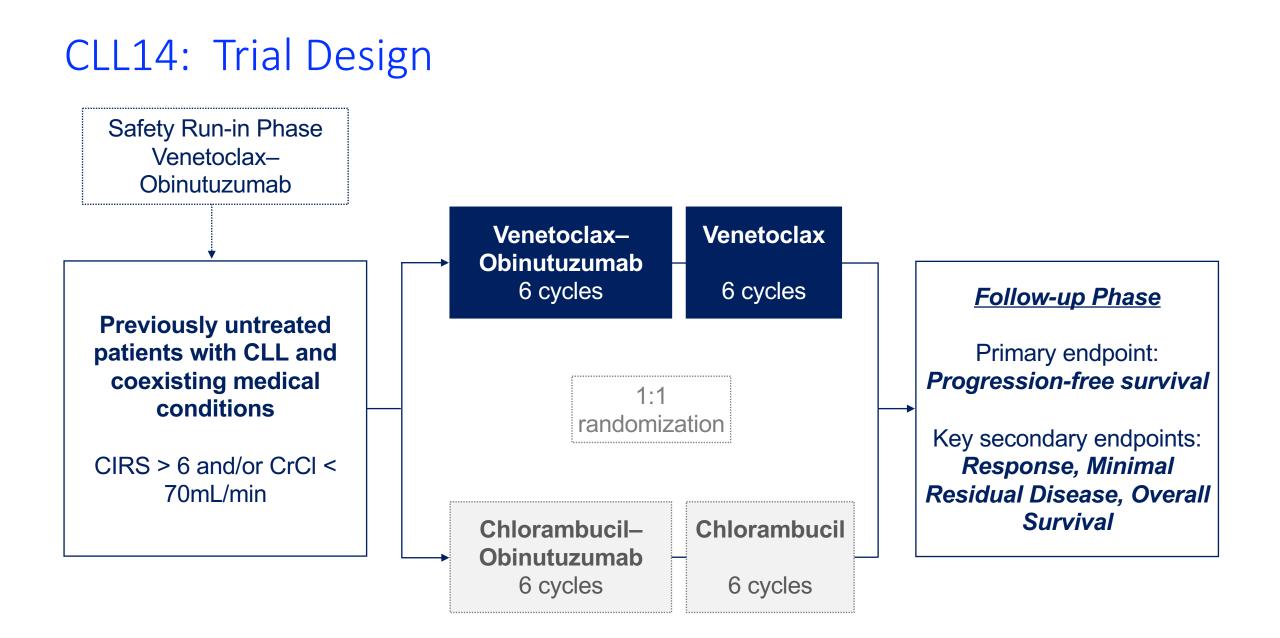
International Workshop on CLL; ORR, overall response rate; PD, progressive disease; R, randomized.

1. Tedeschi A, et al. ASH 2021. Abstract 67.

#### Tam, et al. ASH 2021, Abstract #396

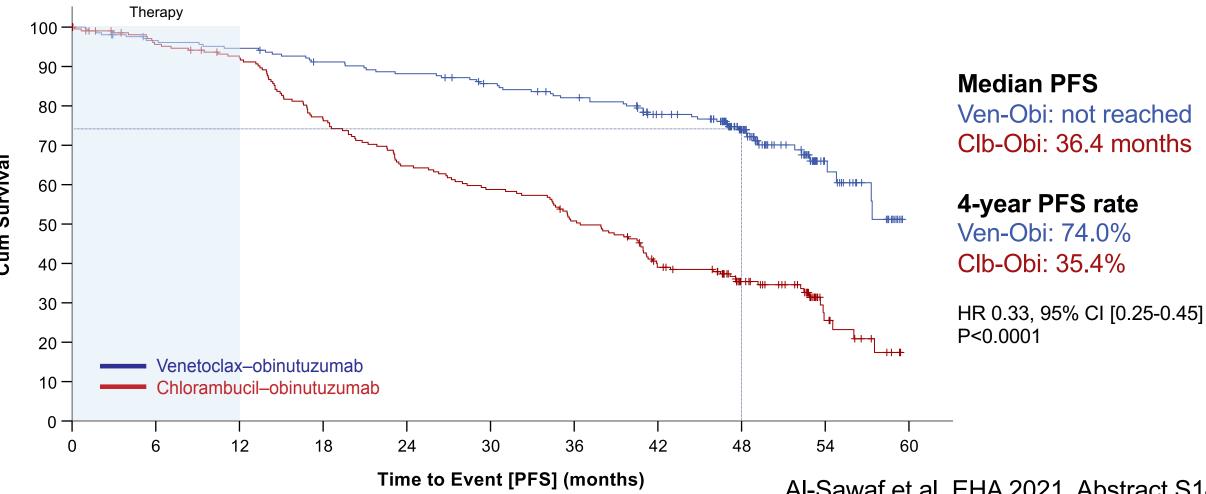
### **Progression-Free Survival Per IRC Assessment by IGHV Status**




BR, bendamustine + rituximab; IGHV, gene encoding the immunoglobulin heavy chain variable region; IRC, independent review committee.

Tam, et al. ASH 2021, Abstract #396

# **Adverse Events of Interest**

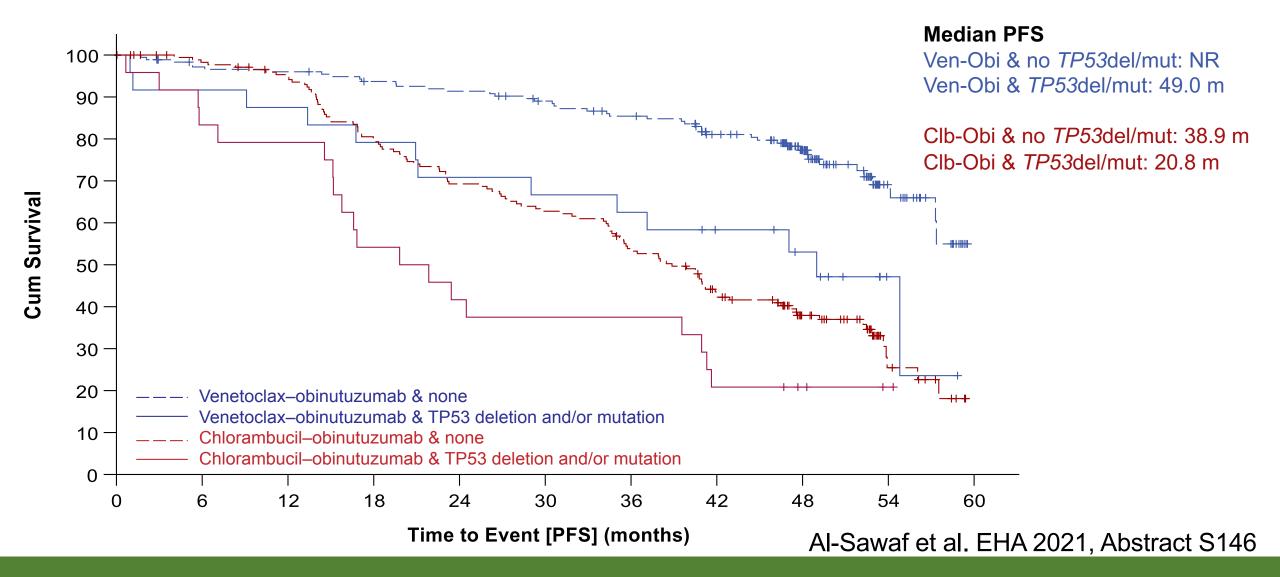

|                               | <u>Arn</u><br>Zanubi<br>(n=2 | rutinib            | <u>Arm B</u><br>Bendamustine + Rituximab<br>(n=227ª) |            |  |  |
|-------------------------------|------------------------------|--------------------|------------------------------------------------------|------------|--|--|
| AE, n (%)                     | Any Grade                    | Any Grade Grade ≥3 |                                                      | Grade ≥3   |  |  |
| Anemia                        | 11 (4.6)                     | 1 (0.4)            | 44 (19.4)                                            | 4 (1.8)    |  |  |
| Neutropenia <sup>b</sup>      | 38 (15.8)                    | 28 (11.7)          | 129 (56.8)                                           | 116 (51.1) |  |  |
| Thrombocytopenia <sup>c</sup> | 11 (4.6)                     | 5 (2.1)            | 40 (17.6)                                            | 18 (7.9)   |  |  |
| Arthralgia                    | 32 (13.3)                    | 2 (0.8)            | 20 (8.8)                                             | 1 (0.4)    |  |  |
| Atrial fibrillation           | 8 (3.3)                      | 1 (0.4)            | 6 (2.6)                                              | 3 (1.3)    |  |  |
| Bleeding <sup>d</sup>         | 108 (45.0)                   | 9 (3.8)            | 25 (11.0)                                            | 4 (1.8)    |  |  |
| Major bleeding <sup>e</sup>   | 12 (5.0)                     | 9 (3.8)            | 4 (1.8)                                              | 4 (1.8)    |  |  |
| Diarrhea                      | 33 (13.8)                    | 2 (0.8)            | 31 (13.7)                                            | 5 (2.2)    |  |  |
| Hypertension <sup>f</sup>     | 34 (14.2)                    | 15 (6.3)           | 24 (10.6)                                            | 11 (4.8)   |  |  |
| Infections <sup>g</sup>       | 149 (62.1)                   | 39 (16.3)          | 127 (55.9)                                           | 43 (18.9)  |  |  |
| Myalgia                       | 9 (3.8)                      | 0 (0.0)            | 3 (1.3)                                              | 0 (0.0)    |  |  |
| Other cancers                 | 31 (12.9)                    | 17 (7.1)           | 20 (8.8)                                             | 7 (3.1)    |  |  |
| Dermatologic other cancers    | 16 (6.7)                     | 2 (0.8)            | 10 (4.4)                                             | 2 (0.9)    |  |  |

<sup>a</sup>Safety was assessed in patients who received ≥1 dose of treatment; 1 patient in Arm A and 11 patients in Arm B did not receive treatment. <sup>b</sup>Neutropenia, neutrophil count decreased, or febrile neutropenia. <sup>c</sup>Thrombocytopenia or platelet count decreased. <sup>d</sup>Pooled term of all-cause bleeding including bruising, petechiae, purpura, and contusion. <sup>e</sup>Major bleeding included all grade ≥3, serious, and any-grade central nervous system hemorrhage. <sup>f</sup>Hypertension, blood pressure increased, or hypertensive crisis. <sup>g</sup>All infection terms pooled. AE, adverse event.



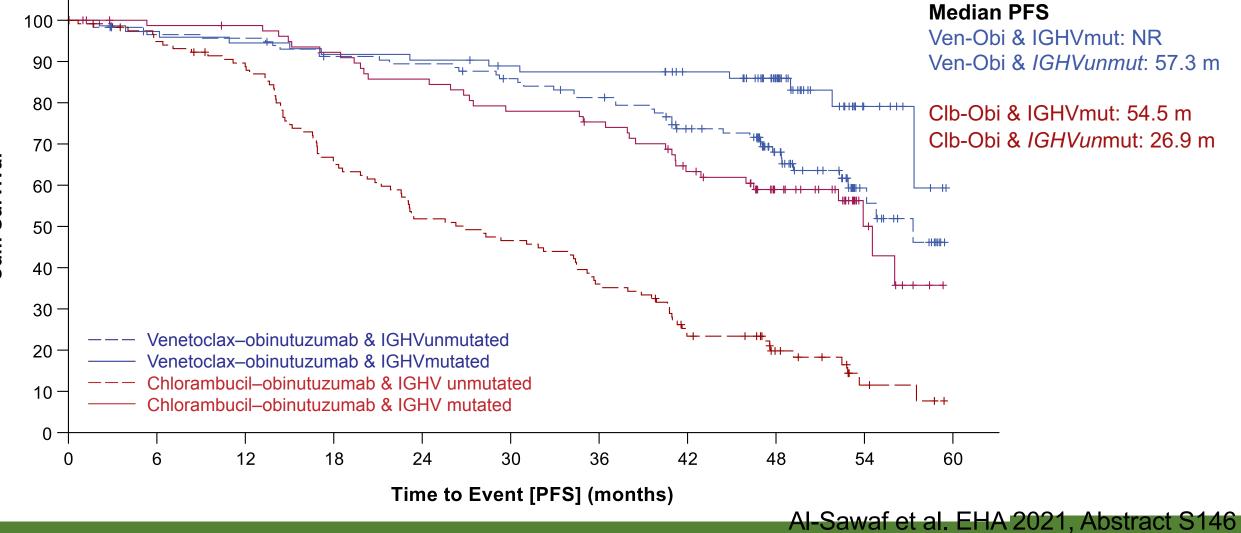
# **Progression-free Survival**

Median observation time 52.4 months



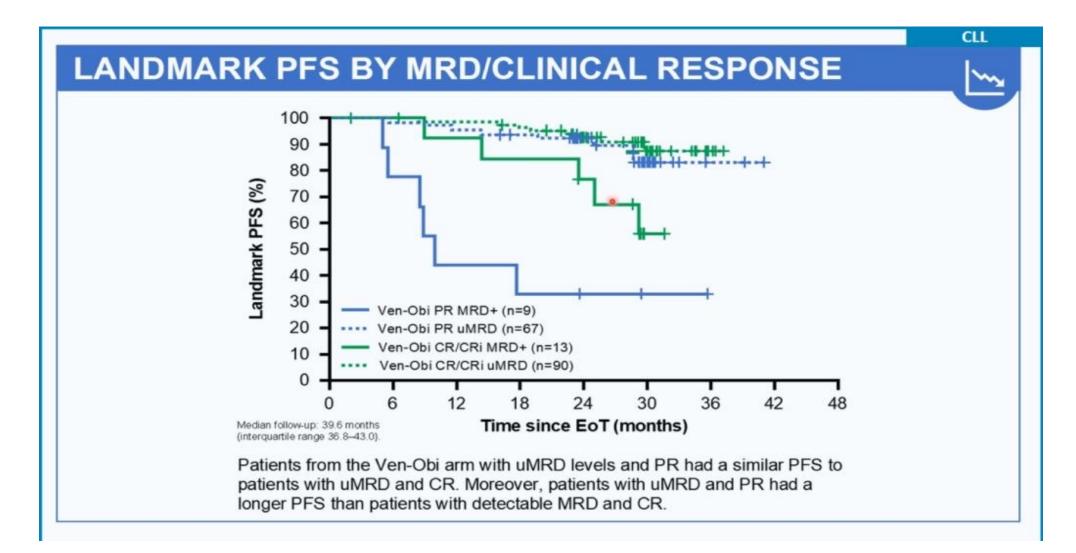

Al-Sawaf et al. EHA 2021, Abstract S146

**Cum Survival** 


# **Progression-free Survival – TP53 Status**

Median observation time 52.4 months




# **Progression-free Survival – IGHV Status**

Median observation time 52.4 months



Cum Survival

## uMRD associated with improved responses

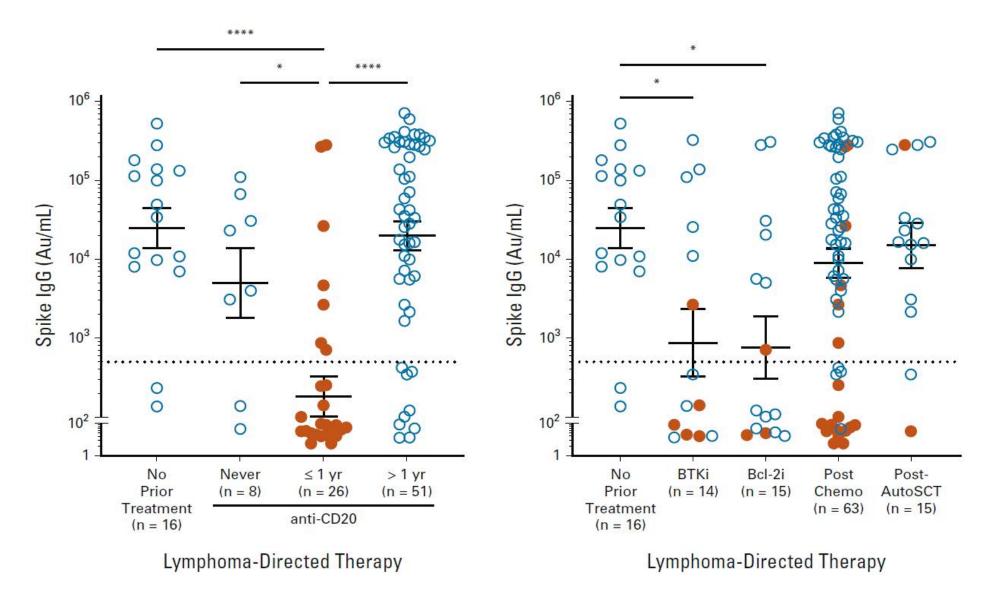


# **Venetoclax vs Ibrutinib: Grade 3-4 events**

|                       | Venetoclax-  |            |  |  |
|-----------------------|--------------|------------|--|--|
|                       | Obinutuzumab | Ibrutinib  |  |  |
|                       | (CLL14)      | (Alliance) |  |  |
| Number of patients, N | 212          | 180        |  |  |
| Follow up             | 28 months    | 38 months  |  |  |
| Neutropenia           | 53 %         | 8 %        |  |  |
| Thrombocytopenia      | 14 %         | 5 %        |  |  |
| Anemia                | 8 %          | 7 %        |  |  |
| Febrile neutropenia   | 5 %          | 2 %        |  |  |
| Infections            | 18 %         | 16 %       |  |  |
| Pneumonia             | 4 %          | 6%         |  |  |

Al-Sawaf O, et al. J Clin Oncol. 2021;39(36):4049-4060. Woyach JA, et al. Blood. 2021;138(Suppl 1):639.

# BTKi- vs. BCL-2i-based Treatment


# **BTK Inhibitor**

- Easy initiation
- Continuous and indefinite therapy
- Very low TLS risk
- More cardiac risk

### **BCL-2** Inhibitor

- Risk for TLS requires monitoring for initiation
- Includes CD20 mAb immunosuppression
- Fixed duration
- GFR sensitivity
- Concern for del(17p)/mutated-TP53

# **COVID Vaccination Efficacy**



# Module 2: Novel Strategies Combining Bruton Tyrosine Kinase (BTK) and Bcl-2 Inhibitors for CLL — Prof Kater



Case Presentation: 79-year-old man with IGHV-unmutated CLL under observation for many years develops B symptoms, cytopenias and lymphadenopathy



Dr Henna Malik (Houston, Texas)

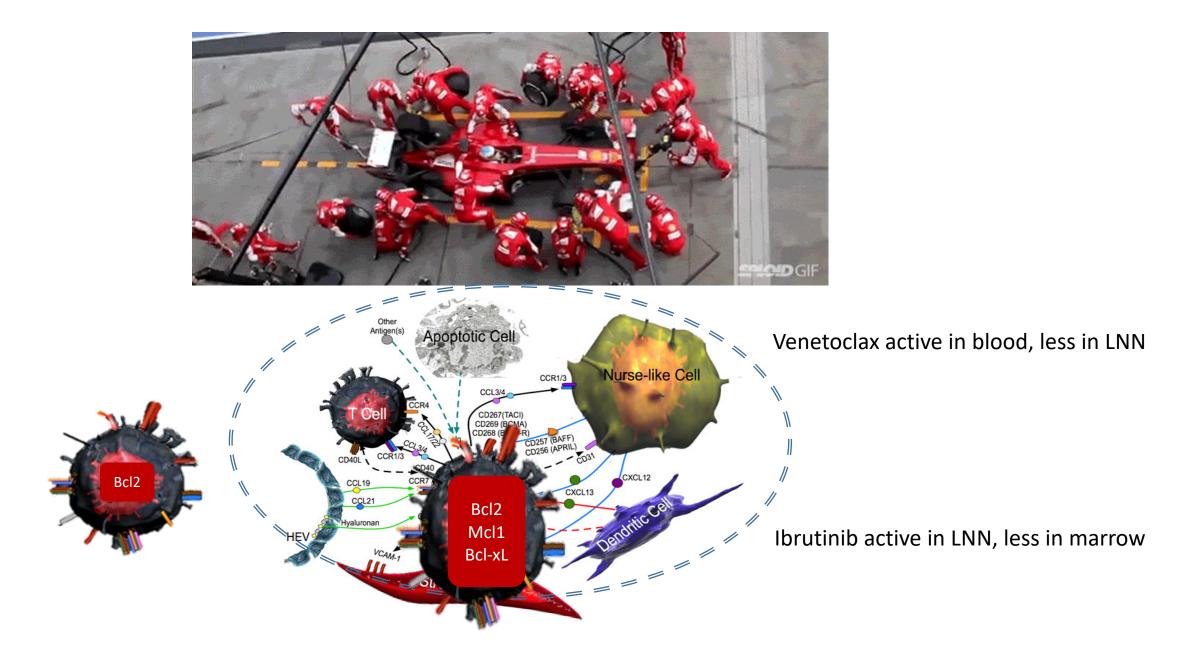




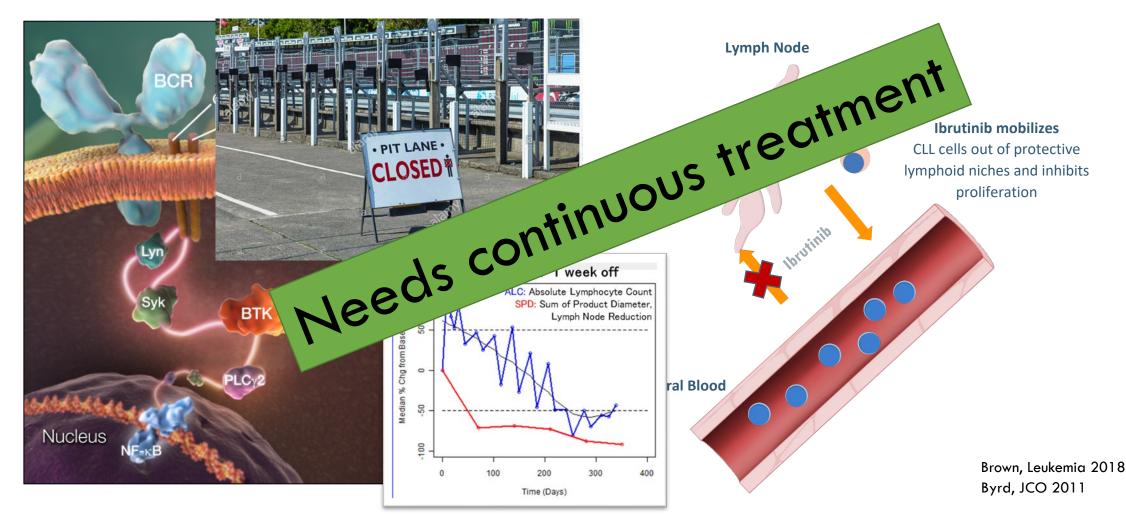


# Novel Strategies Combining Bruton Tyrosine Kinase (BTK) and Bcl-2 Inhibitors for CLL

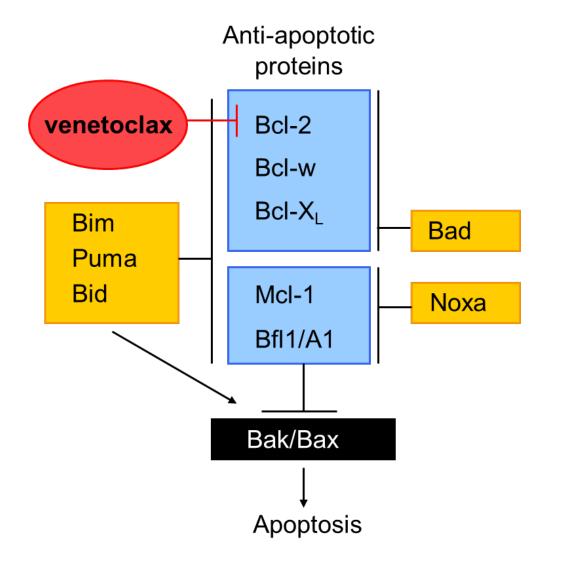
### **Arnon Kater**


**Amsterdam University Medical Centers** 

Chairman Hovon CLL study group

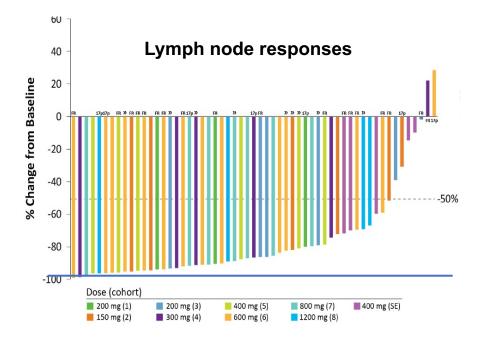

**Research To Practice**\*

AN INTEGRATED APPROACH TO ONCOLOGY EDUCATION

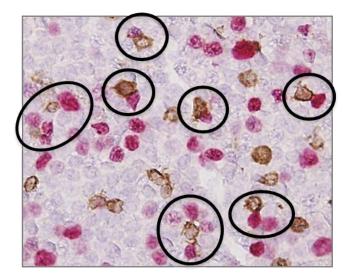

### The key role of the TME



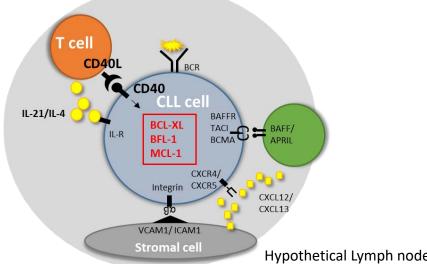
# BTK-inhibition targets adhesion and homing to lymph node

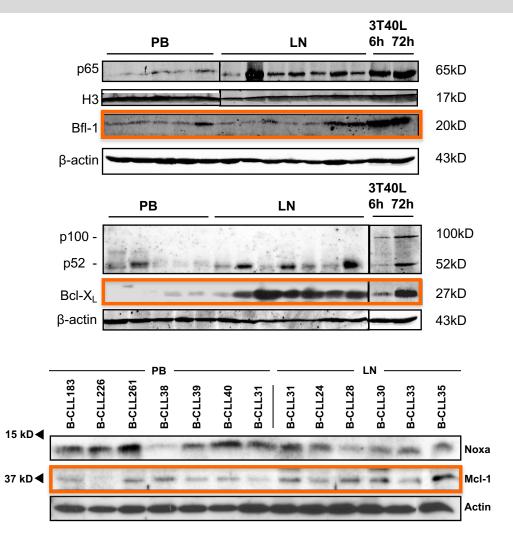



### **Venetoclax sensitivity differs between compartments**







**Blood responses** 

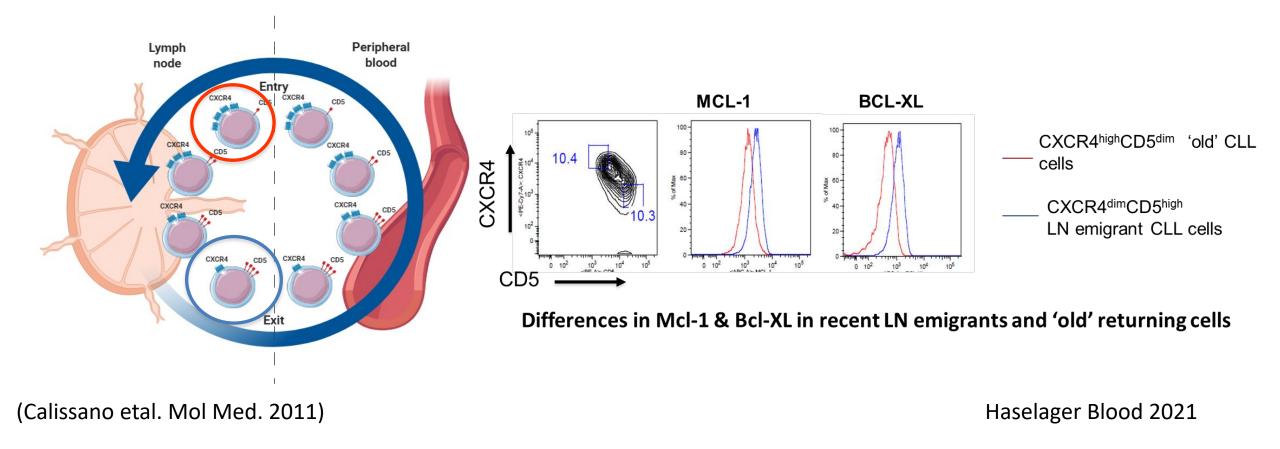



### Bfl-1, Bcl-XL and Mcl-1 expression increased in CLL LN

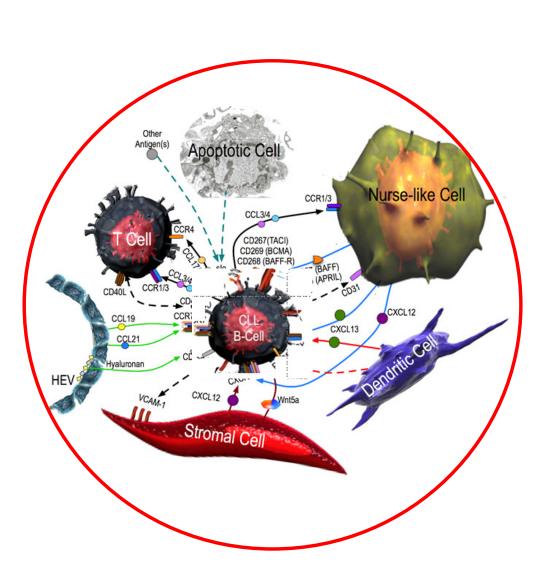


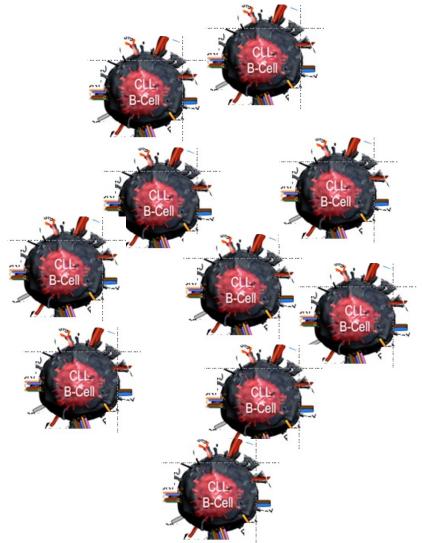
Many Ki67+ CLL cells are in close contact with CD3+ T cells.





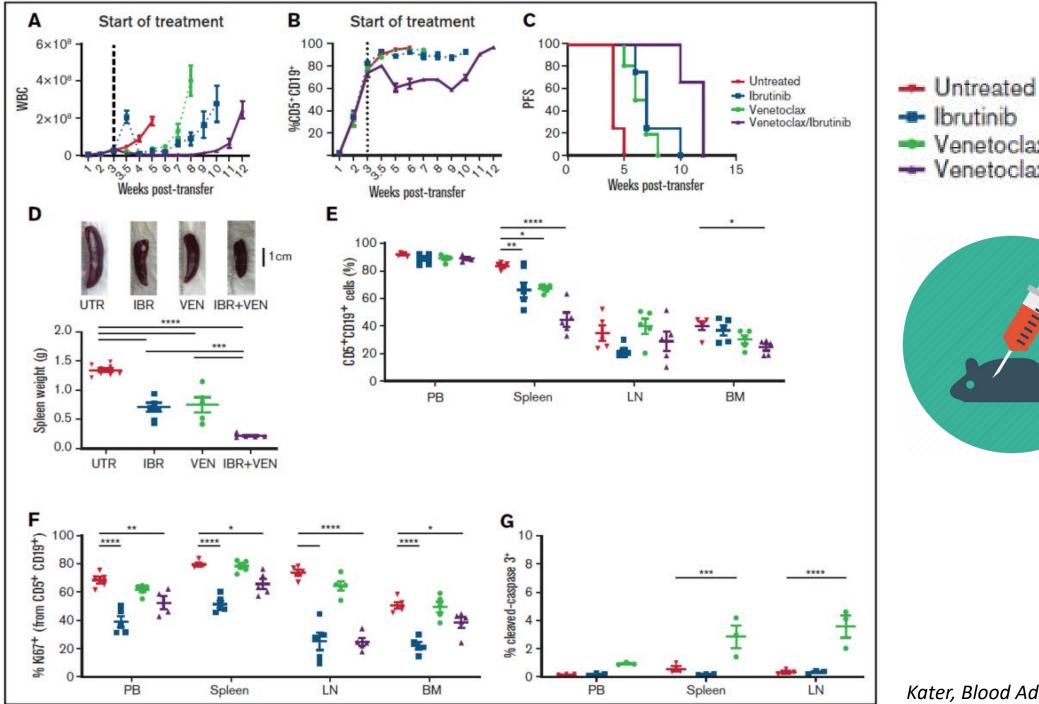

Noxa/Mcl1 balance altered in CLL LN Smit LA et al, Blood 109: 1660, 2007.


Hypothetical Lymph node environment


Tromp J et al Oncogene 29: 5071, 2010

# Using a FACS trick to explore expression levels of anti-apoptotic proteins in the lymph node



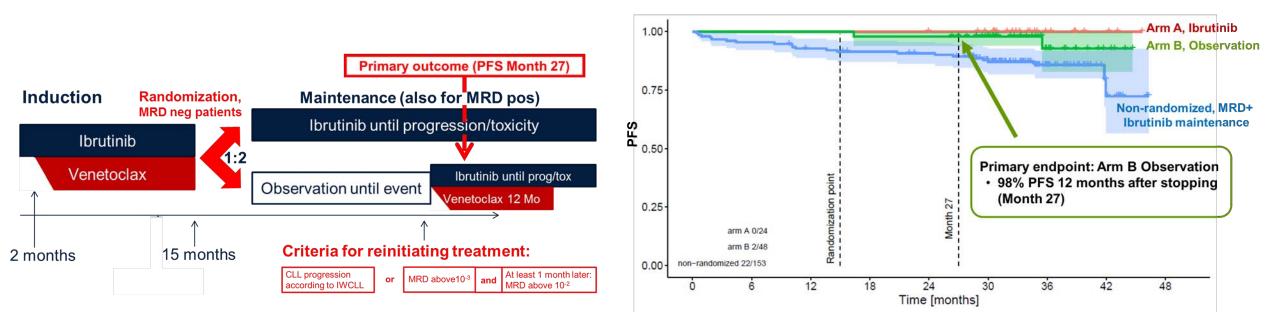

### **Combining Venetoclax with.....**





BTK-i

Venetoclax



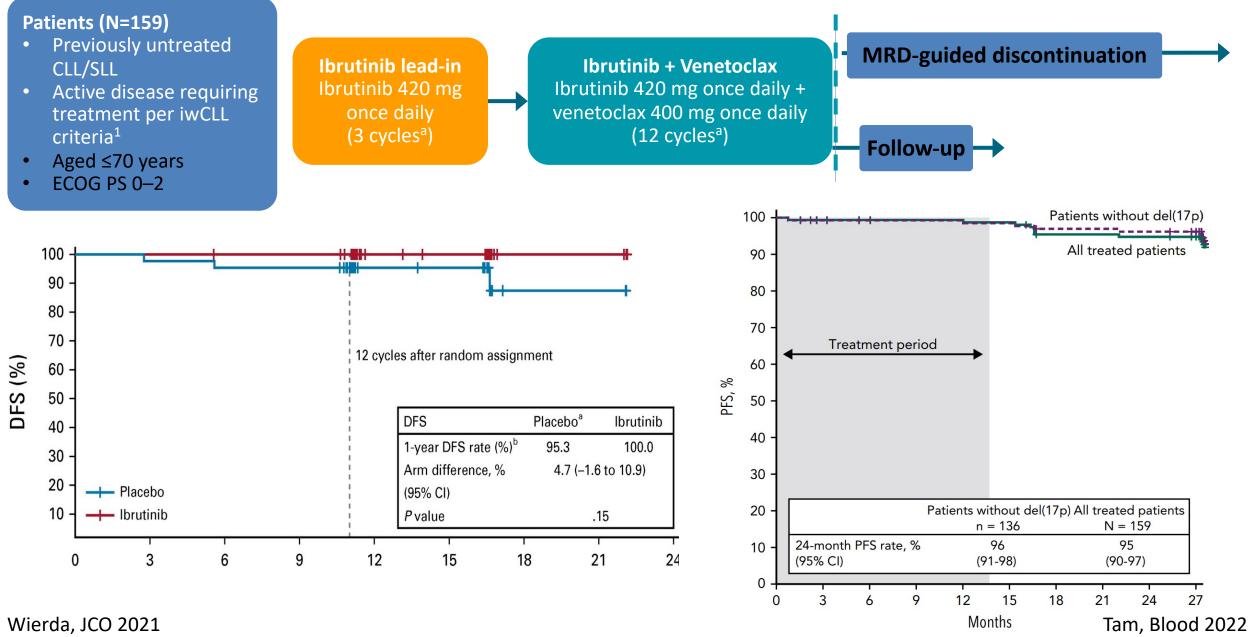

Ibrutinib Venetoclax Venetoclax/Ibrutinib

Kater, Blood Adv. 2022

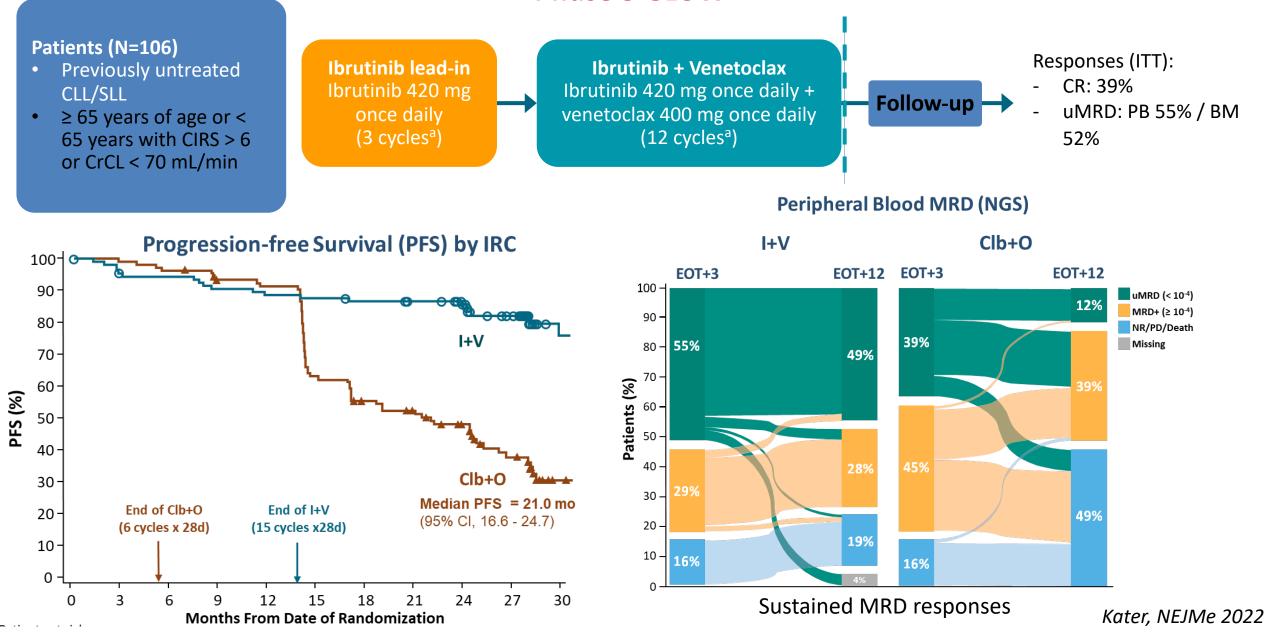
# Efficacy data

Minimal residual disease-guided stop and start of venetoclax plus ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia (HOVON141/VISION): primary analysis of an open-label, randomised, phase 2 trial

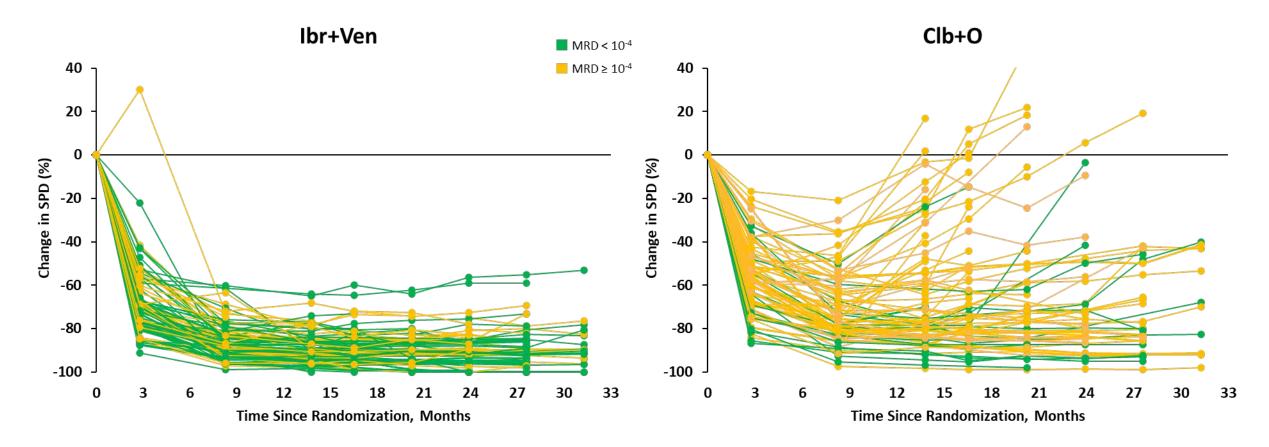



Ν

| Non-randomized Ibrutinib | 153 |
|--------------------------|-----|
| Arm A Ibrutinib          | 24  |
| Arm B Observation        | 48  |



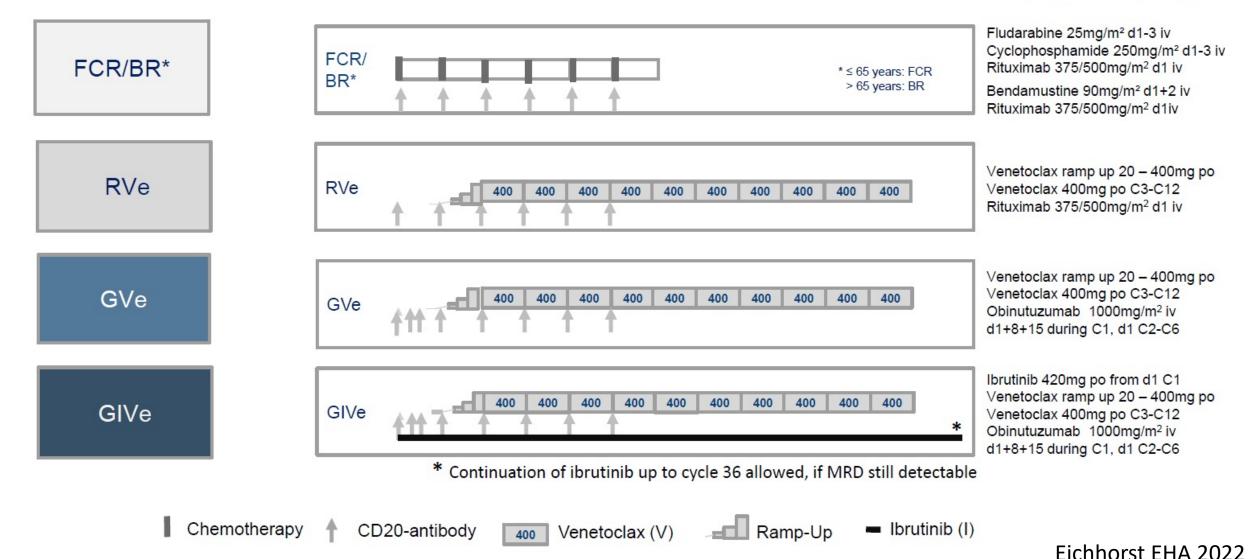

- 7 patients reinitiated ibrutinib-venetoclax during observation due to MRD+
- 6 of 7 achieved de novo CR within 3 cycles
- 7<sup>th</sup> patient awaits evaluation


### Clinical evidence of Ven+Ibr fixed duration 1st-line *Phase 2 CAPTIVATE*



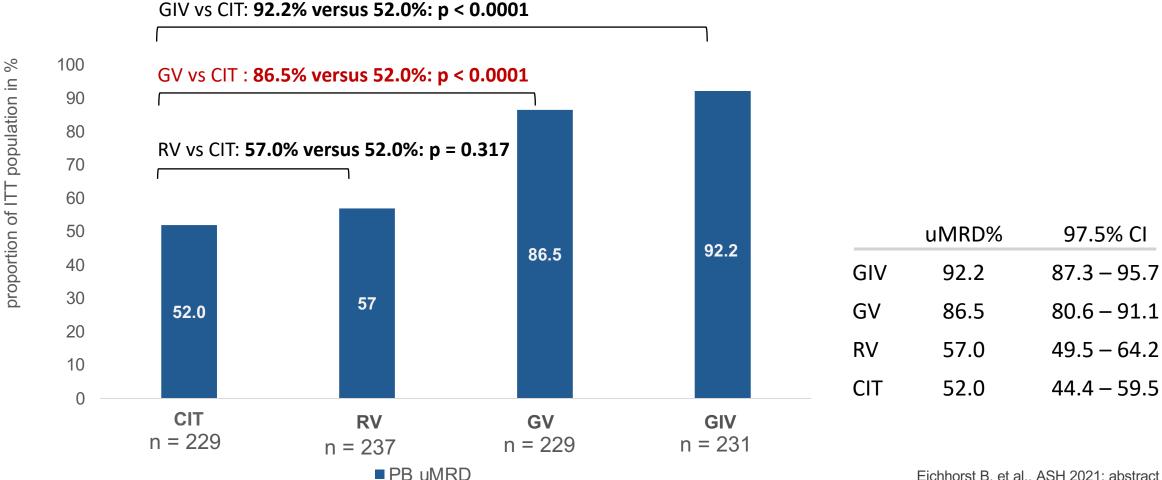
### Clinical evidence of Ven+Ibr fixed duration 1st-line Phase 3 GLOW




# Lymph Node Responses Were Better Maintained Over Time With Ibr+Ven vs Clb+O in Patients With Detectable BM MRD



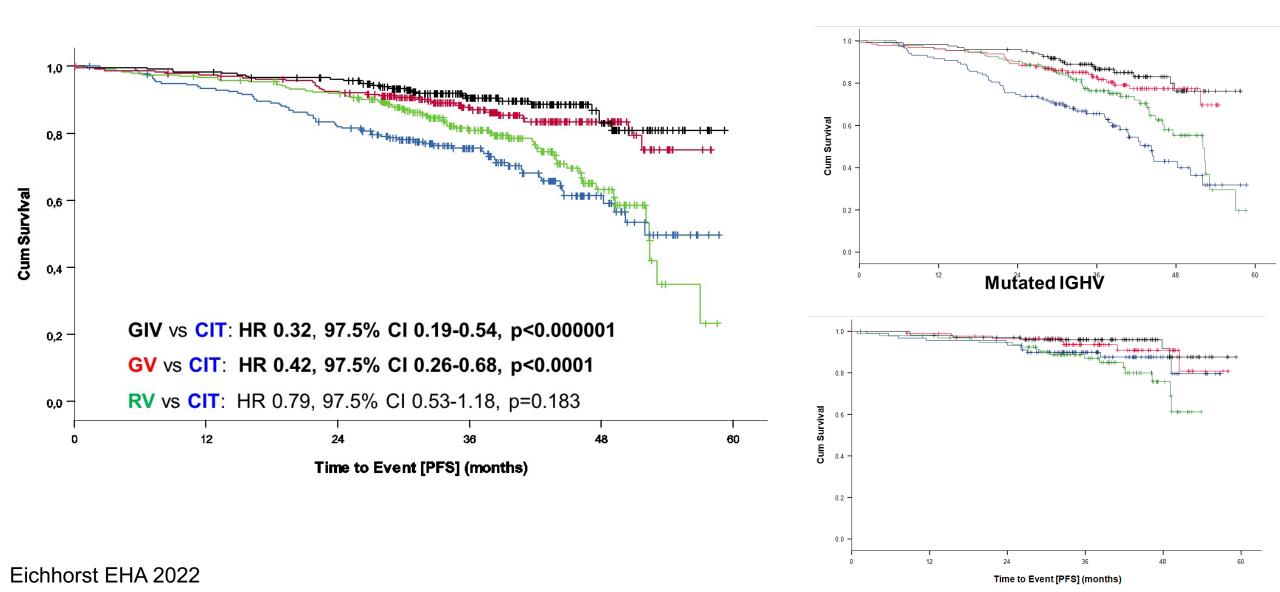



### **GAIA/CLL13 Study : Treatment regimen**





### **Results of coprimary endpoint rate of undetectable minimal residual disease**


Coprimary endpoint: uMRD (< 10<sup>-4</sup>) at Mo15 in PB by 4-colour-flow

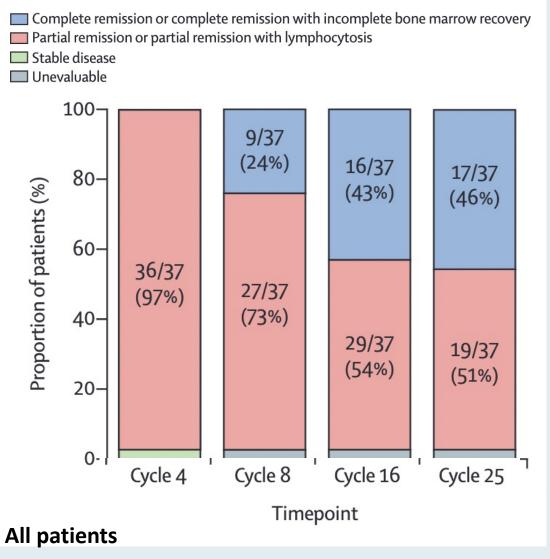


Eichhorst B. et al., ASH 2021: abstract 72

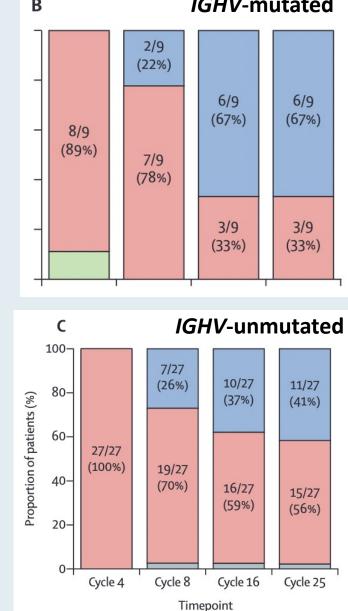
### **Results of the coprimary endpoint progression-free survival (PFS)**

Unmutated IGHV




# Acalabrutinib, venetoclax, and obinutuzumab as frontline treatment for chronic lymphocytic leukaemia: a single-arm, open-label, phase 2 study

Matthew S Davids<sup>\*</sup>, Benjamin L Lampson<sup>\*</sup>, Svitlana Tyekucheva, Zixu Wang, Jessica C Lowney, Samantha Pazienza, Josie Montegaard, Victoria Patterson, Matthew Weinstock, Jennifer L Crombie, Samuel Y Ng, Austin I Kim, Caron A Jacobson, Ann S LaCasce, Philippe Armand, Jon E Arnason, David C Fisher, Jennifer R Brown




Davids MS et al. Lancet Oncol 2021;22(10):1391-402.

# Acalabrutinib, venetoclax and obinutuzumab: Response rates at the start of indicated cycles



Davids MS et al. Lancet Oncol 2021;22(10):1391-402.





Updated Results from a Multicenter, Phase 2 Study of Acalabrutinib, Venetoclax, Obinutuzumab (AVO) in a Population of Previously Untreated Patients with CLL Enriched for High-Risk Disease

Ryan C et. al. ASH 2022; Abstract 344 Saturday, December 10, 2022, 4:15 PM



# Toxicity data

### **Serious toxicity GLOW >> CAPTIVATE**

- HR (95% CI) for overall survival: 1.048 (0.454, 2.419), with 11 deaths in I+V arm and 12 in Clb+O arm (Table)
- Causes of death were generally similar in nature for both study arms, with infections (including COVID-19related pneumonia) and cardiac events most common

|                                         | Dui         | ring Treat    | During Follow-up |         |         |  |
|-----------------------------------------|-------------|---------------|------------------|---------|---------|--|
| Death from Any Cause                    | I+V (N=:    | 106)          | Clb+O            | I+V     | Clb+O   |  |
|                                         | Ibr lead-in | I+V           | (N=105)          | (N=106) | (N=105) |  |
| Total, n                                | 4           | 3             | 2                | 4       | 10      |  |
| Infections and Infestations             | 1           | 1 <del></del> | 1                | 2       | 6       |  |
| Cardiac Disorders                       | 2ª          | 5.            | -                | -       | 2       |  |
| General Disorders (Sudden Death)        | -           | 2             | -                | 1       | -       |  |
| Neoplasm                                | 1           | -             | -                | -       | -       |  |
| Nervous System Disorders                | ÷           | 1             | ÷                | (H)     | 1       |  |
| Hepatobiliary Disorders                 | -           | -             | 1                | -       | -       |  |
| Respiratory, Thoracic, Mediastinal Dis. | -           | -             | < <del></del>    | -       | 1       |  |
| Progressive Disease/Richter Transform.  | -           | -             | -                | 1       | -       |  |

### (sudden) cardiac deaths:

- CIRS score  $\geq 10$
- History of hypertension, cardiovascular disease, and/or diabetes

### Treatment cessation mitigates treatment-related toxicities Ho141/VISION trial in R/R CLL

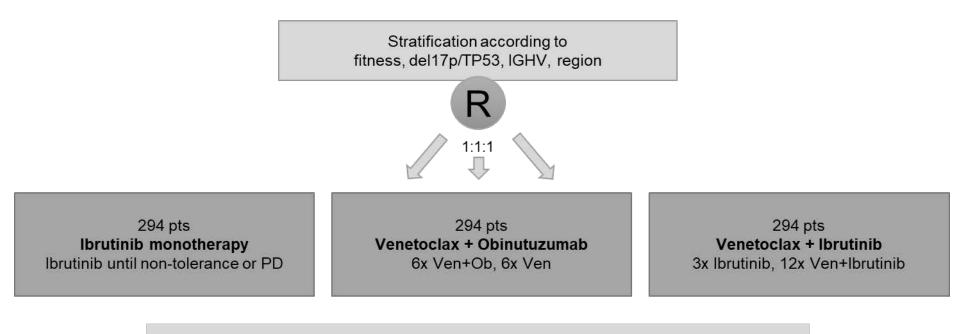
|                                                           | Ibrutinib continuation group (n=24)        |         | Treatment cessation group (n=48) |         |         | Patients not randomly assigned (n=116) |          |          |         |         |
|-----------------------------------------------------------|--------------------------------------------|---------|----------------------------------|---------|---------|----------------------------------------|----------|----------|---------|---------|
|                                                           | Grade 2                                    | Grade 3 | Grade 4                          | Grade 2 | Grade 3 | Grade 4                                | Grade 2  | Grade 3  | Grade 4 | Grade 5 |
| Patients with any<br>adverse event, highest<br>grade only | 9 (38%)                                    | 7 (29%) | 2 (8%)                           | 7 (15%) | 7 (15%) | 0                                      | 37 (32%) | 40 (34%) | 7 (6%)  | 1 (1%)  |
| Infections                                                | 9 (38%)                                    | 5 (21%) | 0                                | 5 (10%) | 2 (4%)  | 0                                      | 31 (27%) | 14 (12%) | 2 (2%)  | 1 (1%)  |
| Neutropenia                                               | 0                                          | 0       | 0                                | 0       | 2 (4%)  | 0                                      | 2 (2%)   | 2 (2%)   | 2 (2%)  | 0       |
| Diarrhoea, abdominal<br>discomfort                        | 2 (8%)                                     | 0       | 0                                | 1 (2%)  | 0       | 0                                      | 7 (6%)   | 0        | 0       | 0       |
| Bleeding                                                  | 1(4%)                                      | 1 (4%)  | 0                                | 0       | 0       | 0                                      | 10 (9%)  | 0        | 0       | 0       |
| Arthralgia, muscle<br>pain                                | 1(4%)                                      | 0       | 0                                | 1 (2%)  | 0       | 0                                      | 3 (3%)   | 0        | 0       | 0       |
| Atrial fibrillation                                       | 1 (4%)                                     | 0       | 0                                | 0       | 0       | 0                                      | 3 (3%)   | 0        | 0       | 0       |
| Malignancies,<br>neoplasm                                 | 0                                          | 1 (4%)  | 1(4%)                            | 3 (6%)  | 1 (2%)  | 0                                      | 4 (3%)   | 7 (6%)   | 0       | 0       |
| Hypertension                                              | 2 (8%)                                     | 1 (4%)  | 0                                | 0       | 0       | 0                                      | 5 (4%)   | 2 (2%)   | 0       | 0       |
| Headache                                                  | 0                                          | 0       | 0                                | 2 (4%)  | 0       | 0                                      | 0        | 0        | 0       | 0       |
| Nail changes                                              | 0                                          | 0       | 0                                | 0       | 0       | 0                                      | 1 (1%)   | 0        | 0       | 0       |
| Other                                                     | 6 (25%)                                    | 2 (8%)  | 1 (4%)                           | 5 (10%) | 3 (6%)  | 0                                      | 30 (26%) | 19 (16%) | 3 (3%)  | 0       |
| Grade 1 adverse events we                                 | Grade 1 adverse events were not collected. |         |                                  |         |         |                                        |          |          |         |         |

Table 2: Summary of treatment-related adverse events after cycle 15

#### Venetoclax + BTKi Based Combinations Conclusions

• Strong rationale for combination: sensitize to Bcl-2 dependency by inhibition of lymph node migration

• High response rates are sustained after treatment cessation


• MRD is less of a predictive marker for fixed duration venetoclax + BTK-i

- Toxicities similar to single agents
  - Cardiac toxicity of concern in population at-risk

## **CLL17**

#### Patients with previously untreated CLL

Incl. fit and unfit pts Incl. pts with del17p/TP53 mut



#### Total 882 pts

Primary endpoint: Progression-free survival

Key secondary endpoints: Response, minimal residual disease, overall survival Module 3: Optimal Management of Adverse Events with BTK and Bcl-2 Inhibitors; Considerations for Special Patient Populations — Dr Davids



Case Presentation: 70-year-old man with multiple musculoskeletal comorbidities and transportation limitations develops symptomatic IGHV-mutated CLL with cytopenias



#### Dr Syed Zafar (Fort Myers, Florida)





Case Presentation: 55-year-old man with del(17p) CLL and significant lymphadenopathy and B symptoms receives acalabrutinib

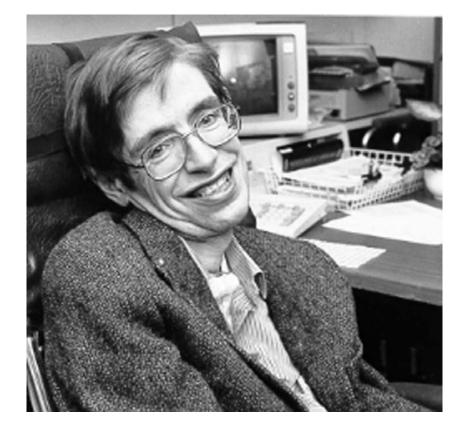
Dr Amany Keruakous (Augusta, Georgia)



Case Presentation: 72-year-old woman with IGHV-mutated CLL and a complex karyotype

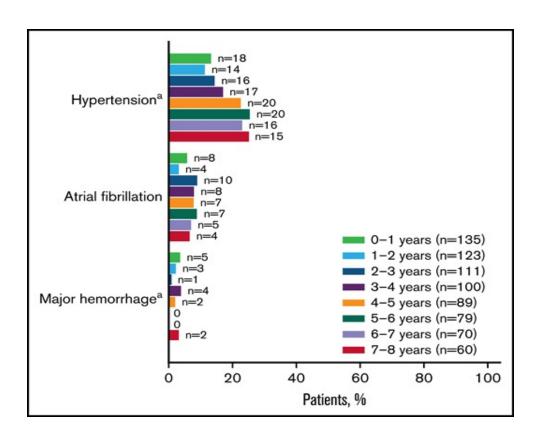
Dr Spencer Bachow (Boca Raton, Florida)



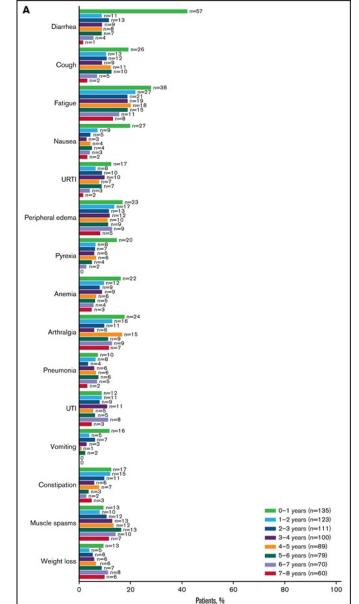

Optimal Management of Adverse Events with BTK and Bcl-2 Inhibitors: Considerations for Special Patient Populations

> Matthew S. Davids, MD, MMSc Dana-Farber Cancer Institute | Harvard Medical School 2022 ASH CLL Satellite Symposium | Research To Practice

> > December 9, 2022






## "One of the basic rules of the universe is that nothing is perfect." Stephen Hawking

## **RESONATE-2:** Discontinuation Rates With Ibrutinib Are High, and Are Due Mostly to AEs



- 42% of patients still on ibrutinib at 8 years
- Most common reason for discontinuation was AEs (24%)



## US cooperative group studies suggest Gr 3/4 ibrutinib toxicities may be less in younger patients

| Adverse event                           | IR Arm<br>Alliance<br>n=181 | IR Arm<br>E1912<br>N=352 |
|-----------------------------------------|-----------------------------|--------------------------|
| Median Age                              | 71 yrs                      | 57 yrs                   |
| Age range                               | 65 – 86                     | 31 - 70                  |
| Infection                               | 19%                         | 5%                       |
| Atrial fibrillation                     | 6%                          | 3%                       |
| Bleeding                                | 4%                          | 1%                       |
| Hypertension                            | 34%                         | 7%                       |
| Deaths during active treatment +30 days | 7%*                         | 1%                       |

\*including patients with presumed sudden cardiac death

### **Reasons for Ibrutinib Discontinuation Outside of Clinical Trials**

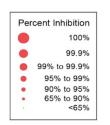
| Most Common Ibrutinib-related Toxicities as Reasons for<br>Discontinuation |                          |  |  |  |  |  |
|----------------------------------------------------------------------------|--------------------------|--|--|--|--|--|
| Relapsed CLL (%)                                                           | Front-line CLL (%)       |  |  |  |  |  |
| Atrial fibrillation (12.3)                                                 | Arthralgia (41.6)        |  |  |  |  |  |
| Infection (10.7)                                                           | Atrial fibrillation (25) |  |  |  |  |  |
| Pneumonitis (9.9)                                                          | Rash (16.7)              |  |  |  |  |  |
| Bleeding (9)                                                               |                          |  |  |  |  |  |
| Diarrhea (6.6)                                                             |                          |  |  |  |  |  |

| Median Times to Ibrutinib Discontinuation Stratified<br>by Toxicity |            |  |  |  |  |  |
|---------------------------------------------------------------------|------------|--|--|--|--|--|
| Bleeding                                                            | 8 months   |  |  |  |  |  |
| Diarrhea                                                            | 7.5 months |  |  |  |  |  |
| Atrial fibrillation                                                 | 7 months   |  |  |  |  |  |
| Infection                                                           | 6 months   |  |  |  |  |  |
| Arthralgia                                                          | 5 months   |  |  |  |  |  |
| Pneumonitis                                                         | 4.5 months |  |  |  |  |  |
| Rash                                                                | 3.5 months |  |  |  |  |  |

Mato, et al. *Blood*. 2016;128 (22): 3222

• Ibrutinib discontinuation due to AEs is common in the real-world setting (41% discontinuation at median of 17 mo.)

# CLL12: CLL patients commonly have symptoms and complications



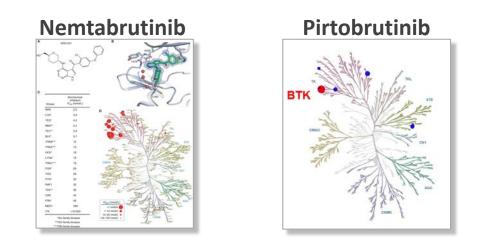

|                                                                                   |            | Ibrutinib<br>(n = 158) |           | Placebo<br>(n = 155) |           |           |  |
|-----------------------------------------------------------------------------------|------------|------------------------|-----------|----------------------|-----------|-----------|--|
|                                                                                   | Any grade  | Grade 1-2              | Grade ≥3  | Any grade            | Grade 1-2 | Grade ≥3  |  |
| Total no. of events                                                               | 1593       | 1426                   | 167       | 1015*                | 885       | 129       |  |
| Any AE, n (%)                                                                     | 150 (94.9) | 70 (44.3)              | 80 (50.6) | 147 (94.8)           | 80 (51.6) | 67 (43.2) |  |
| Most common AEs occurring<br>in ≥0% of patients in any<br>treatment group, n (%)† |            |                        |           |                      |           |           |  |
| Atrial fibrillation                                                               | 19 (12.0)  | 9 (5.7)                | 10 (6.3)  | 2 (1.3)              |           | 2 (1.3)   |  |
| Diarrhea                                                                          | 50 (31.6)  | 48 (30.4)              | 2 (1.3)   | 28 (18.1)            | 27 (17.4) | 1 (0.6)   |  |
| Dyspepsia                                                                         | 23 (14.6)  | 23 (14.6)              |           | 4 (2.6)              | 4 (2.6)   |           |  |
| Nausea                                                                            | 26 (16.5)  | 26 (16.5)              |           | 15 (9.7)             | 15 (9.7)  |           |  |
| Fatigue                                                                           | 40 (25.3)  | 39 (24.7)              | 1 (0.6)   | 32 (20.6)            | 31 (20.0) | 1 (0.6)   |  |
| Nasopharyngitis                                                                   | 42 (26.6)  | 41 (25.9)              | 1 (0.6)   | 51 (32.9)            | 51 (32.9) |           |  |
| Upper respiratory tract<br>infection                                              | 16 (10.1)  | 15 (9.5)               | 1 (0.6)   | 11 (7.1)             | 11 (7.1)  |           |  |
| Arthralgia                                                                        | 19 (12.0)  | 18 (11.4)              | 1 (0.6)   | 14 (9.0)             | 13 (8.4)  | 1 (0.6)   |  |
| Back pain                                                                         | 16 (10.1)  | 14 (8.9)               | 2 (1.3)   | 17 (11.0)            | 15 (9.7)  | 2 (1.3)   |  |
| Muscle spasms                                                                     | 22 (13.9)  |                        |           | 6 (3.9)              |           |           |  |
| Dizziness                                                                         | 22 (13.9)  | 20 (12.7)              | 2 (1.3)   | 8 (5.2)              | 8 (5.2)   |           |  |
| Headache                                                                          | 28 (17.7)  | 28 (17.7)              |           | 17 (11.0)            | 17 (11.0) |           |  |
| Rash                                                                              | 29 (18.4)  | 24 (15.2)              | 5 (3.2)   | 8 (5.2)              | 8 (5.2)   |           |  |
| Hematoma                                                                          | 22 (13.9)  | 20 (12.7)              | 2 (1.3)   | 6 (3.9)              | 6 (3.9)   |           |  |
| Hypertension                                                                      | 16 (10.1)  | 14 (8.8)               | 2 (1.3)   | 7 (4.5)              | 4 (2.6)   | 3 (1.9)   |  |

Langerbeins et al., Blood, 2022

## **BTK Inhibitors Exhibit Differences in Kinase Selectivity**

#### Irreversible



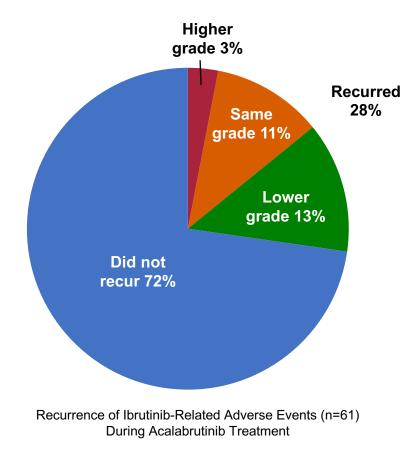

Ibrutinib

Acalabrutinib



Zanubrutinib

#### Reversible




Do differences in binding and selectivity impact treatment efficacy and risk of adverse events?

Kaptein A, de Bruin G, Emmelot-van Hoek M, et al. Blood. 2018;132(Suppl 1):1871.

#### Acalabrutinib can be well-tolerated in ibrutinib-intolerant patients

Subset analysis of patients with ibrutinib intolerance enrolled in phase 1/2 ACE-CL-001 (n = 33)

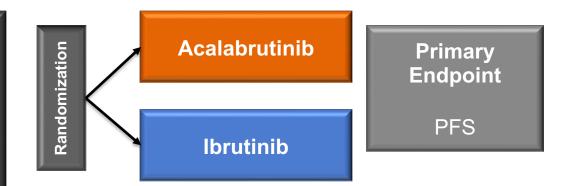


- ~70% of patients remained on acalabrutinib after a median of 19 months
  - 3 patients had discontinued acalabrutinib due to AEs; 4 patients discontinued due to progressive disease

### Phase 2 Trial of Acalabrutinib in Ibrutinib-Intolerant Patients

- Standard-dose acalabrutinib in 60 patients with R/R CLL who were ibrutinib-intolerant
  - Ibrutinib was the most recent systemic therapy for all patients
  - All patients met iwCLL criteria for treatment

|              | Acalabrutinib (N=60) |
|--------------|----------------------|
| ORR          | 73%                  |
| CR           | 5%                   |
| mPFS         | NR                   |
| 24-month PFS | 72%                  |
| mOS          | NR                   |
| 24-month OS  | 81%                  |


|                                 | Acalabrutinib (N=60) |  |  |  |  |  |
|---------------------------------|----------------------|--|--|--|--|--|
| Most frequent AEs               |                      |  |  |  |  |  |
| Diarrhea                        | 53%                  |  |  |  |  |  |
| Headache                        | 42%                  |  |  |  |  |  |
| Contusion                       | 40%                  |  |  |  |  |  |
| Dizziness                       | 33%                  |  |  |  |  |  |
| Upper RTI                       | 33%                  |  |  |  |  |  |
| Cough                           | 30%                  |  |  |  |  |  |
| AEs leading to discontinuation* | 17%                  |  |  |  |  |  |

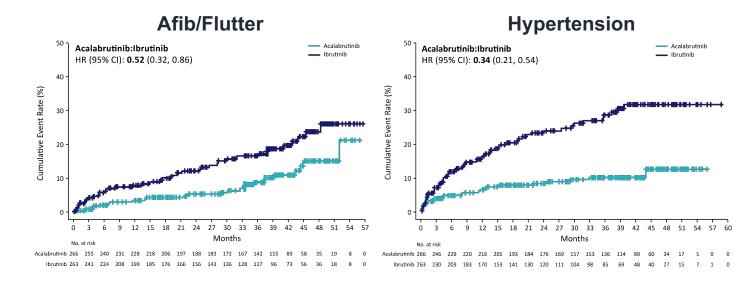
\*1 patient discontinued acalabrutinib for the same toxicity (diarrhea) that led to ibrutinib discontinuation

## Phase 3 ELEVATE-CLL R/R: Acalabrutinib vs Ibrutinib in R/R High-risk CLL

R/R High-risk CLL N=533

- $\geq$  1 prior therapies for CLL
- ECOG of 0-2; Active disease meeting ≥1 of the IWCLL 2008 criteria for requiring treatment; Must have ≥ 1 high-risk prognostic factors (17p del and/or 11q del by central laboratory)
- No prior exposure to ibrutinib or to a BCR inhibitor or a BCL-2 inhibitor

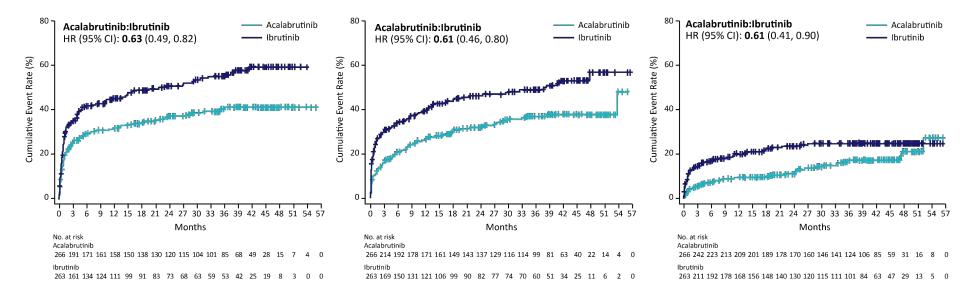



- Primary Endpoint:
  - Acalabrutinib demonstrated noninferiority to ibrutinib (PFS)
    - At a median follow-up of 40.9 months (range, 0.0-59.1), the mPFS was 38.4 months for both acalabrutinib and ibrutinib (HR, 1.00; 95% CI, 0.79-1.27).

### ELEVATE-R/R: Lower Incidence of Any Grade A-fib/Flutter, Hypertension, Bleeding With Acalabrutinib vs Ibrutinib<sup>1</sup>

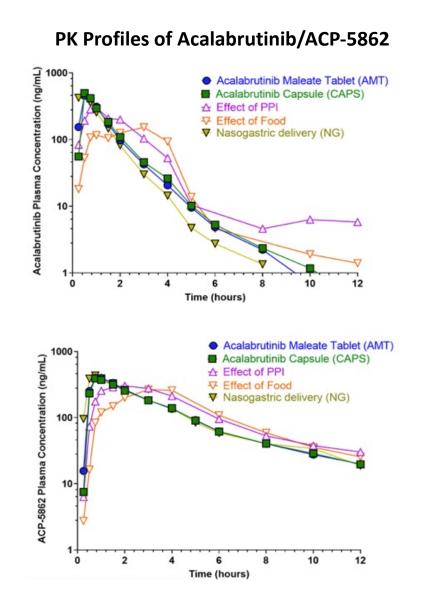
| Events $p(0/)$                     | Acalabrutir | nib (n = 266) | Ibrutinib (n = 263) |           |  |  |
|------------------------------------|-------------|---------------|---------------------|-----------|--|--|
| Events, n (%)                      | Any Grade   | Grade ≥3      | Any Grade           | Grade ≥3  |  |  |
| Cardiac events                     | 64 (24.1)   | 23 (8.6)      | 79 (30.0)           | 25 (9.5)  |  |  |
| A-fib <sup>a</sup>                 | 25 (9.4)    | 13 (4.9)      | 42 (16.0)           | 10 (3.8)  |  |  |
| Ventricular tachyarrhythmias       | 0           | 0             | 1 (0.4)             | 1 (0.4)   |  |  |
| Hypertension <sup>b</sup>          | 25 (9.4)    | 11 (4.1)      | 61 (23.2)           | 24 (9.1)  |  |  |
| Bleeding events                    | 101 (38.0)  | 10 (3.8)      | 135 (51.3)          | 12 (4.6)  |  |  |
| Major bleeding events <sup>a</sup> | 12 (4.5)    | 10 (3.8)      | 14 (5.3)            | 12 (4.6)  |  |  |
| Infections                         | 208 (78.2)  | 82 (30.8)     | 214 (81.4)          | 79 (30.0) |  |  |

AEs led to discontinuation in 14.7% of acalabrutinib-treated pts vs 21.3% of ibrutinib-treated pts


## Acalabrutinib has an improved AE profile compared to ibrutinib, but toxicities are still common



**Bleeding Events** 


Diarrhea

#### **Arthralgia**



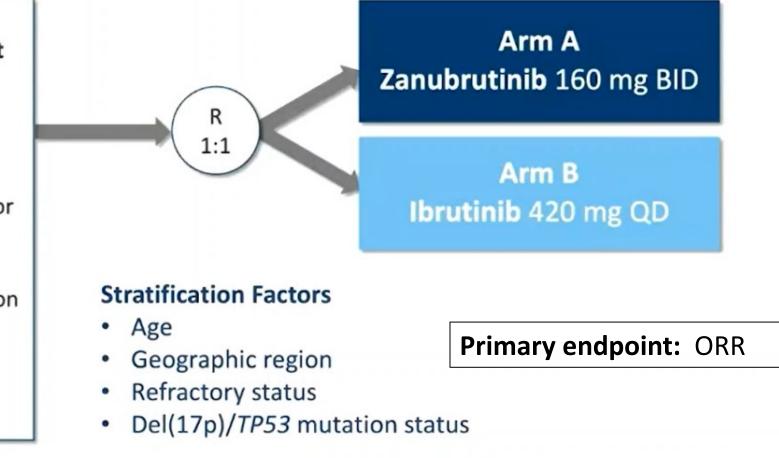
#### ELEVATE-PLUS: Acalabrutinib Maleate Tablet (AMT) Formulation Allowing Co-administration With PPI and Dosing in Patients Unable to Swallow

- Three Phase 1, open-label, single-dose, cross-over studies conducted in healthy subjects demonstrated
  - Similar systemic exposure between AMT and acalabrutinib capsules
  - No clinically relevant differences in acalabrutinib and ACP-5862 exposures was observed following administration of AMT +/- PPI
  - No clinically relevant impact of food on exposures
  - Similar BTK target occupancy
  - No new safety concerns with the AMT



ACP-5862, major pharmacologically active metabolite of acalabrutinib. Sharma S, et al. ASH 2021. Abstract 4365

## ALPINE: Phase 3, Randomized Study of Zanubrutinib vs Ibrutinib in Patients With Relapsed/Refractory CLL or SLL


R/R CLL/SLL with ≥ 1 prior treatment (Planned N=600, Actual N=652)

#### **Key Inclusion Criteria**

- R/R to ≥1 prior systemic therapy for CLL/SLL
- Measurable lymphadenopathy by CT or MRI

#### **Key Exclusion Criteria**

- Current or past Richter's transformation
- Prior BTK inhibitor therapy
- Treatment with warfarin or other vitamin K antagonists



ALPINE study.

R

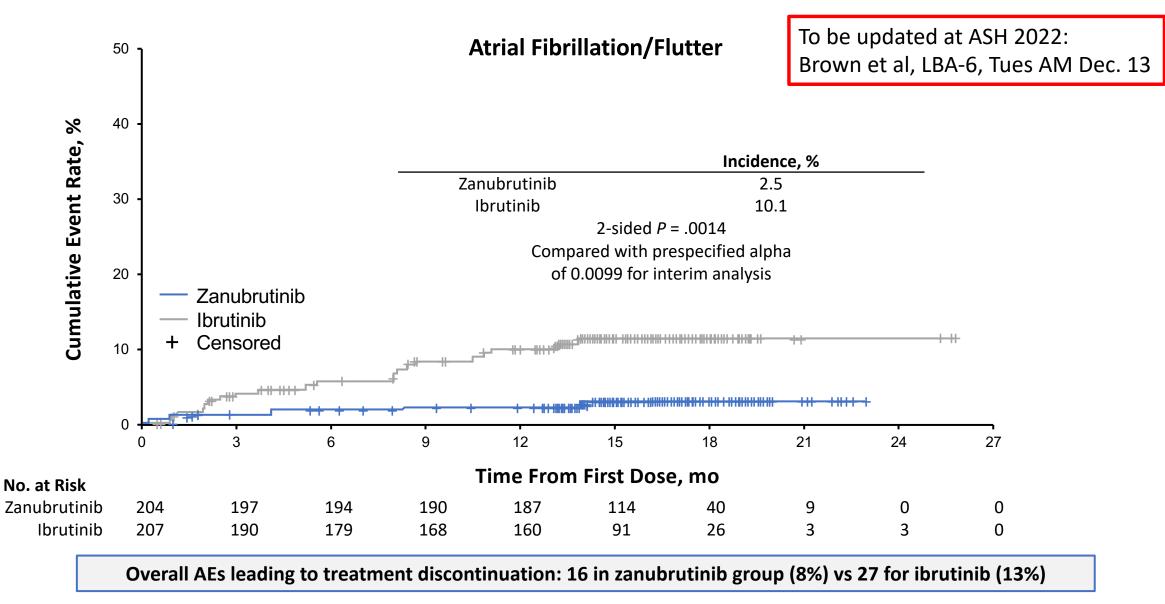
Hillmen et al. LB1900 EHA 2021

BID, twice daily; BTK, Bruton tyrosine kinase CLL, chronic lymphocytic leukemia; CT, computed tomography; MRI, magnetic resonance imaging; QD, once daily;
R, randomized; R/R, relapsed/refractory; SLL, small lymphocytic lymphoma.

## **Additional AEs of Special Interest**

| Safety Analysis Population                                       | Zanubrutinik         | o (n=204), n (%)    | Ibrutinib (n=207), n (%) |                    |  |
|------------------------------------------------------------------|----------------------|---------------------|--------------------------|--------------------|--|
|                                                                  | Any Grade            | Grade ≥3            | Any Grade                | Grade ≥3           |  |
| Cardiac disorders <sup>a</sup>                                   | 28 (13.7)            | 5 (2.5)             | 52 (25.1)                | 14 (6.8)           |  |
| Atrial fibrillation and flutter<br>(key 2 <sup>o</sup> endpoint) | 5 (2.5)              | 2 (1.0)             | 21 (10.1)                | 4 (1.9)            |  |
| Hemorrhage<br>Major hemorrhage <sup>b</sup>                      | 73 (35.8)<br>6 (2.9) | 6 (2.9)<br>6 (2.9)  | 75 (36.2)<br>8 (3.9)     | 6 (2.9)<br>6 (2.9) |  |
| Hypertension                                                     | 34 (16.7)            | 22 (10.8)           | 34 (16.4)                | 22 (10.6)          |  |
| Infections                                                       | 122 (59.8)           | 26 (12.7)           | 131 (63.3)               | 37 (17.9)          |  |
| Neutropenia                                                      | 58 (28.4)            | 38 (18.6)           | 45 (21.7)                | 31 (15.0)          |  |
| Thrombocytopenia <sup>c</sup>                                    | 19 (9.3)             | 7 (3.4)             | 26 (12.6)                | 7 (3.4)            |  |
| Secondary primary malignancies<br>Skin cancers                   | 17 (8.3)<br>7 (3.4)  | 10 (4.9)<br>3 (1.5) | 13 (6.3)<br>10 (4.8)     | 4 (1.9)<br>2 (1.0) |  |

AE, adverse events. All events are of any grade unless otherwise specified.


Cardiac disorders leading to treatment discontinuation: zanubrutinib 0 patients and ibrutinib 7 (3.4%) patients.

<sup>b</sup>Includes hemorrhages that were serious or grade ≥3 or CNS hemorrhages of all grades.

<sup>c</sup> Pooled terms including neutropenia, neutrophil count decreased, and febrile neutropenia; thrombocytopenia and platelet count decreased.



#### ALPINE: Safety Analysis with Lower Rates of A-fib/Flutter With Zanubrutinib



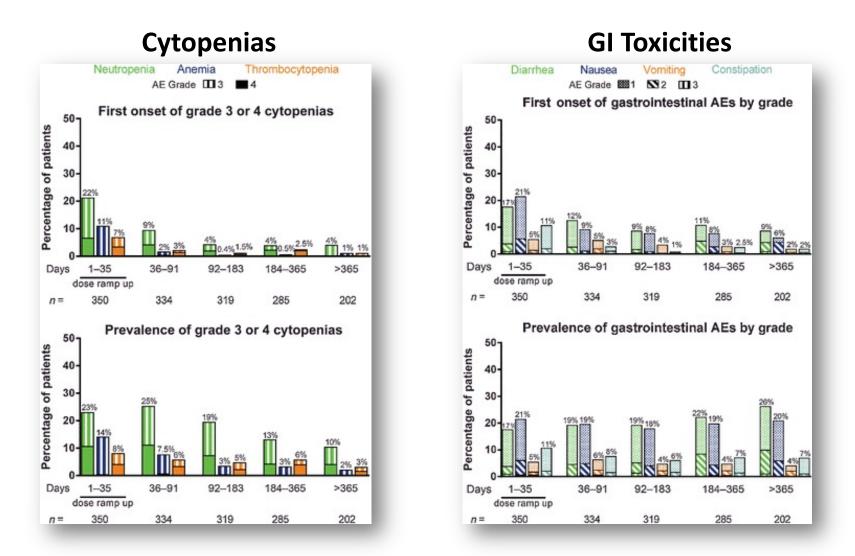
### A phase 2 study of zanubrutinib in patients with previously treated B-cell malignancies intolerant of previous BTKi

Recurrence and change in severity of ibrutinib and acalabrutinib intolerance events during treatment with zanubrutinib

|                     | Intolerar | ice event | s: ibrut | inib*   |    |         |           |     |   |        |           |         |      |
|---------------------|-----------|-----------|----------|---------|----|---------|-----------|-----|---|--------|-----------|---------|------|
| Fatigue             |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Arthralgia          |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Haemorrhage         |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Hypertension        |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Somatitis           |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Constipation        |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Nausea              |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Insomnia            |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Rash                |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Headache            | _         |           |          |         |    |         |           |     |   |        |           |         |      |
| Myalgia             | -         |           |          |         |    |         |           |     |   |        |           |         |      |
| Diarrhoea           |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Atrial fibrillation |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Muscle spasms       |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Dizziness           |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Lymphoedema         |           |           |          |         |    |         |           |     |   |        |           |         |      |
| AST increased       |           |           |          |         |    |         |           |     |   |        |           |         |      |
| ALT increased       |           |           |          |         |    |         |           |     |   | Decurr | ed at sa  |         | da   |
| Pain in extremity   |           |           |          |         |    |         |           |     |   | Recurr | ed at a l | lower g | rade |
| Neutropenia         |           |           |          |         |    |         |           |     |   | Did no | t recur   |         |      |
|                     |           |           |          | '       | '  | '       |           | 1   |   | d.     |           |         |      |
|                     | Intolerar | ice event | s: acala | brutini | b† |         |           |     |   |        |           |         |      |
| Myalgia             |           |           |          |         |    |         |           |     |   |        |           |         |      |
| Arthralgia          |           |           |          |         |    |         |           |     |   |        |           |         |      |
|                     | 0 1       | 2         | 3        | 4       | 5  | 6       | 7         | 8   | 9 | 10     | 11        | 12      | 13   |
|                     |           |           |          |         | Nu | umber o | of patier | nts |   |        |           |         |      |

- Avoid warfarin when anticoagulation needed
- Hypertension: proactively manage with antihypertensives
- Monitor for and manage cardiac arrhythmia/a-fib; treat appropriately
- Monitor patients for signs of bleeding

- Headaches commonly occur early in therapy with acalabrutinib and typically resolved in 1-2 months (manage with acetaminophen + caffeine)
- Monitor for neutropenia (particularly with zanubrutinib), use GCSF prn
- Monitor for infections and secondary malignancies
- Hold perioperatively depending on how significant the procedure is


## Venetoclax was generally well tolerated in phase 1, although specific toxicities were noted

| Adverse event*                    | Any Grade<br>[n (%)] | Grade 3 or 4<br>[n (%)] | Serious adverse event <sup>†</sup> | Any Grade<br>[n (%)] | <b>Grade 3 or 4</b><br>[n (%)] |
|-----------------------------------|----------------------|-------------------------|------------------------------------|----------------------|--------------------------------|
| Any                               | <b>115</b> (99)      | <b>96</b> (83)          | Any                                | <b>52</b> (45)       |                                |
| Diarrhea                          | <b>60</b> (52)       | <b>2</b> (2)            | Febrile neutropenia                | <b>7</b> (6)         |                                |
| Upper respiratory tract infection | <b>56</b> (48)       | <b>1</b> (1)            | Pneumonia                          | <b>5</b> (4)         |                                |
| Nausea                            | <b>55</b> (47)       | <b>2</b> (2)            | Upper respiratory tract infection  | <b>4</b> (3)         |                                |
| Neutropenia                       | <b>52</b> (45)       | <b>48</b> (41)          | Immune thrombocytopenia            | <b>3</b> (3)         |                                |
| Fatigue                           | <b>46</b> (40)       | <b>4</b> (3)            | Tumor lysis syndrome               | <b>3</b> (3)         |                                |
| Cough                             | <b>35</b> (30)       | 0                       | Diarrhea                           | <b>2</b> (2)         |                                |
| Pyrexia                           | <b>30</b> (26)       | <b>1</b> (1)            | Fluid overload                     | <b>2</b> (2)         |                                |
| Anemia                            | <b>29</b> (25)       | <b>14</b> (12)          | Hyperglycaemia                     | <b>2</b> (2)         |                                |
| Headache                          | <b>28</b> (24)       | <b>1</b> (1)            | Prostate cancer                    | <b>2</b> (2)         |                                |
| Constipation                      | <b>24</b> (21)       | <b>1</b> (1)            | Pyrexia                            | <b>2</b> (2)         |                                |
| Thrombocytopenia                  | <b>21</b> (18)       | <b>14</b> (12)          | Toxicity                           | Any Grade (%)        | Grade 3 or 4 (%                |
| Arthralgia                        | <b>21</b> (18)       | <b>1</b> (1)            | Neutropenia                        | 45                   | 41                             |
| Vomiting                          | <b>21</b> (18)       | <b>2</b> (2)            | GI                                 | 52                   | 2                              |
| Peripheral oedema                 | <b>18</b> (16)       | 0                       | TLS                                | 3                    | 3                              |
| Pyrexia                           | <b>17</b> (15)       | <b>10</b> (9)           |                                    |                      |                                |

\*Listed are adverse events that were reported in at least 15% patients. Preexisting grade 1/2 abnormalities not reported, unless grade increased during the study. †Listed are serious adverse events that were reported in at least two patients. Excluded are serious adverse events that were related to disease progression in two patients.

Roberts AW, Davids MS, et al. N Engl J Med 2016;374:311-322.

### Venetoclax risks tend to decrease over time



 2/166 (1.4%) of patients treated with current dosing algorithm had biochemical laboratory changes in TLS parameters, but none had clinical TLS

Davids MS et al., Clin Cancer Res, 2018

## Phase 3 CLL14 study: Safety profile of ven + obin was favorable, especially after completion of therapy

| Most frequent ≥ grade 3 adverse<br>events | Venetoclax-obinutuzumab<br>(N=212) |                 |  |  |  |
|-------------------------------------------|------------------------------------|-----------------|--|--|--|
|                                           | During Treatment                   | After Treatment |  |  |  |
| Neutropenia                               | 51.9%                              | 4.0%            |  |  |  |
| Thrombocytopenia                          | 13.7%                              | 0.5%            |  |  |  |
| Anemia                                    | 7.5%                               | 1.5%            |  |  |  |
| Febrile neutropenia                       | 4.2%                               | 1.0%            |  |  |  |
| Infusion-related reaction                 | 9.0%                               | 0.0%            |  |  |  |
| Tumor lysis syndrome                      | 1.4%                               | 0.0%            |  |  |  |
| Neoplasms                                 | 1.4%                               | 6.4%            |  |  |  |

#### **Tips for venetoclax toxicity management**

- For neutropenia (e.g. ANC <1,000), it is helpful to give growth factor support (pegfilgrastim when available) and continue venetoclax
  - Individualized frequency based on patient response
- For diarrhea, infectious etiologies should be ruled out and then anti-diarrheals can be used while continuing venetoclax
- For nausea: adjust dose timing and use antiemetics
- Dose interruption and dose reduction can be used for persistent toxicities despite the above measures
- Does **not** need to be held perioperatively

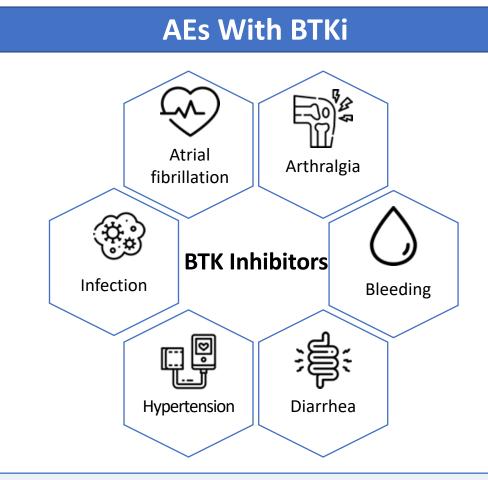
#### **CAPTIVATE-FD Cohort:** Ibrut + Ven well-tolerated in a young, fit population

| Treatment Emorgent AEc         | All treated patients (n = 15 | All treated patients (n = 159), n (%) |  |  |  |  |
|--------------------------------|------------------------------|---------------------------------------|--|--|--|--|
| Treatment-Emergent AEs         | Any grade                    | Grade 3/4                             |  |  |  |  |
| Most common AEs                |                              |                                       |  |  |  |  |
| Diarrhea                       | 99 (62)                      | 5 (3)                                 |  |  |  |  |
| Nausea                         | 68 (43)                      | 2 (1)                                 |  |  |  |  |
| Neutropenia                    | 66 (42)                      | 52 (33)                               |  |  |  |  |
| Arthralgia                     | 53 (33)                      | 2 (1)                                 |  |  |  |  |
| Hypertension                   | 25 (16)                      | 9 (6)                                 |  |  |  |  |
| Neutrophil count decreased     | 16 (10)                      | 8 (5)                                 |  |  |  |  |
| Other AEs of clinical interest |                              |                                       |  |  |  |  |
| Atrial fibrillation            | 7 (4)                        | 2 (1)                                 |  |  |  |  |
| Major hemorrhage               | 3 (2)                        | 2 (1)                                 |  |  |  |  |
| Laboratory safety parameters   |                              |                                       |  |  |  |  |
| Hematology                     |                              |                                       |  |  |  |  |
| Neutrophils decreased          | 115 (72)                     | 60 (38)                               |  |  |  |  |
| Platelets decreased            | 94 (59)                      | 20 (13)                               |  |  |  |  |
| Hemoglobin decreased           | 31 (19)                      | 0                                     |  |  |  |  |
| Chemistry                      |                              |                                       |  |  |  |  |
| Corrected calcium decreased    | 61 (38)                      | 1 (1)                                 |  |  |  |  |
| Potassium increased            | 39 (25)                      | 4 (3)                                 |  |  |  |  |
| Uric acid increased            | 34 (21)                      | 34 (21)                               |  |  |  |  |
| Creatinine increased           | 27 (17)                      | 0                                     |  |  |  |  |

#### Median Age = 60

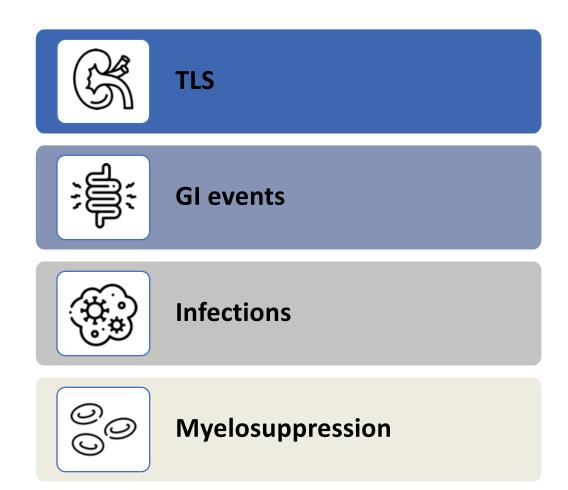
Tam et al., Blood, 2022

#### GLOW: Ibrut + Ven had more toxicities in an older, more comorbid population


| reatment exposure — mo, median (range) | 13.8 (0.7 | 13.8 (0.7–19.5) |  |
|----------------------------------------|-----------|-----------------|--|
| dverse events — n (%)                  | Grade 3/4 | Grade 5         |  |
| Patients with ≥1 adverse events        | 73 (68.9) | 7 (6.6)         |  |
| Neutropenia                            | 37 (34.9) | 0               |  |
| Infections and infestations            | 16 (15.1) | 2 (1.9)         |  |
| Diarrhea                               | 11 (10.4) | 0               |  |
| Hypertension                           | 8 (7.5)   | 0               |  |
| Atrial fibrillation                    | 7 (6.6)   | 0               |  |
| Thrombocytopenia                       | 6 (5.7)   | 0               |  |
| Hyponatremia                           | 6 (5.7)   | 0               |  |
| Cardiac failure                        | 3 (2.8)   | 1 (0.9)         |  |
| Sinus node dysfunction                 | 1 (0.9)   | 1 (0.9)         |  |
| Cholestasis                            | 1 (0.9)   | 0               |  |
| Sudden death                           | 0         | 2 (1.9)         |  |
| Ischemic stroke                        | 0         | 1 (0.9)         |  |
| Malignant neoplasm                     | 0         | 1 (0.9)         |  |
| Cardiac arrest                         | 0         | 1 (0.9)         |  |
| Tumor lysis syndrome                   | 0         | 0               |  |

#### Median Age = 71

## **General tips for AE Management in CLL**


- In the setting of active infection it is generally best to hold drug at least until seeing signs of clinical improvement (possible exception of mild COVID-19)
- For most toxicities requiring drug hold, it is preferable to either re-challenge with full dose or to start back at dose reduction but then get back to full dose
- I am more hesitant to hold drug soon after starting a novel agent or in a patient who is progressing on a novel agent
- I am less concerned about stopping drug in patients who have been on novel agents for at least a few months and are in a good clinical response
- It is generally safe to give growth factor support concomitantly with novel agents
- Patients who have to permanently discontinue a novel agent due to toxicity do not necessarily need to immediately start on a new therapy

## Summary of AEs with Targeted Agents in CLL



Additional important AEs: dermatologic changes, fatigue, cytopenias, and ventricular arrhythmias

#### **AEs With Venetoclax**



## Module 4: Selection and Sequencing of Available Therapies for Relapsed/Refractory Disease — Dr Thompson



#### Case Presentation: 74-year-old man with relapsed del(17p) CLL s/p ibrutinib with multiple chronic low-grade toxicities

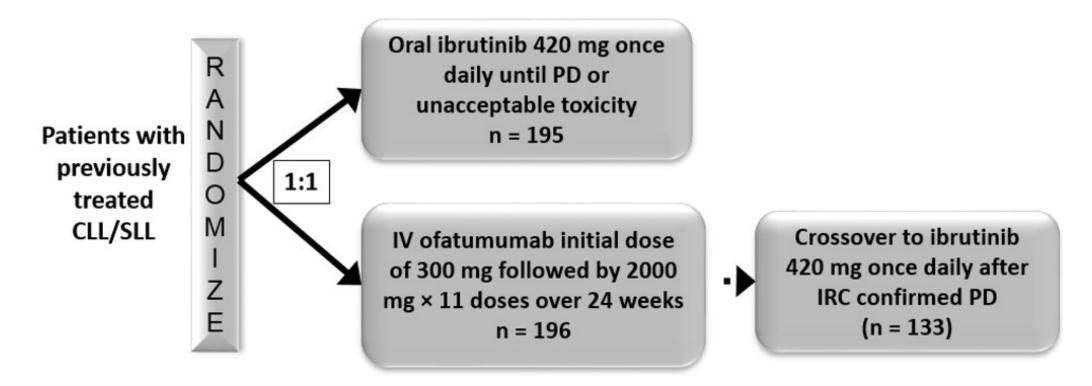


#### Dr Tina Bhatnagar (Wheeling, West Virginia)



### Selection and Sequencing of Available Therapies for Relapsed/Refractory (R/R) CLL

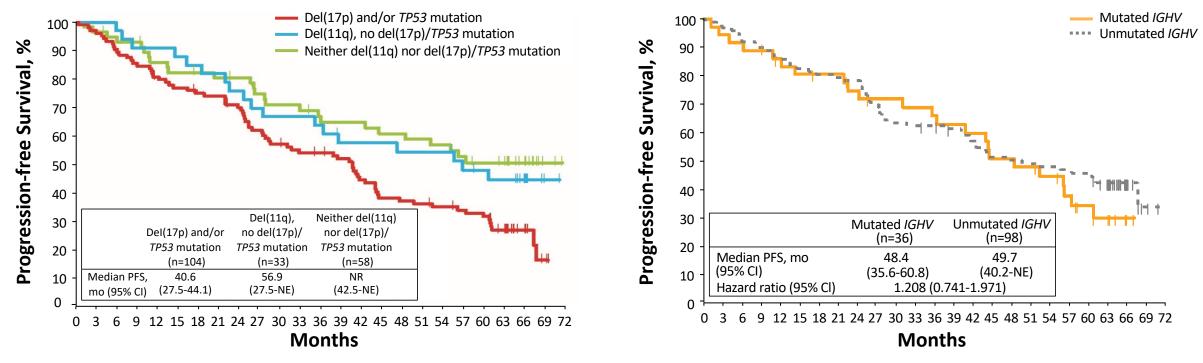
**Dr. Philip Thompson** 


**Associate Professor** 

The University of Texas M.D. Anderson Cancer Center

## Topics

- Long-term follow-up data from phase III studies in R/R CLL.
- How I think about sequencing therapies.
- Role for PI3K inhibitors in CLL.
- Novel approaches to CLL and RS.


### **RESONATE Phase III Study Design**



- Primary endpoint: PFS
- Median # therapies in ibrutinib arm = 3.
- In ibrutinib arm, 32% had del(17p) and 32% del(11q).

# RESONATE: Long-term PFS Benefit With Ibrutinib Across Subgroups by Del(17p)/TP53 Mutation, Del(11q), and IGHV Mutation Status

#### By Del(17p)/TP53 Mutation and Del(11q)<sup>a</sup>

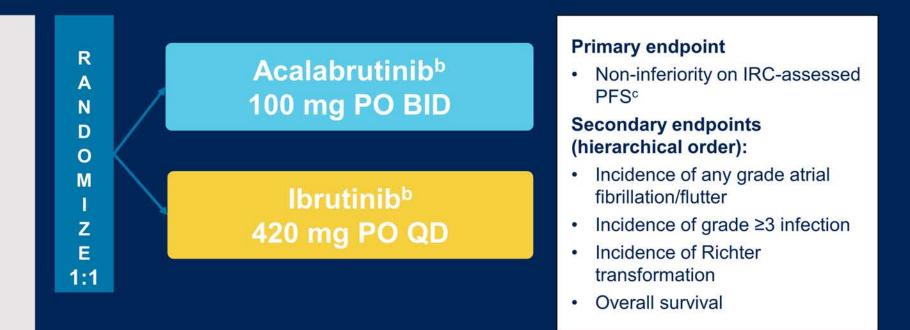


- In ibrutinib-treated patients, median PFS was shorter for patients with del(17p) and/or TP53 mutation (41 months) than in patients with del(11q) (57 months) or those without any of these abnormalities (not reached)
- PFS with ibrutinib was similar irrespective of IGHV mutation status

NE, not estimable; NR, not reached.

<sup>a</sup>Genomic abnormalities by fluorescence in situ hybridization cytogenetics were categorized according to Döhner hierarchical classification.

By IGHV Mutation


#### **ELEVATE-RR:** Phase 3 Randomized Non-inferiority Open-Label Trial

Patients (N=533) Key Inclusion Criteria

- Adults with previously treated CLL requiring therapy (iwCLL 2008 criteria<sup>1</sup>)
- Presence of del(17p) or del(11q)<sup>a</sup>
- ECOG PS of ≤2

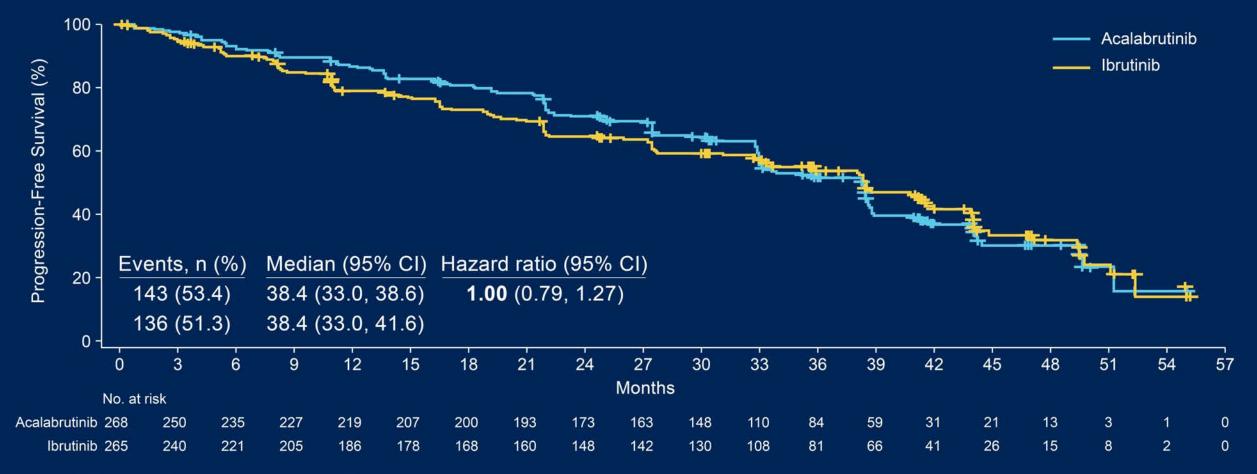
#### **Stratification**

- del(17p) status (yes or no)
- ECOG PS (2 vs ≤1)
- No. prior therapies (1–3 vs ≥4)



Key exclusion criteria: Significant CV disease; concomitant treatment with warfarin or equivalent vitamin K antagonist; prior treatment with ibrutinib, a BCR inhibitor (eg, BTK, PI3K, or Syk inhibitors), or a BCL-2 inhibitor (eg, venetoclax)

NCT02477696 (ACE-CL-006).


<sup>a</sup>By central laboratory testing; <sup>b</sup>continued until disease progression or unacceptable toxicity; <sup>c</sup>conducted after enrollment completion and accrual of ~250 IRC-assessed PFS events. Afib/flutter, atrial fibrillation/flutter; BCL-2, B-cell leukemia/lymphoma-2; BCR, B-cell receptor; BID, twice daily; BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; CV, cardiovascular; ECOG PS, Eastern Cooperative Oncology Group performance status; IRC, independent review committee; iwCLL, International Workshop on CLL; PFS, progression-free survival; PI3K, phosphatidylinositol 3kinase; PO, orally; QD, once daily.



00. 2008;111:5446-

Presented By: John C. Byrd, MD

#### Primary Endpoint: Non-inferiority Met on IRC-Assessed PFS



Median follow-up: 40.9 months (range, 0.0–59.1). CI, confidence interval; IRC, independent review committee; PFS, progression-free survival.



### **Events of Clinical Interest**

|                                      | Any grade                |                      | Grad                     | e ≥3                 |
|--------------------------------------|--------------------------|----------------------|--------------------------|----------------------|
| Events, n (%)                        | Acalabrutinib<br>(n=266) | lbrutinib<br>(n=263) | Acalabrutinib<br>(n=266) | lbrutinib<br>(n=263) |
| Cardiac events                       | 64 (24.1)                | 79 (30.0)            | 23 (8.6)                 | 25 (9.5)             |
| Atrial fibrillation <sup>a*</sup>    | 25 (9.4)                 | 42 (16.0)            | 13 (4.9)                 | 10 (3.8)             |
| Ventricular arrhythmias <sup>b</sup> | 0                        | 3 (1.1)              | 0                        | 1 (0.4)              |
| Bleeding events*                     | 101 (38.0)               | 135 (51.3)           | 10 (3.8)                 | 12 (4.6)             |
| Major bleeding events <sup>c</sup>   | 12 (4.5)                 | 14 (5.3)             | 10 (3.8)                 | 12 (4.6)             |
| Hypertension <sup>d*</sup>           | 25 (9.4)                 | 61 (23.2)            | 11 (4.1)                 | 24 (9.1)             |
| Infections <sup>e</sup>              | 208 (78.2)               | 214 (81.4)           | 82 (30.8)                | 79 (30.0)            |
| ILD/pneumonitis*                     | 7 (2.6)                  | 17 (6.5)             | 1 (0.4)                  | 2 (0.8)              |
| SPMs excluding NMSC                  | 24 (9.0)                 | 20 (7.6)             | 16 (6.0)                 | 14 (5.3)             |

Higher incidence indicated in **bold yellow** for terms with statistical differences.

\*Two-sided P-value for event comparisons <0.05 without multiplicity adjustment.

<sup>a</sup>Includes events with preferred terms atrial fibrillation and atrial flutter.

<sup>b</sup>Includes events with preferred terms torsade de pointes, ventricular arrhythmia, ventricular extrasystoles, ventricular fibrillation, ventricular flutter, ventricular tachyarrhythmia, and ventricular tachycardia. <sup>c</sup>Defined as any hemorrhagic event that was serious, grade ≥3 in severity, or a central nervous system hemorrhage (any severity grade).

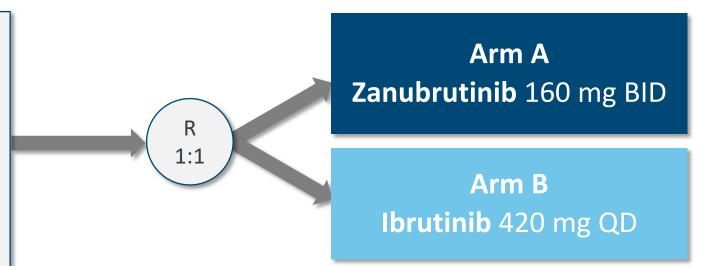
<sup>d</sup>Included events with the preferred terms of hypertension, blood pressure increased, and blood pressure systolic increased.

eMost common grade ≥3 infections were pneumonia (acalabrutinib, 10.5%; ibrutinib, 8.7%), sepsis (1.5% vs 2.7%, respectively), and UTI (1.1% vs 2.3%).

ILD, interstitial lung disease; NMSC, nonmelanoma skin cancer; SPMs, second primary malignancies; UTI, urinary tract infection.



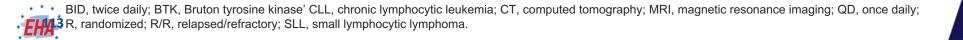
#### ALPINE: Phase 3, Randomized Study of Zanubrutinib vs Ibrutinib in Patients With Relapsed/Refractory CLL or SLL


#### **R/R CLL/SLL with ≥ 1 prior treatment** (Planned N=600, Actual N=652)

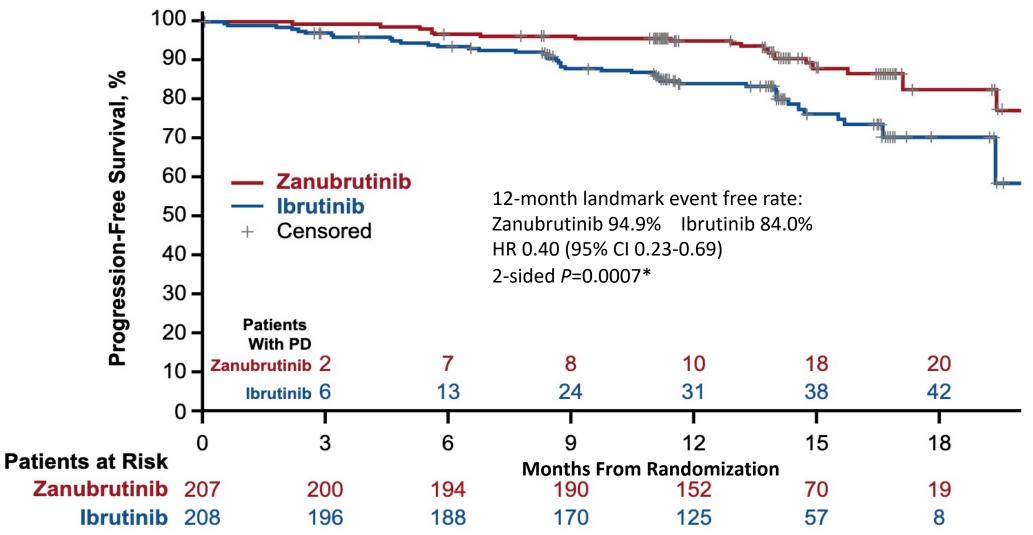
#### **Key Inclusion Criteria**

- R/R to ≥1 prior systemic therapy for CLL/SLL
- Measurable lymphadenopathy by CT or MRI

#### **Key Exclusion Criteria**


- Current or past Richter's transformation
- Prior BTK inhibitor therapy
- Treatment with warfarin or other vitamin K antagonists




#### **Stratification Factors**

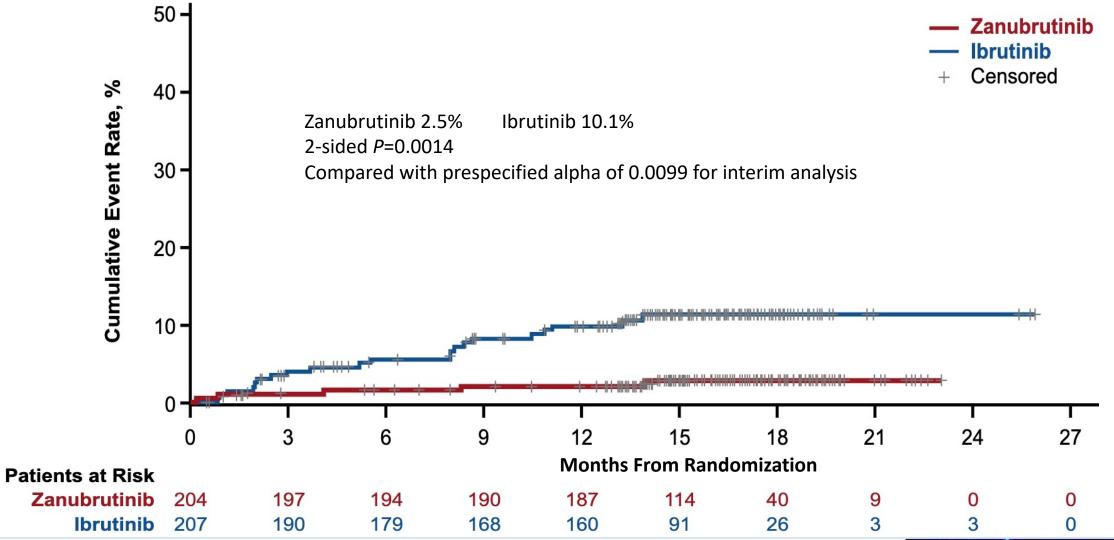
- Age
- Geographic region
- Refractory status
- Del(17p)/TP53 mutation status

```
Hillmen et al, EHA 2021
```



#### **PFS by Investigator Assessment**




\*Not a prespecified analysis; formal analysis of PFS will be based on all patients when the target number of events are reached.

Median PFS follow-up was 14.0 months for both zanubrutinib and ibrutinib arms by reverse KM method.

PFS, progression-free survival.

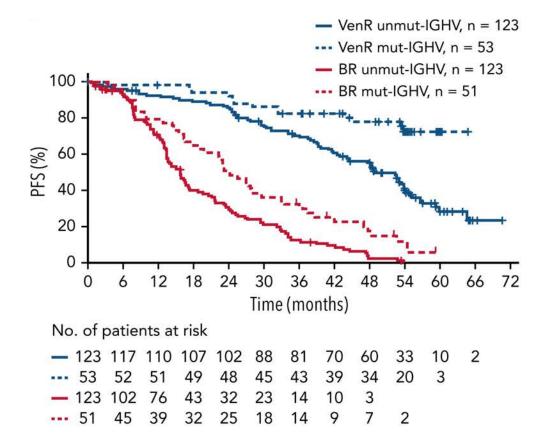


#### **Atrial Fibrillation/Flutter**

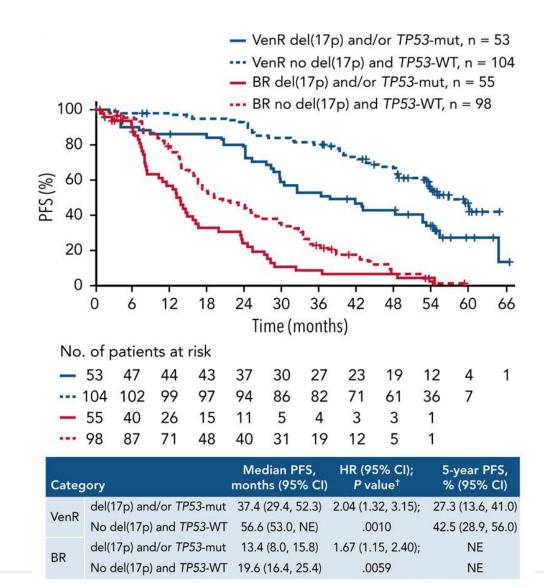


EHA2021

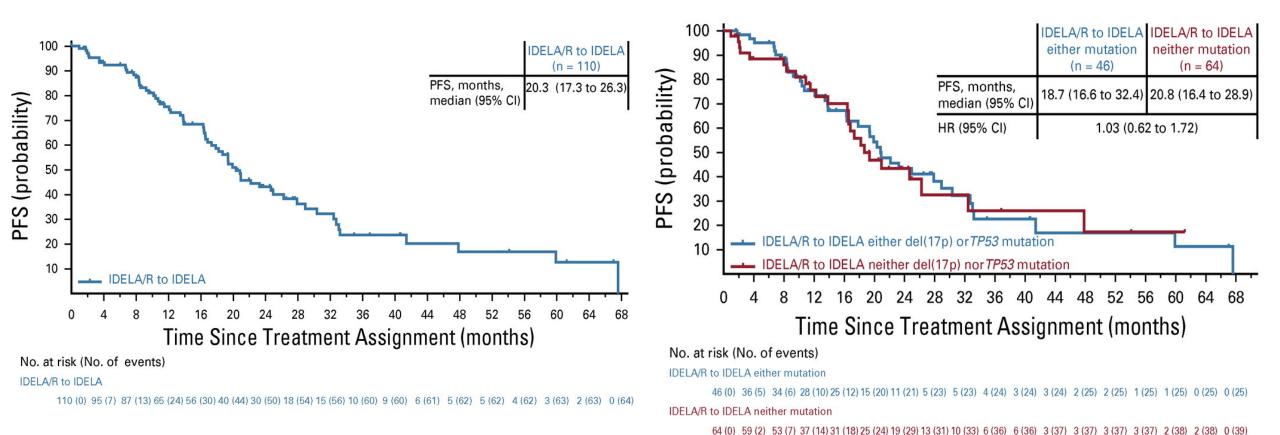



# **2<sup>nd</sup> Generation BTKi after ibrutinib intolerance**

- 83% of patients treated with acalabrutinib after ibrutinib intolerance tolerate acalabrutinib, with 2y PFS of 72%.<sup>1</sup>
- 60% of patients treated with zanubrutinib after ibrutinib intolerance did not have recurrence of the intolerance event and recurrent AEs were of similar or lesser severity, leading to no discontinuations for intolerance.<sup>2</sup>

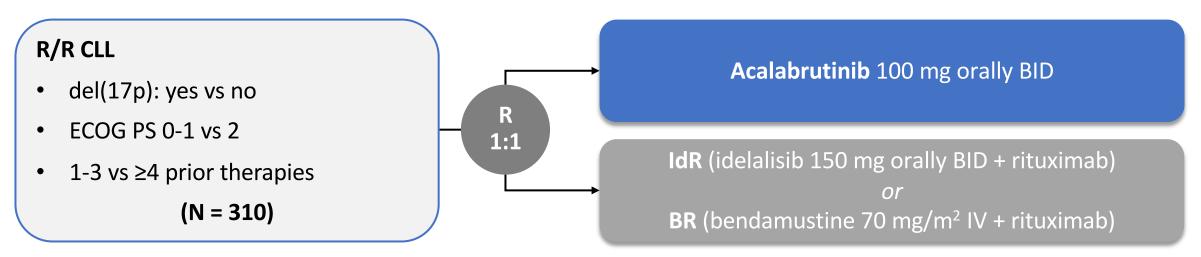

# Summary

- BTK inhibitors are efficacious in R/R CLL.
- Overcome negative prognostic impact of del(11q) and unmutated *IGHV*. Del(17p) remains a high risk feature.
- 2<sup>nd</sup> generation covalent BTK inhibitors (acalabrutinib and zanubrutinib) have at least equivalent efficacy with more favorable AE profile.


# MURANO: Enduring undetectable MRD and updated outcomes in relapsed/refractory CLL after fixed-duration venetoclax-rituximab



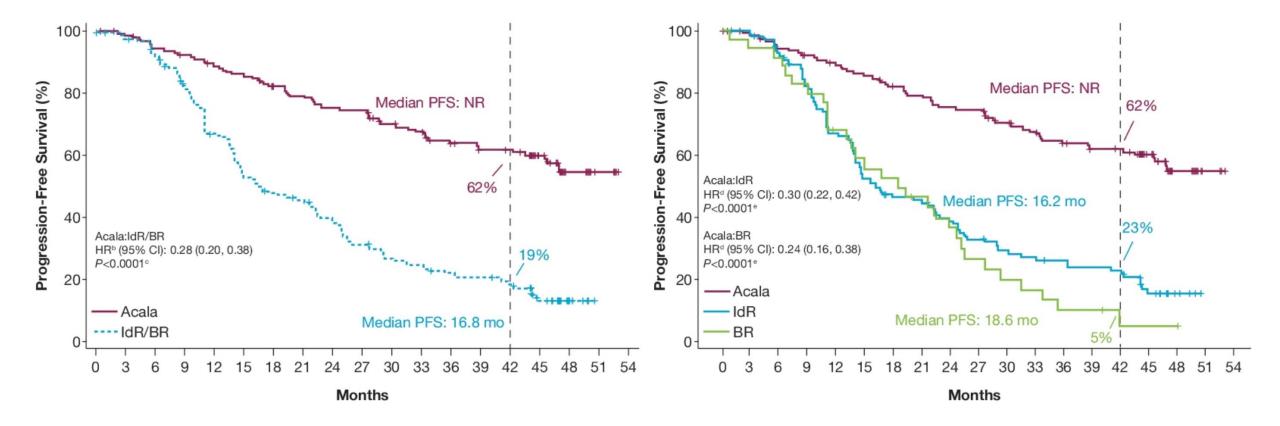
| Categ | lory       | Median PFS,<br>months (95% CI) | HR (95% CI);<br>P value <sup>†</sup> | 5-year PFS,<br>% (95% Cl) |
|-------|------------|--------------------------------|--------------------------------------|---------------------------|
| VenD  | unmut-IGHV | 52.2 (44.1, 53.8)              | 2.96 (1.64, 5.34);                   | 28.7 (18.5, 38.9)         |
| VenR  | mut-IGHV   | NE                             | .0002                                | 72.7 (59.7, 85.6)         |
|       | unmut-IGHV | 15.7 (13.4, 17.3)              | 1.79 (1.24, 2.58);                   | NE                        |
| BR    | mut-IGHV   | 24.2 (18.6, 32.8)              | .0015                                | NE                        |




### Idelalisib + Rituximab PFS



Sharman et al. Journal of Clinical Oncology 37, no. 16 (June 01, 2019) 1391-1402.


# Phase 3 ACE-CL-309/ASCEND: Acalabrutinib Versus IdR or BR in R/R CLL<sup>1</sup>

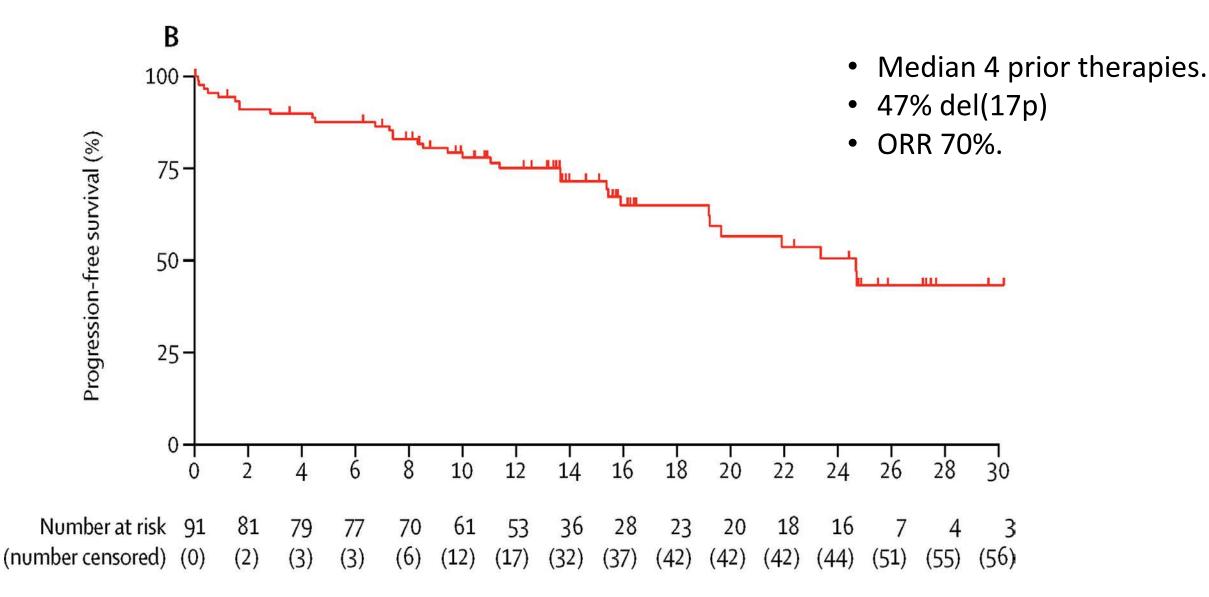


- Crossover from IdR/BR arm allowed after confirmed disease progression
- Interim analysis was planned after occurrence of ~79 PFS events (2/3 of primary event goal)
- Primary endpoint: PFS (assessed by IRC)
- Key secondary endpoints: ORR (assessed by IRC and investigator), duration of response, PFS (assessed by investigator), OS

#### 1. Ghia P et al. ASCO 2020. Abstract 8015.

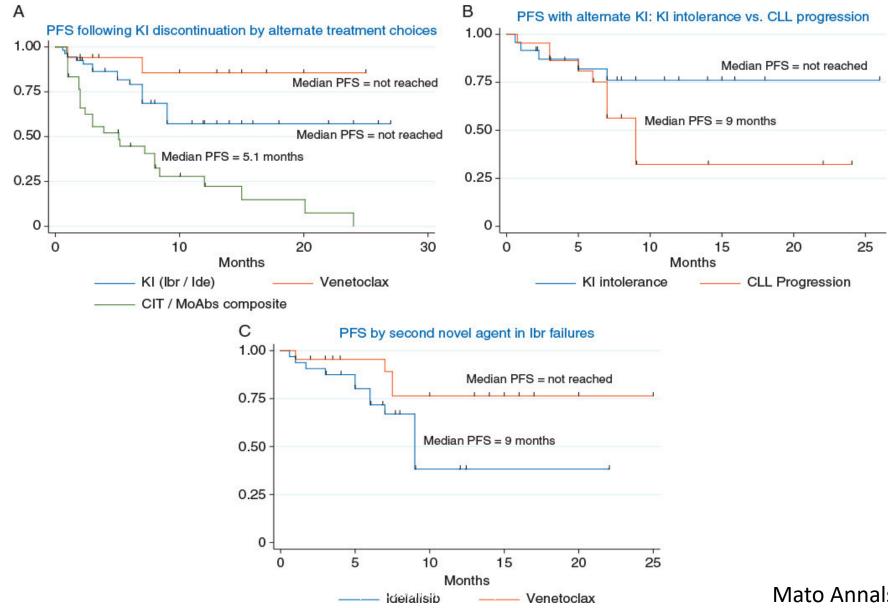
#### **ASCEND: Superior PFS for acalabrutinib**




Jurczak W et al. ASCO 2022; Abstract 7538.

# Summary – PI3K-delta inhibitors

- Idelalisib 150mg BID + rituximab remains approved for R/R CLL.
- Duvelisib withdrawn, umbralisib + ublituximab application for approval withdrawn.
- Tricky to use close monitoring for immune transaminitis, colitis, opportunistic infections (PJP, CMV).
- Inferior PFS compared to acalabrutinib in head-to-head data.
- May have a role after failure/unavailability of both BTKi + ven, but extremely limited data for efficacy in this setting (and prefer clinical trials for such patients).


Treatment after failure of a targeted agent

#### **Venetoclax in ibrutinib refractoriness/intolerance**



Jones et al. *Lancet Oncol* 2018

#### **Treatment after kinase inhibitor failure – Real World data**



Mato Annals of Oncology 2017

## **Treatment after time-limited venetoclax**

- Venetoclax + Rituximab:
- 1. 72% ORR in 32 patients (5.6% CR) with venetoclax re-treatment.
- 2. Reasonable option, especially if U-MRD with first venetoclax therapy and long duration of off-treatment remission.
- Ibrutinib treatment after ven-R (n=18) showed 100% ORR.
- After ibrutinib + venetoclax:
- 1. 9 patients on CAPTIVATE Fixed duration cohort re-treated with ibrutinib monotherapy. 7 responded, 2 too early.<sup>2</sup>

<sup>1</sup>Seymour et al. *Blood* 2022 <sup>2</sup> Tam *Blood* (2022) 139 (22): 3278–3289)

# Selecting 2<sup>nd</sup> line therapy

- No data based on long term efficacy to decide between BTKi/ven
- Key determinants: what 1L therapy was received; comorbidities and AE profile; desire for time-limited therapy:
- 1. Chemoimmunotherapy  $1L \rightarrow BTKi$  or venetoclax.
- 2. Venetoclax + Obinutuzumab 1L → BTKi or venetoclax if prolonged remission and deep initial response (ideally on clinical trial).
- 3. BTKi 1L  $\rightarrow$ :
  - Intolerance  $\rightarrow$  trial of alternative BTKi or venetoclax +/- rituximab.
  - Resistance  $\rightarrow$  venetoclax +/- rituximab.

# **Double-refractory CLL**

- Non-covalent BTKi pirtobrutinib, nemtabrutinib.
- CAR-T lisocabtagene ciloleucel. Others.
- Bi-specific antibodies studies of epcoritamab in CLL/RS and mosunetuzumab

### Efficacy of Pirtobrutinib, a Highly Selective, Non- Covalent (Reversible) BTK Inhibitor in Richter Transformation: Results from the Phase 1/2 BRUIN Study

- 57 patients, 50 evaluable.
- Heavily pre-treated. Median 2 prior therapies for RT. Most had had prior covalent BTKi.
- 50 evaluable, 54% ORR (10% CR).
- Median DOR 8.6mo.

Wierda WG et al. ASH 2022; Abstract 347.

### Subcutaneous Epcoritamab in Patients with Richter's Syndrome: Early Results from Phase Ib/2 Trial

- CD3x20 bi-specific antibody.
- Phase I study in CLL R/R CLL.
- 10 patients with Richter's Syndrome (1L therapy for RS in 6/10).
- Manageable toxicity (low-grade CRS in 90%).
- ORR 60%. 50% CR.

#### Module 5: Promising Investigational Agents and Strategies — Dr Roeker



Case Presentation: 77-year-old woman with CLL (p53, 11q, 13q mutations) and disease progression on ibrutinib; repeat mutation testing detects a BTK C481S mutation



Dr Spencer Bachow (Boca Raton, Florida)



# Case Presentation: 79-year-old man develops Richter's transformation while receiving obinutuzumab/venetoclax for CLL

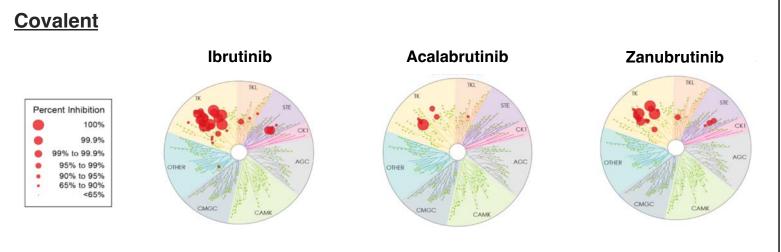


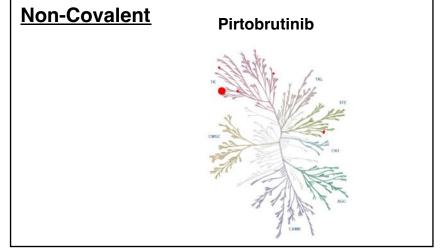
#### Dr Justin Favaro (Charlotte, North Carolina)



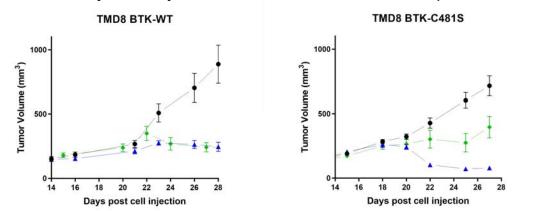
# Promising Investigational Agents and Strategies

Lindsey Roeker, MD


Assistant Attending L1 Memorial Sloan Kettering Cancer Center New York, NY


## BTK inhibitors: comparing kinome selectivity and *in vivo* activity

Vehicle


Pirtobrutinib 30 mg/kg BID

Ibrutinib 50 mg/kg BID





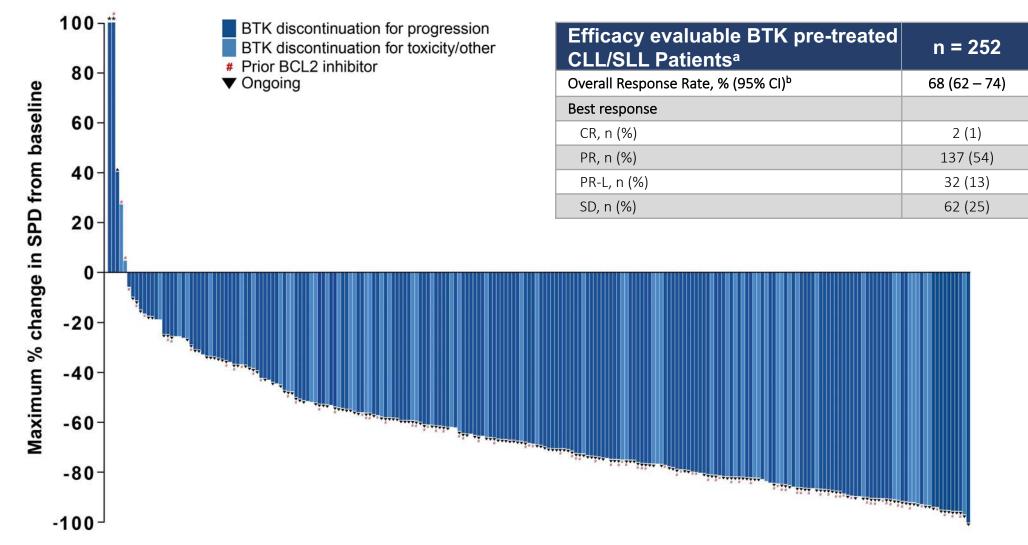
#### **Xenograft models** *In vivo* activity similarly efficacious as ibrutinib in WT; superior in C481S



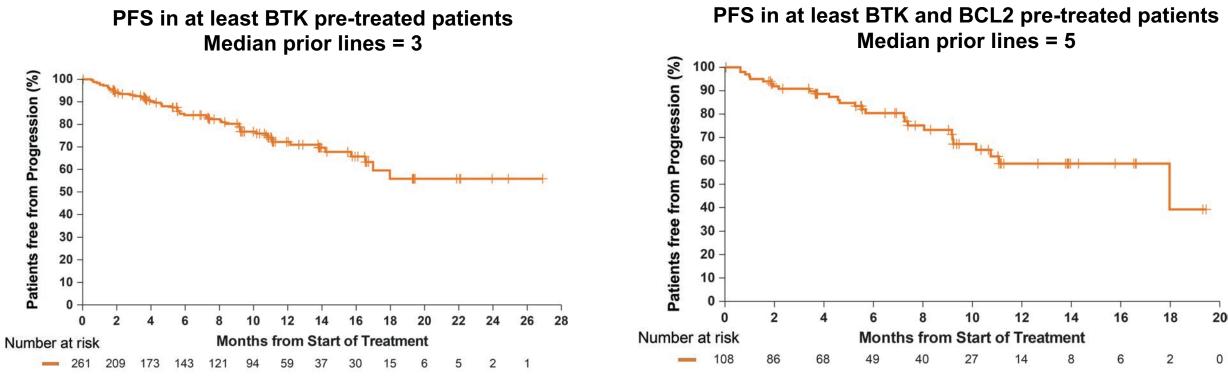
#### Pirtobrutinib

- >300-fold selectivity for BTK vs 370 other kinases
- Favorable pharmacologic properties allow sustained BTK inhibition throughout dosing interval
- Nanomolar potency against WT & C481-mutant BTK in cell and enzyme assays
- Due to reversible binding mode, BTK inhibition not impacted by a high intrinsic rate of BTK turnover

Kaptein A, et al. Blood. 2018;132(Supplement 1):1871. Mato et al, Lancet, 2021:397:892-901. Brandhuber BJ, et al. Clin. Lymphoma Myeloma Leuk. 2018.18:S216


# BRUIN: phase I/II study of Pirtobrutinib

The most recent clinical update focused on CLL/SLL patients previously treated with BTK inhibitor


| Characteristics                                                                                                                                                                                                        | N = 261                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Median age, years (range)                                                                                                                                                                                              | 69 (36-88)                                                                                     |
| Female, n (%)<br>Male, n (%)                                                                                                                                                                                           | 84 (32)<br>177 (68)                                                                            |
| ECOG PS <sup>a</sup> , n (%)<br>0<br>1<br>2                                                                                                                                                                            | 138 (53)<br>104 (40)<br>19 (7)                                                                 |
| Median number of prior lines of systemic therapy (range)                                                                                                                                                               | 3 (1-11)                                                                                       |
| Prior therapy, n (%)<br>BTK inhibitor<br>Anti-CD20 antibody<br>Chemotherapy<br>BCL2 inhibitor<br>PI3K inhibitor<br>CAR-T<br>Stem cell transplant<br>Allogeneic stem cell transplant<br>Autologous stem cell transplant | 261 (100)<br>230 (88)<br>207 (79)<br>108 (41)<br>51 (20)<br>15 (6)<br>6 (2)<br>5 (2)<br>1 (<1) |
| Reason discontinued prior BTKi, n (%)<br>Progressive disease<br>Toxicity/Other                                                                                                                                         | 196 (75)<br>65 (25)                                                                            |

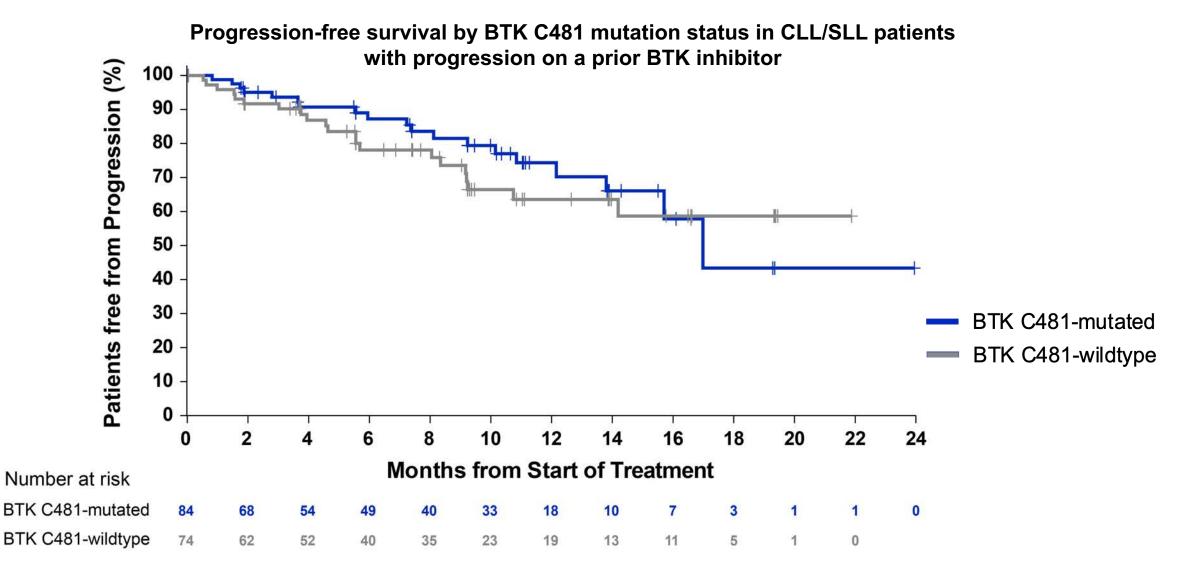
| Baseline Molecular Characteristics  |          |  |  |  |  |  |
|-------------------------------------|----------|--|--|--|--|--|
| Mutation status, n (%)              |          |  |  |  |  |  |
| BTK C481-mutant                     | 89 (43)  |  |  |  |  |  |
| BTK C481-wildtype                   | 118 (57) |  |  |  |  |  |
| PLCG2-mutant                        | 33 (16)  |  |  |  |  |  |
| High Risk Molecular Features, n (%) |          |  |  |  |  |  |
| 17p deletion                        | 51 (28)  |  |  |  |  |  |
| TP53 mutation                       | 64 (37)  |  |  |  |  |  |
| 17p deletion or TP53 mutation       | 77 (36)  |  |  |  |  |  |
| Both 17p deletion and TP53 mutation | 38 (27)  |  |  |  |  |  |
| IGHV unmutated                      | 168 (84) |  |  |  |  |  |
| 11q deletion                        | 45 (25)  |  |  |  |  |  |

# Pirtobrutinib efficacy in BTK pre-treated CLL/SLL patients



## Progression-free survival in BTK pre-treated CLL/SLL patients




Median PFS: Not Estimable (95% CI: 17.0 months – Not Estimable)

Median PFS: 18 months (95% CI: 10.7 months - Not Estimable)

- 74% (194/261) of BTK pre-treated patients remain on pirtobrutinib
- Median follow-up of 9.4 months (range, 0.3 27.4) for all BTK pre-treated patients

Mato A, et al. Blood. 2021;136(Supplement 1):35-37; Mato AR et al. EHA 2022; Abstract S147.

### BTK C481 mutation status is not predictive of Pirtobrutinib benefit



Mato A, et al. Blood. 2021;136(Supplement 1):35-37; Mato AR et al. EHA 2022; Abstract S147.

## Pirtobrutinib safety profile

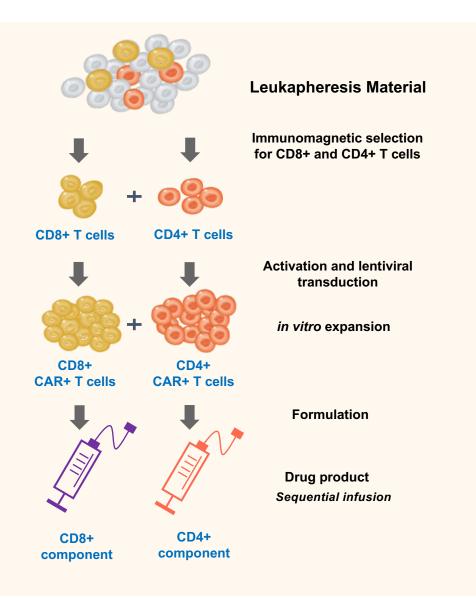
|                                   |         | All doses a | and patients    | s (n=618) |                 |              |               |
|-----------------------------------|---------|-------------|-----------------|-----------|-----------------|--------------|---------------|
| Treatment-emergent AEs, (≥15%), % |         |             |                 |           |                 | Treatment-re | elated AEs, % |
| Adverse Event                     | Grade 1 | Grade 2     | Grade 3         | Grade 4   | Any Grade       | Grades 3/4   | Any Grade     |
| Fatigue                           | 13%     | 8%          | 1%              | -         | 23%             | 1%           | 9%            |
| Diarrhea                          | 15%     | 4%          | <1%             | <1%       | 19%             | <1%          | 8%            |
| Neutropenia                       | 1%      | 2%          | 8%              | 6%        | 18%             | 8%           | 10%           |
| Contusion                         | 15%     | 2%          | -               | -         | 17%             | -            | 12%           |
| AEs of special interest           |         |             |                 |           |                 |              |               |
| Bruising                          | 20%     | 2%          | -               | -         | 22%             | -            | 15%           |
| Rash                              | 9%      | 2%          | <1%             | -         | 11%             | <1%          | 5%            |
| Arthralgia                        | 8%      | 3%          | <1%             | -         | 11%             | -            | 3%            |
| Hemorrhage                        | 5%      | 2%          | 1% <sup>g</sup> | -         | 8%              | <1%          | 2%            |
| Hypertension                      | 1%      | 4%          | 2%              | -         | 7%              | <1%          | 2%            |
| Atrial fibrillation/flutter       | -       | 1%          | <1%             | <1%       | 2% <sup>h</sup> | -            | <1%           |

No DLTs reported and MTD not reached 96% of patients received ≥1 pirtobrutinib dose at or above RP2D of 200 mg daily 1% (n=6) of patients permanently discontinued due to treatment-related AEs

## ASH 2022: Pirtobrutinib in CLL

#### <u>Saturday, 4:00 – 5:30 PM</u>

347 (Oral). Efficacy of Pirtobrutinib, a Highly Selective, Non-Covalent (Reversible) BTK Inhibitor in Richter Transformation: Results from the Phase 1/2 BRUIN Study


#### <u>Saturday, 5:30 – 7:30 PM</u>

1797 (Poster). Safety and Tolerability of Pirtobrutinib Monotherapy in Patients with B-Cell Malignancies Who Were Previously Intolerant to a Covalent BTK Inhibitor: Results from the Phase 1/2 BRUIN Study

#### <u>Monday, 4:30 – 6:30 PM</u>

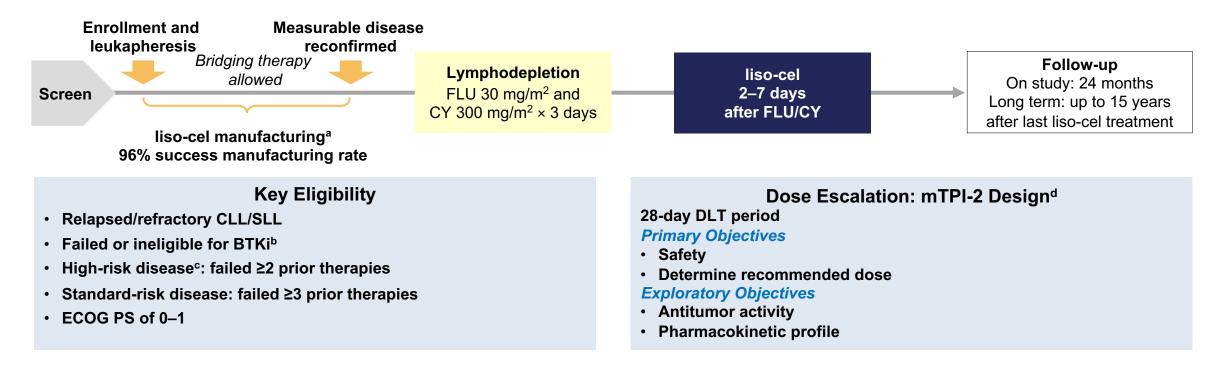
961 (Oral). Efficacy of Pirtobrutinib in Covalent BTK-Inhibitor Pre-Treated Relapsed / Refractory CLL/SLL: Additional Patients and Extended Follow-up from the Phase 1/2 BRUIN Study

### TRANSCEND CLL 004: Liso-Cel in CLL



CD19-Directed, Defined Composition, 4-1BB CAR T Cell Product

CD8+ and CD4+ CAR+ T cell components are administered separately at equal target doses of CD8+ and CD4+ CAR+ T cells


The defined composition of liso-cel results in:

- Consistent administered CD8+ and CD4+ CAR+ T cell dose
- Low variability in the CD8+/CD4+ ratio

Dose and ratio of CD8+ and CD4+ CAR+ T cells may influence the incidence and severity of CRS and neurological events

Siddiqi T, et al. *Blood*. 2019;134(Supplement 1):503. Turtle CJ, et al. *Sci Transl Med*. 2016;8(355):355ra116. DeAngelo DJ, et al. *J Immunother Cancer*. 2017;5(Suppl 2):116: Abstract P217. Neelapu SS, et al. *N Engl J Med*. 2017;377:2531–2544.

#### TRANSCEND CLL 004 Study Design



| Dose Level | Dose                               | Evaluable (N=23) |
|------------|------------------------------------|------------------|
| 1          | 50 × 10 <sup>6</sup> CAR+ T cells  | 9                |
| 2          | 100 × 10 <sup>6</sup> CAR+ T cells | 14               |

ClinicalTrials.gov identifier: NCT03331198.

<sup>a</sup>One patient received nonconforming product. <sup>b</sup>Failure defined as SD or PD as best response, or PD after previous response, or discontinuation due to intolerance (unmanageable toxicity). Ineligibility defined as requirement for full-dose anticoagulation or history of arrhythmia. <sup>c</sup>Complex cytogenetic abnormalities, del(17p), *TP53* mutation, or unmutated IGHV. <sup>d</sup>Guo W, et al. *Contemp Clin Trials.* 2017;58:23-33. BTKi, Bruton tyrosine kinase inhibitor; CAR, chimeric antigen receptor; CLL, chronic lymphocytic leukemia; CY, cyclophosphamide; DLT, dose-limiting toxicity; ECOG PS, Eastern Cooperative Oncology Group performance status; FLU, fludarabine; IGHV, immunoglobulin heavy-chain variable region; mTPI, modified toxicity probability interval for dose escalation; PD, progressive disease; SD, stable disease; SLL, small lymphocytic lymphoma.

#### Siddiqi T, et al. *Blood*. 2019;134(Supplement 1):503.

### **Baseline Characteristics**

|                                                            | All Patients<br>(N=23) | Failed BTKi and Venetoclax (n=9) |
|------------------------------------------------------------|------------------------|----------------------------------|
| Age, years, median (range)                                 | 66 (49–79)             | 68 (59–76)                       |
| Male, n (%)                                                | 11 (48)                | 4 (44)                           |
| Time from diagnosis, months, median (range)                | 87.5 (30–209)          | 145 (30–209)                     |
| Bulky disease >5 cm, n (%)ª                                | 8 (35)                 | 4 (44)                           |
| BALL risk score, <sup>1</sup> median (range)               | 2 (0–3)                | 2 (0–3)                          |
| SPD, cm <sup>2</sup> , median (range)                      | 25 (2–197)             | 46 (2–197)                       |
| LDH, U/L, median (range)                                   | 243 (119–634)          | 245 (119–634)                    |
| Received bridging therapy, n (%)                           | 17 (74)                | 7 (78)                           |
| Stage, n (%)                                               |                        |                                  |
| Rai stage III/IV                                           | 15 (65)                | 7 (78)                           |
| Binet stage C                                              | 16 (70)                | 7 (78)                           |
| High-risk features (any), n (%)                            | 19 (83)                | 8 (89)                           |
| Del(17p)                                                   | 8 (35)                 | 2 (22)                           |
| TP53 mutation                                              | 14 (61)                | 6 (67)                           |
| Complex karyotype <sup>b</sup>                             | 11 (48)                | 3 (33)                           |
| Lines of prior therapy, median (range)                     | 5 (2–11)               | 6 (5–10)                         |
| Prior ibrutinib, n (%)                                     | 23 (100)               | 9 (100)                          |
| Ibrutinib refractory/relapsed, n (%)                       | 21 (91)                | 9 (100)                          |
| BTKi progression and failed venetoclax, <sup>c</sup> n (%) | 9 (39)                 | 9 (100)                          |

Siddiqi T, et al. Blood. 2019;134(Supplement 1):503.

# Treatment emergent AEs (≥20% all grades)

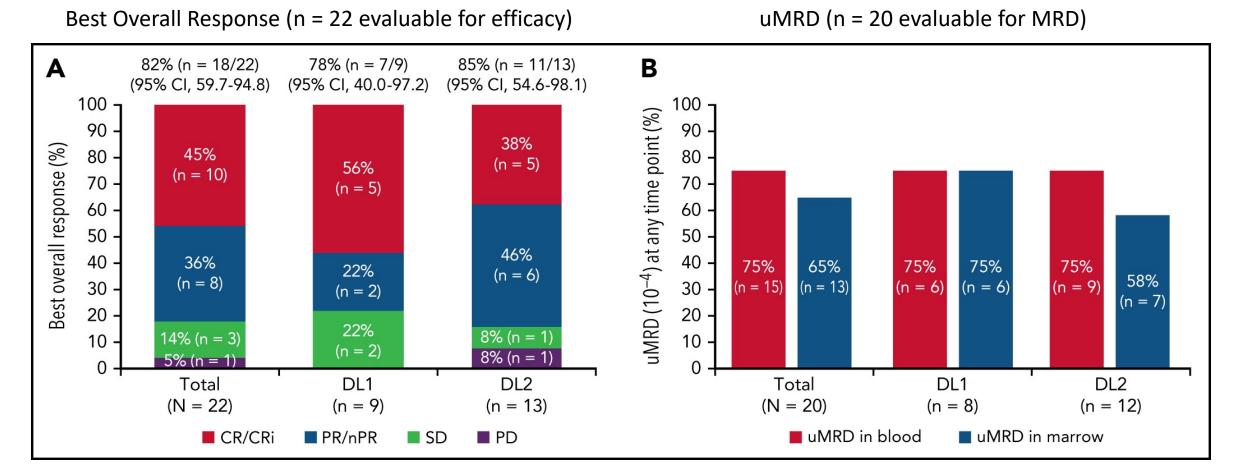
|                                       | Any grade |          | Grade ≥3     |              |
|---------------------------------------|-----------|----------|--------------|--------------|
|                                       | Total     | Total    | Dose level 1 | Dose level 2 |
|                                       | (n = 23)  | (n = 23) | (n = 9)      | (n = 14)     |
| Patients with any TEAE                | 23 (100)  | 22 (96)  | 8 (89)       | 14 (100)     |
| Anemia                                | 19 (83)   | 17 (74)  | 6 (67)       | 11 (79)      |
| Cytokine release syndrome             | 17 (74)   | 2 (9)    | 0            | 2 (14)       |
| Thrombocytopenia                      | 17 (74)   | 16 (70)  | 4 (44)       | 12 (86)      |
| Neutropenia/Neutrophil count decrease | 16 (70)   | 16 (70)  | 5 (56)       | 11 (79)      |
| Leukopenia                            | 11 (48)   | 10 (43)  | 4 (44)       | 6 (43)       |
| Pyrexia                               | 10 (43)   | 0        | 0            | 0            |
| Hypokalemia                           | 9 (39)    | 0        | 0            | 0            |
| Diarrhea                              | 8 (35)    | 0        | 0            | 0            |
| Hypophosphatemia                      | 8 (35)    | 5 (22)   | 0            | 5 (36)       |
| Nausea                                | 8 (35)    | 0        | 0            | 0            |
| Chills                                | 7 (30)    | 0        | 0            | 0            |
| Headache                              | 7 (30)    | 0        | 0            | 0            |
| Tremor                                | 7 (30)    | 0        | 0            | 0            |
| Acute kidney injury                   | 6 (26)    | 1 (4)    | 1 (11)       | 0            |
| Decreased appetite                    | 6 (26)    | 0        | 0            | 0            |
| Febrile neutropenia                   | 6 (26)    | 6 (26)   | 0            | 6 (43)       |
| Hypomagnesemia                        | 6 (26)    | 0        | 0            | 0            |
| Hyponatremia                          | 6 (26)    | 0        | 0            | 0            |
| Lymphopenia                           | 6 (26)    | 6 (26)   | 2 (22)       | 4 (29)       |
| Confusional state                     | 5 (22)    | 2 (9)    | 0            | 2 (14)       |
| Encephalopathy                        | 5 (22)    | 4 (17)   | 1 (11)       | 3 (21)       |
| Hypogammaglobulinemia                 | 5 (22)    | 0        | 0            | 0            |
| Insomnia                              | 5 (22)    | 0        | 0            | 0            |

DLTs occurred in 2 patients receiving liso-cel at DL2

- Patient 1: grade 4 hypertension

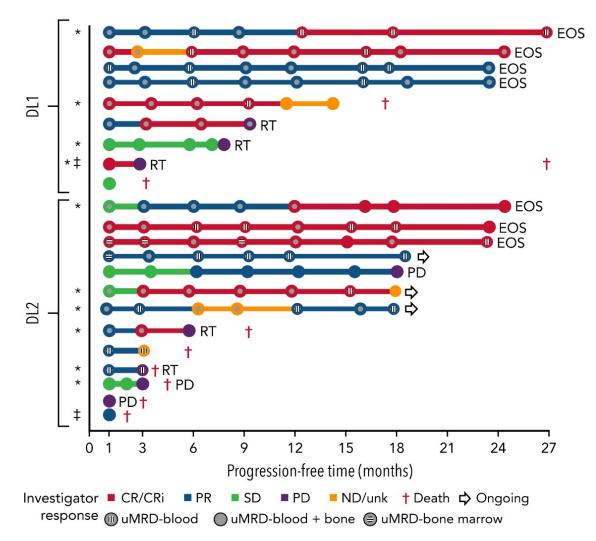
 Patient 2: grade 3 encephalopathy, grade 3 muscle weakness, and grade 4 TLS

Nine deaths occurred


- 7 due to PD
- 1 patient with pneumonia, respiratory failure (2.5 mo after liso-cel)
- 1 patient with septic shock (>90 days after liso-cell)

- No deaths within 30 days of liso-cel administration

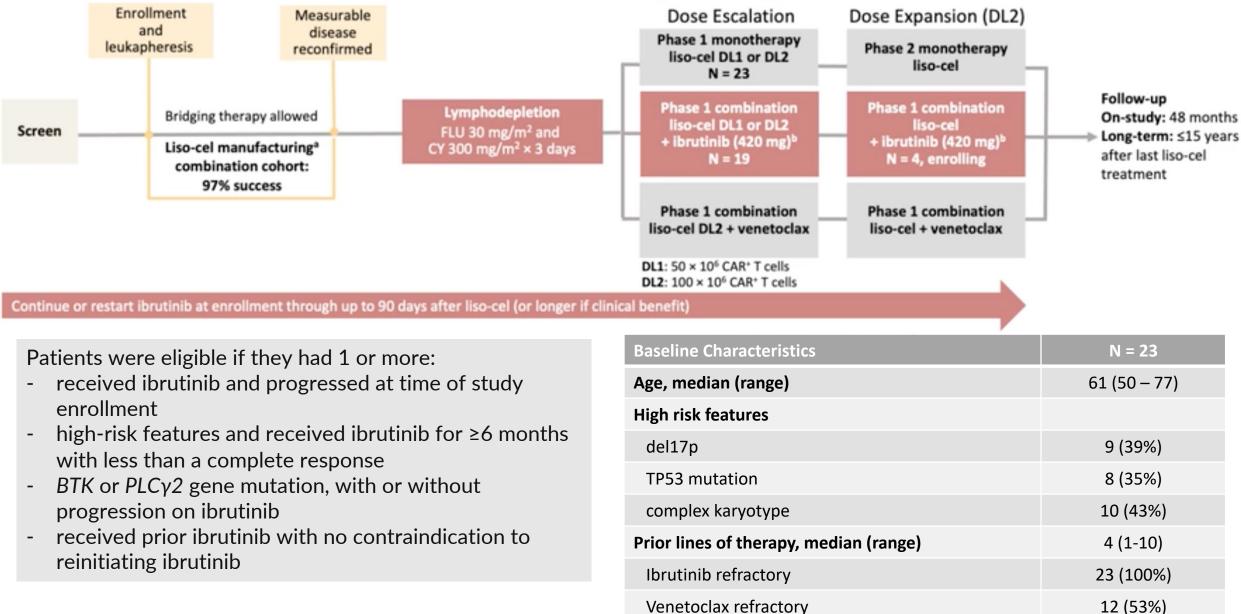
## CRS and neurologic events


|                                         | All Patients<br>(N=23) | Dose level 1<br>(n = 9) | Dose level 2<br>(n = 14) |
|-----------------------------------------|------------------------|-------------------------|--------------------------|
| CRS—any grade, n (%)                    | 17 (74)                | 7 (78)                  | 10 (71)                  |
| Median time to onset, days (range)      | 3 (1-10)               | 7 (1-10)                | 2 (1-10)                 |
| Median time to resolution, days (range) | 12 (2-50)              | 6 (2-30)                | 12.5 (2-50)              |
| Grade 3, n (%)                          | 2 (9)                  | 0                       | 2 (14)                   |
| NE <sup>a</sup> —any grade, n (%)       | 9 (39)                 | 2 (22)                  | 7 (50)                   |
| Median time to onset, days (range)      | 4 (2-21)               | 16 (11-21)              | 4 (2-11)                 |
| Median time to resolution, days (range) | 20.5 (6-50)            | 8.5 (6-11)              | 29.5 (9-50)              |
| Grade ≥3,ª n (%)                        | 5 (22)                 | 2 (22)                  | 3 (21)                   |
| Any CRS or NE, n (%)                    | 18 (78)                | 7 (78)                  | 11 (79)                  |
| CRS only, n (%)                         | 9 (39)                 | 5 (56)                  | 4 (29)                   |
| NE only, n (%)                          | 1 (4)                  | 0                       | 1 (7)                    |
| Tocilizumab and/or steroid use          |                        |                         |                          |
| Tocilizumab only                        | 6 (26)                 | 3 (33)                  | 3 (21)                   |
| Corticosteroids only                    | 1 (4)                  | 0                       | 1 (7)                    |
| Both tocilizumab and corticosteroids    | 8 (35)                 | 2 (22)                  | 6 (43)                   |
| Tocilizumab and/or corticosteroids      | 15 (65)                | 5 (56)                  | 10 (71)                  |

## Best overall response and undetectable MRD



Median follow up = 24 months


## Individual patient efficacy, duration of response, and progression free survival



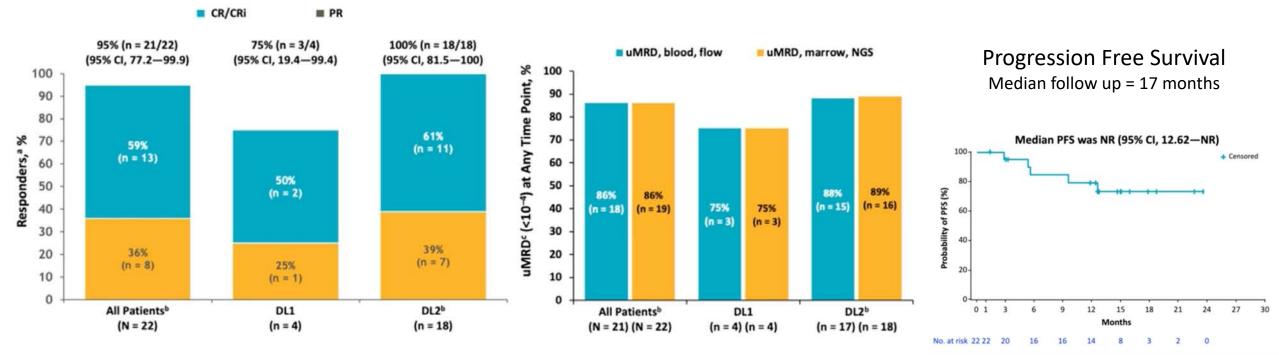


Siddiqi T, et al. *Blood*. 2022;139(12):1794-1806.

## TRANSCEND CLL 004: Liso-cel + Ibrutinib



### Liso-cel + Ibrutinib Safety


- The combination of liso-cel and ibrutinib was well tolerated, with no reported dose-limiting toxicities
- No grade 5 AEs or grade 4 or 5 cytokine release syndrome (CRS) or neurological events (NE) were reported

| Parameter                                              | All Patients<br>(N = 23) | DL1 + Ibrutinib<br>(n = 4) | DL2 + Ibrutinib<br>(n = 19) |
|--------------------------------------------------------|--------------------------|----------------------------|-----------------------------|
| Common grade 3/4 treatment-emergent AEs (TEAEs), n (%) | 22 (96)                  | 4 (100)                    | 18 (95)                     |
| Neutropenia/neutrophil count decrease                  | 20 (87)                  | 3 (75)                     | 17 (89)                     |
| Anemia                                                 | 10 (43)                  | 3 (75)                     | 7 (37)                      |
| Febrile neutropenia                                    | 7 (30)                   | 1 (25)                     | 6 (32)                      |
| CRS <sup>a</sup>                                       |                          |                            |                             |
| All-grade CRS, n (%)                                   | 18 (78)                  | 4 (100)                    | 14 (74)                     |
| Median time to CRS onset, days (range)                 | 7 (1—13)                 | 8 (6—13)                   | 6.5 (1-11)                  |
| Median duration of CRS, days (range)                   | 5.5 (3-13)               | 6.5 (4-7)                  | 5 (3-13)                    |
| Grades 1—2 CRS, n (%)                                  | 17 (74)                  | 3 (75)                     | 14 (74)                     |
| Grade 3 CRS, n (%)                                     | 1 (4)                    | 1 (25)                     | 0                           |
| NEs                                                    |                          |                            |                             |
| All-grade NEs, n (%)                                   | 7 (30)                   | 2 (50)                     | 5 (26)                      |
| Median time to NE onset, days (range)                  | 9 (5—13)                 | 9 (6—12)                   | 9 (5—13)                    |
| Median duration of NE, days (range)                    | 7 (1—10)                 | 8 (8—8)                    | 6 (1—10)                    |
| Grades 1—2 NEs, n (%)                                  | 3 (13)                   | 2 (50)                     | 1 (5)                       |
| Grade 3 NEs, <sup>b</sup> n (%)                        | 4 (17)                   | 0                          | 4 (21)                      |
| Management of CRS and/or NEs, n (%)                    |                          |                            |                             |
| Tocilizumab only                                       | 3 (13)                   | 0                          | 3 (16)                      |
| Corticosteroids only                                   | 3 (13)                   | 2 (50)                     | 1 (5)                       |
| Tocilizumab and corticosteroids                        | 5 (22)                   | 1 (25)                     | 4 (21)                      |

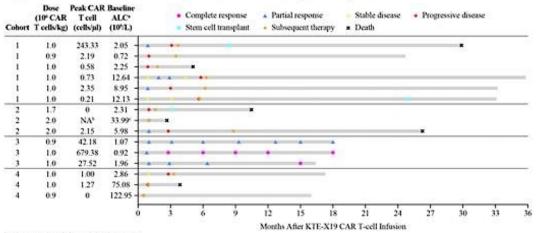
Weirda B, et al. iwCLL 2021.

### Liso-cel + Ibrutinib Efficacy

#### Best Objective Response by iwCLL and uMRD (<10<sup>-4</sup>)



\* No patients had PD during the first month after liso-cel


One patient at DL1 had SD for 6 months but later progressed

### ZUMA-8: To be presented at ASH 2022 (Sunday, 6 – 8 PM, abstract 3319)

#### **Study Design:**

- Brexucabtagene autoleucel: CD-19 Autologous CAR T-cell
- Patients with relapsed/refractory CLL
  - $\geq 2$  prior lines of therapy
  - Including a BTK inhibitor
- Conditioning: Fludarabine / Cyclophosphamide
- 2 dose levels
  - DL1: 1 × 10<sup>6</sup> CAR T cells/kg
  - DL2:  $2 \times 10^6$  CAR T cells/kg

Figure: Patient-level Peak CAR T-cell Expansion, Baseline ALC, Objective Response, and Survival Over Time.



Gray bars indicate duration of follow-up.

"Baseline ALC data were based on central assessment, except for 1 patient in Cohort 2. "Peak CAR T-cell data were not available. "Based on local assessment. ALC, absolute lymphocyte count; CAR, chimeric antigen receptor; NA, not available. Table: ZUMA-8 Patient Characteristics and AE Summary.

|                                                                                 | Cohort 1<br>(low dose)<br>n=6 | Cohort 2<br>(high dose)<br>n=3 | Cohort 3<br>(low tumor<br>burden)<br>n=3 | Cohort 4<br>(post ibrutinib)<br>n=3 | Overall<br>N=15              |
|---------------------------------------------------------------------------------|-------------------------------|--------------------------------|------------------------------------------|-------------------------------------|------------------------------|
| Median follow-up<br>duration,<br>months (range)                                 | 35.8<br>(33.6–40.4)           | 30.3<br>(29.9–30.6)            | 18.2<br>(18.2–18.4)                      | 17.05<br>(15.5–17.9)                | 30.3<br>(15.5–40.4)          |
| <b>Baseline Characteristi</b>                                                   | ics                           | 5                              | 2                                        |                                     | d.                           |
| Median age,<br>years (range)                                                    | 60.5 (53-68)                  | 61.0 (52-63)                   | 69.0 (5679)                              | 67.0 (53-70)                        | 63.0 (52-79)                 |
| Male, n (%)                                                                     | 3 (50)                        | 2 (67)                         | 3 (100)                                  | 2 (67)                              | 10 (67)                      |
| ECOG PS 1, n (%)                                                                | 4 (67)                        | 1 (33)                         | 1 (33)                                   | 2 (67)                              | 8 (53)                       |
| >3 prior therapy lines,<br>n (%)                                                | 6 (100)                       | 3 (100)                        | 1 (33)                                   | 2 (67)                              | 12 (80)                      |
| 17p deletion, n (%)                                                             | 1 (17)                        | 1 (33)                         | 0                                        | 2 (67)                              | 4 (27)                       |
| Complex karyotype,<br>n (%)*                                                    | 3 (50)                        | 3 (100)                        | 1 (33)                                   | 0                                   | 7 (47)                       |
| Median tumor burden,<br>mm <sup>2</sup> (range)                                 | 7,026.0<br>(464.0-26,688.3)   | 7,458,1<br>(2,140.4-9,715.0)   | 625.0<br>(614.0-2,472.0)                 | 1,434.0<br>(786.0-2,308.5)          | 2,308.50<br>(464.0-26,688.3) |
| Median CLL<br>lymphocytes in bone<br>marrow aspirate,<br>% (range) <sup>b</sup> | 75.0<br>(0.1–93.5)            | 86.4<br>(16.0–97.0)            | 30.0<br>(5.0–40.0)                       | 91.0<br>(33.0-96.0)                 | 75.0<br>(0.1–97.0)           |
| AE Summary                                                                      |                               |                                |                                          |                                     |                              |
| Grade ≥3 AE, n (%)                                                              |                               |                                |                                          |                                     |                              |
| Any                                                                             | 6 (100)                       | 3 (100)                        | 3 (100)                                  | 3 (100)                             | 15 (100)                     |
| Treatment related                                                               | 4 (67)                        | 2 (67)                         | 2 (67)                                   | 1 (33)                              | 9 (60)                       |
| CRS                                                                             |                               |                                | 0.000 C 90.00                            | 10 03CP                             | vos dibes:                   |
| Any                                                                             | 5 (83)                        | 2 (67)                         | 3 (100)                                  | 2 (67)                              | 12 (80)                      |
| Grade ≥3                                                                        | 0                             | 0                              | 1 (33)                                   | 0                                   | 1(7)                         |
| NE                                                                              |                               |                                |                                          | Net a second                        |                              |
| Any                                                                             | 6 (100)                       | 1 (33)                         | 3 (100)                                  | 1 (33)                              | 11 (73)                      |
| Grade ≥3                                                                        | 2 (33)                        | 0                              | 1 (33)                                   | 0                                   | 3 (20)                       |

# ASH 2022: Promising investigational agents in CLL

#### • BTK Degraders

• 965. NX-2127-001, a First-in-Human Trial of **NX-2127**, a Bruton's Tyrosine Kinase-Targeted Protein Degrader, in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia and B-Cell Malignancies

#### • Bispecific T cell Engagers

 348. Subcutaneous Epcoritamab in Patients with Richter's Syndrome: Early Results from Phase 1b/2 Trial (EPCORE CLL-1)

#### • Protein Kinase C β Inhibitor

- 963. Initial Results from a Phase 1/2 Dose Escalation and Expansion Study Evaluating MS-553, a Novel and Selective PKCβ Inhibitor, in Patients with CLL/SLL
- ROR1
  - 1810. First-in-Human Phase I Trial of a ROR1 Targeting Bispecific T Cell Engager (NVG-111) in Combination with Ibrutinib or As Monotherapy in Subjects with Relapsed Refractory Chronic Lymphocytic Leukaemia (CLL) and Mantle Cell Lymphoma (MCL)
- New BCL2i
  - 962. A Phase 1 Study with the Novel B-Cell Lymphoma 2 (Bcl-2) Inhibitor **Bgb-11417** As Monotherapy or in Combination with Zanubrutinib (ZANU) in Patients (Pts) with CLL/SLL: Preliminary Data
  - 964. Lisaftoclax (APG-2575) Safety and Activity As Monotherapy or Combined with Acalabrutinib or Rituximab in Patients (pts) with Treatment-Naïve, Relapsed or Refractory Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (R/R CLL/SLL): Initial Data from a Phase 2 Global Study

### Addressing Current Questions and Controversies in the Management of Hodgkin and Non-Hodgkin Lymphoma — What Clinicians Want to Know

#### Part 2 of a 3-Part CME Friday Satellite Symposium and Virtual Event Series Preceding the 64<sup>th</sup> ASH Annual Meeting

Friday, December 9, 2022 3:15 PM – 5:15 PM CT

#### Faculty

Jonathan W Friedberg, MD, MMSc Brad S Kahl, MD David G Maloney, MD, PhD

#### Loretta J Nastoupil, MD Sonali M Smith, MD

Moderator Neil Love, MD



## Thank you for attending!

#### **CME Credit Information**

#### In-person attendees can use the networked iPads<sup>®</sup> to claim CME credit.

CME credit instructions will be emailed to all clinician attendees within 3 to 5 business days.

