

Novel Strategies Combining Bruton Tyrosine Kinase (BTK) and Bcl-2 Inhibitors for CLL

Arnon Kater

Amsterdam University Medical Centers

Chairman Hovon CLL study group

Research To Practice*

AN INTEGRATED APPROACH TO ONCOLOGY EDUCATION

The key role of the TME

BTK-inhibition targets adhesion and homing to lymph node

Venetoclax sensitivity differs between compartments

Blood responses

Bfl-1, Bcl-XL and Mcl-1 expression increased in CLL LN

Many Ki67+ CLL cells are in close contact with CD3+ T cells.

Noxa/Mcl1 balance altered in CLL LN *Smit LA et al, Blood 109: 1660, 2007.*

nment

Tromp J et al Oncogene 29: 5071, 2010

Using a FACS trick to explore expression levels of anti-apoptotic proteins in the lymph node

Combining Venetoclax with.....

Venetoclax

Efficacy data

Minimal residual disease-guided stop and start of venetoclax plus ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia (HOVON141/VISION): primary analysis of an open-label, randomised, phase 2 trial

Ν

Non-randomized Ibrutinib	153
Arm A Ibrutinib	24
Arm B Observation	48

- 7 patients reinitiated ibrutinib-venetoclax during observation due to MRD+
- 6 of 7 achieved de novo CR within 3 cycles
- 7th patient awaits evaluation

Clinical evidence of Ven+Ibr fixed duration 1st-line *Phase 2 CAPTIVATE*

Clinical evidence of Ven+Ibr fixed duration 1st-line Phase 3 GLOW

Lymph Node Responses Were Better Maintained Over Time With Ibr+Ven vs Clb+O in Patients With Detectable BM MRD

GAIA/CLL13 Study : Treatment regimen

Results of coprimary endpoint rate of undetectable minimal residual disease

Coprimary endpoint: uMRD (< 10⁻⁴) at Mo15 in PB by 4-colour-flow

GIV vs CIT: 92.2% versus 52.0%: p < 0.0001

Eichhorst B. et al., ASH 2021: abstract 72

Results of the coprimary endpoint progression-free survival (PFS)

Unmutated IGHV

Acalabrutinib, venetoclax, and obinutuzumab as frontline treatment for chronic lymphocytic leukaemia: a single-arm, open-label, phase 2 study

Matthew S Davids^{*}, Benjamin L Lampson^{*}, Svitlana Tyekucheva, Zixu Wang, Jessica C Lowney, Samantha Pazienza, Josie Montegaard, Victoria Patterson, Matthew Weinstock, Jennifer L Crombie, Samuel Y Ng, Austin I Kim, Caron A Jacobson, Ann S LaCasce, Philippe Armand, Jon E Arnason, David C Fisher, Jennifer R Brown

Davids MS et. al, Lancet Oncol. 2021;22(10):1391-1402.

Acalabrutinib, venetoclax and obinutuzumab: Response rates at the start of indicated cycles

Davids MS et. al, Lancet Oncol. 2021;22(10):1391-1402.

Updated Results from a Multicenter, Phase 2 Study of Acalabrutinib, Venetoclax, Obinutuzumab (AVO) in a Population of Previously Untreated Patients with CLL Enriched for High-Risk Disease

Ryan C et. al. ASH 2022; Abstract 344 Saturday, December 10, 2022, 4:15 PM

Toxicity data

Serious toxicity GLOW >> CAPTIVATE

- HR (95% CI) for overall survival: 1.048 (0.454, 2.419), with 11 deaths in I+V arm and 12 in Clb+O arm (Table)
- Causes of death were generally similar in nature for both study arms, with infections (including COVID-19related pneumonia) and cardiac events most common

	Dui	ring Treat	During Follow-up			
Death from Any Cause	I+V (N=:	106)	Clb+O	I+V	Clb+O	
	Ibr lead-in	I+V	(N=105)	(N=106)	(N=105)	
Total, n	4	3	2	4	10	
Infections and Infestations	1	-	1	2	6	
Cardiac Disorders	2ª	-	-	-	2	
General Disorders (Sudden Death)	-	2	-	1	-	
Neoplasm	1	-	-	-	-	
Nervous System Disorders	-	1	-	-	1	
Hepatobiliary Disorders	-	-	1	-	-	
Respiratory, Thoracic, Mediastinal Dis.	-	-	-	-	1	
Progressive Disease/Richter Transform.	-	-	-	1	-	

(sudden) cardiac deaths:

- CIRS score ≥ 10
- History of hypertension, cardiovascular disease, and/or diabetes

Treatment cessation mitigates treatment-related toxicities Ho141/VISION trial in R/R CLL

	Ibrutinib continuation group (n=24)			Treatment cessation group (n=48)			Patients not randomly assigned (n=116)			
	Grade 2	Grade 3	Grade 4	Grade 2	Grade 3	Grade 4	Grade 2	Grade 3	Grade 4	Grade 5
Patients with any adverse event, highest grade only	9 (38%)	7 (29%)	2 (8%)	7 (15%)	7 (15%)	0	37 (32%)	40 (34%)	7 (6%)	1 (1%)
Infections	9 (38%)	5 (21%)	0	5 (10%)	2 (4%)	0	31 (27%)	14 (12%)	2 (2%)	1 (1%)
Neutropenia	0	0	0	0	2 (4%)	0	2 (2%)	2 (2%)	2 (2%)	0
Diarrhoea, abdominal discomfort	2 (8%)	0	0	1 (2%)	0	0	7 (6%)	0	0	0
Bleeding	1 (4%)	1 (4%)	0	0	0	0	10 (9%)	0	0	0
Arthralgia, muscle pain	1 (4%)	0	0	1 (2%)	0	0	3 (3%)	0	0	0
Atrial fibrillation	1 (4%)	0	0	0	0	0	3 (3%)	0	0	0
Malignancies, neoplasm	0	1 (4%)	1 (4%)	3 (6%)	1 (2%)	0	4 (3%)	7 (6%)	0	0
Hypertension	2 (8%)	1 (4%)	0	0	0	0	5 (4%)	2 (2%)	0	0
Headache	0	0	0	2 (4%)	0	0	0	0	0	0
Nail changes	0	0	0	0	0	0	1 (1%)	0	0	0
Other	6 (25%)	2 (8%)	1 (4%)	5 (10%)	3 (6%)	0	30 (26%)	19 (16%)	3 (3%)	0
Grade 1 adverse events were not collected.										

Table 2: Summary of treatment-related adverse events after cycle 15

Venetoclax + BTKi Based Combinations Conclusions

• Strong rationale for combination: sensitize to Bcl-2 dependency by inhibition of lymph node migration

• High response rates are sustained after treatment cessation

• MRD is less of a predictive marker for fixed duration venetoclax + BTK-i

- Toxicities similar to single agents
 - Cardiac toxicity of concern in population at-risk

CLL17

Patients with previously untreated CLL

Incl. fit and unfit pts Incl. pts with del17p/TP53 mut

Total 882 pts

Primary endpoint: Progression-free survival

Key secondary endpoints: Response, minimal residual disease, overall survival

Acknowledgements

Clinical collaborations:

- Barbara Eichhorst, Kirsten Fischer, Michael Hallek (GCLLSG
- Carsten Niemann (Nordic CLL studygroup)