What I Tell My Patients: New Treatments and Clinical Trial Options

An NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Prostate Cancer

Thursday, April 28, 2022 6:00 AM – 7:30 AM PT

Faculty

Kathy D Burns, RN, MSN, AGACNP-BC, OCN Robert Dreicer, MD, MS Sandy Srinivas, MD Ronald Stein, JD, MSN, NP-C, AOCNP

Moderator Neil Love, MD

Faculty

Kathy D Burns, RN, MSN, AGACNP-BC, OCN GU Medical Oncology City of Hope Comprehensive Cancer Center Duarte, California

Ronald Stein, JD, MSN, NP-C, AOCNP Clinical Instructor of Medicine USC Norris Comprehensive Cancer Center Los Angeles, California

Robert Dreicer, MD, MS
Section Head, Medical Oncology
Deputy Director, University of Virginia Comprehensive
Cancer Center
Associate Director for Clinical Research
Professor of Medicine and Urology
University of Virginia School of Medicine
Charlottesville, Virginia

Moderator
Neil Love, MD
Research To Practice
Miami, Florida

Sandy Srinivas, MD
Professor of Oncology
Clinical Research Leader, GU Oncology
Stanford University
Stanford, California

Ms Burns — Disclosures

Advisory Committee	EMD Serono Inc, Pfizer Inc
Speakers Bureau	Astellas, Aveo Pharmaceuticals, Exelixis Inc, Myovant Sciences, Pfizer Inc

Dr Dreicer — **Disclosures**

Advisory Committee	Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb Company, EMD Serono Inc, Exelixis Inc, Gilead Sciences Inc, Hinova Pharmaceuticals Inc, Infinity Pharmaceuticals Inc, Janssen Biotech Inc, Merck, Myovant Sciences, Pfizer Inc, Propella Therapeutics Inc, Seagen Inc, Tavanta Therapeutics, Veru Inc	
Consulting Agreements	Astellas, Pfizer Inc	
Contracted Research	Arvinas, Exelixis Inc, Seagen Inc	

Dr Srinivas — **Disclosures**

Advisory Committee	Bayer HealthCare Pharmaceuticals, Janssen Biotech Inc, Merck, Novartis		
Contracted Research	Bayer HealthCare Pharmaceuticals, Merck, Novartis		
Data and Safety Monitoring Board/Committee	Pfizer Inc		

Mr Stein — Disclosures

No relevant conflicts of interest to disclose

Commercial Support

This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Bayer HealthCare Pharmaceuticals, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, and Novartis Pharmaceuticals Corporation on behalf of Advanced Accelerator Applications.

Research To Practice CME Planning Committee Members, Staff and Reviewers

Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.

Clinicians in the Meeting Room

Networked iPads are available.

Review Program Slides: Tap the Program Slides button to review speaker presentations and other program content.

Answer Survey Questions: Complete the premeeting survey before the meeting. Survey results will be presented and discussed throughout the meeting.

Ask a Question: Tap Ask a Question to submit a challenging case or question for discussion. We will aim to address as many questions as possible during the program.

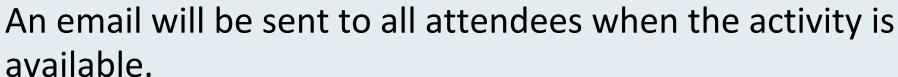
Complete Your Evaluation: Tap the CME Evaluation button to complete your evaluation electronically to receive credit for your participation.

Clinicians Attending via Zoom

Review Program Slides: A link to the program slides will be posted in the chat room at the start of the program.

Answer Survey Questions: Complete the premeeting survey before the meeting. Survey results will be presented and discussed throughout the meeting.

Ask a Question: Submit a challenging case or question for discussion using the Zoom chat room.

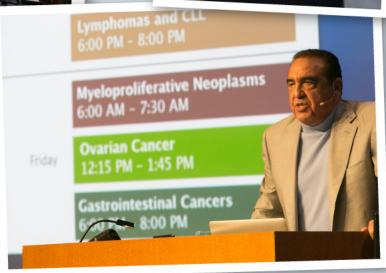


Get CME Credit: A CME credit link will be provided in the chat room at the conclusion of the program.

About the Enduring Program

- The live meeting is being video and audio recorded.
- The proceedings from today will be edited and developed into an enduring web-based video/PowerPoint program.

 To learn more about our education programs, visit our website, www.ResearchToPractice.com


Oncology Grand Rounds

2009-2022

75 Symposia 311 Faculty

"What I Tell My Patients" 14th Annual RTP-ONS NCPD Symposium Series ONS Congress, Anaheim, California — April 27 - May 1, 2022

Prostate Cancer 6:00 AM - 7:30 AM PT (9:00 AM - 10:30 AM ET) **Ovarian Cancer** Thursday 12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET) April 28 Non-Small Cell Lung Cancer 6:00 PM - 8:00 PM PT (9:00 PM - 11:00 PM ET) **Hepatobiliary Cancers** 8:20 PM - 9:20 PM PT (11:20 PM - 12:20 AM ET) **Small Cell Lung Cancer** 6:00 AM - 7:30 AM PT (9:00 AM - 10:30 AM ET) Friday Chronic Lymphocytic Leukemia 12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET) April 29 **Breast Cancer** 6:00 PM - 8:00 PM PT (9:00 PM - 11:00 PM ET) Acute Myeloid Leukemia and Myelodysplastic Syndromes 8:20 PM - 9:20 PM PT (11:20 PM - 12:20 AM ET) **Cervical and Endometrial Cancer** 6:00 AM - 7:30 AM PT (9:00 AM - 10:30 AM ET) Saturday April 30 **Bladder Cancer** 12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

What I Tell My Patients: Expert Insights into Patient Education on New Treatments and Clinical Trial Participation

An NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Prostate Cancer

Thursday, April 28, 2022

6:00 AM - 7:30 AM PT (9:00 AM - 10:30 AM ET)

Faculty

Kathy D Burns, RN, MSN, AGACNP-BC, OCN Robert Dreicer, MD, MS Sandy Srinivas, MD Ronald Stein, JD, MSN, NP-C, AOCNP

Ovarian Cancer

Thursday, April 28, 2022

12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Jennifer Filipi, MSN, NP Kathleen N Moore, MD, MS Krishnansu S Tewari, MD Deborah Wright, MSN, APRN, AGCNS-BC

Non-Small Cell Lung Cancer

Thursday, April 28, 2022

6:00 PM - 8:00 PM PT (9:00 PM - 11:00 PM ET)

Faculty

Edward B Garon, MD, MS Kelly EH Goodwin, MSN, RN, ANP-BC Tara Plues, APRN, MSN Anne S Tsao, MD, MBA

Hepatobiliary Cancers

Thursday, April 28, 2022

8:20 PM - 9:20 PM PT (11:20 PM - 12:20 AM ET)

Faculty

Richard S Finn, MD Amanda K Wagner, APRN-CNP, AOCNP

What I Tell My Patients: Expert Insights into Patient Education on New Treatments and Clinical Trial Participation

An NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Small Cell Lung Cancer

Friday, April 29, 2022 6:00 AM – 7:30 AM PT (9:00 AM – 10:30 AM ET)

Faculty

Marianne J Davies, DNP, MSN, RN, APRN Matthew Gubens, MD, MS Lowell L Hart, MD Chaely J Medley, MSN, AGNP

Chronic Lymphocytic Leukemia

Friday, April 29, 2022 12:15 PM - 1:45 PM PT (3:15 PM - 4:45 PM ET)

Faculty

Lesley Camille Ballance, MSN, FNP-BC Amy Goodrich, CRNP Anthony R Mato, MD, MSCE Susan O'Brien, MD

Breast Cancer

Friday, April 29, 2022 6:00 PM - 8:00 PM PT (9:00 PM - 11:00 PM ET)

Faculty

Jamie Carroll, APRN, MSN, CNP Sara A Hurvitz, MD Kelly Leonard, MSN, FNP-BC Hope S Rugo, MD

Acute Myeloid Leukemia and Myelodysplastic Syndromes

Friday, April 29, 2022 8:20 PM – 9:20 PM PT (11:20 PM – 12:20 AM ET)

Faculty

Ilene Galinsky, NP Eunice S Wang, MD

What I Tell My Patients: Expert Insights into Patient Education on New Treatments and Clinical Trial Participation

An NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Cervical and Endometrial Cancer

Saturday, April 30, 2022 6:00 AM – 7:30 AM PT (9:00 AM – 10:30 AM ET)

Faculty

Paula J Anastasia, MN, RN, AOCN Robert L Coleman, MD David M O'Malley, MD Jaclyn Shaver, MS, APRN, CNP, WHNP

Bladder Cancer

Saturday, April 30, 2022 12:15 PM – 1:45 PM PT (3:15 PM – 4:45 PM ET)

Faculty

Monica Averia, MSN, AOCNP, NP-C Shilpa Gupta, MD Brenda Martone, MSN, NP-BC, AOCNP Sumanta Kumar Pal, MD

Join Us After ONS for Our Series Continuation

What I Tell My Patients — A 2-Part NCPD Webinar Series

Hodgkin and Non-Hodgkin Lymphomas

Date and time to be announced

Gastroesophageal Cancers

Wednesday, May 18, 2022 5:00 PM - 6:00 PM ET

The Core Oncology Triad Developing an Individualized Oncology Strategy

Oncology Grand Rounds 2022 ONS Congress

Anaheim, California

Symposia Themes

Personalized oncology: Implementing an individualized oncologic strategy

- Tumor factors (eg, biomarkers, numeracy)
- Biopsychosocial factors (eg, adherence, available family support, comorbidities, mood)

Novel agents and treatment strategies

The new-agents revolution (beginning of the end?)

The bond that heals (both ways)

How was it different to take care of this patient versus another patient in the same oncologic setting?

What unique biopsychosocial factors (eg, attitude, comorbidities, social support) were considered in the overall management of this case?

How long have you been in the field of oncology?

- 1. <1 year
- 2. 1-5 years
- 3. 6-10 years
- 4. 11-15 years
- 5. 16-20 years
- 6. 21-40 years
- 7. >40 years

What is to give light must endure the burning.

Faculty

Kathy D Burns, RN, MSN, AGACNP-BC, OCN GU Medical Oncology City of Hope Comprehensive Cancer Center Duarte, California

Ronald Stein, JD, MSN, NP-C, AOCNP Clinical Instructor of Medicine USC Norris Comprehensive Cancer Center Los Angeles, California

Robert Dreicer, MD, MS
Section Head, Medical Oncology
Deputy Director, University of Virginia Comprehensive
Cancer Center
Associate Director for Clinical Research
Professor of Medicine and Urology
University of Virginia School of Medicine
Charlottesville, Virginia

Moderator
Neil Love, MD
Research To Practice
Miami, Florida

Sandy Srinivas, MD
Professor of Oncology
Clinical Research Leader, GU Oncology
Stanford University
Stanford, California

What I Tell My Patients: New Treatments and Clinical Trial Options

An NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Prostate Cancer

Thursday, April 28, 2022 6:00 AM – 7:30 AM PT

Faculty

Kathy D Burns, RN, MSN, AGACNP-BC, OCN Robert Dreicer, MD, MS Sandy Srinivas, MD Ronald Stein, JD, MSN, NP-C, AOCNP

Moderator Neil Love, MD

Agenda

Module 1 – PSA-Only Recurrence (M0 Disease)

Module 2 – Metastatic Hormone-Sensitive Prostate Cancer

Module 3 – Metastatic Castration-Resistant Prostate Cancer (BRCA Wild Type)

Module 4 – Metastatic Castration-Resistant Prostate Cancer (BRCA Mutant)

Agenda

Module 1 – PSA-Only Recurrence (M0 Disease)

Module 2 – Metastatic Hormone-Sensitive Prostate Cancer

Module 3 – Metastatic Castration-Resistant Prostate Cancer (BRCA Wild Type)

Module 4 – Metastatic Castration-Resistant Prostate Cancer (BRCA Mutant)

SELF-ASSESSMENT QUIZ

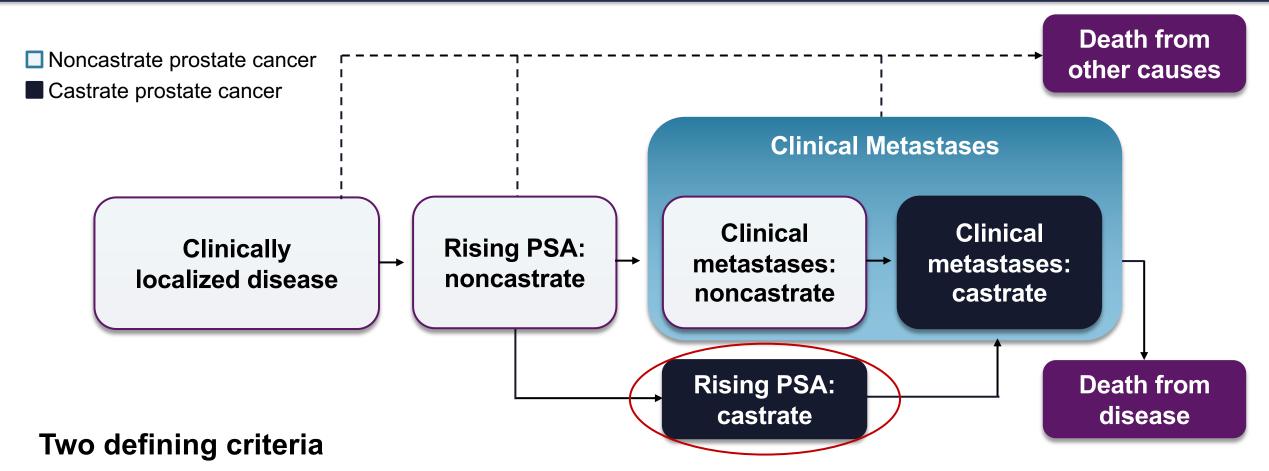
Available options for androgen deprivation therapy are intramuscular and intravenous only.

- 1. Agree
- 2. Disagree
- 3. I don't know

SELF-ASSESSMENT QUIZ

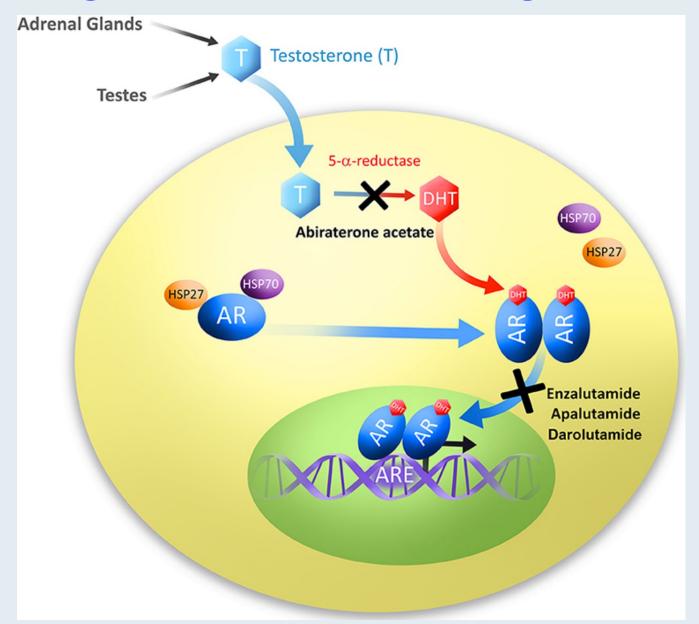
Men with detectable PSA levels after radical prostatectomy almost always die of metastatic disease.

- 1. Agree
- 2. Disagree
- 3. I don't know


SELF-ASSESSMENT QUIZ

There is no discernible difference between the side-effect profiles of enzalutamide, darolutamide and apalutamide.

- 1. Agree
- 2. Disagree
- 3. I don't know



Clinical Disease States Model of Prostate Cancer¹

- Rising PSA in the setting of castrate testosterone levels (<50 ng/dL)
- No radiographically identifiable metastasis

Androgen Production and Its Targeted Inhibition

Next-Generation Androgen Receptor Inhibitors^{1,2}

Apalutamide

F F N N N O

Enzalutamide

Darolutamide

- Apalutamide and enzalutamide have similar structures
- Darolutamide is structurally distinct from apalutamide and enzalutamide, characterized by low blood—brain barrier penetration^{1,2,} and may have improved tolerability

^{1.} Zurth C et al. *J Clin Oncol*. 2018;36(Suppl 6):Abstract 345.

^{2.} Sandmann S et al. American Society of Clinical Oncology 2019 Genitourinary Cancers Symposium (ASCO GU 2019). Abstract 156.

The NEW ENGLAND JOURNAL of MEDICINE

N Engl J Med 2020;383:1040-9.

ORIGINAL ARTICLE

Nonmetastatic, Castration-Resistant Prostate Cancer and Survival with Darolutamide

K. Fizazi, N. Shore, T.L. Tammela, A. Ulys, E. Vjaters, S. Polyakov, M. Jievaltas,M. Luz, B. Alekseev, I. Kuss, M.-A. Le Berre, O. Petrenciuc, A. Snapir,T. Sarapohja, and M.R. Smith, for the ARAMIS Investigators*

The NEW ENGLAND JOURNAL of MEDICINE

N Engl J Med 2020;382(23):2197-206.

ORIGINAL ARTICLE

Enzalutamide and Survival in Nonmetastatic, Castration-Resistant Prostate Cancer

Cora N. Sternberg, M.D., Karim Fizazi, M.D., Ph.D., Fred Saad, M.D., Neal D. Shore, M.D., Ugo De Giorgi, M.D., Ph.D., David F. Penson, M.D., M.P.H., Ubirajara Ferreira, M.D., Ph.D., Eleni Efstathiou, M.D., Ph.D., Katarzyna Madziarska, M.D., Ph.D., Michael P. Kolinsky, M.D., Daniel I. G. Cubero, M.D., Ph.D., Bettina Noerby, M.D., Fabian Zohren, M.D., Ph.D., Xun Lin, Ph.D., Katharina Modelska, M.D., Ph.D., Jennifer Sugg, M.S., Joyce Steinberg, M.D., and Maha Hussain, M.D., for the PROSPER Investigators*

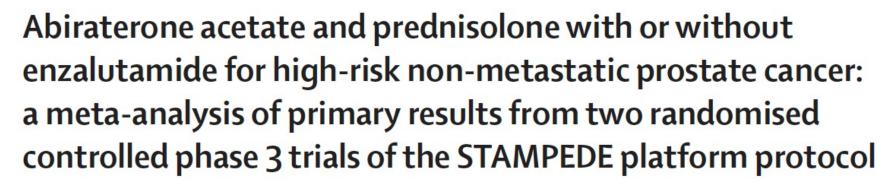
Eur J Cancer 2020; [Online ahead of print].

Prostate Cancer

Apalutamide and Overall Survival in Prostate Cancer

Matthew R. Smith ^{a,*}, Fred Saad ^b, Simon Chowdhury ^c, Stéphane Oudard ^d, Boris A. Hadaschik ^e, Julie N. Graff ^f, David Olmos ^g, Paul N. Mainwaring ^h, Ji Youl Lee ⁱ, Hiroji Uemura ^j, Peter De Porre ^k, Andressa A. Smith ^l, Sabine D. Brookman-May ^{m,n}, Susan Li ^l, Ke Zhang ^o, Brendan Rooney ^p, Angela Lopez-Gitlitz ^m, Eric J. Small ^q

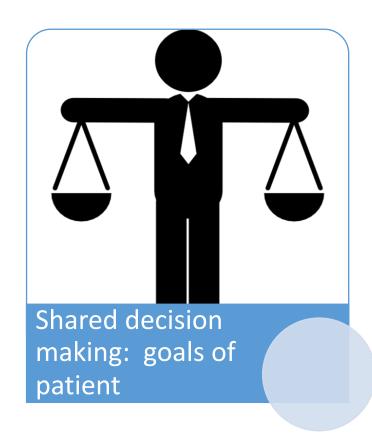
Overall Survival: Darolutamide, Enzalutamide, Apalutamide


	ARAMIS ¹	PROSPER ²	SPARTAN ³
Antiandrogen	Darolutamide	Enzalutamide	Apalutamide
Median follow-up	49 mo	47 mo	52 mo
Median OS	Not estimated	57 vs 56 mo	74 vs 60 mo
OS hazard ratio	0.69 (p = 0.003)	0.73 (p = 0.001)	0.78 (p = 0.0161)

¹ Fizazi K et al; ARAMIS Investigators. *N Engl J Med* 2020;383:1040-9.

² Sternberg CN et al; PROSPER Investigators. *N Engl J Med* 2020;382(23):2197-206.

³ Smith MR et al; SPARTAN Investigators. *Eur Urol* 2021;79(1):150-158.


Gerhardt Attard, Laura Murphy, Noel W Clarke, William Cross, Robert J Jones, Christopher C Parker, Silke Gillessen, Adrian Cook, Chris Brawley, Claire L Amos, Nafisah Atako, Cheryl Pugh, Michelle Buckner, Simon Chowdhury, Zafar Malik, J Martin Russell, Clare Gilson, Hannah Rush, Jo Bowen, Anna Lydon, Ian Pedley, Joe M O'Sullivan, Alison Birtle, Joanna Gale, Narayanan Srihari, Carys Thomas, Jacob Tanguay, John Wagstaff, Prantik Das, Emma Gray, Mymoona Alzoueb, Omi Parikh, Angus Robinson, Isabel Syndikus, James Wylie, Anjali Zarkar, George Thalmann, Johann S de Bono, David P Dearnaley*, Malcolm D Mason*, Duncan Gilbert, Ruth E Langley, Robin Millman, David Matheson, Matthew R Sydes†, Louise C Brown†, Mahesh K B Parmar†, Nicholas D James†, on behalf of the Systemic Therapy in Advancing or Metastatic Prostate cancer: Evaluation of Drug Efficacy (STAMPEDE) investigators‡

Balancing the benefits/risks of treatment

- Improved survival
- Delayed progression
- Psychological benefits of receiving treatment

Benefits

- Expense: COST \$\$\$\$... ↓ QOL
- ED and ↓ libido
- Hot flashes
- Changes in mood/ ↓cognition
- ↓ strength/ muscle mass
- Osteoporosis
- Anemia, fatigue
- Metabolic syndrome
- Cardiac risk, DM

Risks

Questions — Robert Dreicer, MD, MS

PSA-only recurrence (M0 disease)

 What therapies are used to treat prostate cancer in this setting, and how is treatment selected?

Commentary — Robert Dreicer, MD, MS

PSA-only recurrence (M0 disease)

- Baseline data: pathology, primary therapy, time to relapse
 - Did the patient need definitive therapy in the first place?
- Salvage therapy potential vs s/p maximal local therapy
- Conventional vs next generation imaging
- Early vs later ADT and its implications
 - PSA psychotherapy

Questions — Kathy D Burns, RN, MSN, AGACNP-BC, OCN

PSA-only recurrence (M0 disease)

- What are some of the clinical issues that arise for patients in this situation?
- What are the key discussion points prior to starting treatment in terms of expected benefits and treatment toxicities?
- What are some of the psychosocial issues that arise in this situation?

PSA-only recurrence (M0 disease)

What are some of the clinical issues that arise for patients in this situation?

- Starting Androgen Deprivation Therapy: variety of medications: injectable versus orals.
 - Financial toxicity:
 - Pills/relugolix: insurance coverage/patient assistance, education around specialty pharmacies, adherence to taking medication.
 - Injections:
 - LHRH agonist: Leuprolide, goserelin, triptorelin
 - LHRH antagonist degarelix

Side effects – managing expectations.

It's important to touch on all of them and give written materials or a reliable website.

- Reduced or absent sexual desire
- Erectile dysfunction (impotence)
- Shrinkage of testicles and penis
- Hot flashes, which may get better or go away with time
- Breast tenderness and growth of breast tissue (gynecomastia)

- Osteoporosis (bone thinning), which can lead to broken bones
- Anemia (low red blood cell counts)
- Decreased mental sharpness/mental fogginess
- Loss of muscle mass
- Weight gain
- Fatigue
- Increased cholesterol levels
- Depression/mood swings

Please provide examples of key discussion points prior to starting treatment in terms of expected benefits and treatment toxicities.

- Temporary vs long term or permanent?
- Are there medications that can help with these side effects?
- The importance of maintaining or starting a healthy diet and exercise regimen.

Please cite brief instructive examples of actual clinical experiences with patients in your practice.

A couple in their early 80s was in clinic talking about next steps.

What are some of the psychosocial issues that arise in this situation?

- Men and their perception of manhood. Feeling like they are out of control: mood swings, more emotionally labile, hot flashes can expose their cancer treatment to others.
- Family caregivers: partners may be severely affected

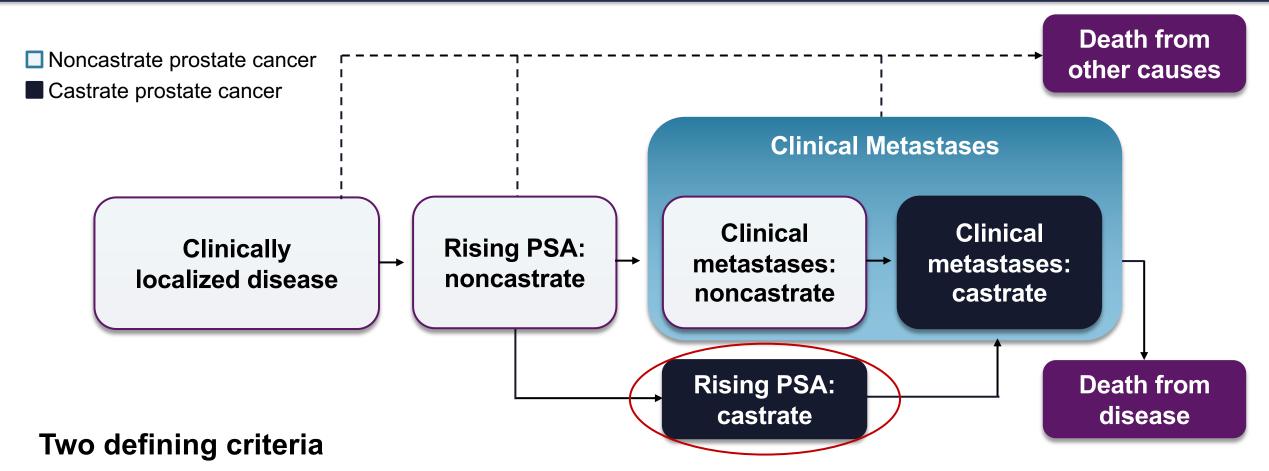
Agenda

Module 1 – PSA-Only Recurrence (M0 Disease)

Module 2 – Metastatic Hormone-Sensitive Prostate Cancer

Module 3 – Metastatic Castration-Resistant Prostate Cancer (BRCA Wild Type)

Module 4 – Metastatic Castration-Resistant Prostate Cancer (BRCA Mutant)



The standard treatment for men who present with metastatic prostate cancer is androgen deprivation therapy.

- 1. Agree
- 2. Disagree
- 3. I don't know

Clinical Disease States Model of Prostate Cancer¹

- Rising PSA in the setting of castrate testosterone levels (<50 ng/dL)
- No radiographically identifiable metastasis

Relugolix: Cardiovascular Safety

	Relugolix (n = 622)		Leuprolide (n = 308)	
Event	Any grade	Grade 3/4	Any grade	Grade 3/4
Major adverse cardiac event (MACE)*	2.9%	1.3%	6.2%	1.3%
In patients without prior history of MACE	2.8%		4.2%	
In patients with prior history of MACE	3.6%		17.8%	

^{*}Nonfatal myocardial infarction, nonfatal stroke and death from any cause

In the subgroup of patients with a reported medical history of MACE, the odds of having an event were 4.8 times as high with leuprolide as with relugolix.

Clinical Decision-Making Hormone-Sensitive Metastatic Disease

Patient factors

- Performance status
- Co-morbidities, i.e. pre-existing peripheral neuropathy
- I hate taking pills doc etc.

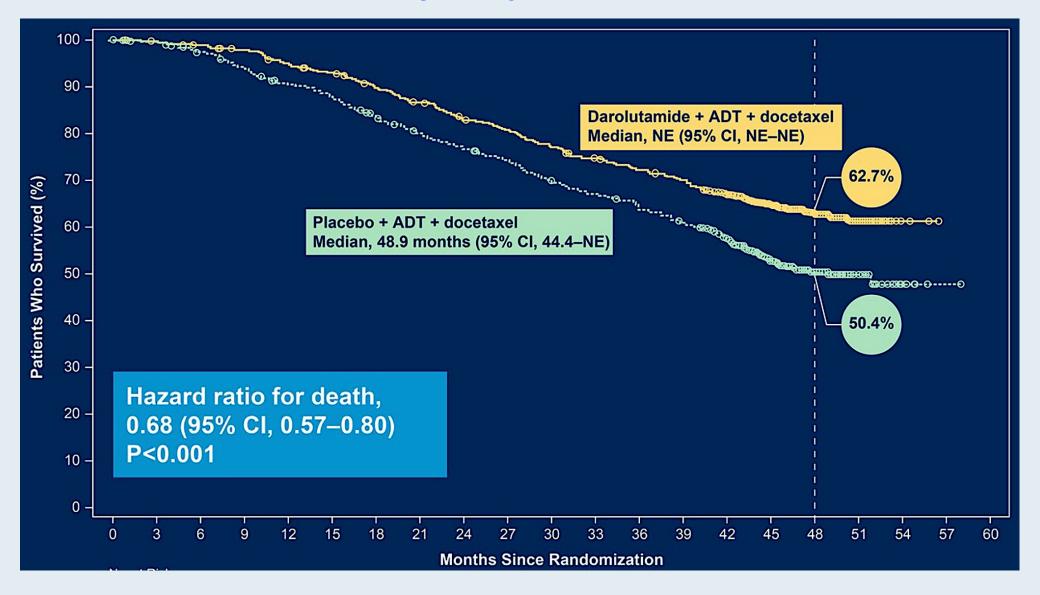
Disease factor

- Extent of disease, volume of disease, presence/absence of visceral i.e. liver metastases
- Non AR biology, i.e. poor psa expresser, significant neuroendocrine features

Economic factors

Non viable co-pay or oral agents

ASCO Genitourinary Cancers Symposium


Overall survival with darolutamide versus placebo in combination with androgen-deprivation therapy and docetaxel for metastatic hormone-sensitive prostate cancer in the phase 3 ARASENS trial

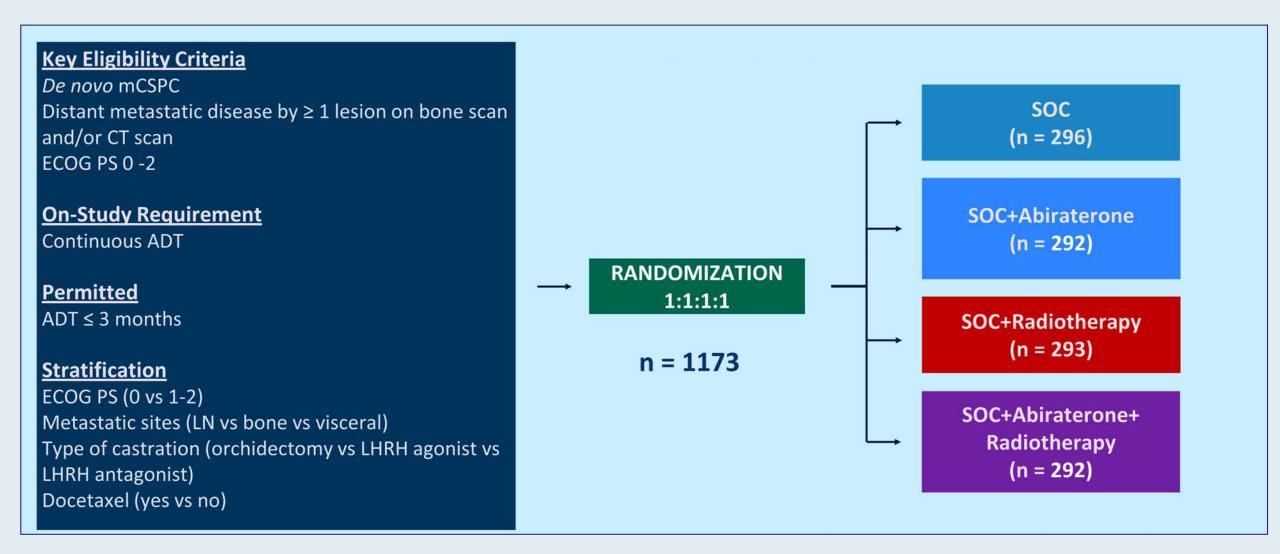
Matthew R. Smith, MD, PhD,¹ Maha Hussain, MD,² Fred Saad, MD,³ Karim Fizazi, MD, PhD,⁴ Cora N. Sternberg, MD,⁵ E. David Crawford, MD,⁶ Evgeny Kopyltsov, MD,⁷ Chandler H. Park, MD,⁸ Boris Alekseev, MD,⁹ Álvaro Montesa Pino, MD,¹⁰ Dingwei Ye, MD,¹¹ Francis Parnis, MB, BS,¹² Felipe Melo Cruz, MD,¹³ Teuvo L.J. Tammela, MD, PhD,¹⁴ Hiroyoshi Suzuki, MD, PhD,¹⁵ Heikki Joensuu, MD,¹⁶ Silke Thiele, MD,¹⁷ Rui Li, MS,¹⁸ Iris Kuss, MD,¹⁷ Bertrand Tombal, MD, PhD¹⁹

¹Massachusetts General Hospital Cancer Center, Boston, MA; ²Northwestern University, Feinberg School of Medicine, Chicago, IL; ³University of Montreal Hospital Center, Montreal, Quebec, Canada; ⁴Institut Gustave Roussy, University of Paris-Saclay, Villejuif, France; ⁵Englander Institute for Precision Medicine, Weill Cornell Department of Medicine, Meyer Cancer Center, New York-Presbyterian Hospital, New York, NY; ⁵UC San Diego School of Medicine, San Diego, CA; ⁷Clinical Oncological Dispensary of Omsk Region, Omsk, Russian Federation; ⁸Norton Cancer Institute, Louisville, KY; ⁹P. Hertsen Moscow Oncology Research Institute, Moscow, Russian Federation; ¹⁰UGC Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen Victoria, IBIMA, Málaga, Spain; ¹¹Fudan University Shanghai Cancer Center, Xuhui District, Shanghai, China; ¹²Ashford Cancer Centre Research, Kurralta Park, SA, Australia; ¹³Núcleo de Pesquisa e Ensino da Rede São Camilo, São Paulo, Brazil; ¹⁴Tampere University Hospital, Tampere, Finland; ¹⁵Toho University Sakura Medical Center, Chiba, Japan; ¹⁶Orion Corporation Orion Pharma, Espoo, Finland; ¹⁷Bayer AG, Berlin, Germany; ¹⁸Bayer HealthCare Pharmaceuticals Inc., Whippany, NJ, USA; ¹⁹Division of Urology, IREC, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium

ARASENS: Primary Endpoint — Overall Survival

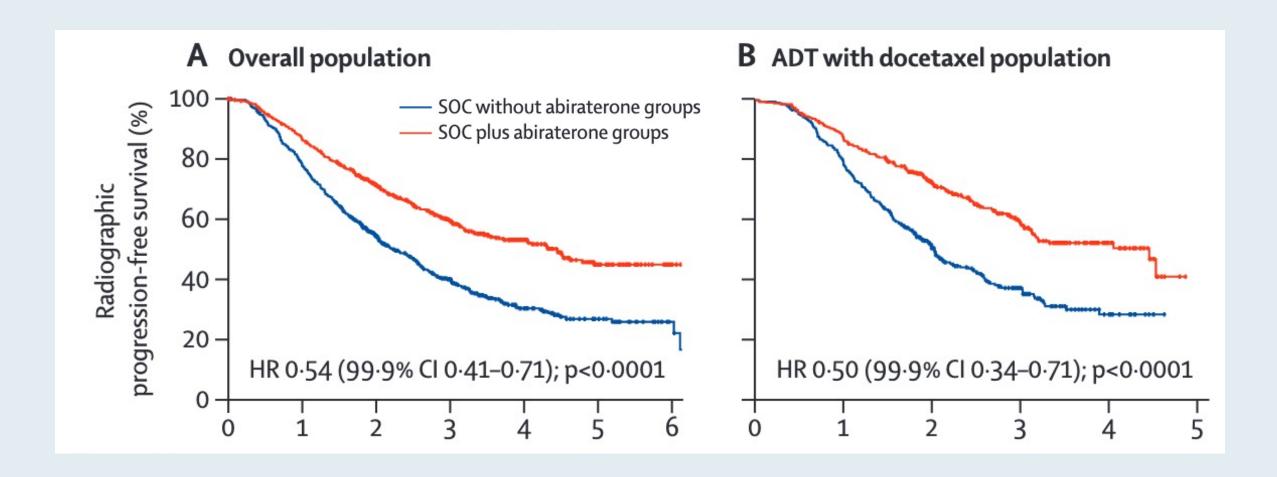
ARASENS: Grade 3-4 Adverse Events

Grade 3–4 AEs in ≥2% of darolutamide- treated patients, n (%)	Darolutamide + ADT + docetaxel (n=652)	Placebo + ADT + docetaxel (n=650)	
Any AE	431 (66.1)	413 (63.5)	
Neutropenia*	220 (33.7)	222 (34.2)	
Febrile neutropenia	51 (7.8)	48 (7.4)	
Hypertension	42 (6.4)	21 (3.2)	
Anemia	31 (4.8)	33 (5.1)	
Pneumonia	21 (3.2)	20 (3.1)	
Hyperglycemia	18 (2.8)	24 (3.7)	
Increased alanine aminotransferase	18 (2.8)	11 (1.7)	
Increased aspartate aminotransferase	17 (2.6)	7 (1.1)	
Increased weight	14 (2.1)	8 (1.2)	
Urinary tract infection	13 (2.0)	12 (1.8)	

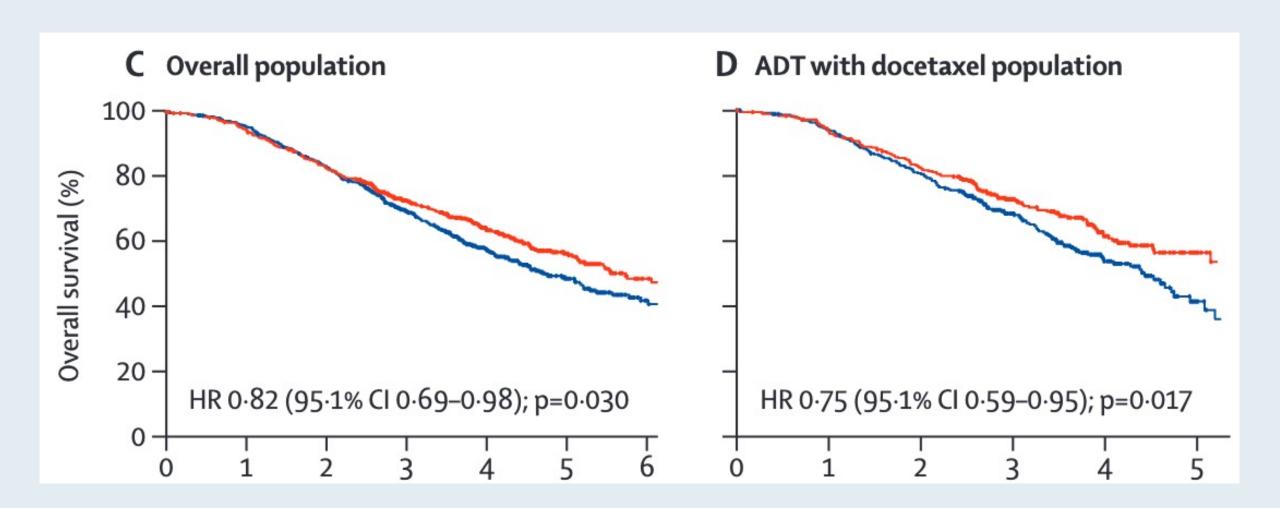


ARASENS: Adverse Events of Special Interest with Androgen Receptor (AR) Pathway Inhibitors

AEs associated with AR pathway inhibitor therapy	Darolutamide + ADT + docetaxel (n=652)		Placebo + ADT + docetaxel (n=650)	
	Patients, n (%)	EAIR/100 PY*	Patients, n (%)	EAIR/100 PY*
Fatigue	216 (33.1)	12.5	214 (32.9)	17.8
Bone fracture	49 (7.5)	2.8	33 (5.1)	2.7
Falls	43 (6.6)	2.5	30 (4.6)	2.5
Rash [†]	108 (16.6)	6.2	88 (13.5)	7.3
Diabetes mellitus and hyperglycemia‡	99 (15.2)	5.7	93 (14.3)	7.7
Weight decreased	22 (3.4)	1.3	35 (5.4)	2.9
Vasodilatation and flushing	133 (20.4)	7.7	141 (21.7)	11.7
Breast disorders/gynecomastia‡	21 (3.2)	1.2	10 (1.5)	0.8
Hypertension [‡]	89 (13.7)	5.1	60 (9.2)	5.0
Cardiac disorder [‡]	71 (10.9)	4.1	76 (11.7)	6.3
Cerebral ischemia	8 (1.2)	0.5	8 (1.2)	0.7
Mental impairment disorder [‡]	23 (3.5)	1.3	15 (2.3)	1.2
Depressed mood disorder [‡]	21 (3.2)	1.2	24 (3.7)	2.0
Seizure	4 (0.6)	0.2	1 (0.2)	0.1



PEACE-1: Study Design



PEACE-1: Radiographic Progression-Free Survival

PEACE-1: Overall Survival

Questions — Sandy Srinivas, MD

Metastatic hormone-sensitive prostate cancer

 What therapies are used to treat prostate cancer in this setting, and how is treatment selected?

Commentary — Sandy Srinivas, MD

Metastatic hormone-sensitive prostate cancer

- ADT is the backbone for the treatment of mHSPC
- Adding either docetaxel or abiraterone improved OS by 30%
- Benefit of docetaxel clear in high volume vs low volume disease
- Debate over docetaxel vs abiraterone: multiple choices; efficacy the same
- ARI: apalutamide/enzalutamide superior to ADT alone
- Triple Rx: PEACE-1: ADT + Docetaxel + Abiraterone > ADT + Docetaxel
- ARASENS: ADT + Docetaxel + Darolutamide > ADT + Docetaxel
- Selection of Rx: High volume vs low volume; de novo vs metachronous; chemo fitness; frailty; comorbidities; # HTN meds; cardiac health; support @home

Commentary — Sandy Srinivas, MD

mHSPC trials

Trial name	Experimental arm	Comparator arm	rPFS	OS
CHAARTED1	Docetaxel	ADT	32 vs 19 mo	HR: 0.72; 57.6 vs 47.2 mo
STAMPEDE-C ²	Docetaxel	ADT	44 vs 34.8 mo, HR: 0.61	HR: 0.81; 81 vs 71 mo
LATITUDE ³	Abiraterone	ADT	NR	HR: 0.66; 53.3 vs 36.5 mo
STAMPEDE-G ⁴	Abiraterone	ADT	NR	HR: 0.6; 6.6 vs 3.8 y
ARCHES ⁵	Enzalutamide	ADT	HR: 0.39 NR vs 19	HR: 0.66; NR vs NR
ENZAMET ⁶	Enzalutamide	ADT + NSAA with docetaxel	HR: 0.34 HR: 0.48	HR: 0.53 HR: 90
TITAN ⁷	Apalutamide	ADT	HR: 0.48	HR: 0.67; NR vs 52.2
PEACE-18	Abiraterone	ADT + docetaxel	4.5 vs 2 y HR: 0.50	HR: 0.75
ARASENS ⁹	Darolutamide	ADT + docetaxel	NR	HR: 0.68; NR vs 48.9 mo

^{1.} Sweeney C NEJM 2015; 2. James ND Eur Urol 2015; 3. Fizazi K Lancet Oncol 2019; 4. Clark N Ann Oncol 2019; 5. Armstrong A J Clin Oncol 2019; 6. Davis NEJM 2019;

^{7.} Chi KN NEJM 2019; 8. Fizazi Lancet 2022; 9. Smith MR NEJM 2022

Questions — Ronald Stein, JD, MSN, NP-C, AOCNP

Metastatic hormone-sensitive prostate cancer

- What are some of the clinical issues that arise for patients in this situation?
- What are key discussion points prior to starting treatment in terms of expected benefits and treatment toxicities?
- What are some of the psychosocial issues that arise in this situation?

Commentary — Ronald Stein, JD, MSN, NP-C, AOCNP

Metastatic hormone-sensitive prostate cancer

Associated clinical issues:

-swelling/lymphedema to lower extremities/scrotum

-fatigue

-pain

-GU problems

-unintentional weight loss

-cough/dyspnea/effusion

(eg, lung mets)

-anemia

Key discussion points prior to treatment:

- -stage IV prostate CA is treatable but not curable
- -treatment will be life-long and change based on response
- -potential ADT side effects, including decreased libido, erectile dysfunction, fatigue, weight gain, insulin resistance and osteopenia/osteoporosis
- -potential chemo side effects including pancytopenia, alopecia, neuropathy, n/v/d, fever
- -importance of exercise
- -regular PSA testing and lab monitoring; scans in the event of PSA increase

Commentary — Ronald Stein, JD, MSN, NP-C, AOCNP

Instructive examples:

-sending pt to ER for fever -discussions about sexuality/ED

-chemotherapy education -seizures (seen with enzalutamide)

-hospital admission for misc reasons (neutropenic fever, AKI)

Psychological issues:

-sexuality and intimacy -employment issues/disability

-meaning of stage IV disease -weight gain

-potential genetic and family implications -guilt

-depression and anxiety -economic stress, eg, treatment affordability

Agenda

Module 1 – PSA-Only Recurrence (M0 Disease)

Module 2 – Metastatic Hormone-Sensitive Prostate Cancer

Module 3 – Metastatic Castration-Resistant Prostate Cancer (BRCA Wild Type)

Module 4 – Metastatic Castration-Resistant Prostate Cancer (BRCA Mutant)

Radium-223 is a therapy for patients with prostate cancer and...

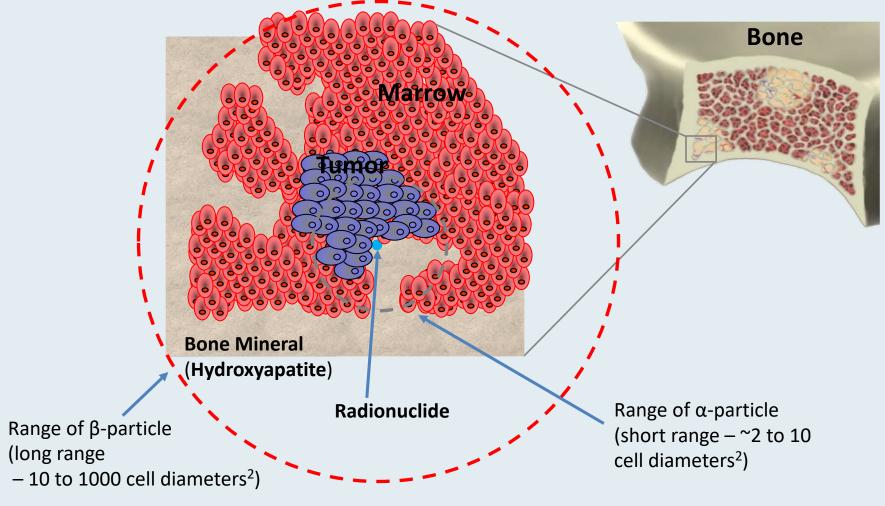
- 1. Bone metastases
- 2. Visceral metastases
- 3. Brain metastases
- 4. All of the above
- 5. I don't know

¹¹⁷Lu-PSMA-617 is a newly approved treatment for prostate cancer that is administered by a...

- 1. Medical oncologist
- 2. Radiation oncologist
- 3. Nuclear medicine specialist
- 4. Either 2 or 3
- 5. I don't know

Which of the following is a potential side effect of ¹⁷⁷Lu-PSMA-617?

- 1. Alopecia
- 2. Dry mouth
- 3. Gastrointestinal toxicity
- 4. All of the above
- 5. I don't know


Management of Metastatic Castration-Resistant Prostate Cancer

- Enzalutamide
- Abiraterone/prednisone
- Radium-223
- Sipuleucel-T
- Chemotherapy (cabazitaxel, docetaxel)
- ¹⁷⁷Lu-PSMA-617
- PARP inhibitors

Range of an α -emitting Radiopharmaceutical Compared to a β -emitter

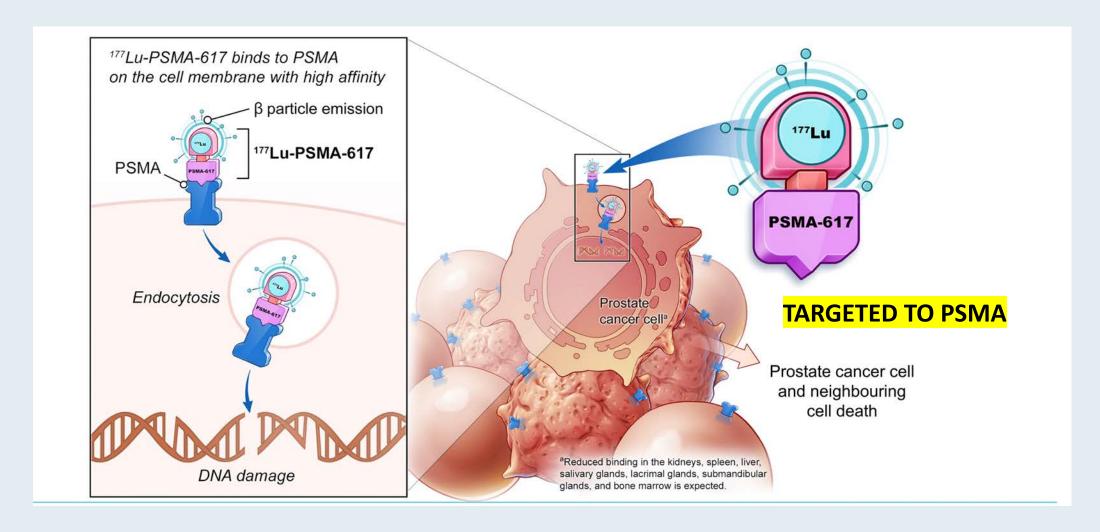
Short range of α -particles could reduce bone marrow exposure¹

Nursing implications: Radium-223

- Fatigue
- GI: Nausea, Vomiting, Diarrhea
- Peripheral edema
- Pancytopenia: Anemia, Lymphopenia, leukopenia, thrombocytopenia, neutropenia
- Black tarry stools
- CP, Chills, Cough
- Erythema at the injection site

FDA Approves ¹⁷⁷Lu-PSMA-617 for mCRPC

Press Release: March 23, 2022


On March 23, 2022, the Food and Drug Administration approved the radioligand therapy ¹⁷⁷Lu-PSMA-617 for the treatment of prostate-specific membrane antigen (PSMA)-positive metastatic castration-resistant prostate cancer (mCRPC) in adult patients who have received treatment with androgen receptor pathway inhibition and taxane-based chemotherapy.

On the same day, the FDA approved gallium Ga 68 gozetotide, a radioactive diagnostic agent for positron emission tomography (PET) of PSMA-positive lesions, including selection of patients with metastatic prostate cancer for whom ¹⁷⁷Lu-PSMA-617 PSMA-directed therapy is indicated. Gallium Ga 68 gozetotide is the first radioactive diagnostic agent approved for patient selection for a radioligand therapeutic agent.

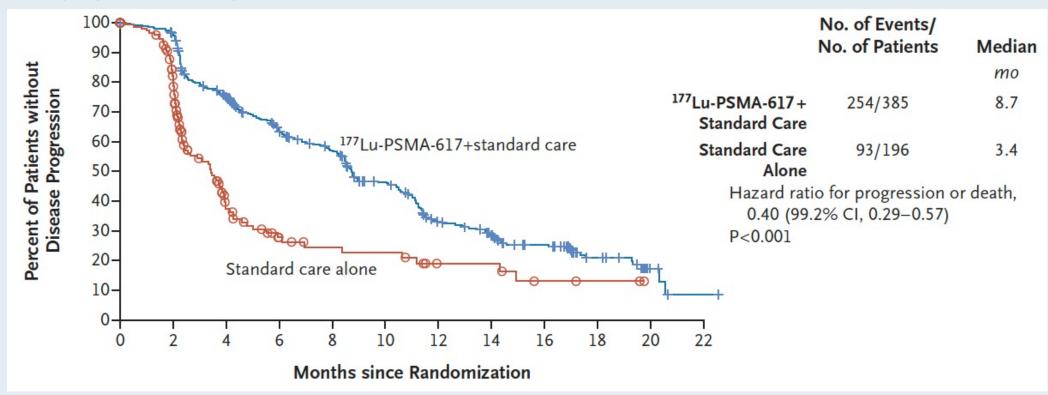
Efficacy was evaluated in the Phase III VISION trial, which demonstrated a statistically significant improvement in the primary endpoints OS and radiographic progression-free survival. Hazard ratio (HR) for OS was 0.62 (95% CI: 0.52-0.74; p < 0.001) for the comparison of 177 Lu-PSMA-617 with best standard care (BSoC) to BSoC. Median OS was 15.3 months (95% CI: 14.2-16.9) on the 177 Lu-PSMA-617 with BSoC arm and 11.3 months (95% CI: 9.8, 13.5) on the BSoC arm.

¹⁷⁷Lu-PSMA-617: Mechanism of Action

N Engl J Med 2021;385:1091-103

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE


Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer

O. Sartor, J. de Bono, K.N. Chi, K. Fizazi, K. Herrmann, K. Rahbar, S.T. Tagawa, L.T. Nordquist, N. Vaishampayan, G. El-Haddad, C.H. Park, T.M. Beer, A. Armour, W.J. Pérez-Contreras, M. DeSilvio, E. Kpamegan, G. Gericke, R.A. Messmann, M.J. Morris, and B.J. Krause, for the VISION Investigators*

VISION: Efficacy Summary

Imaging-based progression-free survival

- Median OS (177 Lu-PSMA-617 vs standard therapy): 15.3 mo vs 11.3 mo (HR 0.62, p < 0.001)
- Time to first symptomatic skeletal event (177 Lu-PSMA-617 vs standard therapy): 11.5 mo vs 6.8 mo (HR 0.50, p < 0.001)

VISION: Selected Adverse Events

Event	¹⁷⁷ Lu-PSMA-617 plus Standard Care (N = 529)		Standard Care Alone (N = 205)	
	All Grades	Grade ≥3	All Grades	Grade ≥3
	number of patients (percent)			
Any adverse event	519 (98.1)	279 (52.7)	170 (82.9)	78 (38.0)
Adverse event that occurred in >12% of patients				
Fatigue	228 (43.1)	31 (5.9)	47 (22.9)	3 (1.5)
Dry mouth	205 (38.8)	0	1 (0.5)	0
Thrombocytopenia	91 (17.2)	42 (7.9)	9 (4.4)	2 (1.0)
Lymphopenia	75 (14.2)	41 (7.8)	8 (3.9)	1 (0.5)
Leukopenia	66 (12.5)	13 (2.5)	4 (2.0)	1 (0.5)
Adverse event that led to reduction in ¹⁷⁷ Lu-PSMA-617 dose	30 (5.7)	10 (1.9)	NA	NA
Adverse event that led to interruption of ¹⁷⁷ Lu-PSMA-617†	85 (16.1)	42 (7.9)	NA	NA
Adverse event that led to discontinuation of ¹⁷⁷ Lu-PSMA-617†	63 (11.9)	37 (7.0)	NA	NA
Adverse event that led to death‡	19 (3.6)	19 (3.6)	6 (2.9)	6 (2.9)

Questions — Robert Dreicer, MD, MS

Metastatic castration-resistant prostate cancer (BRCA wild type)

 What therapies are used to treat prostate cancer in this setting, and how is treatment selected?

Commentary — Robert Dreicer, MD, MS

Metastatic castration-resistant prostate cancer (BRCA wild type)

- mCRPC biochemically defined vs overt radiographic/symptomatic progression
- Disease related symptoms?
- Status and implications of prior therapies (cSMPC and mCRPC)
- Educating the patient, it's a journey not a race to the next treatment

Questions — Kathy D Burns, RN, MSN, AGACNP-BC, OCN

Metastatic castration-resistant prostate cancer (BRCA wild type)

- What are some of the clinical issues that arise for patients in this situation?
- What are key discussion points prior to starting treatment in terms of expected benefits and treatment toxicities?
- What are some of the psychosocial issues that arise in these situations?

Commentary — Kathy D Burns, RN, MSN, AGACNP-BC, OCN

Metastatic castration-resistant prostate cancer (BRCA wild type)

What are some of the clinical issues that arise for patients in this situation?

- Financial toxicity/navigating insurance coverage
- Ability to work/socialize related to fatigue
- Pain
- Mobility/exercise
- Bone strength

Commentary — Kathy D Burns, RN, MSN, AGACNP-BC, OCN

Please provide examples of key discussion points prior to starting treatment in terms of expected benefits and treatment toxicities.

- Quality of life
- Dealing with stress related to scans and PSA
- Dealing with side effects of treatment
- Body image related to chemotherapy/long-term ADT

Please cite brief instructive examples of actual clinical experiences with patients in your practice.

- Men in our prostate support group conversations between men
- Strategies for symptom mgmnt: empowering men to have control over symptoms

Commentary — Kathy D Burns, RN, MSN, AGACNP-BC, OCN

What are some of the psychosocial issues that arise in these situations?

- Men considering refusing or discontinuing treatment
- Low testosterone can mean lack of motivation for healthy behaviors

Agenda

Module 1 – PSA-Only Recurrence (M0 Disease)

Module 2 – Metastatic Hormone-Sensitive Prostate Cancer

Module 3 – Metastatic Castration-Resistant Prostate Cancer (BRCA Wild Type)

Module 4 – Metastatic Castration-Resistant Prostate Cancer (BRCA Mutant)

SELF-ASSESSMENT QUIZ

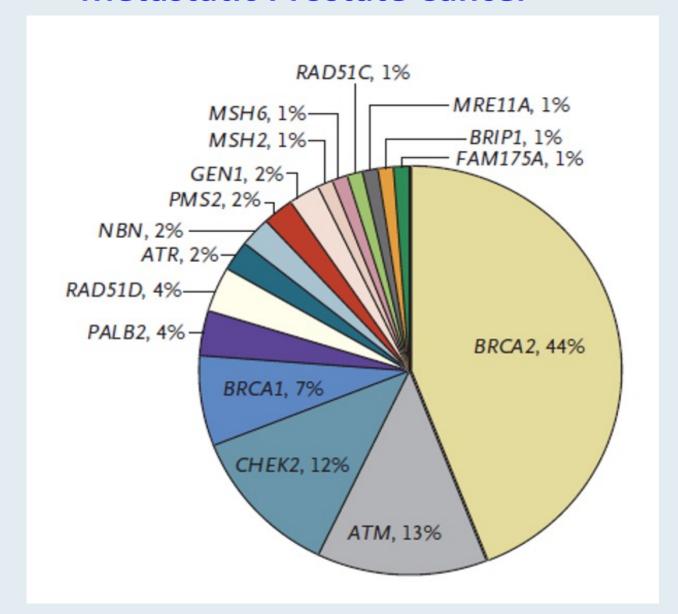
All patients with metastatic castration-resistant prostate cancer should undergo germline DNA repair mutation testing regardless of family history.

- 1. Agree
- 2. Disagree
- 3. I don't know

SELF-ASSESSMENT QUIZ

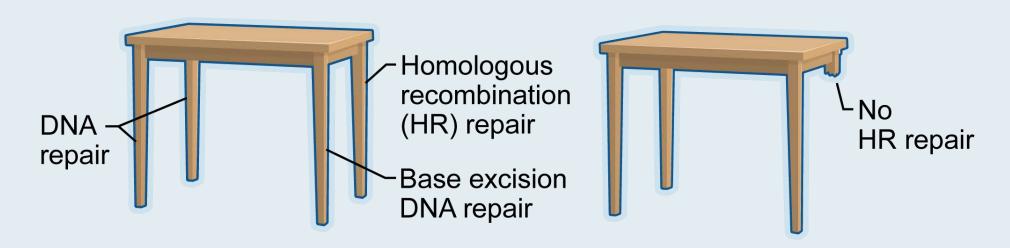
The most common DNA repair mutation in prostate cancer is...

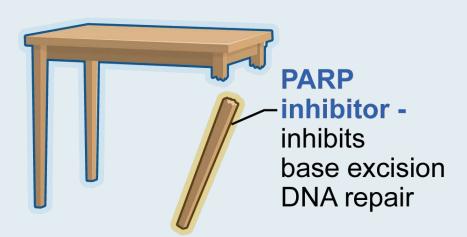
- 1. BRCA1
- 2. BRCA2
- 3. ATM
- 4. CHEK2
- 5. I don't know

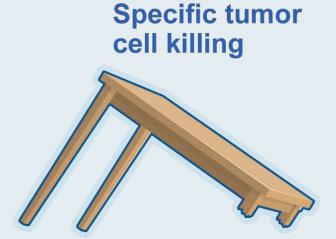

SELF-ASSESSMENT QUIZ

Patients who are receiving PARP inhibitors frequently experience which of the following side effects?

- 1. Gastrointestinal toxicity
- 2. Cytopenias
- 3. Both 1 and 2
- 4. Neither 1 nor 2
- 5. I don't know




Inherited DNA Repair Gene Mutations in Men with Metastatic Prostate Cancer



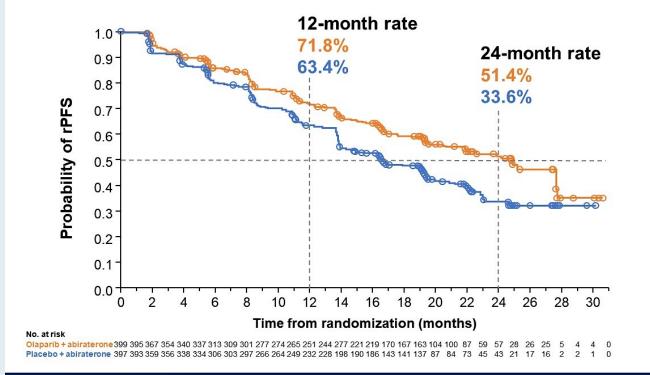
- Multicenter study of 692 men
- Deleterious mutations were found in 82 men (11.8%) in 16 genes
- Observed rate exceeded that associated with localized prostate cancer (4.6%) and general population without cancer (2.7%)

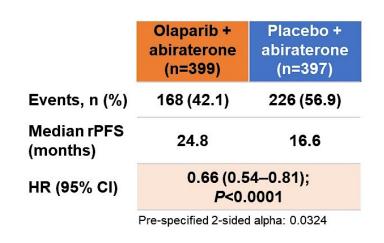
Mechanism of Cell Death from Synthetic Lethality Induced by PARP Inhibition

ASCO Genitourinary Cancers Symposium

PROpel: phase III trial of olaparib and abiraterone versus placebo and abiraterone as first-line therapy for patients with metastatic castration-resistant prostate cancer

Fred Saad, Andrew J. Armstrong, Antoine Thiery-Vuillemin, Mototsugu Oya, Eugenia Loredo, Giuseppe Procopio, Juliana de Menezes, Gustavo Girotto, Cagatay Arslan, Niven Mehra, Francis Parnis, Emma Brown, Friederike Schlürmann, Jae Young Joung, Mikio Sugimoto, Christian Poehlein, Elizabeth A. Harrington, Chintu Desai, Jinyu Kang, and Noel Clarke


ClinicalTrials.gov identifier: NCT03732820



PROpel: Olaparib and Abiraterone versus Placebo and Abiraterone as First-Line Therapy for mCRPC

Primary Endpoint: Investigator-Assessed Radiographic Progression-Free Survival (rPFS)

34% risk reduction of progression or death with olaparib + abiraterone

Median rPFS improvement of 8.2 months

favors olaparib + abiraterone*

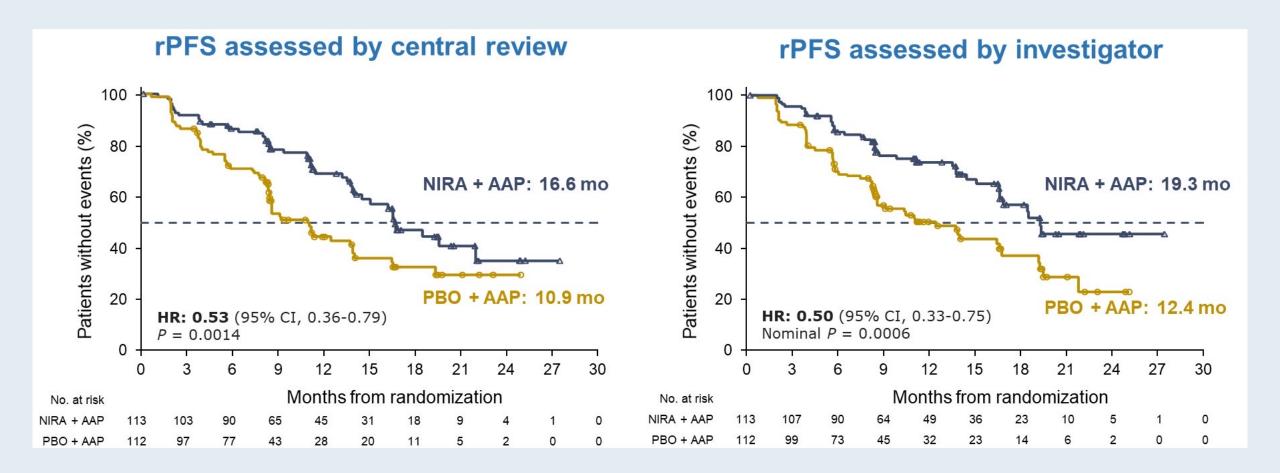
Events: 394; Maturity 49.5%
*In combination with prednisone or prednisolone
CI, confidence interval; HR, hazard ratio.

ASCO Genitourinary Cancers Symposium

Phase 3 MAGNITUDE study: First results of niraparib (NIRA) with abiraterone acetate and prednisone (AAP) as first-line therapy in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) with and without homologous recombination repair (HRR) gene alterations

Kim N. Chi, ¹ Dana E. Rathkopf, ² Matthew R. Smith, ³ Eleni Efstathiou, ⁴ Gerhardt Attard, ⁵ David Olmos, ⁶ Ji Youl Lee, ⁷ Eric J. Small, ⁸ Andrea J. Pereira de Santana Gomes, ⁹ Guilhem Roubaud, ¹⁰ Marniza Saad, ¹¹ Bogdan Zurawski, ¹² Valerii Sakalo, ¹³ Gary E. Mason, ¹⁴ Adam del Corral, ¹⁵ George Wang, ¹⁴ Daphne Wu, ¹⁶ Brooke Diorio, ¹⁷ Angela Lopez-Gitlitz, ¹⁶ Shahneen Sandhu ¹⁸

¹University of British Columbia, BC Cancer – Vancouver Center, Vancouver, BC, Canada; ²Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA; ³Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA; ⁴Houston Methodist Cancer Center, Houston, TX, USA; ⁵University College London, London, UK; ⁶Department of Medical Oncology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; ⑦Department of Urology Cancer Center, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea; ³Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA; ¹Liga Norte Riograndense Contra o Câncer, Natal, Brazil; ¹Department of Medical Oncology, Institut Bergonié, Bordeaux, France; ¹¹Department of Clinical Oncology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; ¹²Department of Outpatient Chemotherapy, Professor Franciszek Lukaszczyk Oncology Center, Bydgoszcz, Poland; ¹³Institute of Urology named after Academician OF Vozianov of NAMS of Ukraine, Kyiv, Ukraine; ¹⁴Janssen Research & Development, Spring House, PA, USA; ¹⁶Janssen Research & Development, Bridgewater, NJ, USA; ¹⁶Janssen Research & Development, Titusville, NJ, USA; ¹⁶Peter MacCallum Cancer Center and the University of Melbourne, Melbourne, Australia


The QR code is intended for use in the US and Canada only. Copies of this slide deck obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® or the author of this slide deck.

MAGNITUDE: BRCA1/2 Mutations — Primary Endpoint

Niraparib with Abiraterone Acetate Significantly Reduced the Risk of Disease Progression or Death by 47% in mCRPC

Questions — Sandy Srinivas, MD

Metastatic castration-resistant prostate cancer (BRCA mutant)

 What therapies are used to treat prostate cancer in this setting, and how is treatment selected?

Commentary — Sandy Srinivas, MD

Metastatic castration-resistant prostate cancer (BRCA mutant)

- Timing/Sequence in mCRPC
- Also when testing was done
- Olaparib approved pre-docetaxel: PROfound study: rPFS in cohort A: 7.4 vs 3.6 mos;
 OS- 19.1 vs 14.7
- Rucaparib approved post NHT and docetaxel: TRITON2: ORR of 40%

Recent data:

- MAGNITUDE: Niraparib + Abiraterone vs Placebo + Abiraterone
- HRRm+: Niraparib + Abiraterone improved rPFS:0.53; 16.6 vs 10.9 mos; HRRm-: Neg
- PROpel: Olaparib + Abiraterone vs Placebo + Abiraterone
- rPFS: 24.8 vs 16.6 mos; HR-0.54; HRRm+: HR-0.5; HRRm-: HR- 0.76

Questions — Ronald Stein, JD, MSN, NP-C, AOCNP

Metastatic castration-resistant prostate cancer (BRCA mutant)

- What are some of the clinical issues that arise for patients in this situation?
- What are key discussion points prior to starting treatment in terms of expected benefits and treatment toxicities?
- What are some of the psychosocial issues that arise in these situations?

Commentary — Ronald Stein, JD, MSN, NP-C, AOCNP

Metastatic castration-resistant prostate cancer (BRCA mutant)

Associated clinical issues:

-pain -unintentional weight loss

-swelling/lymphedema to lower extremities/scrotum -anemia

-cough/dyspnea/effusion (eg, lung mets) -GU problems

Key Discussion Points Prior to Treatment:

- -stage IV prostate CA is treatable but not curable
- -treatment will be life-long and will change based on response
- -potential ADT side effects, including decreased libido, erectile dysfunction, fatigue, weight gain, insulin resistance and osteopenia/osteoporosis
- -potential PARP inhibitor side effects, including pancytopenia, thrombosis, fatigue, cough, dyspnea, pneumonitis, n/v/d, abd pain, decreased appetite, MDS (rare)
- -regular PSA monitoring, imaging if PSA progression, regular lab testing with PARP inhibitors
- -importance of exercise

Commentary — Ronald Stein, JD, MSN, NP-C, AOCNP

Instructive examples:

-sending pt to ER for neutropenic fever

-potential need for blood transfusion on PARP inhibitors

-pt education – PARP inhibitors

-regular interval blood draws on PARP inhibitors

-nutritional counseling on PARP inhibitors

-antiemetics/antidiarrheals

-skin manifestations and photosensitivity (referral to Derm)

Psychological issues:

-sexuality and intimacy

-employment issues/disability

-meaning of stage IV disease

-weight gain

-potential genetic and family implications

-guilt

-depression and anxiety

-economic stress, eg, treatment affordability

Appendix of Key Data Sets

Prostate Cancer

- Prostate cancer is still a major health problem in the US.
- Approximately 191,930 new cases; approximately 33,330 deaths are expected to occur in 2020.
- With these large numbers, it is more likely that nurses will be seeing these patients in their practice.
- It becomes imperative that nurses keep abreast of current patient issues, current treatments, their associated side effects, and nursing interventions that can help to mitigate problems and ensure quality care.
- Treatment depends on diagnosis (stage and grade of the tumor), co-morbidies, prior therapies, performance status and patient's desires in terms of goals of treatment and QOL.
- Patient-centered strategies to optimize symptom management and improve patient adherence to therapies and outcomes are of paramount importance.

Definition of nmCRPC

- Patients with rising PSA despite ongoing ADT and no detectable metastases by conventional imaging (bone scan and CT or MRI)
- Most patients with nmCRPC are presumed to have occult metastatic disease not detected by conventional imaging

Context

- Men with nmCRPC are at significant risk for metastatic disease and prostate cancer—specific death¹
- Metastases are a major cause of morbidity and mortality^{2,3}
- Prevention of metastases represents an important unmet medical need

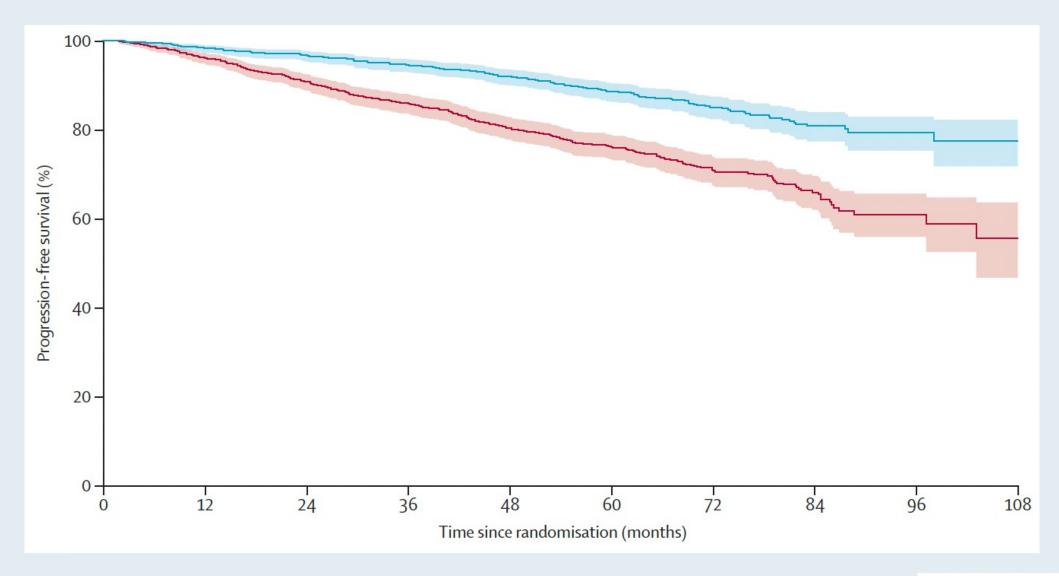
Considerations

- Side effects of ADT in young men related to muscle loss, fatigue and sexual health impact quality of life.
- Prioritize access to adequate support for management of sexual health and mental health.
- Ongoing discussion regarding rationale for treatment and how it's related to long term survival.

Oral Anti Androgens Approved For M0 Prostate Cancer – How do you choose?

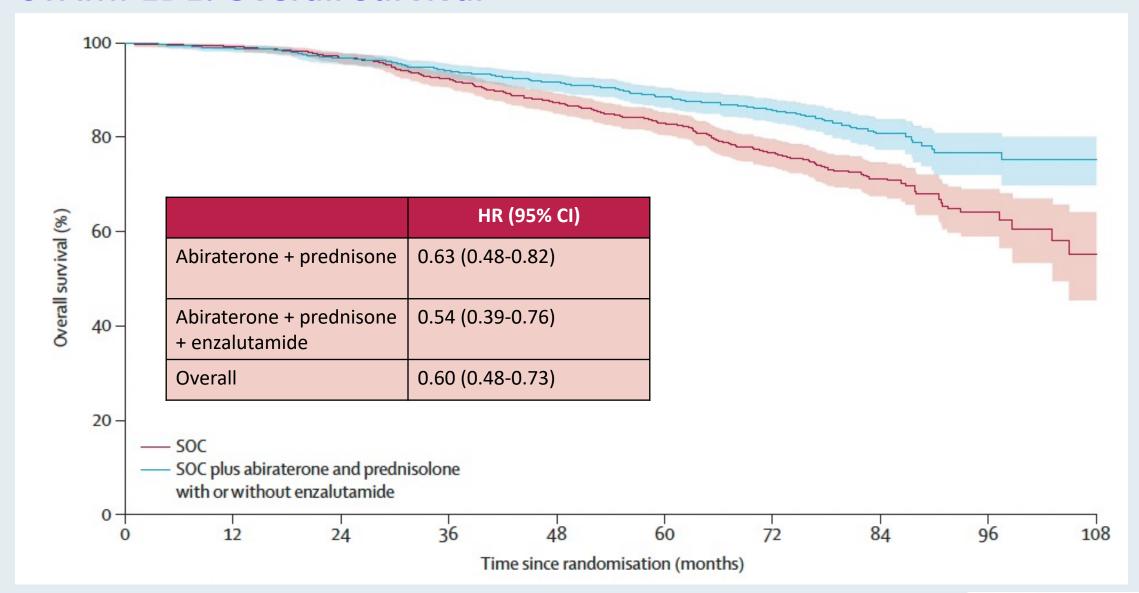
- Enzalutamide
 - Cautious with patients with a history of falls and seizure
- Apalutamide
 - Risk of rash
- Darolutamide
 - Mild fatigue

*For all patients monitor CBC/diff, comprehensive metabolic panel and PSA.


Nursing implications: oral agents

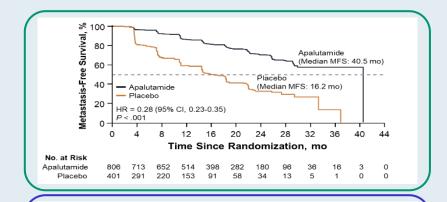
- Nurses need to be aware that there needs to be a shift in management from provider to patient
- Nurses need to become familiar with the oral agents and develop educational strategies to ensure patient understanding of medication, dosing and administration, potential side effects, symptom management, self care measures, proactive follow-up.
- Stress the import' of need to keep scheduled visits and contact the health care provider when side effects develop. If side effects are not reported, necessary adjustments will not be made and serious consequences can occur and have impact on their life and further therapy.

Nursing implications: oral agents (cont.')


- Nurses need to be aware of factors that affect patient compliance and reporting
- Patients are often reluctant to notify the provider because they fear that their therapy may be interrupted or dose lowered
 - Most side effects resolve with brief interruption of therapy
 - Any necessary dose reduction is simply to customize a dose that the individual needs
 - A dose reduction does not necessarily decrease the efficacy of the treatment
- Communication, education, organization, and trusting relationship are key!!

STAMPEDE: Progression-Free Survival

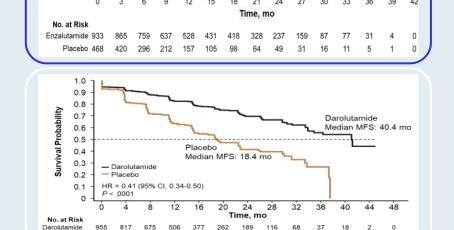
STAMPEDE: Overall Survival


FDA Approvals of Next-Generation Antiandrogens for Nonmetastatic Castration-Resistant Prostate Cancer (CRPC)

Agent	Approval date	Pivotal study	
Darolutamide	July 30, 2020	ARAMIS	
Enzalutamide	July 12, 2018	PROSPER	
Apalutamide	February 14, 2018	SPARTAN	

Primary Endpoint: Metastasis-Free Survival (MFS) in Nonmetastatic CRPC

SPARTAN¹ Apalutamide



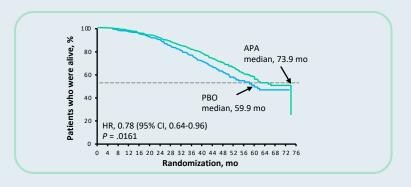
- 72% reduction of distant progression or death
- Median MFS: APA 40.5 vs PBO 16.2 months
- 24-month MFS benefit

PROSPER² Enzalutamide

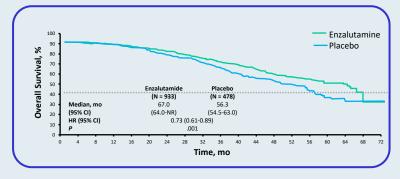
ARAMIS³

Darolutamide

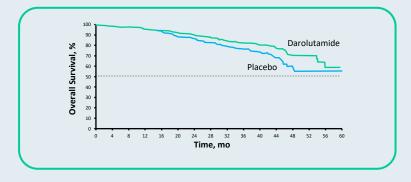
- 71% reduction of distant progression or death
- Median MFS: ENZA 36.6 vs PBO 14.7 months
- 22-month MFS benefit


- 59% reduction of distant progression or death
- Median MFS: DARO 40.4 vs PBO 18.4 months
- 22-month MFS benefit

PBO = placebo


Secondary Endpoint: Overall Survival (OS) in Nonmetastatic CRPC

SPARTAN1¹ Apalutamide


- 22% reduction in risk of death
- Median OS
 - 73.9 mo vs 59.9 mo
 - HR = 0.78; p = 0.016

PROSPER² Enzalutamide

- 27% reduction in risk of death
- Median OS
 - 67.0 mo vs 56.3 mo
 - -HR = 0.73; p = 0.001

ARAMIS³ Darolutamide

- 31% reduction in risk of death
- Median OS
 - HR = 0.69; p = 0.003

Comparison of Toxicities: Darolutamide, Enzalutamide or Apalutamide for Nonmetastatic CRPC

	ARAMIS		PROSPER		SPARTAN	
Toxicity	Darolutamide	Placebo	Enzalutamide	Placebo	Apalutamide	Placebo
Fatigue/asthenia	16%	11%	33%	14%	30%	21%
Falling	4%	5%	11%	4%	16%	9%
Dizziness	5%	4%	10%	4%	9%	6%
Mental impairment	1%	2%	5%	2%	5%	3%

FDA Approves Relugolix for Advanced Prostate Cancer

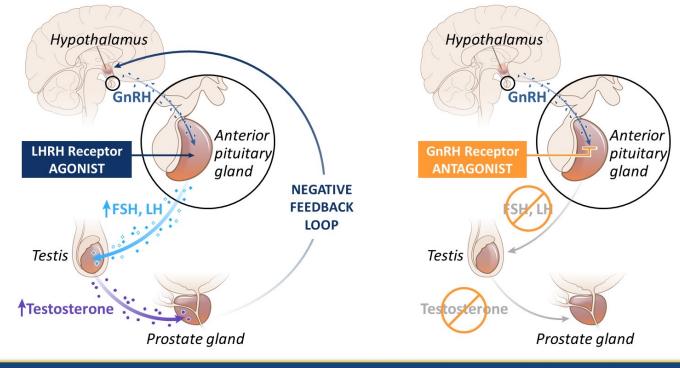
Press Release: December 18, 2020

"On December 18, 2020, the US Food and Drug Administration approved the first oral gonadotropin-releasing hormone (GnRH) receptor antagonist, relugolix, for adult patients with advanced prostate cancer.

Efficacy was evaluated in HERO (NCT03085095), a randomized, open label trial in men requiring at least one year of androgen deprivation therapy with either prostate cancer recurrence following radiation or surgery or newly diagnosed castration-sensitive advanced prostate cancer.

Patients (N=934) were randomized (2:1) to receive relugolix 360 mg oral loading dose on the first day, followed by daily oral doses of 120 mg, or leuprolide acetate 22.5 mg injection subcutaneously every 3 months for 48 weeks."

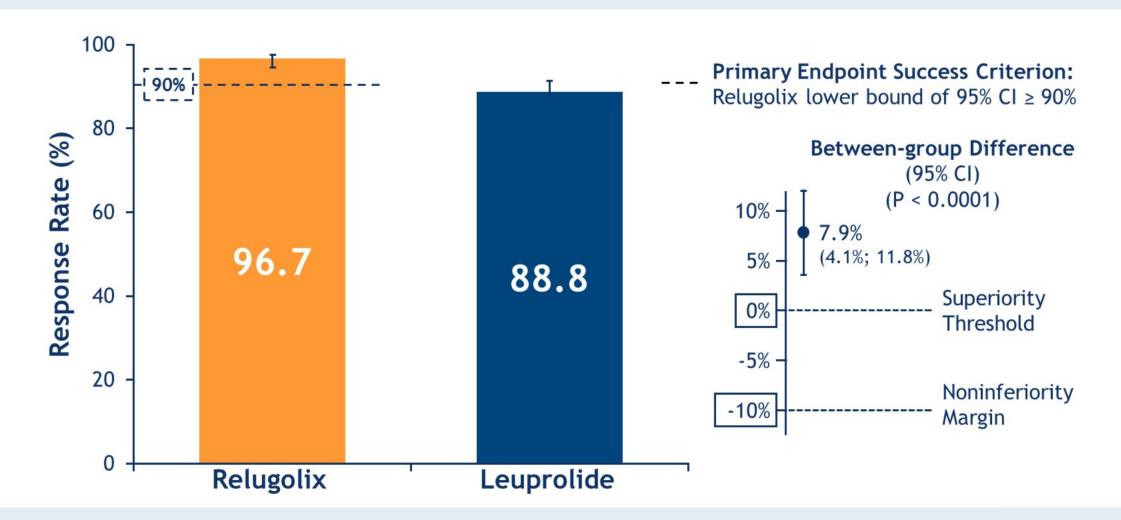
HERO Phase III Trial: Results Comparing Relugolix, an Oral GnRH Receptor Antagonist, versus Leuprolide Acetate for Advanced Prostate Cancer¹


Oral Relugolix for Androgen-Deprivation Therapy in Advanced Prostate Cancer²

¹Shore N et al. ASCO 2020; Abstract 5602.

² Shore ND et al. N Engl J Med 2020;382(23):2187-96.

LHRH agonist vs antagonist MOA and side effect profile

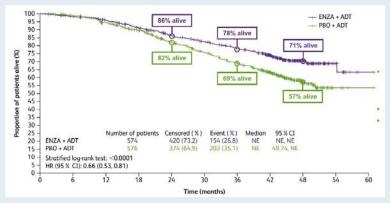

PRESENTED AT: 2020 ASCO #ASCO20 Sides ore the property of the author, permission required for reast.

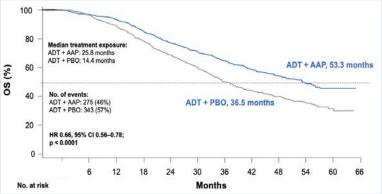
PRESENTED BY: October 1985 ANNUAL MEETING Pressent 1985 ANNUAL MEETING PRESENT 1985 ANNUA

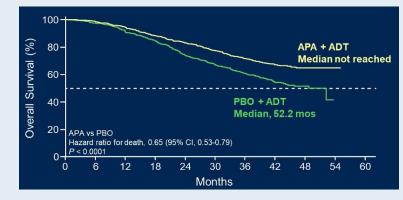
	Relugolix (N = 622)	Leuprolide (N = 308)
Hot flush	54.3%	51.6%
Fatigue	21.5%	18.5%
Constipation	12.2%	9.7%
Diarrhea*	12.2%	6.8%
Arthralgia	12.1%	9.1%
Hypertension	7.9%	11.7%

Courtesy of Tanya B Dorff, MD

HERO: Primary Endpoint – Sustained Castration Key Secondary Endpoint – Noninferiority to Leuprolide




Final OS Analyses: Enzalutamide, Abiraterone and Apalutamide for mHSPC


ARCHES¹ Enzalutamide + ADT

LATITUDE²
Abiraterone +
ADT

TITAN³
Apalutamide +
ADT

- 34% reduction in risk of death
- Median OS
 - 40.2 mo vs 13.8 mo
 - HR = 0.66; p < 0.0001
- 34% reduction in risk of death
- Median OS
 - 53.3 mo vs 36.5 mo
 - HR = 0.66; p < 0.0001

- 35% reduction in risk of death
- Median OS
 - Not reached vs 52.2 mo
 - HR = 0.65; p < 0.0001

^{1.} Armstrong AJ et al. ESMO 2021; Abstract LBA25. 2. Fizazi K et al. GU Cancers Symposium 2019; Abstract 141. 3. Chi KN et al. GU Cancers Symposium 2021; Abstract 11.

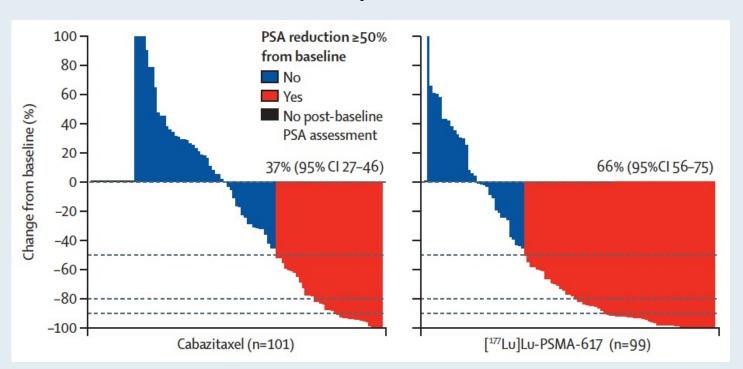
Selected FDA Approved Drugs in Advanced Prostate Cancer

Sipuleucel-T

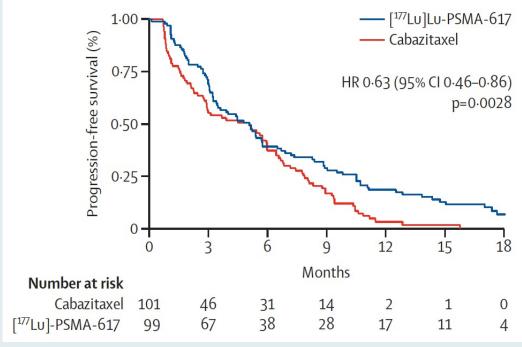
- autologous cellular immunotherapy designed to stimulate a patient's own immune system against prostate cancer, MOA unknown
- Minimal toxicity, apharesis required

Radium-223

- Radiopharmaceutical, alpha particle
- GI toxicity, typically mild, important to remind patients re: lack of PSA activity
- Administered by nuclear medicine or radiation oncology physicians
- Important to monitor patients monthly as NO activity against non bone metastastic sites
- PSMA (prostate specific membrane antigen) targeted therapies
 - In combination with a number of molecules: Lutetium, radioactive iodine, T cell targeting combinations

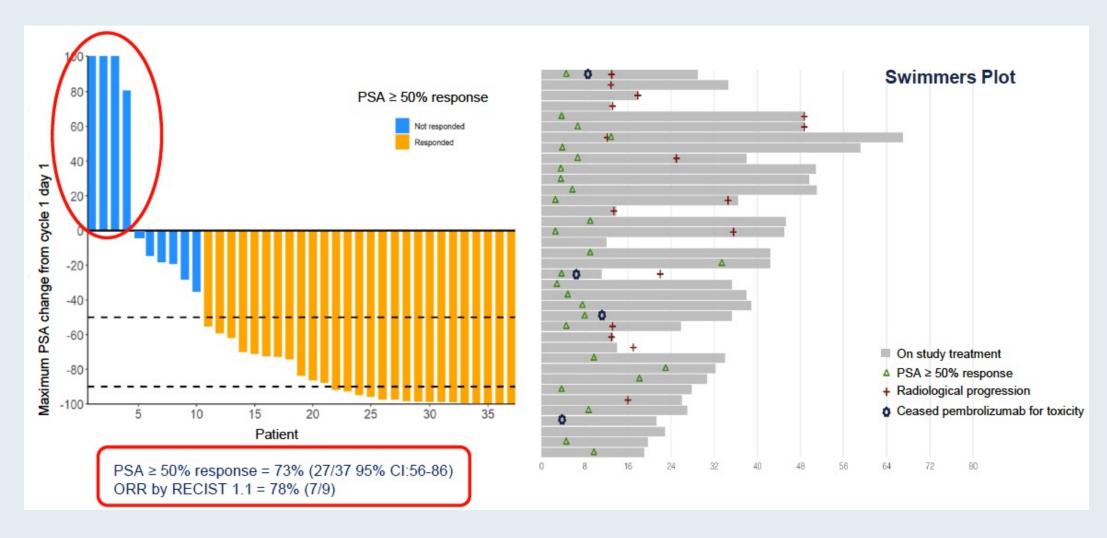

Nursing implications: Radium-223

- Rad-223 is safe and effective and targets tumor cells in the bone.
- Rad-223 -form of liquid radiation, administered IV, given every 4 weeks x6.
- Explain characteristics of RAD-223- has a short range that does limit damage to healthy cells.
- Data using this modality have shown improvement in QOL with improvement in pain, improved OS (by 3.6 months), delay in SSEs.
- Patients often focus on PSA. Point out that a decline in PSA is not an expected result of Rad-223; Patient benefits have been observed in the absence of a decreasing PSA.


TheraP ANZUP 1603: ¹⁷⁷Lu-PSMA-617 versus Cabazitaxel for mCRPC

PSA Response and Progression-Free Survival

PSA response


Radiographic or PSA progression-free survival

PRINCE: 177 Lu-PSMA-617 Combined with Pembrolizumab for mCRPC

PSA Response Rate (Primary Endpoint)

PRINCE: Treatment-Related Adverse Events (TRAEs)

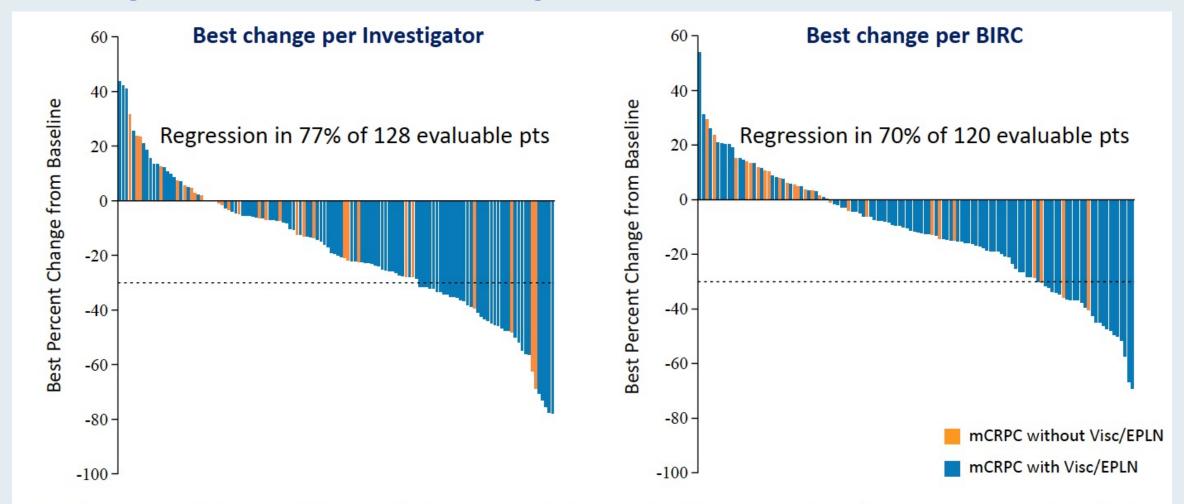
TRAE term	Grade 1 (%)	Grade 2 (%)	Grade 3 (%)	N=37 (%)
Xerostomia	21 (57%)	7 (19%)	-	28 (76%)
Fatigue	11 (29 %)	3 (8%)	2 (5%)	16 (43%)
Rash	5 (14%)	4 (11%)		9 (25%)
Nausea	8 (21%)	1 (3%)	_	9 (24%)
Pruritis	6 (16%)	1 (3%)	1-	7 (19%)
Anorexia	3 (8%)	3 (8%)	-	6 (16%)
Thrombocytopenia	4 (11%)	1(3%)	-	5 (14%)
Bone pain (flare)	4 (11%)	-	-	4 (11%)
Aspartate aminotransferase elevation	2 (5%)	2 (5%)	1-	4 (11%)
Dry eye	3 (8%)	-	-	3 (8%)
Dysgeusia	2 (5%)	1 (3%)	· · ·	3 (8%)
Weight loss	2 (5%)	1 (3%)		3 (8%)
Anemia	-	2 (5%)	1(3%)	3 (8%)
Alanine aminotransferase elevation	2 (5%)	1(3%)	-	3 (8%)
Amylase elevation	1 (3%)	1 (3%)	1 (3%)	3 (8%)
Arthralgia	3 (8%)	-	-	3 (8%)
Neutropenia	1 (3%)	, - ,	-	1 (3%)

Pembrolizumab cycles: Median (range)	8 (1 - 22)
¹⁷⁷ Lu-PSMA-617 cycles: Median (range)	4 (2 - 6)
Discontinuation for toxicity: Pembrolizumab, n (%) 177Lu-PSMA-617, n (%)	4 (11%) 0 (0%)

Treatment related adverse events (TRAEs) in by worst grade affecting > 5% and all hematological toxicity

[.] There were no grade 4 TRAEs or treatment related deaths

Immune Checkpoint Inhibitors in mCRPC


Therapy	Disease state	Disease response
Pembrolizumab monotherapy ^a	Postchemotherapy	ORR 9% PSA RR 14%
Pembrolizumab + enzalutamide ^b	Prechemotherapy, progressing on enzalutamide	ORR 12% PSA RR 14%
Atezolizumab + enzalutamide ^c	Pre- and postchemotherapy, s/p abiraterone	ORR 14% PSA RR 26%
Atezolizumab + cabozantinib ^d	Prechemotherapy, s/p enzalutamide or abiraterone	ORR 34% PSA RR 29%

^a Antonarakis ES et al. *JCO* 2020:38(5):395-405. ^b Presented at the 2021 ASCO Annual Meeting – Virtual. ^c Sweeney C. AACR 2020; IMbassador250. ^d Agarwal ASCO 2020; COSMIC-021.

COSMIC-021: Cabozantinib/Atezolizumab for mCRPC

Best Change from Baseline in Sum of Target Lesions

Evaluable patients (pts) had measurable disease and at least one post-baseline scan; the three patients with complete responses per investigator had lymph node metastases as target lesions.

BIRC = blinded independent review committee; EPLN = extrapelvic lymph nodes

CONTACT-02: Phase III Trial Schema

mCRPC (N ~580)

- Prior treatment with one NHT
- Measurable visceral disease or measurable extrapelvic adenopathy
- PSA progression and/or soft-tissue disease progression
- ECOG PS 0 or 1

Cabozantinib + Atezolizumab Cabozantinib 40 mg PO QD Atezolizumab 1200 mg IV Q3W

Second NHT*
Enzalutamide 160 mg PO QD

OR

Abiraterone 1000 mg PO QD + Prednisone 5 mg PO BID

Tumor assessment every 9 weeks (RECIST v1.1)[†]

Treatment until loss of clinical benefit[‡] or intolerable toxicity

Primary Endpoints

- PFS per RECIST v1.1 by BIRC
- OS

Secondary Endpoint

• ORR per RECIST v1.1 by BIRC

Stratification

R_{1:1}

- Liver metastasis (yes, no)
- Prior docetaxel treatment for mCSPC (yes, no)
- Disease stage for which the first NHT was given (mCSPC, M0 CRPC, mCRPC)

NHT = novel hormone therapy

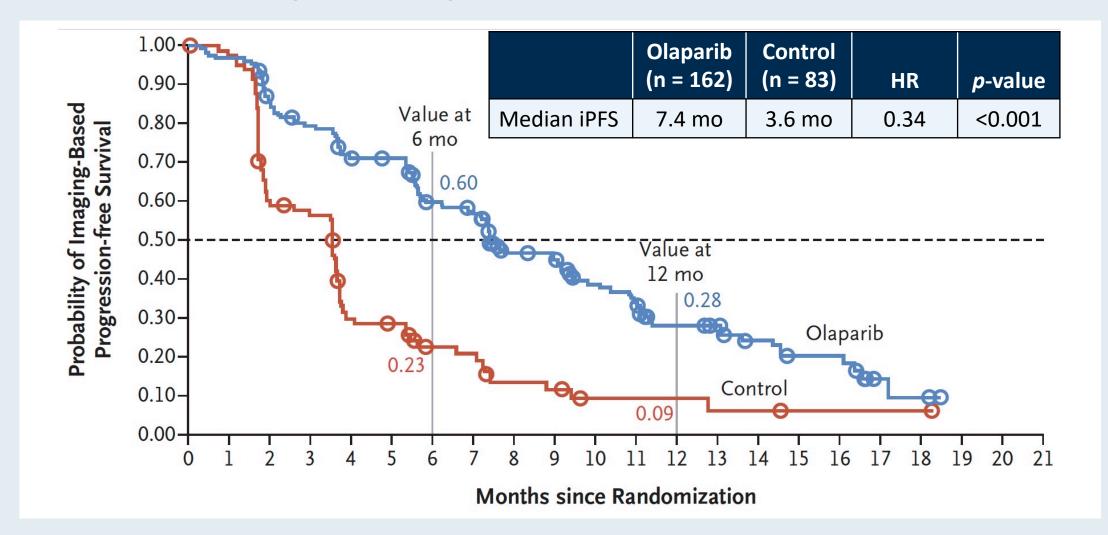
^{*}Second NHT must differ from previous NHT taken

Tumor assessment (RECIST v1.1) every 9 weeks for the first 28 weeks then every 12 weeks thereafter

[‡]Patients may be treated beyond progression if there is a clinical benefit in the opinion of the investigator

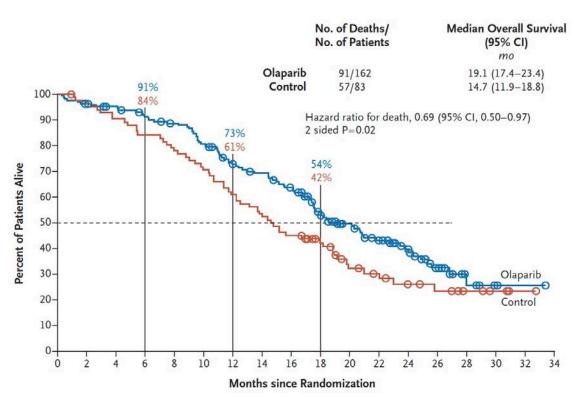
PARP Inhibitors for mCRPC

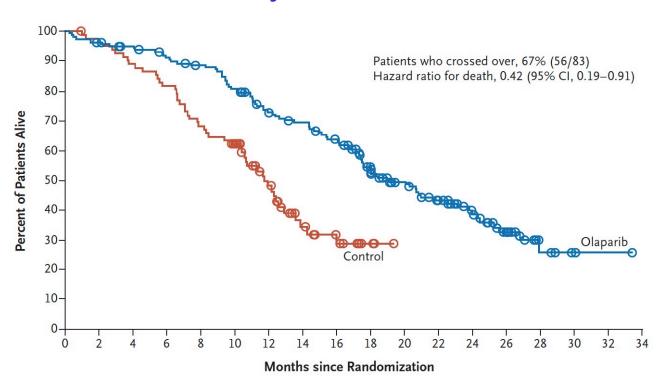
- Poly(ADP-ribose) polymerase (PARP) inhibitors
 - Directed at targeting cancers with defective DNA-damage repair
 - Prostate cancer, most common defects in BRCA 1, BRCA 2 and ATM genes
 - Side effects include progressive anemia, fatigue, GI side effects indigestion, nausea/vomiting, diarrhea, headaches



Recent FDA Approvals of PARP Inhibitors for mCRPC

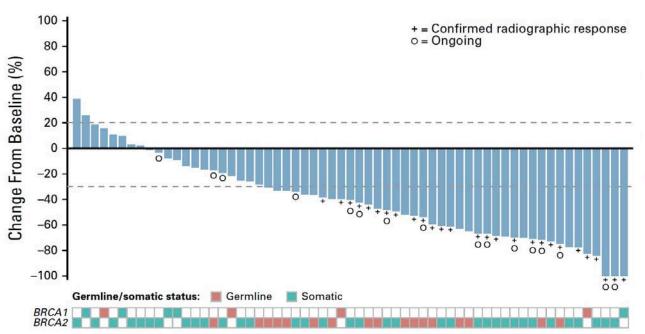
PARP inhibitor	Approval date	Pivotal study
Olaparib	May 19, 2020	PROfound
Rucaparib	May 15, 2020	TRITON2

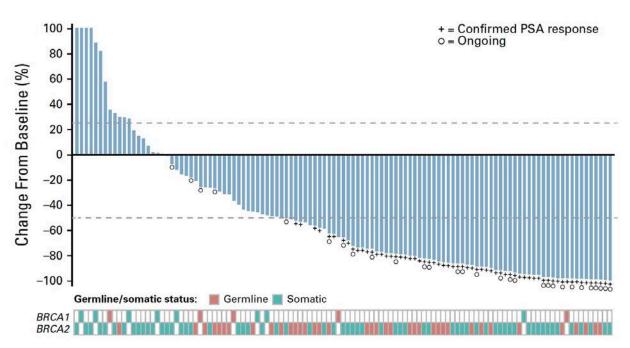

PROfound Primary Endpoint: Imaging-Based PFS with Olaparib for Patients with mCRPC and at Least 1 Alteration in BRCA1, BRCA2 or ATM (Cohort A)



PROfound: OS with Olaparib for Patients with mCRPC and at Least 1 Alteration in BRCA1, BRCA2 or ATM (Cohort A)

Overall survival

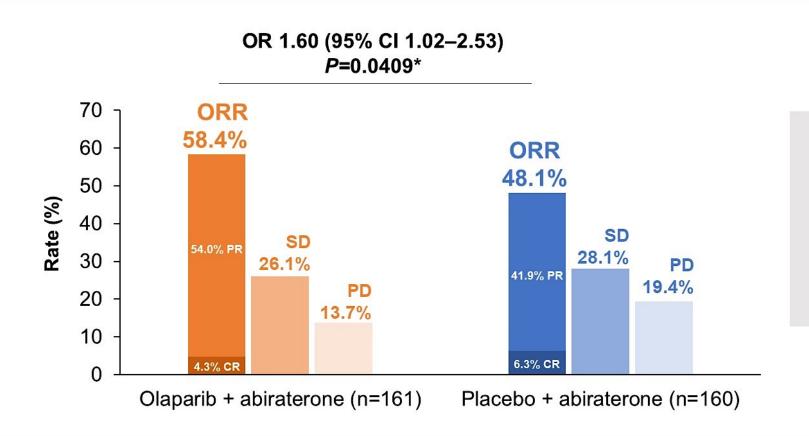

Crossover-adjusted overall survival



TRITON2: Response to Rucaparib in Patients with mCRPC Harboring a BRCA1 or BRCA2 Gene Alteration

ORR per independent radiology review: 43.5%

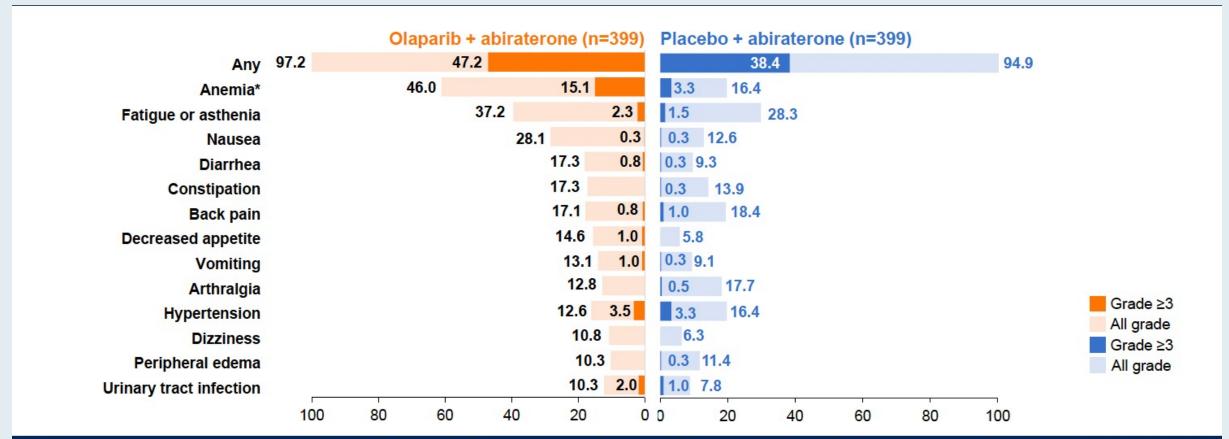
Confirmed PSA response rate: 54.8%



ORR = objective response rate

PROpel: ORR for Patients with Measurable Disease

10% improvement in ORR with olaparib + abiraterone



321/796 patients (40.3%) had measurable disease by RECIST v1.1 criteria at baseline

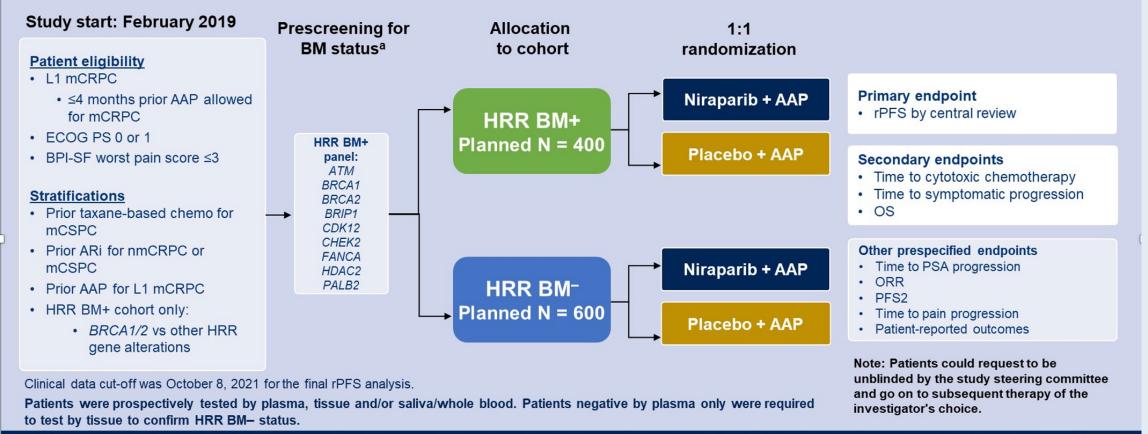
*Nominal.
CR, complete response; OR, odds ratio; ORR, overall response rate; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; SD, stable disease.

PROpel: Most Common Adverse Events

Safety was assessed through the reporting of AEs according to the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE v4.03) and laboratory assessments.

*Anemia category includes anemia, decreased hemoglobin level, decreased red-cell count, decreased hematocrit level, erythropenia, macrocytic anemia, normochromic anemia, normochromic normocytic anemia, and normocytic anemia.

PROpel: Cardiac and Thromboembolic Adverse Events

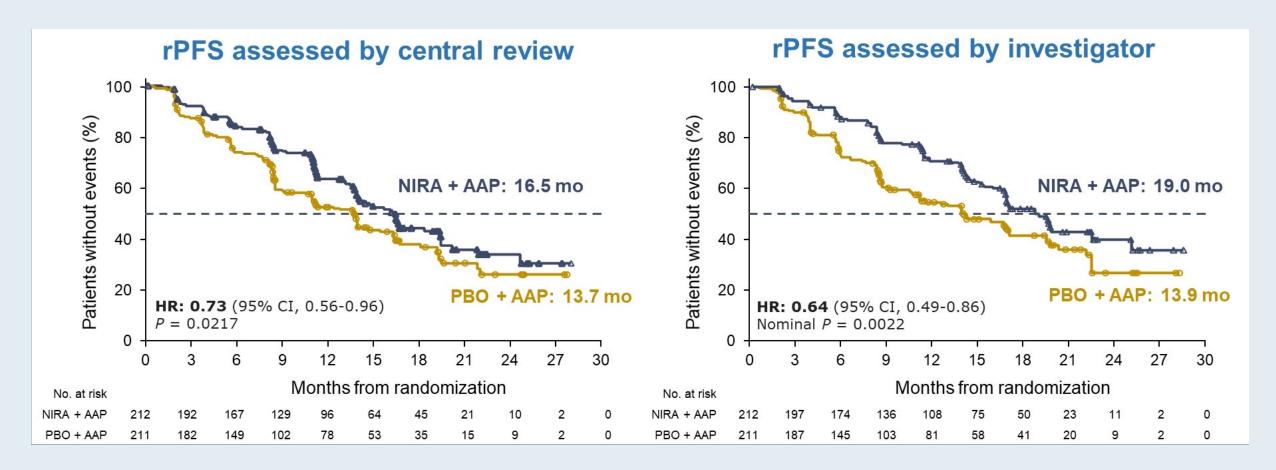

n (%)	Olaparib + abiraterone (n=399)	Placebo + abiraterone (n=397)
Cardiac failure SMQ	6 (1.5)	5 (1.3)
Embolic and thrombotic events, arterial SMQ	8 (2.0)	10 (2.5)
Embolic and thrombotic events, venous SMQ	29 (7.3)	13 (3.3)
Pulmonary embolism	26 (6.5)	7 (1.8)

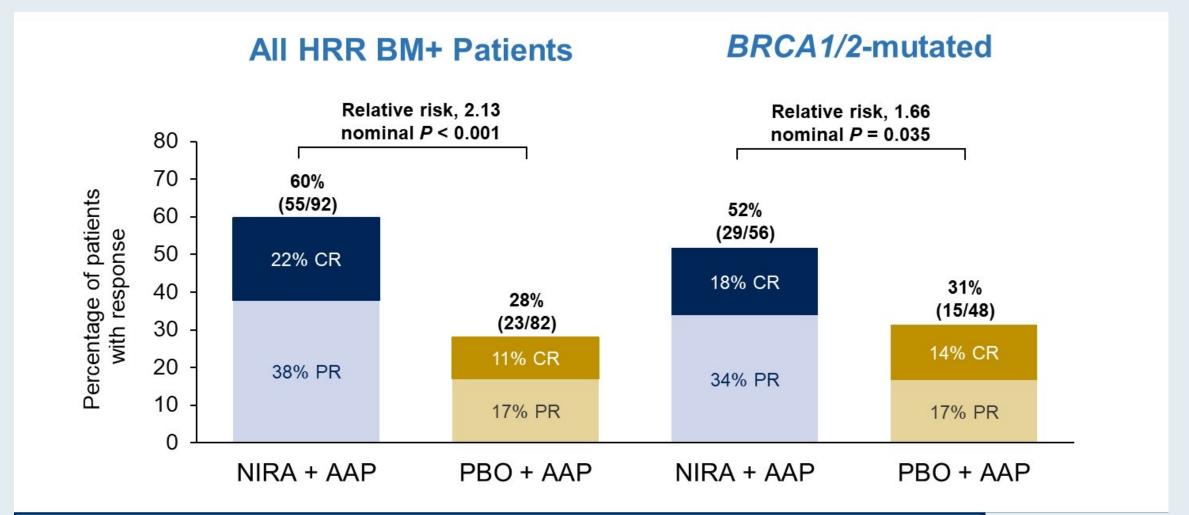
CT, computerized tomography; SMQ, Standardised MedDRA Query.

MAGNITUDE: Randomized, Double-Blind, Placebo-Controlled Study

Prospectively Selected Biomarker (BM) Cohorts Designed to Test HRR BM+ and HRR BM-

AAP, abiraterone acetate + prednisone/prednisolone; AR, androgen receptor; ARi, androgen receptor inhibitor; BM, biomarker; BPI-SF, Brief Pain Inventory–Short Form; ctDNA, circulating tumor deoxyribonucleic acid; ECOG PS, Eastern Cooperative Oncology Group performance status; HRR, homologous recombination repair; L1, first line; mCRPC, metastatic castration-resistant prostate cancer; mCSPC, metastatic castration-sensitive prostate cancer; nmCRPC, nonmetastatic castration-resistant prostate cancer; oRR, overall response rate; OS, overall survival; PFS, progression-free survival; PFS2, progression-free survival on first subsequent therapy; PSA, prostate-specific antigen; rPFS, radiographic progression-free survival.


^aTissue and Plasma assays: FoundationOne tissue test (FoundationOne[®]CDx), Resolution Bioscience liquid test (ctDNA), AmoyDx blood and tissue assays, Invitae germline testing (blood/saliva), local lab biomarker test results demonstrating a pathogenic germline or somatic alteration listed in the study biomarker gene panel.


MAGNITUDE: All HRR Biomarker-Positive — Primary Endpoint

Niraparib with Abiraterone Acetate Significantly Reduced the Risk of Disease Progression or Death by 27%

MAGNITUDE: Niraparib with Abiraterone Acetate Improves Overall Response Rate Consistently Across Gene Alterations

NIRA + AAP nearly doubles ORR rate and provides deeper response in patients with measurable disease

MAGNITUDE: HRR Biomarker-Positive — Summary of Treatment-Emergent Adverse Events (TEAEs)

Overall summary, n (%)	NIRA + AAP n = 212	PBO + AAP n = 211
All TEAEs	210 (99.1)	199 (94.3)
Drug related	162 (76.4)	116 (55.0)
Grade 3/4 TEAEs	142 (67.0)	98 (46.4)
SAEs	76 (35.8)	52 (24.6)
Drug related ^a	24 (11.3)	6 (2.8)
Dose reduction due to an AE	42 (19.8)	7 (3.3)
Discontinuation of niraparib or placebo due to AE	23 (10.8)	10 (4.7)
All deaths within 30 days of last dose	19 (9.0)	19 (9.0)
Death due to prostate cancer	8 (3.8)	12 (5.7)
AE	11 (5.2)	7 (3.3)

- The most common AEs leading to dose reduction in the niraparib group were anemia (13.2%) and thrombocytopenia (2.8%), consistent with established safety profile for NIRA
- Median relative dose intensity was 99% in the NIRA + AAP group

SAEs = serious adverse events

MAGNITUDE: HRR Biomarker-Positive — Common TEAEs

Treatment-emergent adverse events occurring at >20% in the NIRA arm or otherwise of clinical interest, n (%)		NIRA + AAP, n = 212		PBO + AAP, n = 211	
		All grades	Grade ≥3	All grades	Grade ≥3
Hematologic	Anemia	98 (46.2)	63 (29.7)	43 (20.4)	16 (7.6)
	Thrombocytopenia	45 (21.2)	14 (6.6)	18 (8.5)	5 (2.4)
	Neutropenia	29 (13.7)	14 (6.6)	12 (5.7)	3 (1.4)
	Acute myeloid leukemia/ Myelodysplastic syndrome	0	0	1 (0.5)	1 (0.5)
Cardiovascular	Hypertension	67 (31.6)	33 (15.6)	47 (22.3)	30 (14.2)
	Arrhythmia	27 (12.7)	6 (2.8) ^a	12 (5.7)	3 (1.4)
	Cardiac failure	4 (1.9)	3 (1.4)a	4 (1.9)	1 (0.5)
	Ischemic heart disease	4 (1.9)	4 (1.9)	8 (3.8)	6 (2.8) ^b
General disorders	Fatigue	56 (26.4)	7 (3.3)	35 (16.6)	9 (4.3)
Gastrointestinal	Constipation	65 (30.7)	-	29 (13.7)	-
	Nausea	50 (23.6)	1 (0.5)	29 (13.7)	0
Hepatotoxicity		25 (11.8)	4 (1.9)	26 (12.3)	10 (4.7)
Cerebrovascular disorders		6 (2.8)	2 (0.9)	2 (0.9)	1 (0.5)ª

What I Tell My Patients: New Treatments and Clinical Trial Options

An NCPD Hybrid Symposium Series Held During the 47th Annual ONS Congress

Ovarian Cancer

Thursday, April 28, 2022 12:15 PM – 1:45 PM PT

Faculty

Jennifer Filipi, MSN, NP Kathleen N Moore, MD, MS Krishnansu S Tewari, MD Deborah Wright, MSN, APRN, AGCNS-BC

Moderator Neil Love, MD

Thank you for joining us!

In-person attendees: Please fill out your Educational Assessment and NCPD Credit Form.

Online attendees: NCPD credit information will be emailed to each participant within 3 business days.

