Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with HER2-Positive Breast Cancer

Erika Hamilton, MD

Director, Breast and Gynecologic Research Program
Sarah Cannon Research Institute/Tennessee Oncology
Nashville, Tennessee

Commercial Support

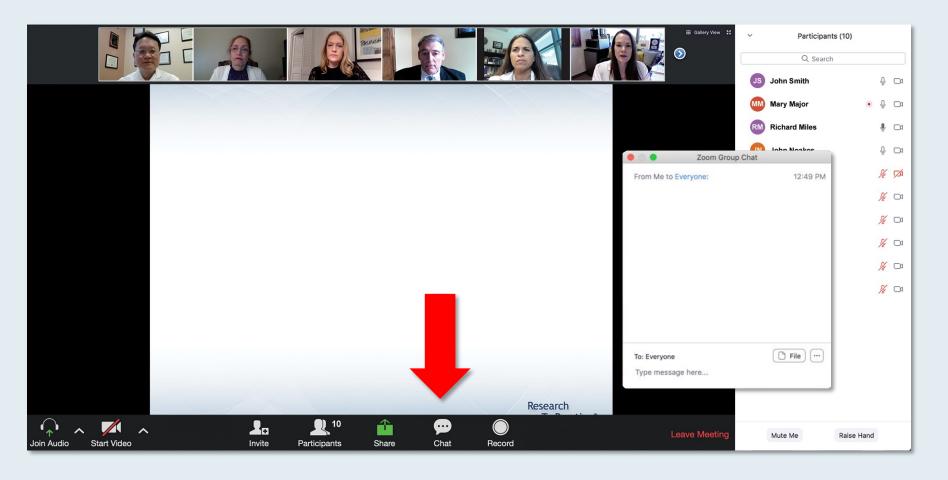
This activity is supported by educational grants from AstraZeneca Pharmaceuticals LP, Daiichi Sankyo Inc and Seagen Inc.

Dr Love — Disclosures

Dr Love is president and CEO of Research To Practice. Research To Practice receives funds in the form of educational grants to develop CME activities from the following companies: AbbVie Inc, Adaptive Biotechnologies Corporation, ADC Therapeutics, Agios Pharmaceuticals Inc, Alexion Pharmaceuticals, Amgen Inc, Array BioPharma Inc, a subsidiary of Pfizer Inc, Astellas, AstraZeneca Pharmaceuticals LP, Aveo Pharmaceuticals, Bayer HealthCare Pharmaceuticals, BeiGene Ltd, Blueprint Medicines, Boehringer Ingelheim Pharmaceuticals Inc, Bristol-Myers Squibb Company, Celgene Corporation, Clovis Oncology, Coherus BioSciences, Daiichi Sankyo Inc, Eisai Inc, Epizyme Inc, Exact Sciences Inc, Exelixis Inc, Five Prime Therapeutics Inc, Foundation Medicine, G1 Therapeutics Inc, Genentech, a member of the Roche Group, Genmab, Gilead Sciences Inc, GlaxoSmithKline, Grail Inc, Halozyme Inc, Helsinn Healthcare SA, ImmunoGen Inc, Incyte Corporation, Ipsen Biopharmaceuticals Inc, Janssen Biotech Inc, administered by Janssen Scientific Affairs LLC, Jazz Pharmaceuticals Inc, Karyopharm Therapeutics, Kite, A Gilead Company, Lilly, Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company, Merck, Natera Inc, Novartis, Novocure Inc, Oncopeptides, Pfizer Inc, Pharmacyclics LLC, an AbbVie Company, Puma Biotechnology Inc, Regeneron Pharmaceuticals Inc, Sanofi Genzyme, Seagen Inc, Servier Pharmaceuticals LLC, Sumitomo Dainippon Pharma Oncology Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, Tesaro, A GSK Company, TG Therapeutics Inc, Turning Point Therapeutics Inc and Verastem Inc.

Research To Practice CME Planning Committee Members, Staff and Reviewers

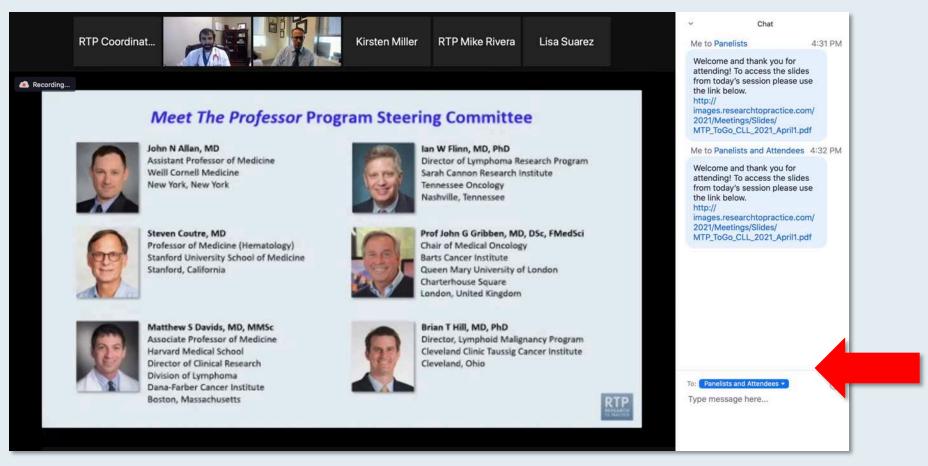
Planners, scientific staff and independent reviewers for Research To Practice have no relevant conflicts of interest to disclose.



Dr Hamilton — Disclosures

Advisory Committee and Consulting Agreements (to Institution)	Arvinas, AstraZeneca Pharmaceuticals LP, Black Diamond Therapeutics Inc, Boehringer Ingelheim Pharmaceuticals Inc, CytomX Therapeutics, Daiichi Sankyo Inc, Dantari, Deciphera Pharmaceuticals Inc, Eisai Inc, Genentech, a member of the Roche Group, H3 Biomedicine, Lilly, Merck, Mersana Therapeutics, Novartis, Pfizer Inc, Puma Biotechnology Inc, Seagen Inc, Silverback Therapeutics
Contracted Research (to Institution)	AbbVie Inc, Acerta Pharma — A member of the AstraZeneca Group, Akesobio Australia Pty Ltd, Amgen Inc, ArQule Inc, Arvinas, AstraZeneca Pharmaceuticals LP, Black Diamond Therapeutics Inc, Boehringer Ingelheim Pharmaceuticals Inc, Clovis Oncology, Compugen, Curis Inc, CytomX Therapeutics, Daiichi Sankyo Inc, Dana-Farber Cancer Hospital, Deciphera Pharmaceuticals Inc, eFFECTOR Therapeutics Inc, EMD Serono Inc, Fochon Pharmaceuticals Ltd, FUJIFILM Pharmaceuticals USA Inc, G1 Therapeutics Inc, Genentech, a member of the Roche Group, H3 Biomedicine, Harpoon Therapeutics, Hutchison MediPharma, ImmunoGen Inc, Immunomedics Inc, Infinity Pharmaceuticals Inc, InventisBio, Karyopharm Therapeutics, Leap Therapeutics Inc, Lilly, Lycera, MacroGenics Inc, Marker Therapeutics Inc, Merck, Mersana Therapeutics, Merus BV, Molecular Templates, Novartis, NuCana, Olema Oncology, OncoMed Pharmaceuticals Inc, Onconova Therapeutics Inc, Orinove Inc, Pfizer Inc, PharmaMar, Plexxikon Inc, Polyphor, Puma Biotechnology Inc, Radius Health Inc, Regeneron Pharmaceuticals Inc, Rgenix, Seagen Inc, Sermonix Pharmaceuticals, Shattuck Labs, Silverback Therapeutics, Stemcentrx, Sutro Biopharma, Syndax Pharmaceuticals Inc, Syros Pharmaceuticals Inc, Taiho Oncology Inc, Takeda Pharmaceuticals USA Inc, Tesaro, A GSK Company, Torque Therapeutics, Verastem Inc, Zenith Epigenetics, Zymeworks

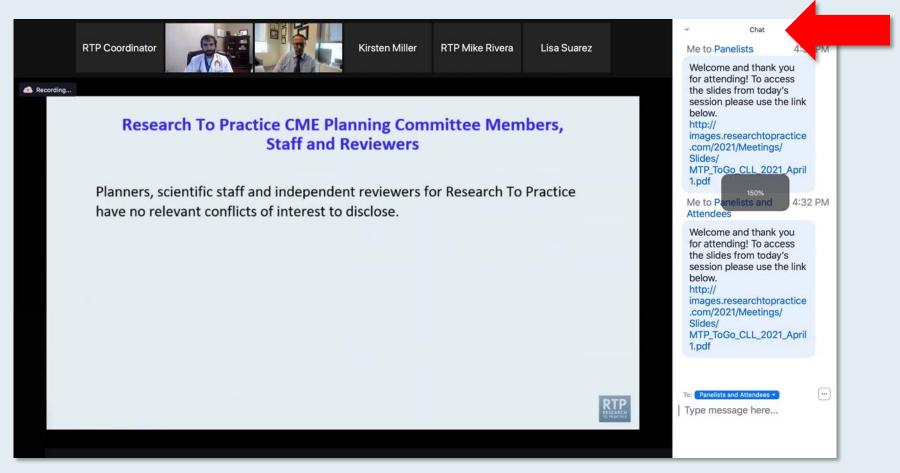
We Encourage Clinicians in Practice to Submit Questions



Feel free to submit questions now before the program begins and throughout the program.

Familiarizing Yourself with the Zoom Interface

Expand chat submission box



Drag the white line above the submission box up to create more space for your message.

Familiarizing Yourself with the Zoom Interface

Increase chat font size

Press Command (for Mac) or Control (for PC) and the + symbol. You may do this as many times as you need for readability.

ONCOLOGY TODAY

WITH DR NEIL LOVE

Management of HER2-Low Breast Cancer

DR IAN KROP

DANA-FARBER CANCER INSTITUTE

Fall Oncology Nursing Series

A Complimentary NCPD-Accredited Virtual Curriculum

Chronic Lymphocytic Leukemia

Thursday, October 14, 2021 5:00 PM - 6:00 PM ET

Faculty

Anthony R Mato, MD, MSCE Corinne Hoffman, MS, APRN-CNP, AOCNP

Fall Oncology Nursing Series

A Complimentary NCPD-Accredited Virtual Curriculum

Chimeric Antigen Receptor T-Cell Therapy in Chronic Lymphocytic Leukemia and Lymphomas

Monday, October 18, 2021 5:00 PM - 6:00 PM ET

Faculty

Jeremy Abramson, MD Elizabeth Zerante, MS, AGACNP-BC

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with Triple-Negative Breast Cancer

Wednesday, October 20, 2021 5:00 PM - 6:00 PM ET

Faculty
Aditya Bardia, MD, MPH

Recent Advances and Future Directions in Oncology: A Daylong Multitumor Educational Webinar in Partnership with Florida Cancer Specialists

A CME-MOC/NCPD Accredited Virtual Event

Saturday, October 23, 2021 9:30 AM – 4:30 PM ET

Faculty

Neeraj Agarwal, MD
Tanios Bekaii-Saab, MD
Kristen K Ciombor, MD, MSCI
Brad S Kahl, MD
Mark Levis, MD, PhD
Ann Partridge, MD, MPH
Mark D Pegram, MD

Daniel P Petrylak, MD
Noopur Raje, MD
David Sallman, MD
Lecia V Sequist, MD, MPH
David R Spigel, MD
Saad Zafar Usmani, MD, MBA
Andrew D Zelenetz, MD, PhD

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with HER2-Positive Breast Cancer

Erika Hamilton, MD

Director, Breast and Gynecologic Research Program
Sarah Cannon Research Institute/Tennessee Oncology
Nashville, Tennessee

Meet The Professor Program Participating Faculty

Karen A Gelmon, MD
Professor of Medicine
University of British Columbia
Medical Oncologist, BC Cancer
Vancouver, British Columbia, Canada

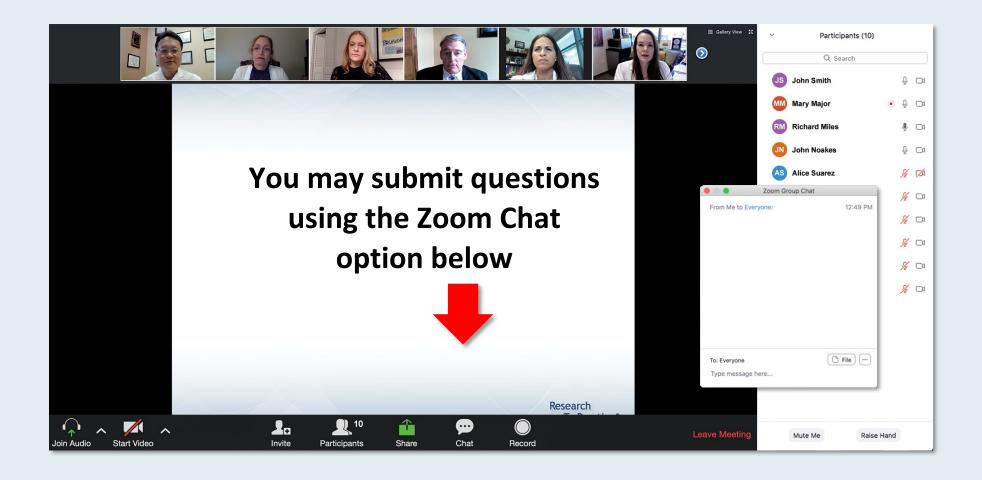
Sara Hurvitz, MD
Professor of Medicine
David Geffen School of Medicine at UCLA
Director, Breast Cancer Clinical Research Program
Co-Director, Santa Monica-UCLA Outpatient
Oncology Practice
Santa Monica, California

Erika Hamilton, MD
Director, Breast and Gynecologic
Research Program
Sarah Cannon Research
Institute/Tennessee Oncology
Nashville, Tennessee

Reshma Mahtani, DO
Associate Professor of Medicine
Co-Leader, Breast Cancer Program
Sylvester Cancer Center
University of Miami
Miami, Florida

Meet The Professor Program Participating Faculty

Hope S Rugo, MD
Professor of Medicine
Director, Breast Oncology and Clinical Trials Education
University of California, San Francisco
Helen Diller Family Comprehensive Cancer Center
San Francisco, California


Moderator
Neil Love, MD
Research To Practice
Miami, Florida

Sara M Tolaney, MD, MPH
Chief, Division of Breast Oncology
Associate Director, Susan F Smith Center for Women's Cancers
Senior Physician
Dana-Farber Cancer Institute
Associate Professor of Medicine
Harvard Medical School
Boston, Massachusetts

We Encourage Clinicians in Practice to Submit Questions

Feel free to submit questions now before the program begins and throughout the program.

Fall Oncology Nursing Series

A Complimentary NCPD-Accredited Virtual Curriculum

Chronic Lymphocytic Leukemia

Thursday, October 14, 2021 5:00 PM - 6:00 PM ET

Faculty

Anthony R Mato, MD, MSCE Corinne Hoffman, MS, APRN-CNP, AOCNP

Fall Oncology Nursing Series

A Complimentary NCPD-Accredited Virtual Curriculum

Chimeric Antigen Receptor T-Cell Therapy in Chronic Lymphocytic Leukemia and Lymphomas

Monday, October 18, 2021 5:00 PM - 6:00 PM ET

Faculty

Jeremy Abramson, MD Elizabeth Zerante, MS, AGACNP-BC

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with Triple-Negative Breast Cancer

Wednesday, October 20, 2021 5:00 PM - 6:00 PM ET

Faculty
Aditya Bardia, MD, MPH

Recent Advances and Future Directions in Oncology: A Daylong Multitumor Educational Webinar in Partnership with Florida Cancer Specialists

A CME-MOC/NCPD Accredited Virtual Event

Saturday, October 23, 2021 9:30 AM – 4:30 PM ET

Faculty

Neeraj Agarwal, MD
Tanios Bekaii-Saab, MD
Kristen K Ciombor, MD, MSCI
Brad S Kahl, MD
Mark Levis, MD, PhD
Ann Partridge, MD, MPH
Mark D Pegram, MD

Daniel P Petrylak, MD
Noopur Raje, MD
David Sallman, MD
Lecia V Sequist, MD, MPH
David R Spigel, MD
Saad Zafar Usmani, MD, MBA
Andrew D Zelenetz, MD, PhD

Meet The Professor Optimizing the Selection and Sequencing of Therapy for Patients with HER2-Positive Breast Cancer

Erika Hamilton, MD

Director, Breast and Gynecologic Research Program
Sarah Cannon Research Institute/Tennessee Oncology
Nashville, Tennessee

FDA Approves Pembrolizumab Combination for the First-Line Treatment of Cervical Cancer Press Release: October 13, 2021

"The Food and Drug Administration approved pembrolizumab in combination with chemotherapy, with or without bevacizumab, for patients with persistent, recurrent or metastatic cervical cancer whose tumors express PD-L1 (CPS ≥1), as determined by an FDA-approved test.

FDA also granted regular approval to pembrolizumab as a single agent for patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS ≥1) as determined by an FDA-approved test. In June 2018, FDA had granted accelerated approval to this indication with the companion diagnostic, PD-L1 IHC 22C3 pharmDx.

KEYNOTE-826 (NCT03635567), a multicenter, randomized, double-blind, placebo-controlled trial... enrolled 617 patients with persistent, recurrent, or first-line metastatic cervical cancer who had not been treated with chemotherapy. Patients were enrolled irrespective of PD-L1 expression status. Patients were randomized (1:1) to pembrolizumab 200 mg plus chemotherapy with or without bevacizumab or placebo plus chemotherapy with or without bevacizumab. Pembrolizumab was continued until disease progression, unacceptable toxicity, or 24 months of treatment."

FDA Approves Adjuvant Abemaciclib with Endocrine Therapy for Resected High-Risk Early Breast Cancer Press Release: October 13, 2021

"The FDA approved abemaciclib plus endocrine therapy (ET) as adjuvant treatment for patients with hormone receptor (HR)-positive, HER2-negative, node-positive early breast cancer who are at high risk of recurrence and have a Ki-67 score of 20% or greater.

Results of the open-label, multicenter phase 3 monarchE trial (NCT03155997) support the FDA's decision. Patients with HR-positive, HER2-negative resected early breast cancer and with clinical and pathological features associated with a high-risk of disease recurrence were randomized in a 1:1 fashion to receive 2 years of abemaciclib 150 mg twice per day plus ET or ET alone, with adjuvant ET continuing for up to 10 years as recommended by their treating clinician.

Abemaciclib resulted in an improvement in the primary end point of invasive disease-free survival (IDFS)."

Nick Leasure, MD
Oncologist at Tower Health Reading
Co-Director of Multidisciplinary
Breast Clinic
Hematology/Oncology Fellowship
Program Director
West Reading, Pennsylvania

Estelamari Rodriguez, MD, MPH
Voluntary Assistant Professor of Clinical
Medicine
Associate Director, Community Outreach
Sylvester Comprehensive Cancer Center
University of Miami Miller School of
Medicine
Miami, Florida

Kapisthalam (KS) Kumar, MD
Physician Partner
Florida Cancer Specialists and
Research Institute
New Port Richey, Florida

Debra Patt, MD, PhD, MBA
Executive Vice President, Policy and
Strategic Initiatives
Texas Oncology
Austin, Texas

Ruth O'Regan, MD
Chair, Department of Medicine
Charles A Dewey Professor of Medicine
University of Rochester
Rochester, New York

Meet The Professor with Dr Hamilton

Introduction

MODULE 1: Case Presentations

- Dr Leasure: A 50-year-old woman with metastatic HER2-positive breast cancer
- Dr Rodriguez: A 56-year-old woman with metastatic ER/PR-negative, HER2-positive breast cancer
- Dr Kumar: Three patients with metastatic HER2-positive disease
- Dr Leasure: A 43-year-old woman with localized ER/PR-negative, HER2-positive breast cancer
- Dr O'Regan: A 39-year-old woman with localized triple-positive breast cancer
- Dr Leasure: A 47-year-old woman with localized ER/PR-positive, HER2-positive breast cancer and residual disease
- Dr Patt: A 60-year-old woman with high-risk, localized ER-positive, HER2-positive breast cancer

MODULE 2: Journal Club with Dr Hamilton

MODULE 3: Beyond the Guidelines

MODULE 4: Key Data Sets

Meet The Professor with Dr Hamilton

Introduction

MODULE 1: Case Presentations

- Dr Leasure: A 50-year-old woman with metastatic HER2-positive breast cancer
- Dr Rodriguez: A 56-year-old woman with metastatic ER/PR-negative, HER2-positive breast cancer
- Dr Kumar: Three patients with metastatic HER2-positive disease
- Dr Leasure: A 43-year-old woman with localized ER/PR-negative, HER2-positive breast cancer
- Dr O'Regan: A 39-year-old woman with localized triple-positive breast cancer
- Dr Leasure: A 47-year-old woman with localized ER/PR-positive, HER2-positive breast cancer and residual disease
- Dr Patt: A 60-year-old woman with high-risk, localized ER-positive, HER2-positive breast cancer

MODULE 2: Journal Club with Dr Hamilton

MODULE 3: Beyond the Guidelines

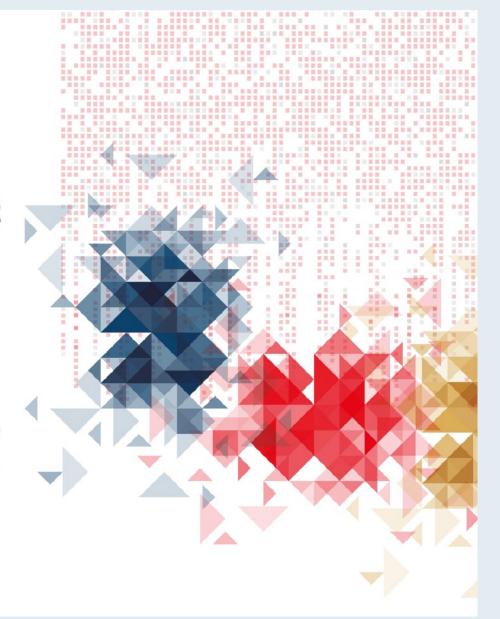
MODULE 4: Key Data Sets

Trastuzumab Deruxtecan Significantly Improved PFS Over T-DM1 for HER2-Positive Metastatic Breast Cancer Press Release – August 9, 2021

"Trastuzumab deruxtecan demonstrated superior progression-free survival (PFS) outcomes over trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer, based on the phase 3 DESTINY-Breast03 trial (NCT03529110). The study's planned interim analysis identified a statistically significant and clinically meaningful improvement in the primary end point of PFS as assessed by an Independent Data Monitoring Committee (IDMC) for patients with HER2-positive, unresectable and/or metastatic breast cancer who received prior treatment with trastuzumab and a taxane.

Approximately 500 patients were enrolled in the DESTINY-Breast03 trial, who were randomized to either the experimental trastuzumab deruxtecan arm or the comparator T-DM1 arm. The primary end point was PFS assessed by IDMC, with secondary end points including overall survival (OS), objective response rate (ORR), duration of response, and PFS based on investigator assessment.

While patients treated with trastuzumab deruxtecan trended toward OS improvement, the data were immature. Furthermore, the safety profile was consistent with previously reported data regarding trastuzumab deruxtecan, with no new safety signals or grade 4/5 treatment-related interstitial lung disease events observed."

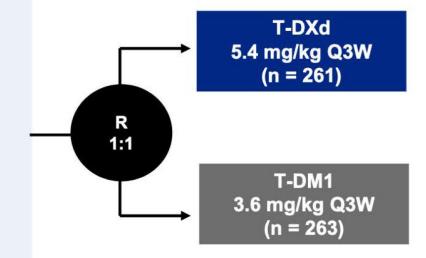


Trastuzumab Deruxtecan (T-DXd) vs Trastuzumab Emtansine (T-DM1) in Patients With HER2+ Metastatic Breast Cancer: Results of the Randomized, Phase 3 Study DESTINY-Breast03

Javier Cortés, MDa, Sung-Bae Kim, Wei-Pang Chung, Seock-Ah Im, Yeon Hee Park, Roberto Hegg, Min-Hwan Kim, Ling-Ming Tseng, Vanessa Petry, Chi-Feng Chung, Hiroji Iwata, Erika Hamilton, Giuseppe Curigliano, Binghe Xu, Caleb Lee, Yali Liu, Jillian Cathcart, Emarjola Bako, Sunil Verma, Sara Hurvitz On behalf of the DESTINY-Breast03 investigators

^aMedical Oncology, International Breast Cancer Center (IBCC), Quironsalud Group, and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain.

DESTINY-Breast03 Phase III Trial Schema


An open-label, multicenter study (NCT03529110)

Patients

- Unresectable or metastatic HER2-positive^a breast cancer
- Previously treated with trastuzumab and taxane in advanced/metastatic setting^b
- Could have clinically stable, treated brain metastases

Stratification factors

- Hormone receptor status
- Prior treatment with pertuzumab
- History of visceral disease

Primary endpoint

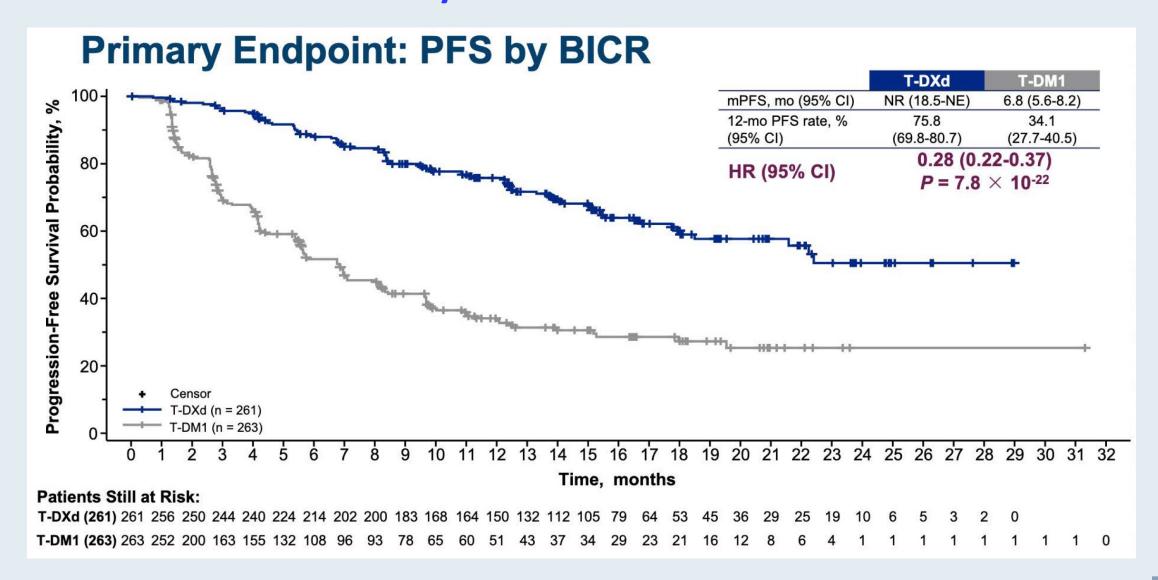
PFS (BICR)

Key secondary endpoint

OS

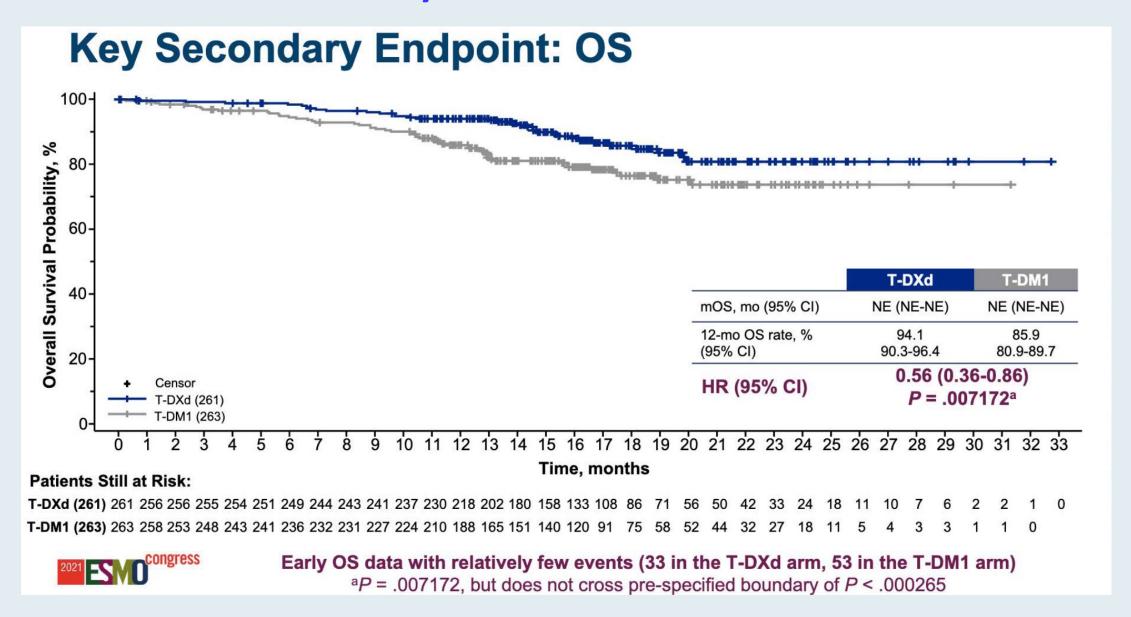
Secondary endpoints

- ORR (BICR and investigator)
- DOR (BICR)
- PFS (investigator)
- Safety


Interim analysis for PFS (data cutoff: May 21, 2021)

- Efficacy boundary for superiority: P < 0.000204 (based on 245 events)
- IDMC recommendation to unblind study (July 30, 2021)

Key secondary endpoint, OS: boundary for efficacy: P < 0.000265 (based on 86 events)



DESTINY-Breast03: PFS by BICR

DESTINY-Breast03: OS by BICR

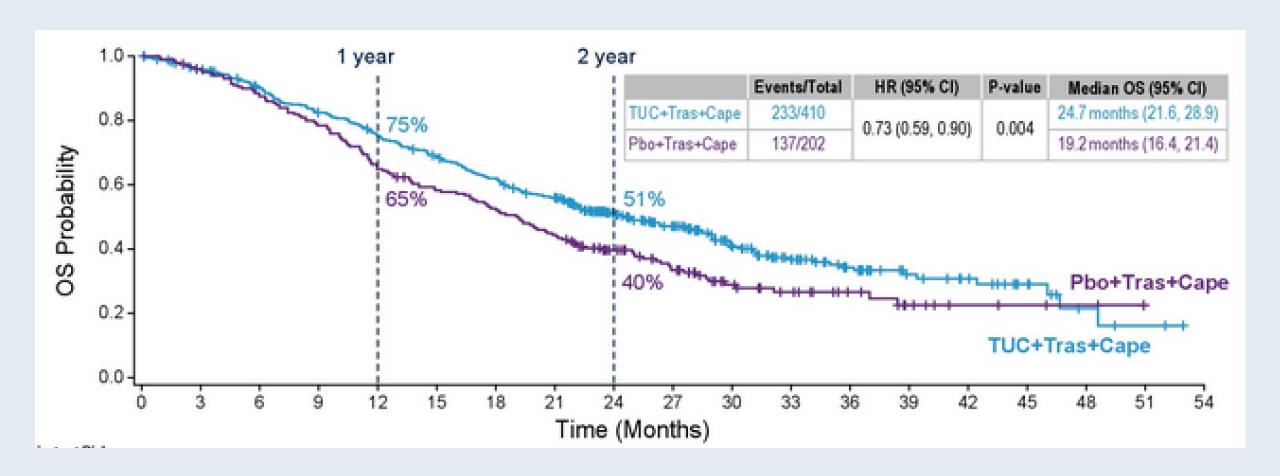
DESTINY-Breast03: Adverse Events of Special Interest

Adjudicated as drug-related ILD/pneumonitis ^a , n (%)									
n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade			
T-DXd (n = 257)	7 (2.7)	18 (7.0)	2 (0.8)	0	0	27 (10.5)			
T-DM1 (n = 261)	4 (1.5)	1 (0.4)	0	0	0	5 (1.9)			

There were no grade 4 or 5 adjudicated drug-related ILD/pneumonitis events observed with T-DXd

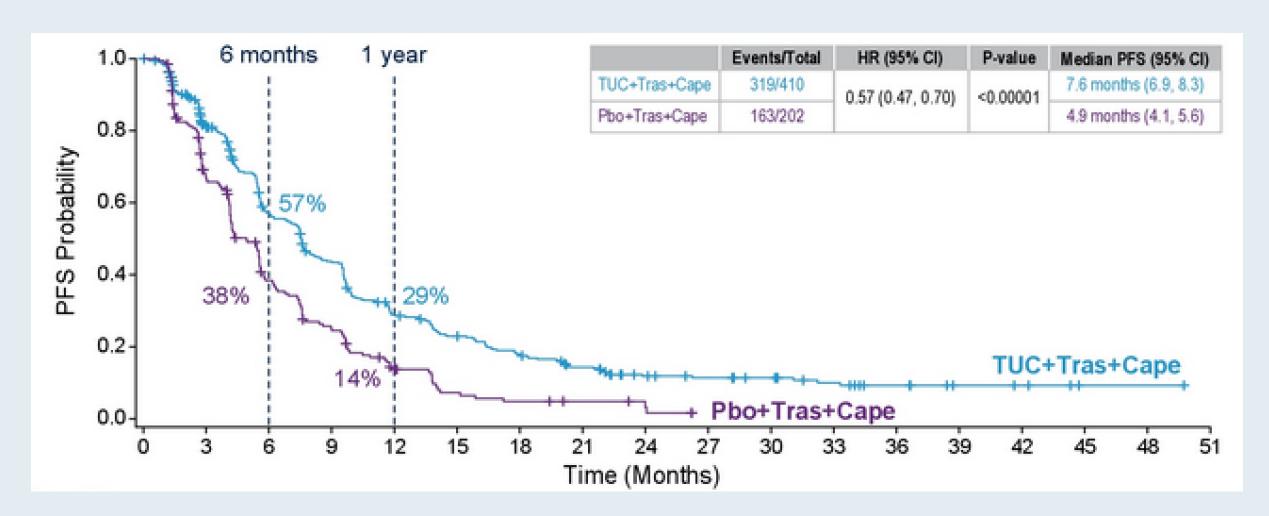
LVEF decrease, n (%)									
n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5	Any Grade			
T-DXd (n = 257)	1 (0.4)b	6 (2.3) ^c	0	0	0	7 (2.7)			
T-DM1 (n = 261)	0	1 (0.4) ^c	0	0	0	1 (0.4)			

 In the T-DXd arm, all reported adverse events of LVEF decrease were asymptomatic and no cases of cardiac failure occurred


Updated Results of Tucatinib versus Placebo Added to Trastuzumab and Capecitabine for Patients with Pretreated HER2+ Metastatic Breast Cancer with and without Brain Metastases (HER2CLIMB)

Curigliano G et al.

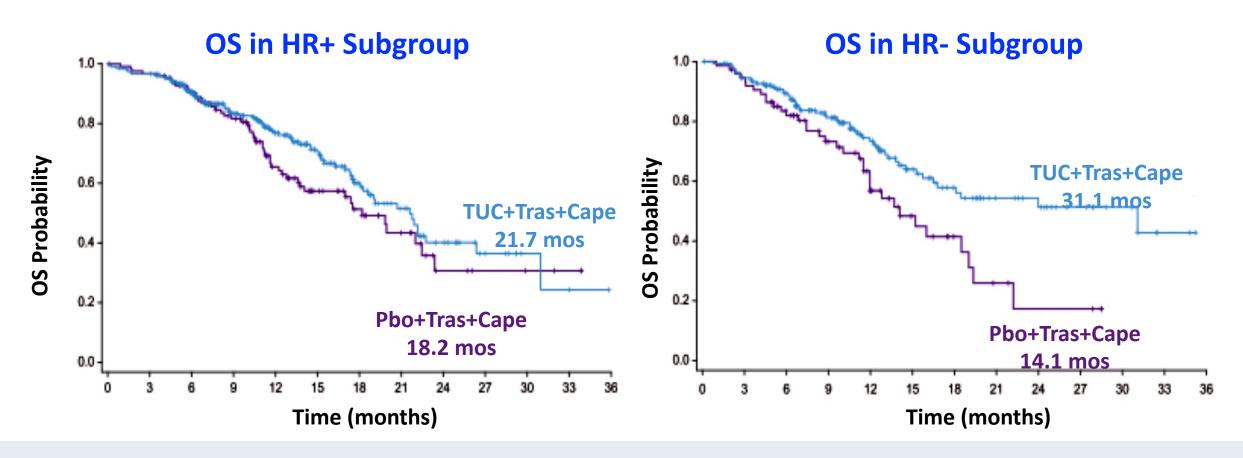
ASCO 2021; Abstract 1043.



HER2CLIMB: Overall Survival

HER2CLIMB: Progression-Free Survival

Tucatinib vs Placebo in Combination with Trastuzumab and Capecitabine for Patients with Locally Advanced Unresectable or HER2-Positive Metastatic Breast Cancer (HER2CLIMB): Outcomes by Hormone Receptor Status


Hamilton E et al.

SABCS 2020; Abstract PD3-08.

OS by HR Status in the Total Study Population

 Clinically meaningful improvement of OS was observed in patients on the tucatinib arm regardless of hormone receptor status.

HER2CLIMB: Safety Outcomes

	Tucatinib (n = 404)		Placebo (n = 197)	
Select AE	Any grade	Grade ≥3	Any grade	Grade ≥3
Any	99.3%	55.2%	97.0%	48.7%
Diarrhea	80.9%	12.9%	53.3%	8.6%
PPE syndrome	63.4%	13.1%	52.8%	9.1%
Nausea	58.4%	3.7%	43.7%	3.0%
Fatigue	45.0%	4.7%	43.1%	4.1%
Vomiting	35.9%	3.0%	25.4%	3.6%
Stomatitis	25.5%	2.5%	14.2%	0.5%
Increased AST	21.3%	4.5%	11.2%	0.5%
Increased ALT	20.0%	5.4%	6.6%	0.5%

Select Trials in Progress for HER2-Positive Breast Cancer

• ESMO 2021: 330TiP Trastuzumab deruxtecan (T-DXd; DS-8201) in HER2-positive (HER2+) and HER2-low expressing (HER-LE) metastatic breast cancer (MBC) with brain metastases (BM) and/or leptomeningeal carcinomatosis (LMC): DEBBRAH

Presenter: Marta Vaz Batista

• ESMO 2021: 329TiP KATE3 – A phase III study of trastuzumab emtansine (T-DM1) in combination with atezolizumab or placebo in patients with previously treated HER2-positive and PD-L1-positive locally advanced or metastatic breast cancer

Presenter: Sherene Loi

• ESMO 2021: 328TiP Phase III study of trastuzumab deruxtecan (T-DXd) with or without pertuzumab vs a taxane, trastuzumab and pertuzumab in first-line (1L), human epidermal growth factor receptor 2-positive (HER2+) metastatic breast cancer (mBC): DESTINY-Breast09

Presenter: Sara Tolaney

Select Trials in Progress for HER2-Positive Breast Cancer (Continued)

- ESMO 2021: 331TiP HER2CLIMB-04 Phase II trial of tucatinib + trastuzumab deruxtecan in patients with HER2+ locally advanced or metastatic breast cancer with and without brain metastases Presenter: Lisa Carey
- ESMO 2020: 353TiP HER2CLIMB-02 A randomized, double-blind, phase III study of tucatinib or placebo with T-DM1 for unresectable locally advanced or metastatic HER2+ breast cancer Presenter: Sara Hurvitz
- ASCO 2021: TPS595 Postneoadjuvant T-DM1 + tucatinib/placebo in patients with residual HER2positive invasive breast cancer
 Presenter: Ciara Catherine Maria O'Sullivan
- ASCO 2021: TPS596 eMonarcHER A phase 3 study of abemaciclib plus standard adjuvant endocrine therapy in patients with HR+, HER2+, node-positive, high-risk early breast cancer Presenter: Sara Tolaney

Select Trials in Progress for HER2-Positive Breast Cancer (Continued)

- ASCO 2021: TPS1099 Phase I/II study of radiation therapy followed by intrathecal trastuzumab/pertuzumab in the management of HER2+ breast leptomeningeal disease Presenter: Kamran A Ahmed
- SABCS 2020: OT-03-01 Trastuzumab deruxtecan (T-DXd; DS-8201) vs trastuzumab emtansine (T-DM1) in high-risk patients with HER2-positive, residual invasive early breast cancer after neoadjuvant therapy: A randomized, phase 3 trial (DESTINY-Breast05) Presenter: Charles Geyer
- SABCS 2020: OT-28-01 HER2CLIMB-02 A randomized, double-blind, phase 3 study of tucatinib or placebo with T-DM1 for unresectable locally-advanced or metastatic HER2+ breast cancer Presenter: Sara Hurvitz
- SABCS 2020: OT-28-03 VICKI A Phase Ib/II, randomized, placebo-controlled, study of venetoclax plus ado-trastuzumab emtansine (T-DM1) in patients (pts) with previously treated HER2-positive locally advanced (LA) or metastatic breast cancer (MBC)
 Presenter: Geoffrey Lindeman

Select Trials in Progress for HER2-Positive Breast Cancer (Continued)

• SABCS 2019: OT2-01-02 TBCRC049 – A phase II non-randomized study to assess the safety and efficacy of the combination of tucatinib and trastuzumab and capecitabine for treatment of leptomeningeal metastases in HER2 positive breast cancer Presenter: Rashmi K Murthy

Meet The Professor with Dr Hamilton

Introduction

MODULE 1: Case Presentations

- Dr Leasure: A 50-year-old woman with metastatic HER2-positive breast cancer
- Dr Rodriguez: A 56-year-old woman with metastatic ER/PR-negative, HER2-positive breast cancer
- Dr Kumar: Three patients with metastatic HER2-positive disease
- Dr Leasure: A 43-year-old woman with localized ER/PR-negative, HER2-positive breast cancer
- Dr O'Regan: A 39-year-old woman with localized triple-positive breast cancer
- Dr Leasure: A 47-year-old woman with localized ER/PR-positive, HER2-positive breast cancer and residual disease
- Dr Patt: A 60-year-old woman with high-risk, localized ER-positive, HER2-positive breast cancer

MODULE 2: Journal Club with Dr Hamilton

MODULE 3: Beyond the Guidelines

MODULE 4: Key Data Sets

Case Presentation – Dr Leasure: A 50-year-old woman with metastatic HER2-positive breast cancer

Dr Nick Leasure

- Presented to hospital with difficulty breathing and hypoxia after having neglected a breast cancer
- Workup revealed extensive liver and lung metastases, and a lesion in the brain; respiratory issues treated with steroids
- Presents at clinic several days later in respiratory extremis
- Taxane with trastuzumab and pertuzumab initiated
- She immediately improved within a week or two of starting therapy
- Brain lesion followed with observation

Case Presentation – Dr Rodriguez: A 56-year-old woman with metastatic ER/PR-negative, HER2-positive breast cancer

Dr Estelamari Rodriguez

- Presented 8 years ago with fatigue, shortness of breath, and abdominal pain
- CT scan revealed extensive metastatic disease to liver, lung, and right breast
- Biopsies confirmed metastatic right breast carcinoma, ER/PR-negative breast cancer,
 HER2-positive by FISH
- Paclitaxel/trastuzumab/pertuzumab → intolerant to paclitaxel due to neuropathy, switched to nab paclitaxel with better tolerance
- Maintenance trastuzumab/pertuzumab

Questions

• What would you have recommended as a first-line regimen for a patient with an ER/PR-negative, HER2-positive breast cancer who's never had prior therapy?

Dr Kumar: Three patients with metastatic HER2-positive disease

Dr KS Kumar

Case Presentation – Dr Leasure: A 43-year-old woman with localized ER/PR-negative, HER2-positive breast cancer

Dr Nick Leasure

- Self-palpated a mass in the upper outer quadrant of the right breast
- Diagnostic mammography: spiculated mass 2.4 cm in size with an adjacent 7 mm nodule
- Biopsy: Grade 3 IDC; ER/PR-negative, strongly HER2-positive
- Imaging of the chest/abdomen/pelvis shows no systemic metastatic disease or axillary adenopathy

Questions

 Would you be comfortable de-escalating chemotherapy in the neoadjuvant setting for this patient?

Case Presentation – Dr Leasure: A 43-year-old woman with localized ER/PR-negative, HER2-positive breast cancer (continued)

Dr Nick Leasure

- Self-palpated a mass in the upper outer quadrant of the right breast
- Diagnostic mammography: spiculated mass 2.4 cm in size with an adjacent 7 mm nodule
- Biopsy: Grade 3 IDC; ER/PR-negative, strongly HER2-positive
- Imaging of the chest/abdomen/pelvis shows no systemic metastatic disease or axillary adenopathy
- Enrolled on ECOG-EA1181 trial of neoadjuvant taxane along with trastuzumab and pertuzumab x 12 cycles

Case Presentation – Dr O'Regan: A 39-year-old woman with localized triple-positive breast cancer

- Late 2019: Diagnosed with clinical stage cT2, N1 triple-positive breast cancer
- Neoadjuvant TCHP → bilateral mastectomies
 - ypT2, N0, ER-positive, PR-positive, HER2-positive
- Adjuvant T-DM1
- Neratinib x 1 year

Questions

- Would you re-check receptors, particularly HER2, on the surgical specimen?
- Would you administer neratinib to a patient such as this woman? How do you manage neratinib-associated diarrhea, and what success have you had with neratinib dose escalation?
- What are your thoughts about why neratinib looks effective in ER-positive but not ER-negative tumors?
- Would you recommend paclitaxel and trastuzumab/pertuzumab based on the German data?

Dr Ruth O'Regan

Case Presentation – Dr Leasure: A 47-year-old woman with localized ER/PR-positive, HER2-positive breast cancer and residual disease

Dr Nick Leasure

- Diagnosed with a Grade 3, 2-cm IDC, ER/PR-positive, HER2 strongly positive by IHC; Ki-67 80%
- Enrolled on EA1181 of neoadjuvant paclitaxel with trastuzumab and pertuzumab x 12 cycles
- Clinical resolution of 2-cm mass, repeat mammography and ultrasound suggested shrinkage of the primary tumor
- Partial mastectomy revealed 7 mm of residual invasive carcinoma and 15 axillary lymph nodes positive for disease

Questions

- Should I offer her T-DM1? Would neratinib be reasonable?
- Given the extent of residual disease, did she get much benefit from the anti-HER2 treatment? Is this really a hormone receptor-positive driven cancer, and should I be thinking more about maximizing her hormonal therapy with ovarian suppression and aromatase inhibitor? Would you consider a CDK inhibitor even though she has HER2-positive disease?

Case Presentation – Dr Patt: A 60-year-old woman with high-risk, localized ER-positive, HER2-positive breast cancer

Dr Debra Patt

- 2011: DCIS, s/p mastectomy
- Past year, patient noticed changes in her right breast, with pinching of the skin in the right lateral outer quadrant, which have increased and become painful
- Biopsy: Invasive cancer, but receptors not available
- Resection: 5.5-cm tumor, ER/PR positive, HER2 amplified; involvement of the dermis and the skeletal muscle
- Plan to administer TCHP followed by re-resection and postmastectomy radiation

Questions

 Are there any other treatments or approaches that may be brought to the table to reduce her risk, such as T-DM1?

Meet The Professor with Dr Hamilton

Introduction

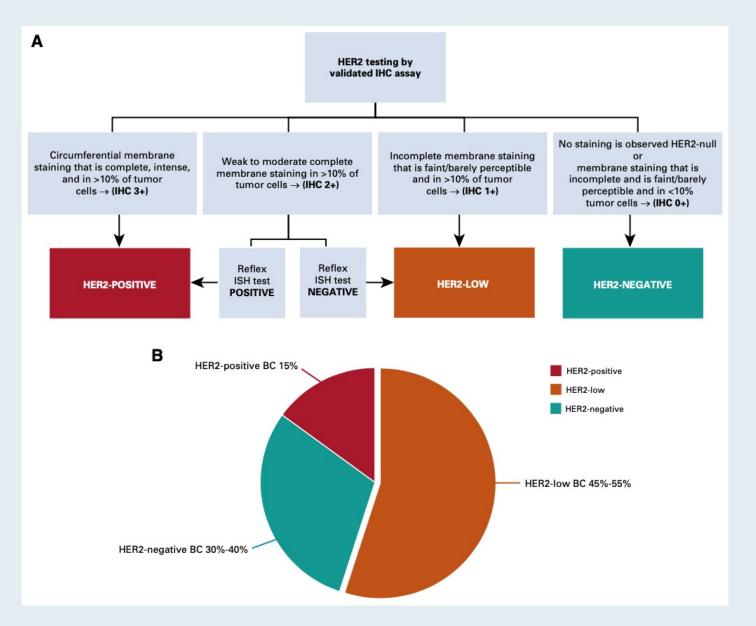
MODULE 1: Case Presentations

- Dr Leasure: A 50-year-old woman with metastatic HER2-positive breast cancer
- Dr Rodriguez: A 56-year-old woman with metastatic ER/PR-negative, HER2-positive breast cancer
- Dr Kumar: Three patients with metastatic HER2-positive disease
- Dr Leasure: A 43-year-old woman with localized ER/PR-negative, HER2-positive breast cancer
- Dr O'Regan: A 39-year-old woman with localized triple-positive breast cancer
- Dr Leasure: A 47-year-old woman with localized ER/PR-positive, HER2-positive breast cancer and residual disease
- Dr Patt: A 60-year-old woman with high-risk, localized ER-positive, HER2-positive breast cancer

MODULE 2: Journal Club with Dr Hamilton

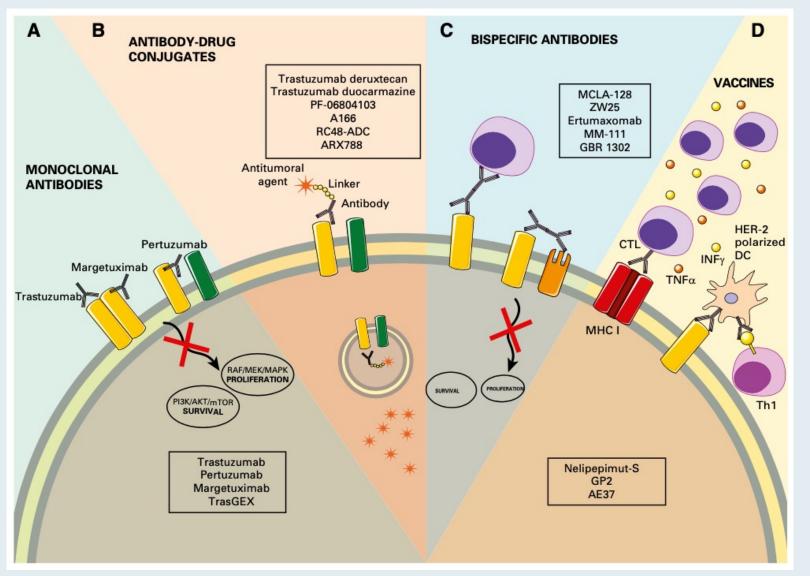
MODULE 3: Beyond the Guidelines

MODULE 4: Key Data Sets


J Clin Oncol 2020;38(17):1951-62.

HER2-Low Breast Cancer: Pathological and Clinical Landscape

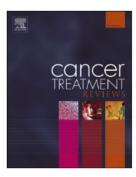
Paolo Tarantino, MD^{1,2}; Erika Hamilton, MD³; Sara M. Tolaney, MD, MPH⁴; Javier Cortes, MD, PhD^{5,6}; Stefania Morganti, MD^{1,2}; Emanuela Ferraro, MD^{1,2}; Antonio Marra, MD^{1,2}; Giulia Viale, MD^{1,2}; Dario Trapani, MD^{1,2}; Fatima Cardoso, MD⁷; Frédérique Penault-Llorca, MD, PhD^{8,9}; Giuseppe Viale, MD^{1,2}; Fabrice Andrè, MD, PhD¹⁰; and Giuseppe Curigliano, MD, PhD^{1,2}



Proposal of an Algorithm for Defining HER2-Low Breast Cancer



Novel Agents and Mechanisms Enabling the Targeting of HER2 Low-Expressing Breast Cancer


Cancer Treatment Reviews 100 (2021) 102286

Contents lists available at ScienceDirect

Cancer Treatment Reviews

journal homepage: www.elsevier.com/locate/ctrv

Targeting HER2 heterogeneity in breast cancer

Erika Hamilton^{a,*}, Mythili Shastry^b, S. Michelle Shiller^c, Rongqin Ren^c

Journal Club with Dr Hamilton

- Andre F et al. Trastuzumab deruxtecan (T-DXd) combinations in patients with HER2-positive advanced or metastatic breast cancer: A phase 1b/2, open-label, multicenter, dose-finding and dose-expansion study (DESTINY-Breast07). ASCO 2021; Abstract TPS1096.
- Hamilton EP et al. Impact of anti-HER2 treatments combined with atezolizumab on the tumor immune microenvironment in early or metastatic breast cancer: Results from a phase Ib study.
 Clin Breast Cancer 2021; [Online ahead of print].
- Okines AFC et al. Management of adverse events in patients with HER2+ metastatic breast cancer treated with tucatinib, trastuzumab, and capecitabine (HER2CLIMB). ASCO 2020; Abstract 1043.
- Hamilton EP et al. Trastuzumab deruxtecan (T-DXd; DS-8201) with nivolumab in patients with HER2-expressing, advanced breast cancer: A 2-part, phase 1b, multicenter, open-label study.
 SABCS 2020; Abstract PD3-07.
- Burris HA et al. A first-in-human study of AO-176, a highly differentiated anti-CD47 antibody, in patients with advanced solid tumors. ASCO 2021; Abstract 2516.

Journal Club with Dr Hamilton – Continued

- Pegram MD et al. First-in-human, phase 1 dose-escalation study of biparatopic anti-HER2 antibody-drug conjugate MEDI4276 in patients with HER2-positive advanced breast or gastric cancer. Mol Cancer Ther 2021;20(8):1442-53.
- Pistilli P et al. Clinical activity of MCLA-128 (zenocutuzumab) in combination with endocrine therapy (ET) in ER+/HER2-low, non-amplified metastatic breast cancer (MBC) patients (pts) with ET-resistant disease who had progressed on a CDK4/6 inhibitor (CDK4/6i). ASCO 2020; Abstract 1037.
- Hamilton EP et al. Clinical activity of MCLA-128 (zenocutuzumab), trastuzumab, and vinorelbine in HER2 amplified metastatic breast cancer (MBC) patients (pts) who had progressed on anti-HER2 ADCs. ASCO 2020; Abstract 3093.

Meet The Professor with Dr Hamilton

Introduction

MODULE 1: Case Presentations

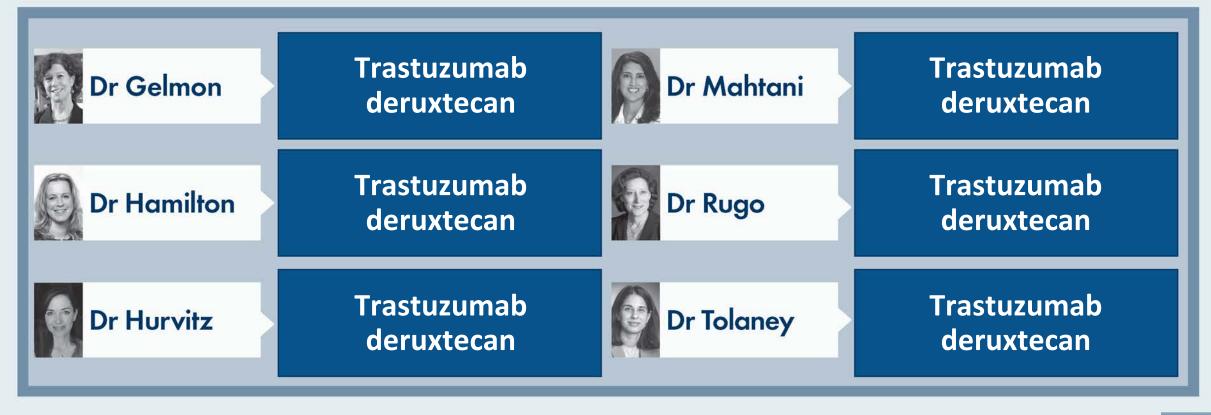
- Dr Leasure: A 50-year-old woman with metastatic HER2-positive breast cancer
- Dr Rodriguez: A 56-year-old woman with metastatic ER/PR-negative, HER2-positive breast cancer
- Dr Kumar: Three patients with metastatic HER2-positive disease
- Dr Leasure: A 43-year-old woman with localized ER/PR-negative, HER2-positive breast cancer
- Dr O'Regan: A 39-year-old woman with localized triple-positive breast cancer
- Dr Leasure: A 47-year-old woman with localized ER/PR-positive, HER2-positive breast cancer and residual disease
- Dr Patt: A 60-year-old woman with high-risk, localized ER-positive, HER2-positive breast cancer

MODULE 2: Journal Club with Dr Hamilton

MODULE 3: Beyond the Guidelines

MODULE 4: Key Data Sets

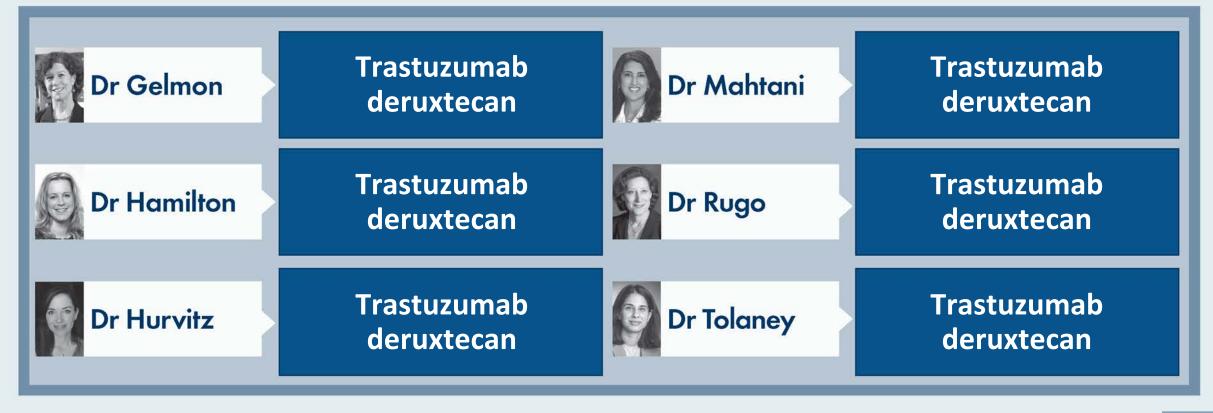
Management of Metastatic HER2-Positive Breast Cancer



A 65-year-old woman with an <u>ER-negative</u>, HER2-positive IDC experiences disease recurrence in the liver <u>6 months</u> after completing <u>neoadjuvant</u> <u>TCHP followed by adjuvant T-DM1</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

- 1. Trastuzumab/pertuzumab/docetaxel
- 2. Neratinib + paclitaxel
- 3. Neratinib + capecitabine
- 4. Tucatinib + trastuzumab/capecitabine
- 5. Trastuzumab deruxtecan
- 6. Trastuzumab + capecitabine
- 7. Other

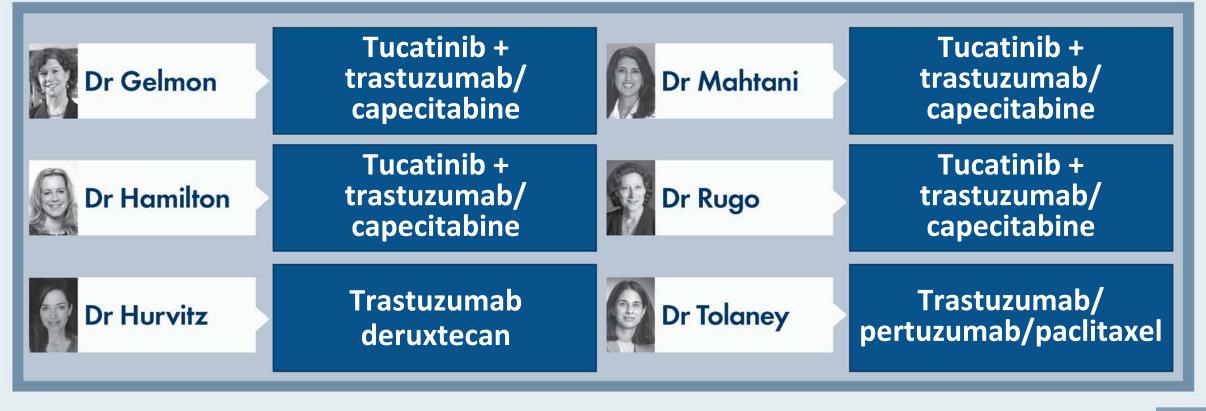
A 65-year-old woman with an <u>ER-negative</u>, HER2-positive IDC experiences disease recurrence in the liver <u>6 months</u> after completing <u>neoadjuvant TCHP followed by adjuvant T-DM1</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?



A 65-year-old woman with an <u>ER-negative</u>, HER2-positive IDC experiences disease recurrence in the liver <u>6 months</u> after completing <u>neoadjuvant TCHP followed by adjuvant trastuzumab/pertuzumab</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

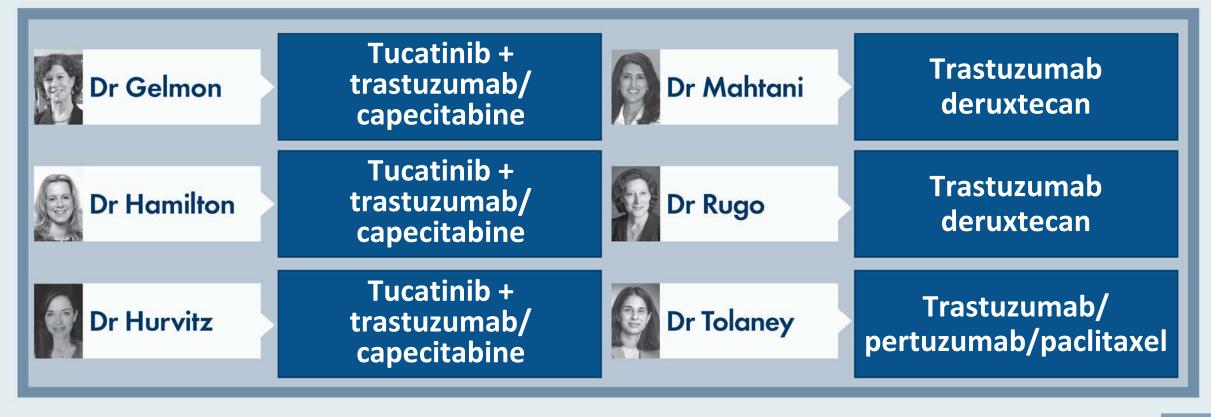
- 1. Trastuzumab/pertuzumab/docetaxel
- 2. T-DM1
- 3. Neratinib + paclitaxel
- 4. Neratinib + capecitabine
- 5. Tucatinib + trastuzumab/capecitabine
- 6. Trastuzumab deruxtecan
- 7. Trastuzumab + capecitabine
- 8. Other

A 65-year-old woman with an <u>ER-negative</u>, HER2-positive IDC experiences disease recurrence in the liver <u>6 months</u> after completing <u>neoadjuvant TCHP followed by adjuvant</u> <u>trastuzumab/pertuzumab</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

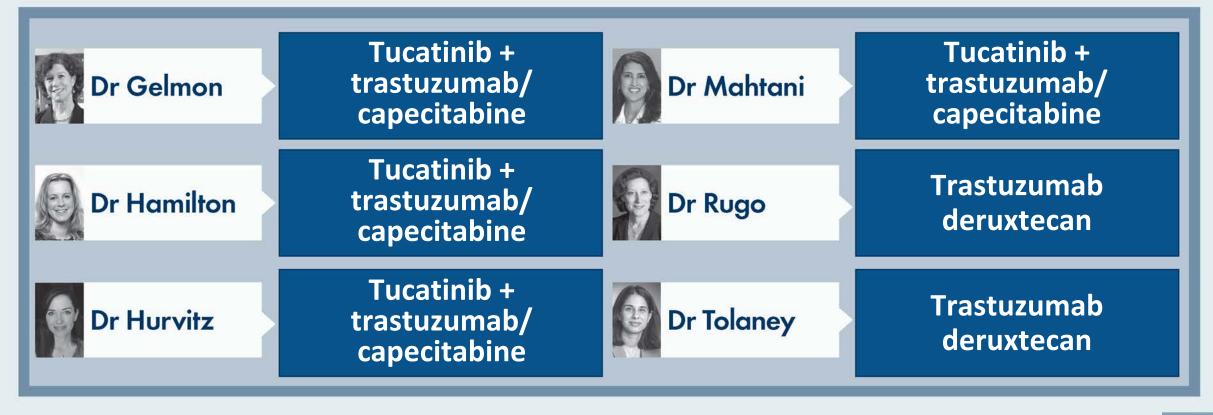


A 65-year-old woman with an <u>ER-negative</u>, HER2-positive IDC experiences disease recurrence in the liver and brain <u>18 months</u> after completing <u>neoadjuvant TCHP followed by adjuvant trastuzumab/pertuzumab</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

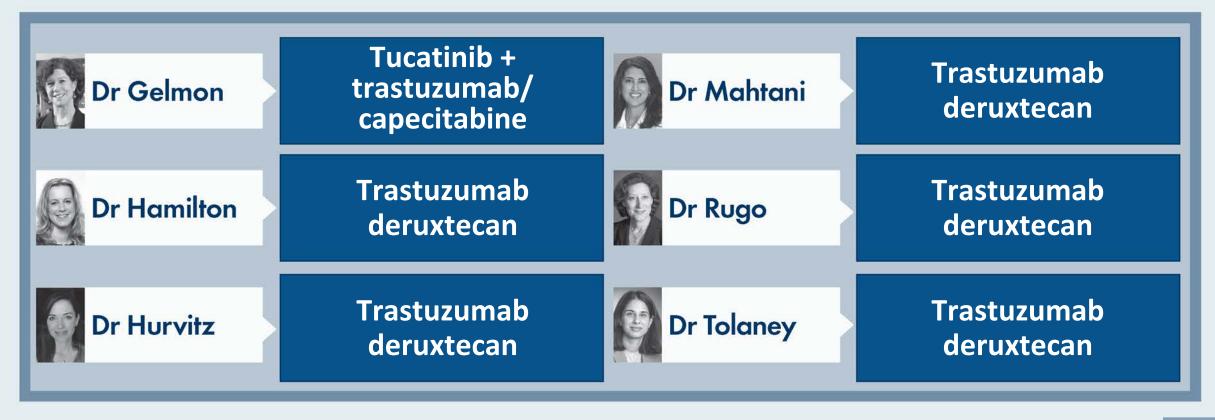
- 1. Trastuzumab/pertuzumab/docetaxel
- 2. T-DM1
- 3. Neratinib + paclitaxel
- 4. Neratinib + capecitabine
- 5. Tucatinib + trastuzumab/capecitabine
- 6. Trastuzumab deruxtecan
- 7. Trastuzumab + capecitabine
- 8. Other



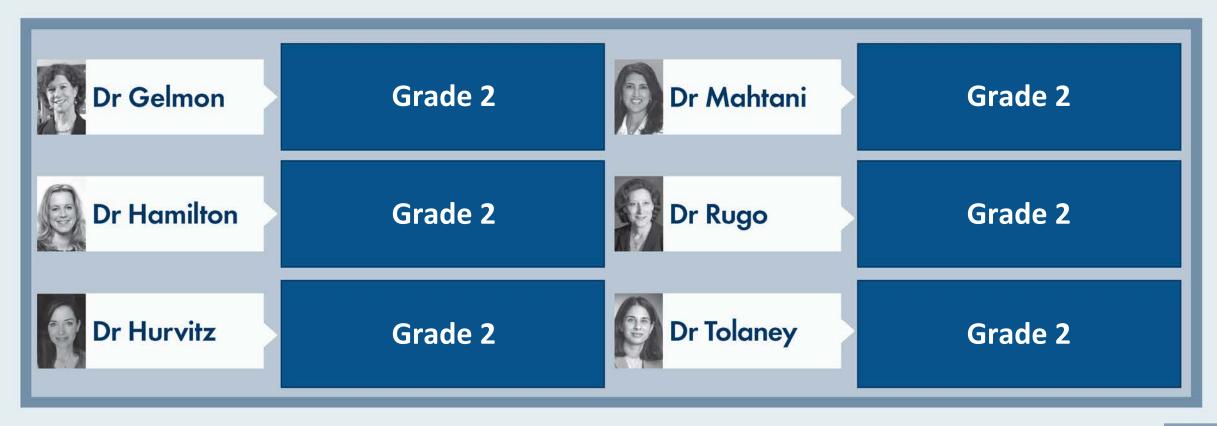
A 65-year-old woman with an <u>ER-negative</u>, HER2-positive IDC experiences disease recurrence in the liver and brain <u>18 months</u> after completing <u>neoadjuvant TCHP followed by adjuvant trastuzumab/pertuzumab</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?



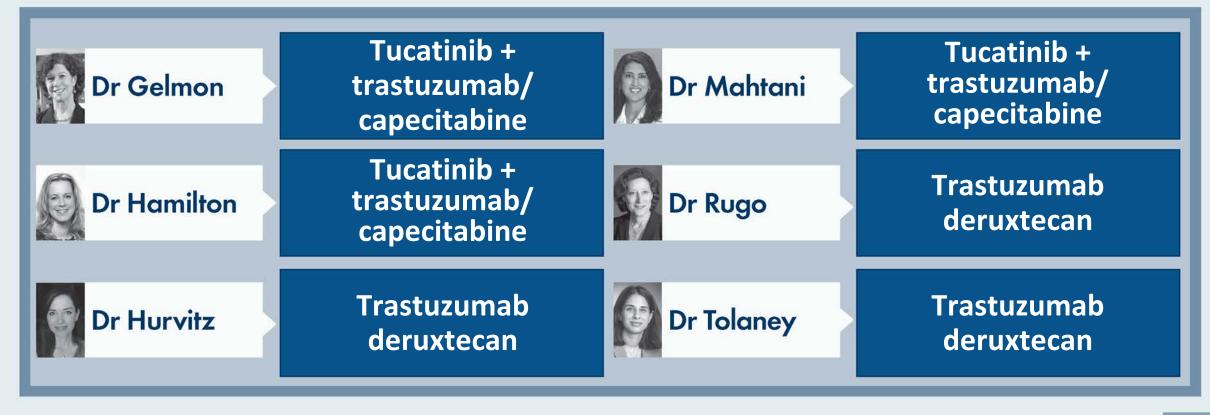
A 65-year-old woman with an ER-positive, HER2-positive IDC experiences recurrence in the liver and brain 18 months after completing neoadjuvant TCHP followed by adjuvant trastuzumab/pertuzumab and postadjuvant neratinib and is receiving adjuvant anastrozole. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?



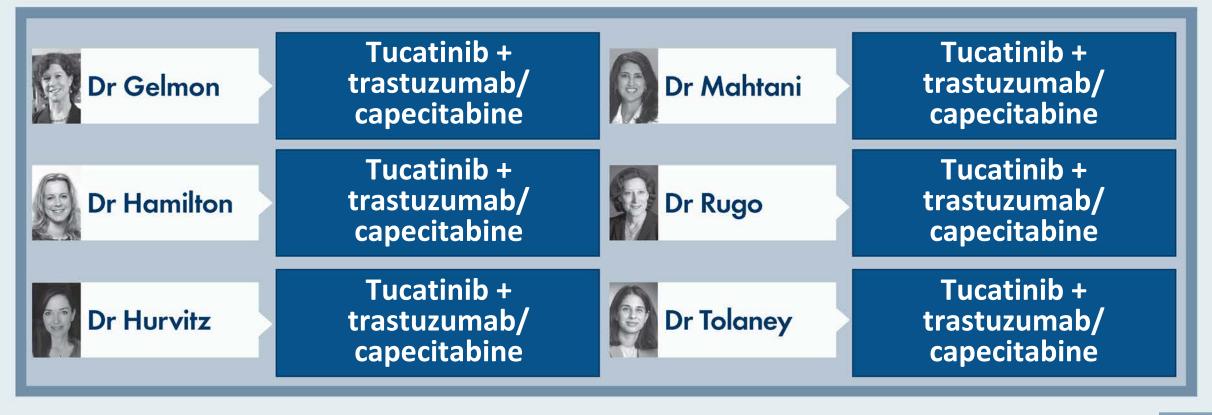
A 65-year-old woman with <u>ER-negative</u>, HER2-positive mBC receives <u>first-line THP followed by second-line T-DM1</u> on disease progression. She now presents with further <u>low-volume</u>, <u>asymptomatic</u> progression but <u>no evidence of CNS involvement</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?



A 65-year-old woman with <u>ER-negative</u>, HER2-positive mBC receives <u>first-line</u> <u>THP followed by second-line T-DM1</u> on disease progression. She now presents with further <u>high-volume</u>, <u>moderately symptomatic</u> progression but <u>no evidence of CNS involvement</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

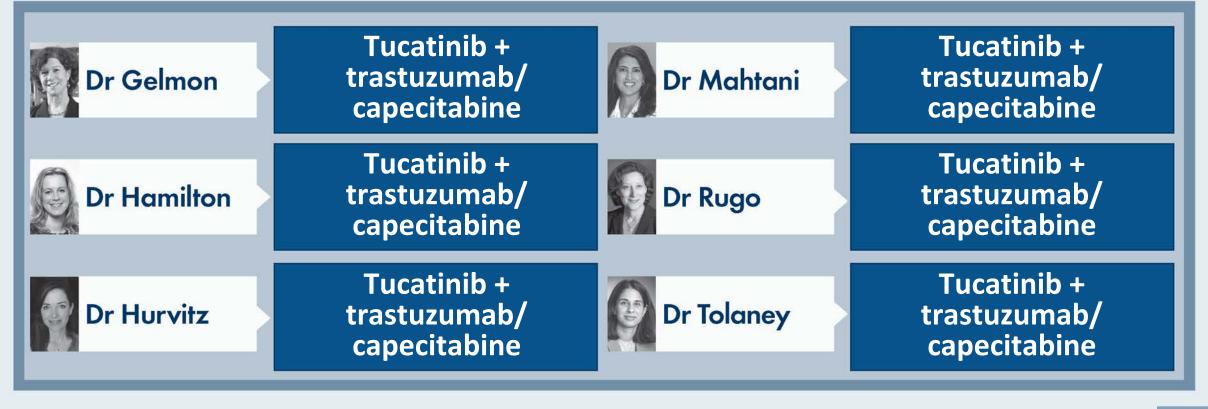


At what grade of ILD would you permanently discontinue therapy with trastuzumab deruxtecan for a patient with HER2-positive mBC?



A 65-year-old woman with <u>ER-negative</u>, HER2-positive mBC receives <u>first-line THP</u> but after 1 year experiences disease progression, including <u>1 brain metastasis that is resected</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend next?

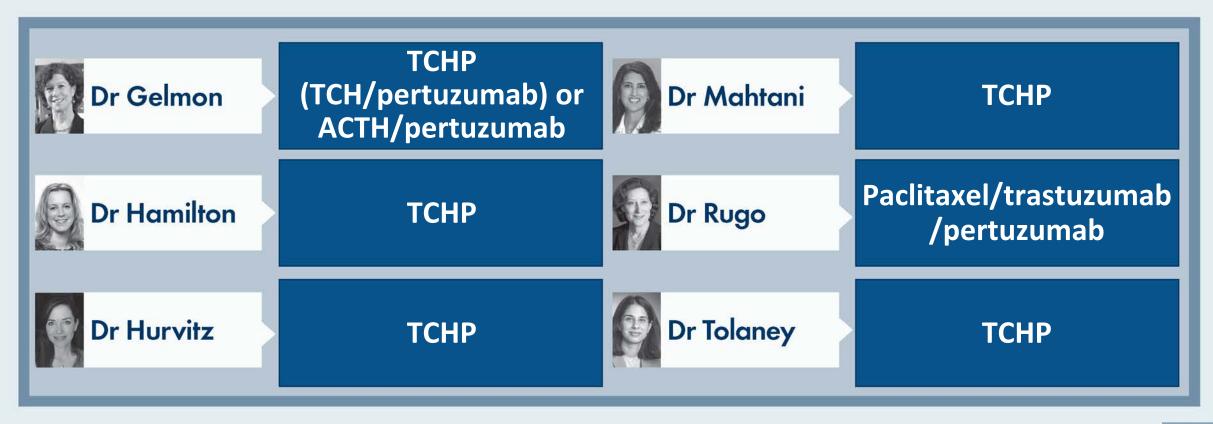
A 65-year-old woman with <u>ER-negative</u>, HER2-positive mBC receives <u>first-line THP</u> but after 1 year experiences disease progression, including <u>multiple brain metastases</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend next?



A 65-year-old woman with <u>ER-negative</u>, HER2-positive mBC receives <u>first-line THP followed by second-line T-DM1</u> on disease progression. She now presents with a <u>single brain metastasis that is resected with no other evidence of progression</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

A 65-year-old woman with <u>ER-negative</u>, HER2-positive mBC receives <u>first-line THP followed by second-line T-DM1</u> on disease progression. She now presents with <u>further disease progression</u>, <u>including multiple new brain metastases</u>. Regulatory and reimbursement issues aside, what systemic treatment would you recommend?

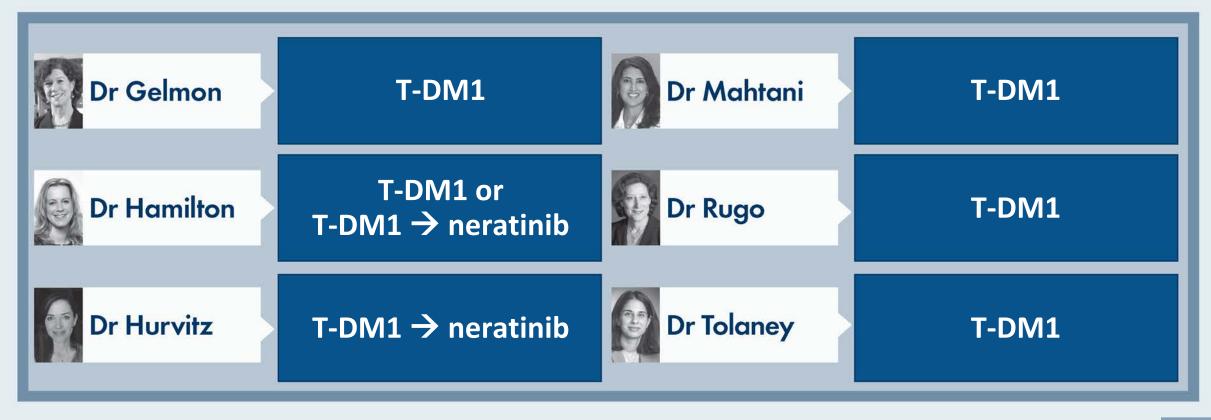
Localized HER2-Positive Breast Cancer



Which neoadjuvant systemic therapy, if any, would you generally recommend for a 65-year-old patient with a <u>2.5-cm</u> ER-negative, HER2-positive, clinically <u>node-negative</u> IDC?

- 1. None
- 2. TCHP
- 3. TCH
- 4. Paclitaxel/trastuzumab
- 5. Paclitaxel/trastuzumab/pertuzumab
- 6. ACTH
- 7. Other

Which neoadjuvant systemic therapy, if any, would you generally recommend for a 65-year-old patient with a <u>2.5-cm</u> ER-negative, HER2-positive, clinically <u>node-negative</u> IDC?



A 65-year-old woman presents with a <u>3.4-cm</u> ER-positive, HER2-positive IDC with <u>biopsy-proven axillary nodes</u>, receives neoadjuvant TCHP and at surgery is found to have <u>0.5 cm of residual tumor</u> in the breast and no disease in the nodes. Regulatory and reimbursement issues aside, what adjuvant anti-HER2 therapy would you recommend?

- 1. Trastuzumab
- 2. Trastuzumab/pertuzumab
- 3. T-DM1
- 4. Trastuzumab → neratinib
- 5. Trastuzumab/pertuzumab → neratinib
- 6. T-DM1 \rightarrow neratinib
- 7. Other

A 65-year-old woman presents with a <u>3.4-cm</u> ER-positive, HER2-positive IDC with <u>biopsy-proven axillary nodes</u>, receives neoadjuvant TCHP and at surgery is found to have <u>0.5 cm of residual tumor</u> in the breast and no disease in the nodes. Regulatory and reimbursement issues aside, what adjuvant anti-HER2 therapy would you recommend?

Meet The Professor with Dr Hamilton

Introduction

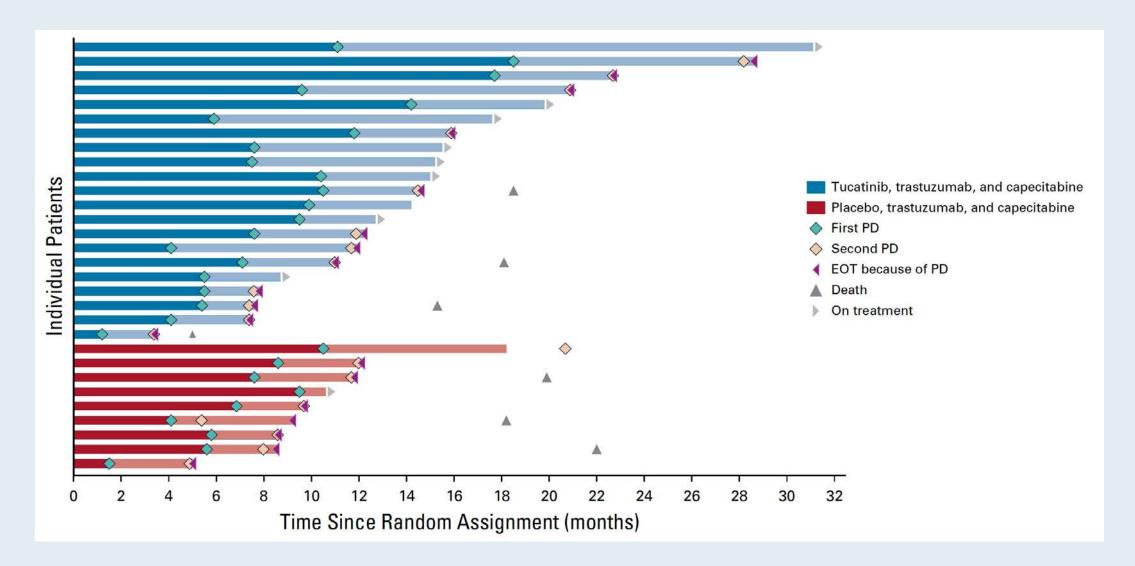
MODULE 1: Case Presentations

- Dr Leasure: A 50-year-old woman with metastatic HER2-positive breast cancer
- Dr Rodriguez: A 56-year-old woman with metastatic ER/PR-negative, HER2-positive breast cancer
- Dr Kumar: Three patients with metastatic HER2-positive disease
- Dr Leasure: A 43-year-old woman with localized ER/PR-negative, HER2-positive breast cancer
- Dr O'Regan: A 39-year-old woman with localized triple-positive breast cancer
- Dr Leasure: A 47-year-old woman with localized ER/PR-positive, HER2-positive breast cancer and residual disease
- Dr Patt: A 60-year-old woman with high-risk, localized ER-positive, HER2-positive breast cancer

MODULE 2: Journal Club with Dr Hamilton

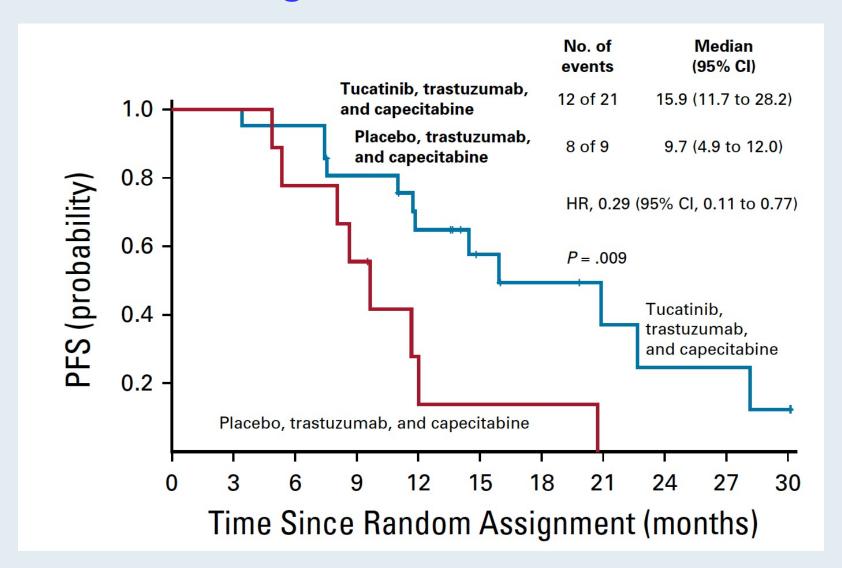
MODULE 3: Beyond the Guidelines

Management of Metastatic HER2-Positive Breast Cancer

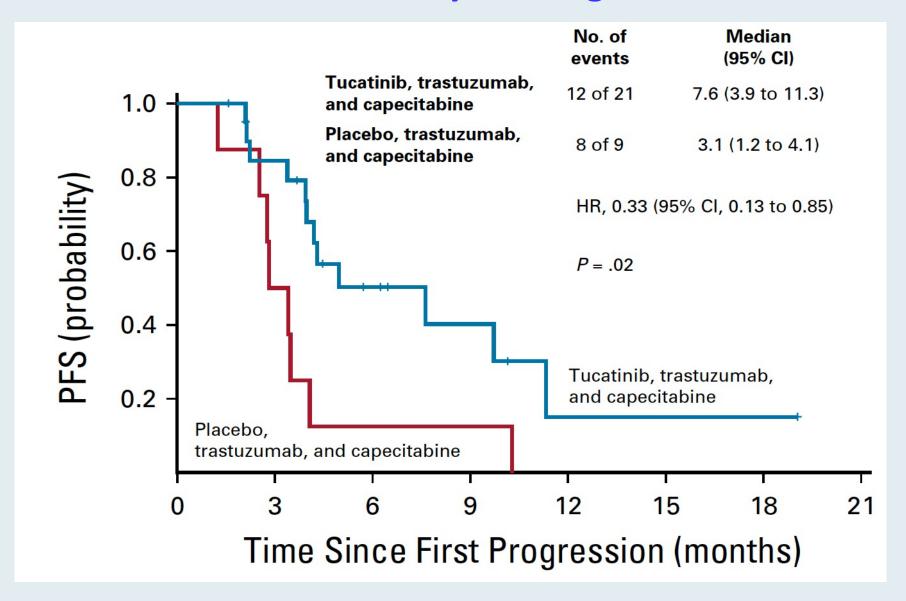


Intracranial Efficacy and Survival With Tucatinib Plus Trastuzumab and Capecitabine for Previously Treated HER2-Positive Breast Cancer With Brain Metastases in the HER2CLIMB Trial

Nancy U. Lin, MD¹; Virginia Borges, MMSc, MD²; Carey Anders, MD³; Rashmi K. Murthy, MD, MBE⁴; Elisavet Paplomata, MD⁵; Erika Hamilton, MD⁶; Sara Hurvitz, MD⁷; Sherene Loi, MD, PhD⁰; Alicia Okines, MBChB, MD⁰; Vandana Abramson, MD¹⁰; Philippe L. Bedard, MD¹¹; Mafalda Oliveira, MD, PhD¹²; Volkmar Mueller, MD¹³; Amelia Zelnak, MD¹⁴; Michael P. DiGiovanna, MD, PhD¹⁵; Thomas Bachelot, MD¹⁶; A. Jo Chien, MD¹⁷; Ruth OʻRegan, MD⁵; Andrew Wardley, MBChB, MSc, MD¹⁰; Alison Conlin, MD, MPH¹⁰; David Cameron, MD, MA²⁰; Lisa Carey, MD²¹; Giuseppe Curigliano, MD, PhD²²; Karen Gelmon, MD²³; Sibylle Loibl, MD, PhD²⁴; JoAl Mayor, PharmD²⁵; Suzanne McGoldrick, MD, MPH²⁵; Xuebei An, PhD²⁵; and Eric P. Winer, MD¹

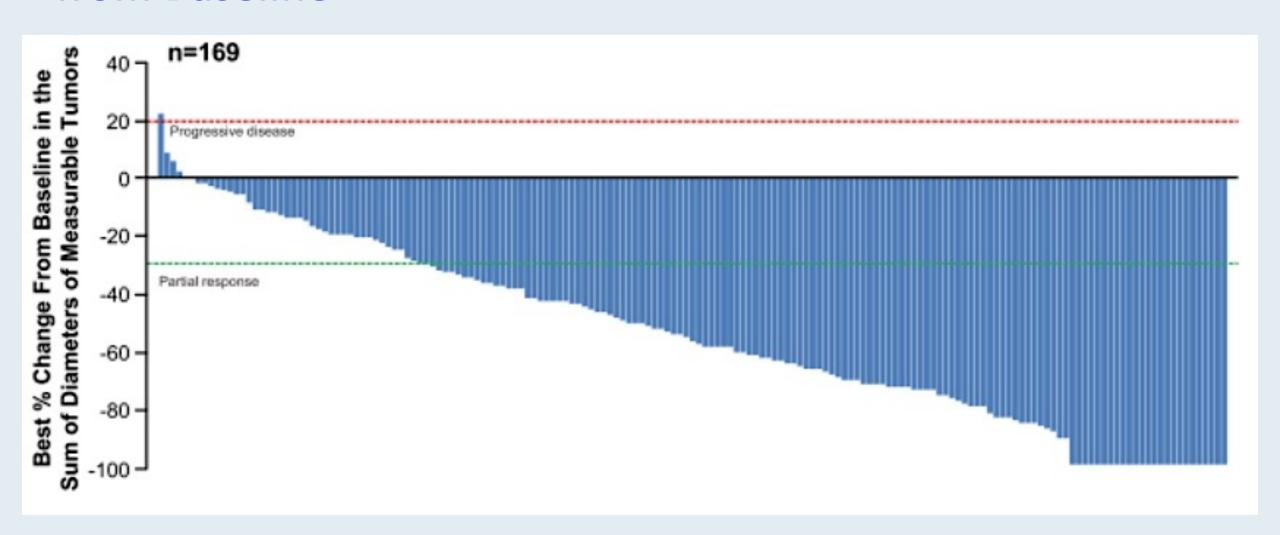


Duration of Treatment



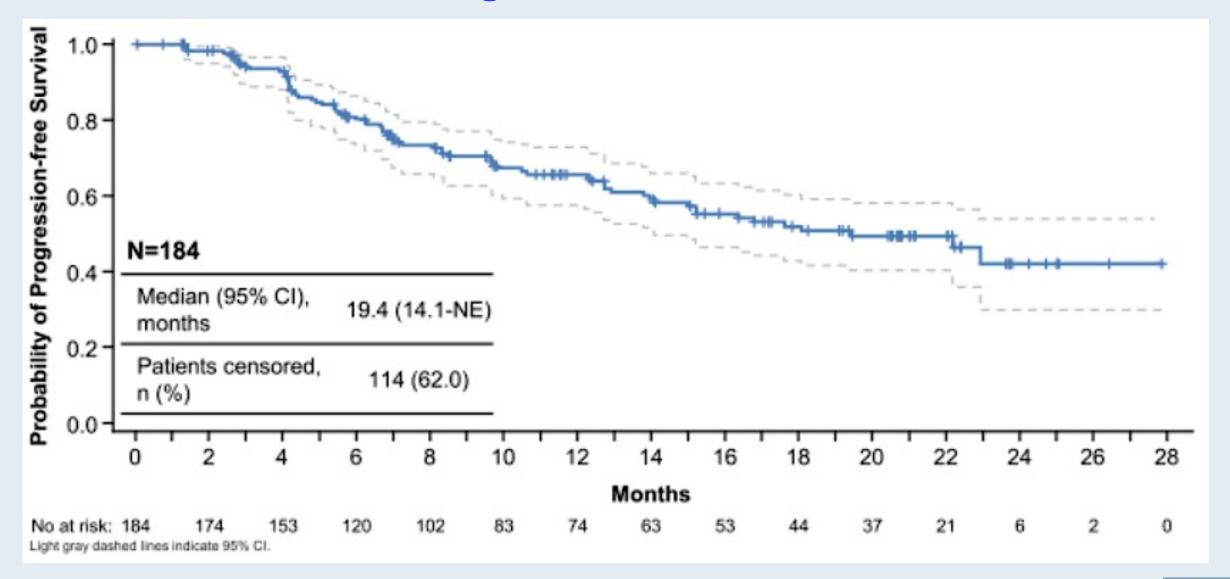
Time from Random Assignment to Second Disease Progression by Investigator Assessment or Death

Time from First PD to Second PD by Investigator Assessment or Death

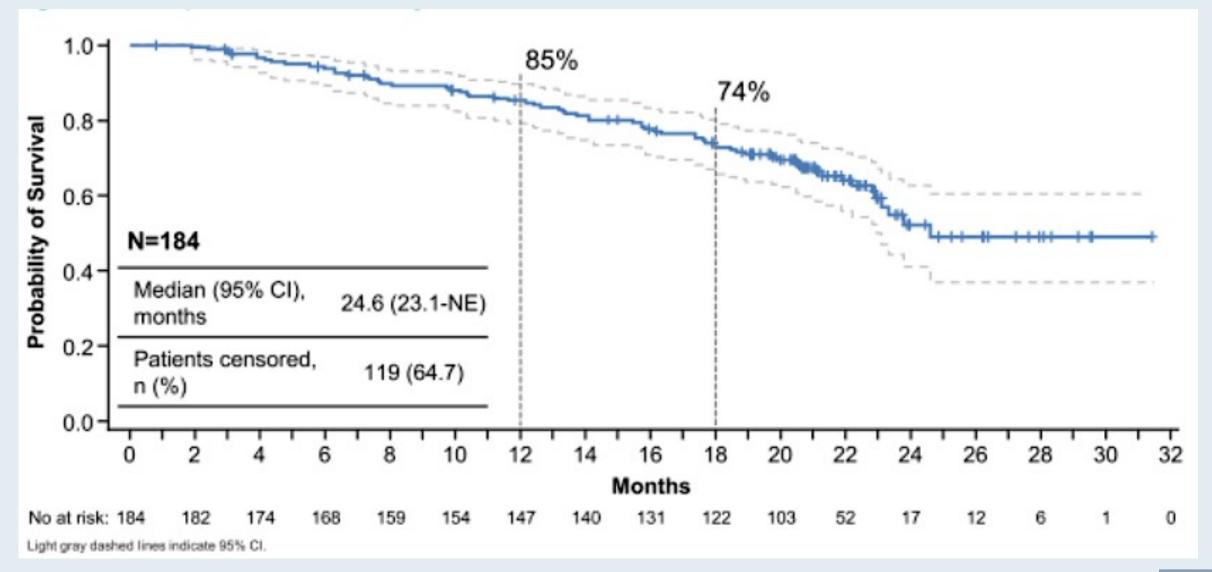

Updated Results from DESTINY-Breast01, a Phase 2 Trial of Trastuzumab Deruxtecan (T-DXd) in HER2-Positive Metastatic Breast Cancer

Modi S et al.

SABCS 2020; Abstract PD3-06.



DESTINY-Breast01: Best Percent Change in Tumor Size from Baseline



DESTINY-Breast01: Progression-Free Survival

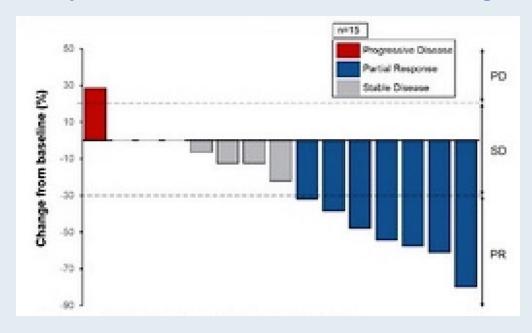
DESTINY-Breast01: Overall Survival

DESTINY-Breast01: Safety

AEs of special interest (n = 184)	All grades	Grades 3 and 4
Interstitial lung disease	25 (13.6%)	1 (0.5%)
Prolonged QT interval	9 (4.9%)	2 (1.1%)
Infusion-related reaction	4 (2.2%)	0
Decreased left ventricular ejection fraction	3 (1.6%)	1 (0.5%)

• Most common Grade ≥3 AEs were decreased neutrophil count (21%), anemia (9%) and nausea (8%).

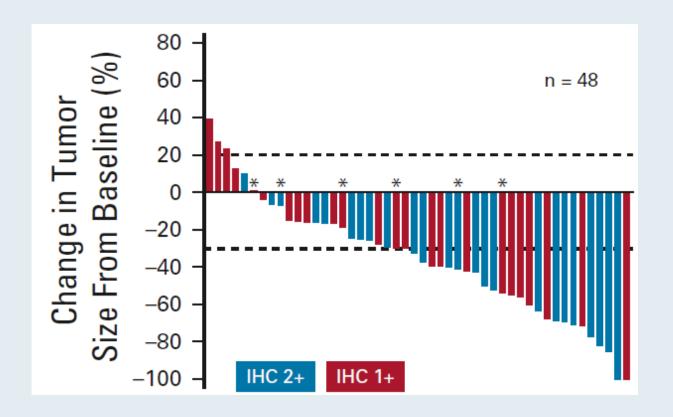
Trastuzumab Deruxtecan (T-DXd) in Patients with HER2+ Metastatic Breast Cancer with Brain Metastases: A Subgroup Analysis of the DESTINY-Breast01 Trial


Jerusalem GHM et al. ASCO 2021; Abstract 526.

DESTINY-Breast01: Clinical Activity Outcomeswith Trastuzumab Deruxtecan

Endpoint	CNS Subgroup (n = 24)	All Patients (N = 184)
Confirmed ORR	58.3%	60.9%
Duration of response	16.9 mo	14.8 mo
Progression-free survival	18.1 mo	16.4 mo

Best Response in Brain Lesions in the CNS Subgroup


Antitumor Activity and Safety of Trastuzumab Deruxtecan in Patients With **HER2-Low-Expressing Advanced Breast Cancer: Results From a Phase Ib Study**

Shanu Modi, MD¹; Haeseong Park, MD, MPH²; Rashmi K. Murthy, MD, MBE³; Hiroji Iwata, PhD, MD⁴; Kenji Tamura, MD, PhD⁵; Junji Tsurutani, MD, PhD⁶; Alvaro Moreno-Aspitia, PhD⁷; Toshihiko Doi, MD, PhD⁸; Yasuaki Sagara, MD⁹; Charles Redfern, MD¹⁰; Ian E. Krop, MD, PhD¹¹; Caleb Lee, MD, PhD¹²; Yoshihiko Fujisaki, MS¹³; Masahiro Sugihara, PhD¹³; Lin Zhang, MD, PhD¹²; Javad Shahidi, MD12; and Shunji Takahashi, MD14

J Clin Oncol 2020;38(17):1887-96.

Effect of Trastuzumab Deruxtecan in Heavily Pretreated* HER2-Low Metastatic Breast Cancer

Clinical activity (by independent review)

ORR		
	Overall	37%
	HER2 2+	39%
	HER2 1+	36%
	ER+	40% (N = 47)
	ER-	14% (N = 7)
PFS		
	Overall	11.1 months

^{*} Median of 7.5 prior regimens

Final Overall Survival Results from the SOPHIA Study for Patients with HER2-Positive Metastatic Breast Cancer Did Not Demonstrate a Statistically Significant Advantage with Margetuximab Over Trastuzumab Press Release – September 07, 2021

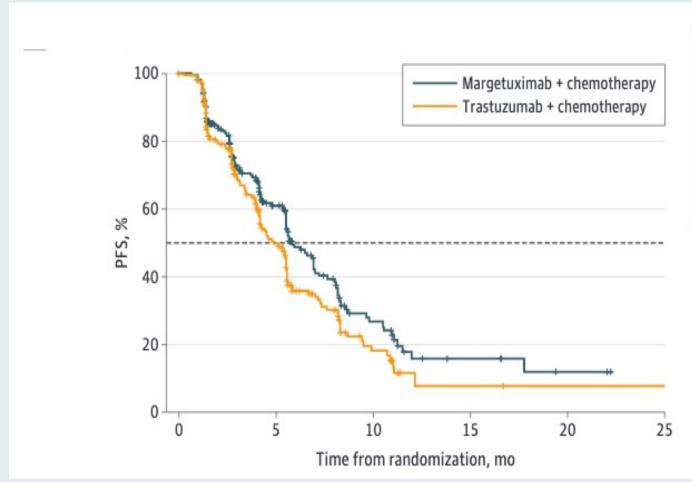
"Final overall survival (OS) results of the SOPHIA Phase 3 study in adult patients with metastatic HER2-positive breast cancer did not demonstrate a statistically significant advantage for margetuximab over trastuzumab.

The final OS analysis of the SOPHIA study was performed after 385 OS events occurred in the intent-to-treat (ITT) population. As per the study protocol, OS was defined as the number of days from randomization to the date of death (from any cause). The final OS analysis for the ITT population did not demonstrate a statistically significant advantage for margetuximab plus chemotherapy compared to that of patients who received trastuzumab plus chemotherapy (hazard ratio [HR]=0.95; 95% Confidence Interval [CI]: 0.77-1.17; P=0.62). In this overall ITT population, the median survival was 21.6 months in patients treated with margetuximab plus chemotherapy (N=266) compared to 21.9 months in patients treated with trastuzumab plus chemotherapy (N=270).

The safety profile at the time of the final OS analysis of SOPHIA was similar to what was previously reported."

Research

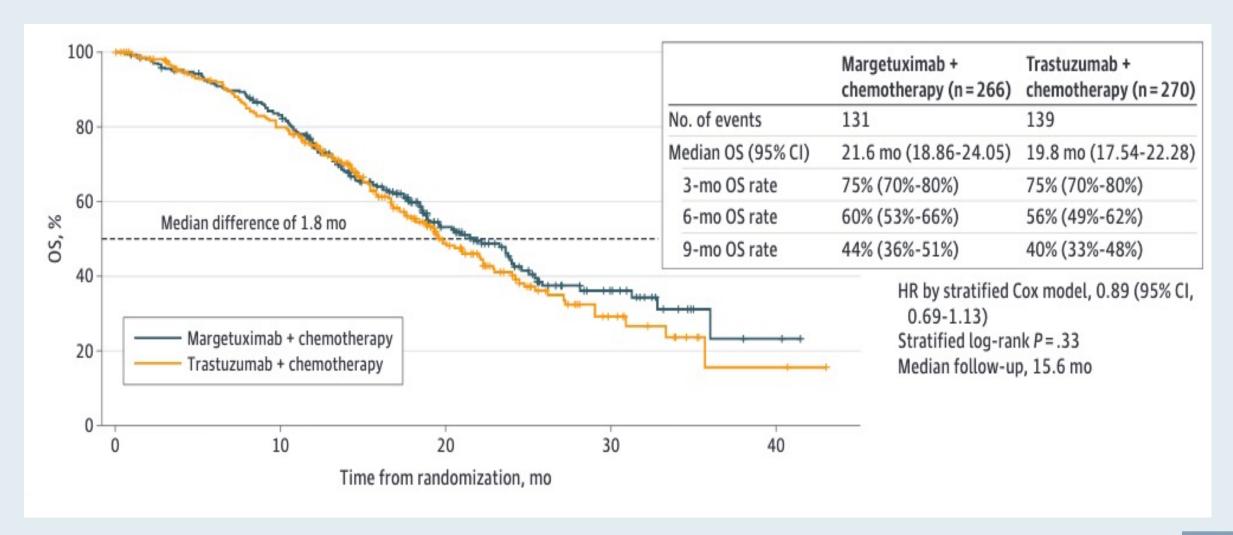
JAMA Oncology | Original Investigation


Efficacy of Margetuximab vs Trastuzumab in Patients With Pretreated ERBB2-Positive Advanced Breast Cancer A Phase 3 Randomized Clinical Trial

Hope S. Rugo, MD; Seock-Ah Im, MD, PhD; Fatima Cardoso, MD; Javier Cortés, MD, PhD; Giuseppe Curigliano, MD, PhD;
Antonino Musolino, MD, PhD, MSc; Mark D. Pegram, MD; Gail S. Wright, MD; Cristina Saura, MD, PhD; Santiago Escrivá-de-Romaní, MD;
Michelino De Laurentiis, MD, PhD; Christelle Levy, MD; Ursa Brown-Glaberman, MD; Jean-Marc Ferrero, MD; Maaike de Boer, MD, PhD;
Sung-Bae Kim, MD, PhD; Katarína Petráková, MD, PhD; Denise A. Yardley, MD; Orit Freedman, MD, MSc; Erik H. Jakobsen, MD; Bella Kaufman, MD;
Rinat Yerushalmi, MD; Peter A. Fasching, MD; Jeffrey L. Nordstrom, PhD; Ezio Bonvini, MD; Scott Koenig, MD, PhD; Sutton Edlich, MS, PA;
Shengyan Hong, PhD; Edwin P. Rock, MD, PhD; William J. Gradishar, MD; for the SOPHIA Study Group

JAMA Oncol 2021;[Online ahead of print].

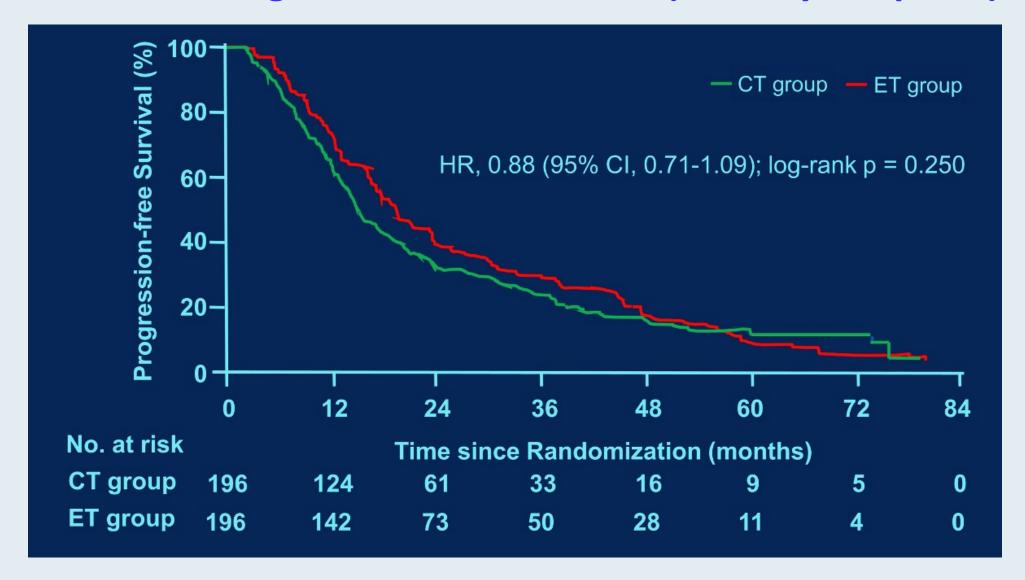
SOPHIA: PFS by Central Blinded Analysis (ITT Population)



	Margetuximab + chemotherapy (n = 266)	Trastuzumab + chemotherapy (n = 270)
No. of events	130	135
Median PFS (95% CI)	5.8 mo (5.52-6.97)	4.9 mo (4.17-5.59)
3-mo PFS rate	72% (65%-77%)	70% (63%-76%)
6-mo PFS rate	48% (41%-56%)	36% (28%-44%)
9-mo PFS rate	30% (22%-38%)	22% (15%-30%)

HR by stratified Cox model, 0.76 (95% CI, 0.59-0.98) Stratified log-rank P = .03 24% Risk reduction of disease progression^a Median follow-up, 2.8 mo

SOPHIA: OS Analysis (ITT Population)


Trastuzumab plus Endocrine Therapy or Chemotherapy as First-Line Treatment for Metastatic Breast Cancer with Hormone Receptor-Positive and HER2-Positive: The SYSUCC-002 Randomized Clinical Trial

Yuan Z et al.

ASCO 2021; Abstract 1003.

SYSUCC-002: Progression-Free Survival (Primary Endpoint)

SYSUCC-002: Subgroup Analysis of PFS

Subgroup	ET group (events/ n)	CT group (events/ n)		Hazard Ratio (95% CI)	p value
Age, years					0.146
≤ 40	29/31	30/42		1.14 (0.67, 1.91)	
> 40	151/165	135/154	⊢	0.80 (0.63, 1.00)	
Receptor status					0.099
ER and PR positive	143/157	128/157	⊢	0.90 (0.71, 1.15)	
ER or PR positive	37/39	37/39		0.76 (0.48, 1.20)	
Visceral involvement					0.487
Yes	106/114	103/119		0.95 (0.72, 1.25)	
No	74/82	62/77	<u> </u>	0.80 (0.57, 1.12)	
Previous adjuvant endocrine therapy					0.904
Als	74/83	66/83		0.98 (0.69, 1.15)	
ORMs	56/59	51/59	<u> </u>	0.97 (0.70, 1.36)	
Metastasis number			T i		0.851
< 2	127/140	111/139		0.89 (0.69, 1.15)	
≥ 2	53/56	54/57	<u> </u>	0.86 (0.59, 1.27)	
Disease-free interval					
≤ 24 months	59/64	64/78	——————————————————————————————————————	1.39 (0.97, 1.98)	
> 24 months	71/78	53/64		0.77 (0.53, 1.10)	
			0 0.5 1 1.5 2.0		
			ET better CT better		

Primary Outcome of the Phase III SYD985.002/TULIP Trial Comparing [vic-]Trastuzumab Duocarmazine to Physician's Choice Treatment in Patients with Pre-treated HER2-Positive Locally Advanced or Metastatic Breast Cancer

Manich E et al.

ESMO 2021; Abstract LBA15.

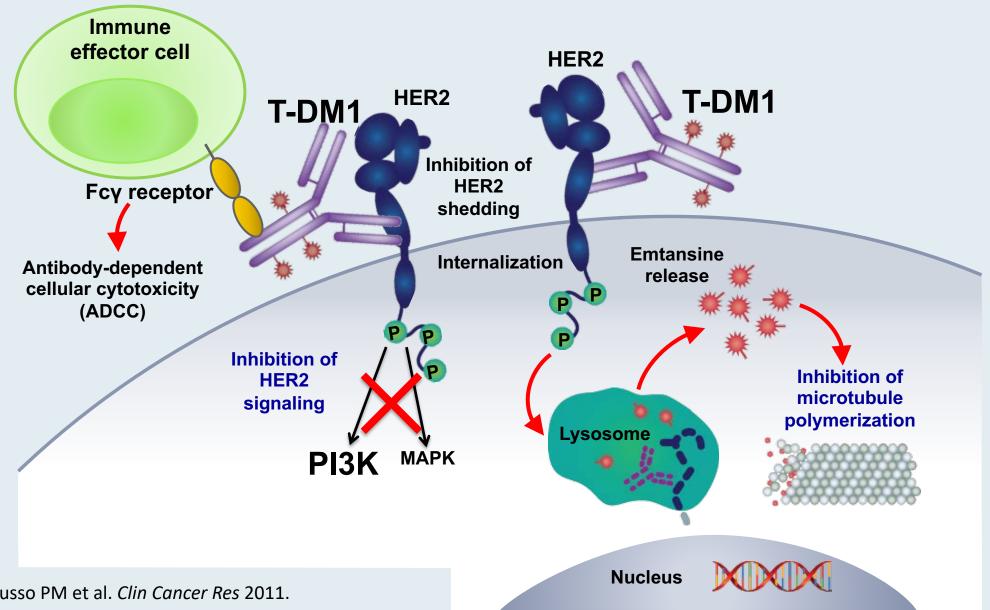
Conclusions: Treatment with [vic-]trastuzumab duocarmazine significantly improved PFS in comparison with standard physician's choice chemotherapy and may provide a new treatment option for patients with pre-treated locally advanced or metastatic HER2-positive breast cancer.

Select Ongoing Phase III Trials in Metastatic HER2-Positive Breast Cancer

Trial identifier	Estimated enrollment	Setting	Regimens	Estimated completion date
DESTINY-Breast09 (NCT04784715)	1,134	First line	 Trastuzumab deruxtecan Trastuzumab deruxtecan + pertuzumab Trastuzumab + pertuzumab + taxane 	2029
HER2CLIMB-02 (NCT03975647)	460	Second line	T-DM1 + tucatinibPlacebo + T-DM1	2024
DESTINY-Breast02 (NCT03523585)	600	Third line	 Trastuzumab deruxtecan Physician's choice of capecitabine/trastuzumab or capecitabine/lapatinib 	2024
DESTINY-Breast12	500	≤2 lines of therapy, presence or absence of BM	Trastuzumab deruxtecan	2024

BM = brain metastases

Localized HER2-Positive Breast Cancer


FDA-Approved Agents for Early-Stage HER2-Positive Breast Cancer

Agent	Setting	Pivotal trial(s)	Regimens	Year approved	
		NSABP-31	AC-T-placebo vs AC-T-H		
Trastuzumab	Adjuvant HER2+ EBC,	N9831	AC-T vs AC-H vs AC-T-H	2006	
ITastuzumab	first line	BCIRG 006	ACT vs ACT-H vs TC-H	2006	
		HERA	Observation vs trastuzumab		
Pertuzumab	Neoadjuvant HER2+, EBC	NeoSphere	TD vs PTD vs PT vs PD	2013	
Dortugues	Adimont HED2 L EDC	APHINITY	Chemotherapy plus trastuzumab	2017	
Pertuzumab	Adjuvant HER2+, EBC		plus pertuzumab vs placebo	2017	
Neratinib	Extended adjuvant	Cv+oNCT	ExteNET Placebo vs neratinib	2017	
	treatment of HER2+ EBC	EXTENE			
T-DM1	Adjuvant HER2+ EBC with residual disease after neoadjuvant taxane and trastuzumab-based treatment	KATHERINE	Trastuzumab vs T-DM1	2019	

AC-H = doxorubicin, cyclophosphamide, and trastuzumab; AC-T, doxorubicin, cyclophosphamide, and paclitaxel; AC-T-H, doxorubicin, cyclophosphamide, paclitaxel, and trastuzumab; H, trastuzumab; PD, pertuzumab and docetaxel; PT, trastuzumab and pertuzumab; PTD, pertuzumab, trastuzumab, and docetaxel; TC, docetaxel and cyclophosphamide; TC-H, docetaxel, cyclophosphamide, and trastuzumab; TD, trastuzumab and docetaxel; THP, docetaxel, trastuzumab, and pertuzumab

Trastuzumab Emtansine (T-DM1): Mechanisms of Action

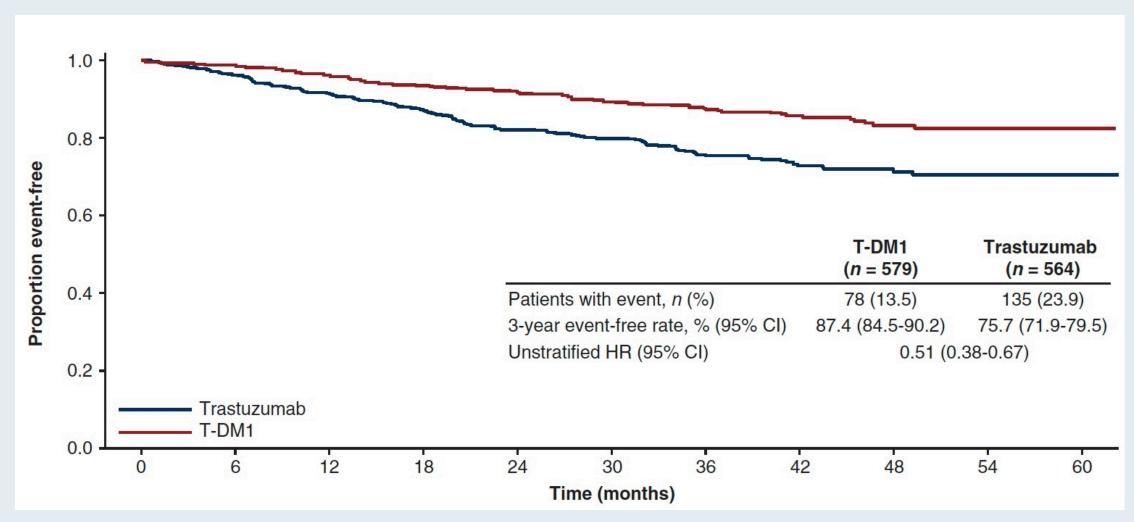
ARTICLE IN PRESS

Ann Oncol 2021;[Online ahead of print]

ORIGINAL ARTICLE

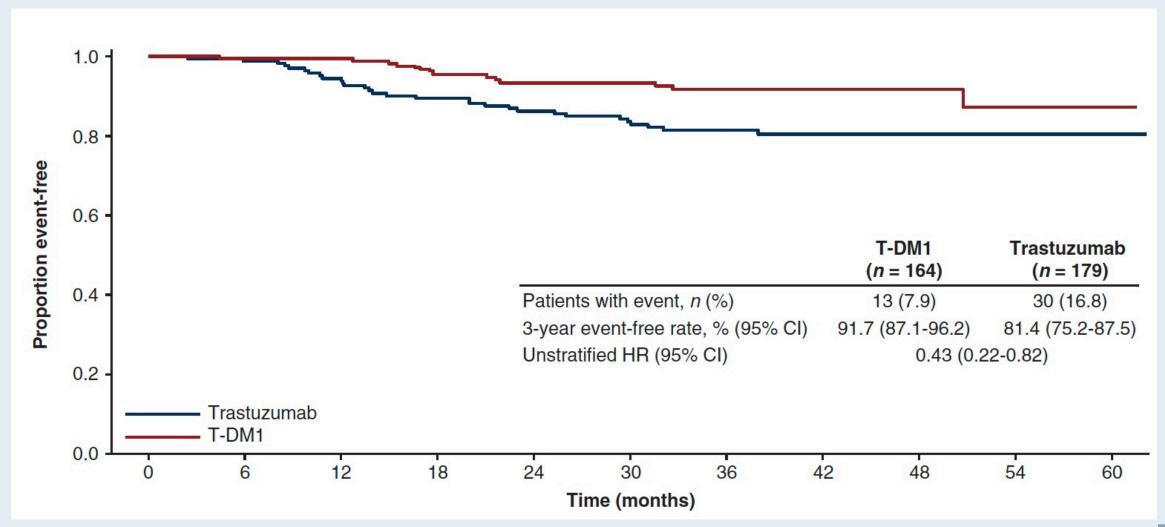
Adjuvant T-DM1 versus trastuzumab in patients with residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer: subgroup analyses from KATHERINE

```
E. P. Mamounas<sup>1,2*</sup>, M. Untch<sup>3</sup>, M. S. Mano<sup>4</sup>, C.-S. Huang<sup>5</sup>, C. E. Geyer Jr<sup>1,6</sup>, G. von Minckwitz<sup>7</sup>, N. Wolmark<sup>1,8</sup>, X. Pivot<sup>9</sup>, S. Kuemmel<sup>10,11</sup>, M. P. DiGiovanna<sup>12</sup>, B. Kaufman<sup>13</sup>, G. Kunz<sup>7,14</sup>, A. K. Conlin<sup>1,15</sup>, J. C. Alcedo<sup>16</sup>, T. Kuehn<sup>17</sup>, I. Wapnir<sup>1,18</sup>, A. Fontana<sup>19</sup>, J. Hackmann<sup>7,20</sup>, J. Polikoff<sup>1,21</sup>, M. Saghatchian<sup>22</sup>, A. Brufsky<sup>1,23</sup>, Y. Yang<sup>24</sup>, M. Zimovjanova<sup>25</sup>, T. Boulet<sup>26</sup>, H. Liu<sup>27</sup>, D. Tesarowski<sup>28</sup>, L. H. Lam<sup>28</sup>, C. Song<sup>28</sup>, M. Smitt<sup>28,29</sup> & S. Loibl<sup>7,30</sup>
```



KATHERINE: Summary of Adverse Events Associated with T-DM1

Event	Trastuzumab (N = 720)	T-DM1 (N = 740)			
Grade ≥3 adverse event	15.4%	25.7%			
AE leading to drug discontinuation	2.1%	18.1%			
Selected Grade ≥3 adverse event					
Decreased platelet count	0.3%	5.7%			
Hypertension	1.2%	2.0%			
Peripheral sensory neuropathy	0	1.4%			
Decreased neutrophil count	0.7%	1.2%			
Hypokalemia	0.1%	1.2%			
Fatigue	0.1%	1.1%			
Anemia	0.1%	1.1%			



Time to First Invasive Disease-Free Survival Event for Patients Who Received Anthracycline-Based Neoadjuvant Therapy

Time to First Invasive Disease-Free Survival Event for Patients Who Received Non-Anthracycline-Based Neoadjuvant Therapy

Adjuvant Trastuzumab Emtansine Versus Paclitaxel in Combination With Trastuzumab for Stage I HER2-Positive Breast Cancer (ATEMPT): A Randomized Clinical Trial

Sara M. Tolaney, MD, MPH^{1,2}; Nabihah Tayob, PhD¹; Chau Dang, MD³; Denise A. Yardley, MD⁴; Steven J. Isakoff, MD, PhD⁵; Vicente Valero, MD⁶; Meredith Faggen, MD¹; Therese Mulvey, MD⁵; Ron Bose, MD, PhD⁷; Jiani Hu, MSc¹; Douglas Weckstein, MD¹; Antonio C. Wolff, MD⁸; Katherine Reeder-Hayes, MD, MBA, MSc⁹; Hope S. Rugo, MD¹⁰; Bhuvaneswari Ramaswamy, MD¹¹; Dan Zuckerman, MD¹²; Lowell Hart, MD¹³; Vijayakrishna K. Gadi, MD, PhD¹⁴; Michael Constantine, MD¹; Kit Cheng, MD¹⁵; Frederick Briccetti, MD¹; Bryan Schneider, MD¹⁶; Audrey Merrill Garrett, MD¹⁷; Kelly Marcom, MD¹⁸; Kathy Albain, MD¹⁹; Patricia DeFusco, MD²⁰; Nadine Tung, MD^{2,21}; Blair Ardman, MD²²; Rita Nanda, MD²³; Rachel C. Jankowitz, MD²⁴; Mothaffar Rimawi, MD²⁵; Vandana Abramson, MD²⁶; Paula R. Pohlmann, MD, PhD, MSc²⁷; Catherine Van Poznak, MD²⁸; Andres Forero-Torres, MD²⁹; Minetta Liu, MD³⁰; Kathryn Ruddy, MD³⁰; Yue Zheng, MSc¹; Shoshana M. Rosenberg, ScD, MPH^{1,2}; Richard D. Gelber, PhD^{1,2}; Lorenzo Trippa, PhD^{1,2}; William Barry, PhD¹; Michelle DeMeo, BS¹; Harold Burstein, MD, PhD^{1,2}; Ann Partridge, MD, MPH^{1,2}; Eric P. Winer, MD^{1,2}; and Ian Krop, MD, PhD^{1,2}

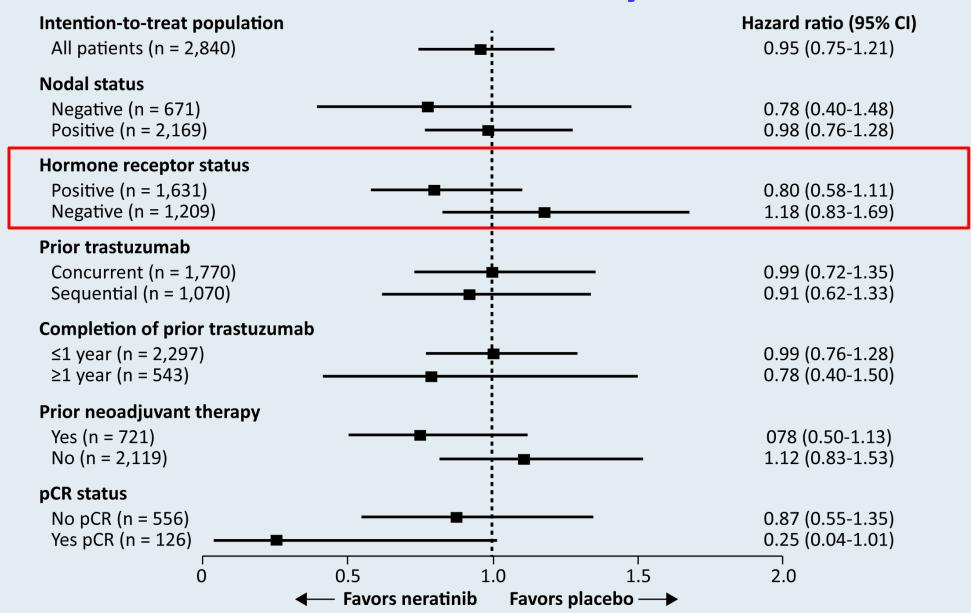
J Clin Oncol 2021;[Online ahead of print]

ATEMPT: Invasive Disease-Free Survival (iDFS) and Recurrence-Free Interval (RFI)

Outcome	T-DM1 (n = 383)	TH (n = 114)
Three-year iDFS	97.8%	93.4%
Three-year RFI	99.2%	94.3%

ATEMPT: Clinically Relevant Toxicity

Clinically Relevant Toxicity	T-DM1 (n = 383)	TH (n = 114)
Grade ≥3 nonhematologic toxicity	9%	11%
Grade ≥2 neurotoxicity	11%	23%
Grade ≥4 hematologic toxicity	1%	0%
Febrile neutropenia	0%	2%
Any toxicity requiring dose delay	28%	26%
Any toxicity requiring early discontinuation	17%	6%
Total	46%	47%


Continued Efficacy of Neratinib in Patients with HER2-Positive Early-Stage Breast Cancer: Final Overall Survival Analysis from the Randomized Phase 3 ExteNET Trial

Holmes FA et al.

SABCS 2020; Abstract PD3-03.

ExteNET: Final Overall Survival Analysis

ExteNET: Cumulative Incidence of CNS Recurrences

	Cumulative incidence Events, n of CNS recurrences, % (95% C			
Population or subgroup	Neratinib	Placebo	Neratinib	Placebo
Intention-to-treat population (n = 2,840)	16	23	1.3 (0.8-2.1)	1.8 (1.2-2.7)
HR+/≤1-year population (EU indication) (n = 1,334)	4	12	0.7 (0.2-1.7)	2.1 (1.1-3.5)
Prior neoadjuvant therapy (n = 1,334) No (n = 980) Yes (n = 354)	3 1	6 6	0.7 (0.2-2.0) 0.7 (0.1-3.3)	1.5 (0.6-3.0) 3.7 (1.5-7.4)
pCR status (n = 354) No (n = 295) Yes (n = 38)	1 0	5 1	0.8 (0.1-4.0) 0 (NE)	3.6 (1.3-7.8) 5.0 (0.3-21.2)

ExteNET: CNS Disease-Free Survival at 5 Years

	Events, n		Kaplaı estimate at 5 y		
Population or subgroup	Neratinib	Placebo	Neratinib	Placebo	Hazard ratio
Intention-to-treat population (n = 2,840)	29	42	97.5 (96-4-98.3)	96.4 (95.2-97.4)	0.73
HR+/≤1-year population (EU indication) (n = 1,334)	9	23	98.4 (96.8-99.1)	95.7 (93.6-97.2)	0.41
Prior neoadjuvant therapy (n = 1,334) No (n = 980) Yes (n = 354)	7 2	10 13	98.2 (96.3-99.2) 98.7 (94.8-99.7)	97.5 (95.3-98.6) 91.2 (85.1-94.8)	0.70 0.18
pCR status (n = 354) No (n = 295) Yes (n = 38)	2 0	10 3	98.4 (93.6-99.6) 100 (100-100)	92.0 (85.6-95.7) 81.9 (53.1-93.9)	0.24 0

CONTROL Trial: Strategies to Improve Neratinib Tolerability

Background: Neratinib is approved for extended adjuvant therapy in HER2-positive BC

- Neratinib poorly tolerated in ExteNET
 - Discontinuation rate: 17%
 - Grade 3 diarrhea: 40%

Objective: Improve GI tolerability of neratinib

Methods: Sequential single arm interventions in patients treated with adjuvant therapy

- Cohort 1 (L): Loperamide (n = 137)
- Cohort 2 (BL): Budesonide + loperamide (n = 64)
- Cohort 3 (CL or CL-PRN): Colestipol + loperamide (n = 136) or colestipol + as needed loperamide (n = 104)
- Cohort 4 (DE): Neratinib dose escalation; ongoing (n = 60)

Treatment-Emergent Diarrhea in the ExteNET and CONTROL Studies

Outcome	ExteNET $(n = 1408)$	L (n = 137)	BL (n = 64)	CL (n = 136)	CL-PRN (n = 104)	DE (n = 60)
Treatment-emergent diarrhea incidence, n (%)						
No diarrhea	65 (5)	28 (20)	9 (14)	23 (17)	5 (5)	1 (2)
Grade 1	323 (23)	33 (24)	16 (25)	38 (28)	34 (33)	25 (42)
Grade 2	458 (33)	34 (25)	21 (33)	47 (35)	32 (31)	25 (42)
Grade 3	561 (40)	42 (31)	18 (28)	28 (21)	33 (32)	9 (15)
Grade 4	1 (<1)	0	0	0	0	0
Action taken, n (%)						
Dose hold	477 (34)	20 (15)	12 (19)	22 (16)	15 (14)	7 (12)
Dose reduction	372 (26)	10 (7)	3 (5)	10 (7)	12 (12)	2 (3)
Discontinuation	237 (17)	28 (20)	5 (8)	5 (4)	8 (8)	2 (3)
Hospitalization	20 (1)	2 (1)	0	0	0	0

Select Ongoing Trials in Early-Stage HER2-Positive Breast Cancer

Trial identifier	Phase	Setting	Regimens	Estimated completion date
CompassHER2 pCR (NCT04266249)	II	Neoadjuvant and adjuvant	 Preoperative chemotherapy + trastuzumab/pertuzumab If pCR → postoperative trastuzumab/pertuzumab If residual disease → postoperative T-DM1 or T-DM1 + tucatinib 	2023
DESTINY-Breast05 (NCT04622319)	III	High-risk, residual disease after neoadjuvant chemotherapy	Trastuzumab deruxtecanT-DM1	2027

Fall Oncology Nursing Series

A Complimentary NCPD-Accredited Virtual Curriculum

Chronic Lymphocytic Leukemia

Thursday, October 14, 2021 5:00 PM - 6:00 PM ET

Faculty

Anthony R Mato, MD, MSCE Corinne Hoffman, MS, APRN-CNP, AOCNP

Moderator Neil Love, MD

Recent Advances and Future Directions in Oncology: A Daylong Multitumor Educational Webinar in Partnership with Florida Cancer Specialists

A CME-MOC/NCPD Accredited Virtual Event

Saturday, October 23, 2021 9:30 AM – 4:30 PM ET

Faculty

Neeraj Agarwal, MD
Tanios Bekaii-Saab, MD
Kristen K Ciombor, MD, MSCI
Brad S Kahl, MD
Mark Levis, MD, PhD
Ann Partridge, MD, MPH
Mark D Pegram, MD

Daniel P Petrylak, MD
Noopur Raje, MD
David Sallman, MD
Lecia V Sequist, MD, MPH
David R Spigel, MD
Saad Zafar Usmani, MD, MBA
Andrew D Zelenetz, MD, PhD

Moderator Neil Love, MD

ONCOLOGY TODAY

WITH DR NEIL LOVE

Management of HER2-Low Breast Cancer

DR IAN KROP

DANA-FARBER CANCER INSTITUTE

Thank you for joining us!

CME and MOC credit information will be emailed to each participant within 5 business days.

